La Trobe
1158867_Pourhabibi,T_2021.pdf (4.9 MB)
Download file

DarkNetExplorer (DNE): Exploring dark multi-layer networks beyond the resolution limit

Download (4.9 MB)
journal contribution
posted on 15.06.2021, 23:04 by T Pourhabibi, Kok-Leong OngKok-Leong Ong, BH Kam, YL Boo
Timely identification of terrorist networks within civilian populations could assist security and intelligence personnel to disrupt and dismantle potential terrorist activities. Finding “small” and “good” communities in multi-layer terrorist networks, where each layer represents a particular type of relationship between network actors, is a vital step in such disruption efforts. We propose a community detection algorithm that draws on the principles of discrete-time random walks to find such “small” and “good” communities in a multi-layer terrorist network. Our algorithm uses several parallel walkers that take short independent random walks towards hubs on a multi-layer network to capture its structure. We first evaluate the correlation between nodes using the extracted walks. Then, we apply an agglomerative clustering procedure to maximize the asymptotical Surprise, which allows us to go beyond the resolution limit and find small and less sparse communities in multi-layer networks. This process affords us a focused investigation on the more important seeds over random actors within the network. We tested our algorithm on three real-world multi-layer dark networks and compared the results against those found by applying two existing approaches – Louvain and InfoMap – to the same networks. The comparative analysis shows that our algorithm outperforms the existing approaches in differentiating “small” and “good” communities.

History

Publication Date

01/07/2021

Journal

Decision Support Systems

Volume

146

Article Number

113537

Pagination

(p.1-15)

Publisher

Elsevier

ISSN

0167-9236

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.