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A B S T R A C T   

Timely identification of terrorist networks within civilian populations could assist security and intelligence 
personnel to disrupt and dismantle potential terrorist activities. Finding “small” and “good” communities in 
multi-layer terrorist networks, where each layer represents a particular type of relationship between network 
actors, is a vital step in such disruption efforts. We propose a community detection algorithm that draws on the 
principles of discrete-time random walks to find such “small” and “good” communities in a multi-layer terrorist 
network. Our algorithm uses several parallel walkers that take short independent random walks towards hubs on 
a multi-layer network to capture its structure. We first evaluate the correlation between nodes using the extracted 
walks. Then, we apply an agglomerative clustering procedure to maximize the asymptotical Surprise, which 
allows us to go beyond the resolution limit and find small and less sparse communities in multi-layer networks. 
This process affords us a focused investigation on the more important seeds over random actors within the 
network. We tested our algorithm on three real-world multi-layer dark networks and compared the results 
against those found by applying two existing approaches – Louvain and InfoMap – to the same networks. The 
comparative analysis shows that our algorithm outperforms the existing approaches in differentiating “small” 
and “good” communities.   

1. Introduction 

Dark networks are covert social networks [1] that are usually 
incomplete because they are not easily observable [2]. Members in these 
networks would actively conceal their network information by engaging 
in activities (e.g., friendship, kinship, and economic transactions) that 
distract from their true intentions thus, avoiding discovery by law 
enforcement agents [1,3]. They also hide their impermissible activities 
by disguising their interactions with people and events [2]. As a result, 
the data on criminals and their networks are typically incomplete with 
missing links and nodes, or contain incorrect information because of 
criminals’ fraud (e.g., fake identity), data entry error, or inconsistent 
information supplied from different legal databases [4]. 

Crossley et al. [5] defines a covert network as having individuals who 
(i) commit illegal acts that are kept secret until the crime has taken 
place, and (ii) seek to remain anonymous afterward. Given the different 
types of covert networks, definitions do vary [1,5]. However, we are 
attracted to Crossley et al.’s [5] definition as it is well-aligned with our 
application problem, i.e., terrorist networks, where the focus is on 

individuals and how they conceal their involvement in criminal acts [6]. 
In terrorist networks, individuals are connected via different human 

interactions [7], such as friendship, kinship, and economic transactions. 
These relationships can be easily captured as a multi-layer network (also 
known as multiplex network), where all layers share the same users 
(nodes), but have different edges for each relationship type [8]. As a 
result, multi-layer networks contain rich topological information about 
individuals and their ties, but their complex structure makes discovering 
communities difficult [9], especially covert ones in dark multi-layer 
networks. As mentioned above, this is because these networks are 
incomplete, or they contain erroneous data. Therefore, in the case of 
terrorist networks, they lead to challenges in (i) identifying key leaders 
in the network, (ii) understanding influence and relations, (iii) pin-
pointing vulnerabilities, and (iv) disrupting and mitigating harmful ac-
tivities [9,10]. 

Jeub et al. [11] argue that one way to discover the topological and 
dynamic properties of multiplex networks, including covert commu-
nities, is to study the behavior of a discrete-time random walk on the 
network. This proposal is because a random walker that jumps from one 
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node to another gets “trapped” in denser regions of the network for 
longer periods, thus exposing anomalies and allowing covert commu-
nities to be discovered [11,12]. In this paper, we take advantage of this 
behavior to explore (or “walk” through) the network both within and 
between layers, based on some pre-set transition probabilities [12]. We 
call this a “multiplex random walk.” We aim to find clusters with nodes 
that mostly reside in the network hubs as these hubs play a key 
“brokerage” role in (i) the flow of information and resources throughout 
the dark networks, or in (ii) mediating between unconnected actors 
[13]. According to Sageman [14], it is important to discover these nodes 
in the hubs as that is where the leaders are usually located. If these nodes 
or hubs are disrupted, criminal activities are effectively dismantled, so 
law enforcement agencies are interested in finding these nodes within 
dark networks. 

Our proposed algorithm uses an adaptive centrality choice param-
eter to guide the random walker in a layer to move to the next neighbors, 
based on their hub centrality score. To effectively operate on a large 
network, our method allows multiple independent parallel walks to 
speed-up the expected time required to visit every node (at least once) in 
a graph [15]. Because our goal is to find the “small” and “good” com-
munities reflecting the characteristics of a terrorist network, we also 
designed a community detection model that uses the Jaccard correlation 
of walked sequences between each pair of nodes to maximize a 
resolution-limit-free optimization function. This function will enable us 
to identify the “small” and “good” communities to allow a list of suspects 
be extracted for enforcement agencies to start their investigation in a 
more targeted manner [16]. 

Currently, most state-of-the-art research studies focus on partitioning 
networks by optimizing a modularity-based optimization function 
[17,18]. However, modularity fails to identify community structures 
below a certain characteristic scale (i.e., a resolution limit [19]), and 
therefore, the “small” communities (relative to the network) slip 
through the detection process. In short, modularity-based methods yield 
dense sub-networks that are difficult and time-consuming to analyze, 
and miss the “small” and “good” communities of interest to law 
enforcement agencies [20]. To overcome these limits, we introduce a 
statistical measure called asymptotic Surprise (AS), a fitness function 
that can (i) outperform modularity-based methods (thus finding smaller 
communities) and also (ii) find lower density communities [17]. 

We make five contributions in this paper. First, our technique uses 
the heuristic that criminals mostly lay in network hubs [14] to which we 
introduced a hub-centrality based random walk to explore the structural 
information of dark multiplex networks. Our proposal can be imple-
mented in MapReduce to deal with very large networks. Second, we go 
beyond the resolution limit to find “small” and “good” communities by 
maximizing Surprise value through a hierarchical agglomerative clus-
tering procedure. Third, we propose new measures to evaluate the 
quality of a community regardless of modularity. These measures (i.e., 
Surprise, Significance, Performance, intra-cluster conductance) help to 
evaluate the “good” and “small” communities for our use-case. Fourth, 
we show that our method better captures small and meaningful com-
munities compared to two state-of-the-art techniques, when tested on 
three real-world multi-layer criminal networks. Lastly, our method is 
also shown to readily identify covert network leaders that are highly 
sought after by enforcement agencies. 

The remainder of this paper is structured as follows. We start with a 
review of existing works in Section 2 and then explain our proposed 
algorithm in Section 3. In Section 4, we discuss the details of two 
baseline methods, against which the performance of our proposed 
approach is to be evaluated. In Section 5, we present and discuss the test 
results of applying our approach and the two baseline methods to three 
real-world multi-layer networks. Given the challenges and the lack of 
benchmarks, we devote Section 6 to review the results of our compar-
ative analysis of the three real-world criminal networks using both 
modularity and non-modularity based metrics to demonstrate the 
credibility of our proposed approach. We conclude in Section 7 with a 

discussion of implications to research and practice, our method’s limi-
tations, and further work. 

2. Related works 

Our aim is to develop a community detection algorithm to find 
“small” and “good” communities in multi-layer networks. We, therefore, 
focus our review on the use of network-based methods for community 
detection in criminal networks. Another reason for this focus is that a 
broad review of data mining techniques in crime has already been 
conducted in [21–23]. 

Through a systematic search of works using network analysis for 
detecting dark network between 2010 and 2020 (based on search terms: 
“criminal networks,” “crime data,” and “dark networks”), we uncovered 
25 studies. To enhance our understanding of the state-of-the-research in 
this field, we systematically assessed the 25 studies in terms of their 
application domain, the dataset used, type of method employed, type of 
network tested, and key features and methods employed (see Table 1). 

Of particular relevance to our study is the method these studies used 
for finding communities in a network. According to McIllwain [24], 
there are two main methods of finding communities in a network: (i) 
node evaluation, and (ii) analysis of associations. Node evaluation 
methods [25,26] use simple measures of centrality taken from social 
network analysis to assess the nodes’ positions in networks (e.g., degree 
centrality [27–29], betweenness [29,30], eigenvector centrality [6], and 
flow betweenness [31]). Several papers have combined these measures 
with machine learning and introduced visualizations (e.g., COPLINK 
[32], LogAnalysis [33], CrimeNet Explorer [34], GANG [35], and 
PAVENET [36]) to better support the needs of security analysts in 
enforcement agencies. 

Analysis of association focuses on exploring connections among ac-
tors, relationships, and ties that are not immediately obvious [24]. 
Different graph clustering methods have been employed to cluster net-
works and find communities (e.g., InfoMap [37], Louvain [38], Gir-
van–Newman [39], WalkTrap [40]). 

As revealed in Table 1, only six [10,41–45] of the reviewed studies 
use node evaluation to find criminal communities, with two [46,47] 
employing a combination of the two approaches. The balance 17 studies 
use analysis of association to find communities. This result springs little 
surprise. As discussed earlier, members of criminal networks try to 
conceal their networking information to distract law enforcement agents 
[1,3]. Therefore, introducing a community detection approach based on 
analysis of associations within the network, which hold the potential of 
even revealing hidden associations would feature as a preferred 
approach for detecting criminal groups or covert communities [24]. 

A second feature of concern to the development of our algorithm is 
the type of network the reviewed studies used to capture the activities of 
the covert communities they examined. The information shown in 
Table 1 reveals that the majority of the studies use monoplex networks, 
i.e., these studies do not consider the multiplex nature of criminals’ 
activities to evade detection. In real-life, interactions within social 
communities are multi-faceted in nature and consist of multiple rela-
tionship types [63]. Domenico et al. [63], who compared differences 
between analyzing the same network in a monoplex and multiplex 
setting on two scientific collaboration networks, found that modeling a 
network as a multiplex representation is better at uncovering the con-
nected topics and identifying smaller communities with more overlaps 
compared to conventional aggregated methods. Domenico et al.’s [63] 
findings advise us that it is more appropriate to model these interactions 
as a multi-layer network [64,65], since aggregating them into single or 
monoplex networks may lead to “information loss and may obscure the 
actual organization” [63] and distort both the network topology and the 
embedded dynamics [64]. 

From the reviewed studies shown in Table 1, Bahulkar et al. [55] and 
Saxena et al. [9] are the only two studies that worked on multi-layer 
networks. Bahulkar et al. [55] used link augmentation to improve the 
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Table 1 
Survey on research studies on covert community detection using network-based methods.  

Reference Application domain Dataset Type of 
method 
used* 

Type of 
network 
used 

Features and methods used 

[10] General Public Prosecutor’s Office of Region del Biobío- 
Chile dataset 

NE Monoplex Maximizes a linear utility function to find the association 
between criminals. 

[45] Money laundering Bank statements and National Court Register 
data 

NE Monoplex Assigns roles to people in the network and categorizes 
people with the same role in the same cluster to uncover 
the offender groups. 

[44] General Enron NE Monoplex Defines a data structure, named Community Tree, to 
depict the organizational structure of the network by 
ranking the nodes using PageRank. 

[48] Mafia Infinito network (a mafia network in Italy) AA Monoplex Applies max modularity community detection method to 
study the cluster structure of the criminal network and 
explore co-participation and role of individuals in 
criminal organizations for predicting criminal 
leaderships. 

[49] Juvenile co-offending Official court data AA Monoplex Uses the Spin Glass clustering method to study the spatial 
effects of juveniles’ criminal activities. 

[16] Email Enron AA Monoplex Presents the shortest paths network search algorithm 
(SPNSA) that begins with a small sub-set of nodes of 
particular interest (e.g., known criminals, suspects, or 
persons of influence) to build and investigative sub- 
network around them. 

[50] Money laundering A sample of 355 firms controlled by Italian 
mafia 

AA Monoplex Develops a transaction management proxy to find the 
evidence of strategic management of accounting 
transactions for money laundering. This research uses 
hierarchical clustering using agglomerative clustering to 
categorize mafia firms. 

[43] Drug trafficking, 
mafia and terrorism 

Bursa, Diyarbakir criminal network NE Monoplex Develops feature-based group detection models by using 
crime data features (e.g., crime location, crime date, 
modus operandi, criminals’ surname, and criminals’ 
hometown). 

[51] General Karate Club, Politic Books Network, Football 
Network 

AA Monoplex Investigates on disrupting criminal networks. Uses 
WalkTrap community detection to detect communities 
and disintegrate the network by deleting the links 
between communities. 

[47] Pharmaceutical crime Rogue manufacturer-manufacturer network, 
Darknet vendor-vendor network 

AA & NE Bipartite Proposes a bipartite network model for inferring the 
hidden links and ties between criminals and applies 
Girvan Newman, Clauset Newman Moore, Wakita 
Tsurumi, and WalkTrap to study the structure of the 
clusters using various centrality metrics. 

[52] Cyber crime MSN chat log AA Monoplex Develops a criminal information mining framework for 
extracting forensically relevant information from 
suspicious online messages using a clique mining 
approach. 

[42] Criminal activities 
within a workplace 

Open source reports of an office NE Monoplex Defines a measure called the degree of organization for 
the whole network using centrality-based measures to 
show this measure would help in discovering and 
predicting crime networks without concentrating on 
discovering certain individuals. 

[41] Cyber crime Online advertisements for escort services NE Bipartite Constructs provider-by-location networks, which allowed 
prominent movement trends to be observed and uses 
centrality measures to identify the prominent location 
providers. 

[53] Cyber crime Nigerian criminal network obtained from 
Facebook 

AA Monoplex Analyzes the social graph of criminals to identify profiles 
of high-rank criminals, criminal organizations, and large- 
scale communities of criminals using a modularity 
maximization approach. 

[54] Cyber crime Chat log data AA Monoplex Extracts the cliques and the semantic of the conversation 
of each clique from a chat log. The extracted topics are 
then matched with crime ontologies to further detecting 
involvement in suspicious activities. 

[55] Drug trafficking Caviar, Ndrangheta AA Multi-layer Uses link augmentation to improve the quality of 
community detection. Performs community detection on 
the augmented network using Louvain and Speakeasy. 

[9] Terrorism Noordin Top, FARC, Boko Haram AA Multi-layer Introduces a purpose-driven community detection 
algorithm for multiplex networks. The algorithm focuses 
on a user-defined goal, which directs the algorithm to 
select and combine layers appropriately in support of that 
goal. 

[46] Phone call Call data records AA & NE Monoplex Proposes a toolbox called LogAnalysis. It has the ability of 
statistical analysis of centrality measures and temporal 
analysis of the network. It is exploited by the Newman 
algorithm to detect communities. 

[56] General AA Multi-modal 

(continued on next page) 
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quality of community detection. They then applied two community 
detection methods (Louvain [38] and SpeakEasy [66]) on separate 
layers of the networks to find communities that were then combined and 
analyzed. The other work by Saxena et al. [9] aggregated the network 
into a weighted monoplex network. Like Bahulkar et al. [55], Saxena 
et al. [9] also used Louvain [38] to identify the communities in the 
aggregated weighted network. Both have their shortcomings, according 
to Li et al. [67], around the mutual inference among layers of a network. 
By aggregating the layers for analysis, the resultant network is weakened 
owing to the loss of structural topology information in each layer. 
Further, merging communities in each layer fails to account for the 
behavioral variations of nodes from one layer to another [68]. 

Another issue with Bahulkar et al.’s [55] and Saxena et al.’s [9] 
studies is the use of the Louvain method of community detection which 
attempts to optimize the modularity of a network partition, thus may fail 
to detect communities that are “small” to the network, which are crucial 
in many applications [14]. Our review also shows that 
[9,46–48,51,53,55,59] employed the modularity maximization method 
to detect communities in dark networks. The theoretical limitations of 
modularity-based approaches, however, are well-known [17], one of 
which is their resolution limit [19]. Due to its resolution limit, 
modularity-based approaches may fail to detect communities that are 
“small” to the network and result in dense communities, which are 
difficult to analyze [20]. Traag et al. [17] have demonstrated that this 
limitation can be circumvented by Surprise, a statistical measure that 
assesses the quality of a network partition into communities. Compared 
to modularity, Surprise is relatively unaffected by resolution limit and is 
more discriminative than modularity in discovering small communities 
[17]. 

Table 1 also shows that five studies [47,51,57,60,61] have adopted 
the popular random walk approach, which has been demonstrated to be 
a successful way of studying the behavior of a spreading process in a 
network [11], to capture the structural characteristic of criminal net-
works. These studies, however, applied a random walk-based method on 
the monoplex criminal network to find the structural communities. 
Compared to random walks on monoplex and aggregated weighted 
networks, random walks on a multi-layer network are better in 
capturing the mutual influence between layers and its topological 
properties [11]. Moreover, the random walk-based approaches used in 
these studies were not specifically designed for detecting criminal 
communities, suggesting that a new approach, along the lines of Jeub 
et al. [11], has to be explored. 

In sum, our review informs us that to develop a community detection 
algorithm to find “small” and “good” communities in multi-layer net-
works, we need to design a random walk approach that captures the 
inter-layer influences and their topological properties [11], taking into 
considerations criminals mostly lay in network hubs [14]. We also need 
to move away from the conventional modularity approach to overcome 
the resolution limit problem in community detection and look towards 
developing a Surprise optimization function [17]. Our solution drew 
inspiration from these principles and is presented in the next section. 

3. Methodology 

To put our proposed approach in perspective, we begin with a brief 
description of multi-layer networks and the random walk algorithms 
before presenting the details of our solution. 

3.1. Multi-layer network model 

Let graph G denote a multi-layer network, where G =
⋃

i=1
L Gi , and L 

∈ R+ indicates different types of relationships in the network and Gi =

(V,Ei,Li) is a sub-graph of G. For each sub-graph Gi, Ei denotes a list of 
relations of type Li between each pair of vertexes from a vertex set V, 
which is common among all layers [8,69]. Gi = (Vi,Ei,Ri,Ti)For each Gi , 
the connectivity structure of a multi-layer network, including both intra- 
layer and inter-layer edges, can be encoded using an adjacency tensor A 
as follows [11]: 

Table 1 (continued ) 

Reference Application domain Dataset Type of 
method 
used* 

Type of 
network 
used 

Features and methods used 

Criminal intelligence data, suspicious 
transaction, offshore-leak database, national 
companies registration information 

Introduces a general approach for mining criminal 
networks that can integrate data from various sources (e. 
g., co-offenders from court data, criminals reported 
crime) to find the offenders relationship. 

[57] Gang-related crimes Gangs data in the Greater Manchester area AA Monoplex Uses InfoMap to detect the structure of gang groups. 
[58] Drug trafficking Caviar AA Monoplex Uses spectral embedding to find criminal clusters in a 

dynamic network. 
[59] Cyber crime Restock, MojoHost Benign hosting network, 

Botnet, Masterhost criminal network 
AA Monoplex Uses Louvain community detection to find criminal 

communities within the network to use them for further 
taking down the network. 

[60] Terrorism phone call Encrypted call data records collected from 
mobile phone users in china, TerroristRel 
network collected from Profiles in Terror 
knowledge base 

AA Monoplex Uses InfoMap and Greedy Clique Expansion algorithms to 
detect criminal communities, which were then used to 
assist in constructing the conditional random field to 
improve the accuracy of link labelling process. 

[61] General Noordin Top, New South Wales crime network AA Bipartite Uses a random walk-based approach to find community 
structure from bipartite criminal networks. 

[62] Illegal pyramid 
selling, drug abuse 

Government data AA Monoplex Uses frequent pattern mining to find the sub-group 
criminals within a time-evolving network and also 
provides a visualization interface to help better 
investigation on the corresponding users. 

Note: * NE: node evaluation; AA: analysis of associations. 

Fig. 1. Schematic of a walk (dotted trajectories) in a multi-layer network [70].  
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Ajβ
iα =

{
w, (iα, jβ)ϵ E
0, otherwise (1)  

where iα ∈ V represents node i ∈ V in layer α ∈ L and (iα, jβ) denotes an 
edge from node iα to node jβ with weight w ∈ R+. 

3.2. Preliminaries on random walks on multi-layer network 

A random walker in a multi-layer network forms a Markov system by 
selecting a sequence of vertices randomly [70]. Generally, a random 
walker on a multi-layer network can exploit all the connections leaving 
the current node across all layers (Fig. 1). 

Following Jeub et al. [11], a discrete-time random walk on a multi- 
layer network can be written as: 

piα(t+ 1) =
∑

jβϵV
Pjβ

iαpjβ(t) (2)  

where pjβ(t) is the probability for a random walker to be at node j in layer 
β at time t and Piα

jβ is the probability for a random walker at node j in layer 
β to transfer to node i in layer α in one time-step. The transition transfer P 
encodes both intra-layer and inter-layer behavior of a random walk. A 
classical random walk is the most direct way to generalize the concept of 
a random walk in a multi-layer network. This kind of random walk treats 
inter-layer and intra-layer edges as equivalent objects and is defined by 
the following transition probability, which denotes a biasing function: 

Pjβ
iα =

Ajβ
iα

∑

jβϵV
Ajβ

iα
(3)  

3.3. Proposed approach 

Fig. 2 presents the overall structure of our algorithm, named the 
DarkNetExplorer (DNE), which comprises four stages. In Stage 1, mul-
tiple walkers begin random choice-based walks at each node of length l. 
For each node, sequences of walks are integrated in Stage 2, and nodes 
that do not appear sufficiently often in the integrated walk sequence are 
removed to prevent accidental moves to other communities. Then, in 
Stage 3, Jaccard correlations [71] between each pair of nodes are 
calculated using minwise hashing. Finally, in Stage 4, agglomerative 
clustering is applied based on Jaccard similarities. An optimization 
function is used to maximize the asymptotical Surprise [72] of the 
detected clusters to obtain the best partitions. This function helps to 

prevent very dense and large clusters and overcome the resolution limit 
of the modularity based approaches. 

The implementation of DNE is presented in Algorithm 1 and is dis-
cussed in the following subsections.   

3.3.1. Choice-based walks 
To ensure that a random walker visits each node of a network (or the 

vertex of a graph) at least once, we introduce a stream of short random 
walks to extract information from the network. This approach has two 
significant advantages [73]. First, several random walkers can explore 
different parts of a network simultaneously, allowing for a MapReduce 
parallel setup, as shown in Fig. 2. This feature is essential on large 
networks, since k parallel random walks reduce the cover time of a graph 
by Ω(k) times compared to a single walk [15]. The second advantage is 
that small changes in the structure of a graph can be quickly picked up 
with short random walks, leading to a better runtime performance [15]. 
Thus, our approach generates k walkers to start independent biased 
random walks of length l in parallel. 

Covert networks contain a high level of secrecy in their functions and 
operations. Thus connections among members of interest are sparse, i.e., 
the average node degree is low, the average degree of separation is high, 
and very few actors play the “brokerage” role [74]. Therefore, a random 
walker can choose (hence, choice-based walk) to move towards the key 
actors, and form clusters around them. This feature helps to destabilize 
the network by isolating or eliminating potential criminals. 

According to Sageman [14], the discovery of hubs (nodes pointing to 
many critical nodes, or nodes with a brokerage role) is useful for intel-
ligence collection and law enforcement disruption efforts. By destroying 
the hubs, law enforcement can break the dark network down into iso-
lated nodes, thus incapacitating criminals from mounting sophisticated 
or large scale operations [75]. By extension, terrorist leaders are more 
likely hidden in hubs, which should be the focus of our detection efforts 
to achieve the effect stated [76]. 

To reflect Sageman’s [14] heuristics, we transform the transition 
probability of a random walker in a multi-layer network (Eq. (3)) to 
guide the random walkers to move towards the nodes with higher hubs 
(h) (see Algorithm 1, lines 8–11), as shown: 
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Pjβ
iα =

Ajβ
iα

∑

jβ∈V
Ajβ

iα

*hj (4) 

where hj is the normalized hub score of node j (for calculating hub 
scores refer to [77]). Eq. (4) suggests that the higher the hub score of a 
neighboring node (hj), the more likely a random walker moves towards 
node j. 

3.3.2. Nodes integration and reduction 
When random walkers finish walking through the network, the his-

tory of all walked sequences for a particular node i are combined into 
one unified sequence (Algorithm 1, line 19). Nodes with a minimum 
occurrence threshold in a walked sequence are then eliminated in the 
Reduce function (Algorithm 1, lines 20–21). This feature accounts for 
the probability of a walker starting in a specific community and ending 
up moving into another community by “accident.” In this case, the 
number of visited nodes that may belong to other communities may be 
far less than the rest of the nodes in a unified sequence. These sets of 

nodes are considered as noise in the observed sequence and can be 
eliminated. 

3.3.3. Jaccard correlation calculation 
Similarities between nodes are estimated and sorted in a descending 

order based on the Jaccard correlation [71] between each pair of con-
nected nodes using their history of walked sequences (Algorithm 1, line 
30–31). We approximate the similarity by hashing via minwise hashing 
[71], which reduces the time complexity for calculating the similarity 
between all pairs of nodes in the graph from O(n2) to a linear-time of O 
(n), where n is the number of nodes in the graph [71]. 

3.3.4. Resolution-limit-free agglomerative clustering 
Finally, an agglomerative cluster analysis [78] is used to form the 

clusters based on similarities. As mentioned, our focus is to find “good” 
and “small” structural communities so that law enforcement can easily 
identify a list of suspects to begin an investigation [16]. This objective 
sets our approach apart from existing modularity-based optimization 
techniques, which resulted dense sub-networks that are difficult to 

Fig. 2. Structure of DarkNetExplorer (DNE).  
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analyze [20]. To achieve our objective, we introduce the asymptotic 
Surprise in our agglomerative clustering in place of the modularity 
measure. 

3.3.4.1. Asymptotical surprise. The discovery of an optimal cluster 
arrangement C = [c1,c2,…,cN], where ci ∩ cj = ∅ and 

⋃N
i=1 ci = V, can 

be cast as an optimization problem [79]. As a quality measure rooted in 
probability theory, Surprise assumes a null model that links nodes in a 
graph drawn uniformly at random with n nodes. It evaluates the de-
parture of the observed partition from the expected distribution of nodes 
and links into communities given the null model. For binary networks, 
Surprise can be computed using a cumulative hypergeometric distribu-
tion [80]: 

S(C) = − log
∑min(M,m)

j=mε

(
M
j

)(
F− M
m− j

)

(
F
m

) (5)  

where F is the maximum possible number of links in the network, m is 
the actual number of links within the network, M is the maximum 
possible number of intra-community links, and mε is the actual number 
of links within communities. 

Eq. (5) is hard to compute, especially in the case of large networks 
[17]. Hence, Surprise can be approximated by a binomial distribution, 
leading to Eq. (6) called asymptotical Surprise (AS). This expanded 
version of Surprise assumes when the graph grows, the relative number 
of internal edges, and the related number of expected internal edges 
remain fixed [17]. In information theory, AS represents the kull-
back–leibler (KL) (Eq. (7)) divergence between the observed (q) and the 
expected fraction (<q>) of intra-cluster edges. KL is a quasi-distance on 
probability distributions as it is always non-negative, non-symmetric, 
and zero only when q = < q>, like binary Surprise [72]. 

Sa(C) = mDKL(q‖ < q > ) (6)  

DKL

(

x||y
)

= xlog
(

x
y

)

+ (1 − x)log
(

1 − x
1 − y

)

(7) 

We extend the formulation of AS to a weighted directed version 
while keeping the same formulation in Eqs. (6) and (7) (see Table 2) 
[17]. We assume a uniform distribution of weights across the graph in 
the random graph and then calculate the expected weights as <w>. The 
total possible internal weight is then <w > * M, while the total possible 
weight is <w > * F. Hence, <q> remains unchanged [17]. 

3.3.4.2. Hierarchical clustering by maximizing AS. We use a single link-
age agglomerative (SLA) clustering [78] to merge communities, which, 

in the worst case, has a time complexity of O(n2). While merging com-
munities, we use the AS optimization function to choose the best par-
titions. Two nominated communities are merged if the resulting 
combined community increases the AS value. The algorithm starts by 
assigning each node to its community (Algorithm 1, line 33). It then 
iteratively merges nodes based on the calculated Jaccard similarities to 
find the optimal clustering C*over the whole L-layer network (Algo-
rithm 1, lines 34–45): 

C* = argmax
c∈c∆

∑L

i=1
Sa(Gi,C) (8)  

where c∆ denotes the set of all possible partitions. 

4. Baseline methods 

To determine the effectiveness of our algorithm, we compare its 
performance against two well-known community detection algorithms, 
which have been used to detect covert communities. The first is the 
“multi-slice modularity”-based Louvain1 method [68], and the other is 
the multiplex InfoMap2 [63], where both methods attempt to find 
communities using all the structural information across layers of the 
multiplex network [68]. As we noted in our literature survey, they are 
the only two techniques that are comparable as other techniques operate 
on monoplex networks. 

The Louvain method is a widely used modularity-based community 
detection algorithm [55]. It follows a bottom-up approach in identifying 
communities by optimizing the local modularity of communities. The 
drawback of the Louvain method is that the identified communities can 
be unstable, resulting from local modularity optimization. This insta-
bility is further exacerbated by the limited connectivity between com-
munities in a criminal network [55]. Like other modularity-based 
community detection approaches, Louvain suffers from a resolution 
limit that prevents it from detecting the small clusters [20] needed in our 
use-case. 

From the benchmark by Lancichinetti et al. [81], InfoMap is the best 
performing community detection algorithm for large monoplex net-
works. InfoMap clustering method identifies communities according to 
the flow of information in the structure of the network. Like our pro-
posal, InfoMap uses a random walk-based approach to reveal the hier-
archical structure of large networks as it agglomerates clusters into 
super-nodes. As a result, InfoMap does not suffer the resolution limit 
problem of modularity maximization approaches like Louvain. This 
feature makes it a better candidate for finding small communities. With 
these two baseline methods explained, we now turn to the discussion of 
the evaluation of our algorithm against Louvain and InfoMap using three 
real-world multiplex dark network datasets. 

5. Empirical analysis on real world multi-layer dark network 

Cunningham et al. [82] contend that there is an optimal level of 
interconnectedness for dark networks as they cannot be too inter-
connected, nor can they afford to be too sparse. This characteristic is 
reflected in the three datasets used in our benchmark: the Noordin Top 
terrorist network, the Caviar network, and the Boko Haram network, 
with different structural and interconnectedness features, as shown in 
Table 3. 

To evaluate the baseline methods against these datasets, we used 
their default parameter settings. While with our algorithm, we used 40 
random walkers to sample sequences of length l = 5 from the neigh-
boring nodes of each node W = 10 times. The results show that our 

Table 2 
Variables definition.  

Variable Un-weighted & 
un-directed 

Weighted & 
directed 

Description 

F 
(n

2

) (n
2

)

2  

Maximum possible number of links 
in a graph 

M ∑

c∈C

(nc

2

)

∑

c∈C

(nc

2

)

2  

Total possible intra-community 
edges. Where C is the list of 
identified clusters, and nc is the 
number of nodes in a specific cluster 
c. 

m 
∑

i,j
Aij  

∑

i,j
wij  Total edges (if the graph is 

weighted, it indicates total internal 
weights) 

mε 
∑

i,jϵnc

Aij  
∑

i,jϵnc

wij  Total internal weights/edges of a 
cluster 

q mε
m  

_____ Observed fraction of internal edges. 

<q> M
F  

_____ Expected fraction of internal edges.  

1 Multiplex Louvain (https://louvain-igraph.readthedocs.io/en/latest/multi 
plex.html).  

2 Multiplex InfoMap (http://www.mapequation.org/code.html). 
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approach discovers more ties between actors than the two benchmark 
methods and provides more insightful information. 

5.1. Cluster analysis on the Noordin top network 

The Noordin Top dataset is drawn from a terrorist network operating 
in Indonesia. Noordin Mohammad Top from the Jemaah Islamiyah (JI) 
organization worked as a coordinator to reach out to young men from a 
variety of backgrounds. The actors were responsible for various terrorist 
activities, including the Marriott Hotel bombing in Jakarta in August 
2003, the Australian embassy bombing in September 2004, and the Bali 
bombings in October 2002 and 2005 [83]. 

The ties between actors represent one or more common affiliations or 
relationships. The network includes 78 actors (criminals) attending 45 
different events, classified into four categories to form a 4-layer 
network: trust, operational, communication, and business ties. The ties 
in each category/layer are undirected. The trust layer is generated by the 
superposition of relationships, such as classmates, friendship, kinship, 
and soul mates. Meanwhile, the operational layer is produced from four 
sub-layers: logistics, meetings, operations, and training [84]. 

Fig. 3(a–c) show the results of running Louvain, InfoMap, and DNE 
on the Noordin network. As shown in Fig. 3(c), our method produced 
seven different non-singleton communities (i.e., communities with more 
than two participants). Compared to InfoMap (six communities, 
Sa=203.922) in Fig. 3(b), and Louvain (five communities, Sa = 127.835) 
as shown in Fig. 3(a). Here, we see that our algorithm produces better 
“good” communities than InfoMap and Louvain, i.e., the clusters are 
lower in density as reflected by a higher AS (Sa=242.683). Beyond what 
the AS measure suggests, we can look into the dataset to verify the 
quality of the communities discovered by the different algorithms. Ac-
cording to [83], there are seven different groups, which the actors in the 
network can belong. Each group gives us some ground-truth that we can 
use to check how well each algorithm performs, which are described 
below. 

5.1.1. Developing Darul Islam (DI) 
The result of cluster C1 is identical in InfoMap and DNE while Lou-

vain was not able to detect this cluster. Both InfoMap and DNE picked up 
the relation between Node 1, Node 9, and Node 16. Having this relation 
in the output is important as we know from the ground-truth that Node 
16 was the younger brother of Node 1. He was involved in training Darul 
Islam (DI), the Islamic group that fought for the establishment of an 

Islamic state in Indonesia, while his older brother was involved in 
sending DI recruits to the Philippines. 

5.1.2. Bali bomb II 
In this group, the small cluster C2 detected by InfoMap and DNE 

unveiled some interesting information. Node 18 and Node 64 in C2 both 
trained together as suicide bombers in Bali Bomb II in 2005 while Node 
69 was suspected of making a video of the suicide bombers’ last testa-
ments and went on to become Noordin’s courier and coordinator [83]. 
As with the previous category, Louvain did not pick up this small cluster, 
and while InfoMap and DNE both did, our algorithm performed better. 
In the case of InfoMap, it included Node 50 in this cluster, while our 
algorithm DNE didn’t. Against the ground-truth, Node 50 was killed in 
the first Bali bombing in October 2002, so it should not appear as an 
actor in this category (Bali Bomb II in October 2005). 

5.1.3. Jemaah Islamiyah group and Marriott bombing 
C3 includes two principal leaders and planners of the Noordin 

network, Node 59 and Node 23. Most of the actors in C3 are from the 
same organization JI (Jemaah Islamiyah), a transnational Southeast 
Asian militant Islamist terrorist organization linked to Al-Qaeda mainly 
responsible for either educating suicide bombers or engaging in the 
bombing in Marriott. Again, the outputs of InfoMap and DNE for C3 are 
highly similar except that DNE is better at excluding the less critical or 
singleton communities, leading to a lower density C3 that is better for 
interpretability. These exclusions make sense when we check with the 
ground-truth information. For example, our algorithm excluded Node 
15, the leader of Darul Islam (DI), from C3, which InfoMap did not. 
Given the DI affiliation, we know this node should not be in C3. This 
result suggests that DNE is better than InfoMap at categorizing members 
based on their specific characteristics and communication patterns. 

5.1.4. Hiding Noordin (Jan 2005) 
In this cluster C4, our algorithm produced a similar community 

structure as InfoMap with both accurately including all those involved in 
finding a hiding place for Noordin in January 2005. Louvain, on the 
other hand, miscategorized four members (Nodes 3, 5, 6, and 31) into 
this community (marked as C1 in Louvain’s output) where they should 
be in C3. 

5.1.5. Jemaah Islamiyah (JI) 
Members in the cluster C5 are from the JI group. Except for non- 

Table 3 
Networks structural and interconnectedness features.  

Dataset No. of nodes No. of links No. of layers Network features Network density Network average degree 

Noordin Top network 78 1014 4 Un-directed, unweighted 0.337 26 
Caviar network 107 651 11 Directed, weighted 0.057 6.08 
Boko Haram network 44 82 3 Un-directed, weighted 0.08 3.72  

Fig. 3. Noordin Top Network Clustering. (a) Multiplex Louvain with 5 communities, C1 to C5 (Sa = 127.835). (b) Multiplex InfoMap with 6 communities, C1 to C6 
(Sa = 203.922). (c) DNE with 7 non-singleton communities, C1 to C7 (For better resolution, singleton clusters are not included, Sa = 242.683). 
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critical members (Nodes 14, 49, 57, and 79) that are categorized as 
singletons in DNE, our algorithm and InfoMap produced identical re-
sults. With Louvain, members from other communities were found here, 
leading to a dense cluster (e.g., Nodes 1, 9, and 16 from C1, Nodes 35, 
and 42 from C7, and Node 28 from C4). 

5.1.6. Dispose of Bali bombings leftovers 
Node 62 and Node 32 in cluster C6 (Fig. 3(c)) were two influential 

members of the Ring Banten group. They were responsible for finding a 
safe house for the the two leaders of the Noordin Top network (Nodes 59 
and 23) and helped dispose of the leftover explosives from the Bali 
bombs. Both Louvain and InfoMap were not able to identify this cluster. 

5.1.7. Embassy bombing in 2004 
Cluster C7 in Fig. 3(c) includes the actors involved in the Australian 

embassy bombing in September 2004. Node 45 was the field comman-
der, Node 66 was Node 45’s uncle who was the military instructor for 
the suicide bombers. Other members in this cluster, including Node 68, 
Node 73, Node77, Node 74, Node 24, and Node 43, were also trainers to 
the suicide bombers. Node 35 helped with recruitment, Node 38 studied 
bombing with Node 23, and together, they helped assemble the bomb. 
Our ground-truth also confirmed that Node 41 was involved in getting 
the detonating cord used in the bombing. Node 10, Node 12, Node 19, 
Node 25, and Node 37 were also found to be suicide bombers in this 
event. We note that C7 in DNE is identical to C6 in InfoMap as shown in 
Fig. 3(b), but our algorithm was able to exclude Node 11, who was killed 
in Bali Bombing I as well as nodes of lesser influence (e.g., Node 70, who 
was the courier) – Fig. 3(c). The corresponding Louvain community C5, 
which we are comparing C7 to, has not included these actors, and has 
also incorrectly included Nodes 11 and 78 in the cluster. These two 
actors were involved in the Marriot bombing rather than the embassy 
bombing in 2004. 

The discussion of nodes in their correct place confirms the practical 
utility of our algorithm. More importantly, our algorithm detected C6 
and C7 that are covert communities, which would not be apparent with 
InfoMap or Louvain – the two state-of-the-art techniques. Additionally, 
with better precision of nodes and a lower density in each community, 
our method will lead to better utilization of enforcement resources than 
ever before. 

5.2. Cluster analysis on the Boko Haram network 

The second dataset that we test our algorithm against is the Boko 
Haram terrorist network. This dataset, created by Cunningham [82] 
from a variety of open-source documents, contains network information 
of 44 terrorists from an Islamic sect that has been operating primarily in 
northern Nigeria since 2002. Unlike the Noordin Top dataset, this 
dataset is remarkably sparse due to its young cell-like structure and the 

lack of collective leadership. From the undirected ties, we constructed a 
3-layer network: trust, communication, and knowledge sharing. The 
trust layer captures relationships like colleagues, kinship, superior, and 
supporter. The communication layer is formed by the superimposition of 
financial ties, communication, and membership. Lastly, the knowledge 
sharing layer is built from shared events and collaboration [85] among 
the actors. 

As shown in Fig. 4(c), our algorithm finds 12 non-singleton com-
munities. For better resolution, we do not include the additional 5 
resulted singleton communities in this figure. In contrast, InfoMap in 
Fig. 4(b) and Louvain in Fig. 4(a) with AS value of Sa= 52.242 and 
46.565 respectively only discovered 11 and 9 non-singleton commu-
nities. When we compare the clusters among the three algorithms, their 
performance is almost identical in detecting small clusters. Where our 
algorithm performs better is the ability to breakdown the larger clusters 
that are detected by InfoMap and Louvain into smaller clusters, 
improving the interpretability of the results for enforcement agencies. 
As with the Noordin Top dataset, we discuss the outputs of each cluster 
against the ground-truth below. 

5.2.1. Different terrorist activities 
This was a single large cluster, marked as C9 in Louvain. But it was 

broken into two smaller clusters, C10 and C1, by InfoMap. With DNE, 
cluster C9 in Louvain was discovered as three clusters C1, C2, and C3, 
which made it easier to establish a hierarchical relationship. Similarly, 
cluster C8 from Louvain with 11 actors in it were split into two smaller 
clusters C11 and C12, by our algorithm. At the same time, our algorithm 
also removed actors who were not involved in terrorist activities (Nodes 
10, 44, 62, 75, and 79). In turn, this helped reveal the hidden hierar-
chical structure among actors making it easier for law enforcement to 
undertake their investigation. 

5.2.2. Mauritania bombing 2006 
Cluster C7 in Louvain and cluster C8 in InfoMap are identical, but 

DNE has pruned this cluster by eliminating inactive actors while keeping 
the active and important ones. There are limited ground-truth about this 
event. But, we were able to confirm that Node 69 was the superior of 
Nodes 66 and 68; and Node 66 was the superior of Node 67 who was a 
courier and responsible for sending orders to Node 87, a Nigerian 
member of Boko Haram who killed 10 Mauritanian soldiers in 2006 
[82]. We also know that both Nodes 67 and 69 were involved in the 
Mauritania attack. These five actors (Nodes 66–69 and 87) were in one 
cluster in Louvain and InfoMap while in our algorithm, the inactive 
actors are pruned with the active actors put into cluster C10 (including 
Nodes 66, 67, and 69). 

Fig. 4. Boko Haram Network Clustering. (a) Multiplex Louvain with 9 communities, C1 to C9 (Sa = 46.565). (b) Multiplex InfoMap with 11 communities, C1 to C11 
(Sa = 52.242). (c) DNE with 12 non-singleton communities, C1 to C12 (For better resolution, singleton clusters are excluded) (Sa = 55.392). 
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5.3. Cluster analysis on the caviar network 

The Caviar dataset was created by Morselli [28] based on an inves-
tigation that targeted a hashish and cocaine network operating in 
Montreal between 1994 and 1996. The principal data source came from 
information submitted as evidence during the trials of 22 participants in 
the Caviar network. It included over 1000 pages of information 
revealing intercepted phone conversations among actors in the network. 
The transcripts were used to create the matrix of the drug-trafficking 
operation’s communication system during the investigation. The ties 
are a person-to-person relation of 110 participants involved in 11 
different phases of the investigation drawn from information provided 
by law enforcement [28]. To conceal the identity of individuals, they are 
designated as nodes (e.g., Node 1, …, Node 110) [28]. For our experi-
ments, we consider directed ties of each phase as a separate layer in this 
dark network, giving us an 11-layer multiplex network. 

Fig. 5(a) shows the communities discovered by Louvain with a 
maximum AS value of Sa = 990.533. The non-singleton communities 
identified by InfoMap are shown in Fig. 5(b), including nine different 
communities with a maximum AS value of Sa = 1114.52. For concise-
ness, two singleton communities are not shown. As expected, InfoMap 
identifies smaller communities better than Louvain, but our algorithm 
again outperforms the two baselines with the higher AS value of Sa =

3075.41 when we compare the non-singleton communities. As seen in 
Fig. 5(b), the communities discovered by InfoMap are still very dense. 
Across the three methods, we see that our algorithm DNE is the better 
choice when it comes to identifying hubs and key actors in different 
communities. Using ground-truth information from [86], we briefly 
discuss the results within the five clusters in this network below. 

5.3.1. Hashish trafficking 
Cluster C1 of DNE includes Node 1, the central participant targeted 

by law enforcement as the principal coordinator for hashish. It also 
comprises of a subset of other nodes with potential roles within the 
network. These nodes include: (i) two key traffickers (Node 3 and 76), 
who had pivotal roles in making links with various non-traffickers; (ii) 
actors with operational roles (Nodes 85, 87, and 89), and (iii) actors 
serving as legitimate guises for the operation who were also couriers 
(Nodes 83, 86, and 88). This cluster appeared as C8 in Louvain and C4 in 
InfoMap, which both were dense, making investigation difficult. In 
contrast, our algorithm significantly pruned this cluster, as shown in 
Fig. 5(c), retaining only the important actors. 

5.3.2. Traffickers/non-traffickers 
Similarly, DNE has reduced the membership of cluster C1 of Louvain 

into cluster C6 with only a list of key traffickers and non-traffickers. 

5.3.3. Cocaine importations 
Here, Node 12 of cluster C5 in our algorithm was the principal 

coordinator for cocaine importations. This cluster is identical to C2 in 

Louvain, but again, our algorithm manages to correctly prune the non- 
traffickers, keeping only actors with more crucial roles. 

5.3.4. Trafficking operations 
In this cluster, our algorithm has similar results to the baseline 

methods except Node 107 in cluster C2 in DNE was singled out as the 
link in the trafficking operations [28]. 

5.3.5. Legitimate importers 
For this group, we see that both clusters C5 and C6 in Louvain were 

denser than the outputs of DNE in clusters C4 and C3, respectively. 
Despite that, our algorithm proves to be capable of retaining the 
important nodes. Respectively, Node 101 was retained in C4 in DNE, and 
Node 96 was retained in C3 in DNE, as those nodes acted as a legitimate 
importer but rendered traffickers services. 

In summary, the comparative analysis of DNE with the two baseline 
methods using these three datasets highlights how our use of the AS 
measure has helped us achieve meaningful results for our application 
problem. Specifically, our algorithm performs better in terms of precision 
(i.e., crucial actors, relations, and events are detected) despite a more 
concise (i.e., “small” and low-density communities that are easy to 
analyze are identified) output than the baseline methods. This is further 
supported by our analysis in Table 4 on key actors, roles, and clusters in 
each of these three datasets. 

6. Comparison of evaluation metrics 

As our focus is to increase AS rather than modularity, we need 
measures that are independent of modularity-based metrics to evaluate 
the statistical quality of the detected communities to further support the 
value of our empirical observations. On this account, we present seven 
additional metrics in this section for further comparison: multiplex- 
modularity, Surprise value, number of non-singleton clusters, Signifi-
cance, Performance, internal density, conductance, and scalability. 

6.1. Multiplex-modularity 

Didier et al. [89] define the multiplex-modularity of multiplex net-
works as the average of modularities over various layers of the network. 
As expected, Table 5 shows that Louvain has higher modularity in all 
datasets since it results in larger sized communities. Maximizing 
modularity leads to fewer and denser clusters, such as the case in Lou-
vain. As discussed, this slows down the investigation. In contrast, 
maximizing AS may reduce modularity, but in practice, the produced 
communities better match what security analysts need for faster and 
more accurate detection. 

6.2. Surprise value and number of non-singleton clusters 

In practice, enforcement agencies would want to arrest the least 

Fig. 5. Caviar Network clustering. (a) Multiplex Louvain with 8 communities, C1 to C8 (Sa = 990.533). (b) Multiplex InfoMap with 9 non-singleton communities, C1 
to C9 (Sa = 1114.52). (c) DNE with 6 non-singleton communities, C1 to C6 (for conciseness, singleton clusters are excluded, Sa = 3075.41). 
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number of actors for disrupting a network. As such, maximizing AS to 
overcome the resolution limit (see Section 3.3.4) helps to move insig-
nificant actors into singleton clusters, leading to lower density non- 
singleton communities that are easier to interpret by analysts. While 
this means there are more clusters driven in part by the singleton clus-
ters, the non-singleton clusters benefit from lower memberships to the 
key actors that support faster and more accurate analysis in practice. As 
shown in Fig. 6, our algorithm managed to achieve the highest AS on our 
test data. 

6.3. Significance 

Significance [90] is a recently introduced objective function to 
evaluate community structure quality similar to Surprise [17]. It shows 
how ‘real’ a detected community structure is and that the results are not 
because of chance [90]. Surprise describes how likely it is to observe 
internal links in communities. Significance, on the other hand, looks at 
how likely such dense communities appear in a random graph. When the 
number of communities is large or the network is dense, Significance 

Table 4 
Analysis of potential actors within detected clusters based on the centrality measures and their role for further disruption (Cluster IDs are according to DNE) [87,88]. 

Dataset Top 10 Actors Detected Clusters Disruption Analysis

kro
wte

N
po

T
nidroo

N

Degree Hub Betweenness Closeness
Node 23 {C3}

(0.610) Node 23 {C3}
(0.310)

Node 23 {C3}
(0.168)

Node 23 {C3}
(0.681)

Node 59 {C3}
(0.428) Node 24 {C3}

(0.245)
Node 59 {C3}

(0.115)
Node 59 {C3}
(0.636)

Node 24 {C7}
(0.415) Node 59 {C3}

(0.235)
Node 4 {C5}

(0.103)
Node 24 {C7}
(0.592)

Node 5 {C3}
(0.377) Node 5 {C3}

(0.198)
Node 28 {C3}

(0.072)
Node 28 {C3}
(0.579)

Node 4 {C5}
(0.325) Node 38 {C7}

(0.194)
Node 13 {C4}

(0.072)
Node 5 {C3}
(0.570)

Node 28 {C3}
(0.312) Node 8 {C7}

(0.185)
Node 5 {C3}

(0.069)
Node 13 {C4}
(0.566)

Node 45 {C7}
(0.312) Node 45 {C7}

(0.184)
Node 24 {C7}

(0.054)
Node 35 {C7}
(0.562)

Node 35 {C7}
(0.299) Node 10 {C7}

(0.182)
Node 16 {C1}

(0.052)
Node 4 {C5}
(0.558)

Node 8 {C7}
(0.299)

Node 35 {C7}
(0.182)

Node 35 {C7}
(0.041)

Node 73 {C7}
(0.558)

Developing Darul Islam (DI) In cluster C1, Node 16 has a high betweenness centrality reflecting his brokerage 

role within the network. To disrupt the network, such actors should be targeted 

because their removal could destabilize the network or even cause it to fall apart 

[33].

Bali Bomb II Cluster C2 is an important clique to be considered for more investigation which 

was not detected by Louvain. Members of this cluster could easily evade being 

detected because of keeping a minimum communication with others (as it can be 

seen, they are not among the top 10 actors of the Noordin Top network).

Jemaah Islamiyah (JI)   

Group and Marriott 

Bombing  

Actors involved in community C3 are of high importance: they play a brokerage 

role (high betweenness centrality), hold high potentially advantageous positions 

within the network (high-degree and hub centrality) [87], and are close to other 

members (high closeness centrality) through both direct and indirect paths [88]. 

The arrest of these individuals could destabilise or even dismantle the network.

Hiding Noordin (Jan 2005)  Node13 of cluster C4 has high betweenness centrality and high closeness centrality 

and was a conduit in the flow of information.

Jemaah Islamiyah (JI)  In cluster C5, Node 4 acts as a connection point (high betweenness centrality).

Dispose of Bali bombings 

leftovers   

Members of C6 are not among those with high centrality values. Arresting them 

would have minimum impact on disintegrating the network.

Embassy bombing in 2004  Members of this cluster (marked as C7) have high brokerage role. Having high 

degree and hub centralities put them among the high positioned actors. Disrupting 

this cluster could potentially destabilize the network.
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(0.432)
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(0.323)

Node 35 {C7}
(1.0)

Node 16 {C3}
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Node 13 {C 12
(0.341)

Node 16 {C 3}
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Node 97 {C6}
(1.0)

Node 13 {C12}
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Node 6 {C 12}
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Node 13 {C 12}
(0.128)
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(1.0)

Node 12 {C1}
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(0.279)

Node 15 {C3}
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(1.0)

Node 85 {C1} ,84 
{C1},15 {C3},11 {C3}
(0.140)
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(0.251)

Node 61 {C4}
(0.086)

Node 1 {C5}
(1.0)

Node 47 {C1},29 {C2}, 
86 {C1},17 {C12}
(0.116)

Node 11 {C3}
(0.247)

Node 30 {C2}
(0.045)

Node 94 {C9}
(1.0)

Node 61 {C4}, 56 
{C12}, 63 {C12}, 14 
{C1}
(0.093)

Node 47,86 {C1}
(0.223)

Node 5 {C8}
(0.043)

Node 80 {C9}
(1.0)

Node 30 {C2},82
{C3},67{C10},21
{C3},69 {C10}
(0.069)

Node 29 {C2}
(0.208)

Node 29 {C2}
(0.038)

Node 67 {C10}
(0.800)

Node 35 {C7}, 66 
{C10}, 5 {C8},75 
{C11}, 59 {C11}

Node 15 {C3}
(0.190)

Node 11 {C3}
(0.014)

Node 69 {C10}
(0.800)

Different terrorist activities DNE divides a large cluster C9 of Louvain into smaller clusters C1, C2, and C3 

which are easier to analyze. This break down uncovers the hidden relations that these 

small clusters have with other members within the network. Clusters C1, C2, and C3 

of DNE include members with potentially important roles as they have high degree 

and hub centrality values. C2 and C3 include members with brokerage roles (high 

betweenness); their arrest is needed to disintegrate the network. With the same 

analysis, cluster C12 includes important members whose arrest is vital in the 

investigation.

Mauritania Bombing 2006 DNE has pruned cluster C7 (Louvain) or C8 (InfoMap) to a less dense cluster C10. 

Members of cluster C10 are close to other members within the network (high 

closeness centrality) and also are actors with key role within this network who 

have high degree centrality.
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(1)
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(0.224)
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Node 12 {C5}
(0.186)

Node 1 {C1}
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Node 12 {C5}
(0.177)

Node 12 {C5}
(0.187)

Node 87 {C1}
(0.213)

Node 76 {C1}
(0.097)

Node 3 {C1}
(0.553)

Node 76 {C1}
(0.084)

Node 87 {C1}
(0.149)

Node 12 {C5}
(0.207)

Node 3 {C1}
(0.092)

Node 12 {C5}
(0.5)

Node 9 {C1}
(0.084)

Node 76 {C1}
(0.121)

Node 76 {C1}
(0.180)

Node 87 {C1}
(0.063)

Node 87 {C1}
(0.489)

Node 83 {C1}
(0.075)

Node 83 {C1}
(0.093)

Node 83 {C1}
(0.162)

Node 37 {C6}
(0.052)

Node 76 {C1}
(0.47)

Node 87 {C1}
(0.065)

Node 37 {C6}
(0.084)

Node 85 {C1}
(0.149)

Node 79 {C4}
(0.038)

Node 37 {C6}
(0.452)

Node 37 {C6}
(0.065)

Node 41 {C6}
(0.065)

Node 8 {C1}
(0.132)

Node 78 {C1}
(0.032)

Node 14 {C5}
(0.444)

Node 85 {C1}
(0.065)

Node 96 {C3}
(0.065)

Node 88 {C1}
(0.125)

Node 41 {C6}
(0.029)

Hashish Trafficking Cluster C1 of DNE includes potentially very important members; they have high 

degree and hub centralities, act as coordinators between different clusters (high 

betweenness), and are very close to other members within the network.

Traffickers/non-traffickers DNE shows a list of key actors within the network: nodes 37 and 46 of cluster C6 

are high position members and Node 37 also acts as a broker.

Cocaine Importations DNE keeps a list of key actors within the network: node 12 of cluster C5 was the 

principal coordinator of cocaine trafficking and also has a high betweenness and 

degree centrality values.

Trafficking Operations Node 107 of this cluster has a close relation (high closeness value) with others and 

had a linkage role within the network.

Legitimate Importers DNE reduces the clusters to keep only the most potential actors within the network. 

Node 79 of cluster C4 was a link between this cluster and others. 

Node 96 of cluster C3 also Node 96 has a high degree centrality, acting as a 

potentially key member within this cluster, as verified by its role in several 

important operations.

Table 5 
Community metrics over different datasets using three clustering methods.  

Dataset Community detection approach No. of non-singleton clusters Modularity Graph conductance Total internal density Significance Performance 

Noordin Top DNE 7 0.29 0.50 11.41 379.99 0.84 
InfoMap 6 0.37 0.41 8.71 304.00 0.77 
Louvain 5 0.40 0.45 5.80 210.65 0.78 

Booko Haram DNE 12 0.30 0.52 11.9 66.21 0.94 
InfoMap 11 0.38 0.80 9.57 53.30 0.87 
Louvain 9 0.40 0.89 7.18 40.45 0.83 

Caviar DNE 6 0.17 0.59 65.74 4398.25 0.98 
InfoMap 9 0.23 0.22 32.23 2459.50 0.86 
Louvain 8 0.25 0.23 32.21 2327.16 0.86  
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will be more discriminative than AS [90]. In our experiments, our 
method has the highest Significance score suggesting criminals are not 
clustered by chance but by their close communication within the 
network. 

6.4. Performance 

We define the performance of a cluster as the number of “correctly 
interpreted pairs of nodes” in a graph [91,92]. It reflects how well- 
connected the actors within a cluster are [91,92] and can be used to 
determine the density of a cluster. If a cluster is dense, each pair of actors 
in a cluster is highly connected, but, they may have few connections 
with actors in other clusters [91,92]. Therefore, a higher Performance 
value suggests that criminals within a cluster may not survive disruption 
within a cluster from enforcement agents as they won’t be able to 
transfer their covert activities to another community in the network 
[93]. As shown in Table 5, DNE has the highest performance across all 
the three datasets we tested. 

6.5. Internal density 

This measure gives a reflection of the internal structure within a 
community [94,95] so that we can identify the parts of dark networks 
that are highly interconnected. An increase in the internal connectivity 
of a community reduces the possibility of using neighboring external 
nodes to bridge any internal disruption. With our algorithm, the 
detected clusters will yield a higher total weighted internal density [95], 
as shown in Table 5. Since our algorithm DNE prunes less important 
actors from the clusters, disrupting every community can potentially 

ensure the failure of the entire network. 

6.6. Conductance 

We define conductance of a set of vertices S as cs
2ms+cs 

[96], where cs =

∣ (u,v) ∈ E : u ∈ S, v/ ∈ S∣ is the number of edges with one end in the set 
and the other end outside; and ms = ∣ (u,v) ∈ E : u ∈ S, v ∈ S∣ is the 
number of edges in S. A higher conductance in a cluster means that it is 
more isolated from other clusters in the network. Hence, conductance 
measures the connectedness of a set of nodes to the rest of the graph. Sets 
of nodes that have fewer connections to the rest of the graph make good 
communities. This agreement is because such communities reduce the 
possibility of using neighboring nodes within other clusters to bridge an 
internal disruption attempt by law enforcement [93]. In the Noordin 
Top and Caviar datasets, our approach has the highest conductance 
score, while in the Boko Haram data, Louvain achieves the highest 
conductance score (Table 5). In the Boko Haram network, our algo-
rithm’s low conductance rate can be attributed to the fact that DNE 
breaks down larger clusters into smaller ones that may be internally 
related. This tradeoff may be acceptable since several smaller clusters 
are less challenging to analyze than a few large dense clusters. 

6.7. Scalability 

Fig. 7 depicts the elapsed time for a set of different numbers of 
random walkers to traverse over the network from each and every node. 
The more walkers used, the faster the entire network is traversed until 
the number of walkers used reaches to about 20, where any further in-
crease does not seem to lead to further speedup. We attribute this to the 

Fig. 6. Comparison of AS in different community detection methods over different datasets.  

Fig. 7. Scalability: different number of walkers and various walk-lengths.  
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settings of our server that has a configuration of 8GB RAM and a 2.40 
GHz CPU with 32 cores. We believe our programming environment 
prohibits a new walker thread from commencing until an existing 
walker thread completes its task once every CPU core has a walker 
thread running. 

7. Conclusion 

In this paper, we developed a community detection algorithm, called 
DNE, to find “small” and “good” communities in dark multi-layer net-
works. On account of the premise that criminals hide in network hubs, 
our design involved the use of random walkers to move towards nodes 
with higher hub centrality scores. We also use minwise hashing to speed 
up the Jaccard correlation calculations to hasten the hierarchical 
agglomerative clustering procedure. Our clustering procedure is also 
unique as it builds clusters to maximize AS instead of modularity, which 
helps to identify small and lower density clusters, making the results 
easier to interpret by law enforcement agencies. Analysis using three 
real-world dark multi-layer networks demonstrates that our proposed 
approach outperforms two state-of-the-art techniques. Specifically, we 
achieve this by finding clusters that easily yield the key actors and re-
lations while pruning other actors of lower importance to keep each 
cluster small and low in density. 

The practical implication of our work here is increased interpret-
ability. For enforcement agencies, staying ahead and on-top of covert 
networks to disrupt their criminal activities is crucial to maintaining 
public safety. Early detection and disruption are vital. No matter how 
much resources an agency has, the resource is always limited and con-
strained by the window of opportunity the agency can have before a 
disastrous event occurs. As such, algorithms that can analyze large 
networks and be able to detect covert communities and their activities 
will always be sought after to augment the security analysts to run their 
investigation quickly and with confidence. To achieve this, algorithms 
for this use-case must be precise (i.e., crucial actors, relations, and events 
should be in the output) and concise (i.e., “small” and low-density 
communities that are easy to analyze should be identified). 

Considering this aim, we took an approach in the design of our al-
gorithm that focused on optimizing the AS over what current methods 
do with modularity. The research implication of what we proposed to 
do here begins with the use of a different set of measures. This idea has 
been motivated by our use-case and the heuristics that we include from 
research findings elsewhere that aim to deliver a solution that aligns 
with the needs of our stakeholders, i.e., the law enforcement. As our 
results have shown, the use of AS over modularity has led to better re-
sults for the networks we are considering. As such, we believe future 
works in community detection of other network types should include 
understanding drawn from other areas of research that could be turned 
into heuristics that help design suitable measures to achieve the kind of 
community detection desired. 

Secondly, our proposed algorithm has managed to bring together 
different components from existing methods in a way that achieve 
multiplex navigation in covert multi-layered networks. What our work 
has shown is a way towards a whole that is greater than the sum of its 
parts, rather than a singular focus on novelty for the sake of being 
different. As such, some readers may feel familiarity with the individual 
components discussed in this paper. But it should be pointed out that the 
contributions of our work lie in the way we have brought these together 
for our specific problem. 

In terms of future work, although we have tested the proposed al-
gorithm in a MapReduce setting to deal with large networks, all datasets 
used in our experiments are relatively small criminal networks so, our 
computations are currently done in-memory. With very large criminal 
networks, we may run into the limitation of fitting the network in the 
memory of computing nodes executing the MAP process. One way to 
overcome this difficulty in the future would be to partition the large 
network into sub-graphs for each computing node to proceed with the 

MAP process of that particular sub-graph. 

Credit author statement 

Corresponding Author (Tahereh Pourhabibi)  

• Methodology development (proposing the main idea and algorithm)  
• Resources (provision of study materials and experimental datasets)  
• Investigation (experimental experiences)  
• Writing the original draft 

Co- Authors (Kok-Leong Ong, Booi Kam, Yee Ling Boo)  

• Methodology validation and reliability analysis (validating the 
methodology)  

• Writing review on the original draft and edition  
• Supervision 

References 

[1] B.H. Erickson, Secret societies and social structure, Soc. Forces 60 (1) (1981) 
188–210. 

[2] P. Duijn, Detecting and Disrupting Criminal Networks; A Data-Driven Approach, 
Faculty of Science, University of Amsterdam, 2017. 

[3] S.D. Warnke, Partial Information Community Detection in a Multilayer Network, 
Naval Postgradu-ate School, 2016. 

[4] J. Hosseinkhani, S. Chuprat, H. Taherdoost, Discovering criminal networks by web 
structure min-ing, in: ICCCT 2012, IEEE Press, 2012, pp. 1074–1079. 

[5] N. Crossley, G. Edwards, E. Harries, R. Stevenson, Covert social movement 
networks and the se-crecy-efficiency trade off: the case of the UK suffragettes 
(1906–1914), Soc. Networks 34 (4) (2012) 634–644. 

[6] C. Broccatelli, Going beyond Secrecy: Methodological Advances for Two-Mode 
Temporal Criminal Networks with Social Network Analysis, University of 
Manchester, 2017. 

[7] J.J. Xu, H. Chen, Fighting organized crimes: using shortest-path algorithms to 
identify associa-tions in criminal networks, Decis. Support. Syst. 38 (3) (2004) 
473–487. 

[8] T. Pourhabibi, Y.L. Boo, K.L. Ong, B. Kam, X. Zhang, Behavioral analysis of users 
for spammer detection in a multiplex social network, in: AUSDM 2018, Springer 
Singapore, 2019, pp. 228–240. 

[9] A. Saxena, R. Gera, B. Miller, D. Chakraborty, Discovering and leveraging 
communities in dark multi-layered networks for network disruption, in: ASONAM 
2018, IEEE Press, 2018, pp. 1152–1159. 

[10] F. Troncoso, R. Weber, A novel approach to detect associations in criminal 
networks, Decis. Support. Syst. 128 (2020) 113159. 

[11] L.G.S. Jeub, M.W. Mahoney, P.J. Mucha, M.A. Porter, A local perspective on 
community struc-ture in multilayer networks, Netw. Sci. 5 (2) (2017) 144–163. 

[12] Z. Kuncheva, G. Montana, Community detection in multiplex networks using 
locally adaptive random walks, in: ASONAM 2015, ACM, 2015, pp. 1308–1315. 

[13] D. Cunningham, S. Everton, G. Wilson, C. Padilla, D. Zimmerman, Brokers and key 
players in the internationalization of the FARC, Stud. Confl. Terror. 36 (6) (2013) 
477–502. 

[14] M. Sageman, Understanding Terror Networks, University of Pennsylvania Press, 
United States, 2004. 

[15] N. Alon, C. Avin, M. Koucky, G. Kozma, Z. Lotker, M.R. Tuttle, Many random walks 
are faster than one, in: Proceedings of SPAA 2008, ACM, 2008, pp. 119–128. 

[16] P. Magalingam, S. Davis, A. Rao, Using shortest path to discover criminal 
community, Digit. Investig. 15 (2015) 1–17. 

[17] V.A. Traag, R. Aldecoa, J.C. Delvenne, Detecting communities using asymptotical 
surprise, Phys. Rev. E 92 (2) (2015), 022816. 

[18] H. Cherifi, G. Palla, B.K. Szymanski, X. Lu, On community structure in complex 
networks: challenges and opportunities, Appl. Netw. Sci. 4 (1) (2019) 117. 

[19] J. Xiang, Y. Zhang, J.-M. Li, H.-J. Li, M. Li, Identifying multi-scale communities in 
networks by asymptotic surprise, J. Stat. Mech. Theory Exp. 2019 (3) (2019), 
033403. 

[20] S. Fortunato, M. Barthelemy, Resolution limit in community detection, in: 
Proceedings of Natl Acad Sci 2007, National Academy of Sciences, 2007, 
pp. 36–41. 

[21] H. Hassani, X. Huang, E. Silva, M. Ghodsi, A review of data mining applications in 
crime, Stat. Anal. Data Min. 9 (3) (2016) 139–154. 

[22] U. Thongsatapornwatana, A survey of data mining techniques for analyzing crime 
patterns, in: Proceedings of ACDT 2016, IEEE Press, 2016, pp. 123–128. 

[23] S. Qayyum, S. Hafsa, H. Dar, A survey of data mining techniques for crime 
detection, Univ. Sindh J. Inf. Commun. Technol. (USJICT) 2 (1) (2018) 1–6. 

[24] J.S. McIllwain, Organized crime: a social network approach, Crime Law Soc. 
Chang. 32 (4) (1999) 301–323. 

[25] K. Faust, G. Tita, Social networks and crime: pitfalls and promises for advancing 
the field, Annu. Rev. Criminol. 2 (2019) 99–122. 

[26] G. Bichler, A. Malm, T. Cooper, Drug supply networks: a systematic review of the 
organization-al structure of illicit drug trade, Crime Sci. 6 (1) (2017) 2. 

T. Pourhabibi et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0005
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0005
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0010
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0010
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0015
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0015
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0020
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0020
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0025
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0025
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0025
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0030
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0030
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0030
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0035
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0035
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0035
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0040
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0040
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0040
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0045
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0045
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0045
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0050
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0050
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0055
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0055
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0060
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0060
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0065
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0065
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0065
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0070
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0070
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0075
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0075
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0080
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0080
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0085
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0085
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0090
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0090
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0095
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0095
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0095
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0100
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0100
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0100
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0105
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0105
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0110
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0110
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0115
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0115
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0120
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0120
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0125
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0125
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0130
http://refhub.elsevier.com/S0167-9236(21)00047-6/rf0130


Decision Support Systems 146 (2021) 113537

14

[27] P.M. Dudas, Cooperative, dynamic twitter parsing and visualization for dark 
network analysis, in: Network Science Workshop (NSW) 2013, IEEE Press, 2013, 
pp. 172–176. 

[28] C. Morselli, Inside Criminal Networks, Springer-Verlag, New York, United States, 
2008. 

[29] C.E. Hughes, J. Chalmers, D.A. Bright, M. McFadden, Poly-drug trafficking: 
estimating the scale, trends and harms at the Australian border, Int. J. Drug Pol. 31 
(2016) 80–89. 

[30] F. Varese, The structure and the content of criminal connections: the Russian mafia 
in Italy, Eur. Sociol. Rev. 29 (5) (2013) 899–909. 

[31] L.C. Freeman, S.P. Borgatti, D.R. White, Centrality in valued graphs: a measure of 
betweenness based on network flow, Soc. Networks 13 (2) (1991) 141–154. 

[32] H. Chen, D. Zeng, H. Atabakhsh, W. Wyzga, J. Schroeder, Coplink: managing law 
enforcement data and knowledge, Commun. ACM 46 (1) (2003) 28–34. 

[33] E. Ferrara, P. De Meo, S. Catanese, G. Fiumara, Detecting criminal organizations in 
mobile phone networks, Expert Syst. Appl. 41 (13) (2014) 5733–5750. 

[34] J.J. Xu, H. Chen, Crimenet explorer: a framework for criminal network knowledge 
discovery, ACM Trans. Inf. Syst. 23 (2) (2005) 201–226. 

[35] P. Shakarian, M. Martin, J.A. Bertetto, B. Fischl, J. Hannigan, G. Hernandez, 
E. Kenney, J. Lademan, D. Paulo, C. Young, Criminal social network intelligence 
analysis with the gang software, in: L. Gerdes (Ed.), Illuminating Dark Networks: 
The Study of Clandestine Groups and Organizations, Cambridge University Press, 
2015, pp. 143–156. 

[36] A. Rasheed, U.K. Wiil, Pevnet: a framework for visualization of criminal networks, 
in: ASONAM 2014, IEEE Press, 2014, pp. 876–881. 

[37] M. Rosvall, C. Bergstrom, Maps of random walks on complex networks reveal 
community structure, in: Proceedings of Natl Acad Sci U S A. 2008, The National 
Academy of Sciences of the USA, 2008, pp. 1118–1123. 

[38] V. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of 
communities in large networks, J. Stat. Mech. Theor. Exp. 2008 (2008) 1–12. 

[39] M. Girvan, M. Newman, M. Girvan, M.E.J. Newman, Community structure in social 
and bio-logical networks, in: Proceedings of Natl Acad. Sci. USA 99, National 
Academy of Sciences, 2002, pp. 7821–7826. 

[40] P. Pons, M. Latapy, Computing Communities in Large Networks Using Random 
Walks, ISCIS 2005, Springer, Berlin Heidelberg, 2005, pp. 284–293. 

[41] M. Ibanez, R. Gazan, Detecting sex trafficking circuits in the U.S. through analysis 
of online es-cort advertisements, in: ASONAM 2016, IEEE Press, 2016, 
pp. 892–895. 

[42] X. Shang, Y. Yuan, Social network analysis in multiple social networks data for 
criminal group discovery, in: Proceedings of CyberC 2012, IEEE Press, 2012, 
pp. 27–30. 

[43] F. Ozgul, Z. Erdem, C. Bowerman, C. Atzenbeck, Comparison of feature-based 
criminal network detection models with k-core and n-clique, in: ASONAM 2010, 
IEEE Press, 2010, pp. 400–401. 

[44] J. Qiu, Z. Lin, A framework for exploring organizational structure in dynamic social 
networks, Decis. Support. Syst. 51 (4) (2011) 760–771. 
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