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ABSTRACT

Context. Lamb loss and dyctocia are two major challenges in extensive farming systems. While
visual observation can be impractical due to the large sizes of paddocks, number of animals and
high labour cost, wearable sensors can be used to monitor the behaviour of ewes as there
might be changes in their activities prior to lambing. This provides sufficient time for the farm
manager to nurse those ewes that are at risk of dyctocia. Aim. The objective of this study was
to determine whether the behaviour of a pregnant ewe could predict the time of parturition.
Methods. Two separate trials were conducted: the first trial (T1), with 32 ewes, included
human/video observations, and the second trial (T2), with 165 ewes, conducted with no humans
present, to emulate real extensive farming settings. The ewes were fitted with tri-axial
accelerometer sensors by means of halters. Three-dimensional movement data were collected
for a period of at least 7 and 14 days in T1 and T2 respectively. The sensor units were retrieved,
and their data downloaded using ActiGraph software. Ewe behaviour was determined through
support vector machine learning (SVM) algorithm, including licking, grazing, rumination, walking,
and idling. The behaviours of ewes predicted by analysis of sensor data were compared with
behaviours determined using visual observation (video recordings), with time synchronisation to
validate the results. Deep learning and neural-network algorithms were used to predict lambing
time. Key results. The concordance percentages between visual observation and sensor data
were 90 ± 11, 81 ± 15, 95 ± 10, 96 ± 6, and 93 ± 8% ± s.d. for grazing, licking, rumination, idling,
and walking respectively. The deep-learning model predicted the time of lambing with 90% confidence
via a quantile regression method, which can be interpereted as 90% prediction intervals, and shows
that the time of lambing can be predicted with reasonable confidence approximately 240 h before the
actual lambing events. Conclusion. It was possible to predict the time of parturition up to 10 days
before lambing. Implications. The behaviour of ewes around lambing time has a direct effect on the
survival of the lambs and therefore plays an important part in animal management. This knowledge
could improve the productivity of sheep and considerably decrease lamb mortality rates.

Keywords: accelerometer sensors, extensive farming, lamb survival, lambing time, machine
learning, parturition, quantile regression, sheep behaviour.

Introduction

Monitoring livestock under extensive farming systems and, in particular, observing the 
behaviour of individual animals can be challenging. Sensor technology can provide 
valuable information on animal health, behaviour and welfare without the need for 
visual observations (Alvarenga et al. 2016; Barwick et al. 2018; Walton et al. 2018; 
Barwick et al. 2020). Monitoring behaviour of ruminants can be a reliable tool for 
predicting lameness (Borghart et al. 2021), detecting oestrus (Kamphuis et al. 2012; 
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O’Neill et al. 2014), identifying the mother (Sohi et al. 2017), 
evaluating gastrointestinal nematode infection (Ikurior et al. 
2020), predicting lambing time (Fogarty et al. 2020a, 2020b; 
Smith et al. 2020; Gurule et al. 2021) and predicting calving 
time (Borchers et al. 2017). Therefore, the wearable sensors 
can be used to facilitate management of farms as well as 
increase their profitability. 

Dystocia is one of the major diseases of sheep in Australia 
and it costs the sheep industry more than AUD780 million 
every year (Bruce et al. 2021). Dystocia can be reduced by 
genetic improvement but the heritability of dystocia is low; 
therefore, it takes a long time to improve dystocia by 
selective breeding (Jacobson et al. 2020). While dystocia 
causes loss of lambs, up to 80% of neonatal mortality 
occurs in the first few days after lambing as a consequence 
of starvation, exposure, mismothering and predation (Hinch 
and Brien 2014). Predicting the lambing time could allow 
farmers to provide supplementary care to ewe prior to 
lambing and nurse the newborn lamb. Previously, the 
global navigation satellite system (GNSS) was used to 
detect lambing the day of lambing; however, detecting the 
hour of lambing was determined to be impossible (Fogarty 
et al. 2020a). In another study, HR Tag was placed on the 
left side of the neck to collect neck activity and rumination, 
and IceQube sensor was attached to the left rear leg to 
collect number of steps, total motion, number of transition 
from standing to lying of dairy cattle (Borchers et al. 2017). 
The time of calving was predicted by the following three 
different methods: random forest, linear discriminant analysis 
and neural network. The neural network was the best method 
for predicting calving time, with 82.8% sensitivity and 80.4% 
specificity 8 h before calving. In another study, Fogarty et al. 
(2020b) used ear-tag accelerometers on 27 ewes to record the 
changes in their behaviour around lambing time. They 
developed three machine-learning algorithms for each 
ethogram, namely, linear kernel support vector machine 
(SVM) for grazing, lying, standing and walking behaviours, 
with 76.9% accuracy; classification tree for active and 
inactive behaviour, with 98.1% accuracy; and linear 
discriminant analysis for upright and prostrate behaviours, 
with 90.6% accuracy. There was a decrease in grazing, 
lying and active behaviour prior to lambing and a peak in 
standing and walking on the day of parturition. Therefore, 
monitoring different behaviours can predict lambing or 
calving time; however, complex machine-learning techniques 
are required for accurate predictions. 

There are two approaches to develop a classifier, 
namely, parametric and non-parametric. If the classifier is 
non-parametric then neural network (Abe 1997), fuzzy 
system (Bezdek et al. 1999) and SVM techniques (Abe 2010) 
can be applied. SVM is a powerful tool used in supervised 
learning, which has been widely applied in classification and 
regression problems (Byun and Lee 2003; Yang 2004). SVM 
classifiers have been applied to a range of real-world 
applications such as particle identification, text categorisation, 

facial recognition, and bioinformatics. The key idea is to find 
optimal separating hyperplanes between observations that 
have differing labels. This separation is found by obtaining 
the maximum margin between the training examples that 
are closest to the hyperplane, with slackness allowing for 
some misclassifications (Abe 2010). The SVM technique has 
been used to predict the behaviours of cows, with 78% 
precision (Martiskainen et al. 2009). While the SVM 
technique can be used to classify behaviours, other machine-
learning techniques, such as deep learning, could also be used 
for the prediction of calving time (Borchers et al. 2017). Thus, 
the first aim of this study was to classify five behaviours of 
ewes, including grazing, rumination, idiling, walking and 
licking before lambing, through the SVM technique. The 
second aim was to develop a non-linear neural network 
model to accurately predict the lambing time. 

Materials and methods

Animal management

Two trials were conducted at a commercial farm at Northgate 
Park, Greta, Vic., Australia. The first trial in 2015 focused on 
the behaviours of ewes 6 days before the estimated time of 
lambing, until a day after lambing. First-cross Merino ewes 
(Merino × Border Leicester and East Friesian, n = 32) were 
kept in a 9-ha paddock with fairly uniform pastures consisting 
of predominantly perennial ryegrass and clover with 5% 
phalaris and 5% other annual grasses. All 32 ewes were 
fitted with sensors for the study. 

The second trial focused on the analysis of sensor data in 
2018, to predict the lambing date. Ewes were ultrasound-
scanned for pregnancy by a commercial operator 45 days 
after the 35-day mating period. Pregnant ewes were fitted 
with sensors 15 days before the estimated time of lambing. 
The sensors were retrieved at the end of the lambing 
period. In total, 165 first-cross Merino ewes (Merino × Border 
Leicester and East Friesian) were kept in a 9-ha paddock with 
fairly uniform pastures consisting of predominantly perennial 
ryegrass and clover, with 5% phalaris and 5% other annual 
grasses. 

All of the procedures and experimental protocols were in 
accordance with the Australian Code of Practice for  the Care  
and Use of Animals for Scientific Purposes  (National Health 
and Medical Research Council 2013) and were approved by 
the La Trobe University Animal Ethics Committee (AEC 
approval no. AEC15-09, approval date 4 May 2015). 

Sensors

Commercially available tri-axial accelerometer sensors 
were used for both trials (ActiGraph wGT3X-BT; ActiGraph, 
LLC, Pensacola, FL, USA). The dimensions were 4.6 cm × 
3.3 cm × 1.5 cm. The weight of each sensor was 19 g, and 
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each had four Gb of memory. The devices communicated by 
Bluetooth technology, and each possessed a micro-electro-
mechanical system (MEMS)-based accelerometer and an 
ambient light sensor. 

The sensors recorded the following data: horizontal axis 
activity acceleration data (Axis X), vertical axis activity 
acceleration data (Axis Y), and perpendicular axis activity 
acceleration data (Axis Z). 

The sensor outputs were sampled by a 12-bit analog digital 
converter, with a range between 30 and 100 Hertz (Hz). An 
increased frequency shortens the battery life; in the current 
study, the sensors were set at 30 Hz (30 samples per s) as 
the sampling rate. Once the sensors were attached to the 
animals, they stored data in the form of raw, non-filtered 
units of gravity (G). The data were stored on a non-volatile 
flash drive within the device before downloading. 

The sensors were fitted onto a halter 22 mm wide with 
an adjustable noseband from 25 to 35 cm in length and a 
head-strap circumference adjustable from 43 to 58 cm, 
weighing 272 g (The Farmers Mailbox, Whittlesea, Vic. 
3757, Australia). For consistency, the sensors were placed 
on the left side of the face, with the opening facing forward 
(Fig. 1). Then sensors were attached to the animals 1 day 
prior to the start of the experiment and were intialised to 
start recording at 00:00:00 on the day of study. 

Visual observation and recordings of each
behaviour

In the first trial, ewes and lambs were marked (SI-RO-MARK™ 
Marking Fluid,©Heiniger animal care, Birba Lake, WA, 
Australia) on both sides of their back to allow visual 
observations during video recording. Each number was 
matched with the animal RFID and sensor. An EID reader 
(Shearwell Australia Company) was used to scan and record 
the unique RFID tag number assigned to each animal. The 
animals were released back into the paddock after the 
sensors were attached. A minimum of 20 m distance was 
maintained to ensure the observer had minimal impact on 
ewe behaviour. Sudden movements were avoided to allow 

Fig. 1. Attachment of the sensor to a halter placed onto a sheep.

the animals to become accustomed to the presence of 
humans. The visual observations were made by two people 
to ensure accuracy. Behaviours observed included licking, 
rumination, grazing, walking and idling, thus any other 
activities or behaviours were considered as ‘other’. The 
movement of each ewe was monitored and video recordings 
were made using a Nikon Cool Pix P600 digital camera (Nikon 
Australia Pty Ltd). The camera was equipped with atomic 
server time to track the exact time and date of the 
observations. The video recordings were performed on 13 
separate days for 2–3 h each day; however, not all of the 
recordings were useable, due to malfunctioning and battery 
depletion of the sensors. After editing, there was a total of 
5 h 30 min of video recording used for the validation of the 
algorithms. 

Determining time of lambing

Visual observations of lambing were used in the first trial to 
confirm that continuous licking for several hours, starting 
immediately after lambing, is an accurate indicator of 
lambing. Several hours of continuous licking was evident 
only on the day of lambing. Thus, the time of lambing was 
determined in the second experiment on the basis of the 
licking signature. 

Interpretation of sensor data

After the sensors were removed, the data were downloaded 
through the ActiLife software (ver. 6.11) and converted to 
CSV format. Each CSV file was then converted to MAT and 
read in MATLAB (ver. R2019b). 

Two procedures were used to interpret the sensor data, 
namely, SVM, and a deep learning/neural network approach. 
For our data, SVM was a good classifier as data were non-
linear and thus kernel space embeddings were appropriate. 
SVM classifications were based on a calculated 5 s epoch. The 
key idea in this technique is to find an optimal separating 
curve (usually called a hyperplane) between two regions of 
similarly labelled data in some kernel space. For instance, to 
separate 2-day valued regions with the identity kernel trans-
formation, the ‘hyperplane’ would separate the two regions 
with a line. The above-mentioned separation by hyperplane 
is found by obtaining the maximum margin between the 
training examples that are closest to the hyperplane, with 
some slackness allowing for potential misclassifications. Thus, 
in nature, SVM is a binary classifier (Knerr et al. 1990; Vapnik 
1998). A hyperplane is built to separate the kernel-transformed 
observations, while trying to maximise the distance of such 
observations to the separating hyperplane. The hyperplane 
was thus defined by what is called ‘support vectors’, which  
could be found by solving a constrained optimisation problem. 
Although SVM is a binary classifier, multiclass classifiers 
can also be implemented with some modification of the 
basic technique (Arun Kumar and Gopal 2011). Different 
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techniques can be used to deal with a multiclass problem in 
SVM and many of these techniques involve reducing a 
multiclass problem to multiple binary problems. Some of 
these techniques include the one-against-all, all-pairs, error-
correcting output codes (ECOC) methods. We have 
implemented the first technique known as one-against-all to 
create a binary problem for each class against all of the other 
classes (see the Supplementary material for details). 

The SVM evaluated a number of features to determine 
which of them were the most useful in discriminating 
between the models. The list of features considered were 
mean, standard deviation, kurtosis, power signal, peak-to-
peak amplitude, autocorrelation, principal components 
(obtained via a principal component analysis, PCA), and 
outputs from a spectral analysis (Table 1). Autocorrelation 
measured the correlation between yt and yt+k, where 
k = 0, : : : , K and yt is a stochastic process. The sample auto-PCk 1 T−kcorrelation is rk = , where CK = 1 ðyt − yÞðyt+k − yÞC0 T t = 

and C0 is the sample variance of the time series (Box et al. 
2008). PCA was used to reduce the dimensionality of 
the dataset, as well as increase interpretability, while 
minimising information loss, simultaneously (Jolliffe and 
Cadima 2016). Spectral analysis converts 5 s of motion data 
(the acceleration) from the time-domain into the primary 
frequency components in the form of magnitude and 
frequency. So as to train the classifier, the data were split 
into a 63% dataset, for training, and a 37% dataset, for 
validation of the SVM algorithm. 

A new variable was also created, which was the magnitude 
of the three axes (x, y and z) combined. Features were 
extracted from the four-dimensional space. The 1-week 
blocks of data were further processed via computation of 
the mean, standard deviation, median, interquartile range 
and least-squares slope of each of the measured variables to 
create a set of features from which to predict the time until 
lambing. In total, 30 predictor variables were generated. 

For the deep-learning approach, time series data from 
165 ewes were preprocessed. The preprocessing included 
eliminating ewes that had missing data or corrupted files, 

so that only ewes with complete records were used in the 
analysis. This resulted in observations from 121 ewes. Each 
time series was then segmented into contiguous blocks of 
24 × 7 h, where the numbers of minutes spent grazing, 
idling, licking, walking and ruminating were calculated for 
each hour and the vector magnitude of the maximum 
vector magnitude accelerometer measurement within that 
hour. The number of hours from the latest recorded hour of 
the block until the first recorded time of licking post-
lambing (the time of lambing) was used as the response 
variable. 

Then, a five-layer (three hidden layers) feedforward neural 
network was trained using the 30 variables as inputs to predict 
the time until lambing. The network used an architecture 
of 128 × 64 × 64 rectified linear unit (ReLU) activation 
functions (Hahnloser and Seung 2001), trained to minimise 
the mean sum-of-square error loss. Optimisation was 
conducted using the Nesterov-accelerated adaptive moment 
estimation (Nadam) algorithm (Dozat 2016). The entire 
process was conducted using Keras for the R programming 
environment (Chollet and Allaire 2018). 

In order to quantify the accuracy of the predictions from the 
neural network with respect to the true time until lambing, 
a simultaneous quantile regression approach was employed, 
where multiple quantile regressions were conducted simulta-
neously to infer empirical confidence intervals of the prediction 
accuracy, conditional on the neural network predictions. 
The quantile regression was conducted in R using the 
QuantifQuantile package (Charlier et al. 2015a), which 
implemented the method of Charlier et al. (2015b). 

Statistical analysis

Behavioural data were analysed with SAS University edition 
(SAS Institute, Cary, NC, USA) and IBM SPSS Statistics 
23 software (IBM Corp., Armonk, NY, USA). The observed 
behaviour was compared with the predicted behaviour 
from the sensors for the same time using data that were not 
used to develop the algorithms for the analysis of sensor 
data. Although the sensors produced 30 records every 
second, the data were combined into windows of 5 s. The 
total time compared was 20 015 s. The mean and s.d. were 
calculated from 1133, 575, 253, 921, 1121 datapoints (5 s 
interval) for grazing, idling, licking, rumination and walking 
respectively. Lameness, running and walking were grouped 
into one category, labelled walking. The accuracy was 
calculated as the proportion of time periods classified 
identically by visual observation and by the algorithms 
used to analyse the sensor data. 

A repeated measures model was used to analyse the 
influence of the time and ewe variables on each of the six 
behaviours (idling, grazing, ruminating, licking, walking 
and other). Data were aggregated into hours for the analysis 
and into days for Fig. 2. The Glimmix procedure in SAS 
was used with a normal distribution and an autoregressive 
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Table 1. The calculated equations of features. ‘N’ and ‘n’, window
size; ‘A’, array of data; ‘i’, index of data in the ‘A’.

Feature Equation

Mean N
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N

X
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n
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Þ
�

Standard deviation N
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Fig. 2. The number of minutes a day that
ewes spent idling, grazing, ruminating, licking,
walking, and in other behaviours around the
time of lambing. The error bars represent
standard error.

covariance structure of order 1. The Kenward–Roger 
(Kenward and Roger 1997) procedure was used to adjust 
the degrees of freedom. Only 16 of the 32 animals from the 
initial trial had complete data from the week before to the 
day after lambing. The analysis included the fixed effect of 
days from lambing (−6, −5, −4, −3, −2, −1, 0, 1 days) and 
the random effect of ewes. 

The second analysis used the same 16 animals and 
examined behaviour in relation to hour of lambing (−12 h 
pre-lambing to +12 h post-lambing). The dependent variable 
was minutes per hour spent idling, grazing, ruminating, 
licking, walking or in other behaviours. The Glimmix 
procedure in SAS was used with a normal distribution 
and an autoregressive covariance structure of order 1. The 
Kenward–Roger procedure was used to adjust the degrees 
of freedom. The analysis included the fixed effect of days 
from lambing (−6, −5, −4, −3, −2, −1, 0, 1 days) and the 
random effect of ewes. Significance was declared if 
P < 0.05 in both repeated-measures models. 

Results

Table 2 presents the concordance percentage between 
observed and predicted activity. Data are expressed as 
means (±s.d.). Standard deviation measures the precision of 
the estimate and indicates the variation among animals in 
the concordance percentage. The percentage of time that 
the sensor data agreed with the visual observations ranged 
from 90% to 96% for grazing, ruminating, idling and 
walking, but for licking it was only 81%. 

Fig. 2 shows the average number of minutes each day 
that ewes spent idling, grazing, ruminating, licking, and 
walking from 6 days prior to lambing to 1 day afterwards. 
All measures of behaviours varied significantly among 
individual ewes and days. Idling time varied from over 8 h 
to just under 11 h per day and there were significant 
differences among ewes and among days. The number of 
minutes spent idling were in the range of 497–651 min 
from Days −6 to 1.  

The time spent ruminating, 6 days before to 1 day after 
lambing varied between approximately 5.5 and 7.5 h a day 
and there were differences among days and ewes. The least-
squares mean rumination times on Days −6 to 1 were in 
the range of 177–260 min. There was a more than 30% 
reduction in rumination on the day of lambing compared 
with the peak 2 days before lambing. The least-squares 
mean grazing times on Days −6 to 1 were in the range of 
334–459 min. Ewes spent the least amount of time grazing 
on Day −1 (the day before lambing). The pattern of rumina-
tion was similar to the grazing pattern, peaking 2 days before 
lambing and recovering on the day after lambing. The time 
spent grazing 6 days before to 1 day after lambing varied 
from just under 3 h to nearly 4.5 h a day and there were 
differences among days and ewes. Rumination time was 
lowest on the day of lambing (177 ± 18 min/day). 

The mean time spent licking on each day varied from just 
under 3 h to nearly 5.5 h. In contrast to grazing and 
rumination, the time spent licking was significantly higher 
on the day of lambing. The mean licking times on Days −6 
to 1 were in the range of 128–329 min. There was a more 
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Table 2. Concordance between visual and predicted behaviours.

Observed activity Activity as determined by sensor (% of total observations)

Grazing Licking Rumination Idle Walking

Grazing 90 ± 11 8 ± 11 1 ± 2 0 ± 1 0 ± 1

Licking 4 ± 4 81 ± 15 3 ± 5 12 ± 11 0 ± 0

Rumination 0 ± 1 0 ± 1 95 ± 10 0 ± 0 0 ± 1

Idle 0 ± 0 1 ± 4 1 ± 3 96 ± 6 0 ± 2

Walking 3 ± 4 1 ± 1 3 ± 5 12 ± 11 93 ± 8

The values (±s.d.) in bold show the percentage agreement between observed and predicted behaviours.

than 250% increase in licking on the day of lambing compared 
with the minimum 1 day before lambing. 

On average, the ewes walked approximately 1 h each day 
and there were differences among ewes and among days. The 
mean amounts of time spent walking on Days −6 to 1 were in 
the range of 48–66 min. 

The examination of behaviours in the hours before lambing 
showed that there were differences among hours in the time 
spent idling, but no significant differences among ewes. Idling 
time was stable at about 30 min per hour until lambing, when 
there was a sharp drop in the time spent idle (Fig. 3a). 
A gradual recovery occurred after 4 h post-lambing to 
21 ± 4 min per hour 12 h after lambing. 

Grazing activity of ewes started to drop from 12 h prior to 
lambing until the hour before lambing (Fig. 3b). Grazing 
activity then recovered until 12 h after lambing. There were 
significant differences among hours but not among ewes. 

There was a gradual decline in rumination 8 h before 
lambing to 4 h post-lambing (Fig. 3c). Subsequently, time 
spent ruminating gradually recovered. There were significant 
differences among hours but not among ewes. 

Time spent licking showed the opposite pattern to time 
spent ruminating. There were significant differences among 
hours but not among ewes. Licking activity peaked 4 h after 
lambing (Fig. 3d), then fell back sharply. Licking activity 
showed wide variation from 4 min at 7 h before lambing, 
to 41 min 4 h after lambing. 

Walking increased gradually from 2 ± 1 min per hour to 
6 ± 1 min per hour, then rapidly plummeted to 1–2 min 
per hour. There were significant differences among hours 
but not among ewes. 

Predictions from the deep-learning model were generated, 
and quantile regression results regarding the accuracy of the 
predictions are plotted in Fig. 4. The quantile regression levels 
indicate the proportion of values that lie below the lines. The 
50% level represents the median value and 5% of values 
lie below the 5% level. Consequently, the 5% and 95% 
levels correspond to a 90% confidence level, which can be 
interpreted as a 90% prediction interval. That is, if the deep 
learning model predicts a certain time until lambing, then 
the interval interpreted at the predicted time until lambing 
contains the true time until lambing 90% of the time. 

Fig. 5 displays the 90% prediction intervals obtained from 
the quantile regressions for each level of predicted time until 
lambing. The figure shows that the width of the 90% intervals 
declines as the time to lambing decreases, but remains stable 
approximately 240 h before lambing. In this period, the 
widths of the intervals lie between 15 and 20 h. This indicates 
that the day of lambing can be predicted with reasonable 
confidence up to 10 days before lambing using sensor 
information. 

Discussion

In this study, sensors were used to examine the behaviour of 
ewes around parturition. There was a strong relationship 
between the behaviours predicted by the analysis of sensor 
data and the behaviours observed in the field. The behaviours 
varied around the time of lambing, with a decrease in the time 
spent grazing and ruminating, but an increase in the time spent 
licking. 

Sensor data from the second experiment were then 
analysed to determine whether changes in behaviour before 
lambing could be used to predict the time of lambing. For 
predictions to be useful, they need to be accurate and precise. 
The accuracy of the predictions was shown by using quantile 
regression to plot the predicted time of lambing against 
the actual time of lambing. There were no biases in the 
predictions, indicating that they were accurate. The precision 
of the predictions was examined by plotting the 90% 
prediction intervals determined from quantile regression of 
predicted time of lambing time against actual time of lambing. 
These intervals concentrated and stabilised as lambing time 
approached 10 days before lambing, with widths of about 
15–20 h. These estimates were sufficiently precise to be 
useful predictors. Allowing for time to download and 
analyse data, the sensors provide data for the prediction of 
lambing time 1 week in advance. 

Fogarty et al. (2020b) monitored the behaviour changes 
around lambing time using accelerometer sensor data from 
27 ewes. They used machine-learning techniques, including 
SVM, classification trees, and linear discriminant analysis, 
so as to classify the accelerometer data into three 
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Fig. 3. The time (min/h) that ewes showed each of the following behaviours: (a) grazing, (b) rumination, (c) licking, (d) walking, (e) idling,
(f ) other. Values are expressed as means ± s.e. *Indicates a significant difference compared with 12 h prior to lambing (P < 0.05).

orthogonal sets of behavioural classifications: grazing, lying, 
standing and walking; active and inactive; upright and 
prostrate. Using a linear mixed-effects model, the authors 
established that there were statistically significant relation-
ships between each of the grazing, standing and walking 

behaviours and time around lambing, at both the daily and 
hourly temporal resolutions. In the current study, time was 
treated as a categorical covariate within the regression model, 
with inter-temporal correlation accounted for via autore-
gressive covariance structures. Significant relationships 
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of each regression line. Grey data display pairs
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to the higher of the lines. All of the other
levels are ordered accordingly by their
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Fig. 5. Displays the 90% prediction intervals
obtained from the quantile regressions for
each level of predicted time until lambing. In
this period, the widths of the intervals lie
between 15 and 20 h. This indicates that the
day of lambing can be predicted with reasonable
confidence up to 10 days before lambing using
sensor information.

were also established between the activity status and posture 
of the ewes, in a similar manner. 

In another study, Fogarty et al. (2020a) combined 
accelerometer data with GNSS positioning data so as to 
explore the relationships among spatial variables, such as 
animal movement speed, distances between animals, and 
paddock area covered by animals, in relation to the time 
around birthing, at both the daily and hourly resolutions. 
A linear mixed-effects model was also used in this scenario, 
with time treated in the same way as in Fogarty et al. (2020b), 
and significant relationships were found across the assessed 
responses. In both studies of Fogarty et al. (2020a, 2020b), 
statistical models were constructed using time around 
birthing as the covariate and sensor data as responses. 
Although they allow for inference regarding the potential 

relationships between time and sensor data, these modelling 
configurations unfortunately do not permit the prediction of 
time of birthing, since the modelled causal relationship treats 
time as an predictor variable, and the categorical treatment 
of time does not allow extrapolation between inference 
regarding one time period and the next. 

Smith et al. (2020) showed that time of parturition can be 
predicted through the changes in activity by computing the 
distance between distribution of activity across a time 
period (maximum activity change relative to the baseline) 
and a corresponding distribution of baseline activity. They 
found that the algorithms were sufficient to predict the 
birth time of the majority (84%) of lambs within 12 h of 
actual birth time, while the predicted and observed times of 
parturition had an average mean absolute error of 5.33 h. 
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Similar to Fogarty et al. (2020b), we also established relation-
ships between accelerometer-based behaviours and time 
around lambing. We then extend on these inferential results 
by constructing a predictive model that treats time until 
lambing as a response, and which uses machine learning-
detected accelerometer-based activities as predictors. This 
prediction model is constructed with the expressed purpose 
of providing time of birth predictions, and additional 
quantile regression determined the statistical confidence. 
The relationships between spatial behaviours and birthing 
time, as studied in Fogarty et al. (2020a), may allow for the 
construction of more accurate prediction algorithms in the 
future. In contrast, Gurule et al. (2021) did not detect any 
differences in seven predicted behaviours including feeding, 
laying, licking lamb, licking salt, contractions, standing, 
and walking before and after lambing. They implemented 
random-forest machine-learning technique and proposed 
that a direct metric calculation from the axis (e.g. x-axis) 
provides a better indication of lambing than does omplex 
machine-learning algorithm. Therefore, the implemented 
machine-learning method in the current study provided 
with 90% confidence of lambing prediction time is more 
accurate. This has a major contribution to avoid lamb loss 
and dyctocia in extensive farming systems. 

The current study had some limitations such as loss of 
sensors from ewes and malfunctioning of the sensors. 
However, predicting lambing date means that sensors must 
be attached to ewes when the lambing date is unknown. 
A proportion of sensors will record behaviours too early or 
too late to usefully predict the lambing date. Future study 
with a larger sample size with advanced sensors with extended 
battery life will enable more refined training algorithms, which 
can help identify further traits and behaviours with higher 
precision improved preduction capability. 

In conclusion, accelerometer sensors can be used to 
accurately measure the behaviours of ewes around the time 
of lambing. The amount of time spent in each behaviour 
changed as lambing approached. These changes in behaviour 
can be used to predict the time of lambing. The predictions 
were shown to be both accurate and sufficiently precise to 
provide useful advance notice up to 10 days before 
lambing. Allowing for time to download and analyse data, 
the sensors could be used to provide advance warning of 
lambing 1 week beforehand. 

Supplementary material

Supplementary material is available online. 
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