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Abstract: Some equivalence tests are based on two one-sided tests, where in many applications the
test statistics are approximately normal. We define and find evidence for equivalence in Z-tests and
then one- and two-sample binomial tests as well as for t-tests. Multivariate equivalence tests are
typically based on statistics with non-central chi-squared or non-central F distributions in which the
non-centrality parameter λ is a measure of heterogeneity of several groups. Classical tests of the
null λ ≥ λ0 versus the equivalence alternative λ < λ0 are available, but simple formulae for power
functions are not. In these tests, the equivalence limit λ0 is typically chosen by context. We provide
extensions of classical variance stabilizing transformations for the non-central chi-squared and F
distributions that are easy to implement and which lead to indicators of evidence for equivalence.
Approximate power functions are also obtained via simple expressions for the expected evidence in
these equivalence tests.

Keywords: evidence for alternatives; Kullback–Leibler divergence; sample size determination;
two by two tables; two one-sided tests; variance stabilization

1. Introduction

Our purpose is to extend the concept of “evidence for the alternative hypothesis”, already
available in classical one-sided testing, to contexts where that alternative is “equivalence” of two or
more distributions. We abbreviate the term “bioequivalence” to “equivalence” for simplicity and
because these results are of much more general applicability.

1.1. Background and Summary

Why should we introduce another approach to equivalence testing? Because, even though some
equivalence tests [1] are well established and embraced by the USA Food and Drug Administration
(FDA) and the European Medicines Agency (EMA), there are substantial critiques [2–4], as well as
novel, competing approaches to multivariate equivalence testing [4–8].

We endorse the proposal by [4] to define a hierarchy of bioequivalence models, “average
bioequivalence” within “population bioequivalence” within “individual bioequivalence”, in terms of
the Kullback–Leibler symmetrized distance (KLD) between distributions arising in equivalence tests.
Somewhat surprisingly, we advocate estimating these distances indirectly using variance stabilized
test statistics (VSTs) rather than plug-in parameter estimates for parameters appearing in the KLD.
The close tie between the mean of a VST and the KLD for non-central chi-squared and F distributions
will be illustrated in Appendix A.

In the remainder of this introduction we describe the notion of “evidence for the alternative” in
the context of Z-tests and show how it is connected to level and power of such tests; these ideas were
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first introduced in [9]. After these preliminaries, we extend the notion of evidence for equivalence to
two one-sided Z-tests (TOSTs), and show how it is related to a one-sided test based on a non-central
chi-squared statistic with one degree of freedom.

This notion of evidence is applicable to many situations because VSTs can carry many test
statistics into normally distributed statistics Z. For exponential families, Reference [10] show that the
expected evidence of the variance stabilized statistic T is approximately equal to the signed square
root of the Kullback–Leibler symmetrized divergence. Examples not from exponential families are
in [11–13]. These results gives support to calling T the “evidence for the alternative hypothesis”.

Throughout the paper we employ standard notation and properties of the non-central t, χ2

and F distributions which are introduced and studied in depth in [14,15]. Below we first discuss
specific examples of two one-sided tests (TOST) in Section 2, namely for binomial, two by two tables
and t-tests; all methods are illustrated using data examples from the literature. In the multivariate
setting, chi-squared tests for equivalence are given in Section 3 and F-tests for equivalence of K normal
populations in Section 4. New methods for choosing λ0 and for variance stabilizing the test statistics
are provided. Discussion follows in Section 5, and R scripts for implementing some procedures are
found in the Appendix B.

1.2. Properties of Evidence in One-Sided Z-Tests

Univariate equivalence tests are often based on statistics having the non-central t distribution
or normal approximations to the binomial distribution, so we begin our introduction to evidence
contained in such tests with the approximating, and simpler, Z-tests.

In the prototypical model X ∼ N(µ, 1) where µ is unknown, and one tests the null hypothesis
µ ≤ µ0 against the alternative µ > µ0 by rejecting the null if the p-value is sufficiently small.
For an observed X = x, the p-value is Φ(µ0 − x), where Φ is the standard normal distribution
function. The ”evidence for the alternative” µ > µ0 is defined to be T ≡ X − µ0. It is normally
distributed with mean µ − µ0, which is linearly increasing in µ. In addition, T estimates its mean
with standard error 1, regardless of the value of µ. For reasons given in [9,16] values of T near 1.645,
3.3 and 5 are called “weak”, “moderate” and “strong” evidence for the alternative. Note that for an
observed T = t = x− µ0, the p-value can be recovered from 1−Φ(t).

In Table 1 are shown two sets of numbers with very different interpretations, resulting from
different assumptions. They are based on one observation T = t, where T ∼ N(µ, 1) and µ ≥ 0.
If one assumes the boundary hypothesis µ = 0, the second row of p-values gives the correct “degree
of surprise” at having observed T = t; the smaller the p-value, the more surprised one is with the
outcome. However, if one only assumes µ ≥ 0, the first row gives an estimate of the expected
evidence E[T] = µ for the alternative µ > 0. This estimate has an additive standard normal error.
When one interprets p-values, one must be careful not to interpret the smallness of their magnitudes
as though they were evidence for the alternative on a linear scale. The first row in Table 1 gives
a much more reasonable estimate of “evidence for the alternative” together with an easily understood
standard error. The compatibility of this calibration scale for evidence with Bayesian calibration scales
for p-values and Bayes factors is discussed in [10] (Section 4.3).

Table 1. p-values for testing µ = 0 against µ > 0 and evidence estimates for alternatives based on one
observation T = t, where T ∼ N(µ, 1). Keep in mind that the standard error of the observed value of
t is equal to 1.

t 0 1.281 1.645 2.326 3.090 3.3 3.719 5

p-value 0.5 0.10 0.05 0.01 0.001 0.0005 0.0001 0.0000003

The generality of this definition of evidence for the alternative stems from the fact that in many
situations the natural test statistics X can be transformed to T, which has approximately a normal
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distribution with unit variance. Also, it is a more basic concept of the test than level and power.
For a normally distributed test statistic T with unit variance, the expected evidence for one-sided
alternatives µ > µ0 is related to the level α and power 1− β(µ) through the sum of the probits:

Eµ[T] = z1−α + z1−β(µ) . (1)

In the same testing problem the sample size n required to detect an alternative µ1 with power
0.8 at level 0.05 is the solution of

√
n (µ1 − µ0) = z0.95 + z0.8 ≈ 2.5; the expected evidence in such

an experiment therefore lies between weak and moderate.
For negative T, −T is interpreted as evidence for the null µ ≤ µ0. Because of the symmetry of

the problem, if we had begun with the null hypothesis µ ≥ µ0 against the alternative µ < µ0 the
evidence for the alternative would be defined as µ0 − X.

1.3. Properties of Evidence in Two One-Sided Z-Tests (TOST)

Consider the simplest example with one observation X ∼ N(µ, 1) for testing H0 : |µ| ≥ µ0,
where µ0 > 0 defines the equivalence alternative H1 : |µ| < µ0. The null hypothesis consists of
two possibilities: µ ≤ −µ0 and µ ≥ µ0. The left hand part is rejected at level α if X + µ0 ≥ z1−α, and
the evidence for its alternative is T− = X + µ0, because T− ∼ N(µ + µ0, 1) and T− has an expected
value that increases in µ and is 0 at the boundary µ = −µ0. The right hand part is rejected at level α if
X − µ0 ≤ zα, and the evidence for its alternative is T+ = µ0 − X, because T+ ∼ N(µ0 − µ, 1), whose
expected value is increasing with decreasing µ and is 0 at its null boundary. The two one-sided testing
procedure (equivalence test) rejects in favor of equivalence only if both of the one-sided tests reject
their respective null hypotheses, and this has level α, because only one null hypothesis can hold.

The evidence for the alternative hypothesis of equivalence is logically the minimum of the evidences
for the two one-sided tests:

T = min{T−, T+} = µ0 + T0 , (2)

where T0 = min{X,−X} and X ∼ N(µ, 1). Now −T0 = |X| has a folded (to the right) normal
distribution ([14] (p. 170), and [16]), with parameters (µ, 1), so T0 has a folded (to the left) normal
distribution with the same parameters. The density of T0 is given in terms of the standard normal
density ϕ for t < 0 by fT0(t; µ) = ϕ(t− µ) + ϕ(t + µ), so the density of T is for t < 0

fT(t; µ) = ϕ(t− µ− µ0) + ϕ(t + µ− µ0). (3)

In Figure 1 are shown in black lines some examples of fT(t) for µ0 = 4 and several choices of µ.
When µ = 0, (exact equivalence), the density is negative half-normal with upper bound µ0 = 4, but
as |µ| increases, the distribution rapidly approaches normality.

Also of interest are the mean and standard deviation of T as µ varies. The first two moments of
T0 are Eµ[T0] = µ{1− 2Φ(µ)} − 2ϕ(µ) and Eµ[T2

0 ] = 1 + µ2, so

Eµ[T] = µ0 + Eµ[T0] = µ0 + µ{1− 2Φ(µ)} − 2ϕ(µ) (4)

Varµ[T] = 1 + µ2 − {µ (1− 2Φ(µ))− 2ϕ(µ)}2 . (5)

The mean and standard deviation of T are shown in Figure 2 as black lines. The top left-hand
plot reveals that even in the case of perfect equivalence µ = 0, the equivalence test with µ0 = 3 will
only yield, on average, weak evidence for it. With µ0 = 4, this average evidence for equivalence when
µ = 0 becomes moderate.
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Figure 1. The black lines show the densities fT(t) of the evidence for equivalence (3), for µ0 = 4 and
various µ. The red lines show the densities of evidence for equivalence (6) when n = 4.
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Figure 2. In the top row µ0 = 3; in the bottom row µ0 = 4. Exact values of the mean (left plot) and
standard deviation (right plot) of TOST evidence T for equivalence are shown in black lines, while the
red solid lines show the graphs based on n = 4 observations. The horizontal black dotted line is at
height µ0 −

√
2/π , while the red dotted line is 2 µ0 −

√
2/π . The horizontal dotted lines in the right

hand plot are at
√

1− 2/π and 1.

The plots in Figure 2 suggest that, except for µ near 0, the distribution of T defined by (2) is
approximately normal with mean near min{µ + µ0, µ0 − µ} and standard deviation near one. For µ

near 0, which is of interest in the case of equivalence, it is not normal, but this is perhaps compensated
for by having a smaller standard error. Its distribution approaches a negative half-normal as
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|µ| → 0, with mean and standard deviation from (4) and (5) converging to µ0 −
√

2/π and√
1− 2/π , respectively.

1.3.1. How Evidence Grows with Sample Size in Two One-Sided Z-Tests

The evidence for a one-sided Z-test grows with the square root of the sample size
√

n for if the
sample mean X̄n ∼ N(µ, 1/n) then the evidence for the alternative µ > −µ0 to the null µ ≤ −µ0 is
Tn,− =

√
n (X̄ + µ0) ∼ N(

√
n (µ + µ0), 1), which is increasing in µ, has variance 1, and has expected

value 0 at the boundary µ = −µ0. Similarly, Tn,+ =
√

n (µ0 − X̄) ∼ N(
√

n (µ0 − µ), 1) the evidence
for the alternative µ < µ0 to the null µ ≥ µ0. Thus the evidence for equivalence |µ| < µ0 based on n
observations is:

Tn = min{Tn,−, Tn,+} =
√

n µ0 + Tn,0, (6)

where Tn,0 =
√

n min{X̄,−X̄} and
√

n X̄ ∼ N(
√

n µ, 1). Now Tn,0 has a folded to the left normal
distribution with parameters

√
n µ, 1 and Tn is a shift by

√
n µ0 of Tn,0, so its mean and variance are:

Eµ[Tn] =
√

n µ0 +
√

n µ{1− 2Φ(
√

n µ)} − 2ϕ(
√

n µ)

Varµ[Tn] = 1 + n µ2 −
{√

n µ
(
1− 2Φ(

√
n µ)

)
− 2ϕ(

√
n µ)

}2 .

A plot of the densities of T4 compared to T defined by (3) are also shown in Figure 1 as red lines,
and similarly for the mean and standard deviation of T4 in Figure 2.

1.3.2. Sample Size Determination

For a one-sided Z-test based on n observations one can obtain a given expected evidence
2.5, say, for an alternative distant µ0 from the null, by taking n to satisfy

√
n µ0 = 2.5.

So n1-sided = d(2.5/µ0)
2e, where dre is the smallest integer greater than or equal to r. For a TOST

Z-test with equivalence alternative |µ| < µ0, to obtain the same expected evidence when in fact µ = 0
one needs by (7) to have

√
n µ0 −

√
2/π = 2.5, or nTOST = d(2.5 + 0.8)/µ0)

2e, which is 74% larger
than n1-sided.

If one had asked for only weak expected evidence 1.645 instead of 2.5 in the above paragraph,
the ratio of sample sizes required by TOST Z-tests to a one-sided test is 2.2, so the equivalence test
would require 120% more observations than the one-sided test.

1.4. Connection of Evidence in TOST with a One-Sided Test

The evidence T = TTOST defined by (2) is based on X ∼ N(µ, 1) for the null hypothesis H0 : |µ| ≥
µ0 > 0, composed of two disjoint sets, with the equivalence alternative H1 : |µ| < µ0. One could
equally study the evidence in the equivalent experiment S = X2 ∼ χ2

1(λ), where λ = µ2, for the
hypotheses restated as H0 : λ ≥ λ0 against the equivalence alternative H1 : λ < λ0, where λ0 = µ2

0.
The evidence for equivalence in an experiment with S ∼ χ2

1(λ) is a special case of (13) found in
Section 3:

T = T1,λ0(S) =

{ √
λ0 − S/

√
2 for S < 1 ;√

λ0 −
√

S− 1/2 for S ≥ 1 .
(7)

The top left plot of Figure 3 compares the graph of this T with that of TTOST when µ0 = 2.
Further, its expected evidence is by (12) approximately

√
λ0 + 1/2 −

√
λ + 1/2. The top right plot of

Figure 3 shows the graph of this approximate expected evidence for equivalence as a function of µ

for the case µ0 = 2 as a dashed line, to be compared with the previously obtained expected evidence
in the two one-sided test experiment (4), whose graph is shown as a solid line. The bottom plots are
for µ0 = 4.
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Figure 3. The top plots are for µ0 = 2; the bottom for µ0 = 4. On the left is a comparison of Tµ0

given by (2) as a function of data X = x plotted as a solid line, to be compared with the one-sided
evidence in the corresponding chi-squared test (7) as a dashed line. On the right are comparisons of
two approximations for the expected TOST evidence for equivalence, a solid line depicting the exact
value (4), and that given by the first order approximation

√
λ0 + 1/2 −

√
µ2 + 1/2 for the equivalent

chi-squared test, shown as a dashed line.

2. More Examples of Two One-Sided Tests (TOSTS)

2.1. Evidence for Equivalence in Two One-Sided Binomial Tests

Given X ∼ Binomial(n, p), and let p̂ = X/n. Let p1 < p < p2 define the region of equivalence.
(Often this region will also be of the form |p− p0| < ∆0 for some p0, ∆0.) We want to test at level α the
null H0 : p ≤ p1 or p ≥ p2 against the equivalence alternative H1 : p1 < p < p2. The null hypothesis
is two-sided and its right-hand part is rejected at level α if p̂ ≤ p2 − zα

√
p2(1− p2)/n , whereas the

left-hand part is rejected at level α if p̂ ≥ p1 + z1−α

√
p1(1− p1)/n . Only one of these tests can reject

the null, so the level of the combined tests is α. We have assumed that n is large enough so that normal
critical points give accurate levels.

The VST of p̂ is the well-known arc-sine transformation h( p̂) = 2
√

n arcsin(
√

p̂ ), which is
asymptotically normal with variance 1 and asymptotic mean 2

√
n arcsin(

√
p). Large values of h( p̂)

indicate evidence for large p. The evidence in the test of p ≤ p1 for an alternative p > p1 is
therefore T− = h( p̂) − h(p1), while the evidence in the test of p ≥ p2 for an alternative p < p2

is T+ = h(p2) − h( p̂). For the combined two one-sided tests, the evidence for equivalence is the
minimum evidence in these two one-sided tests; that is, T = min{T−, T+}.

Example 1. (Intervention success of new treatment.) In Example 4.2 of [17] (p. 59) a highly toxic
drug used in chemotherapy treatment for a tumor led to a 73% two-year progression-free survival
period. A new combined and much more tolerable treatment was administered to 361 patients and it
was deemed equivalent to the previous treatment if the success rate fell in the interval [0.65, 0.75].
In the new treatment 191 patients survived a two-year progression-free period, and Wellek used
two one-sided binomial tests to find that non-equivalence was rejected at the 0.05 level with estimated
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power 0.12. For these data T+ = 2.84, T− = 0.793 so the evidence for equivalence of the treatment
effect is T = 0.793, which is “weak”. The standard error of T = 0.793 is known (see the comments
at the end of Section 2), to satisfy 0.60 ≤ SE[T] ≤ 1, but is likely to near the smaller bound, because
p̂ = 191/273 is close to the center of the equivalence interval. This result is consistent with the
analysis of [17], and it is much simpler.

2.2. Evidence for Equivalence of Risks

It is often the case that one wants to compare risks associated with new and standard treatments,
with data often displayed in 2 by 2 tables; an example is given below after we introduce notation and
explain how to find evidence for equivalence in this context.

Let X1 and X2 be two independent binomial random variables with parameters (n1, p1) and
(n2, p2), respectively. Letting p̂i = (Xi + 0.5)/(ni + 1) for i = 1, 2 the unknown risk difference
∆ = p1 − p2 is estimated by ∆̂ = p̂1 − p̂2. We want the evidence for equivalence hypothesis
∆1 < ∆ < ∆2, where ∆1, ∆2 are specified bounds, usually of the form −∆0, ∆0. This can be achieved
by combining the results of two one-sided tests: ∆ ≤ ∆1 versus ∆ > ∆1 and ∆ ≥ ∆2 versus
∆ < ∆2. To find the evidence for the alternative in the first test, we use the VST of ∆̂ derived
in Kulinskaya et al. [11]. This is a family of VSTs indexed by a parameter 0 < A < 1. For the
choice A = 1/2 the nuisance parameter is ψ = p̄ = (p1 + p2)/2, and we also require N = n1 + n2,
v = (1− 2p̄)(1/2− n2/N) and w =

√
p̄(1− p̄) + v2 . Then Equation 2.3 of [11], can be written:

T(∆̂, p̄, ∆1) =

√
4n1n2

N

(
arcsin

(
∆̂/2 + v

w

)
− arcsin

(
∆1/2 + v

w

))
. (8)

Reference [11] show that the statistic T(∆̂, ˆ̄p, ∆1) obtained by replacing p̄, v and w by their plug-in
estimates, is for large n1, n2 normally distributed with mean that is monotone increasing in ∆ from
0 at the null ∆ = ∆1. Further, this statistic has variance 1 at the null, which allows them to derived
large-sample confidence intervals for ∆; these intervals are shown to be quite competitive for even
small to moderate sample sizes in [13]. Next define

T− = T(∆̂, ˆ̄p, ∆1)

T+ = −T(∆̂, ˆ̄p, ∆2) (9)

T = min{T−, T+}.

T− gives the putative evidence for the alternative ∆ > ∆1 for the null ∆ ≤ ∆1, while T+ gives
the putative evidence for the alternative ∆ < ∆2 for the null ∆ ≥ ∆2. We say “putative” because,
as [11] point out, the variances of these statistics can stray far from 1 if ∆ is not near the null. However,
the evidence T for equivalence ∆1 < ∆ < ∆2 is better behaved, and has standard error similar to that for the
two one-sided Z-test evidence discussed in Section 2. R scripts for computing (9) are in Appendix B.

Example 2. (Comparing methods of patient care.) As described in [18], the objective of a randomized
trial was to determine whether a standard method of care for patients by doctors was comparable to
nurse-practitioner care. For the first group, there were n1 = 225 patients and of these X1 = 148 were
found to have adequate care. For the second group, of n2 = 167 patients, X2 = 115 were found to
have adequate care. Letting p1, p2 be the probability of adequate care for the first, second methods
and ∆ = p1 − p2, it was desired to test for “equivalence of treatments” defined by |∆| ≤ ∆0 = 0.1.
For these data, ∆̂ = −0.03, T− = 1.461, T+ = 2.719 and T = 1.461, which is close to 1.65 with
a standard error less than 1. That is, the evidence for equivalence is positive but weak. By way of
comparison, Reference [18] found the p-value for the equivalence alternative |∆| ≤ ∆0 = 0.1 to be
0.005, but in a later corrected analysis in [19] calculated it to be 0.07.
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In order to obtain expected moderate evidence 3.3 ± 1 for equivalence |∆| ≤ ∆0 = 0.1 in this
setting when in fact there is near equivalence, one would need sample sizes in each group near 1000.

2.3. Evidence for Equivalence in Two One-Sided t-Tests

For the t-test, the equivalence test of H0 : |µ| ≥ µ0 against the alternative H1 : |µ| < µ0 is based
on n measurements of the differential effect. The t-statistic is a function of the estimated mean ȳ and
standard deviation s obtained from the sample. The null hypothesis is two-sided and its right-hand
part is rejected if S+ =

√
n (ȳ−µ0)/s < qtn−1,α, whereas the left-hand part is rejected if S− =

√
n (ȳ+

µ0)/s > qtn−1,1−α . In both of these expressions, qtn−1,p denotes the p-quantile of the corresponding
t-distribution. Both parts of the null hypothesis must be rejected in order to get significant evidence
for equivalence. This holds if the confidence interval [ȳ± qtn−1,1−αs/

√
n] is contained within [±µ0].

The t-statistic S, if the true mean is µ, has a non-central t-distribution with n − 1 degrees of
freedom and noncentrality parameter λ =

√
n(µ − µ0)/σ. We are interested in evidence in favor

of small |µ|. For the left-hand part, the non-centrality parameter is λ =
√

n(µ + µ0)/σ and we
are interested in evidence in favor of large µ. The VST is derived in [9,20] and is defined by
h(S) =

√
2n sinh−1

(
S/
√

2n
)

, where sinh−1(x) = ln(x +
√

x2 + 1) . This is an increasing function
and measures the evidence in favor of large µ. The evidence contained in the data in favor of
equivalence for the right-hand part of the null hypothesis is thus, −h(S+), while for the left-hand
part it is h(S−). Both need to be sufficiently large in order to conclude in favor of equivalence, that is,
the empirical evidence

Ê = min
{
−
√

2n sinh−1
(

ȳ− µ0√
2s

)
,
√

2n sinh−1
(

ȳ + µ0√
2s

)}
must be at least 2 and better 3. Negative values of the empirical evidence can occur and they have to
be interpreted as evidence in favor of non-equivalence.

Example 3. Figure 4 shows a plot of the empirical evidence as a function of the average of the
measurements. The evidence from the t-statistic is nearly linear in ȳ and largest if ȳ is exactly halfway
between the equivalence limits. The difference with the usual statistical tests is striking. There, the
evidence will grow with the distance from the null hypothesis and can become arbitrarily large. Here,
the maximal size of the evidence is limited by the equivalence limits.

−0.3 −0.1 0.0 0.1 0.2 0.3

−
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−
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em
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Figure 4. The solid curves show the evidence in favor of equivalence as a function of the average
ȳ. It is assumed that the equivalence limits are µ0 = ±0.12 and the empirical standard deviation is
s = 0.1. As the sample size grows from n = 20 to n = 40 and n = 100, the evidence grows. The dotted
lines are for n = 40 and show the decreasing evidence if s = 0.2 and s = 0.3. The horizontal grey lines
are at 0, 2 and 4.

The behavior of the evidence is as expected. If the sample size grows, so does the amount
of evidence. If the standard deviation grows, there is less evidence if all other conditions are the
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same. The amount of evidence is bigger than a desired amount (2 or 4, for example), if ȳ is within
an interval centered at the halfway mark between the equivalence limits.

Approximate Normality of the Variance Stabilized t-Statistic

The VST is symmetric with regard to the origin, because (x +
√

x2 + 1) = 1/(−x +
√

x2 + 1),
that is, ln(x +

√
x2 + 1) = − ln(−x +

√
x2 + 1). The expansion

h(S) = S− 1
6

S3

2n
+

3
40

S5

4n2 O(n−3) ,

shows that for values of S up to order O(n1/3), the deviation from the identity is small. Only for
values of the t-statistic S further into the tail does the VST pull them towards zero, that is, h(S) < S.
For very large values of S the function h(S) is logarithmic. The tail of the t-density evaluated at x is
O(x−n) as x → ∞ and thus has a tail index of n− 1. The VST transforms this to an infinite tail index.

3. Evidence in Multivariate Equivalence Tests

Multivariate equivalence tests are often based on a test statistic S having an exact or approximate
non-central chi-squared distribution, denoted S ∼ χ2

ν(λ), where ν is the known degrees of freedom
(df ), and the non-centrality parameter (ncp) λ ≥ 0 is unknown. Others are based on the non-central
F distribution, see Section 4. The null hypothesis postulates non-equivalence between the samples,
λ ≥ λ0, whereas the alternatives postulate practical equivalence λ < λ0. The limit λ0 is a positive
constant adapted to the context; examples are given in [17] and the following sections.

Wellek [8,20] looks at the case of possibly dependent measurements (K of them) that are done
independently on n subjects. He then wants to test whether the K measurements have equal means.
His first proposal is to pass to the K − 1 differences between the K measurements and to use
Hotelling’s T2 test for 0 means. He then remarks on the elliptical shape of the equivalence region,
which might be criticized as being arbitrary. Reference [20] then discusses rectangular regions, as we
do, and comments on the difficulties of this approach. The material in Section 3.2 below proposes
a possible compromise solution. A fully Bayesian approach to multivariate equivalence testing is
found in [5].

3.1. A VST for the Non-Central Chi-Squared Statistic

Once the “equivalence limit” λ0 is chosen, one can carry out a Neyman–Pearson test which
rejects non-equivalence λ ≥ λ0 at level α in favor of equivalence when the test statistic is sufficiently
small, that is, S less than the α-quantile of the χ2

ν(λ0) distribution (cα = χ2
ν,α(λ0)). The power function

of this test is the probability of deciding in favor of equivalence

1− β(λ) = Pλ(S ≤ cα), 0 ≤ λ < λ0 , (10)

where β(λ) is the probability of falsely reaching a conclusion of non-equivalence.
The testing approach underlying (10) is easier to understand when the test statistic is variance

stabilized. In this context a VST is a monotone decreasing function h(S) of the test statistic S, which
for all values of λ is approximately normal with variance one. Rather than summarizing the evidence
by an accept/reject decision, by a p-value or by a confidence interval, we propose to use the statistic
T = h(S)− h(Eλ0 [S]) because it provides a more informed and interpretable measure of the evidence in
favor of equivalence. The larger its value, the more evidence resides in the data in favor of equivalence.
Since its variance remains close to one for all λ, it is only the value of T that matters. The expected
evidence Eλ[T] is

K λ0(λ) = Eλ[T] ≈ h(Eλ[S])− h(Eλ0 [S]) . (11)
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This is a quantity that increases monotonically as λ decreases to 0. By construction, it is 0 at the
equivalence limit λ0 and has a maximal value of K λ0(0). The observed evidence for equivalence can
be reported as T ± 1, indicating that evidence T for equivalence has a standard normal error.

One can derive an approximation for K λ0(λ) = Eλ[T(S)] for the evidence in S ∼ χ2
ν(λ) for

testing λ ≥ λ0 against λ < λ0 as follows. The variance Varλ[S] = 2ν + 4λ is not constant (not
stable) and in order to stabilize it asymptotically one can use the standard delta-method [9] (p. 242).
Using the fact that Eλ[S] = ν + λ ≥ ν, one has Varλ[S] = g(Eλ[S]), where g(s) = 4s− 2ν is defined
for s ≥ ν. The transformation h(s) that removes the dependence on λ is equal to an antiderivative
of −1/

√
g(s), which leads to h(s) = −

√
s− ν/2, where the negative sign was chosen in order to

obtain a decreasing function in s. This standard procedure fails to define a VST for all s ≥ 0, because
strictly speaking our function h(s) should only be applied in the range s ≥ ν, and even if we tried to
extend it towards s = 0, its value is undefined for s < ν/2

This problem is created by the zero crossing of g(s) at s = ν/2 and various ideas for extending
h(s) to the entire positive real line could be tried; see (13) below. For this or any other such
choice agreeing with h(s) for s > ν, the transformed statistic h∗(S) has approximate expected value
Eλ[h∗(S)]

.
= h∗(Eλ[S]) = h∗(ν + λ)

.
= h(ν + λ) = −

√
λ + ν/2 . After centering h∗(S) at the limit λ0,

one obtains the observed evidence T = h∗(S) +
√

λ0 + ν/2. The expected evidence for equivalence,
to first order, is thus

Kλ0(λ) = Eλ[T] =
√

λ0 + ν/2−
√

λ + ν/2 . (12)

The expected evidence (12) in the experiment has a maximum at λ = 0, namely
Kλ0(0) =

√
λ0 + ν/2−

√
ν/2. The dotted line in Figure 5 shows what the equivalence values λ0 must

be as a function of ν, namely λ0 = K2
λ0
(0) +

√
2ν Kλ0(0), where the maximal expected evidence is of

varying strengths. For example, when ν = 15, for moderate maximal expected evidence, λ0 must be
at least 29. More frequently, the equivalence bound λ0 is determined by context, and the degrees of
freedom ν determined by ν ≥ (λ0 −K2

λ0
(0))2/{2K2

λ0
(0)}.
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Figure 5. Plot of λ0 against degrees of freedom ν based on (12) with λ = 0 for weak maximum
expected evidence (dotted line), moderate maximum expected evidence (dashed line) and strong
maximum expected evidence (solid line). The vertical line marks the df ν = 15.

The evidence for λ < λ0 in S ∼ χ2
ν(λ) can be defined for certain M > Kλ0(0):

T = Tν,λ0(S) =

{
M− S/

√
2ν for S < ν ;

M−
√

S− ν/2 for S ≥ ν .
(13)

This T has a negative continuous derivative, and for the choice M =
√

λ0 has T ≈ N(0, 1) at
the null λ = λ0. Further, at perfect equivalence λ = 0 it has E[T] ≈ Kλ0(0) for Kλ0 given by (12).
These claims are made based on simulation studies, using R scripts in Appendix B.
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3.2. Evidence for Equal Means

Given independent Xk ∼ N(µk, 1), k = 1, . . . , K, we want to find evidence for equivalence in the
sense that all means equal µ = (∑k µk)/K simultaneously. A test statistic is S = ∑k(Xk − X̄)2, which
has distribution S ∼ χ2

K−1(λ), where λ = ∑k(µk − µ)2. In practice, the µk are considered “equal” if
maxk { | µk − µ| } ≤ ε for a given ε > 0. How can this last notion of equivalence be translated into
a value for the limit λ0? To solve this problem, we note that {(µ1 − µ), . . . , (µK − µ)} defines a K− 1
dimensional hyperplane of RK, which when shifted to the origin is a K − 1 dimensional subspace of
RK, and distances between points in the hyperplane are preserved under translation. Thus it suffices
to solve the following problem for arbitrary K ≥ 2: given µ1, . . . , µK with µ = (∑k µk)/K = 0
and maxk { | µk| } ≤ ε, find an appropriate choice of λ0 = ∑k µ2

k = r2, which is the square of
the Euclidean distance r of the point (µ1, . . . , µK) from the origin in RK. After a solution for the
equivalence boundary λ0 = λ0(ε, K) is found, it can be implemented in the case of unknown µ by
replacing K by K− 1.

The largest ball contained in the K-dimensional cube with edge 2ε, both having the same center,
has radius ε, whereas the smallest ball containing the same cube has radius

√
K ε. The latter choice

would allow for one µk to be as large as
√

K ε (if all other µj = 0) and overall equivalence would
be claimed even though it was violated in one case. To reduce this violation, the radius ought to be
in-between the extremes. A “reasonable” compromise requires the volume of the L2-ball to equal
(2ε)K, the volume of the cube with side 2ε. The volume of a ball in RK with radius r is given by:

VK(r) =


πm r2m

Γ(m+1) , K = 2m;
πm (2r)2m+1 Γ(m+1)

Γ(2m+2) , K = 2m + 1.
(14)

To ensure equal volumes for the hypersphere and the hypercube for all K, one needs the radius
of the ball to be r0 =

√
KbK ε, where

bK =


4 {Γ(1+K/2)}2/K

πK , K = 2m;
1

π1−1/K K

{ Γ(K+1)
Γ((K+1)/2)

}2/K, K = 2m + 1.
(15)

A good approximation to bK is given by cK = 2/(πe) + (1.7 · K)−5/6, see Table 2 and Figure 6.
This makes it easier to choose the desired equivalence limit λ0 = r2

0 = bK Kε2 ∼ 2Kε2/(πe) for
moderate and large K.

●
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●
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Figure 6. Plot of bK (points) and approximation cK = 2/(πe) + (1.7 K)−5/6 (continuous line) against
K ranging from 0 to 21. The dotted horizontal line gives the asymptotic limit 2/(πe).
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Table 2. For selected values of K are shown the exact bK coefficients (15) to 3 decimal places so that
the K-dimensional ball of radius

√
K bK ε, has the same volume as the K-dimensional cube of side 2ε.

The approximate value is cK = 2/(πe) + (1.7 · K)−5/6.

K 2 3 4 5 6 7 8 10 50 100 ∞

bK 2/π 0.513 0.450 0.412 0.386 0.367 0.352 0.332 0.259 0.248 0.23420...
cK 0.595 0.492 0.437 0.402 0.379 0.361 0.348 0.329 0.259 0.248 2/(πe)

Example 4. To illustrate the use of this table, suppose K = 4, µ is unknown, and we want each of
µk to satisfy | µk − µ | ≤ ε = 1/2, say, in order to claim “equivalence of all means”. As discussed
above the corresponding problem with µ known to equal 0 in K − 1 = 3 dimensions is to utilize
λ0 = λ0(ε, K− 1) = λ0(1/2, 3) = r2

0 = 3 b3 ε2 = 3× 0.513× 0.25 = 0.3375. From Equation (12) it then
follows that for K = 4, ν = 3 and this λ0 the maximum expected evidence possible for equivalence of
all 4 means is about 0.13, which is almost negligible.

If we had begun this section with each Xk replaced by X̄k ∼ N(µk, 1/n), for some sample size
n ≥ 2, then the test statistic would be Sn = ∑k(X̄k − ¯̄X)2, which has distribution Sn ∼ χ2

ν(λ), where
ν = K − 1 and λ = n ∑k(µk − µ)2. By imposing the same condition maxk { | µk − µ| } ≤ ε, where
µ is unknown, the “equal-volume” solution ∑k(µk − µ)2 ≤= νbν ε2, so the appropriate equivalence
hypothesis is λ ≤ λ0 = n ν bν ε2. The maximum expected evidence in Tn = T(Sn) is attained when
all means are equal, and this maximum is

√
λ0 + ν/2−

√
ν/2 , or

√
n ν bν ε2 + ν/2−

√
ν/2 which

is growing at rate
√

n. Continuing Example 4, n = 20 will yield weak maximum expected evidence
1.65 for equivalence.

3.3. Application to between Group Sum of Squares

Given independent observations from K groups with different means Xki ∼ N(µk, 1),
i = 1, . . . , nk, k = 1, . . . , K, we denote the total sample size by N = ∑k nk, and the group sample
proportions by qk = nk/N. Let the kth sample mean be X̄k and the weighted group sample mean by
X̄ = ∑k qkX̄k; it is an unbiased estimator of the weighted population mean µ = ∑k qkµk. Then the
between group sum of squares SSBbetween = N ∑k qk(X̄k − X̄)2 ∼ χ2

ν(λ), where ν = K − 1 and
λ = N ∑k qk(µk−µ)2; see, for example, [9] (p. 184). The evidence in S ∼ χ2

ν(λ) for equivalence λ < λ0

was derived in Section 3.1.The practical problem is to choose λ0. Once λ0 is chosen one can compute
the maximum evidence in the experiment; it is by (12) equal to

√
λ0 + (K− 1)/2 −

√
(K− 1)/2 .

As explained in Section 3.1, this determines the maximum power for equivalence at any given level.
First we consider the argument of [17] (p. 164) for choosing λ0. He introduces the parameter

ψ2 = ∑k
nk
n̄ (µk − µ)2, where n̄ = N/K, which he calls a generalized squared Euclidean distance between

(µ1, . . . , µK) and (µ, . . . , µ). He proposes to define homogeneity in terms of ψ2 and the equivalence
hypothesis by ψ2 ≤ ε2, where ε is to be chosen. Note that our ncp λ = n̄ψ2, the same as his. For K = 2
condition ψ2 ≤ ε2 reduces to |µ2− µ1| ≤

√
2 ε. This leads [17] (p. 164) using conditions for comparing

2 normal populations, to suggest that, in general, one take λ0,Wellek = n̄ε2, with ε ranging from
1/4 to 1/2 where 1/4 yields a “strict” equivalence limit n̄/16 while ε = 1/2 leads to what he calls
a “liberal” limit of n̄/4. However, this approach assumes that the requirement maxk { | µk − µ| } ≤ ε

for a pre-specified ε holds for all K. From our point of view the choice of λ0 should grow with
√

K
and ε should be determined by context.

In the balanced case nk ≡ n, we can make direct comparisons between Wellek’s criterion and
ours, derived near the end of Section 3.2, which yielded λ0,MS = n ν bν ε2. Assuming the same choice
of ε, the ratio of λ0,MS/λ0,Wellek = ν bν. Using Table 2, this ratio varies with ν = 1, 2, 3, . . . considerably
and equals, respectively, 0.64, 1.03, 1.35, 1.65, 1.93, . . . ; further it grows with ν as 2ν/(π e). Only for
ν = 2 are the two criteria the same.
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4. Testing for Equivalence of K Groups

Given independent observations from K groups with common unknown variance σ2 > 0 and
different means Xki ∼ N(µk, σ2), i = 1, . . . , nk, k = 1, . . . , K. Let N = ∑k nk, qk = nk/N for all k
and the overall mean µ = ∑k qkµk. We define equivalence of means for a given ε > 0 if none of the
standardized µk differs more than ε from zero:

maxk

{
| µk − µ|

σ

}
≤ ε. (16)

Just as in Section 3.3 where σ was assumed known (and without loss of generaliity set equal
to 1), we can define λ = N ∑k qk{(µk − µ)/σ}2. Given λ0 we want evidence for the hypothesis of
equivalence λ < λ0. The arguments for choosing λ0 = λ0,MS = n ν1 bν1 ε2 where ν1 = K − 1 carry
over from Sections 3.2 and 3.3, provided sampling is nearly balanced so that all nk ≈ n̄ = n.

The within group sum of squares is defined by

SSwithin =
K

∑
k−1

ni

∑
i=1

(Xki − X̄k)
2. (17)

Standard theory [9] (p. 196) shows S = (Sbetween/ν1)/{SSwithin/ν2} has a non-central F
distribution with df ν1 = K− 1, ν2 = N − K and ncp λ. A VST for the statistic S has been derived by [21]
and also [9] (p. 197). It assumes ν2 > 4. Let a2 = (ν2 − 4)/2 and c2 = ν2

2(ν1 + ν2 − 2)/{ν2
1(ν2 − 2)}.

The VST is h = h(S), defined by h(s) = − a cosh−1 ((s + ν2/ν1)/c). where the inverse hyperbolic
cosine function is defined by cosh−1(x) = ln(x +

√
x2 − 1 ). Now cosh−1(x) is only defined for

|x| ≤ 1 so the VST h(s) is only defined for s > c− ν2/µ1.
The evidence for λ < λ0 is defined by T = h(S) − h(Eλ0 [S]). The expected value of the

non-central F-statistic S is Eλ[S] = (ν1 + λ)ν2/{ν1(ν2 − 2)}, so the expected evidence, to first order,
is given by:

Kλ0(λ) = Eλ[h(S)]− h(Eλ0 [S]). (18)

Unfortunately the VST itself and hence the evidence T = h(S) − h(Eλ0 [S]) for equivalence is
undefined for informative small values of S. To make it useful, we extend the evidence function
to small values via monotone linearization in (19). Strictly speaking, the F-statistic VST was only
derived for s > b = ν2/(ν2 − 2), as mentioned in [9] (p. 197), for the same reason the chi-squared
VST derivation had a limited domain, see Section 3.1. And, for the same reasons given there, we can
extend it to 0 ≤ s ≤ b = ν2/(ν2 − 2) without changing much the expectation (18). Evidence for
equivalence λ < λ0 based on S ∼ Fν1,ν2,λ is defined for certain M > Kλ0(0) by

T = Tν1,ν2,λ0(S) =

{
M− a S cosh−1 ((b + ν2/ν1)/c) /b for S < b ;
M− a cosh−1 ((S + ν2/ν1)/c) for S ≥ b .

(19)

This T is continuous and increasing as S moves to 0. For the choice M =
√

λ0 − ν1/(ν1 + ν2)

it has T ≈ N(0, 1) at the null λ = λ0; and, at perfect equivalence λ = 0 it has E[T] ≈ Kλ0(0) for the
Kλ0 of (18).

Example 5. Example 7.1 of [17] (p. 165) considers four treatments for hypertension with
measurements taken on diastolic blood pressure averaged over an interval. To test for equivalence of
the treatments, the following summary data (sample size, mean, standard deviation) were recorded:
n1 = 10, x̄1 = 99.8120, s1 = 7.56391; n2 = 12, x̄2 = 99.2903, s2 = 5.9968; n3 = 13, x̄3 = 100.0024,
s3 = 10.4809; and n4 = 15, x̄4 = 98.6407, s4 = 4.5309. This yields N = 50, n̄ = 12.5 and ¯̄x = 99.3849.
Continuing, SSbetween = 15.196 and SSwithin = 2516.135 so the F-test statistic S = (SSbetween/
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(K− 1))/(SSwithin/(N − K) = 0.0926. For ε = 0.5 and λ0,MS = n̄ ν1bν1 ε2 = 4.219 we have by (19) the
evidence for equivalence T = 1.934, which is slightly more than weak.

By way of comparison, [17] uses traditional hypothesis testing with the smaller equivalence
boundary λ0,Wellek = n̄ε2 = 3.125 and finds the non-central F-test significant at level 0.05 with an
estimated power 0.18 for detecting perfect equivalence.

5. Summary and Discussion

For the test statistic S ∼ N(µ, 1) of a null hypothesis µ ≤ µ0 and alternative µ > µ0

Neyman–Pearson methods help one make a decision; while a p-value can provide a measure of
surprise regarding the boundary hypothesis µ = µ0. But what one often wants from S is a measure of
evidence for the alternative µ > µ0. In this simplest of statistical tests, T = S− µ0 is such a measure of
evidence for the alternative, because T estimates the unknown expected evidence E[T] = µ − µ0

which is linearly increasing with µ and comes with an easily understood standard normal error.
Values of T near 1.645, 3.3 and 5 are interpreted as weak, moderate and strong evidence for the
alternative µ > µ0. In addition the expected evidence can be written as the sum of the probits of level
and power.

The vast majority of routine statistical tests can be transformed into the above setting through
variance stabilization. And the mean of a variance stabilized test statistic T = VST(S), after centering
at µ0, is very close to the signed square root of the Kullback–Leibler symmetrized divergence between
the null and alternative distributions. This result gives more theoretical support for calling T the
evidence for the alternative; references are listed in Section 1.

What we have done here is to extend the above ideas to the more complicated hypotheses of
the form |µ| ≥ µ0 versus the equivalence alternative |µ| < µ0, with applications for TOST based
on one- and two-sample binomial experiments and two one-sided t-tests. Then, in the multivariate
setting, we have found modifications of the classical VSTs for non-central chi-squared and non-central
F-tests which make it practicable to find evidence for the equivalence alternative λ < λ0 to the null
hypothesis λ ≥ λ0 of non-equivalence.

The practical choice of equivalence limit λ0 is also an important ingredient, and we have
provided a new approach to assist in its choice. In particular, when testing for equivalence of means
in K arms of a study, we found the value of the radius required so that the K-ball has the same volume
as the K-cube of edge 2ε. This leads to a proposal for converting the condition maxk|µk − µ| ≤ ε into
an approximate equivalence condition λ < λ0.

The new extensions of classical VSTs for non-central chi-squared and F statistics require more
work in the choice of M to center them properly at the null λ0. Simulation studies show that adjusting
M so that the mean of the VST is 0 when λ = λ0 automatically ensures that the mean of the VST
statistic when λ = 0 is near its expected maximum value. The choice M ≈

√
λ0 works adequately,

but simple formulae for M that depend on the degree(s) of freedom as well as λ0 would be useful.
Finally, we note that finding simple expressions for the expected evidence in a VST greatly assists

one in finding minimal sample sizes when planning an experiment for determining equivalence; by
knowing the maximum expected evidence for equivalence, one also learns of the power to detect
perfect equivalence at any given level.

Another application is in goodness-of-fit tests, where instead of “backing into” a model by not
rejecting it a liberal level such as 0.1, one could find the evidence for the model. Chapter 8 of [17]
is a good starting point for solving this problem. Further research will also take into account recent
results on bio-equivalence defined in terms of the Kullback–Leibler divergences, see [4,7].
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Appendix A. Quality of KLD Approximations

Let S have density fλ belonging to a family of densities indexed by a real parameter λ.
Our purpose in this section is to compare the expected evidence Kλ0(λ) of the VST for testing λ ≥ λ0

against the equivalence alternative λ < λ0 with the signed square root of the [22] symmetrized
divergence (KLD) between the null fλ0 and alternative fλ distributions. That is, to examine the approximation

Kλ0(λ) ≈ sgn(λ0 − λ)
√
J (λ0, λ), (A1)

where the KLD is defined by

J (λ0, λ) = Eλ0 [log{ fλ0(S)/ fλ(S)}] + Eλ[log{ fλ(S)/ fλ0(S)}]. (A2)

References [10,12,13] discuss the theory behind such approximations, but here we consider
numerical examples relevant to multivariate equivalence testing.

Appendix A.1. Non-Central Chi-Squared Distribution

Let fλ be the noncentral χ2 density with ν degrees of freedom, so that by (12), Kλ0(λ) = Eλ[T] =√
λ0 + ν/2−

√
λ + ν/2 . There is no simple analytic expression for Jχ2(λ0; λ), so we use numerical

approximation to compute it and its signed square root. The graph of the latter (for ν = 1, λ0 = 6)
is shown in the top left plot of Figure A1 as a dashed line, and is to be compared with the graph
of the K6(λ) defined by (12) as a solid line. Note that they are very close over the range of λ of
interest although both pass through 0 at λ = λ0. Our main point is to emphasize the quality of the
approximation (A1), which is clear from the plot to its right which shows the absolute relative error is
less than 1 in 16 over this range of λ.

Figure A2 and others not shown demonstrate that quite generally the absolute relative error
in the approximation (A1) is less than 1 in 20 over a wide range of equivalence experiments with
non-central chi-squared distributed outcomes.
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Figure A1. Non-central Chi-squared with parameters ν, λ: The upper left plot shows the graph of the
expected evidence K6(λ) when ν = 1 as a solid line, to be compared with the signed square root of
the KLD, shown as a dashed line. The absolute relative error in this approximation is shown on its
right. The lower two plots are for λ0 = 12 and ν = 1.
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Figure A2. The same notation as in Figure A1, but for different parameters.

Appendix A.2. Non-Central F Distribution

If fλ denotes the noncentral F density with ν1, ν2 degrees of freedom and ncpλ, then by (18), and
using Eλ[S] = (ν1 + λ)ν2/{ν1(ν2 − 2)},

Kλ0(λ) = Eλ[T] = a cosh−1 ((Eλ0 [S] + ν2/ν1)/c
)
− a cosh−1 ((Eλ[S] + ν2/ν1)/c) .

As for the chi-squared case, there is no simple analytic expression for JF(λ0; λ), so we use
numerical approximation to compute it and its signed square root. Figures A3 and A4 show typical
comparative results between the above expected evidence and the signed square root of the KLD
between the null fλ0 and alternative fλ distributions. These and similar plots provide more numerical
support for the approximation (A1).
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Figure A3. Non-central F with parameters ν1, ν2 and λ: The upper left plot shows the graph of the
expected evidenceK10(λ) when ν1 = 1, ν2 = 20 as a solid line, to be compared with the signed square
root of the KLD, shown as a dashed line. The absolute relative error in this approximation is shown
on its right. The lower two plots are also for λ0 = 10 but now ν1 = 4 and ν2 = 20.
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Figure A4. The same notation as in Figure A3, but for different parameters.

Appendix B. R Scripts for Computing VSTs

############# Evidence for equivalence
############# using TOST, and one-sample binomial data
vstbinom <- function(n,p)
{h <- 2*sqrt(n)*asin(sqrt(p))
return(h)}

############# Usually p1=p0-Delta0,p2=p0+Delta0
bioevid <- function(n,p1,p2,phat)
{Tminus <- vstbinom(n,phat)-vstbinom(n,p1)
Tplus <- vstbinom(n,p2)-vstbinom(n,phat)
evidforequiv <- min(Tminus,Tplus)
out <- c(Tminus,Tplus,evidforequiv)
outrd <- round(out,digits=3)
return(outrd)}

############# Example 1 of the text. (data from Example 4.2 of Weller, page 59.)
n <- 273
phat <- 199/273
p1 <- 0.65
p2 <- 0.75
bioevid(n,p1,p2,phat)

############################################################################
############# Evidence for equivalence for risk difference

vstRD <- function(n1,p1hat,n2,p2hat,Delta0)
{Deltahat <- p1hat-p2hat
pbarhat <- (p1hat+p2hat)/2
N <- n1+n2
vhat <- (1-2*pbarhat)*(1/2-n2/N)
what <- sqrt(pbarhat*(1-pbarhat)+vhat^2)
vst <- sqrt(4*n1*n2/N)*(asin((Deltahat/2 +vhat)/what)-asin((Delta0/2 +vhat)/what))
return(vst)}
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############## Usually Delta1= -Delta0 and Delta2= +Delta0
bioevidRD <- function(x1,n1,x2,n2, Delta1,Delta2)
{p1hat <- (x1+0.5)/(n1+1)
p2hat <- (x2+0.5)/(n2+1)
Deltahat <- p1hat-p2hat
Tminus <- vstRD(n1,p1hat,n2,p2hat,Delta1)
Tplus <- -vstRD(n1,p1hat,n2,p2hat,Delta2)
T <- min(Tminus,Tplus)
out <- c(Deltahat,Tminus,Tplus,T)
outrd <- round(out,digits=3)
return(outrd)}

####### Example 2 of the text. (data from Dunnett and Gent(1977) Biometrics)
x1 <- 148
n1 <- 225
x2 <- 115
n2 <- 167
Delta1 <- -0.1
Delta2 <- 0.1
bioevidRD(x1,n1,x2,n2, Delta1,Delta2)

###########################################################################
## Linear extension of vst for chisq(nu,lambda) (Equation (13) of the text.)

evidchisqlin <- function(s,nu,lambda0,M)
{smalls <- s[s <= nu]
Tsmall <- M-sqrt(s[s>nu]-nu/2) ## usual vst
grad <- -sqrt(nu/2)/nu
Tbig <- M +grad*s[s<=nu]
T <- c(Tbig,Tsmall)
return(T)}

Mfun <- function(nu,lambda0) ## requires lambda0 > nu/2
{return(sqrt(lambda0))}

# Mfun2 <- function(nu,lambda0) ## The user may want to supply their own M.
# {return(sqrt(lambda0+nu)-sqrt(nu/10))}

############### Plot evidence function (illustrative example)
nu = 3
lambda0 = 6
maxexev <- sqrt(lambda0+nu/2)-sqrt(nu/2)
maxexev
M <- Mfun(nu,lambda0)
M
s <- c(seq(0,lambda0+nu,.01))
T <- evidchisqlin(s,nu,lambda0,M)
plot(s,T,type="l",lwd=2,main="Evidence for equivalence")
abline(h=maxexev,lty=3)
abline(h=0)

##################### To examine properties of evidence function.
lambda = lambda0 ## Try this and other lambda, where 0 <= lambda < lambda0.
s <- rchisq(10000,nu,lambda)
T <- evidchisqlin(s,nu,lambda0,M)
mean(T)
sd(T)
hist(T)

###########################################################################
## Linear extension of VST for F(nu1,nu2,lambda) (Equation (19) of the text.)
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evidFlin <- function(s,nu1,nu2,lambda0,M) ### nu2>4
{c <- (nu2/nu1)*sqrt((nu1+nu2-2)/(nu2-2))
b <- nu2/(nu2-2)
a <- sqrt((nu2-4)/2)
Tsmall <- M-a*acosh((s[s>b]+nu2/nu1)/c)
grad <- -a*acosh((b+nu2/nu1)/c)/b
Tbig <- M+grad*s[s<=b]
T <- c(Tbig,Tsmall)
return(T)}

################### Example 5 of the text. (data from Wellek, Example 7.2, p.165.)

n1 <- 10
x1bar <- 99.8120
s1 <- 7.5639
n2 <- 12
x2bar <- 99.2903
s2 <- 5.9968
n3 <- 13
x3bar <- 100.0024
s3 <- 10.4809
n4 <- 15
x4bar <- 98.6407
s4 <- 4.5309
N <- n1+n2+n3+n4 ##
xbarbar <- (n1*x1bar+n2*x2bar+n3*x3bar+n4*x4bar)/N ## 99.3849
K <- 4
nbar <- N/K
ssqW <- (n1-1)*s1^2+(n2-1)*s2^2+(n3-1)*s3^2+(n4-1)*s4^2
ssqB <- n1*(x1bar-xbarbar)^2+n2*(x2bar-xbarbar)^2+n3*(x3bar-xbarbar)^2
ssqB <- ssqB+n4*(x4bar-xbarbar)^2

epsilon <- 1/2 ## Wellek’s choice
nu1 <- K-1
nu2 <- N-K
lambda0 <- 12.5*0.25*1.35 ## nbar*eps^2*vu*bnu = 4.21875

nu1 <- K-1
nu2 <- N-K

epsilon <- 1/2 ## this is arbitrary; want max_k |mu_k-mu|/sigma < epsilon
lambda0 <- 12.5*0.25*1.35 ## nbar*eps^2*vu1*bnu1 = 4.21875

MFfun <- function(nu1,nu2,lambda0)
{return(sqrt(lambda0+nu1/(nu1+nu2)))}

M <- MFfun(nu1,nu2,lambda0)
S <- (ssqB/nu1)/(ssqW/nu2) ## 0.0926 (Value of F-statoistic.)

evidFlin(S,nu1,nu2,lambda0,M) ## T = 1.934

################ To compute maximum expected evidence, require:

exS <- function(lambda,nu1,nu2) ##### this computes expected value of S
{return(nu2*(n1+lambda)/(nu1*(nu2-2)))}

c <- (nu2/nu1)*sqrt((nu1+nu2-2)/(nu2-2))
b <- nu2/(nu2-2)
a <- sqrt((nu2-4)/2)
M <- sqrt(lambda0-nu1/(nu1+nu2))
M
maxexev <- -a*acosh((exS(0,nu1,nu2)+nu2/nu1)/c)+
a*acosh((exS(lambda0,nu1,nu2)+nu2/nu1)/c)
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maxexev

############### Plot evidence function (illustrative example)

s <- c(seq(0,exS(lambda0,nu1,nu2)+1,.01))
T <- evidFlin(s,nu1,nu2,lambda0,M)
plot(s,T,type="l",lwd=2,ylim=c(-1,M),main="Evidence for equivalence")
abline(h=maxexev,lty=3)
abline(h=0)
abline(v=lambda0,lty=3)

################################# To examine properties of evidence function
lambda=0 ## Try this and other lambda, where 0 <= lambda < lambda0.lambda = lambda0

s <- rf(10000,nu1,nu2,lambda)
T <- evidFlin(s,nu1,nu2,lambda0,M)
mean(T)
sd(T)
hist(T)
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