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Abstract: The prevalence of childhood asthma contributes to the global burden of the disease
substantially. Air pollution in India has increased. In this study, we examine the associations among
greenspaces, air pollution, and asthma prevalence in children and adolescents over a large, diverse
population in India. We used state-wide global burden of disease data on asthma from age 0 to
19 years in 2005, 2011, and 2017. For greenspace, we used the normalized differential vegetation
index (NDVI), which is the surface reflectance of light during photosynthetic activity. NDVI, air
pollutants (PM2.5, PM10, SO2, NO2, and O3), weather, and socio-demographic factors were included
in generalized estimating equation (GEE) models to estimate their associations with childhood asthma
prevalence over time. Novel data visualization illustrated the complex spatial distributions. NDVI
was associated with asthma prevalence (β = 0.144; 95% CI = 0.10, 0.186; p < 0.0001) for high PM2.5,
along with high levels of both gaseous air pollutants, SO2, and NO2 ((β = 0.12; 95% CI = 0.08, 0.16;
p < 0.0001) and (β = 0.09; 95% CI = 0.05, 0.13; p < 0.0001)). However, NDVI and high O3, had a
strong negative association with asthma prevalence (β = −0.19; 95% CI = −0.26, −0.11; p < 0.0001).
We observed additional effects of the interaction between the NDVI and high concentrations of
PM2.5, PM10, NO2, and O3, assuming that these associations share a common pathway, and found
interaction effects for asthma prevalence. Given the changing environmental conditions that interplay
over geographical characteristics on the prevalence of asthma, further studies may elucidate a better
understanding of these complex associations.

Keywords: asthma; greenspace; air pollutants; particulate matter

1. Introduction

Asthma is an important public health respiratory disease affecting 1–18% of the
population in various countries [1]. Asthma ranks as the second most prevalent disease and
the second leading cause of mortality among chronic respiratory diseases [2]. In children,
the global prevalence of asthma varies from 5 to 20%, contributing substantially to the
disease burden [3,4]. If uncontrolled, it results in persistent symptoms associated with
asthma, increased hospitalization, reduced lung functions, and impaired quality of life [5,6].

Asthma is multifactorial, and we are yet to understand the causal mechanisms fully;
however, genes, the surrounding environment, and behaviors play a part in asthma devel-
opment [7–9]. Environmental factors may account for the substantive variations in asthma
prevalence across different regions of the world [9–12]. Air pollutants, especially from
traffic emissions (TRAP), lead to the worsening of existing respiratory symptoms [13–15]
and increase the risk for new-onset asthma [16]. Globally, 5–10 million and 9–23 million
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annual asthma emergency room visits (ERVs) were attributable to particulate matter of
diameter 2.5 µm or less (PM2.5) and ozone (O3), respectively [17,18]. Each year, 16 new
million pediatric asthma cases occur due to PM2.5, and about 4.5 million premature deaths
were attributable to air pollution itself [19,20]. Ambient air pollution due to PM2.5 con-
tributes to 50% of the global total disease burden greatly in major developing countries
(China and India) and 17.4 million DALYs in children younger than five years globally [21].

Most of the observational studies on ambient air pollution (AAP) and asthma focus on
Australia, Europe, and the US [22–24] but very little in the South Asia region, especially
in India. The estimated mortality rates from ambient air pollution (AAP) and asthma are
the greatest in the South Asian subcontinent, and India alone accounted for more than
1.09 million deaths due to AAP in 2015 [21,25]. The average concentration in India of PM2.5
[65.2 (78.61–96.56) µg/m3] is 6 times more than the WHO permissible limits for PM2.5
(10 µg/m3) [26].

There is considerable interest in understanding the effect of the natural green envi-
ronment on asthma, but the evidence is unclear [14,27,28]. A study in Spain observed a
60% higher prevalence of asthma in children living close to greenspaces such as parks [28],
while another study from New York observed that an increased level of greenness was
associated with a 17% higher prevalence of asthma in children aged 4–7 years [29], and
another showed declines in prevalence among pre-school children in a New York study [27].
A recent review of studies found an association between urban greenspaces and asthma
among children, although findings were inconsistent, and there was no conclusive in-
terpretation [30]. When both greenspace and air pollution effects were studied together,
the impacts of air pollution on asthma prevalence were lesser for children living in areas
with higher levels of greenspaces and increased access to greenspaces [27], while this was
contradicted in other studies showing an increase in asthma prevalence [31,32].

Studies in the US, Canada, and Europe have assessed both greenspace and air pollution
with childhood asthma prevalence [27–29,32,33], but no studies have discussed South Asia.
There are almost half a billion children in India, and about 6% of the children in India have
asthma [10]. India comprises approximately 18% of the global population [34], and it is quite
heterogeneous; diversity exists across states in environmental and topographical features.
There are no studies on greenness and asthma prevalence in children and adolescents across
all states and union territories in India. Studies on air pollution globally estimated the
exposure rate is highest in India [21,35], and 14 of the top 20 world’s most polluted cities
in terms of particulate matter of PM2.5 are in India [36,37]. India enormously contributes
to global asthma emergency room visits due to air pollutants PM2.5 (30%), O3 (23%), and
nitrogen dioxide (NO2) (15%) [17]. Over the last two decades, air pollution has increased
in India, and particulate matter contribution to AAP is estimated to increase in India over
the next ten years drastically [38,39]. In this study, we sought to estimate the level of
greenness in each state of India and its association with asthma prevalence in children and
adolescents. We also assessed the role of air pollutants (PM2.5, PM10, SO2, NO2, and O3) in
these associations. We hypothesized that exposure to increased greenness over time shows
lower asthma prevalence in children and adolescents. Increased levels of air pollutants in
these areas will modify the association.

2. Materials and Methods
2.1. Study Design and Population

India is a diverse country spread across 15,200 km of land and 7517.24 km of coastline,
and it is home to 1.3 billion residents. India comprises 29 states and 7 union territories. The
health system in India operates at the state level [40], and so we present the results of an
analysis of the 29 states and 1 union territory—Delhi, the national capital. The remaining
six small union territories (Andaman and Nicobar Islands, Chandigarh, Dadra and Nagar
Haveli, Daman and Diu, Lakshadweep, and Puducherry) were not included due to the
non-availability of data for all the study variables.
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2.2. Data Collection and Measurements
2.2.1. Outcome: Asthma Prevalence Data

The prevalence of asthma data by location, age, and year we derived from the Global
Burden of Disease (GBD) data visualization tool developed by the Institute for Health
Metrics and Evaluation (IHME), USA [41]. The state-wise prevalence of asthma was
estimated using the terms defined in the GBD studies [42–44]. We calculated asthma
prevalence estimates for the 29 states and Delhi for children aged 0 to 19 years across
three time periods—2005, 2011, and 2017. Currently, GBD is the most reliable source
in India, as it collates the data from the national databases of the federal government
and extensive multicenter studies in India, including the International Study of Asthma
and Allergies in Childhood (ISSAC) and the India Study on Epidemiology of Asthma,
Respiratory Symptoms and Chronic Bronchitis (INSEARCH) studies [39,43,45].

2.2.2. Exposures and Other Variables

Area Greenness: Greenness was obtained from Landsat Thematic Mapper Surface
Reflectance images (https://earthexplorer.usgs.gov/, accessed on 5 May 2020), which we
used to estimate the normalized differential vegetation index (NDVI). The Landsat images
constituted the surface reflectance images generated every 16 days at a 30-m pixel spatial
resolution and selected images for November. We obtained the next closest image if we
missed or could not generate the surface reflectance images for that specific 16-day period.
Similarly, the NDVI for each state was estimated across the three time points of 2005, 2011,
and 2017. The selected cloud-free (<10 percent clouds) images avoided contamination
with the NDVI values. An NDVI value of ‘0′ means no vegetation, and values close to
‘1′ represent the highest greenness [46]. The NDVI captured the density of greenness at a
spatial resolution of 30 m and was calculated using the Quantum Geographical Information
System (QGIS), Gnu General Public License, Version 2, 1991 Free Software Foundation, Inc.
(Boston, MA, USA) tool v.3.12.3 9 [47]. The ratio of visible light (R) to the near-infrared
(NIR) light reflected by the vegetative growth comprises the NDVI, that is, the surface
reflectance of light during photosynthetic activity [46]. Greenness in a spatial area is
defined as an average value of NDVI. The average NDVI values were calculated for the
years 2005, 2011, and 2017, representing the annual greenspace exposure for the respective
time periods in our study. The NDVI proportions were calculated using the following
expression NDVI = (NIR − R)/(NIR + R)”.

Air pollution: The exposure estimates of air pollutants were from open data sources
from the statutory organization the Central Pollution Control Board (CPCB) and its coun-
terparts, the State Pollution Control Boards (SPCBs) of India. The annual average concen-
trations of particulate matter up to diameters of 2.5 µm (PM2.5) and 10 µm (PM10), nitrogen
dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) in µg/m3 were from the routine air
quality monitoring stations of India for each of the years 2005, 2011, and 2017. We consid-
ered a small number of air pollutant data from reports, web pages, and details from the
environmental information system (ENVIS) of the central pollution control board and state
government. The published literature across 30 states in India contributed to some of the
data on the average annual air pollutants, and data with different units of measure, such as
parts per billion (ppb), were converted into micrograms per meter cube. Northeast India
presents only recent years’ data, as the air quality monitoring stations across all seven states
are recent. CPCB had first set the air quality standards in India in 1982, which were further
revised by the year 2009, and the standards were higher than the air quality guidelines of
WHO [48,49]. The National Air Quality Monitoring Program (NAMP), India, has set the
National Ambient Air Quality Standards (NAAQS), with permissible limits for each of the
air pollutants to protect public health, vegetation, and property [50].

Weather and other variables: The meteorological data for the states in India were recorded
from online points of data collection—www.weatheronline.in, www.wunderground.com, and
the Indian Meteorological Department (IMD); accessed on 15 December 2020—spanning
2005, 2011, and 2017. The meteorological parameters utilized were the annual average

https://earthexplorer.usgs.gov/
www.weatheronline.in
www.wunderground.com
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maximum temperature (degree Celsius), relative humidity (percentage), and average
annual rainfall (millimeters). Population distribution in India is measured using the density
of the population. Population density (PD) data across all states in 2005, 2011, and 2017
were included from the Census of India website, Refs. [51–53], representing the number of
persons per square kilometer (km2). The Social Progress Index (SPI) is a tool reproduced by
the Institute for Competitiveness and Social Progress Imperative that comprises facets of
social progress on basic human needs, the foundation of wellbeing, and opportunity, which
includes various components [54,55]. The SPI supplements economic success measures
by directly measuring social and environmental outcomes. The scores range on a scale of
0–100 for each state. A higher state score indicates a better understanding of the relationship
between economic gain and social progress.

2.3. Statistical Analysis

We used data visualization methods to illustrate the distribution of asthma prevalence
in the India map chart across 29 states and Delhi over the years 2005, 2011, and 2017. The
estimated mean NDVI values of the 29 states and 1 union territory (SUTs) projected spatial
distributions of average greenness over 2005, 2011, and 2017. Similar graphical methods
described the differences in the population rates with PM2.5 and O3 levels and asthma
prevalence. Two-dimensional multiple line graphs were plotted to understand the pattern
of association between asthma prevalence and the mean NDVI (Y1 and Y2-axis) over the
periods on the horizontal axis (X-axis), created using Stata IC16 software(StataCorp, College
Station, TX, USA). Statistical software R, v.3.6.3, was used to plot the multiple variables,
using gg-plot for bubble charts and contour plots. The bubble plot is a multi-variable chart
similar to a scatterplot and describes the average concentrations of the pollutants and the
mean NDVI across the X-axis and Y-axis.

Spearman’s correlations were estimated to determine the levels of correlation among
air pollutants (PM2.5, PM10, SO2, NO2, and O3), and between air pollutants and meteoro-
logical factors (maximum temperature, relative humidity, and average annual rainfall).

We first separately analyzed the association between the NDVI and the prevalence
of asthma in each year (2005, 2011, and 2017), controlling for each air pollutant (PM2.5,
PM10, SO2, NO2, and O3). For each year, the regression model approach that we took
was modeling the outcome as a Poisson regression and adjusting it for meteorological
parameters, PD, and SPI. We then used a generalized estimating equation (GEE) to estimate
the association between the measure of greenness (NDVI) as the primary exposure variable
and the prevalence of asthma as the outcome, using a Poisson link and combining the three
time points in a single model. Additionally, we also examined the interaction between the
NDVI and high air pollutant levels over the three time periods across all states in the GEE
model. The air pollutant concentrations higher than the 75th centile were considered high.
All statistical tests were 2-sided; effect estimates with a 95% confidence interval (CI) were
reported and considered to have strong evidence of association if the p-value was less than
0.05. The statistical data analyses were performed using Stata IC 16 (StataCorp, College
Station, TX, USA).

3. Results

The overall prevalence (min–max) of childhood and adolescent asthma for 0–19 years
was 1275.56 (870.91–2188.52) cases per 100,000 in 2005, 1776.10 (1247.45–2894.67) cases
per 100,000 in 2011, and 1419.97 (1128.66–2276.06) cases per 100,000 in 2017, representing
an increase of 39.24% and a decrease of 20.05% between the three time periods (Table 1).
Asthma in children and adolescents was more prevalent across the northeastern regions of
India than in the rest (Figure 1A). The prevalence rates of asthma across all the states in
India show a progressive increase from 2005 (1275 cases per 100,000) to 2011 (1776 cases per
100,000), and then present a downward trend until 2017 (1419 cases per 100,000) (Table 1).
Though we observed a downward trend, all the states had a higher prevalence of asthma
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in 2017 compared to 2005 except for Assam (14.49% reduction in prevalence from 2005 to
2017), Goa (8.29%), Kerala (8.90%), Odisha (2.82%), and Meghalaya (2.49%).
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India in 2005, 2011, and 2017.

The overall mean NDVI values in India were 0.43 in 2005, 0.42 in 2011, and 0.41 in 2017
(Figure 1B). The snow-capped and arid desert regions exhibited a low NDVI of around
0.06, and rich forest areas exhibited a high NDVI of 0.80. The greenest states in India
with the highest NDVI values in 2005, 2011, and 2017 were in the northeast. The states
with the lowest NDVI values included Jammu Kashmir, the northernmost state, which has
many snow-capped months in a year; Rajasthan, a predominantly arid and desert area;
and Himachal Pradesh, an alpine and subtropical climate. The NDVI values across all the
states in India show a small reduction of around 2% over 12 years. There was a concordant
change in the prevalence of asthma and the NDVI in the north and northeastern states and
in the southern states of Goa, Andhra Pradesh, and Kerala, while divergent changes were
present in most other states in India (Figure 2).
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Figure 2. Asthma prevalence rate (per 10,000 population) and mean NDVI across 29 states and
1 union territory (SUTs) of India in 2005, 2011, and 2017.

As expected, a strong correlation exists between PM2.5 and PM10, while there were
weak to moderate correlations among the other air pollutants in this study (Supplementary
Materials, Table S1). The maximum temperature (temp) levels were positively but weakly
correlated with PM2.5, PM10, and NO2. The distributions of the NDVI, asthma rates,
and particulate matter (PM2.5 and PM10) show a moderate negative correlation between
the percentage of exposure to particulate matter (PM2.5 and PM10) and the mean NDVI
(Figure 3). Compared to the distribution of particulate matter, many states with exposure
to gaseous pollutants (SO2 and O3) had more variance, with many states showing high
exposure (SO2 and O3) as well as high NDVI values, except for NO2 (Figure 3). All 30 states
exceeded the ambient PM2.5 World Health Organization (WHO) air quality guideline, while
33% of the states exceeded the annual NAAQS (>40 µg/m3) in 2005 and 2011, and 50% of
states exceeded it in 2017. Kerala (range 42–52 µg/m3) is the only state that did not exceed
the NAAQS permissible limit (>60 µg/m3) for PM10 throughout 2005, 2011, and 2017.
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Figure 3. Mean NDVI vs. concentration of air pollutants (A) PM2.5, (B) PM10, (C) NO2, (D) SO2,
and (E) O3 (in µg/m3) across SUTs in the years 2005, 2011, and 2017. Note: The left panel shows the
association of the mean NDVI along the Y-axis and the PM2.5 concentration levels in the X-axis with
the asthma prevalence rates across states as bubbles in the three time periods of 2005, 2011, and 2017.
The right panel shows the association of the mean NDVI along the Y-axis and the PM10 concentration
levels on the X-axis with the asthma prevalence rate across states. Similarly, the middle panel on
the left presents the NO2 concentration levels, and the middle right presents the SO2 concentration
levels. The bottom left panel shows the association of the mean NDVI (Y-axis) and changes in the
concentration levels of O3 (X-axis) with the prevalence rate of asthma, represented as bubbles in the
right panel. Each of the bubbles measures the asthma prevalence rate of each state in the three time
periods. Increases in the size of the bubbles represent increases in the asthma prevalence rate and
vice-versa. The colors of the bubble represent each state presented on the right side of the panel.
Within the graph, the broken blue lines represent the cut-off levels for air pollutant concentration
levels as per the World Health Organization (WHO) standards; the brown lines represent the cut-off
levels for air pollutants as per the National Ambient Air Quality Standards, India (NAAQS), and the
green lines show the mean NDVI values, above which areas show high greenspaces. Note: NDVI,
normalized differential vegetation index; PM2.5, particulate matter of diameter 2.5 µm or smaller;
PM10, particulate matter of diameter 10µm or smaller; NO2, nitrogen dioxide; SO2, sulfur dioxide;
O3, ozone.
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The NDVI was associated with increased asthma prevalence rates in all three years
(2005, 2011, and 2017) even after adjusting for individual pollutants (Supplementary Mate-
rials, Table S2). However, in the models adjusted for O3, the NDVI had no association with
the asthma prevalence rates in 2011 and 2017.

We also analyzed all three years in one model. The univariate GEE models of high
particulate matter, SO2, NO2, and O3 demonstrated a strong negative association with
the prevalence of asthma, with only high PM10 showing a positive association (Table 2).
The evidence of the association of the NDVI and air pollutants with asthma prevalence
remained the same when adjusting for the weather parameters, socio-demographic factors
such as the SPI, and population density, except for NO2 in this study. The NDVI, after
adjustment for high levels of PM2.5, was positively associated with asthma prevalence
(β = 0.144; 95% CI = 0.10, 0.186; p < 0.0001). In contrast, there was no association between
the NDVI and asthma prevalence after adjustment for PM10 at high levels (β = 0.035; 95%
CI = −0.006, 0.076; p = 0.096). The NDVI in the models, with high levels of both gaseous
air pollutants, SO2, and NO2, was strongly positively associated with asthma prevalence
((β = 0.12; 95% CI = 0.08, 0.16; p < 0.0001) (β = 0.09; 95% CI = 0.05, 0.13; p < 0.0001)). In
the model including high O3 levels, the NDVI shows a strong negative association with
asthma prevalence (β = 0.19; 95% CI = 0.26, 0.11; p < 0.0001).

The strata-specific effects of low vs. high air pollution on the relationship between the
NDVI and asthma prevalence are presented in Figure 4. In all cases except SO2, there was
an interaction between the air pollutants and the NDVI in the GEE models (Table 3). The
largest difference in the slopes can be observed in the PM2.5 and NO2 plots, where in the
states with low concentrations of air pollutants, an increase in the mean NDVI is associated
with an increase in asthma prevalence, with a greater rate of change.
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Figure 4. Interaction of the NDVI and air pollutants: (A) PM2.5, (B) PM10, (C) NO2, (D) SO2, and
(E) O3, influencing the prevalence of asthma. The prevalence rates of asthma in children (0–19 years)
in the SUTs are shown on the Y-axis with interactions with the mean NDVI (X-axis) and low and
high concentrations of air pollutants (A) PM2.5, (B) PM10, and (C) NO2 in states in the top panel
(left to right). The bottom panel represents the interaction of the mean NDVI (X-axis) and high
concentrations of air pollutants (D) SO2 and (E) O3, represented along the vertical Y-axis, with the
asthma prevalence rate. Note: NDVI, normalized differential vegetation index; PM2.5, particulate
matter of diameter 2.5 µm or smaller; PM10, particulate matter of diameter 10 µm or smaller; NO2,
nitrogen dioxide; SO2, sulfur dioxide; O3, ozone.
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Table 1. Summary statistics for the asthma prevalence, environmental factors, and other socio-demographic factors for the years 2005, 2011, and 2017 in states
of India.

2005 2011 2017

Measures Mean (SD) Median (IQR) Min, Max Mean (SD) Median (IQR) Min, Max Mean (SD) Median (IQR) Min, Max

Asthma prevalence
(per 100,000) 1275.559 (±381.06) 1076.84

(1496.51–992.40) 870.90, 2188.52 1776.096 (±480.23) 1609.06
(2038.12–1417.31) 1247.45, 2894.67 1419.96 (±303.84) 1255.00

(1589.02–1219.12) 1419.96, 2276.06

Environmental factors

NDVI 0.41 (±0.18) 0.41 (0.54–0.27) 0.0621, 0.77 0.41 (±0.15) 0.40 (0.54–0.30) 0.097, 0.746 0.47 (±0.18) 0.42 (0.64–0.34) 0.130, 0.801

Air pollutants

PM2.5 (µgm/m3) 37.92 (±20.05) 32.25 (44.9–23.45) 15.4, 119 38.12 (±23.46) 34.05 (44.05–23.17) 12.1, 113 49.41 (±26.52) 40.00 (60.25–31.75) 16.59, 119

PM10 (µgm/m3) 95.78 (±39.56) 85.00 (117.5–67.25) 39, 199 106.96 (±49.27) 96.34 (149.6–72.5) 12, 222 107.20 (±48.83) 91.00 (145.5–71) 38, 240

SO2 (µgm/m3) 10.57 (±6.94) 10.00 (15–6) 2, 29 8.92 (±7.07) 6.89 (13.17–2.85) 1, 28 8.73 (±5.91) 7.0 (10.25–5.75) 2, 25

NO2(µgm/m3) 26.61 (±18.71) 24.00 (30–15) 2, 90 22.25 (±13.97) 19.00 (28.25–12) 3.2, 57 22.14 (±12.43) 21.00 (27.25–14.5) 4.8, 68

O3 (µgm/m3) 33.51 (±8.96) 40.82 17, 47.1 27.41 (±9.77) 43.56 (31.96–20.66) 10, 46.5 25.47 (±6.12) 46.35 (29.62–22.05) 8, 31

Meteorological variables

Maximum temperature
(degree Celsius) 29.06 (±3.54) 30(31.02–27.63) 16.5, 35 29.18 (±4.23) 29.75 (32–26.78) 16, 35 29.51 (±3.91) 30.25 (32, 27.76) 16, 34.79

Relative humidity (%) 68.75 (±9.13) 69(76.5–61.5) 50, 85 71.13 (±10.33) 70 (80.37–65.5) 50, 90 71.85 (±11.29) 74 (80.5–64.5) 50, 85

Average annual
rainfall (mm) 1660.91 (±969.92) 1347.65

(2387.25–1056.75) 520.8, 4692.8 1738.53 (±1099.12) 1359.68
(2378.49–1055.47) 528.13, 5388.8 1601.43 (±903.70) 1297.6

(2624.9–898.37) 299.2, 3443.45

Maximum temperature
(degree Celsius) 29.06 (±3.54) 30(31.02–27.63) 16.5, 35 29.18 (±4.23) 29.75 (32–26.78) 16, 35 29.51 (±3.91) 30.25 (32–27.76) 16, 34.79

Socio-economic variables

Social progress index
(SPI) score 48.45 (±5.9) 48.36 (54.72–35.81) 35.81, 59.05 53.85 (±5.9) 53.75 (59.71–49.03) 41.24, 63.04 57.00 (±5.5) 56.38 (62.31–53.43) 44.89, 68.09

Population density (PD)
(persons/sqkm) 613.36 (±1665.75) 276.5 (478.5–117.25) 13, 9340 727.16 (±2015.87) 308 (551.25–130) 17, 11297 800.03 (±2217.45) 339 (606.5–143.75) 18, 12427

Note: Data are represented as asthma prevalence, which is cases per 100,000 population; NDVI, normalized differential vegetation index as mean value; PM2.5, particulate matter of
diameter 2.5 µm or smaller; PM10, particulate matter of diameter 10µm or smaller; NO2, nitrogen dioxide; SO2, sulfur dioxide; O3, ozone in µgm/m3; maximum temperature in degree
Celsius; relative humidity in percentage; average annual rainfall in millimeters; SPI score, social progress index; PD, population density as persons/sqkm; Time 1 is 2005; Time 2 is 2011;
Time 3 is 2017; sample size is N; average values as mean (±standard deviation); Min, minimum; Max, maximum; percentile measures at 25th, 50th, 75th, and 90th.
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Table 2. Generalized estimation equation (GEE) result coefficients (β) (95% CI, lower, upper) of NDVI for association of asthma prevalence and air pollutants at
high concentrations.

Unadjusted Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Variables

NDVI continuous 0.425 (0.390, 0.460) * 0.161 (0.121,0.200) * 0.144 (0.101, 0.186) * 0.035 (−0.006, 0.076) 0.121 (0.082, 0.161) * 0.098 (0.058, 0.138) * −0.190 (−0.267, −0.113) *
Particulate matter < 2.5
µgm (PM2.5), high −0.137 (−0.153, −0.122) * −0.094 (−0.111, −0.077) * −0.051 (−0.070, −0.033) * ..NA ..NA ..NA ..NA

Particulate matter < 10
µgm (PM10), high 0.015 (−0.002, −0.028) * 0.037 (0.022, 0.052) * ..NA 0.062 (0.047, 0.078) * ..NA ..NA ..NA

Sulfur dioxide (SO2), high −0.150(−0.163, −0.137) * −0.102
(−0.116, −0.088) * ..NA ..NA −0.096 (−0.110, −0.080) * ..NA ..NA

Nitrogen dioxide (NO2),
high −0.074 (−0.086, −0.061) * −0.038 (−0.052, −0.025) * ..NA ..NA ..NA −0.006 (−0.021, −0.008) ..NA

Ozone (O3), high −0.160 (−0.173, −0.146) * −0.121 (−0.138, −0.103) * ..NA ..NA ..NA ..NA −0.118 (−0.135, −0.100) *
Max temperature 0.0008 (−0.0008, 0.0025) ..NA 0.007 (0.006, 0.009) * 0.010 (0.008, 0.012) * 0.006 (0.005, 0.008) * 0.005 (0.003, 0.007) * 0.033 (0.030, 0.037) *

Relative humidity 0.008 (0.008, 0.009) * ..NA 0.006 (0.005, 0.007) * 0.006 (0.005, 0.007) * 0.005 (0.004, 0.006) * 0.005 (0.005, 0.006) * −3.08 × 10−4 (-9.2 × 10−4,
9.1× 10−4)

Average annual rainfall 1.2 × 10−5 (1.2 × 10−5,
1.3 × 10−4) * ..NA 9.0 x10−5 (9.0 × 10−5,

1.0 × 10−5) *
1.0 × 10−4 (1.0 × 10−4,
1.1 × 10−4) *

9.0 × 10−5 (8.0 × 10−5,
9.0 × 10−5) *

9.0 × 10−4 (9.0 × 10−4,
1.0 × 10−4) *

1.8 × 10−4 (1.7 × 10−4,
2.0 × 10−4) *

Note: Each of the study variables was used in the generalized estimating equation (GEE) with the Poisson link to explore the associations between the rate of asthma prevalence and
NDVI (the measure of greenness) as the primary exposure variable. The unadjusted variables are reported separately. In the multivariate analysis, Model 1: Each covariate and weather
parameters; further adjusted for maximum temperature, relative humidity, average annual rainfall, social progress index, and population density with each of the air pollutants in Model
2: PM2.5; Model 3: PM10; Model 4: SO2; Model 5:NO2; Model 6: O3. Air pollutant concentration levels >75th percentile were considered higher, and the controls were variables if less
than higher concentration levels. ..NA, not applicable; * indicates significant p-values if p < 0.05 in univariate, and p < 0.001 in multivariate analysis; NDVI, normalized differential
vegetation index; PM2.5, particulate matter of diameter 2.5 µm or smaller; PM10, particulate matter of diameter 10 µm or smaller; NO2, nitrogen dioxide.
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Table 3. GEE interaction analysis—adjusted association between air pollutants and asthma prevalence
with NDVI.

Asthma Prevalence

Variables N
Interaction

Coefficient (β)
(95% CI)

p-Int Value Coefficient (β)
(95% CI) of NDVI p-Int Value

PM2.5
c.NDVI × PM2.5high 82 −0.96 (−1.07,

−0.85) * p < 0.001 0.38 (0.33, 0.42) * p < 0.001

PM10
c.NDVI × PM10high 85 −1.14 (−1.24,

−1.04) * p < 0.001 0.261 (0.218, 0.305)
* p < 0.001

SO2
c.NDVI × SO2high 87 −0.03 (−0.12,

0.059) 0.499 0.16 (0.12, 0.20) * p < 0.001

NO2
c.NDVI × NO2high 87 −1.32 (−1.43,

−1.22) * p < 0.001 0.27 (0.23, 0.31) * p < 0.001

O3
c.NDVI × O3high 45 −0.47 (0.31, 0.62) * p < 0.001 −0.21 (−0.30,

−0.12) * p < 0.001

Note: Each of the air pollutants at higher concentration levels with continuous values of NDVI and prevalence
of asthma were tested using GEE models via interaction terms with the Poisson link and examined for effects
estimates. The Beta coefficient values and 95% confidence intervals are shown. * Indicates significant p-interaction
values and is reported if p-int < 0.1 The model was adjusted for maximum temperature, relative humidity, average
annual rainfall, social progress index, and population density.

Data presented for selected Indian states and union territories of the present study:
(1) Andhra Pradesh, (2) Arunachal Pradesh, (3) Assam, (4) Bihar, (5) Chhattisgarh, (6) Delhi,
(7) Goa, (8) Gujarat, (9) Haryana, (10) Himachal Pradesh, (11) Jammu and Kashmir,
(12) Jharkhand, (13) Karnataka, (14) Kerala, (15) Madhya Pradesh, (16) Maharashtra,
(17) Manipur, (18) Meghalaya, (19) Mizoram, (20) Nagaland, (21) Odisha, (22) Punjab,
(23) Rajasthan, (24) Sikkim, (25) Tamil Nadu, (26) Telangana, (27) Tripura, (28) Uttar
Pradesh, (29) Uttarkhand, and (30) West Bengal.

In Figure 1A, the rates of asthma prevalence in ages 0 to 19 years are shown on
a spectrum of dark blue (0 prevalence) to dark red (highest prevalence) for the years
2005 (left panel), 2011 (middle panel), and 2017 (right panel). In Figure 1B, the normalized
differential vegetation index (NDVI) values for 2005 (left), 2011 (middle), and 2017 (bottom),
as calculated by the QGIS, are shown on a spectrum of red (least value) to dark green
(highest value). These NDVI values relate to the distribution of the average level of
greenness across 30 states. Mean NDVI values of 0 to 0.2 are categorized as low, >0.2
to 4.0 as moderate, and >0.4.0 as high levels of greenspaces. The darkest green areas
consistently have the highest levels greenspace, while the red areas show the lowest levels
of greenspace.

The lines on the graph represent the temporal trends of the series of data (broken blue
lines represent the asthma prevalence rates and the green lines show the mean NDVI) over
the three time periods of 2005, 2011, and 2017 along the horizontal axis (X-axis); the Y1-axis
on the left is the asthma prevalence rate (blue), and the Y2-axis on the right is the mean
NDVI (green).

Selected India states and union territories (SUTs) of the present study: (1) Andhra
Pradesh, (2) Arunachal Pradesh, (3) Assam, (4) Bihar, (5) Chhattisgarh, (6) Delhi, (7) Goa,
(8) Gujarat, (9) Haryana, (10) Himachal Pradesh, (11) Jammu and Kashmir, (12) Jhark-
hand, (13) Karnataka, (14) Kerala, (15) Madhya Pradesh, (16) Maharashtra, (17) Manipur,
(18) Meghalaya, (19) Mizoram, (20) Nagaland, (21) Odisha, (22) Punjab, (23) Rajasthan,
(24) Sikkim, (25) Tamil Nadu, (26) Telangana, (27) Tripura, (28) Uttar Pradesh, (29) Uttark-
hand, and (30) West Bengal. Note: NDVI, normalized differential vegetation index.
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4. Discussion

Our findings highlight that asthma prevalence was highest in the northeastern regions,
followed by some parts of the eastern coastal plains, while semi-arid areas show low-
prevalence estimates. As expected, the northeastern and east coast regions exhibited the
highest levels of greenspaces, while the hot arid regions and the snow-capped regions
exhibited the lowest levels of greenspaces. The present ecological study is the first state-
wide study to show that greenspace is associated with childhood asthma prevalence in India.
Our results suggest that greenspaces are positively associated with asthma prevalence in
children, though this is not uniform across the geographical regions of India. Although this
study enabled us to estimate asthma prevalence trends across the three periods (2005, 2011,
and 2017), the established time trend and effect estimates indicate shifts in these trends
over those years. Although no studies have assessed greenspace and childhood asthma in
India, several studies in other regions have evaluated the effect of greenspace and asthma
but reported inconsistent associations. Studies in Spain, New York, and Lithuania have
observed that children (9–12 years, 7 years, and 4–6 years) residing close to greenspaces
had an increased prevalence of asthma [28,29,32]. In contrast, studies from Cincinnati,
Texas, the European region, and Canada have found no such association [56–58], and others
from Spain, Australia, and Mexico have observed protective effects [27,59,60]. South Asian
countries lack extensive studies on greenness and asthma to compare with our findings.

There are several hypotheses to explain these differences in the observations between
greenspaces and their association with asthma. The outcomes, whether adverse (promoting
asthma) or protective against asthma, depend on many co-factors. The timing of exposure
to greenspaces may be a factor, that is, early-life exposure may have different outcomes than
late-life exposure [31,33]. The type of greenspace seems to be relevant; while residences
near forest greenspaces are protective, when they are near parks, an increase in the risk of
asthma was observed [28]. Several studies have observed that parks and urban spaces may
use exotic and non-native trees, which may increase exposure to pollens that have higher
allergenicity [29,61]. Additionally, unlike forest greenspaces, there is a higher exposure to
pesticides and fertilizers in urban greenspaces [62], increasing the risk of asthma. In some
greenspaces, greater exposure to fungal spores increases the risk for asthma [63,64]. Pro-
tection from asthma has been observed due to improved air quality [19,22] and improved
biodiversity, both at the macrobiota and the microbiota levels [62,63]. Decreased biodi-
versity has been associated with increased immune system dysfunction [65–67]. Higher
greenness was associated with decreased air pollution, especially particulate matter, which
offered protection in situations of heavy traffic pollution [59] but not in moderate or low
traffic pollution. Studies have observed that children residing near a greater density of
greenness are engaged in greater physical activity, while children in urban homes with less
greenness lead more sedentary lifestyles and are obese, both of which are associated with a
greater risk of asthma [68]. Differences in host responses due to various characteristics of
the urban built-up environment, especially grey surfaces (which include industries, trans-
port services, and the urban fabric) [69], indoor and outdoor environments, and differences
in climate and geography, are all known to influence the complex interaction between
greenspaces and asthma. In addition, residents of areas with higher greenness have been
observed to have less stress, which impacts the psycho-neuroimmune and hypersensitive
reactions to allergens [70–73]. The differences in the observations may also be due to the
variable definitions used to diagnose asthma across studies and variable tools used to
quantify greenspaces.

Only a few studies have evaluated the impact of greenspaces and air pollution on
asthma, and the evidence is mixed [31,57]. Wide variations have been observed regarding
the burden of air pollution, asthma prevalence, and greenspaces over time in different
states in diverse countries such as India. When analyzed, a strong positive association
was shown between asthma prevalence and greenspaces at high levels of PM2.5, PM10,
NO2, and SO2, and a strong negative association was shown with O3. By examining
interactions over time, our study observed the influence of greenspaces and air pollutants
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(PM2.5, PM10, SO2, NO2, and O3) on changes in childhood asthma prevalence at different
concentration levels of air pollutants. In Australia, greater quantities of greenspace may
buffer the impacts of heavy traffic exposure on childhood asthma [59]. Children living in
areas with greenspace coverage of more than 40% had a much lower prevalence of asthma
than children living in areas with less than 20% greenspace coverage [59]. An eight-year
observational study in European (Spain, Germany, and Sweden) birth cohorts showed
no associations among asthma, outdoor green environments, and exposure to NO2 [58].
The direction of associations among greenspaces, air pollution, and asthma are not always
uniform, especially at different time points. In the US (New York), an increase in greenspace
was associated with a 29% lower prevalence of asthma in the areas of increased proximity
to air pollution sources [27], but a 17% increase in asthma prevalence was observed in
areas with high traffic volumes (>1000 vehicles daily) [29]. Similar observations were
made by Dadvand et al. in Spain on asthma prevalence, air pollution, and the NDVI at
two time points (2012, 2014), and contradictory results have been found [28,31,33]. In
another European study (Lithuania), higher greenness levels increased the risk of asthma
prevalence when adjusting for PM2.5 and NO2 [32]. These differences in the direction of
association in the same cities (New York, Spain) in two different time periods could be
related to differences in the age range of the participants included in the two studies, the
diverse analytical sample, the type of study design, the definition of asthma, changes in
the quality and quantity of the air pollutants, or the vegetation in the city, similar to other
study observations [28,29,32,56,74].

Several potential limitations are important to discuss in our nationwide study. First,
the environmental exposure data across the states over all the time points were incomplete
due to various reasons, such as, currently, there is a total of 703 air pollutant monitoring
stations across all the states compared to 630 stations in the year 2005, while 3000 stations
are expected to be established across Indian cities and towns by 2022 [75]. Nevertheless,
we managed to retrieve additional data from national and state websites, reports of CPCB,
and other studies, leading to uncertainties in the data quality. Still, we used a robust and
efficient GEE model to obtain unbiased estimations of the average population. Second, our
study presents the findings for the annual average estimates rather than the monthly or
daily data, and we might have lost the trends of the short-term effects of environmental
exposures. Third, the focus of our study was exploratory, so graphically presenting the
differences in the results overcomes this. In addition, using the NDVI tool for estimating
greenspaces would have captured some differences in the rural and urban characteristics;
however, we would have missed some relative differences in the suburban and urban
areas. The NDVI does not account for the vegetation type (denser vs. scarce; natural vs.
artificial), and hence, the association may not be detailed; comprehensive assessments can
combine different greenspace estimation methods in future research. Studying source-
specific roles of each air pollutant [76,77] and their composition was beyond our scope; still,
they give a better understanding of the temporal variations along with their distributions
across regions.

5. Conclusions

In India, greenspace varies over a wide range across states and is associated with
increased asthma prevalence, but the association does depend on varying air pollutants in
different states. Government initiatives are contributing to green growth, and the smart city
initiatives developed in 2017 will continue to further boost the sustained development in
urban cities. This is the first study in India, and our study findings contribute to the growing
literature on greenspaces and their effects on health under variable environmental factors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph192215273/s1, Table S1: Correlations and p-values between the
air pollutants and meteorological variables; Table S2: The estimates for asthma prevalence rates and
NDVI at each of the air pollutants concentrations for the years 2005, 2011, and 2017.
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Kogevinas, M.; Nieuwenhuijsen, M.J. Risks and benefits of green spaces for children: A cross-sectional study of associations with
sedentary behavior, obesity, asthma, and allergy. Environ. Health Perspect. 2014, 122, 1329–1335. [CrossRef] [PubMed]

29. Lovasi, G.S.; O’Neil-Dunne, J.P.M.; Lu, J.W.T.; Sheehan, D.; Perzanowski, M.S.; MacFaden, S.W.; King, K.L.; Matte, T.; Miller, R.L.;
Hoepner, L.A. Urban tree canopy and asthma, wheeze, rhinitis, and allergic sensitization to tree pollen in a New York City birth
cohort. Environ. Health Perspect. 2013, 121, 494–500. [CrossRef]

30. Ferrante, G.; Asta, F.; Cilluffo, G.; De Sario, M.; Michelozzi, P.; La Grutta, S. The effect of residential urban greenness on allergic
respiratory diseases in youth: A narrative review. World Allergy Organ. J. 2020, 13, 1939–4551. [CrossRef]

31. Dadvand, P.; Sunyer, J.; Basagana, X.; Ballester, F.; Lertxundi, A.; Fernandez-Somoano, A.; Estarlich, M.; Garcia-Esteban, R.;
Mendez, M.A.; Nieuwenhuijsen, M.J. Surrounding greenness and pregnancy outcomes in four Spanish birth cohorts. Environ.
Health Perspect. 2012, 120, 1481–1487. [CrossRef]

32. Andrusaityte, S.; Grazuleviciene, R.; Kudzyte, J.; Bernotiene, A.; Dedele, A.; Nieuwenhuijsen, M.J. Associations between
neighbourhood greenness and asthma in preschool children in Kaunas, Lithuania: A case–control study. BMJ open 2016,
6, e010341. [CrossRef]

33. Dadvand, P.; de Nazelle, A.; Triguero-Mas, M.; Schembari, A.; Cirach, M.; Amoly, E.; Figueras, F.; Basagaña, X.; Ostro, B.;
Nieuwenhuijsen, M. Surrounding greenness and exposure to air pollution during pregnancy: An analysis of personal monitoring
data. Environ. Health Perspect. 2012, 120, 1286–1290. [CrossRef]

34. United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP/248;
Department of Economic and Social Affairs: New York, NY, USA, 2017; p. 53. Available online: https://population.un.org/wpp/
Publications/Files/WPP2017_KeyFindings.pdf (accessed on 12 January 2021).

35. GBD Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years,
and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the
Global Burden of Disease Study 2015. Lancet. Respir. Med. 2017, 5, 691–706. [CrossRef]

36. WHO. Ambient Air Pollution Data. Available online: https://www.who.int/data/gho/data/themes/air-pollution/ambient-air-
pollution (accessed on 21 January 2021).

37. IQAir. World Air Quality Report: Region & City PM2.5 Ranking; IQAir: Goldach, Switzerland, 2020; pp. 1–40. Available online:
https://www.iqair.com/world-most-polluted-cities/world-air-quality-report-2020-en.pdf (accessed on 12 December 2020).

38. Chowdhury, S.; Dey, S. Cause-specific premature death from ambient PM2. 5 exposure in India: Estimate adjusted for baseline
mortality. Environ. Int. 2016, 91, 283–290. [CrossRef] [PubMed]

http://doi.org/10.1016/j.envint.2018.01.028
http://www.ncbi.nlm.nih.gov/pubmed/29427878
http://doi.org/10.1016/j.envres.2013.12.001
http://www.ncbi.nlm.nih.gov/pubmed/24528997
http://doi.org/10.1289/EHP3766
http://doi.org/10.5415/apallergy.2020.10.e11
http://doi.org/10.1038/nature15371
https://www.who.int/health-topics/air-pollution?
http://doi.org/10.1016/S0140-6736(17)30505-6
http://doi.org/10.1080/09603120400018717
http://doi.org/10.1016/j.jaci.2008.02.020
http://doi.org/10.1016/S0140-6736(14)60617-6
http://doi.org/10.1097/MCP.0000000000000463
http://www.ncbi.nlm.nih.gov/pubmed/29300211
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/concentrations-of-fine-particulate-matter-(pm2-5)
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/concentrations-of-fine-particulate-matter-(pm2-5)
http://doi.org/10.1136/jech.2007.071894
http://www.ncbi.nlm.nih.gov/pubmed/18450765
http://doi.org/10.1289/ehp.1308038
http://www.ncbi.nlm.nih.gov/pubmed/25157960
http://doi.org/10.1289/ehp.1205513
http://doi.org/10.1016/j.waojou.2019.100096
http://doi.org/10.1289/ehp.1205244
http://doi.org/10.1136/bmjopen-2015-010341
http://doi.org/10.1289/ehp.1104609
https://population.un.org/wpp/Publications/Files/WPP2017_KeyFindings.pdf
https://population.un.org/wpp/Publications/Files/WPP2017_KeyFindings.pdf
http://doi.org/10.1016/S2213-2600(17)30293-X
https://www.who.int/data/gho/data/themes/air-pollution/ambient-air-pollution
https://www.who.int/data/gho/data/themes/air-pollution/ambient-air-pollution
https://www.iqair.com/world-most-polluted-cities/world-air-quality-report-2020-en.pdf
http://doi.org/10.1016/j.envint.2016.03.004
http://www.ncbi.nlm.nih.gov/pubmed/27063285


Int. J. Environ. Res. Public Health 2022, 19, 15273 16 of 17

39. Salvi, S.; Kumar, G.A.; Dhaliwal, R.S.; Paulson, K.; Agrawal, A.; Koul, P.A.; Mahesh, P.A.; Nair, S.; Singh, V.; Aggarwal, A.N. The
burden of chronic respiratory diseases and their heterogeneity across the states of India: The Global Burden of Disease Study
1990–2016. Lancet Glob. Health 2018, 6, e1363–e1374. [CrossRef]

40. Chokshi, M.; Patil, B.; Khanna, R.; Neogi, S.B.; Sharma, J.; Paul, V.K.; Zodpey, S. Health systems in India. J. Perinatol. 2016, 36,
S9–S12. [CrossRef]

41. Institute for Health Metrics and Evaluation. GBD Compare. Available online: http://vizhub.healthdata.org/gbd-compare
(accessed on 16 October 2021).

42. Indian Council of Medical Research Public Health Foundation of India Institute of Health Metrics and Evaluation. GBD India
Compare Data Visualization; IHME, University of Washington: Seattle, WA, USA, 2019; Available online: http://vizhub.healthdata.
org/gbd-compare/india (accessed on 21 October 2020).

43. Lai, C.K.; Beasley, R.; Crane, J.; Foliaki, S.; Shah, J.; Weiland, S.; Group, I.P.T.S. Global variation in the prevalence and severity
of asthma symptoms: Phase three of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 2009, 64,
476–483. [CrossRef] [PubMed]

44. Sinha, S.; Singh, J.; Kumar Jindal, S.; Birbian, N. Association of IL13R alpha 1+ 1398A/G polymorphism in a North Indian
population with asthma: A case-control study. Allergy Rhinol. Provid. 2015, 6, 111–117. [CrossRef] [PubMed]

45. Jindal, S.K.; Aggarwal, A.N.; Gupta, D.; Agarwal, R.; Kumar, R.; Kaur, T.; Chaudhry, K.; Shah, B. Indian Study on Epidemiology
of Asthma, Respiratory Symptoms and Chronic Bronchitis in adults (INSEARCH). Int. J. Tuberc. Lung Dis. 2012, 16, 1270–1277.
[CrossRef]

46. Weier, J.; Herring, D. Measuring Vegetation (NDVI & EVI). Available online: http://earthobservatory.nasa.gov/Features/
MeasuringVegetation (accessed on 15 January 2021).

47. QGIS Development Team Open Source Geospatial Foundation Project. Quantum Geographic Information System. Available
online: https://www.qgis.org (accessed on 15 October 2020).

48. Ministry of Environment Forest and Climate Change. Revised National Ambient Air Quality Standards (NAAQS) 2009 Notified.
2009. Available online: http://moef.gov.in/wp-content/uploads/2019/10/Press-Note-on-RNAAQS_1.pdf (accessed on 21 June
2020).

49. Central Pollution Control Board India. National Ambient Air Quality Standards Central Pollution Control Board Notification
in the Gazette of India, Extraordinary. Available online: http://www.cpcb.nic.in/upload/Latest/Latest_48_FINAL_AIR_
STANDARD.pdf (accessed on 21 August 2021).

50. Central Pollution Control Board. National Ambient Air Quality Status and Trends 2019. 2019, 156. Available online: http:
//www.cpcb.nic.in (accessed on 21 August 2021).

51. Government of India. Census of India 2011. Available online: http://dataforall.org/dashboard/censusinfoindia_pca/ (accessed
on 21 June 2020).

52. Government of India. Census of India 2011; 00-001-2011-Cen-Book (E); Office of Registerar General of India: New Delhi, India, 2011;
pp. 1–13. Available online: https://censusindia.gov.in/2011-prov-results/data_files/india/paper_contentsetc.pdf (accessed on
23 June 2020).

53. Ministry of Statistics and Program Implementation. Children in India 2018—A Statistical Appraisal; Social Statistics Division-Central
Statistics Office, Government of India: New Delhi, India, 2018; pp. 1–138. Available online: https://www.mospi.gov.in (accessed
on 21 January 2021).

54. Kapoor, A.; Kapoor, M.; Krylova, P. Social Progress Index: States of India 2005–2016, Methodology Report; Institute for Competi-
tiveness: Gurgaon, India, 2017; pp. 1–34. Available online: https://socialprogress.in/wp-content/uploads/2017/10/SPI_2017
_Methodology.pdf (accessed on 12 December 2020).

55. Kapoor, A.; Kapoor, M.; Krylova, P. Social Progress Index: States of India 2005–2016, Eleven Years of Progress Report Findings; Institute
for Competitiveness: Gurgaon, India, 2017; pp. 1–120. Available online: https://socialprogress.in/wp-content/uploads/2017/1
0/SPI_2017_Findings.pdf (accessed on 12 December 2020).

56. Pilat, M.A.; McFarland, A.; Snelgrove, A.; Collins, K.; Waliczek, T.M.; Zajicek, J. The effect of tree cover and vegetation on
incidence of childhood asthma in metropolitan statistical areas of Texas. HortTechnology 2012, 22, 631–637. [CrossRef]

57. Sbihi, H.; Koehoorn, M.; Tamburic, L.; Brauer, M. Asthma trajectories in a population-based birth cohort. Impacts of air pollution
and greenness. Am. J. Respir. Crit. Care Med. 2017, 195, 607–613. [CrossRef]

58. Tischer, C.; Dadvand, P.; Basagana, X.; Fuertes, E.; Bergström, A.; Gruzieva, O.; Melen, E.; Berdel, D.; Heinrich, J.; Koletzko, S.
Urban upbringing and childhood respiratory and allergic conditions: A multi-country holistic study. Environ. Res. 2018, 161,
276–283. [CrossRef]

59. Feng, X.; Astell-Burt, T. Is neighborhood green space protective against associations between child asthma, neighborhood traffic
volume and perceived lack of area safety? Multilevel analysis of 4447 Australian children. Int. J. Environ. Res. Public Health 2017,
14, 543. [CrossRef]

60. Eldeirawi, K.; Kunzweiler, C.; Zenk, S.; Finn, P.; Nyenhuis, S.; Rosenberg, N.; Persky, V. Associations of urban greenness with
asthma and respiratory symptoms in Mexican American children. Ann. Allergy Asthma Immunol. 2019, 122, 289–295. [CrossRef]
[PubMed]

61. DellaValle, C.T.; Triche, E.W.; Leaderer, B.P.; Bell, M.L. Effects of ambient pollen concentrations on frequency and severity of
asthma symptoms among asthmatic children. Epidemiology 2012, 23, 55. [CrossRef] [PubMed]

http://doi.org/10.1016/S2214-109X(18)30409-1
http://doi.org/10.1038/jp.2016.184
http://vizhub.healthdata.org/gbd-compare
http://vizhub.healthdata.org/gbd-compare/india
http://vizhub.healthdata.org/gbd-compare/india
http://doi.org/10.1136/thx.2008.106609
http://www.ncbi.nlm.nih.gov/pubmed/19237391
http://doi.org/10.2500/ar.2015.6.0126
http://www.ncbi.nlm.nih.gov/pubmed/26302731
http://doi.org/10.5588/ijtld.12.0005
http://earthobservatory.nasa.gov/Features/MeasuringVegetation
http://earthobservatory.nasa.gov/Features/MeasuringVegetation
https://www.qgis.org
http://moef.gov.in/wp-content/uploads/2019/10/Press-Note-on-RNAAQS_1.pdf
http://www.cpcb.nic.in/upload/Latest/Latest_48_FINAL_AIR_STANDARD.pdf
http://www.cpcb.nic.in/upload/Latest/Latest_48_FINAL_AIR_STANDARD.pdf
http://www.cpcb.nic.in
http://www.cpcb.nic.in
http://dataforall.org/dashboard/censusinfoindia_pca/
https://censusindia.gov.in/2011-prov-results/data_files/india/paper_contentsetc.pdf
https://www.mospi.gov.in
https://socialprogress.in/wp-content/uploads/2017/10/SPI_2017_Methodology.pdf
https://socialprogress.in/wp-content/uploads/2017/10/SPI_2017_Methodology.pdf
https://socialprogress.in/wp-content/uploads/2017/10/SPI_2017_Findings.pdf
https://socialprogress.in/wp-content/uploads/2017/10/SPI_2017_Findings.pdf
http://doi.org/10.21273/HORTTECH.22.5.631
http://doi.org/10.1164/rccm.201601-0164OC
http://doi.org/10.1016/j.envres.2017.11.013
http://doi.org/10.3390/ijerph14050543
http://doi.org/10.1016/j.anai.2018.12.009
http://www.ncbi.nlm.nih.gov/pubmed/30557617
http://doi.org/10.1097/EDE.0b013e31823b66b8
http://www.ncbi.nlm.nih.gov/pubmed/22082997


Int. J. Environ. Res. Public Health 2022, 19, 15273 17 of 17

62. Corsini, E.; Sokooti, M.; Galli, C.L.; Moretto, A.; Colosio, C. Pesticide induced immunotoxicity in humans: A comprehensive
review of the existing evidence. Toxicology 2013, 307, 123–135. [CrossRef]

63. Bartra, J.; Belmonte, J.; Torres-Rodriguez, J.M.; Cistero-Bahima, A. Sensitization to Alternaria in patients with respiratory allergy.
Front. Biosci. 2009, 14, 9. [CrossRef]

64. De Linares, C.; Belmonte, J.; Canela, M.; de la Guardia, C.D.; Alba-Sanchez, F.; Sabariego, S.; Alonso-Pérez, S. Dispersal patterns
of Alternaria conidia in Spain. Agric. For. Meteorol. 2010, 150, 1491–1500. [CrossRef]

65. Rook, G.A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to
health. Proc. Natl. Acad. Sci. USA 2013, 110, 18360–18367. [CrossRef] [PubMed]

66. Hanski, I.; von Hertzen, L.; Fyhrquist, N.; Koskinen, K.; Torppa, K.; Laatikainen, T.; Karisola, P.; Auvinen, P.; Paulin, L.;
Mäkelä, M.J.; et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. USA 2012,
109, 8334–8339. [CrossRef] [PubMed]

67. Mhuireach, G.; Johnson, B.R.; Altrichter, A.E.; Ladau, J.; Meadow, J.F.; Pollard, K.S.; Green, J.L. Urban greenness influences
airborne bacterial community composition. Sci. Total Environ. 2016, 571, 680–687. [CrossRef]

68. Baiardini, I.; Sicuro, F.; Balbi, F.; Canonica, G.W.; Braido, F. Psychological aspects in asthma: Do psychological factors affect
asthma management? Asthma Res. Pract. 2015, 1, 1–6. [CrossRef]

69. Tischer, C.; Gascon, M.; Fernández-Somoano, A.; Tardón, A.; Materola, A.L.; Ibarluzea, J.; Ferrero, A.; Estarlich, M.; Cirach, M.;
Vrijheid, M. Urban green and grey space in relation to respiratory health in children. Eur. Respir. J. 2017, 49, 1502112. [CrossRef]

70. Astell-Burt, T.; Feng, X.; Kolt, G.S. Mental health benefits of neighbourhood green space are stronger among physically active
adults in middle-to-older age: Evidence from 260,061 Australians. Prev. Med. 2013, 57, 601–606. [CrossRef] [PubMed]

71. Chen, E.; Schreier, H.M.C.; Strunk, R.C.; Brauer, M. Chronic traffic-related air pollution and stress interact to predict biologic and
clinical outcomes in asthma. Environ. Health Perspect. 2008, 116, 970–975. [CrossRef] [PubMed]

72. Islam, M.N.; Rahman, K.-S.; Bahar, M.M.; Habib, M.A.; Ando, K.; Hattori, N. Pollution attenuation by roadside greenbelt in and
around urban areas. Urban For. Urban Green. 2012, 11, 460–464. [CrossRef]

73. Shankardass, K.; McConnell, R.; Jerrett, M.; Milam, J.; Richardson, J.; Berhane, K. Parental stress increases the effect of traffic-
related air pollution on childhood asthma incidence. Proc. Natl. Acad. Sci. USA 2009, 106, 12406–12411. [CrossRef] [PubMed]

74. Sbihi, H.; Tamburic, L.; Koehoorn, M.; Brauer, M. Greenness and Incident Childhood Asthma: A 10-Year Follow-up in a
Population-based Birth Cohort. Am. J. Respir. Crit. Care Med. 2015, 192, 1131–1133. [CrossRef] [PubMed]

75. Indian Institute of Management. Evaluation of Central Pollution Control Board (CPCB); Ministry of Environment and Forest
Government of India (GOI): Lucknow, India, 2010; p. 70. Available online: http://cpcbnicin/cpcbold/IIMLkopdf (accessed on 21
December 2020).

76. Srivastava, A.; Gupta, S.; Jain, V.K. Source Apportionment of Total Suspended Particulate Matter in Coarse and Fine Size Ranges
Over Delhi. Aerosol Air Qual. Res. 2008, 8, 188–200. [CrossRef]

77. Saxena, M.; Sharma, A.; Sen, A.; Saxena, P.; Saraswati; Mandal, T.K.; Sharma, S.K.; Sharma, C. Water soluble inorganic species of
PM10 and PM2.5 at an urban site of Delhi, India: Seasonal variability and sources. Atmos. Res. 2017, 184, 112–125. [CrossRef]

http://doi.org/10.1016/j.tox.2012.10.009
http://doi.org/10.2741/3459
http://doi.org/10.1016/j.agrformet.2010.07.004
http://doi.org/10.1073/pnas.1313731110
http://www.ncbi.nlm.nih.gov/pubmed/24154724
http://doi.org/10.1073/pnas.1205624109
http://www.ncbi.nlm.nih.gov/pubmed/22566627
http://doi.org/10.1016/j.scitotenv.2016.07.037
http://doi.org/10.1186/s40733-015-0007-1
http://doi.org/10.1183/13993003.02112-2015
http://doi.org/10.1016/j.ypmed.2013.08.017
http://www.ncbi.nlm.nih.gov/pubmed/23994648
http://doi.org/10.1289/ehp.11076
http://www.ncbi.nlm.nih.gov/pubmed/18629323
http://doi.org/10.1016/j.ufug.2012.06.004
http://doi.org/10.1073/pnas.0812910106
http://www.ncbi.nlm.nih.gov/pubmed/19620729
http://doi.org/10.1164/rccm.201504-0707LE
http://www.ncbi.nlm.nih.gov/pubmed/26517419
http://cpcbnicin/cpcbold/IIMLkopdf
http://doi.org/10.4209/aaqr.2007.09.0040
http://doi.org/10.1016/j.atmosres.2016.10.005

	Introduction 
	Materials and Methods 
	Study Design and Population 
	Data Collection and Measurements 
	Outcome: Asthma Prevalence Data 
	Exposures and Other Variables 

	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

