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Machine Learning in the Development of Adsorbents for
Clean Energy Application and Greenhouse Gas Capture
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Addressing climate change challenges by reducing greenhouse gas levels
requires innovative adsorbent materials for clean energy applications. Recent
progress in machine learning has stimulated technological breakthroughs in
the discovery, design, and deployment of materials with potential for
high-performance and low-cost clean energy applications. This review
summarizes basic machine learning methods—data collection, featurization,
model generation, and model evaluation—and reviews their use in the
development of robust adsorbent materials. Key case studies are provided
where these methods are used to accelerate adsorbent materials design and
discovery, optimize synthesis conditions, and understand complex
feature–property relationships. The review provides a concise resource for
researchers wishing to use machine learning methods to rapidly develop
effective adsorbent materials with a positive impact on the environment.
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1. Introduction

The 2016 Paris agreement aimed to limit
global warming to less than 2 °C by 2100,
an essential target for addressing climate
change.[1,2] To achieve this, the research
community must develop innovative pro-
cesses for generating clean energy and
reducing greenhouse gas emissions.[3–5]

More environmentally friendly gaseous fu-
els with high energy generation efficiency,
such as H2, are attractive alternatives
to nonrenewable fossil fuels.[6,7] Although
their gravimetric energy density is excel-
lent, their volumetric energy density un-
der normal temperatures and pressures
is low, leading to storage and transport
challenges.[8,9] Conventional technologies
for storage and transport, like compression

and liquefaction, require high pressures or low
temperatures.[10,11] The environmental impact of greenhouse
gases can be ameliorated by their capture and storage, or con-
version to useful chemicals.[12,13] Currently, chemical absorption
using amine aqueous solutions is the most common method
of absorbing CO2. However, safety and cost issues related to
corrosion, energy consumption, and amine loss remain.[14,15]

Therefore, cheaper and safer technologies for storage and
transport of gaseous fuels and the large-scale separation and
adsorption of CO2 are a high priority.

Among the solid adsorbents, porous materials such as metal–
organic frameworks (MOFs),[9,16,17] covalent–organic frame-
works (COFs),[18,19] porous carbons,[20] and zeolites[21] have excel-
lent H2, CH4, and CO2 adsorption abilities, low cost, scalable pro-
duction, and tunable structural features. However, rapid develop-
ment of these materials is hampered by two obstacles.[16,22] First,
the structural and compositional space of these materials is vast,
making full experimental exploration impossible. Second, the re-
lationships between materials features and their desired proper-
ties (e.g., uptake capacity and selectivity) are complex and often
nonlinear. This can make physics-based computational modeling
and experimental characterization to identify the most relevant
features complicated, time-consuming and expensive, hindering
material innovation. More effective strategies must be developed
to shorten discovery timelines for efficient adsorbents.

Data acquired from experiments and high-throughput com-
putation can be used to train machine learning (ML) models of
the properties of porous materials that can be used to expedite
the design, discovery, and optimization of adsorbents.[23–25]

Data-driven ML methods such as neural networks (NN), support
vector machines (SVM), and Bayesian methods can uncover
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Figure 1. Workflow for applying ML techniques in the development of porous materials for gas adsorption. ML model construction includes data collec-
tion, featurization, model training, and model evaluation. The ML models are then used to make predictions. Predicted materials that are subsequently
synthesized and assessed will be added to the original dataset for model improvement, and the materials with better properties will be progressed to
practical applications.

complex relationships between porous materials structural,
physicochemical, and process properties and useful properties
such as uptake and selectivity.[26] These models can make quan-
titative predictions of these properties for new porous materials
yet to be synthesized.[27] Given the exponential growth of re-
search data, ML approaches are driving new materials discovery
and elucidating complex feature–property relationships in large
porous materials chemistry spaces.[28–31]

This review provides a broad introduction to ML methods
used for the design (using chemical intuition/skill or computa-
tional guidance to generate similar structures), discovery (screen-
ing unknown material spaces by high-throughput experiments
or computations), and optimization (modifying the structures of
lead materials or the synthesis conditions to improve their prop-
erties) of functional materials for clean energy applications, such
as adsorption and separation of H2 and CH4, and reduction of
greenhouse gases. Recent reviews that combine data-science and
porous materials are available, some covering specific areas (e.g.,
high-throughput methods, nanotechnology, and materials evolu-
tion), in which ML is a part of the strategy.[32,33] Other reviews
are substantially ML focused, and potentially less relevant to ma-
terials scientists lacking strong data science backgrounds.[24] As
many readers may not be familiar with ML techniques, our re-
view summarizes the application of ML to different types of ad-
sorbent materials, introduces the most recent advances in adsor-
bent materials developed by ML-assisted strategies, and provides
readers with a practical guide to selecting ML methods for re-

search on a wide range of adsorbent materials. More extensive,
recent reviews on the applications of ML to materials design in
general are available for interested readers.[24,34,35] The focus here
is on using ML methods to develop high performing, diverse ad-
sorbent materials. Section 2 introduces key steps in applying ML
methods to adsorbent materials. Recent examples of adsorbent
design and optimization using ML are summarized in Section 3.
The final section presents conclusions and provides a perspective
on likely progress in this field in the short to medium term. We
hope this review will stimulate and encourage the use of ML tech-
niques to accelerate development of effective adsorbents, leading
to improved renewable energy technologies.

2. Developing Machine Learning Models

ML uses training data and an appropriate algorithm to model
diverse relationships in physical or biological systems.[28,36] It is
an empirical alternative to complicated static and dynamic first-
principles electronic structure and molecular dynamics calcu-
lations and provides insight into nonlinear, multidimensional,
feature–property relations. The process of constructing a ML
model consists of four steps as follows (Figure 1): 1) data collec-
tion, 2) feature generation and selection, 3) algorithm selection
and mapping, and 4) model validation and prediction.

Data collection is extremely important for material informat-
ics. Data must be reliable, of sufficient volume, low in noise
and bias, and the modeled property should have a reasonable
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dynamic range of values (i.e., a model cannot be generated if all
data points have similar properties).[37]

Data for ML model training include features (from molecu-
lar structures, physicochemical properties, experimental condi-
tions of synthesis, etc.) and the target properties. Target proper-
ties for materials in the dataset are usually derived from labo-
ratory and computational experiments.[38] Models are most suc-
cessful when they are trained on data with a wide range of
properties—materials with poor properties as well as the success-
ful materials.[39,40] A paucity of large, high-quality datasets has
necessitated the use of data collected from the literature, ideally
compiled into data repositories.[41–44] These materials databases
are important sources of curated data. Examples of databases for
adsorbent materials include molecule databases (ChEMBL,[45]

GDB-13,[46] GDB-17,[47] ZINC,[48] etc.), inorganic compound
databases (Atomic-FLOWLIB,[49] Inorganic Crystal Structure
Database,[50] Materials Project,[51] Open Quantum Materials
Database, NOMAD,[52] etc.), and databases for specific materials,
such as the Cambridge Structural Database MOF subset,[53] the
Computation-Ready, Experimental MOF Database,[54] the Inter-
national Zeolite Association (IZA) database, the Predicted Crys-
tallography Open Database (mainly for silicates, phosphates, sul-
fates, zeolites, and fluorides),[55] the NIST isotherm database
(ISODB),[56] and the Metal Organic Framework Database
(MOFDB).[57] Many of these databases contain materials struc-
tures, and some record important properties of materials. For ex-
ample, the Materials Project has DFT-calculated electronic prop-
erties available for a large number of materials. NIST ISODB and
MOFDB are databases of adsorbents and isotherms.

Once sufficient data are collected, information about the ma-
terials must be converted into mathematical representations (de-
scriptors, or features) suitable for training ML models. The qual-
ity and relevance of these representations play a major role in the
quality of the subsequent model, accuracy of predictions of prop-
erties for new materials, and the ability to interpret the models
in terms of chemistry (useful for deciding which material to syn-
thesize next). The conversion of relevant attributes of materials
into features is called featurization. The performance of ML mod-
els is optimum when the features used in training are most rel-
evant to the property being modeled. Featurization is of critical
importance to the quality and interpretability of the models gen-
erated. Ideally, materials and data scientists should work together
to identify the features with the most promise.

A large number of features can be calculated or measured for
adsorbent materials, and the importance of these features for a
material is strongly context dependent.[28,31,36] For example, ex-
perimental features (temperature, pH value, pressure, reaction
time, and the amount of the reactants) would be used to construct
models for synthesis optimization of adsorbent materials.[58] To-
pographical features (pore size, volume, surface area, topologi-
cal shape) and compositional features are frequently used when
searching for adsorbent materials with the best texture and com-
position for gas uptake.[59] Atomic features (e.g., atomic radii,
mass, number of valence electrons) and electronic features (e.g.,
electronegativity, ionization energy, polarizability) are frequently
used for selection of the coordinating metals of MOFs.[35,60] For
MOF linkers, electronic features, such as bandgap, dipole mo-
ment, highest occupied molecular orbital (HOMO), lowest un-
occupied molecular orbital (LUMO), and other structural fea-

tures such as the Coulomb matrix,[61] atom-centered symmetry
functions (ACSF),[62] simplified molecular-input line-entry sys-
tem (SMILES),[63] Voronoi tessellations,[64] and Smooth Over-
lap of Atomic Positions (SOAP),[65] are used to describe their
molecular structures.[35] Distances between neighboring atoms
are often used to describe or encode the local structure of ad-
sorbent materials.[66] Some physical coefficients, such as Henry’s
law constant, which is closely related to the adsorption isotherm,
can be used as a feature or target property.[67–69] In addition,
energy-based features, including Voronoi energy[70] and energy
histogram,[71] are used to improve the model performance in
the cases when the training set is small and the data diversity
is high. Fanourgakis et al. developed a set of new features re-
lated to the MOF energy surfaces by inserting probe atoms of
different sizes into the MOF, and found that model predictions
were improved by using these features.[72] We suggest that de-
spite computational complexity, structural features and energy-
based features play more important roles in gas uptake predic-
tion than electronic and atomic features,[73] while topographical
features and composition-based features are frequently used due
to their ease of calculation.[74,75] Therefore, there is a trade-off be-
tween the computational complexity and model accuracy and in-
terpretability. Combining multiple features provides a more ac-
curate description of materials.

Although many features may correlate with target properties,
the number of features must be limited to avoid overfitting and
degradation of model predictivity by the presence of features
of low relevance (noise).[31] Large numbers of features also in-
crease the complexity of the model, increasing the computation
expense, compromising the prediction ability (optimally sparse
models have the best predictive abilities), and making model in-
terpretation more difficult.[36] As a rule of thumb, the number of
fitted variables in a model should be less than half of the num-
ber of the data points, preferably much less.[36] Down-selection
and dimensionality reduction are two strategies often used to re-
duce the number of features. In down-selection, statistical meth-
ods, such as the least absolute shrinkage and selection operator
(LASSO) or random forest (RF), are used to assess the impor-
tance of the features, and the least important features can be
discarded from the feature set.[24] However, the performance of
the down-selection algorithms depends on the choice of hyperpa-
rameters. Dimensionality reduction is the alternative method to
shrink the feature set. The principle of this strategy is to project
the data points from a high dimensional feature space to a low
dimensional feature space. As it is well known that sparser mod-
els have better generalization ability and interpretability,[36] some
features in these models may be highly correlated or do not
strongly relate to the target property. During dimensionality re-
duction, these features are combined, and new features are gener-
ated. Therefore, relevant feature information is retained and only
the redundant information is lost when an appropriate dimen-
sionality reduction algorithm is used. The ability of models to
predict the properties of new, unseen materials will be enhanced
after such dimensionality reduction, thus the performance of the
dimensionality reduction algorithm can be estimated by model
evaluation. The most popular linear dimensionality reduction al-
gorithms are principal component analysis (PCA) and linear dis-
criminant analysis (LDA).[76–78] The PCA method generates or-
thogonal features that decrease or remove correlations.[79] This
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is an unsupervised projection algorithm, computing a group of
orthogonal vectors (principal component) as new features, where
the data point variances are maximum. In contrast to PCA, LDA
looks for the orthogonal vectors on which the variances of the
data points among different classes are maximum. Both PCA and
LDA can simplify ML models and remove the issue of dimension-
ality, but they suffer from the assumption that the relationship be-
tween features and modeled property is linear, which is often not
the case. Nonlinear projection algorithms, such as Isomap, Local
Linear Embedding, Laplacian Eigenmaps, t-distributed stochas-
tic neighbor embedding (t-SNE), and uniform manifold approxi-
mation and projection (UMAP) can perform nonlinear dimen-
sionality reduction.[80,81] Among these algorithms, t-SNE and
UMAP have been extensively applied to data visualization and
evaluating the domain of applicability of ML models on differ-
ent datasets. Note that less relevant information is retained after
some dimensional reduction methods, sometimes resulting in
reduced model performance.

When the materials in a dataset are described by a relevant
subset of features, an ML algorithm is chosen to train models
using these data. The choice of algorithm depends on the nature
of the dataset and problem to be solved. For example, supervised
learning is used for gas uptake capacity prediction and adsorbent
screening. In supervised learning, all the training data must be
labelled by the property of interest.[36] Unsupervised learning is
preferred when the aim is to identify the patterns and trends in
unlabelled data.[93] The largest difference in the performance of
ML algorithms is between linear and nonlinear methods. Table 1
summarizes algorithms commonly used in materials science.

Among the nonlinear algorithms, NNs have been successfully
applied to materials science, particularly for the development
of adsorbent materials.[24,94–102] NNs are composed of an input
layer, an output layer and interconnected hidden layers.[103,104]

In each hidden layer, there are a series of units (neurons) con-
taining nonlinear transfer functions that pass inputs forward
and errors backward to allow the weights and biases of each
unit to be adjusted. The number of hidden layer neurons de-
pends on the nonlinearity of the problem to be solved. Simple
neural networks usually contain a single hidden layer with rela-
tively few neurons. A deep neural network (DNN) contains mul-
tiple hidden layers, each layer containing many neurons (Fig-
ure 2a). DNNs have numerous applications in adsorbent mate-
rials science, including design of adsorbent materials with high
gas adsorption rate and illustration of the underlying structure–
adsorption relationships.[90,91,105,106] A subset of DNNs, convolu-
tional neural networks (CNNs), are very useful for image recog-
nition and analysis.[104] Unlike other DNNs, the hidden layers
of CNN consist of a number of convolutional and pooling layers
(Figure 2b). The convolutional layer maps the input tensor to a
feature map using multiple kernel filters then transmits the out-
put to the pooling layer that performs downsampling and further
convolution. The final feature map with more abstracted features
is transmitted to the fully connected layer for regression or classi-
fication. For adsorbent materials investigations CNNs have been
trained to extract the chemical and physical characteristics from
their topology images or diverse spectra.[107–111]

Finally, the accuracy of the model predictions must be evalu-
ated. For regression models, the error metrics are the coefficient
of determination (r2), root mean square error (RMSE), mean ab-

solute error (MAE), and mean absolute percentage error (MAPE).
The RMSE and MAE are preferred over r2 values as they are not
dependent on the number of data points and number of param-
eters in the model.[112,113] MAE values are less biased by one or
two large outliers in the predictions than RMSE values. Likewise,
MAPE is independent of scale and easy to interpret, but it will
become infinite when there are actual values close to zero. For
the classification models, accuracy, F1 score, geometric mean of
recall and precision (G-mean), and the area under the receiver
operating characteristic curve (AUC) are the metrics widely used
for scoring model performance. F1 score, G-mean, and AUC are
suitable for unbalanced classification models where one class is
more highly represented than the other. By using these metrics,
we can evaluate how accurately the models can predict the prop-
erties of the training data used to generate the model, and the test
data that is not used in training. A good regression model should
have the r2 close to 1, while RMSE and MAE should be close to
0 on both training set and test set. For a good classification, the
accuracy, F1 score, G-mean and AUC should all be close to 1 on
both training set and test set. A model is underfitting when the
performance on the training set is poor, while overfitting is iden-
tified when good performance is obtained on the training set but
poor performance on the test set. Both underfitting and overfit-
ting can be avoided by increasing the size of the dataset, using
fewer or greater relevance features, and modeling using linear
and nonlinear ML algorithms.

Model interpretation is of critical importance in material re-
search. Linear regression and decision tree-based models are
intrinsically interpretable and provide global interpretations. In
some cases, however, interpretation can fail to capture true
feature–property relationships. For example, a linear model can-
not explain nonlinear relationships no matter how much regular-
ization is carried out. To address these issues and allow interpre-
tation of nonlinear models, new methods have been developed.
A commonly used method is permutation feature importance,
which estimates the importance of a feature by calculating the
increases of the model error after permutating this feature.[114]

This method is fast, easy to understand, and gives global inter-
pretation of features that span a wide range for nonlinear rela-
tionships, but it may be bias when there are correlated features,
it cannot illustrate the effects of features on predicted values, and
the results may lack reproducibility as it adds randomness in the
calculation. Shapley additive explanation (SHAP) is another pop-
ular method in ML studies.[115] SHAP can measure the contri-
bution of each feature to the prediction of an individual sample.
It attempts to generate global interpretations, usually spanning
a range of values and signs due to the fact that feature impor-
tance is a local property for nonlinear models.[116–118] SHAP can
also give unreliable results when features are correlated, and thus
the results should be scrutinized by domain specialists. For NN
models, salience methods (e.g., class activation maps),[119] atten-
tion masks,[120] and partial derivatives (sensitivity analysis)[121]

are used to interpret these “black box” models. Interested readers
can find more details about model interpretations in the recent
review by Oviedo et al.[122]

Good practice in ML research requires good quality data.[26,36]

All data used, especially that obtained from different sources,
should be reproducible and comparable. To avoid overfitting,
featurization must be applied to optimize the number of
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Table 1. The characteristics and disadvantages of different ML algorithms and their applications to adsorbent materials.

Algorithm Purposes Characteristics Disadvantages Examples

Linear regression Regression • Simple and fast
• Good performance on small datasets
• Good interpretability

• Poor performance when feature–property
relations are nonlinear

[71, 75, 78, 82]

Logistic regression Classification • Simple and fast
• Good performance on small datasets
• Easy to be updated with new data

• Poor performance when feature–property
relations are nonlinear

• Poor performance on high dimensional
feature spaces

[83]

Kernel ridge regression
(KRR)

Regression • Provide nonlinear solution • Slow on large datasets [43, 84, 85]

k-nearest neighbors
(kNN)

Classification,
regression

• Simple principles
• Insensitive to outliers
• Nonlinear analysis
• Easy to be updated with new data

• Numbers of neighbors (k) are defined by
user

• Slow on large datasets
• Poor performance on biased samples

[78, 75, 86]

Naive Bayes Classification • Fast
• Insensitive to missing data and irrelevant

features
• Multi-class predictions
• Easy to be updated with new data
• Good interpretability

• Each feature should have independent
and equal contribution to the outcome

[86]

Support vector machine
(SVM)

Classification,
regression

• Available on high dimensional feature
spaces

• Provide nonlinear solution
• Provide small-sample solution
• Insensitive to outliers
• Global solution (no local minima issue)
• Good generalization ability

• Slow on large datasets
• No general rule for choosing kernel

function
• Only available for binary classification
• Sensitive to missing data
• Poor interpretability
• Tends to overfit models

[78, 75, 83, 86,
87]

Random forest (RF) Classification,
regression

• Ensemble of decision trees
• Available on large datasets with high

feature space dimensionality
• Can handle missing data
• Insensitive to outliers
• Good generalization ability
• Can evaluate feature importance (thus

can be used in feature selection)
• Resistance to overfitting

• High complexity
• Slow (when the number of decision trees

is large)
• Each decision tree should be independent
• Biased for small datasets

[78, 75, 83, 86,
70, 88]

Extremely randomized
trees (EXT)

Classification,
regression

• Similar to RF except using the whole
original sample instead of bootstrap

• Choose cut points randomly instead of
optimum split

• Less variance than RF
• Better generalization than RF

• Generates more decision trees in the
model than RF

• Larger bias than RF

[75, 88]

Gradient boosting trees
(GBT)

Classification,
regression

• Ensemble of decision trees
• Can handle missing data
• Can evaluate feature importance (thus

can be used in feature selection)

• Sensitive to outliers
• Tend to overfit when the number of

decision trees is large
• Slow for large datasets

[43, 75, 88]

XGBoost Classification,
regression

• More accurate than GBT
• The in-built regularization can prevent

overfitting
• Can handle missing data

• Slow for large datasets
• High space complexity

[88]

Neural network (NN) Classification,
regression

• High accuracy
• Intensive learning ability
• Can store information in the network
• Robust to missing data and noise

• No objective method for choosing
architecture unless Bayesian regularized

• Poor interpretability
• Local minima issues

[43, 78, 83, 89]

(Continued)
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Table 1. (Continued).

Algorithm Purposes Characteristics Disadvantages Examples

Deep neural networks Classification,
regression

• High accuracy
• Intensive learning ability
• Can store information in the network
• Robust to missing data and noise
• Can generate useful latent descriptors

from simple molecular representations

• Slow
• Many weights requiring large training

datasets
• Poor interpretability
• High complexity
• Requires effective regularization to avoid

overfitting

[90–92]

k-means Clustering • Simple and fast
• Unsupervised

• Numbers of clusters (k) are defined by
user

• Poor performance when the shapes of
clusters are irregular

• Sensitive to noise

[78]

DBSCAN Clustering • Numbers of clusters are obtained by the
algorithm

• Can handle clusters with irregular shapes
• Can identify clusters and noise
• Unsupervised

• Slow, especially on large datasets
• Poor performance when the clusters have

very different densities

[23]

Figure 2. Representations of a) deep neural networks (DNN) and b) con-
volutional neural networks (CNN). The DNN comprises one input layer,
one output layer, and a few hidden layers, each of the hidden layer con-
tains multiple neurons, where the inputs were passed forward and errors
backward to adjust the weights and bias of each node. The CNN is a class
of DNN in which the hidden layers consist of several convolutional and
pooling layers. The full connected layer is a traditional multilayer NN used
to predict the value or the class of the images.

features.[24,26,31,36] Some features, such as structural and energy
features, are more important for predicting gas adsorption for
adsorbent materials than others, but the complexity of their mea-
surement and calculation should also be considered. The re-
search objective and nature of the structure–property relation-
ship determine the selection of the ML model. Clearly, models

with good predictivity and interpretability are preferred, while
training time, size of training set, and domains of applicability
(the range of properties in which the model makes reliable pre-
dictions) should also be considered.[24,36,123] Using informative
features improves model predictivity and interpretability. Select-
ing such features and model interpretation requires collaboration
between materials scientists and data scientists. Ideally, ML mod-
els should be consistent with the known physicochemical theo-
ries or provide new insight for materials science.

3. Examples of Machine Learning Approaches for
Adsorbent Materials

ML models can be used in materials science in three main ways:
discovery, design, and optimization. In the development of ad-
sorbent materials, high-throughput first principles calculations
can be useful to simulate some properties but are limited by
the time and cost of the calculations. The gas adsorption capac-
ity of an adsorbent material, one of the most important met-
rics for these materials in commercial use, is influenced by lo-
cal properties such as structure, topology, and sorption sites for
gas molecules; properties difficult to simulate by physics-based
methods on a large scale. However, ML is not only effective in
predicting local properties but also in properties that are influ-
enced by intrinsic and external factors (e.g., gas adsorption and
selectivity).[24,28,31,124] ML models can be trained on the data gener-
ated by high-throughput calculations to rapidly predict the target
properties of related materials.[30,125,126] New materials are best
discovered using ML models with broad domains of applicabil-
ity to screen large databases of real or hypothetical materials to
identify candidates with potentially useful properties.[37,127] The
domain of a model is the range of feature space and property
space represented by the training data. The further away from
the domain that predictions are made, the less accurate they will
be. Moreover, target properties of materials can be improved by
modifying the structure, composition, or other features that are
suggested to have critical effects by ML models.[39,128,129] In this

Adv. Sci. 2022, 9, 2203899 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203899 (6 of 22)

 21983844, 2022, 36, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202203899 by L

a T
robe U

niversity L
ibrary, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advancedscience.com

section, ML applications to adsorbent materials are discussed,
including metal–organic frameworks, porous carbons, zeolites,
covalent–organic frameworks, porous polymers networks, and
intermetallics.

3.1. Metal–Organic Frameworks

MOFs are a class of hybrid inorganic-organic nanoporous mate-
rials formed by the self-assembly of metal clusters and polyden-
tate organic linkers as structural units that create open crystalline
frameworks.[17] Since their discovery, MOFs have garnered sig-
nificant interest for a wide range of applications such as gas sep-
aration and storage, catalysis, sensing, nonlinear optics and as
light absorbers due to their highly tunable nature.[130–134] In prin-
ciple, databases of millions of new MOF structures can be readily
generated by systematic functionalization of the well-known or-
ganic linkers, from which new MOFs with excellent target proper-
ties may be identified.[135–137] However, finding an optimal MOF
structure for a given application is challenging. For example, for
Zn2(1,4-benzenedicarboxylate)2(pyrazine) (ZBP), when the four
symmetric substitution points in this compound are function-
alized by a small library of 35 functional groups, there are a
total of 354 possible combinations of new MOF structures.[138]

It is impractical to locate the optimal MOF structures in such
large databases using experiments or physics-based computa-
tional methods. Therefore, ML methods can alleviate the compu-
tational burden by preselecting candidates with predicted high
performance.[40,139–144]

The porous structure, large surface area, and tunability of
MOFs provide exceptional performance in gas separation and
storage, especially storage of hydrogen, carbon dioxide, and
methane.[133,137,145] Many new MOF structures with high gas up-
take values and good selectivity have been discovered with the
assistance of ML techniques. Fernandez et al. described a ro-
bust SVM classifier that rapidly identified promising MOFs for
CO2 capture.[146] A database of 324 500 hypothetical MOF struc-
tures was generated by combining 66 structural building units
and 19 functional groups, of which 10% were randomly selected
to form a training set. Atomic property-weighted radial distribu-
tion function (AP-RDF) descriptors were used to represent the
atomic properties and electronic structural information of the
MOF structures. A grand canonical Monte Carlo (GCMC) simu-
lation was carried out to label the data points with the CO2 uptake
values at 0.15 and 1 bar CO2 at 298 K.[147] When screening a ma-
terial space of 292 050 MOFs, the 0.15 bar classifier successfully
identified 945 of the 1000 MOFs with the highest CO2 adsorption
capacity in the dataset. As the properties of only 10% of the MOFs
in the database needed to be calculated, and a high accuracy pre-
diction was achieved, the ML approach proved useful for acceler-
ated screening of large search spaces. Burner et al. developed a
NN model to predict the CO2 uptake capacity and CO2/N2 selec-
tivity of MOFs under low pressure.[148] The model was trained on
a dataset of 340 000 MOFs with over 1000 topologies. They found
that the model had the best pe rformance when six geometric de-
scriptors together with AP-RDF and chemical motifs were used
as features. The model identified 994 MOFs with the highest CO2
adsorption capacity from a test set of ≈70 000 MOFs.

ML has been used to elucidate feature–property relations. Fer-
nandez et al. investigated the relationships between the geomet-
ric features of MOFs and their CO2 and N2 adsorption using an
RF model.[78] 81 679 MOFs with unique frameworks were col-
lected from the Northwestern University database, from which
16 000 data points were selected as a training set. Five geometric
descriptors (dominant pore size, maximum pore size, void frac-
tion, volumetric surface area, and gravimetric surface area) used
to train the RF classifier yielded an accuracy >94% for both gases.
It identified over 70% and 60% of MOFs known to have high per-
formance for CO2 and N2 capture, respectively, in a vast search
space of ≈65 000 MOFs. They also developed a binary decision
tree model to suggest the optimal combination of the five de-
scriptors that enhance the CO2 uptake under low pressure, previ-
ously only achieved by a sophisticated radial distribution function
model (Figure 3). Anderson et al. studied the effects of geometric
and chemical features on the prediction accuracy of CO2 capture
using several ML models.[149] The ML methods provided an unbi-
ased approach to evaluating the importance of the descriptors on
materials performance, providing useful insight into structure–
property relationships. As is often the case, improvement in CO2
capture prediction depended strongly on the chemical descrip-
tors, while the absolute values of CO2 capture prediction were
mostly related to the geometric descriptors. In addition, ML tech-
niques could be used to bypass the complicated first-principle cal-
culations and predict the partial charges of MOFs, with which the
CO2 adsorption properties could be accurately calculated.[116]

Another important application for MOFs is gaseous fuel stor-
age. The effects of different ML algorithms and descriptors on
fuel gas adsorption prediction accuracies have been investigated.
Pardakhti et al. constructed four ML models of CH4 uptake using
chemical and crystal structure descriptors.[150] The RF model had
the best performance, and incorporation of chemical descriptors
greatly enhanced prediction accuracy while maintaining compu-
tational efficiency. Kim et al. studied the CH4 uptake isotherm at
a range of temperatures from the isotherm at 298 K using three
ML models. Texture features such as surface area and total pore
volume, obtained from gas adsorption–desorption experiments,
were the major determinants of CH4 uptake capacity of MOFs at
different temperatures.[151] Instead of using experimentally de-
rived features, Gurnani et al. created fingerprints to represent
137 953 hypothetical MOFs.[73] They used a series of atomic fea-
tures describing the coordinating metals (e.g., electronegativity,
ionization energy, atomic radii, etc.), and exploited the SMILES
strings for the linkers. The speed and generalization ability of the
model for CH4 uptake capacity of MOFs were analyzed in this re-
port. Wang et al. used the molecular graph (the way the atoms are
connected) of MOFs as descriptors and developed a CNN model
to predict their CH4 adsorption properties.[152] This model could
reliably recapitulate the properties of the test set so was used to
screen a database of 330 000 hypothetical MOFs to discover four
MOFs with excellent predicted CH4 adsorption ability. Moreover,
this model showed good transferability and could be used to pre-
dict the CH4 adsorption for COF and zeolitic imidazolate frame-
work (ZIF) materials.

Clearly, feature choice significantly affects the model accuracy.
Anderson et al. built a NN model to predict the amount of H2 ad-
sorbed at different temperatures and pressures.[153] To simplify

Adv. Sci. 2022, 9, 2203899 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203899 (7 of 22)
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Figure 3. Binary decision tree models of MOFs with a) high CO2 capacity (higher than 1 mmol g−1) and b) high N2 capacity (higher than 0.5 mmol
g−1). The output nodes referring to low and high gas uptake capacity are highlighted in blue and red color, respectively. Reproduced with permission.[78]

Copyright 2016, American Chemical Society.

the model, they used seven features that could be readily ob-
tained by calculations: void fraction, framework density, largest
cavity diameter, pore limiting diameter, volumetric surface area,
alchemical catecholate site number density, and the epsilon for
the interaction of hydrogen with the alchemical sites. This model
suggested that a large reduction of pressure (from 100 to 35 bar)
only slightly influenced the H2 adsorption capacity. Such a reduc-
tion of H2 pressure could improve safety and compression costs
in commercial use. Borboudakis et al. studied CO2 and H2 ad-
sorption with ensemble learning from three ML models. They
represented the structures of the MOFs by encoding the pres-
ence or absence of the building blocks (such as organic linker,
metal cluster, and functional groups) as a binary parameter.[154]

Although the accuracy of this method was acceptable, it was not
able to predict gas adsorption of MOFs whose linkers or met-
als were outside of the domain of the training set. To address
this, the building block features were substituted by the atom
type number density (calculated by the numbers of a particu-
lar atom in the MOF unit cell over the unit cell volume) in each
structure, and bonds, angles, torsions, and pair interactions were
used to represent the elements and connectivity types.[155] An RF
model was established after training 100 times with randomly
selected training sets ranging in size from 50 to 10 000. The ef-
fects of three feature families (structural features alone, struc-
tural features with MOF building blocks, and structural features
with atom type number density) were studied. For CO2 and CH4
adsorption under the pressures examined, significant improve-
ments were obtained when atom type number density was used
(Figure 4). These features allowed the model to be extended to dif-
ferent porous materials such as COFs. Ma et al. trained a DNN
model on the H2 adsorption data with 13 506 MOFs at 100 bar and
243 K.[92] The MOFs were represented by five physical features
(void fraction, volumetric surface area, gravimetric surface area,
pore limiting diameter, and largest cavity diameter). The good
generalizability of this model made it useful for predicting H2
adsorption at 130 K as well as being applicable to predicting CH4
adsorption under similar conditions. Unsurprisingly, the model

showed poor performance when applied to Xe adsorption, indi-
cating the large differences in feature–adsorption relations be-
tween fuel gases and inert gases.

The use of solid adsorbents for noble gas adsorption and
separation has progressed with the help of ML techniques. Liang
et al. built a XGBoost model with seven physical features to pre-
dict the Xe/Kr adsorption and selectivity of MOFs.[156] Xe is an
important propellant used for ion thrusters in spacecraft, there-
fore, the separation of Xe from Kr is critical for aerospace energy
applications. They found that the density, porosity, pore volume,
and pore limiting diameter of MOFs are crucial features affecting
the Xe/Kr adsorption. Surprisingly, this model could be extended
to screen the MOFs for the separation of a CH4/CO2 mixture.

ML methods can also be used to design MOFs, providing guid-
ance for synthesizing MOFs and other porous materials with
bespoke properties. Zhang et al. reported a combined computa-
tional approach using a Monte Carlo tree search (MCTS) (an al-
gorithm analogous to reinforcement learning)[157] and recurrent
neural networks (RNN, a type of NN developed to tackle sequen-
tial data)[158] to design MOFs for CO2 adsorption (Figure 5).[159]

This approach begins with a given metal vertex, a MOF topology,
and the target property (CO2 adsorption). An RNN model was
trained on 168 130 SMILES strings representing linkers (edges)
collected from the ZINC database. The MCTS built a tree in
which each node denoted one symbol from the SMILES string by
repeating four steps: selection, expansion, simulation, and back-
propagation. In the first step, a path from the root (metal node) to
a node at i level of the current tree was built by choosing the child
nodes with maximum upper confidence bound that considered
the sum of the target property after i simulations. After reaching
the leaf of the current tree, child nodes (any valid symbols in
SMILES string) were expanded under the nodes at level i. Then,
the RNN model created the remainder of the strings to simulate
a complete linker based on the partial string already built. Using
this simulated linker, metal node, and the topology, a MOF was
constructed whose CO2 adsorption capability was simulated us-
ing GCMC. This predicted CO2 adsorption value was then back-

Adv. Sci. 2022, 9, 2203899 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203899 (8 of 22)

 21983844, 2022, 36, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202203899 by L

a T
robe U

niversity L
ibrary, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advancedscience.com

Figure 4. Variation of the R2 versus the training set size for (left column) CH4 and (right column) CO2 under different pressures. Reproduced with
permission.[155] Copyright 2020, American Chemical Society.

propagated to the tree and used to update the upper confidence
bound on each node. These four steps were repeated iteratively
until the string hit the terminal symbol or the maximum length.
Several MOFs with high CO2 adsorption were thus designed
using 10 combinations of metal nodes and topologies extracted
from experimental MOFs reported in the literature. Moreover, by
applying the topological data analysis, new MOFs with diverse
topologies could also be designed. Despite the success of this ap-
proach, there can still be difficulties in synthesis or self-assembly
of the MOFs, hence their ability to form stable materials with
the expected structures. To address this issue, Collins et al.
used a genetic algorithm to optimize and discover MOFs.[160]

To optimize ZBPs [Zn2(1,4-benzenedicarboxylate)2(pyrazine)],
they used 28 common functional groups to generate 96 156

hypothetical, stable structures. The materials genome used by
the genetic algorithm was the sequence of equivalent sites and
their associated functional groups, while the CO2 uptake was the
fitness function. After genetic algorithm optimization, a 4.8-fold
increase in the CO2 uptake was achieved by a new structure.
The method was extended to optimize 141 experimentally char-
acterized MOFs, giving rise to 1035 functionalized structures
that were predicted to have exceptional CO2 uptake (>3 mmol
g−1 at 0.15 atm and 298 K). Using a different approach, Moosavi
et al. attempted to optimize the synthesis conditions and build
knowledge on accessible chemistries based on successful and
failed synthesis experiments.[161] A robot was used to synthesize
Cu-BTC[162] (BTC is benzene-1,3,5-tricarboxylic acid) by manipu-
lating nine synthesis parameters (Figure 6). Since experimental

Adv. Sci. 2022, 9, 2203899 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203899 (9 of 22)
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Figure 5. Schematic of an algorithm to design an application-specific MOF. With given inputs about target application and type of metal node and net,
organic linkers were generated by combining the MCTS and RNN. A new MOF constructed by Zeo++ underwent a performance check for the target
application and then internal parameters in MCTS were updated. Reproduced with permission.[159] Copyright 2020, American Chemical Society.

Figure 6. a) Projection from a 9D parameter space to a 2D plane. Grey dots denote the known synthesis conditions. b) Progress in crystallinity in different
generations. c) Relative importance of the nine parameters on Cu-BTC synthesis. d) Scanning electron microscopy images of several Cu-BTC samples.
Scale bars were 5, 4, and 10 μm for the samples shown from left to right, respectively. Reproduced with permission.[161] Copyright 2019, Springer Nature.

exploration of these parameters is infeasible, a genetic algorithm
was used to accelerate the optimization, with crystallinity, phase
purity, and surface area as fitness functions. An RF model
was trained to rank parameter importance. It was found that
the amount of water and DMF played the largest roles in the
synthesis, while the temperature had three times more impact

than changing the reactant ratios. Accordingly, a new synthesis
could be designed for optimal targets.

There is also increasing interest in the electronic properties
and stability of MOFs.[130–132] Although most MOFs are insu-
lators with bandgaps over 2 eV, conductive MOFs have been
discovered by experiments and theoretical simulations.[163,164]

Adv. Sci. 2022, 9, 2203899 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203899 (10 of 22)
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Because of their high porosity and large surface area, conductive
MOFs are largely used for electrochemical energy conversion
and energy storage.[165–167] ML methods have been used to
accelerate the screening of large search spaces to discover new
conductive MOFs. Despite the large amount of information on
MOFs in databases, bandgap information is seldom provided.
This is an important characteristic when searching for conduc-
tive MOFs. Transfer learning, where the model stores knowledge
gained from one property then applies it to solve problems in
other properties, was employed to tackle this issue.[83] Four ML
models (logistic regression, SVM, NN, and RF) were trained
using 52 300 inorganic compounds from the Open Quantum
Material Database and 45 optimized descriptors. Subsequently,
t-SNE was used to reduce the 45D space to a 2D space, with
data points exhibiting some overlap. The authors proposed that
this bandgap model could be used to predict the bandgaps of
MOFs. To increase the accuracy of prediction, a consensus of
predicted bandgaps from four models was used to find those
likely to be conductors. From a pool of 2932 MOFs, nine were
predicted to be conductive, with six subsequently confirmed as
conductive by ab initio calculations. In addition to transfer learn-
ing, CNN models were found to accurately predict the bandgap
of MOFs. Kernel ridge regression (KRR) models with SOAP
fingerprints or composition-based features predicted bandgaps
less accurately than the CNN model.[168] The water stability of
MOFs is an important property for commercial applications in
gas storage, which has also been investigated by ML techniques.
ML classifiers have been constructed using features encoding
metal electronic properties, linker SMILES strings, molar ratios
of the linkers, numbers of O, OH, H2O species with respect to
metals, culminating in discovery of several MOFs with aqueous
stability.[169] ML methods were used to avoid the detrimental
effects of water on MOF gas adsorption, identifying two water-
stable MOFs by a computational screen of 300 000 MOFs.[170]

Artifical intelligence approaches have also been applied to de-
sign MOF-based devices. For example, the fabrication of gas
(CH4) sensors composed of MOF arrays was optimized by a ge-
netic algorithm.[171] By optimizing the parameters of the arrays,
both the selectivity and the sensitivity of the sensor were signifi-
cantly enhanced. This study had practical applications in detect-
ing and preventing natural gas leaks in the methane fuel industry.

These examples have exemplified the fact that ML methods
can reduce the computational cost and accelerate screening of
extremely large MOF spaces. New MOFs with diverse topolo-
gies, coordinating metals, and molecular structures for a range
of applications have been designed using ML methods.[84] These
methods can be extended to different frameworks and will widen
the applications of MOFs.

3.2. Porous Carbon

Porous carbon is a promising material for gas capture due to
its low cost, fast adsorption–desorption kinetics, large surface
area and pore volume, and tunable pore structure.[172,173] ML ap-
proaches can elucidate the relationship between physical proper-
ties and gas adsorption ability of carbon.[32] Zhang et al. trained a
NN model on a set of ≈1000 CO2 adsorption data points from lit-
erature and experiments (Figure 7).[174] The three descriptors that

had the most significant effect on the adsorption model were sur-
face area, mesopore volume, and micropore volume. This model
accurately predicted CO2 adsorption properties of porous carbon
materials. Zhu et al. illustrated in detail the effects of different
types of pores on CO2 adsorption.[74] They trained a RF model
on 6244 CO2 adsorption data points generated for 155 porous
carbons and found that increasing the volume of micropores
and mesopores had a negative effect on CO2 adsorption under
low pressure. However, the model indicated that increasing the
volume of ultra-micropores improved CO2 adsorption when the
pressure increased. To study the selectivity of CO2 adsorption,
Wang et al. trained a DNN model on experimental data for CO2
and N2 uptake on porous carbons and concluded that high CO2
selectivity could be achieved when the porous carbons possessed
moderate micropore (0.4–0.6 cm3 g−1) and mesopore volumes
(0.4–1 cm3 g−1).[175] To further elucidate the effects of porosity
on CO2 selectivity, a CNN model was built to predict the separa-
tion performance of porous carbon, using a CO2/N2 mixture as
a test case.[176] The model suggested that the best porous carbon
with high CO2 adsorption selectivity should have pores with a bi-
modal size distribution, in which the pore size was in the range
of 3–7 nm or less than 2 nm.

The effects of the features of porous carbon on fuel gas adsorp-
tion has been studied by ML methods by Zhang et al. who trained
a feedforward NN model on the literature data. They used this
model to understand the relationships between physical prop-
erties of the adsorbent and CH4 adsorption.[177] Kusdhany et al.
also trained an RF model on a dataset of 1745 data points from
68 porous carbons.[118] The model showed that pressure and sur-
face area played critical roles in H2 uptake capacity prediction,
Unlike previous studies, they found that oxygen content was also
an important factor in predicting H2 uptake, while pore volume
had little effect.

These examples indicate how ML can guide the design of
highly efficient gas adsorbents and provide a better understand-
ing of the gas adsorption kinetics by highlighting the importance
of physical parameters that may have been previously unrecog-
nized. It is expected that ML models will become even more
useful tools for designing and optimizing porous materials and
uncovering new physical insights about gas adsorption mecha-
nisms when larger and more reliable datasets become available.

3.3. Zeolites

Zeolites are microporous crystalline aluminosilicate
materials[178] with well-defined cavities and pores that make
them very useful for catalysis, adsorption, ion exchange, renew-
able energy conversion, and water purification.[21,178,179] Much
effort has been devoted to designing and tailoring zeolites for
specific applications.[21,180,181] Gas adsorption in zeolites has
been more extensively studied by ML techniques than most
other porous materials. Pai et al. used ML to optimize the oper-
ating conditions for CO2 adsorption and selectivity for zeolites,
suggesting that this technique could be used to develop zeolites
for post-combustion CO2 capture.[182] Göltl et al. investigated the
CO and NO adsorption of zeolites SSZ-13 and pentasil zeolite
mordenite by a linear regression model.[183] The variables in
this model were optimized by a genetic algorithm. By analyzing
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Figure 7. a) Schematic architecture of a DNN model. Inputs were surface area (SBET), mesopore volume (Vmeso), and micropore volume (Vmicro),
and output was CO2 capture capacity. Each line between two nodes represented a weight. By tuning these weights, the input–output relation can be
simulated. b) The experimental predicted CO2 adsorption versus model predicted CO2 adsorption. c) The correlation between 20 experimental CO2
adsorption data points and the corresponding model predicted values. Reproduced with permission.[174] Copyright 2019, Wiley-VCH.

the correlations between the descriptors, they found that the
position of the s orbital, the number of valence electrons at the
active site, and the HOMO−LUMO gap of the adsorbent had
the largest impact on gas adsorption. The reconstruction of the
active sites also had a noticeable effect on adsorption. As CO and
NO are useful molecular probes in studies of adsorption and
conversion of industrial and car exhaust gases (CO, CO2, NOx)
by zeolites, this investigation provides a rational basis for the
design of next generation zeolites with improved capacity and
activity for the adsorption and conversion of greenhouse gases
and toxic exhaust gases.

State-of-the-art computational techniques have also been used
in the zeolite design. Kim et al. implemented a generative ad-
versarial NN to produce novel zeolites for CH4 capture (Figure
8a).[184] The model was trained on 31 713 zeolites, pairing the
positions of oxygen and silicon atoms and the CH4 potential
energy grids. A total of 121 new porous structures were iden-
tified to have the desired heat of adsorption for CH4, and this
model could be extended to predict the heat of adsorption of other

gases on other porous materials including MOFs and COFs. Cho
et al. constructed a 3D CNN model on 6500 hypothetical zeolites
that exhibited high prediction accuracy for CH4 adsorption.[185]

To enhance the model generalization ability, Sun et al. devel-
oped a meta-learning model to predict H2 adsorption for a se-
ries of adsorbent materials under a wide range of pressure and
temperature.[186] Meta learning is a technique that uses ML algo-
rithms to determine the best combination of individual models
for a new target (but related to the targets on which the individ-
ual models have been trained) with a small amount of training
data.[187] In the study of gas sorption isotherms, a model show-
ing good performance on one subset (e.g., gas adsorption of a
series of materials, or gas adsorption under a range of pressure
and temperature) might predict the adsorption poorly on another
subset. Therefore, it is necessary to employ meta learning to find
correlations between the model performances and the subsets,
with which the meta learning model is built to adapt to the gas
adsorption dataset generated from multiple materials or under a
large range of pressures and temperatures (Figure 8b). Using the
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Figure 8. a) Schematic of the generative adversarial NN for zeolite design. Green dots referred to methane potential energy, and material grids indicated
silicon (red) and oxygen (yellow) atoms. The energy and material grids of generated zeolites were evolved from Gaussian noise distribution, and the
earth mover distance (EMD) between the real and generated energy & material grids was the metric to determine the convergence of training. Periodic
padding, feature matching, and lattice constant generating network were added into the “Critic network” to infer rational lattice constants from grids.
Reproduced with permission.[184] Copyright 2020, American Association for the Advancement of Science. b) Schematic of the meta-learning technique.
Instead of building individual models on different subsets (base learning), meta learning consolidated the prediction of all materials into a single model.
Reproduced with permission.[186] Copyright 2021, American Association for the Advancement of Science.
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meta learning technique, the meta learning model was available
for predicting the optimal H2 storage temperature under a given
pressure for a large variety of adsorbents including all-silica zeo-
lites, hyper-crosslinked polymers, and MOFs.[186]

As gas adsorption and separation often require high pressure,
the mechanical properties of zeolites are an important consid-
eration for their commercial use. Evans et al. studied the elas-
tic properties of zeolites using a GBR model and identified im-
portant features of SiO2 polymorphs that modulate their elastic
response.[188] Kim et al. used an active learning technique to find
the zeolite structures with the highest shear moduli.[66] Start-
ing from the International Zeolite Association (IZA) database
where only a few zeolites were labeled by their shear moduli, they
trained a ML regression model to predict the shear moduli of the
rest of the zeolites in the IZA database. Then, they chose the ze-
olites that were most likely to have good mechanical properties
from the test materials via the Bayesian optimization method, la-
beled their shear moduli by DFT calculation, and returned them
to the training set to re-train the regression model. This process
was repeated until the model predictions and the DFT calcula-
tions were concordant. 23 novel zeolite structures having excel-
lent shear moduli were discovered using this active learning tech-
nique. As with the other porous materials classes, the ZIF exam-
ples also illustrate the great potential of ML approaches for design
and optimization of zeolite adsorbents.

Apart from property improvement, design of synthesis routes
and optimization of synthesis conditions are another important
application of ML.[189] Most zeolites are generated by hydrother-
mal synthesis that is controlled by multiple correlated parame-
ters and complex crystallization kinetics.[179] This makes it dif-
ficult to rationally optimize the synthesis conditions, hitherto
relying on trial-and-error or theoretical simulation methods to
uncover feature-property relationships. Consequently, ML ap-
proaches have been developed to guide the synthesis of zeolites
with bespoke properties.[190] Daeyaert et al. trained a NN model
on a set of 4781 organic structure directing agents, using molecu-
lar features as input and the stabilization energy for polymorph A
zeolite beta, an important zeolite for enantiospecific catalysis and
gas separation, as the predicted property.[191] The accuracy of the
ML model predictions of stabilization energy was comparable to
that from more computationally demanding molecular dynamics
simulations. This model was used to search a much larger ma-
terials space, and several molecules were identified as structure
directing agents in terms of their stabilization energy. These new
molecules were potentially useful for the synthesis of polymorph
A zeolite beta. Ma et al. reported a ML-based atomic simulation
method to guide design of new SixAlyPzO2Hy−z zeolites[192] that
are useful for gaseous fuel adsorption and separation.[193,194] They
discovered that structure directing agents were important for
the formation of micropores for aluminophosphates, silicoalu-
minophosphates, and pure silica zeolites, while strong alkali was
much more important than structure directing agents for the for-
mation of aluminosilicates. Similar ML modeling techniques are
being increasingly used in zeolite design and screening.[37,190,195]

Jensen et al. extracted information on the synthesis of CHA
and SFW zeolites from literature using a combination of natu-
ral language processing, HTML and XML parsing, and regular
expressions.[196] A RF model trained on these data indicated the
importance of specific synthesis conditions, the Si/Ge molar ra-

tio, the H2O/T molar ratio (T is the TO4 tetrahedron in zeolites),
and the volume of the organic structure directing agent on ze-
olite framework design. CHA and SFW zeolites are promising
materials for the mitigation of pollutant gases and adsorption of
H2 and CH4. This study provides a pathway to materials with im-
proved clean energy storage and useful environmental remedia-
tion properties.[197,198] Corma et al. used ML methods to predict
synthesis conditions for successful zeolite syntheses,[199] a well-
known greenhouse gas adsorbent.[200,201] They elucidated the re-
lationships between different synthesis parameters with the per-
formance of Ti-silicates using a NN model, and used this to op-
timize the synthesis of the next generation of materials using a
genetic algorithm. Specifically, they found that the catalytic per-
formance of the zeolite was enhanced by decreasing the amount
of organic modifier while maintaining the OH/Si ratio of ≈0.2.
To further illustrate synthesis condition–structure relationships
and to provide direction for synthesis of unknown zeolites, Mu-
raoka et al. used an extreme gradient boosting RF model. They ex-
tended its prediction space through a similarity network of crystal
structures based on structural features and synthesis parameters
(Figure 9).[202] This model was initially trained on a set of experi-
mental data with synthesis parameters. The good accuracy in pre-
dicting the synthesis of zeolites with various structures allowed
it to be extended to the prediction of synthesis of zeolites with
structures outside the training set. They also generated structure
fingerprints for each zeolite and merged them into the feature
set. The zeolites were grouped by a k-means clustering algorithm
where the similarity of two zeolites involved both structural and
synthesis similarity. With the assistance of this similarity net-
work, the model established optimal conditions for the synthe-
sis of some novel zeolites and thus extended the diversity of the
available dataset.

3.4. Other Adsorbent Materials

COFs (a class of porous polymer framework) have been
widely used for H2, CH4, and CO2 storage in clean energy
applications.[18] Unlike MOFs and ZIFs, COFs are composed
entirely of light elements (e.g., H, C, B, O).[203] These ele-
ments are linked by covalent bonds to form porous structures.
High-throughput COF construction has been facilitated by an
evolutionary algorithm, and large COF databases have been
constructed.[204] However, it takes significant time and resources
to explore the large chemical space of COFs with desired prop-
erties by traditional calculations (e.g., GCMC). ML approaches
have been adopted to accelerate these property predictions. Des-
granges et al. created ensemble models by averaging the outputs
of the NN models with diverse architectures,[205] which were ap-
plicable to a broad range of applications such as prediction of
CO2 adsorption in IRMOF-1 (Zn4O(BDC)3, where BDC2− = 1,4-
benzodicarboxylate), H2 adsorption by COF-102, and the sepa-
ration of methane and ethane by COF-102 and COF-108. Opti-
mization of ML model performance was achieved by appropri-
ate choices of algorithms and model descriptors. Yang et al. used
a tree-based pipeline optimization tool (TPOT) in an automated
ML platform to analyze the CH4 uptake by 403 959 COFs.[206]

TPOT optimized the model parameters using genetic algorithms,
and outperformed other traditional ML models (RF, SVM, etc.).

Adv. Sci. 2022, 9, 2203899 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203899 (14 of 22)
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Figure 9. Workflow to link synthesis parameters to structure features in zeolites. a) ML models were constructed from literature data. b) Synthesis pa-
rameters mapped the synthesizable domains of zeolites onto a multidimensional phase diagram. xi encoded the importance of each synthesis parameter
assessed by the ML models. The synthesis similarity was represented by the distance between the centers of the synthesis conditions for each phase. c)
Structure features defined the structural similarity in a multidimensional space representing the presence or absence of building units. d) A network was
constructed by connecting structurally similar zeolites based on the structure features. The resulting clustering was verified with data in the literature
and experiments. Reproduced with permission.[202] Copyright 2019, Springer Nature.

Fanourgakis et al. studied the performance of models of the CH4
uptake trained on 69 840 COFs and 4763 MOFs.[207] Their results
showed that the use of relevant materials features resulted in ex-
cellent predictivity for materials properties when models were
trained on a small subset of the training data rather than the en-
tire training set (Figure 10). This approach could significantly re-
duce the computational cost of the construction of the training
set using expensive physics-based methods.

Porous polymer networks (PPNs) are another new type of ad-
sorbent material. They possess a reticular structure with robust
covalent bonds of organic linkers. They exhibit superior surface
areas and much better stability than MOFs, making them popular
choices for gas storage and separation.[208–210] Pardakhti et al. re-
ported quantitative relationships between the chemical features
and CH4 uptake of PPNs using RF models trained on 17 846
PPNs.[211] Chemical features such as number and type of atoms,
electronegativity and degree of unsaturation, played important
roles in the CH4 uptake under low pressure, while physical fea-
tures such as surface area and void fraction dominated the ad-
sorption under high pressure. This study highlighted the contri-
butions of surface atoms to gas adsorption that are helpful for
adsorbent materials screening and design.

Intermetallics are important materials for gas storage, partic-
ularly hydrogen.[212] Jäger et al. used a KRR model with local
structural descriptors (e.g., SOAP, ACSF) to accurately predict
the hydrogen adsorption energy on an Au-Cu alloy surface. How-
ever, construction of local structural descriptors was complex.[213]

Witman et al. developed a GBT model using the descriptors de-
rived from intermetallic composition only, rather than any struc-

tural or hydride information, to predict the log equilibrium pres-
sure of H2, lnPeq.[214] 145 compositional descriptors were used
to train the model, and descriptor relevance analysis identified
the specific volume per atom for a given composition as most
important. Since this has limited physical interpretability, a new
descriptor encoding the volume per atom in a crystal was gener-
ated and a similar relationship with lnPeq was confirmed. This
ML model enabled researchers to predict the hydrogen storage
capacity of intermetallic materials from compositional informa-
tion. ML models have also been employed to predict the CO ad-
sorption energy of a thiolated Au-Ag nanoalloy. It was found that
the CO adsorption largely depended on structural features of the
Au-Ag alloy, and the ML model allowed very fast screening of can-
didates for further analysis.[94]

4. Summary and Outlook

ML techniques are becoming invaluable for adsorbent materials
discovery and design. Coupled with resource-intensive DFT
and GCMC calculations and experiments, ML has robustly and
effectively predicted gas uptake, discovered unknown feature–
adsorption relations, and optimized synthesis conditions. Many
ML models have achieved high accuracy, comparable to first
principles calculations, and can elucidate complex feature–
property relations efficiently given sufficient reliable data. The
use of ML methods allows rapid exploration of large material
spaces, provides a rational basis for material design with bespoke
properties, and provides new physical insights from large and
complex datasets. Table 2 summarizes the adsorbents discovered
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Figure 10. a) Flowchart of the self-consistent ML approach. From the top of the flowchart, it can be seen that this approach started from randomly
picking 100 materials from a database as the initial training set. After labeling by GCMC, a ML model was trained on this training set. The ML model
was then used to predict the gas adsorption of all materials in the database, and the top 100 materials would be selected as the new training set until
the top 100 materials were the same as the those in the training set. Average results for the b) MOFs and c) COFs obtained from 100 individual runs.
Each pair of bars corresponded to calculations with the “high” (blue bar) and the “low” (red bar) accuracy features, respectively. The average number
of MOFs and COFs with top performance found during the 100 individual runs was denoted inside these bars. The gray bars show the average number
of the total structures included in the final training set. Inside these bars, the number of structures is denoted in black, together with the percentage of
the top performing structures found in the final training set. The approximate number of structures required to be randomly selected from the original
training set was denoted in red. The red error bar showed the minimum and the maximum value found during the 100 individual runs. The corresponding
standard deviation was shown with a green error bar. Reproduced with permission.[207] Copyright 2020, American Chemical Society.

Table 2. The adsorbent materials with leading gas uptake capacity discovered by ML techniques.

Adsorbents Year of
discovery

ML features ML
algorithms

Gas Results Note Ref.

MOF (qtz-sym-4-
mc-Si-L2)

2019 Topographical
features

NN H2 Uptake capacity: 62 g L−1 under
100 bar/77 K to 5 bar/160 K

Simulated value. The highest
deliverable capacity of H2

that can be attained
without extreme pressure
conditions

[153]

MOF (MFU-4l (Zn)) 2019 Energy histogram,
structural features

LASSO H2 Uptake capacity: 47 g L−1 under
100 bar/77 K to 5 bar/160 K

Experimental value [71]

MOF (DUT-23 (Cu)) 2022 Topographical
features

GBR CH4 Uptake capacity: 373 cm3 (STP)
cm−3 under 250 bar/120 K to
65 bar/298 K

Experimental value [215]

MOF (MIL-47) 2016 Structural features Genetic
algorithm

CO2 Uptake capacity: ≈4 mmol g−1 at
0.15 atm/298 K 0

Experimental value [160]

MOF (Al-PMOF) 2019 Structural features ML assisted
data mining

CO2 Uptake capacity: 6 mmol g−1 at 2000
mbar/313 K

Experimental value [170]
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Figure 11. a) The true distribution of the green dots and blue dots in a space, where the green dots are our target. b) On the basis of the initial training
set, only a single feature (x1) may appear important, resulting in a hyperplane perpendicular to the x1-axis (red line). c) Once the hyperplane is learnt,
the continuous discovery of green dots on the right side of the hyperplane may strengthen the confidence of the model to look for items on the right
side of the hyperplane, and thus a correct hyperplane is never determined.

or designed by ML techniques to have substantially improved gas
uptake capacity. The application of ML to adsorbent science and
engineering is an important step to fast-track the discovery and
optimization of adsorbent materials to address climate change
challenges.

The studies summarized in this review show how ML accel-
erates material development; however, many of the outputs were
hypothetical materials. These adsorbent materials may have com-
plicated synthesis procedures or synthesis may not be possible
at all. To increase the likelihood of successful synthesis of the
adsorbent materials proposed by ML property models, training
data and screening scope could also be restricted to materials that
have previously been synthesized.[89] However, new ML models
have now also made significant inroads into predicting the syn-
thesizability of porous materials.[202] The results reviewed here
also emphasize the importance of close collaboration between
computer scientists and experimental experts, both to provide the
essential data for training models, but also to allow predictions of
ML models to be tested experimentally. Clearly, models are much
more useful and generate greater confidence when their predic-
tions are subject to experimental validation. Thus, computational
and experimental researchers should work together from the very
beginning of projects to establish the ML strategies that achieve
materials with optimal properties for a given application.

A major challenge limiting the application of ML to the de-
velopment of adsorbent materials is the size, range, and qual-
ity of the dataset. Despite the rise in the number of porous ma-
terials databases, collecting calculated and experimental data la-
beled by target properties (e.g., gas uptake, selectivity, mechanic
properties) is expensive and time-consuming. Therefore, it is im-
portant to develop techniques for generating reliable ML mod-
els from small samples, especially using high-throughput and
robotic methods. In this review, some cutting-edge solutions have
been described, such as active learning, transfer learning and
meta learning, that have been applied to address this issue for
adsorbent material studies. However, care must be taken to avoid
the attentional learning trap and biases depicted in Figure 11.[216]

Avoiding this issue requires the involvement of a human op-
erator who, for example, can reduce the rewards in reinforce-
ment learning to force the model to explore new routes, or add

different rewards. The limited ability to predict outside the do-
main of the training data is another limitation, however this will
be ameliorated by the increasing availability of data from high-
throughput experiments and computation. Moreover, by iden-
tifying an optimally sparse subset of relevant features, overfit-
ting can be avoided when robust models are built using rela-
tively small datasets, and model interpretation simplified. Re-
cently, new techniques based on evolutionary algorithms, such as
symbolic learning[217] and the sure independence screening and
sparsifying operator (SISSO),[218] have been developed to gener-
ate informative features from large feature pools. The generation
of meaningful features is essential to generate robust and pre-
dictive models that can usefully guide material development and
optimization.

In addition to small sample techniques and feature genera-
tion, training data can be expanded by data sources other than
databases. Experimental and computational information in the
literature can be batch extracted by text mining techniques. Su-
pervised natural language techniques and unsupervised word
embedding techniques have been employed to capture the knowl-
edge in the materials science literature.[43,89,219,220] However, the
sparsity and inhomogeneity of the experimental information
from diverse literature sources limits their use for ML model con-
struction. The reproducibility of experimental and computational
information is another obstacle to compiling data from heteroge-
neous sources. Experimental data ideally should be collected by
conducting experiments under the same experimental setup and
conditions. However, it has been reported replicated syntheses
of MOF adsorbent materials is low.[221] Some key features of ad-
sorbent materials, such as surface area, are difficult to reproduce
because of differences in calculation approaches and ambiguities
in molecular structure.[222] Eliminating these issues requires au-
thors to provide additional metadata in their publications of syn-
thesis and characterization methods, thereby ensuring the qual-
ity and reproducibility of the reported material. Further develop-
ment and wider use of materials ontologies should also assist in
improving reproducibility of syntheses and experimental charac-
terization of adsorbent (and other) materials. Likewise, the repro-
ducibility of the computational information should also be guar-
anteed by providing open access to the data, input and output
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files, and the software or codes used for computation.[223] In ad-
dition, high throughput experiments promise to generate large
quantities of data for specific materials systems,[32,224,225] but we
stress that experimental data on poorly performing materials are
also valuable for training the most robust ML models.[40] An in-
teresting and very recent development is autonomous laborato-
ries that merge ML techniques with robotics,[30,128,226,227] where
synthesis and characterization are carried out without human in-
tervention. This is a potentially valuable future solution to col-
lecting high-quality experimental data on the large scale and
autonomously discovering potential adsorbent materials (e.g.,
porous perovskites,[228] porous spinel[229,230]) with multiple favor-
able properties (e.g., gases or ions adsorption ability, porosity, se-
lectivity, synthesizability, stability, cost) simultaneously. Further
integration of ML, materials science, and engineering will accel-
erate adsorbent material discovery and find solutions for energy
diversification and for combatting climate change.
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