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Abstract 

Colorectal cancer (CRC) is the third most common form of cancer and has one of the highest 

rates of morbidity and mortality in the world. To understand the pathogenesis, progression and 

metastasis of CRC, biomedical researchers with the help of new high-throughput data 

collection techniques such as mass spectrometry (MS) and next-generation sequencing 

(NGS) coupled with innovative experimental strategies perform global analyses of entire 

whole-genomes, transcriptomes and proteomes. These new developments have in turn led to 

a surge in both qualitative and quantitative omics data which now pose analytical challenges 

for biologists on how to infer clinically relevant insights on the disease. Nonetheless, cancer 

is known as a disease of the pathways and as such, understanding the structure, dynamics 

and interactions of biological molecules such as proteins in protein-protein interactions 

(PPI) and the role of extracellular vesicles such as exosomes in cancer can help us 

understand the intricacies involved in cancer.  

The main objective of this thesis is, therefore, to develop bioinformatics tools and resources 

for the collation and analysis of CRC related omics data as well as the inference of CRC 

biomarkers from the dynamic changes that take place in PPIs. Thus, we developed the 

Colorectal Cancer Atlas, a web-based online platform that collates and integrates multiple 

CRC-related omics data. To understand the dynamic changes that take place in PPIs in CRC 

cells, we integrated the collated heterogenous omics datasets by applying network theory 

methods and a machine learning approach and inferred new as well as known biomarkers 

that can be used to study the pathogenesis and progression of CRC. In addition, using an 

integrated bioinformatics approach that combines network theory and physical coherence, 

we also identified NEDD4 and STAMBP as novel regulators of exosome biogenesis. 
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Chapter 1  
General introduction 

Cancer is a disease which results from the dysregulation or hyperactivity in the network of 

intracellular and extracellular signalling cascades, leading to the abnormal and uncontrolled 

growth of cells [1]. It is one of the leading causes of death around the world and is one of 

the most significant health challenges facing humanity today. For instance, in 2012, over 

14 million people worldwide were diagnosed with cancer, and in 2015, there were over 

eight million cancer-related deaths worldwide, making it the second leading cause of death 

[2, 3]. Moreover, projections are that over the next twenty years, new cancer cases are 

expected to rise by more than seventy percent (70%) [4]. The disease is a significant cause 

of pain and distress, not only to patients but also to those around them, leading to loss in 

terms of a productive workforce and stress on the healthcare systems of nations across the 

globe. Of the many types of cancer, colorectal cancer (CRC) is the third most common form 

of cancer and has one of the highest rates of morbidity and mortality in the world if not 

treated in time.  

There are several ongoing efforts from the scientific community around the world to 

understand the genesis, progression and metastasis of CRC as well as the development of 

solutions to tackle this disease. However, despite the incredible progress that has been 

achieved so far in developing solutions that can help contain the disease, drugs, if available, 

are usually too expensive for many patients to afford and some of the therapies available 

become ineffective as patients develop resistance. Predicting a patient’s response to therapy 

to develop individualised treatments remains one of the most significant challenges given 

that most of the cancer drugs available are only able to work on a fraction of the patients 

[2, 5].  

To understand cancer, researchers study how biological systems function and how their 

functionality is modified during cancer progression. Biological systems function through a 

complex network of cellular processes in which various molecules such as proteins, 

metabolites and ribonucleic acids (RNAs) take part in a meticulously regulated manner. 

For instance, it has been shown by several researchers that cancer is the result of the 

dysregulation of pathways [1, 6]. This view is reaffirmed by Zuckerkandl and Pauling [7] 

who describe life as a relationship between molecules, and not a characteristic of a single 
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molecule, and as such a breakdown in this relationship may lead to pathological conditions. 

Among these molecules are proteins which form the core of various cellular events, and 

their altered behaviours have been implicated in disease pathologies such as cancer. 

Understanding the structure, dynamics and interactions of proteins is one of the essential 

areas of research in the biomedical arena. In recent years, advancements in high-throughput 

data collection techniques such as mass spectrometry (MS), next generation sequencing 

(NGS) and single-cell RNA-Seq have enabled the study of proteomes, genomes and 

transcriptomes on a large-scale. Coupled with some of the latest experimental strategies as 

well as advances in computational tools and methods, high-throughput techniques now 

support the global study of cellular genomes and proteomes. These new developments have 

led to an increase in both qualitative and quantitative proteomics, genomics and 

transcriptomics data which now poses analytical challenges for biologists on how to infer 

clinically relevant insights on diseases such as cancer. It has, therefore, become impractical 

to map the vast datasets to biological processes using traditional methods, and the need for 

computer-aided data analytics methods is on the rise. 

Networks offer novel ways by which complex biological datasets can be analysed to study 

the interplay of proteins. The use of networks to model protein interactions in human 

disease provides us with a simplified representation of the cell’s intricate wiring whose 

analysis can provide us with clues to understanding a disease [8]. However, existing 

interactome maps tend to be biased towards proteins implicated in diseases [9] and available 

tools for exploring these interactome networks in diseases are limited [10]. The application 

of traditional statistical tools on the supposition that quantities have a normal distribution 

or those representing various activity patterns are independent variables renders current 

tools ineffective. In addition, there are two types of protein networks, stable and transient 

networks. Most existing network-based analysis tools and methods overlook the dynamism 

of protein interactions in transient protein networks and focus more on static networks. 

Cancer is a heterogeneous disease whereby individuals with the same type of cancer can 

have different forms of the same disease. Networks in such cases can be used to develop 

personalised profiles of such individuals. However, in most of the literature, protein 

networks are usually studied as static networks, even when data sets are collected at 

different time points, at different conditions and with different technologies.  
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The analysis of biological interactomes using static networks does not address several 

factors which need to be taken into account. Such factors include biological functions, being 

time-sensitive, proteins and the fact that the networks they form do not always exist at the 

same time. In addition, biological networks are dynamic in nature, a single protein can serve 

multiple functions and at the same time can interact with proteins that function entirely 

differently from its own. A static network will therefore not account for the spatial and 

temporal aspects of biological interactomes and may lead to the inaccurate representation 

of the dynamism that is characteristic of biological networks. To therefore correctly analyse 

proteomics data in heterogeneous diseases such as cancer, there is a need to develop 

computational methods and tools that can encompass the temporal aspects underlying such 

diseases. 

1.1. Aims 

The primary aim of this thesis is to develop bioinformatics tools and resources based on 

network theory for the analysis of CRC related omics data. This aim was further split into 

three sub-aims as follows: 

i. Develop an integrated repository for CRC-related omics data 

ii. Integration of omics data using network theory and machine learning-based 

methods to identify essential genes in CRC samples 

iii. Identify novel proteins that regulate exosome biogenesis using bioinformatics 

1.2. Thesis overview 

The thesis is structured as follows; 

• Chapter 2: Background and related work. This chapter gives a general overview of 

the current knowledge on CRC. The chapter further discusses the current knowledge 

of the roles of PPIs in cancer together with the recent tools and methods that are 

available for the network analysis of PPIs. In addition, the chapter discusses some 

of the computational tools that have been developed and applied in the network 

analysis of omics data to infer essential genes in cancer. Finally, the role of 

exosomes in physiological and pathological states with a view to understanding 

exosome biogenesis are discussed. 
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• Chapter 3: Colorectal Cancer Atlas: An integrative resource for genomic and 

proteomic annotations from colorectal cancer cell lines and tissue. This chapter has 

been peer-reviewed and published in the journal Nucleic Acid Research [11] and is 

presented here as a manuscript. This chapter addresses the sub-aim that is focused 

on developing a novel integrated web-based repository platform for CRC related 

omics data. This chapter provides a description of the developed resource and the 

features that CRC researchers can utilise to understand what is already known about 

the disease.  

• Chapter 4: Perturbation of protein-protein interaction network based on APC 

mutations in colorectal cancer. The chapter discusses the prediction of genes which 

are essential for the proliferation of cancer cells when APC is mutated in CRC. In 

this chapter, I developed a novel network analysis method based on the node degree 

that integrates genomics and proteomics data to analyse the topological changes in 

a PPI network when APC is mutated and attempts to identify genes with the most 

topological changes as essential for the proliferation of cancer cells in CRC. Using 

this method, I identified new and already known genes which are essential for the 

proliferation of CRC cells. These genes were then validated using the Achilles 

dataset [12]. This chapter has been prepared as a manuscript and submitted for 

publication to a peer-reviewed journal.  

• Chapter 5: Integration of heterogeneous ‘omics’ data using semi-supervised 

network labelling to identify essential genes in colorectal cancer. This chapter 

builds on the work done in Chapter 4 and I apply network theory-based methods to 

address the problem of high dimensionality in omics datasets and applyd network 

propagation to a semi-supervised machine learning technique to address the 

problem of heterogeneity in both omics datasets and cancer in identifying the 

essential genes in CRC. In this chapter, I identify known essential genes in CRC as 

well as a new set of genes that are likely to be essential in the study of CRC. This 

chapter has been submitted for publication and is currently under review in the 

Journal of Computers and Electrical Engineering special issue of “Recent 

Advances in Machine Learning and Artificial Paradigms”. 

• Chapter 6: Physical coherence and network analysis to identify novel regulators of 

exosome biogenesis. In this chapter, I apply physical coherence and network 

analysis to identify novel proteins that regulate the process of exosome biogenesis 

through the endosomal sorting complex required for transport (ESCRT) pathways 
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and help us further improve our understanding of exosome biogenesis in general. 

The chapter describes a network-based method that is applied in the analysis of the 

ESCRT machinery by eliminating the bias that exists in PPIs due to false positives 

stemming from experimental errors in techniques used to identify them and study 

biases. In this chapter, we identify STAMBP and NEDD4 as potential novel 

regulators of exosome biogenesis. This chapter is in preparation as a manuscript for 

submission to a peer-reviewed journal. 

• Chapter 7: General discussion. This chapter provides an overall discussion of the 

findings of this chapter together with the implications of the findings on exosome 

biogenesis and cancer-related studies. Other issues discussed include the challenges 

faced as well as the future direction of the thesis.  

 



 

6 

 

Chapter 2  
Background and related work 

2.1. Introduction 

This chapter highlights the use of networks in analysing omics data such as protein-protein 

interactions in cancer diseases. Several types of research have looked at the origin, 

progression and metastasis of cancer. Moreover, as tools for generating omics data have 

become cheaper over the years, vast quantities of heterogeneous data are today easily 

generated at a fraction of what it would have cost a few years ago. To study such vast 

quantities of data, researchers use networks and network theory in system biology to study 

the interplay of molecules in normal and cancerous conditions. Methods and tools have 

therefore been developed with varying degrees of success. The chapter evaluates some of 

the methods and tools and identifies some of the limitations associated with these tools and 

methods. The chapter further provides an overview of several studies related to the research 

aims which includes system biology, interactomes, exosomes and exosome biogenesis, 

networks and network theory, cancer - specifically CRC, and the computational analysis of 

PPI-related data to infer essential disease-associated genes. 

2.2. Colorectal cancer 

Colorectal cancer, also known as bowel cancer, is a form of cancer that originates in the 

colon or rectum section of the large intestine. It has the third highest number of incidences 

of all cancers in the world, and if not detected and treated early, CRC has one of the highest 

rates of cancer-related mortality in the world [13, 14]. The pathogenesis of CRC is still a 

subject of extensive research in the field of oncology, nonetheless, like in other cancers, the 

classic view is that alterations to the DNA essentially cause CRC resulting in the acquisition 

of a set of characteristics which lead to the abnormal and unregulated growth of cells. These 

characteristics were first put across by Hanahan and Weinberg [15], [16] and comprise the 

evasion of programmed cell death, self-sufficiency in growth signals, insensitivity to growth 

inhibitory signals, and sustained angiogenesis (ability to form blood vessels). Others are 

tissue invasion and metastasis (spreading of cancer to other tissues), limitless replicative 

potential, deregulating cellular energetics (modification of cellular metabolism) and 
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avoiding immune destruction (cancer cells evading immunological destruction). Figure 2-1 

provides a summary of the characteristics of cancer.  

According to the World Cancer Research Fund International (WCRF), 95% of CRCs are 

adenocarcinomas while others are mucinous carcinomas and adenosquamous carcinomas. 

The pathogenesis of adenocarcinomas in CRC is preceded by the development of growths 

in the linings of the intestine called polyps due to the accumulation of either inherited or 

acquired somatic mutations which then transform glandular epithelium into 

adenocarcinomas [17-19]. Upon further accumulation of mutations, the adenocarcinomas 

become invasive and metastasise to other organs such as the liver. The majority (>70%) of 

CRCs are sporadic, and only about 20% of CRCs are hereditary [20]. Hereditary CRCs are 

due to rare, high risk, susceptibility syndromes such as Lynch syndrome (LS) and familial 

adenomatous polyposis (FAP) [20]. Sporadic CRCs, on the other hand, are due to the 

accumulation of genetic mutations in several genes. Three genetic mechanisms underlie 

predisposition to sporadic CRCs [20, 21] and consist of: chromosomal instability (CIN), 

microsatellite instability (MSI) and the CpG island methylator phenotype (CIMP) pathways 

[22]. Of the three, the CIN pathway is implicated in the majority of sporadic CRCs [22, 

23].  
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Figure 2-1: Hallmarks of Cancer.  The hallmarks of cancer are the characteristics that 

cancerous tumours acquire, allowing for the unregulated growth of tumours and ultimately 

metastasis. 

The classical model for the tumorigenesis of CRC was first proposed by Fearon and 

Vogelstein [24] and consists of a multistep accumulation of mutations in multiple genes. 

The first step comprises the accumulation of mutations in adenomatous polyposis coli 

(APC), a tumour suppressor gene which leads to the loss of functionality in APC [25]. The 

loss of APC functionality is coupled with the activation of mutations in KRAS, an oncogene 

as well as further mutations in PIK3CA, TP53 and transforming growth factor-β pathways 

[22, 24, 26]. Over the years, the model has been revised to include more genes (≈80) out of 

which 15 genes are considered key drivers of tumorigenesis in CRCs [22, 27]. Some of 

these include: APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, TCF7L2, NRAS, 

CTNNB1 (β-catenin), SMAD2, FAM123B, and SOX9 [20, 27-29]. While the model first 
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proposed by Fearon and Vogelstein [24] has since undergone revisions, research has shown 

that >80% of sporadic CRCs have APC mutations [30]. Interestingly, it has also been shown 

in-vitro that tumorigenesis is only observed when APC mutations are present, even if other 

gene mutations such as those in KRAS are present [31]. 

There are several studies in the literature which document the role of APC in CRC [17, 18, 

20, 21, 25, 30-34]. APC functions by regulating other genes such as CTNNB1 of the Wnt 

signalling pathway, a pathway that regulates cellular behaviours such as cell migration, cell 

polarity, and organogenesis. APC, therefore, indirectly regulates the Wnt signalling 

pathway through its regulation of CTNNB1, thereby regulating functions such as cell 

adhesion and migration, and signal transduction as well as other functions like microtubule 

assembly and chromosome segregation. Consequently, in CRC, mutations in APC lead to 

the loss of its functionality which, in turn, leads to the hyperactivation of the Wnt signalling 

pathway, the main characteristic of CRC [35, 36].  

2.3. Protein-Protein Interactions (PPIs) 

Life as we know it starts with a fertilised egg which then progresses into a collection of 

identical cells that gradually develop into a full-blown individual. This process of 

development and growth is a complicated process which is always taking place in our 

bodies and requires a sophisticated system of checks and balances. In addition, to ensure 

that the correct path for development is followed, cells communicate with each other and 

cells that are considered not to be necessary anymore should be removed with minimal 

disturbance to the other cells. Organs progressively develop their own blood supplies as 

well as mechanisms to repair any damage to these supplies. For this to be possible, there is 

a need for organs to communicate. All this is achieved by switching genes on and off in a 

synchronised manner as organs and systems develop. Once the development process is 

complete, the next step is the maintenance and repair of damage to the fully developed 

tissues. 

The network of on and off switches is vital in the regulation of cellular behaviour; if there 

is a failure in these controls, it results in the uncontrolled growth of cells as occurs in cancers 

[2]. A gene is a fundamental unit around which DNA is organised. Proteins, on the other 

hand, are one of the expression of genes. Proteins are encoded for by genes and produced 

when a gene is transcribed onto messenger Ribose Nucleic Acid (mRNA).  
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Interactome networks in systems biology are the interactions between cellular components 

[37]. They give a global picture that is useful in understanding how interactions between 

molecules influence cellular behaviours [38]. Typical examples of interactomes are protein-

protein interactions, virus-host network, transcriptional regulatory networks, metabolic 

network, and disease network. In a gene-regulatory network, nodes denote transcription 

factors which are depicted by circular nodes; and edges depict the physical binding between 

the two [39]. Disease networks are networks which depict the link between disorders and 

genes that are known to be associated with the diseases [40]. Diseases in disease networks 

are denoted by nodes and edges denote gene mutations linked to the disease [8]. A virus-

host network, on the other hand, is modelled by viral proteins depicted as square nodes or 

host proteins as round nodes while edges depict physical interactions between the two. In 

a metabolic network, nodes depict enzymes, and edges depict metabolites that are products 

or substrates of the enzymes. The scope of this thesis revolves around PPIs. 

Proteins are macromolecular structures that make up the working machinery of the cellular 

system. They handle a range of functions within an organism, such as acting as molecular 

motors, catalysing reactions, transportation, traversing of membranes producing regulated 

channels, transmission of DNA information to RNA, and signalling. However, proteins do 

not work independently but interact with other proteins, DNA, RNA, and other small 

molecules within cells. A PPI is the result of two or more proteins binding together 

purposely to carry out a specific biological function in a cell [41]. PPI bonds are formed by 

a combination of hydrophobic bonding, van der Waals forces, and salt bridges at specific 

binding domains on each protein. The PPIs form complexes which then conduct many of 

the molecular processes in the cell, such as DNA replication, metabolic signalling, gene-

regulation and immunity. PPI networks offer an overall depiction of cellular function and 

biological processes within an organism. They offer an essential network which is critical 

for the flow of vital information for bio-molecular functions and overall cellular processes 

[42]. 

The complexity of PPIs is simplified through the representation of PPIs as graphs which 

are composed of nodes as proteins and edges symbolise physical, biochemical and 

functional interactions between the two proteins [37] as shown in Figure 2-2 . Similarly, 

biological networks such as PPI networks can be likened to communication networks in 

that they both have the properties of being scale-free and having a ‘small-world’ [43]. PPI 
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networks, therefore, can be used to demonstrate the evolutionary aspects of proteins [44], 

to improve protein function annotation [45] and to represent the modular organisation of a 

cell [46]. 

 

Figure 2-2: Example of APC PPI Network.  The interaction shows APC and its interacting 

partners 

Types of PPIs 

The levels or types of PPIs are classified differently depending on their biological features.  

In a review paper by De Las Rivas and Fontanillo [47], three levels are highlighted: co-

interacting proteins, correlated proteins, and co-located proteins.  
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Co-interacting proteins are considered to be the physical interactions; they are further 

categorised as stable (permanent) or transient interactions, with both types being either 

strong or weak. Stable interactions constitute protein complexes that carry out either a 

structural or functional biomolecular role. These proteins make up the subunits of the 

complexes. Examples consist of nuclear pole subunits and subunits of ATPase. Transient 

interactions, on the other hand, are considered to control most of the cellular processes, are 

temporary in nature and often need specific conditions to promote interactions, such as 

conformational changes and phosphorylation. They come together when certain conditions 

are met to carry out a biomolecular function. Examples include most of the proteins 

involved in signal transduction. 

Correlated proteins reflect those proteins that are involved in the same biomolecular 

activities but do not physically interact. These can be metabolically correlated or genetically 

correlated. Metabolically correlated proteins are those proteins found in the same metabolic 

pathway. Examples of such are mostly enzymes implicated in Krebs cycle. Genetically 

correlated proteins are those that are encoded by genes that are co-expressed or co-

regulated. Examples include those proteins that regulate a portion of the cell cycle. 

Co-located proteins refer to those that are localised in the same organelle. These can be 

located in the same cellular space such as those proteins in lysosome, or they can be found 

on the same cellular membrane such as those that act as receptors in the plasma membrane.  

From the above, two proteins can interact under one of the types of association. The defined 

interactions are not exclusive; two proteins can interact using either of the associations at 

any given time.  

Mapping of PPI networks 

Developing a network of all probable physical PPIs or the ‘interactome’ is a significant part 

of systems biology. Proteome-scale interactome network mapping can be traced back to the 

mid-1990s through research on organisms such as Escherichia coli, Drosophila 

melanogaster, and Saccharomyces cerevisiae [48-51]. Three main approaches can be used 

to map interactome networks [37, 52].  

The first approach involves the curation of existing data from published literature often 

obtained for one or just a few types of physical or biochemical interactions [53]. The 
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increasing and wide availability of published scientific papers compounded by the addition 

of detailed genetic information from the human genome sequencing project has resulted in 

an enormous knowledge-base all contained within the scientific literature. This approach 

involves the development of text mining methods that can scan through this enormous 

repository of free-form, unstructured data (written articles) transforming it into highly 

structured information that can be used to deduce inter-relationships for proteins, diseases, 

or species. Relevant literature is first identified which is then followed by the extraction 

and classification of related terms or entities such as proteins, genes, diseases or pathways. 

The technique, therefore, reduces the complexity and ambiguity of large repositories of 

unstructured literature by identifying and creating relationships. While manual curation is 

a possibility, the massive amount of data that is available in the several databases can be a 

nightmare to a researcher to efficiently and effectively decipher relationships, for instance, 

PubMed alone as of 2014 contained more than 23 million citations from Medline, life 

science journals, and online books. Text mining (computer processing of large text) using 

computer algorithms takes the information overload off a researcher. Reviews by Cohen 

and Hersh [54] and Erhardt, et al. [55] identify several groups of biomedical text mining 

approaches as well as the pros and cons of each approach.  

The second approach involves the use of computational methods in the prediction of 

interactome networks based on the structural, genomic and biological context of genes and 

proteins in completely sequenced genomes [56, 57]. The computational prediction of PPIs 

can be summed up in a two-step process: the first step is the mapping of PPIs and the second 

step deals with the comprehension of the mechanism by which the proteins interact and 

isolating the residues of proteins that are involved in the interactions.  

The third approach and one of the earliest to be used in system biology involves the use of 

experimental techniques to identify PPIs. The experimental techniques are divided into 

low-throughput screens and high-throughput screens [58]. Low-throughput (LTP) 

experiments are the yardstick for measuring interactions due to their reliability. Examples 

of low-throughput techniques include: affinity precipitation, dosage lethality, biochemical 

assays, affinity chromatography, synthetic lethality and structure [59-61]. The curation of 

interactions detected in LTP screens is done by manually examining the publications, 

making the detection of PPIs using LTP extremely difficult. The second sets of 

experimental approaches are the high-throughput (HTP) experiments. Examples of HTP 
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techniques include: yeast-2-hybrid (Y2H) [56, 61, 62], mass spectrometry-based methods 

[63-68], protein chips (microarrays) [69] and LUMIER assays [70]. 

Each of the methods discussed has varying degrees of effectiveness and reliability in 

detecting PPIs. Cusick, et al. [71] and Turinsky, et al. [72] argue that while literature curated 

maps can be easily curated from the available literature, they have the disadvantage of 

variability in quality, a lack of both systematisation and published data. An analysis of 

computational-based approaches for generating networks by Plewczyński and Ginalski [73] 

concluded that while computational-based methods are faster and more efficient as well as 

having the ability to generate large numbers of nodes and edges, computational-based 

methods tend to be defective because of their reliance on secondary information. High-

throughput maps, on the other hand, are difficult and expensive to conduct but tend to 

produce highly reliable and comprehensible network maps. According to Hosur [58], 

experimental techniques, on the other hand, suffer from some limitations such as high false 

positives and negatives as well as low sensitivities when compared to computational 

approaches. Figure 2-3 provides a summary of the various methods that are used to map 

PPIs [74].  
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Figure 2-3: PPI mapping methods. The different types of methods used to detect 

interactions between proteins can be categorised into prediction, detection and 

characterisation. 

2.3.1. PPIs in Disease 

One of the challenges faced by researchers is how to understand the molecular mechanisms 

that precede a disease. Because of the central role of proteins in the cellular system, protein 

interactions have been found to play a regulating role in mechanisms that lead to both 

physiological and pathological states in organisms [74]. Some diseases are born from 

changes that affect the binding interface or lead to a biochemical dysfunction causing 

allosteric changes in proteins. 

Our knowledge about the disease is usually associated with us knowing the genetic basis 

of diseases. With the introduction of Mendelian genetics in the 1900s, there have been 

efforts to isolate genes linked to diseases such as cystic fibrosis, Huntington disease and 
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breast cancer susceptibility using the process of gene cloning whereby a gene is isolated 

based on its position on the chromosome [75]. However, it has been shown that even with 

Mendelian diseases, there is no direct or clear correlation between the mutations and the 

resulting disease symptoms. This observation is alluded to by such factors as pleiotropy 

(when a single gene encodes multiple phenotypes), the regulation of a gene by other genes, 

and environmental factors (such as diet, infection by bacteria, exposure to chemicals). All 

these factors, therefore, make it difficult to associate gene mutation to phenotypic 

expressions exactly. 

In addition to the genetic basis of a disease, knowing the molecules and molecular 

mechanisms that trigger and regulate the perturbed biological process is important to 

understand the pathogenesis and progression of disease [74]. Nonetheless, trying to deduce 

the molecular mechanisms that lead to a disease is an even greater task than inferring the 

genetic basis of a disease. Networks using PPIs provide us with the opportunity to infer the 

molecular mechanisms behind the diseased states of an organism since they are involved 

in several cellular processes. PPIs act as a key source of molecular information since their 

interactions are involved in a wide range of activities such as signalling, immune response, 

metabolic and gene-regulatory networks [74].  

Studies by Gonzalez and Kann [74] as well as those by Ideker and Sharan [76] proposed 

the use of PPIs as potent key targets for studying the molecular basis of diseased biological 

states. Diseased states have the potential to change interactions between proteins and their 

interacting partners such as DNA and ultimately lead to the formation of new undesired 

interactions, protein misfolds or the enabling of pathogen-host protein interactions. By 

studying these interactions, we can, therefore, find novel pathways involved in diseases.  

Furthermore, PPI subnetworks tend to cluster together proteins that interact in functional 

complexes and pathways [6]. Studies by Hallock and Thomas [77] and Ideker, et al. [78] 

have shown that the pathways found from PPI networks can be used to generate hypotheses 

that can be used to study diseases. PPIs are therefore an opportunity to gain knowledge into 

disease state pathways and molecules. By applying PPIs and pathway analysis, researchers 

have been able to infer several features that can be associated with the disease. For example, 

studies by Goh, et al. [40] found that by studying the human disease network, it was shown 

that genes associated with the same disease or disorders had a higher likelihood that their 

products would have a physical interaction. Goh, et al. [40] further showed that genes which 
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are essential tend to code for hub proteins and are widely expressed in most tissues thereby 

showing the importance of disease genes in the human interactome. On the contrary, it was 

shown that not all disease genes are essential and there is usually no indication of them ever 

encoding for hub proteins; their expression patterns also showed that they are found in the 

functional periphery of the network. On the contrary, for diseases such as cancer, it has 

been found that disease genes tend to encode for hub proteins that are highly interconnected 

[44, 79]. This view is supported by Ideker and Sharan [76] who concluded that genes 

associated with a phenotype, function or progression of disease are not randomly positioned 

in a network but tend to exhibit higher connectivity, cluster together and are located in the 

central network location. Lim, et al. [80] also showed that diseases which are aetiologically 

different tend to show similar symptoms since different biological processes share the same 

pathways. 

The study of PPIs is, therefore, an important element in our quest to understand cancer. 

Gonzalez and Kann [74] summarised the five ways in which PPIs can be applied to the 

study of disease. Firstly, PPIs can be used to differentiate healthy from diseased states by 

developing interaction networks in varying conditions. For instance, Charlesworth, et al. 

[81] applied this principle in their study to identify the alterations in the canonical pathway 

and interaction networks when humans are exposed to cigarette smoke. Li, et al. [82] on 

the other hand, developed a computational method that can predict CRC-related genes by 

integrating gene expression profiles and the shortest path analysis method to PPIs. Their 

results showed that by using PPIs, they identified more cancer-related genes than they did 

by computing the differential gene expression between normal and diseased samples. 

Secondly, PPIs can be used to predict genotype-phenotype relationships which, in the 

process, can help in the inference of novel disease genes. Gene-disease association studies 

commonly study interacting disease-associated proteins to identify disease-causing genes. 

For example, in a study by Gandhi, et al. [52], it was found that an interacting disease-

associated protein was encoded by mutated genes in inherited genetic disorders.  

Thirdly, the genes associated with interacting proteins can be used to study mutations that 

take place leading to alterations in the interactome in healthy individuals. These mutations 

can also be used to develop new interactions that appear in diseased states. Rossin, et al. 

[83] applied a genome-wide association study (GWAS) and developed a PPI network for 
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genes within a given loci from which they established that there were significant 

interactions between protein products of associated genes.  

Fourthly, PPI networks can be used to establish pathways as well as disease-subnetworks 

that are activated because of disease and then used as new biomarkers for identifying 

diseases. Chuang, et al. [6] identified a set of sub-network biomarkers that distinguish 

metastatic tumours from non-metastatic tumours in breast cancer patients. Fifthly, by 

identifying key nodes in disease networks established from PPI networks, drugs can be 

designed specifically to target nodes of interest. 

2.3.2. PPIs in cancer 

In cancer, PPIs form the signalling pathways needed for the transmission of 

pathophysiological signals which, in turn, lead to tumorigenesis, tumour progression, 

invasion, and metastasis [84]. Combinations of genetic and epigenetic (genetic changes not 

caused by changes to DNA but are due to external changes) alterations determine the 

potential of cells becoming cancerous. This is achieved through a sequence of signal 

networks with PPIs acting as the basic units forming these networks. PPIs play vital roles 

in the initiation of cancer by connecting networks that transmit oncogenic signals as well 

as conducting other roles in driving and sustaining the growth of cancer cells. The role 

played by this cascade of networks is summarised by Ivanov, et al. [84] in Figure 2-4. In 

cancer progression, cells acquire the ability to evade growth suppressors. PPIs again play 

vital roles in neutralising tumour suppression mechanisms whereby the tumour suppression 

mechanisms are hijacked by viral oncoproteins which induce tumours [15]. Furthermore, 

PPIs also facilitate the acquisition of other hallmarks of cancer as shown in Figure 2-4. 

Therefore, mutations leading to cancer result in the reprogramming or alteration of PPI 

networks leading to the formation of PPIs that facilitate distinct features of cancer or play 

key roles in other multiple characteristics of cancer.  

Against this background, probing the interface properties of cancer-related proteins is 

valuable to the understanding of biological processes and protein functions that underlie 

cancer. With the help of high-throughput experimental data, techniques have been 

established that are used to identify PPIs [44]. Nonetheless, the inference of genes 

associated with a disease requires the analysis of thousands of genes across a cohort of 

potential candidates. This process, however, requires the use of efficient methods. Several 
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computational methods have therefore been developed to aid in linkage analysis and gene-

disease association studies. The majority of these methods are based on functional and 

sequential differences between disease-causing and non-causing proteins. Other methods 

combine several sources of data such as gene ontology (GO) annotation, gene expression 

and disease phenotype representation from various databases [43, 74].  

 

Figure 2-4: PPIs in Cancer.  Examples of PPI networks that drive the acquisition and 

development of cancer hallmarks by Ivanov, et al. [84] 

2.4. Bioinformatics tools and methods in cancer studies 

The completion of the human genome project in 2003 together with the development of 

new high-throughput technologies such as mass spectrometry (MS), next generation 

sequencing (NGS) (RNA-seq) and single-cell RNA sequencing (scRNA-seq) [85] have led 

to the generation and accumulation of a rich quantity of data. To contend with the analysis 

and interpretation requirements of these data, bioinformatics, an interdisciplinary field of 

science that combines the fields of computer science, statistics, and biology to the 

development of computational tools has become an essential element of science. 

Bioinformatics tools and methods are used to capture, analyse, and interpret biological data. 

In cancer-related studies, bioinformatics continues to play a key role in whole genome 
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analysis, drug discovery and personalised medicine, biomarker prediction and system 

biology in general. This section discusses some of the existing tools and methods that have 

been applied in understanding the physiological mechanisms of PPIs in diseases. 

2.4.1. Network tools for the analysis of proteomic data 

This section is presented as a manuscript which was published as a book chapter in 

Proteome Bioinformatics part of the Methods in Molecular Biology book series (MIMB, 

volume 1549) (Chisanga, et al. [86]). 

This section gives an overview of the application of network theory together with protein-

protein interactions in analysing proteomic data, a key component in understanding the 

physiological mechanism of disease. Existing tools and resources for the capture, storage 

and analysis of proteomic-related data are also discussed. 
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Abstract 

Recent advancements in high-throughput technologies such as mass spectrometry have led 

to an increase in the rate at which data is generated and accumulated. As a result, standard 

statistical methods no longer suffice as a way of analysing such gigantic amounts of data. 

Network analysis, the evaluation of how nodes relate to one another, has over the years 

become an integral tool for analysing high throughput proteomic data as they provide a 

structure that helps reduce the complexity of the underlying data. 

Computational tools, including pathway databases and network building tools, have 

therefore been developed to store, analyse, interpret and learn from proteomics data. These 

tools enable the visualization of proteins as networks of signalling, regulatory and 

biochemical interactions. In this chapter, we provide an overview of networks and network 

theory fundamentals for the analysis of proteomics data. We further provide an overview 

of interaction databases and network tools which are frequently used for analysing 

proteomics data. 

 

Keywords: Proteomics, Network theory, Protein-protein interactions, Network tools, 

Network analysis, Bioinformatics.  
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2.4.1.1. Introduction 

In recent years, the development of high-throughput technologies such as next generation 

sequencing techniques in the field of genomics and tandem mass spectrometry in the field 

of proteomics and metabolomics has led to the birth of the omics study [87]. These 

techniques and tools involved in the study of functional genomics and other omics data 

have constantly helped in our understanding of cellular biology and have drastically 

reduced the cost of conducting omics related studies. The speed with which data are 

generated and disseminated today means that researchers can gain insight for the fraction 

of the cost when compared to past years. For instance, by using tandem mass spectrometry, 

two groups [88, 89] have developed the first draft of the human proteome.  

However, with terabytes of proteomic data pouring into research centres every day, 

standard statistical methods for analysing data are becoming ineffective. Researchers are 

faced with the formidable task of how to take advantage of this heterogeneous data to gain 

insight in areas such as disease and drug development as well as answering questions such 

as; how can they characterise and manipulate complex interactome of basic elements such 

as genes and proteins? How can they visualise these interactomes and infer meaningful 

information from them?  

Network theory has long played a fundamental role in disciplines ranging from computer 

science, sociology, engineering, and physics, to molecular and population biology [90]. In 

biology and medicine, network analysis methods are applied in areas such as drug target 

identification, prediction of a gene or protein function, protein complex or module 

detection, prediction of novel interactions and functional associations, identification of 

disease subnetworks, disease biomarker identification, and mapping of disease pathways 

[10]. Networks have long been used in a variety of fields to reduce the complexity of data 

[91, 92]. Computational tools, including pathway databases and network building tools, 

have been developed to store, analyse, and interpret biological networks [93].  

This chapter provides an overview of the application of network theory in analysing and 

visualization of proteomic data by discussing various tools used for storage, analysis and 

interpretation of proteomic data through the use of biological networks with an emphasis 

on protein-protein interaction networks. To get started, we provide a brief background to 

both proteomics and network theory.  
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2.4.1.1.1. Background to proteomics 

Coined by Marc Wilkins and colleagues [94] in the mid-1990s to mimic the terms 

“genomics” and “genome” respectively, proteomics is in essence a systems science whose 

aim is to identify and record the functions as well as structures of proteins in organisms. 

Proteomics is a systems science which involves not only the measurement of proteins but 

also the measurement of their expressions in a cell and the interplay of proteins, protein 

complexes, signalling pathways, and network modules.  

Proteins are termed as the workhorses of cellular systems, they perform an array of cellular 

functions ranging from catalysing reactions, cellular transportation, transcription of DNA 

information to RNA and acting as molecular motors to signalling [95]. They perform these 

functions not on their own, but within large complexes where they interact with other 

molecules like proteins, DNA, RNA as well as with other small molecules. Because of their 

importance, a malfunction in key proteins can lead to serious pathological outcomes like 

cancer, metabolic imbalances, and neurodegenerative diseases. With significant ongoing 

research into protein functionality and their interactions with other molecules in 

understanding disease, research has turned to network theory concepts to model and study 

these interactions. 

2.4.1.1.2. Background to network theory concepts 

A network or a graph (in mathematics) is a collection of objects connected by lines. The 

objects are called nodes or vertices while the connections between the objects are called 

edges or links and are drawn as lines between points as shown in Figure 2-5 
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Figure 2-5: Example of an undirected network graph in which each node is connected by 

an edge that does not show the origin and destination by way of an arrow. 

Formally, a network is a graph G defined as an ordered pair G= (V, E) where V is a set of 

nodes and E is a set of edges [90]. Nodes are said to be adjacent if they are joined by an 

edge while node ‘A’ is said to be a neighbour to node ‘B’ if adjacent to node ‘B’ and vice-

versa. Edges between nodes can be undirected (Figure 2-5) or directed (Figure 2-6), as such 

a graph G= (V, E) is called undirected if an edge vv’ (where v and v’ are nodes in set V) in 

set E of edges implies that it is the same as edge v’v also in E; otherwise G is called directed. 

A directed acyclic graph, on the other hand, is a directed graph that contains no cycles. 

Finally, a graph is said to be connected if there is a path from any node to any other node.  

Using the above network/graph concepts, researchers have used networks to reduce the 

complexity of systems thereby making it easier to draw conclusions from them. Networks 

are applied in various fields such as computer networks, social networks, and interactome 

networks in molecular biology research. 
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Figure 2-6: Example of a directed graph in which each node is connected by an edge with 

an arrow indicative of the direction of the relationship. 

Interactome networks provide a global picture that is useful in understanding how 

interactions between molecules influence cellular behaviour [38]. It has been established 

that biological behaviour arises from the complex interactions between the cell’s numerous 

molecules such as proteins, DNA, RNA and other small molecules. Common examples of 

interactomes in molecular biology are; protein-protein interactions, virus-host networks, 

transcriptional regulatory networks, metabolic networks, and disease networks. Protein-

Protein Interactions (PPIs) form the backbone of signalling pathways, metabolic pathways 

and cellular processes required for normal functioning of cells [96]. 

The steps to perform proteomic analysis can be summed up by use of a flowchart as shown 

in Figure 2-7, it involves identifying a set of target proteins of biological interest needs to 

be studied and then followed by retrieval or identification of interacting partners from 

various interaction resources discussed below. An interaction network is then generated 

and integrated with any existing knowledge such as gene ontology (GO) enrichment, 

biological pathways or differential gene or protein expression. A topological analysis of the 

network is then performed using metrics such as degree, degree centrality or betweenness 

centrality which is further followed on by downstream analysis to identify network 

variations, functional enrichment of identified modules or tissue specificity.  
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Figure 2-7: Summary representation of the steps involved in analysing proteomic data using network theory concepts.  The data types required and from 

where they can be sourced are also shown. An example of the expected outputs from the network analysis are also shown. 
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2.4.1.2. Protein-Protein Interaction databases 

The mappings of proteins and their interacting partners have been curated by various groups 

and deposited into online databases. These databases are typically web-based resources that 

serve as archives of information pertaining to the mapping of protein interactions, 

functional enrichment (GO enrichment) and pathway details. These databases act as sources 

of protein mapping information in network analysis. The most widely used PPI databases 

include; Human Protein Reference Database (HPRD) [97], Molecular Interaction Database 

(MINT) [98], Biological General Repository for Interaction Database (BioGRID) [99], 

Search Tool for Recurring Instances of Neighbouring Genes/Proteins (STRING) [100], 

Database of Interacting Proteins (DIP) [101], Biomolecular Interaction Network Database 

(BIND) [102] and the IntAct molecular interaction database (IntAct). Depending on the 

database, the annotations may be based on experimental observations while other databases 

such as STRING can have a high proportion of predicted and literature mined interactions. 

Below, we briefly discuss the most commonly used databases while Table 2-1 provides a 

summary of these and other database resources with protein-protein interaction mappings. 

2.4.1.2.1. BioGRID 

The Biological General Repository for Interaction Datasets (BioGRID) is an open, 

accessible web-based repository of genetic and protein interaction mappings which have 

been curated from the primary biomedical literature of humans and other major model 

organism species [99]. As of May 2016, the database housed over one million (1,000,000) 

protein and genetic interactions curated from over fifty-six thousand (56,000) high-

throughput datasets and individually focused publications for major model organisms.  

BioGRID features an easy to use web interface with a search tool which users can use to 

search against the database, the search results then show the interacting partners, interactor 

details and a graphical network visualisation of the interacting partners. Users can then 

manipulate the network by either changing the network layout or filtering through the 

network by node degrees. In addition, users can also download custom defined or entire 

interaction datasets for offline network analysis and downstream analysis. BioGRID also 

features online tools and resources that allow for the use of BioGRID data. A number of 

visualisation tools such as Osprey, Cytoscape, and GeneMania, data management tools like 

ProHits, plugins like BioGRID Tab File Loader Plugin for Cytoscape and BiogridPlugin2 
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for Cytoscape as well as web services BioGRID REST Service and PSICQUIC provide 

users with access to or can be used to analyse BioGRID data.  
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      Table 2-1: Summary of database resources that house protein-protein interactions and their respective features 

Resource Description URL link Reference No. Proteins No. Interactions No. 

Organisms 

BIND Biomolecular 

Interaction Network 

Database  

http://bond.unleashedinformatics.com/  [102] 23,643 43,050 80 

BioGRID Biological General 

Repository for 

Interaction Datasets 

http://thebiogrid.org/  [99] 56,105 553,827 175 

HPRD Human Protein 

Reference Database 

http://www.hprd.org  [97] 30,047 41,327 1 

IntAct IntAct Molecular 

Interaction Database 

http://www.ebi.ac.uk/intact/  [103] 89,716 356,806 131 

MINT Molecular INTeraction 

database 

http://mint.bio.uniroma2.it/mint  [98] 35,553 241,458 144 

http://bond.unleashedinformatics.com/
http://thebiogrid.org/
http://www.hprd.org/
http://www.ebi.ac.uk/intact/
http://mint.bio.uniroma2.it/mint
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STRING Search Tool for the 

Retrieval of 

Interacting 

Genes/Proteins 

http://string-db.org/  [100] 9,643,763  2,031 

http://string-db.org/
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2.4.1.2.2. Human Protein Reference Database 

Human Protein Reference Database is a web-based resource that houses experimentally 

derived human proteome information [97]. It is one of the most comprehensive collection 

of human proteome information resource available online. It houses information pertaining 

to; protein-protein interactions, post-translational modifications and tissue expression. As 

of May 2016, the database housed over thirty thousand (30,000) protein entries, over forty-

one thousand (41,000) protein-protein interactions, ninety-three thousand (93,000) Post-

Translational Modifications (PTMs), one hundred and twelve thousand (112,000) protein 

expressions, twenty-two thousand (22,000) subcellular localisation details, four hundred 

(400) domains and with over four hundred and fifty-three thousand (453,000) PubMed links 

to publications. 

The landing page of HPRD provides a range of features ranging from a querying 

functionality, BLAST feature to a browse feature. Users can query the database using the 

query page through a number of search options, the results are then displayed using 

graphical visual displays and are categorised into protein information, PTMs, protein 

length, and protein-protein interactions.  Users can similarly get protein information 

through the browse page where the information is grouped into molecular classes, domains, 

motifs, PTMs and based on localisation.  HPRD further includes a Basic Alignment Search 

Tool (BLAST) which allows users to search against the database based on the provided 

protein or nucleotide sequence. Other features included are a phosphor motif finder tool 

which searches across user submitted protein sequence for the presence of over 300 

phosphorylation-based motifs listed in HPRD. HPRD also provides tab delimited files for 

binary protein-protein interactions which users can download for offline processing and 

further download stream analysis. 

2.4.1.2.3. Molecular INTeraction database (MINT) 

The Molecular INTeraction database [104] is a web-based  resource that stores physical 

interactions between proteins of model organisms that have been curated from the scientific 

literature.  As of May 2016, MINT had over two hundred and forty-one thousand protein-

protein interactions (241,000), thirty-five thousand (35,000) proteins and over five 

thousand PubMed links to publications.  
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MINT data can be downloaded in several formats such as PSI-ML, tab-delimited and MINT 

flat file formats. Otherwise, users can use the search feature that allows users to search the 

MINT database. Users can search the database using several options such as by gene name, 

protein accession number or any 6-characters keyword. A user defined list of proteins can 

furthermore be uploaded and used to generate a network visualisation based on the 

information in the database. 

2.4.1.2.4. Biomolecular Interaction Network Database 

The Biomolecular Interaction Network Database [102] is a web-based resource for PPI data 

and was one of the earliest resources for biomolecular interactions (proteins, genes etc.), 

molecular complexes and pathways. BIND initiated by the University of Toronto as part of 

the Biomolecular Object Network Databank (BOND) has since been acquired by Thomson 

Reuters. BIND provides tools for data specification plus a database which is accompanied 

by data mining and visualization tools. 

2.4.1.2.5. IntAct molecular interaction database 

IntAct [103] is an open-source web-based molecular interaction database that catalogues 

data curated from the scientific literature or from direct data depositions. As of May 2016, 

IntAct had over five hundred and ninety-one thousand molecular interactions, and ninety-

one thousand interactors sourced from over fourteen thousand publications.  

Using IntAct users can explore the fine details of the mechanism by which a specific protein 

binds to protein partners or use the entire interactome of an organism to perform a network 

analysis of large-scale omics experiment. The front-end of IntAct features a search tool that 

can be used to search against the IntAct database. Users can then view the interacting 

partners, interaction details and a graphical presentation of the network. 

2.4.1.2.6. Search Tool for Recurring Instances of Neighbouring Genes/Proteins 

(STRING) 

STRING is a freely available web-based biological database that houses information on 

experimentally derived and predicted protein-protein interactions for a number of 

organisms.  This information has been curated from various sources, including 

experimental data, computational prediction methods, and published literature.  STRING 
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holds over one hundred and eighty-four (184) million interactions, nine million (9,000,000) 

proteins from over two (2,000) thousand organisms. 

 STRING provides an easy to use web interface that allows users to quickly search for a 

protein of interest, visualize and download interaction data. It further has a Cytoscape 

plugin which allows users to directly access the STRING database from Cytoscape.  The 

interaction data returned from STRING is weighted and allows for the calculation of 

confidence scores for each interaction. In addition, STRING has capabilities that allow it 

to connect to other databases and consequently perform literature mining. It also includes 

a capability that allows for the drawing of simple protein networks based on the provided 

list of genes and the available interactions in the database. 

2.4.1.3. PPI data exchange formats  

Interaction networks are represented in a number of different file formats, the most widely 

used formats are; tab delimited text (.tab or .txt format), excel workbooks (.xls format), 

simple interaction file (SIF or .sif format), nested network format (NNF or .nff format), 

graph markup language (GML or .gml format), XGMML (extensible graph markup and 

modelling language), SBML, BioPAX, PSI-MI level 1 and 2.5 formats. All the interaction 

repositories provide at least one of these formats as a way to download interaction data. 

2.4.1.3.1. Delimited text and excel workbooks 

The delimited text and excel workbook file formats are the most basic and widely used for 

working with interactive data and are supported by most if not all network analysis tools.  

Tables in these files can contain network and edge (interaction) attributes or values such as 

the confidence of an interaction. With these types of files, users can specify the columns 

for source and target nodes as well as interaction types, and edge attributes when importing 

network data into an analysis tool.  

2.4.1.3.2. Simple Interaction Format (SIF) 

This format allows for the construction of a network from a list of interactions by easily 

merging different interaction sets into a larger network. Each line in a SIF file specifies a 

source node, a relationship (or edge type), and, one or more target nodes as shown in the 

following example.  
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2.4.1.3.3. Nested Network Format 

This format is simple and similar to the SIF format except it allows the option of nesting a 

network into a single a node. An interaction is specified by either of two possible formats 

[105, 106]; 

• A node “node” contained in a “network:” 

o Network node 

• Two nodes linked together contained in a network 

o Network node1 interaction with node2 

2.4.1.3.4. Graph Markup Language (GML) 

GML unlike the SIF format comes with a language that supports rich graph formatting and 

is widely supported by most visualization software tools. A GML formatted file can contain 

information pertaining to graphs, nodes, and edges, and hence capable of emulating almost 

every other format. A network can be built using the SIF format and by applying network 

layouts can then be stored as a GML file as this preserves the layout of a network. Further 

details on the GML specification can be found on the GML documentation website: 

http://www.fim.uni-passau.de/index.php?id=17297&L=1. 

Other formats such as XGMML is the XML extension of the GML format and is the 

preferred format to GML, Systems Biology Markup Language (SMBL) format is an XML 

format used to describe biochemical networks, the specification for SMBL can be found on 

the website: http://sbml.org/Documents/Specifications, PSI-ML format specification is an 

XML-based format that is used for data exchange of protein-protein interactions. GraphML 

is another XML-based format for generating graphs. Apart from the XML-based formats, 

JSON-based file formats are increasingly being used for data exchange of protein-protein 

interactions.2.3.  

nodeA <relationship type> nodeB 

nodeC<relationship type>nodeB 

  

http://sbml.org/Documents/Specifications
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2.4.1.4. Network analysis and visualisation tools 

This section discusses some of the commonly used tools in the proteomics network 

analysis, but before delving into what tools to use, we begin this discussion by looking at 

the ways by which networks can be quantified in order to provide more informative results.  

2.4.1.4.1. Quantifying networks 

The most commonly applied metric are; degree, degree distribution, scale-free networks, 

the degree exponent, shortest path, mean path length, and clustering coefficient Barabasi 

and Oltvai [107]. By using these network metrics, we can quantify and characterise 

important network features which are not commonly visible. 

Protein-protein interactions are the most commonly used form of networks in proteomic 

data analysis. In these networks, proteins are represented as nodes while interactions 

between the nodes are depicted by edges or links. This mapping of proteins is  based on 

experimental information which has been obtained from methods such as mass 

spectrometer [108], protein chip technologies [109, 110], yeast two-hybrid screens [111], 

and predictions from computational methods [112]. These mappings have been collected 

and deposited into online databases as discussed below. 

Network tools are mainly used to analyse proteomic data through functional annotation, 

knowledge integration, modularity analysis, topological analysis and basic network 

property analysis [113]. 

The basic properties of a network such as; node degree, degree distribution, betweenness 

centrality and eigenvector centrality can be used to deduce the significance of a protein 

[114]. Another important metric is the identification of modules which represent a vital 

level of organisation in biology [115]. A module in proteomics can be defined as a set of 

interacting proteins that can be associated with a common biological process. By using 

networks, clusters of interacting proteins can be identified as modules and associated with 

a functionality. Modules provide a comprehensive and global description of interaction 

patterns to comprehend the complexity of biological systems [116]. Module detection 

enables functional annotation of constituent proteins and the discovery of targets for 

therapy in diseases such as cancer. In addition to detection of modules, the integration of 

existing knowledge into networks plays a vital role in the analysis of proteomic data. Such 
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knowledge may include integrating Gene Ontology (GO) annotations, differential gene 

expression, and pathway details. By highlighting such information, candidate disease 

proteins may be identified and module functions can be annotated. 

2.4.1.4.2. Steps to performing network analysis 

To perform network analysis on proteomic data, there are a number of steps that are 

involved, these steps are summarized in Figure 2-7.  The steps involved include but are not 

limited to; 

1. The first step involves identifying a list of proteins or genes that need to be analysed 

using a network tool. The researcher can select which protein or gene appears on 

the lists, as per individual needs. 

2. Interacting partners of these proteins are then obtained from any of the databases 

discussed above. 

3. A protein-protein interaction network is then built by using a visualizing tool from 

the tools listed in Table 2-2. 

4. To get more meaningful information from the network, the protein-protein 

interaction network is then integrated with already existing knowledge such as 

pathways, differential expressions for genes or proteins obtained from either high 

throughput custom data or online databases such as The Cancer Genome Atlas 

(TCGA). Other existing knowledge that can be integrated includes Gene Ontology 

enrichment, which can help to identify the functional annotations of the modules or 

individual proteins in the network. 

5. During topological analysis, network theory concepts such as degree, degree 

centrality distribution, Eigenvectors, degree distribution etc. are applied to identify 

proteins or nodes playing significant roles in the network, variations between a 

normal and an altered network and modules that can be mapped to a functionality.  

6. Topology analysis is further followed by downstream analysis whose objective is 

mostly dependent on the researcher. 

7. Some of the results that may be obtained from a network analysis of proteomic data 

include a visual representation of the network, module identification, network 

variations as well as functional enrichment of proteins and modules.   
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Table 2-2: Summary of Network tools for analysing proteomic data 

Tool Reference URL link Features 

Cytoscape [106] http://cytoscape.org/  - Open source 

- Data integration 

- Network visualisation 

- Network Analysis 

- Functional enrichment 

- Extensible by plugins 

- Standalone 

- Platform independent 

FunRich 

(Functional 

Enrichment 

Analysis ) 

[93] http://funrich.org/  - Open source 

- Functional enrichment 

- Dataset comparison 

- Network visualisation and analysis 

- Standalone 

- Runs only on Windows 

- Results can be exported in various formats 

MetaCore By Thomson Reuters https://portal.genego.com/  - Proprietary 

http://cytoscape.org/
http://funrich.org/
https://portal.genego.com/
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Tool Reference URL link Features 

- Network visualisation 

- Network analysis 

- Function enrichment analysis 

- Data mining toolkit 

- Network alignment 

Ingenuity 

Pathways 

Analysis 

IPA®, QIAGEN Redwood 

City  

 www.qiagen.com/ingenuity - Proprietary 

- Network visualisation and Modelling 

- Causal network analysis 

- Network analysis 

- Functional enrichment analysis 

- Pathway enrichment analysis 

- Literature mining 

- Allows for collaboration 

Gephi Gephi  https://gephi.org  - Network visualisation 

- Network analysis 

- Network clustering 

- Module identification 

- Dynamic network analysis 

http://www.qiagen.com/ingenuity
https://gephi.org/
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Tool Reference URL link Features 

- Real-time visualisation 

PINA: 

Protein 

Interaction 

Analysis 

[117] http://cbg.garvan.unsw.edu.au/pina/   - Network construction 

- Module detection 

- Functional enrichment 

- Network metric analysis 

- Network visualisation 

- Community drove annotation 

Osprey [118] http://biodata.mshri.on.ca/osprey/servlet/Index  - Network visualisation 

- Integrates BioGRID 

- Ability to compare functions between datasets,  

- Build interaction network from custom 

datasets,  

- Search for specific genes within a network 

- Filtering feature 

http://biodata.mshri.on.ca/osprey/servlet/Index
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2.4.1.4.3. Cytoscape 

Cytoscape developed by Trey Ideker (a leading pioneer of systems biology) is a platform 

independent and open source software tool for the integration, visualisation and statistical 

modelling of molecular networks together with other systems-level data [105, 119]. The 

core of Cytoscape provides users with the fundamental features to perform functions such 

as data integration, analysis, and network visualization. The core also has limited 

information stored but interconnects with other databases to obtain relevant information. 

Cytoscape functionality is extensible through the integration of plugins 

(http://apps.cytoscape.org/) which are now called apps from version 3.0 of Cytoscape.  

 

Figure 2-8: The distribution of apps or plugins across a number of categories in Cytoscape. 

The apps can be categorised into one or more of the following functional categories such 

as clustering, data integration, data visualization, enrichment analysis, graph analysis, and 

integrated analysis. Other functional categories include; interaction database, layout, local 

data import, network analysis, network comparison, network generation, online data 

import, ontology analysis, pathway database, scripting, systems biology, utility, and 

visualization.  Figure 2-8 shows the distribution of these apps across the different functional 

categories. 

http://apps.cytoscape.org/
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The first step to a typical Cytoscape workflow is the importation of interactions. These 

interactions are imported from either a user’s own experiment data or from public 

databases. Data from experiments is loaded directly into Cytoscape using a standard file 

format such as generic tabular formats including CSV, Excel, and TSV or network-specific 

formats such as SIF, XGMML, GML, PSI-MI, BioPAX (Biological Pathway Exchange), 

OpenBEL (Open Biological Expression Language) and SBML.  

Importation of data from databases, on the other hand, requires the installation of plugins 

(apps). A list of genes of interest is passed as a query for interactions from the database. 

Examples of apps for importing data from databases is the BioGRID database plugin that 

can be used to import an entire interactome from the BioGRID database. Other ways in 

which networks can be imported into a network by mining interactions directly from 

literature or using computational inference from non-interaction data such as expression 

profiles. This is also achieved through the use of third-party apps. An example of such apps 

that is Agilent Literature Search software which is a meta-search tool that can automatically 

search through multiple texts based search engines to extract associations among a set of 

genes or proteins of interest. 

Once the networks are imported into Cytoscape and network visualisation is done, network 

analysis is achieved using the huge collection of apps. For example, using network topology 

apps like Knowledge-fused Differential Dependency Network (KDDN), users are able to 

calculate such statistics as network distribution of node degrees. Network clustering apps 

such as MCODE enable users to extract network regions which are densely connected 

thereby forming modules which can then be related to complexes or pathways. Network 

enrichment apps are used to infer the functions of the identified modules by detecting 

functional terms that are statistically overrepresented among the set of genes making up the 

module. Examples of apps that can perform functional enrichment include; BiNGO which 

is a tool that can determine which Gene Ontology categories are statistically 

overrepresented in a set of genes or a module, the ReactomeFIPlugin is another app that 

can be used to associate a set of genes in a module to pathways that are related to diseases 

such as cancer.  Furthermore, functional modules can also be identified by integrating 

networks with expression data to infer network regions that are consistently up- or 

downregulated. Another example of network analysis that can be done using apps in 

Cytoscape is network comparison, this involves comparing networks across species or in 
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different conditions to identify regions of the network with conserved interactions. 

GASOLINE (Greedy and Stochastic algorithm for Optimal Local Alignment of Interaction 

NEtworks) is an example of an app that can be used to compare multiple networks.  

Cytoscape also supports the use of scripting languages such as Python and R. It enables 

users to develop their own scripts and integrate or call Cytoscape functionality in the order 

they want it to be done.  

2.4.1.4.4. FunRich 

Functional Enrichment Analysis (FunRich) tool [93] is an open source standalone desktop 

software tool for functional enrichment and protein-protein interaction network analysis of 

biological molecules. Features of FunRich include functional enrichment and network 

analysis of genes and proteins. In addition, FunRich allows the representation of results in 

editable graphical form as Venn, Bar, Column, Pie and Doughnut charts. FunRich users 

can perform a biological process, cellular component, molecular function, protein domain, 

site of expression, biological pathway, transcription and clinical synopsis phenotypic term 

enrichment. Users can analyse their datasets against two built-in background databases; 

FunRich and UniProt or against a customized background database. FunRich does not 

require users to install any additional applications or plugins to conduct any of the above 

analysis.  FunRich is currently only available for Microsoft’s Windows Operating system 

with plans underway to support other major operating system platforms. 

The first step to performing an enrichment analysis in FunRich is the specification of an 

annotation database. By default, FunRich comes with a human annotation database. Each 

database consists of biological function annotations and an interaction database. FunRich 

also comes with the latest UniProt annotation database, otherwise, users can also include a 

custom database. Once an annotation database has been specified, a list of genes or proteins 

is then imported. The user can perform a range of analyses on the datasets including 

comparison across the datasets using a Venn diagram that shows which proteins or genes 

are common across the datasets. Users can also perform gene set enrichment analysis to 

determine what biological functions are statically enriched in the gene or protein lists. In 

addition to these, FunRich also allows users to generate and build an interaction network 

from where users can then manipulate the network through enriched pathways and 

functions.  
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2.4.1.4.5. MetaCore 

MetaCore from Thomson Reuters is an integrated proprietary software suite capable of 

analysing multiple types of biological data, for example, Next Generation Sequencing 

[120], variant, Copy Number Variation (CNV), microarray, metabolic, proteomics, 

microRNA etc. Functional analysis in MetaCore is performed against a high quality, a 

manually-curated database containing molecular interactions vis-à-vis protein-protein 

interactions, protein-DNA interactions, and protein-RNA interactions. The database is also 

made up of molecular classes such as transcription factors, signalling and metabolic 

pathways and disease ontologies. MetaCore was developed for the purpose of representing 

biological functionality along with the integration of functional, molecular, or clinical 

information. Using the data mining toolkit available in MetaCore, users can perform 

functions like data visualization, analysis and exchange of data, network alignment using 

multiple network alignment algorithms, and enrichment analysis. While MetaCore provides 

a set of rich features, it is a paid for a suite of software for integrated analysis. 

2.4.1.4.6. Ingenuity Pathways Analysis  

IPA (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) is a proprietary software 

application with features that allow scientists to model, analyse and understand the 

complexity of biological and chemical systems [121]. IPA offers a host of network analysis 

functions some of these include; causal network analysis allows researchers to identify 

upstream molecules that control the expression of genes in their datasets and network 

analysis which allows the building and exploration of transcription of molecular networks 

such as microRNA, transcriptional networks, and Protein-Protein interaction networks. 

Network analysis in IPA can identify regulatory events that lead from signalling events to 

transcriptional effects, help in understanding toxicity responses by exploring connections 

between drugs or targets and related genes or chemicals. Users can also edit and expand 

networks based on the molecular relationships most relevant to the project. 

IPA is capable of identifying pathways, molecular mechanisms and biological processes 

that are relevant to a given dataset. It is also capable of finding biological and chemical 

knowledge from the scientific literature. Other features allow for collaboration, sharing of 

results and insights with project teams.  

http://www.qiagen.com/ingenuity
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IPA is a subscription-based software application. It is made available as a web-based, 

hosted or deployed solution. 

2.4.1.4.7. Gephi 

Gephi is an open-source data exploratory, network visualization and analysis software tool 

for large network graphs. Gephi allows users to explore, analyse, spatialize, filter, cluster, 

manipulate and export all types of network graphs.  With Gephi, users can derive 

hypotheses and identify patterns by analysing data using networks.  

Gephi can be used to analyse a variety of networks ranging from biological networks to 

social networks. It supports the majority of the network file formats discussed in section 

2.2 above. The core of Gephi can perform basic network metric analysis such as calculating 

betweenness centrality, closeness, clustering, community detection or module 

identification. Gephi further includes a feature that allows for the analysis of dynamic 

networks were a set of networks representing or derived from different conditions or events 

are compared to infer differences. In addition, Gephi is also extensible by a range of plugins 

which users can install to perform functionality that is not included in the core of Gephi. 

While Gephi provides a range of network analysis features, other biological specific 

network analysis features such as functional enrichment cannot be easily done due to the 

unavailability of such functionality within Gephi or its associated plugins.  

2.4.1.4.8. NDEx-The Network Data Exchange 

NDEx-The Network Data Exchange is not so much a network analysis tool, but rather an 

open source framework for sharing of networks of many types and formats, publication of 

networks as data, and the use of networks in modular software [122]. Unlike other similar 

tools such as KEGG and IntAct, NDEx is a data commons framework that allows users to 

manage the sharing and the publication of networks. Users can upload any type of networks 

such as pathway models, interaction maps, and novel data-driven knowledge networks. 

NDEx supports networks of varying formats including simple interaction format (SIF), 

extensible graph markup and modelling language (XGMML), BioPAX3 and OpenBEL. 

Each network uploaded to NDEx is given an accession number which acts as a universally 

unique identifier allowing users to share or include such networks in publications. NDEx 

also promotes the development of network analysis algorithms and applications by 
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providing access to networks which can be used as inputs through a web-based relational 

state transfer application programming interface (REST API). In addition, users can 

anonymously access networks by searching through the web interface (www.ndexbio.org). 

The framework can also be downloaded and run on a local server or personal computer, 

depending on the needs of a user.  

2.4.1.4.9. PINA: Protein Interaction Analysis 

Protein Interaction Analysis is a web-based integrated network analysis platform for protein 

interaction network construction, filtering, analysis, visualization and management [117]. 

PINA has a quarterly updated backend database consisting of an integration of data from 

six other publicly available databases; IntAct, MINT, BioGRID, DIP, HPRD and MIPS 

MPact. To construct a network, PINA provides a query feature where users can either query 

a single protein, a list of proteins, a list of protein pairs or two lists of proteins.  

The constructed PPI networks can be further analysed by PINA’s inbuilt GO term and 

protein domain annotation tools. Other analyses that can be performed include the use of 

graph theoretical tools to either discover basic topology properties of a PPI network or 

identify topologically important proteins, such as hubs or bottlenecks, based on several 

centrality measures from protein domains and GO terms. In addition, the constructed 

networks can be downloaded in customized tab delimited, GraphML or MITAB formats 

for further analysis using tools such as Cytoscape where they can be integrated with gene 

expression profiles.  

2.4.1.4.10. Colorectal Cancer Atlas 

Colorectal Cancer Atlas [11] is an integrated web-based resource mainly meant for those 

involved in colorectal cancer research. The tool provides a platform that catalogues both 

non-quantitative and quantitative proteomic and genomic sequence variation data in both 

colorectal cancer cell lines and tissues. This information has been curated from existing 

literature.  

Colorectal Cancer Atlas features an easy to use search functionality that also offers auto-

complete. Users can search for a given protein, gene, pathway or cell line that may be of 

interest to them. Depending the type of search term, the tool then performs functional, 

http://www.ndexbio.org/
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pathway and GO enrichment, maps sequence variances known in colorectal cancer and 

associated with the searched term, and generates a protein-protein interaction network.  

The network integrates proteomic data with genomic sequence variations. Users can use 

this network analysis module to quickly get an overall picture of the interacting partners of 

a given gene in colorectal cancer. It uses colour intensities to indicate the number of 

sequence variances for a given gene in the database. Users can also filter through the 

network by either a gene symbol or by cell lines. 

While this tool is specific to colorectal cancer, it provides features that users can quickly 

use to get functional enrichment information for a given protein or gene as well perform a 

gene or protein centred network analysis. Overall, researchers can quickly look up a list of 

genes or proteins and get an overview of a given gene in colorectal cancer.  

2.4.1.4.11. Osprey 

Osprey [118] is a software tool that allows for the visualization and analysis of complex 

interaction networks. Just like most visualization tools, in osprey genes are represented as 

nodes and interactions as edges. Developed using Java, Osprey is platform independent 

running on both Linux and Windows based systems.  

Osprey provides a range of features that allows users to easily build data-rich graphical 

representations of their datasets. In addition, users can use the default BioGRID’s Gene 

Ontology interaction datasets to quickly build an interaction network. Some of the features 

in Osprey include; ability to compare functions between datasets, use of custom datasets to 

build interaction networks, ability to search for specific genes within a network as well 

filter functions to filter for specific nodes within a large a network. Osprey also has a 

number of network layouts including concentric circles, spoke, circular and dual ring, these 

layouts allow for the comparison of large-scale datasets in an additive manner.  

2.4.1.5. Conclusions 

In order to study and understand complex systems such as cellular systems, we have shown 

that network theory provides metrics that can be used to study such systems using a bottom 

up approach. In this chapter, we have given an overview of how network theory can be 

applied to the analysis and study of proteomics data based on a number of network theory 
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metrics. Such metrics include; node degree, node centrality, Eigen vector values and 

modularity.  

We have also discussed the most frequently used network analysis tools in analysing 

proteomic data. In doing so, a generic workflow that one can use during the analysis has 

been described. Tools discussed included databases which are used to house protein-protein 

interaction network annotations and the analytical tools that can be applied in analysing 

proteomic data.  
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2.4.2. Computational analysis of PPIs in disease 

Section 2.3.1 discussed the pivotal roles played by PPIs in pathological states. Therefore, 

understanding the interactions among proteins is vital in the inference of proteins and 

modules responsible for tumour progression and metastasis in cancer. Against this 

background and given the cost of conducting wet laboratory-based experiments, several 

computational tools and methods have been developed and widely applied in analysing PPI 

networks to identify genes, together with their corresponding proteins and protein modules 

involved in cancer progression. For instance, tumour related genes and protein networks 

are inferred by computationally integrating PPI networks with gene expression data from 

tumours [44, 123, 124]. Sun and Zhao [125], on the other hand, found network topological 

differences for proteins encoded by known cancer genes upon analysing their global and 

local network characteristics. Interestingly, Yang, et al. [126] using gene co-expression 

networks showed that proteins that are encoded by cancer prognostic genes do not generally 

form hubs (proteins that are highly connected) within PPI networks, but are often found 

enriched in modules (groups of highly interconnected proteins) that are highly conserved. 

Similarly, Brown, et al. [127] analysed gene co-expression networks in glioblastoma and 

identified CD133 and CD44 genes as indicators of the different glioblastoma subtypes 

based on their modules of enrichment.  

One of the principal areas of active research in biomarker discovery is the prioritisation of 

genes from among thousands of other candidate genes. High-throughput (HTP) techniques 

such as linkage analysis [128] and GWAS [129] are typically used in associating genetic 

variations to diseases [130]. While the cost of conducting such types of studies has been 

decreasing over the years with the advent of new technologies, doing so is, however, time 

consuming due to the increased data amounts and is also prone to false positives [131]. As 

such, the development of computational methods and algorithms to comprehensively 

prioritise such candidates before wet laboratory experiments are conducted can help reduce 

such costs [132]. Gene prioritisation involves the assignment of confidence scores to genes 

based on the probability of being associated with a disease [133]. Several bioinformatics 

tools have thus been developed to identify genes associated with a disease by combining 

various data sources such as PPIs, gene expression, functional similarities, and pathway 

annotations. Perez-Iratxeta, et al. [133] developed the first major type of such tools, and 

since then, other numerous tools and algorithms have been implemented [134-141]. 



 

50 

 

Interestingly, the common underlying theme among these methods is that they are often 

based on the principle of “guilty by association” or GBA. That is, genes or proteins that are 

similar to or interact with genes/proteins that are already known to be associated with a 

disease are then more likely to be functionally related or associated with the same disease 

[40, 142-145]. That is, two proteins that are closer to each other in a network are bound to 

be functionally similar. Using this principle, basic network metrics are used to determine 

the distance between two proteins in a network. Examples of such metrics include shortest-

path where the shortest distance between two proteins is the lowest number of edges 

connecting the two proteins. Others include the diameter, neighbourhood, clique, cut, node 

degree, and density [90, 146, 147]. Computational GBA methods have been applied widely 

to infer novel protein functionality as well as associating genes to diseases, for instance, 

Wolfe, et al. [142], by analysing co-expression networks, found genes with similar 

functionality as other already known genes. Similarly, Wu, et al. [148] developed a tool 

called CIPHER that predicts and prioritises genes associated with disease, and Zhou, et al. 

[149], on the other hand, incorporated biomedical literature to the development of a 

symptom-based human disease network and found that the similarity of symptoms between 

two diseases correlated with the number of genes associated with both diseases as well as 

the extent to which their related proteins interact, thereby showing that proteins that are 

related participate in similar phenotypes.  

To generalise beyond the direct interacting neighbours, other methods have also been 

developed. Such methods include module-based methods which first group or cluster 

together a group of related proteins and infer the function of the module, based on the 

function of the members [150, 151]. In such methods, statistical and machine learning 

techniques are used to group similar proteins based on a wide range of features [147, 152-

161]. For example, Menche, et al. [162] established a set of mathematical conditions that 

showed that diseases with overlapping modules had statistically significant molecular 

similarity. Nonetheless, using such methods has proven to be ineffective and inconsistent 

in linking the functional roles of proteins against several phenotypes compared to GBA 

based methods[138, 156, 163, 164].  

Furthermore, to address some of the shortcomings of modular-based methods, recent 

methods have been proposed that take into consideration the global topology of a PPI 

network when inferring disease-associated genes [138, 164]. At the core of these methods 
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is the concept of network propagation, a network analysis technique whereby a biological 

signal is broadcast through the entire network [165, 166]. The biological signal is amplified 

accordingly by those proteins that are considered to be functionally related to the protein 

that generated the signal [164]. Biological signals, in this case, can be prior information 

that associates genes with a given phenotype, such as a disease like CRC. Network 

propagation is performed by first overlaying the prior information on network nodes 

(proteins). This information is then propagated from each node across the network via the 

edges to neighbouring nodes repeatedly until the number of steps specified is reached or 

upon convergence [166]. The final scores of each node are therefore dependent on the 

scores of its interacting partners whose scores are also dependent on their neighbours, and 

so forth.  

Network propagation, therefore, provides research scientists with the opportunity to 

integrate networks with various types of heterogeneous data. Network propagation has long 

been applied in several areas of scientific research while taking on different forms and 

names [164, 167-171]. In systems biology, network propagation has also been used in such 

areas as gene-disease association studies [76, 172], module detection [156, 173], gene 

function characterisation [151, 174] as well as in the discovery of drug targets [175].  

2.5. Exosomes and exosome biogenesis 

Cancer is a highly complex and heterogeneous disease which is sustained by a robust 

biological system of networks such that they gain the ability to survive, adapt and 

proliferate even in the presence of anticancer drugs [176-178]. The biological networks are 

derived from interactions between proteins, genes, DNA, RNA, and other small molecules 

within cells, as well as intercellular and distant cell interactions [177]. For the biological 

system of networks to be sustained, there is a need for the influx and efflux of biological 

materials across the nuclear and plasma membranes [179]. It is well-established that cellular 

systems consist of active and passive transport machinery which handle the movement of 

biological materials in and out of cells via the membranes [180, 181]. However, recently, 

research has shown that there are other transport mechanisms such as extracellular vesicles 

(EVs) which are involved in both short and distant intercellular communication [182, 183].  

Over the last decade, research has further shown that EVs transport several active biological 

cargoes such as DNA [184], proteins [185], RNA [186], lipids [187], viruses [188], and 
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metabolites [189]. Also, the transported cargo is reflective of their cellular origin and is 

capable of affecting the recipient cell’s phenotype [183, 190]. EVs, through the transfer of 

their cargo, can regulate several biological functions ranging from normal physiological 

processes such as cell maintenance and tissue repair [191] to pathological processes that 

underlie diseases such as cancer [182]. There are three main categories of EVs based on 

their biogenesis [183]: exosomes, ectosomes or shedding microvesicles (SMVs) [183, 192] 

and apoptotic bodies (ABs) [193]. In this thesis, we focus on exosomes.  

Exosomes are 30-150 nm in diameter membranous vesicles of endocytic origin that are 

secreted by a variety of cells under normal and pathological conditions [183, 194]. First 

reported by Pan and Johnstone [185], exosomes are bound by a lipid bilayer membrane that 

encloses a small cytosol but lacks organelles. Like other EVs, exosomes contain various 

biological materials such as proteins and nucleic acid materials that are reflective of their 

cell of origin [183, 195]. While the content of exosomes varies according to their cell of 

origin, research has shown that they contain a set of protein molecules which are 

evolutionary-conserved [196]. Over the years, there has been increased interest in the role 

of exosomes in both physiological and pathological conditions due in part to their ability to 

carry biological content between cells. The role of exosomes in physiological conditions is 

poorly understood while ongoing research has implicated exosomes in several pathological 

conditions such as cancer where it is shown that exosomes are involved in the metastasis 

of cancer [197-199], drug resistance [177], and epithelial-to-mesenchymal transition 

(EMT) [200]. On the other hand, exosomes are proposed as potent vehicles for the delivery 

of therapeutic drugs [201, 202]. In addition, because exosomes are secreted into readily 

available body fluids such as blood and urine, they can be used as biomarkers for the 

diagnosis and prognosis of cancerous tumours [203]. Because of this enormous potential 

that can be harnessed by understanding the role of exosomes in both physiological and 

pathological states, there has been a growing interest in the study of the biogenesis, 

functions, and applications of exosomes. 

The biogenesis of exosomes starts with the inward budding of endosomal membranes 

which results in the formation of intraluminal vesicles (ILVs) within the multivesicular 

bodies (MVBs) [204]. Upon maturation, the MVBs fuse with the plasma membrane and 

their contents are then secreted into the extracellular space as exosomes, as summarised by 

the flowchart in Figure 2-9. However, the mechanism behind exosome biogenesis is still 
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poorly understood. Nonetheless, the endosomal sorting complex required for transport 

machinery together with other accessory proteins is thought to be one of the mechanisms 

by which exosome biogenesis is regulated [191, 205].  

 

Figure 2-9: Exosome biogenesis and release.  Biogenesis of exosomes starts with the inward 

budding of endosomal membranes which results in the formation of intraluminal vesicles 

(ILVs) within the multivesicular bodies (MVBs). Once the MVBs mature, they fuse with 

the plasma membrane and their contents are then secreted into the extracellular space as 

exosomes. Several mechanisms are implicated as being involved in this process: the 

ESCRT machinery, tetraspanins, lipids and Rab GTPases. The mechanisms by which they 

achieve biogenesis are, however, still poorly understood.  

The ESCRT machinery consists of about 20 proteins divided among four complexes 

(ESCRT-0, -I, -II, and -III) as shown in Figure 2-10. The four ESCRT components are 

linked together and work in a sequential order in partnership with other accessory proteins 

(such as ALIX, VPS4 and VTA1) to regulate exosome biogenesis [204]. According to 

Schmidt and Teis [206], the ESCRT-0 complex initiates the process of MVB formation by 

first localising to endosomes where it binds to degradation-bound ubiquitylated proteins, 

hence making it the first step i sorting in the MVB pathway. It is made up of the proteins 
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STAM, STAM2 and HGS. The ESCRT-0 complex also recruits the ESCRT-I complex 

when the HGS subunit binds to ESCRT-I’s TSG101 subunit. The ESCRT-I complex forms 

a rod-like shaped complex of proteins consisting of UBAP1, VPS37(A-D), TSG101, 

VPS28, MVB12 (A and B) where one end of the complex with TSG101 binds to the 

ESCRT-0 complex and other ubiquitylated proteins, thereby forming the second phase of 

sorting. The ESCRT-I complex also works together with the ESCRT-II complex to initiate 

the inward budding process of the endosomal membrane. The ESCRT-II complex is a Y-

shaped complex made up of the proteins SNF8, VPS25, and VPS36 with VPS36, forming 

the hub-base of the complex that binds to ESCRT-I as well other proteins such as PI3P and 

ubiquitin [191, 206].  

 

Figure 2-10: ESCRT machinery complexes.  The four complexes (ESCRT-0, I, II, III) that 

make an ESCRT machinery together with their associated accessory proteins. 

Therefore, the first three ESCRT complexes (ESCRT-0, I and II) are said to work together 

by binding to ubiquitinated cargo and sorting ubiquitinated membrane proteins into MVBs 

during exosome biogenesis. The ESCRT-III complex on the other hand is made up of the 
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proteins CHMP1(A, B), CHMP2(A, B), CHMP4 (A-C), IST1, CHMP (5-7). The ESCRT-

III complex is responsible for the sequestration of cargo within vesicles and membrane 

budding [206].  

Other than the ESCRT machinery, recent studies have shown that other ESCRT-

independent pathways are likely to regulate exosome biogenesis. For instance, a study by 

Stuffers, et al. [207] showed that in the absence of essential ESCRT proteins in mammalian 

cells, the formation of MVBs and the secretion of exosomes were not wholly impaired 

which, therefore, implies that other pathways exist that regulate exosome biogenesis. 

Examples of such ESCRT-independent pathways include tetraspanins-enriched domains 

[208], Rab GTPases [209] and lipids [210]. Interestingly, the regulation of exosome 

biogenesis by the ESCRT-dependent pathway, unlike their counterparts, has been shown 

to be conserved in other species [210, 211]. Despite the mounting evidence of the role of 

ESCRT machinery as well as other pathways in exosome biogenesis, the biology and the 

mechanisms behind exosome biogenesis are yet to be fully understood.  

2.6. Conclusion 

The computational analysis of PPIs has contributed immensely to the advancement of our 

knowledge of the changes in the biological systems of diseased states. However, to further 

build on what is already established, there is need to develop novel methods that can 

integrate both clinical and molecular data to infer new clinical phenotypes that are relevant 

in areas such as personalised medicine [145]. Over the years, there has been a transition 

from traditional bioinformatics to translational bioinformatics.  

With the continued advancements in high-throughput data collection techniques, the 

challenge therefore for bioinformaticians and computational biologists is developing 

computational tools and methods that are scalable and capable of integrating various 

heterogeneous data. Hence, today’s computational methods for the analysis of PPIs should 

be capable of integrating environmental factors as well as analysing interactions between 

different organisms such as host-pathogen interactions. They should also be capable of 

discovering disease biomarkers through the analysis of PPIs which can ultimately lead to 

drug discovery. Nevertheless, traditional methods for the analysis of biological 

interactomes use static networks which do not address several factors which need to be 

taken into account when analysing biological interactomes. Such factors include biological 
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functions, being time-sensitive, proteins and the fact that the networks they form do not 

always exist at the same time. Also, biological networks are dynamic in nature; a single 

protein can serve multiple functions and at the same time can interact with proteins that 

function completely different from its own. A static network will therefore not account for 

the spatial and temporal aspects of biological interactomes and may lead to the inaccurate 

representation of the dynamism that is characteristic of biological networks. To therefore 

correctly analyse proteomics data in dynamic diseases such as cancer, there is the need to 

develop computational methods and tools that can encompass the temporal aspects 

underlying such diseases.  
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Chapter 3  
Colorectal cancer atlas: An integrative resource for genomic and 

proteomic annotations from colorectal cancer cell lines and 

tissues 

This chapter has been peer-reviewed and published in the Journal of Nucleic Acids 

Research (Chisanga, et al. [11]) and is presented here as a manuscript.  

The candidate designed and developed the resource. The candidate was also involved in the 

collation and annotation of the data as well as the bioinformatics analysis of mass 

spectrometry data.  
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3.1. Abstract 

In order to advance our understanding of colorectal cancer (CRC) development and 

progression, biomedical researchers have generated large amounts of omics data from CRC 

patient samples and representative cell lines. However, these data are deposited in various 

repositories or in supplementary tables. A database which integrates data from 

heterogeneous resources and enables analysis of the multidimensional datasets, specifically 

pertaining to CRC is currently lacking. Here, we have developed Colorectal Cancer Atlas 

(http://www.colonatlas.org), an integrated web-based resource that catalogues the genomic 

and proteomic annotations identified in CRC tissues and cell lines. The data catalogued to-

date include sequence variations as well as quantitative and non-quantitative protein 

expression data. The database enables the analysis of these data in the context of signaling 

pathways, protein-protein interactions, Gene Ontology terms, protein domains and post-

translational modifications. Currently, Colorectal Cancer Atlas contains data for >13,711 

CRC tissues, >165 CRC cell lines, 62,251 protein identifications, >8.3 million MS/MS 

spectra, >18,410 genes with sequence variations (404,278 entries) and 351 pathways with 

sequence variants. Overall, Colorectal Cancer Atlas has been designed to serve as a central 

resource to facilitate research in CRC. 

Keywords: colorectal cancer database, colorectal cancer atlas, proteomics, genomics, 

bioinformatics, databases 

http://www.colonatlas.org/
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3.2. Introduction 

Colorectal cancer (CRC) is the third most common form of cancer and has the fourth 

highest mortality rate in the world [212]. In order to advance our understanding of the 

initiation and progression of this disease, biomedical researchers have performed global 

analyses of the genome, epigenome, transcriptome, proteome and metabolome of CRC 

patient samples and representative cell lines [213-216]. According to The Cancer Genome 

Atlas Network [214], APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, TCF7L2 and 

NRAS are the most frequently mutated genes in CRC. Identification of these mutations and 

associated pathways has advanced our understanding of CRC, is enabling the sub-

classification of this disease and is unveiling potential new avenues for treatment. 

Due to the significant advancements in high-throughput technologies, vast amounts of 

multidimensional data relevant to the biology of CRC have been generated. To extract 

meaningful biological insights from these data, researchers previously needed to collate 

data from a large number of studies. To facilitate this process, a series of databases have 

been created.  For example, cancer gene mutations are currently catalogued in databases 

including TCGA [214], COSMIC [217], TumorPortal [218], IntOGen [219], Network of 

Cancer Genes [220] and TSGene [221]. These databases provide valuable information of 

gene variations for a number of tumour types including CRC, however they are not 

specifically designed to integrate sequence variations with proteomic data. NetGestal [222] 

is a web-based framework that allows for integration of OMIC data from multiple species 

in the context of biological networks [223] and contains data pertaining to human CRC 

from TCGA. However, there is currently no user-friendly online resource specifically 

pertaining to CRC which catalogues genomic and proteomic data from literature, databases 

and TCGA, integrates the sequence variations with protein domain, post-translational 

modifications and protein-protein interactions. 

Here, we describe Colorectal Cancer Atlas (http://www.colonatlas.org), an integrated web-

based resource which catalogues genomic and proteomic data from CRC tissues and cell 

lines. Data catalogued includes; quantitative and non-quantitative protein expression, 

sequence variations, cellular signaling pathways, protein-protein interactions, Gene 

Ontology terms, protein domains and post-translational modifications (PTMs). Data 

pertaining to genomic sequence variations and protein expression have been manually 

curated from the scientific literature and collated from other publicly available databases. 

http://www.colonatlas.org/
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Colorectal Cancer Atlas is designed to enable a user to search for a specific mutation in any 

particular cell line, and search for cell lines with and without specific mutations. Currently, 

Colorectal Cancer Atlas contains data for >13,711 primary CRC tissues, >165 CRC cell 

lines, 62,251 protein identifications, >8.3 million MS/MS spectra, >18,410 genes with 

sequence variations, 404,278 sequence variation entries, 351 pathways with sequence 

variants, 88,819 PTMs and 253,700 protein-protein interactions (Table 3-1). 

Table 3-1: Colorectal Cancer Atlas statistics 

Protein entries 62,251 

MS/MS spectra 8,378,422 

Primary tissues 13,711 

Cell lines 179 

Genes with sequence variants 19,831 

Gene sequence variants 404,278 

Pathways with genes having sequence variants 351 

Pathways with genes having no sequence variants 1,657 

Cell lines with drug sensitivity 27 

PTMs 88,819 

PTMs affected by sequence variants 1,631 

Protein-protein interactions 253,700 

 

3.3. Database architecture and web interface  

Colorectal Cancer Atlas is a web-based application developed using Zope2 (version 2.8.7-

1), a python-based web framework. The back-end database is MySQL (version 5.0.95), a 

well-established open source database. The web pages were developed using Hyper Text 

Mark-up Language (HTML) in combination with JavaScript for front end functionality, 

while Python (version 2.4.3), a scripting language was used for database connectivity and 

back-end processing. JavaScript modules include DataTables (version 1.10.4) for the 

development of interactive data tables, Data-Driven Documents (D3JS) for the 

development of interactive protein-protein interaction networks, and Highcharts (version 

4.1.6) for the development of interactive heat maps and column charts. 



 

62 

 

3.4. Genomic datasets 

Colorectal Cancer Atlas catalogues gene sequence variations present in primary CRC 

tissues and cell lines which were collated by manual curation of the scientific literature. In 

addition, the database contains genomic variations identified in CRC cell lines sequenced 

in-house. For cell lines, where available, the gender and age of the patient is provided, along 

with the specific cell type, doubling time, culture properties and stage of cancer. This 

information was obtained from the Cancer Cell Line Encyclopedia [224], ATCC 

(http://www.atcc.org), COSMIC database and literature. Sequence variation details 

including the type of sequence variants, putative mutational effects, nucleotide change and 

amino acid changes are displayed. 

3.5. Proteomic datasets 

Colorectal Cancer Atlas also catalogues proteomic data collated from multiple resources 

including the scientific literature (e.g., Zhang et al.  [216]), Human Protein Atlas [225], 

Human Proteinpedia [226] and Human Protein Reference Database [227]. Experimental 

techniques used in generating these data included mass spectrometry, Western blotting, 

immunohistochemistry, confocal microscopy, immunoelectron microscopy and 

fluorescence-activated cell sorting (FACS). In addition, publicly available label–free 

quantitative mass spectrometry data for CRC cell lines and tissues were re-analysed using 

an in-house proteomics pipeline in order to provide standardized data. The proteomics 

pipeline involved conversion of raw mass spectrometry data files into the Mascot Generic 

File Format (MGF) using MsConvert with peak picking [228]. The MGF files were then 

searched using X! Tandem (Sledgehammer edition version 2013.09.01.1) [229] against a 

target and decoy Human RefSeq protein database. Peptides were further filtered using <5% 

false discovery rate (FDR) as a cut-off, and quantified using the Normalized Spectral 

Abundance Factor (NSAF) method [230]. 

http://www.atcc.org/
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3.6. Colorectal Cancer Atlas provides an integrated view of multiple data 

types 

 
Figure 3-1: Snapshot of Colorectal Cancer Atlas features.  An overview of proteomic and 

genomic data features for the APC gene is displayed. A user can query the database using 

a gene symbol or a protein name. A gene information page will provide the users with 

details pertaining to protein domains, post-translational modifications (PTM), reported 

mutations in cell lines/tissues, quantitative protein expression, pathway, protein-protein 

interaction (PPI) and cell line drug sensitivity.  
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Colorectal Cancer Atlas provides an integrated view of the sequence variations and the 

proteomic data. Mass spectrometry-based quantitative proteomic data are depicted as heat 

maps and column charts in the respective molecular pages (Figure 3-1), and users are able 

to filter the datasets based on the FDR. The database also contains protein expression data 

generated using immunohistochemistry, Western blotting, FACS, confocal and 

immunoelectron microscopy. The database also includes protein data derived from various 

cellular fractions including the nucleus, cytoplasm, membrane, the secretome [231] and 

exosomes [232] (from ExoCarta [233]). 

The integration of sequence variants with proteomic data is designed to facilitate the 

prediction of functional effects of the protein. For each gene, Colorectal Cancer Atlas 

enables parallel visualization of CRC associated sequence variants with quantitative protein 

expression across CRC cell lines and tissues. In addition, PTMs, and protein domains 

affected by the sequence variation can be visualized (Figure 3-1), enabling the potential 

effect of sequence variants on protein function to be easily ascertained. For example, β-

catenin mutations in positions S33, S37, T41 and S45 occur in CRC, all of which are critical 

for phosphorylation [234]. Mutations in these serine/threonine residues allows for the 

stabilization of β-catenin and constitutive activation of the Wnt signaling pathway. 

Similarly, Colorectal Cancer Atlas displays sequence variations in known protein domains 

which can provide valuable insight into the putative effect on protein function. For example, 

mutations in the armadillo domain (R582) in β-catenin have been described which have 

been reported to alter the binding of β-catenin to TCF4 [235] (Figure 3-2). 

Colorectal Cancer Atlas also provides a graphical representation of known protein 

interactions (obtained from BioGrid [236] and Human Protein Resource Database [227]), 

where each protein is depicted as a node with a specific colour and intensity corresponding 

to the number of sequence variants in the encoding gene (Figure 3-1). Furthermore, 

Colorectal Cancer Atlas integrates biological pathways with gene sequence variants. 

Biological Pathways were obtained from Reactome [237], KEGG [238], Cell map and 

HumanCyc. For example, as shown in Figure 3-1, sequence variants in APC are implicated 

in the dysregulation of the Wnt signaling pathway and actin cytoskeletal remodelling. 

Finally, Colorectal Cancer Atlas contains data on 5-flurouracil (5-FU) drug sensitivity for 

CRC cell lines curated from the literature (studies using at least 3 CRC cell lines [239]). 

Users can view the sensitivity profile of a cell line of interest relative to other CRC cells. 
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Figure 3-2: PTMs and domains in β-catenin are affected due to mutation. Snapshot of β-

catenin molecular page is displayed. The PTMs affected by mutations can be viewed in the 

tab PTMs. Mutations in β-catenin at positions important for phosphorylation (S33, S37, 

T41 and S45) allows for the stabilization of β-catenin and constitutive activation of the Wnt 

signaling pathway. The upstream kinases responsible for the phosphorylation is also 

provided along with the literature reference. Likewise, mutations in the armadillo domain 

can be viewed by correlating the sequence variants and the domain span regions. For 
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example, mutations in the armadillo domain (p.R582) in β-catenin have been described 

which have been reported to alter the binding of β-catenin to TCF4 [235] 

3.7. Accessing Colorectal Cancer Atlas 

Users can search Colorectal Cancer Atlas through the home, query or browse pages (Figure 

3-3). In addition, the website features a navigation menu and a search box at the top of the 

page. The database can be queried by gene symbol, Entrez Gene ID, protein name, cell line 

name or pathway. The browse page provides users with the option to access the database 

by categorised lists of genes, sequence variations, cell lines and techniques. The browse 

page allows the users to search for sequence variations in genes of interest and displays 

them in interactive color-coded table format. The gene information page includes gene 

details, associated GO terms, sequence variations (displayed in an interactive table), 

domain details, PTMs, a protein data page leading to experimental techniques and 

quantitative data with an interactive heat map, a column chart for spectral abundance and a 

list of detected peptides. Other information includes a list of cell lines and tissues that 

contain sequence variants in a given gene, a list of pathways in which the gene is involved, 

and an interactive protein-protein interaction network for the protein encoded by the gene. 

The cell line page provides details of the cell line, an interactive table of gene sequence 

variants identified in the cell line, an interactive table of dysregulated pathways and 5-FU 

drug sensitivity profile. Data curated in Colorectal Cancer Atlas is available as tab-

delimited files and is free for download to all users. Using the custom database option, the 

tab delimited data can also be uploaded into FunRich [240], a functional enrichment 

analysis tool to identify classes of genes/proteins that are overrepresented in a specific 

category. 
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Figure 3-3: Use case for Colorectal Cancer Atlas. Users can access Colorectal Cancer Atlas 

through the query or browse pages. The browse page provides users with the option to 

access the database by categorised lists of genes, sequence variations, cell lines and 

techniques. Further to this, sequence variations in specific genes can be viewed as an 

interactive table format. The gene information page includes gene details, associated GO 

terms, sequence variations, domain details, PTMs, a protein data page leading to 

experimental techniques and quantitative data with an interactive heat map, a column chart 

for spectral abundance and a list of detected peptides. The entire data in Colorectal Cancer 

Atlas can be downloaded as tab-delimited files. 

3.8. Future directions 

Colorectal Cancer Atlas will be continuously updated with more studies as they become 

available and additional features.  Studies currently being curated include Wnt signaling 

activity determined by the TOPFLASH assay, and genomic and proteomic data generated 

from patient derived xenografts. 
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4.1. Abstract 

Colorectal cancer (CRC) is the third-most common form of cancer in the world with a high 

rate of morbidity and mortality. The majority (95%) of CRCs are adenocarcinomas whose 

pathogenesis is preceded by growths in the linings of the bowel called polyps caused by 

either inherited or somatic genetic alterations. Among the several genes implicated in CRC, 

mutations in the APC gene have been shown to be the precursor to the cascade of changes 

that the polyps undergo. Furthermore, research has shown that adenomatous polyposis coli 

(APC) does not act alone but rather regulates other genes such as β-catenin (CTNNB1) of 

the Wnt signaling pathway, a pathway that is responsible for regulating cellular behaviours 

such as cell migration, cell polarity, and organogenesis. The dysregulation of the Wnt 

signaling pathway has been implicated in CRC.  

Interestingly, significant progress has been made in characterising the roles of APC in CRC, 

nonetheless, there are ongoing efforts to better understand the mechanisms of gene 

networks behind the proliferation and viability of tumours in CRC. Since cancer is known 

as the disease of the pathways, in this study, we developed a novel network analysis method 

that integrates genomics and proteomics data to analyse the topological changes in a PPI 

network when APC is mutated. The aim was to identify genes that are essential for the 

proliferation and viability of tumours in CRC. Using this method, we identified new and 

already known genes which are essential for the proliferation of CRC. We also identified 

pathways that are significantly affected by the topological changes induced by the mutation 

of APC. The roles of the predicted genes in the proliferation and viability of tumours in 

CRC were validated using the Achilles dataset. Upon validation, over 10 unique genes were 

shortlisted as being essential in the viability and proliferation of tumours in CRC. Notable 

among these included DKK3, KRT23, STAT3, TSG101, APOBEC3G and ASL. 
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4.2. Introduction 

Colorectal cancer (CRC), also known as bowel cancer is the third-most common form of 

cancer in the world and has one of the highest rates of cancer related morbidity and 

mortality around the world [3]. For instance, in 2015 alone, there were more than 774,000 

colorectal cancer-related deaths in the world, making it the third-leading cause of cancer 

deaths that year after lung and liver cancers. 

According to the World Cancer Research Fund International, about 95% of CRCs are 

adenocarcinomas, and their pathogenesis starts with growths in the linings of the bowel 

called polyps, which result from either inherited or somatic genetic alterations [241]. The 

polyps gain additional alterations, from being adenomas, they develop into 

adenocarcinomas and ultimately become metastatic. Genes considered to be the key drivers 

and have been found mutated in CRC include: APC, TP53, KRAS, PIK3CA, FBXW7, 

SMAD4, TCF7L2 and NRAS. Other genes like CTNNB1 (β-catenin), SMAD2, FAM123B 

and SOX9 have also been found to be mutated and have been implicated in CRC [28]. 

However, one of the significant challenges in cancer medicine has been to understand how 

these driver genes function in physiological states and how this function is disrupted in 

pathological states. Among the key CRC driver genes, APC has been found to have one of 

the highest frequency rates of mutation in >80% of sporadic CRCs [25] and mutations in 

APC (which lead to the loss of its functionality) are considered to be the precursor to the 

cascade of changes that the polyps undergo [17]  

The characterisation of the role of APC in CRC and other forms of cancer has been well 

documented in the literature [17, 18, 25]. It has been shown that APC does not act alone 

but rather by regulating other genes such as CTNNB1 and hence the Wnt signaling 

pathway, a pathway that is responsible for regulating cellular behaviours such as cell 

migration, cell polarity, and organogenesis. APC therefore indirectly controls the Wnt 

pathway through its regulation of CTNNB1 and thus regulates functions such as cell 

adhesion and migration, and signal transduction as well as other additional functions like 

microtubule assembly and chromosome segregation. Consequently, when APC becomes 

mutated, it loses its functionality to regulate the different range of functions that it regulates, 

top among these is the loss of functionality to regulate the Wnt pathway which is associated 

with CRC [35, 36].  
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While significant progress has been made in characterising essential genes in CRC as 

researchers continue to perform global analyses of various omics related data, the general 

characterisation of genes as biomarkers is however hindered by the heterogeneous nature 

of cancer whereby individuals have different forms and stages of the same disease. Because 

cancer is a disease of the pathways [8], given the fact that genes are part of a nonlinear set 

of interconnected pathways and perform their functions through a complex cellular 

network, there is a need to better understand the underlying mechanism of gene networks 

in both physiological and pathological states. 

In this study, we build on the work done in Chapter 3 and use protein-protein interactions 

(PPI) to study the dynamic network changes that take place in protein-protein interactions 

when APC is mutated. The aim is to perturb the PPI network with APC mutational 

information and understand how the PPI network topological structure changes when APC 

is mutated. PPIs are a result of two or more proteins binding together purposely to carry 

out a specific biological function in a cell [41]. Given the enormous volumes of 

heterogeneous data that is continuously being churned out of research laboratories around 

the world to understand cancer, PPI networks provide us with an opportunity to integrate 

the various forms of data and form a pictorial representation of cellular function and other 

biological process changes. 

4.3. Results 

4.3.1. Profiling APC as a driver gene in colorectal cancer 

Mutation frequencies of the genes APC, FBXW7, KRAS, NRAS, PIK3CA, SOX9, 

SMAD4, TCF7L2, TP53 and FAM123B (which are driver genes in colorectal cancer) were 

profiled in over 600 TCGA colorectal cancer samples. For each sample, the occurrence of 

a gene mutation was counted as one, regardless of the number of mutation occurrences. 

Based on these results, APC, TP53 and KRAS were found to have high rates of mutation 

among the TCGA samples with each gene having mutation frequencies of 27%, 21% and 

15% respectively as summarised in Figure 4-1 (a). Based on these observations as well as 

previous observations [30, 32] where it has been shown that APC is one of the most 

frequently mutated genes in CRC patients, TCGA samples with mutant APC were selected 

for further analysis. PPI networks and network theory methods were used to analyse the 

topological changes that take place in APC mutant samples.  
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To begin, we first performed a pathway enrichment analysis using FunRich [242] for APC 

and its interacting partners to understand the biological processes and pathways that they 

are involved in physiological conditions. Pathways enriched among the APC interacting 

partners included: the destruction complex, Wnt signalling network, E-cadherin signalling, 

and Syndecan-4-mediated signalling. Using these pathways, we clustered APC interacting 

partners into groups based on the pathways in which they are involved, as shown in Figure 

4-1 (b). In addition, using the RNA-seq expression data from the SW480+APC cell line, 

we overlayed it over the APC subnetwork established in the materials and methods section 

to understand the expression profile of APC interacting partners when APC functionality 

is restored, as shown in Figure 4-1 (c). The expression profile of the APC subnetwork in 

Figure 4-1 (c) was taken to be the standard normal APC subnetwork if APC were 

functioning normally. 

We further performed differential gene expression analysis between the SW480 + APC 

restored and SW480 cell line with mutant APC, and genes which had an absolute fold 

change >=2 and had a p-value<0.05 were marked as being differentially expressed. Of the 

over 12,500 genes, 738 were found to be overexpressed while 957 were found to be 

underexpressed. The differential gene expression results were then used for further 

downstream analysis, as described in the next sections.  
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Figure 4-1: Characterisation of the APC subnetwork  (a) The mutation frequency of commonly mutated genes in CRC was profiled in CRC TCGA patient 

samples. APC had one of the highest rates of frequency of mutation followed by TP53 and KRAS. (b) The direct interacting partners of APC and their 

interactions were obtained, and pathway enrichment analysis performed. An APC subnetwork was generated and proteins clustered by the enriched 

pathways. (c) Gene expressions of all APC interacting partners in the SW480+APC were obtained and overlayed over the APC subnetwork with the 

colour intensity depicting genes that were highly and lowly expressed. (d) Summary of the workflow that was followed in identifying essential genes. 

Genomics data for SW480 cell lines were downloaded from GEO and differential gene expression analysis was performed between SW480+APC and the 

SW480 with the defective APC. TCGA CRC patient data and cell line data were also downloaded from GDC, COSMIC and CRC atlas. PPI data was also 

downloaded from three data repositories which were then used to build a weighted PPI. The weighted PPI was then perturbed with APC mutation 

information and differential gene expressions with LAC being used to compute topological changes. Genes with significant topological changes (LAC 

score changes) were then validated against the Achilles dataset to identify genes which may be essential to the viability of CRC when APC is mutated. 
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4.3.2. Perturbation of PPI networks in APC mutant samples 

Local area connectivity (LAC) was computed as summarised in Figure 4-1 (d) and 

described in the materials and methods section to quantify the global topological changes 

in a protein-protein interaction network when APC is mutated. Weighted PPI networks 

were created for each TCGA patient sample and cell line sample, and overlayed with gene 

mutation information, the differential gene expression status as well as cancer gene census 

information. The same procedure was also repeated for the SW480+APC cell line. Using 

the PPIs, LAC scores were calculated for mutant APC TCGA samples and CRC cell lines 

as well as for the SW480+APC cell line.  

We then measured the variability in the LAC scores from the TCGA samples and cell lines 

against that of the SW480+APC cell line by calculating the z-scores as outlined in the 

methods section. Genes with a z-score >=2 or <=-2 were considered to be significant and 

were selected for further downstream analysis. From the over 16,000 genes included in the 

PPI networks, 1,837 genes were found to have absolute z-scores >=2 in the TCGA samples 

analysis while 2,289 genes had absolute z-scores >=2 in the cell lines. When filtered for 

common genes between the two result sets, 1,649 genes remained out of which 965 had 

negative z-scores, and 684 had positive z-scores, as shown in Figure 4-2 (a) and 

supplementary table 4.1.  

Next, we performed a series of downstream analyses to validate and characterise the roles 

of these genes in CRC, as discussed in the next sections.  
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Figure 4-2: Perturbation of PPI network with APC mutational information.  (a) Computed 

LAC scores in TCGA and cell line samples are compared against the LAC scores in 
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SW480+APC cell line using z-score. Genes with significant changes in LAC scores are 

then split between those with z-scores>=2 (in red) and those with z-scores<=-2 (in green). 

(b) Using FunRich, we performed pathway enrichment analysis for the genes with positive 

z-scores. These were significantly enriched for cell growth and/or maintenance and immune 

response. (c). Using FunRich, we also performed pathway enrichment analysis for genes 

with negative z-scores. These were significantly enriched for cell communication and 

signal transduction (d). COSMIC enrichment of the identified genes in (a) showed a number 

were significantly enriched in various forms of cancer. 

4.3.3. Pathway enrichment 

To further characterise the genes identified above, we performed a pathway enrichment 

analysis to understand the pathways that are affected by the topological changes in the PPI 

network because of APC mutations. To do this, we split the genes into two groups: the first 

group consisted of genes that had positive z-scores, that is, genes whose average LAC 

scores in both TCGA samples and cell lines was less than that in the SW480+APC cell line; 

the second group consisted of genes that had negative z-scores implying that these genes 

had average LAC scores in both TCGA samples and cell lines that were greater than those 

in the SW480+APC cell line. For the first group, two pathways were found to be 

significantly enriched (p<0.05) and comprised cell growth and immune response, as shown 

in Figure 4-2 (b); while in the second group, the pathways found to be significantly enriched 

(p<0.05) included cell communication and signal transduction, as shown in Figure 4-2 (c).  

In addition, we also performed enrichment analysis of the COSMIC cancer gene census list 

to determine how many of the identified genes were implicated in cancer. The enrichment 

showed that 55 genes were part of the cancer gene census list as shown in supplementary 

table 4.1 while several of the other genes were also implicated in various cancer types, as 

shown in the enrichment bar graph in Figure 4-2 (d). 
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Figure 4-3: Identifying genes essential for cell survival in mutant APC cell lines. (a) Using 

data from Project Achilles (https://portals.broadinstitute.org/achilles ), we compared (using 

t-test) the essentiality of the genes with significant LAC scores to the viability of cells in 

https://portals.broadinstitute.org/achilles
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APC mutant cell lines against wild type APC cell lines. The genes in the boxplot were 

found to have significant differences in the Achilles score between mutant APC cell lines 

and wild-type APC cell lines. Genes were the median score in mutant APC cell lines was 

less than that in mutant-APC cell lines were selected for further analysis (b) Next, we 

integrated the various result sets to identify genes which were significantly enriched in 

all/or some of the result sets. Genes which were found to be common in any three of the 

datasets were selected for further analysis. (c). The LAC for APC interactors which were 

found to be differentially underexpressed were compared across the 3 data sets with 

AXIN2, CTNNB1, KRT23, KRT5 and KRT23 all showing an increase in LAC when 

compared to that in SW480+APC while DKK3 showed a decrease in connectivity. (d) APC 

interactors which were differentially expressed were selected and their Achilles scores 

compared. Only genes which were underexpressed in the SW480+APC cell line were tested 

for essentiality in cell viability. DKK3 was found to have a significant difference between 

Achilles scores in mutant APC cell lines and wild-type APC cell lines. (e) APC subnetwork 

is overlayed with differential gene expression and genes are then clustered based on the 

differential gene expression status. Genes in clustered with the blue colour were found to 

be underexpressed while those clustered with the pink colour were found to be 

overexpressed in the SW480+APC cell line .  

4.3.4. Identifying genes essential for cell survival in mutant APC cell lines 

To understand the role of the genes selected from the above in CRC, we analysed their 

effect on tumour viability and proliferation using the Achilles dataset which was discussed 

in the materials section. From the Achilles dataset, we obtained all known CRC cell lines 

and split them into two groups, consisting of mutant APC cell lines and wild-type APC cell 

lines, respectively. For each gene with absolute z-scores >=2, we compared the Achilles 

scores between APC mutant cell lines and APC wild-type cells. 19 genes were found to 

have significant differences (p<0.05) between Achilles scores in APC mutant cell lines and 

APC wild-type cell lines, namely DKK3, MAPT, ZNF521, GPSM1, CTSH, EFNA2, 

EVPL, ANK3, RHGDIB, CD274, STAT3, NFKBIA, CXCL1, TRAF1, PRSS2, DDIT4, 

TMOD1, PCSK9, and ADAMTS9 as depicted in the boxplots in Figure 4-3 (a). From these, 

genes that had a significantly lower median Achilles score in the mutant APC cell lines 

than that in wild-type APC cell lines were selected, these being: DKK3, GPSM1, CTSH, 

EVPL, STAT3, NFKBIA, TRAF1, PRSS2, DDIT4, and TMOD1. The lower Achilles 
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scores for these genes in mutant cell lines implies that when knocked-out or knocked-down 

in their respective mutant APC cell lines, the rate of cell proliferation in mutant cell lines 

is less than that in wild-type APC cell lines.  

Additionally, we also probed the genes identified using LAC for APC interactors to confirm 

how many had significant changes in their LAC scores. Of the 205 APC interactors in the 

PPI network, 38 were found to have significant changes in the LAC scores. These were 

then compared against APC interactors that were differentially expressed in the 

SW480+APC cell line. Of the 18 differentially expressed APC interactor genes, 14 were 

found to be shared between the two result sets, as shown in Table 4-1.  

For this work, we focused on genes that were found to be underexpressed in the 

SW480+APC cell line and had variable LAC scores, as summarised by the Venn diagram 

in Figure 4-3 (b), including DKK3, KRT23, KRT5, CTNNB1 and NOSTRIN is shown in 

Figure 4-3 (c). For each gene, we compared its Achilles scores between the two groups, as 

shown by the boxplots in Figure 4-3 (d). The Achilles median score for DKK3 in mutant 

APC cell lines was significantly (p<0.05) less than that in wild-type APC cell lines while 

the median scores for CTNNB1 in both groups were significantly lower than any of the 

selected genes. However, there was no record of NOSTRIN in the Achilles dataset and 

KRT5’s median score in APC mutant cell lines was higher than that in APC wild-type cell 

lines, implying that it does not affect cell viability when APC is mutated. These results, 

therefore, indicate that when DKK3 is knocked-out in APC mutant cell lines, tumour 

viability and progression is reduced in several of the mutant APC cell lines, which means 

that DKK3 is essential to the viability and proliferation of cells in CRC cell lines. The 

scores for CTNNB1 on the other hand which were significantly low in both groups showed 

that it is essential to the viability of cells in both groups. KRT23, on the other hand, showed 

a small variation in the distribution of scores across the cell lines in the two groups. Many 

of the mutant APC cell lines had negative scores when compared to those with wild-type 

APC leading us to conclude that KRT23 may also be essential to the viability of mutant 

APC cell lines. Figure 4-3 (e) provides a summary of APC interactors and their differential 

gene expression status when APC functionality is restored.  

Table 4-1: Differentially expressed APC interactors.  Genes which had significant local 

area connectivity changes were differentially expressed in wild-type APC cell lines 
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(SW480+APC) and were checked against the Achilles dataset for their effect on cell 

viability in mutant APC cell lines. 

Entrez ID Symbol Log FC LAC-SW480 LAC-TCGA LAC-Cell lines 

56998 CTNNBIP1 2.32 0.42 0.22 0.20 

60485 SAV1 1.19 0.40 0.19 0.19 

3860 KRT13 2.78 0.41 0.19 0.18 

6768 ST14 3.76 0.46 0.19 0.26 

25984 KRT23 -3.64 0.07 0.19 0.23 

3852 KRT5 -1.67 0.04 0.19 0.18 

1499 CTNNB1 -1.65 0.04 0.21 0.18 

5783 PTPN13 3.94 0.44 0.20 0.18 

3909 LAMA3 2.28 0.50 0.18 0.18 

4646 MYO6 1.48 0.44 0.20 0.19 

11346 SYNPO 1.90 0.48 0.22 0.22 

115677 NOSTRIN -1.69 0.03 0.14 0.17 

4582 MUC1 2.52 0.47 0.22 0.20 

27122 DKK3 -1.21 0.25 0.19 0.18 

 

We further characterised the genes found to be under-expressed in the SW480+APC cell 

line but are not direct interacting partners of APC against the list of genes with variable 

LAC scores. As above, we compared their scores in mutant APC CRC cell lines against 

their scores in wild-type APC cell lines using independent samples t-test. Of the 951 under-

expressed non-APC interactors, GPMS1 a second order interacting partner of APC was 

found to have a significant difference in the Achilles scores between APC mutant and APC 

wild-type. As such, we also compared the Achilles scores for the second order interacting 

partners of APC, from which 50-second order APC interacting partners were found to have 

significant differences in the Achilles scores between APC mutant and APC wild-type cell 

lines, as shown by the boxplots in Figure 4-4 (a). A literature search of the 50 genes showed 

that 16 (APOBEC3G, ASL, CDKN1A, DYNC1H1, ELMO3, FUBP1, GNA11, NFKBIA, 

PSMA1, STAT3, SUPT5H, TRAF1, TRIP13, TSG101, TUBA1B and USP39) are 

implicated in colorectal cancer. 
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Figure 4-4: Genomic profiling of identified genes in TCGA samples Perturbation of PPI 

networks in APC mutant samples. (a) Gene essentiality was also performed for second-

order APC interacting partners. Genes with significant Achilles scores in mutant APC cell 

lines and wild-type cell lines were selected as potential candidates as well (b) All the genes 

that were selected as potential candidates were then profiled in TCGA samples for their 
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frequency of being differentially expressed. (c) The expression profile of the selected genes 

from (b) is compared between mutant-APC samples and wild-type APC samples. 

4.3.5. General profiling of selected genes in TCGA patients with APC mutations 

To further characterise the shortlisted genes, we profiled their gene expression in TCGA 

CRC patient samples as discussed in the materials section. We compared their gene 

expressions in TCGA samples with wild-type APC samples against those with mutant APC, 

as shown by the boxplots in Figure 4-4 (b). The results showed that some of the genes had 

higher median expression values in mutant APC TCGA samples when compared to wild-

type APC samples, including AXIN2, CTNNB1, CTSH, DKK3, EIF5B, EVPL, KRT23, 

MCTS1, PSMA1, RPL32, RPS14, RPS8, and TRIP13.  

Furthermore, we also wanted to find out how frequently these genes were differentially 

expressed across the TCGA samples. We analysed their differential expression status 

among TCGA samples, as summarised in Figure 4-4 (c). It was found that while all the 

genes were normally expressed in many of the TCGA samples analysed, genes with high 

median expression values in mutant APC samples were found to be over-expressed in a 

number of mutant samples which, therefore, implies that when APC is mutated, the selected 

genes are either normally or overexpressed which is consistent with the observations in the 

previous section, where it is shown that when APC functionality is restored, these genes 

are downregulated when compared to the mutant cell line. 

4.4. Discussion 

The identification of essential genes in the tumorigenesis, proliferation and metastasis of 

cancer remain one of the significant challenges in cancer research due to the heterogeneous 

nature of cancer. Mutations in APC have been shown to be essential in the tumorigenesis 

of CRC [243]. It is against this background that in this study, we set out to understand the 

topological changes that take place in PPI networks when APC is mutated and therefore, 

attempted to identify genes that are essential for the proliferation and viability of  tumours 

in CRC cells when APC is mutated. With the rapid increase and availability of 

heterogeneous omics datasets deposited in various online repositories, techniques to reuse 

and integrate such types of data to gain insights from them have become more than 

necessary.  
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In this work, we used the concept of the ‘small-world’ [244] property of PPI networks, 

whereby mutational changes in one gene are cascaded beyond its direct interacting partners. 

We, therefore, sought to define a method that could integrate the various omics data while 

at the same time quantifying the dynamic changes that take place in a PPI network due to 

mutational and differential gene expression changes. Here, we have developed a novel 

method, local area connectivity (LAC), that perturbs a PPI network by globally cascading 

APC’s mutation information through a PPI network and quantifies the topological changes 

arising from the perturbation. The method uses node degree to calculate the connectivity of 

a node but in the process, penalises interacting partners that are either downregulated 

because of a mutation in APC or are known to be cancer related and are either themselves 

mutated or not. 

Using this method, we predicted over 1600 genes as having significant topological changes 

in their local connectivity which included already known candidates as well as new 

potential candidates. Enrichment analysis of the predicted results showed that they were 

significantly enriched for such biological pathways as cell growth, immune response, cell 

communication and signal transduction which are all considered to be important in the 

tumorigenesis, proliferation and metastasis of cancer [16]. We found that genes whose high 

average LAC samples were highly enriched for signal transduction and cell communication 

while those with low LAC scores were highly enriched for immune response and cell 

growth/maintenance. Here, we hypothesised that when APC is mutated, genes which are 

involved in the signal transduction and cell communication pathways become highly 

interconnected as a result of APC mutations and consequently, become irresponsive to new 

signals as the signalling processes are never terminated. This view is supported by several 

previous research studies which documented the roles of these pathways in cancer [18, 

245]. On the contrary, when APC is mutated, genes which are involved in immune response 

and cell growth/maintenance are less well connected, and as such, their respective pathways 

may become inactivated which, in turn, may enhance the proliferation of cancer cells as the 

mechanisms responsible for controlling cell growth and/or maintenance or immune 

response are lost [246]. However, for the immune response, another explanatory reason as 

to why it is highly enriched in genes with low average LAC scores maybe due to the fact 

gene expression profiling was conducted in a cancer cell line with APC functionality 

restored.  
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To validate the predicted results, we used the Achilles dataset and found several of the 

predicted genes to be essential in the proliferation of CRC cancer cell lines. Among the 

identified genes included direct APC interactors such as AXIN2, CTNNB1, DKK3, 

KRT23, KRT5 and NOSTRIN which were also found to be underexpressed in the 

SW480+APC cell line. The roles of AXIN2 and CTNNB1 in CRC have been well 

documented in the literature [33, 243, 247, 248]. We, therefore, used these as references to 

understand the roles of the other genes when analysing the Achilles data set and as a result, 

we found that DKK3 and KRT23 are essential in cell proliferation in mutant APC cell lines. 

This observation was confirmed further by results from the gene expression profiling of 

TCGA patient samples which showed that the median expressions of DKK3 and KRT23 in 

mutant APC samples are higher than that in wild-type APC samples. This observation is 

supported by previous research [249] where it has been shown that DKK3 is overexpressed 

in CRC and Birkenkamp-Demtröder, et al. [250] also showed that by knocking down 

KRT23 in CRC samples, cell proliferation is reduced. NOSTRIN and KRT5 did not show 

notable differences in their Achilles scores.  

In addition to APC interactors, we also profiled genes that are not direct interactors of APC 

but had significant LAC scores and were also found to be essential for the viability of CRC 

cancer cell lines, notable among these included: STAT3 [251] and TSG101 [252] which 

have been implicated in CRC. Others included: APOBEC3G, ASL, CDKN1A, CTSH, 

DDIT4, DYNC1H1, ELMO3, EVPL, FUBP1, GNA11, GPSM1, NFKBIA, PRSS2, 

PSMA1, SUPT5H, TMOD1, TRAF1, TRIP13, TUBA1B and USP39. A search on PubMed 

for these genes revealed that they had been found to play a role in CRC or some other form 

of cancer. For instance, APOBEC3G, a gene that codes for the protein apolipoprotein B 

mRNA-editing enzyme catalytic polypeptide-like 3G has been found to be associated with 

poor prognosis in CRC patients [253], ASL a gene that codes for arginosuccinate lyase has 

also been shown to dysregulate nitric oxide (an essential mediator in the tumorigenesis of 

various cancers) which, in turn, inhibits the proliferation of cancers such as liver and breast 

cancer [254]. The remaining genes have also been implicated in functions ranging from 

tumorigenesis to metastasis [255-259]. While the roles of some of the predicted genes have 

been documented, there is still a need to understand their roles in the progression of CRC 

when APC is mutated. In this work, we have shown that when APC is mutated, these genes 

undergo significant changes to their interactions within a PPI network and are therefore 

likely to play an essential role in CRC.  
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In conclusion, while our method successfully identifies genes that are perturbed by 

mutations in APC, it should be noted that due to the none-availability of the effect of APC 

mutations on the cell phenotype, all nonsynonymous mutations in APC in this study are 

treated equally. Furthermore, the protein-protein interactions used are inferred from various 

cell lines and contexts, and as such, some of the interactions may not take place. In this 

study, we assume that such interactions do take place in the cell line of interest before 

overlaying with gene expression and mutation status in the inference of the effect on 

protein-protein interactions. Caution should therefore be taken when applying local area 

connectivity to specific studies were the phenotypic effect of a mutation is known or the 

context of the protein-protein interactions in a given cell line is known. 

4.5. Materials and methods 

4.5.1. Description of data 

Gene expression dataset 

Read counts for SW480 cell line RNA-seq data were downloaded from the Gene 

Expression Omnibus (GEO) database deposited there by King, et al. [260] with the 

accession number GSE76307. The dataset consists of three samples, each sample having 

three replicates. The three samples are as follows: SW480 + APC which has APC 

functionality restored by overexpressing wild-type APC in the SW480 cell line with mutant 

APC; APC mutant SW480 cell line with the defective APC; and a control vector of the 

SW480 cell line.  

Differential gene expression analysis of SW480 dataset  

We performed differential gene expression for the SW480 datasets from the read counts 

obtained above using edgeR [261], a Bioconductor package in R for performing differential 

expression analysis. We used the workflow described by Chen, et al. [262] together with 

the parameters used in [260] which included a selection of genes with at least >1 read per 

million in a sample as being expressed. We filtered for genes with at least one read per 

million which resulted in a list of slightly over 12,500 genes from an initial list of over 

20,000. We then used the GLM approach in edgeR to calculate differential gene expression 

between the two groups by TNM normalisation. In our case, we compared gene expressions 

in APC restored SW480 cell line against those in the defective APC SW480 cell line to get 
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the differential gene expressions. We further performed FDR adjustments to account for 

multiple testing such that genes that had a p-value <0.05 and a fold-change >=2 were 

considered to be differentially expressed.  

COSMIC dataset 

In addition, we also downloaded differential gene expression status and mutation data for 

cell lines as well as TCGA [28] patient data from an online database of cancer-related data 

called Catalogue of Somatic Mutations in Cancer (COSMIC version 80) [263]. We then 

used a list of known colorectal cancer cell lines which we previously catalogued in the 

colorectal cancer atlas [11] to filter the COSMIC dataset for colorectal cancer-related cell 

lines only. From this process, we obtained differential gene expression status data for 37 

cell lines and 603 patient samples.  

Gene mutations landscape dataset 

In addition to the gene expression from the COSMIC dataset, we obtained gene mutation 

data for cell lines and patients with APC mutations. All silent mutations were filtered out, 

and the binary numbers 1 and 0 were then used to represent the mutation status of genes as 

either mutated or not mutated, respectively, in a matrix with columns representing the 

samples while rows represent genes. This data is then used to generate a mutation landscape 

of genes in cell lines and patients where APC is mutated. 

Gene essentiality dataset 

We downloaded genomically characterised data from Project Achilles version 2.4 

(https://portals.broadinstitute.org/achilles [12]), an online repository from the Broad 

Institute. The data characterises genes that are essential for the proliferation and viability 

of cancer cell lines. Project Achilles aims at identifying and cataloguing genes which are 

essential for the proliferation and viability of cancer. This is achieved by using genome-

scale RNAi and CRISPR-Cas9 techniques to knockout or silence individual genes to 

identify those genes that influence cell survival. Each gene is then scored to signify its 

effect on cell viability and the lower the score, the higher its effect on cell viability and 

vice-versa. We filtered the data to include only those cell lines that are known to have 

mutations in the APC gene. There are other similar studies such as those by Hart, et al. 

[264], [265] and [266] which also applied CRISPR to the identification of essential genes.  
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Clinical dataset 

We downloaded clinical data for the aforementioned TCGA patients from the Genome Data 

Commons (GDC) portal (https://portal.gdc.cancer.gov/) and collected clinical information 

about the stage of each patients’ colorectal cancer as well as the status of each patient at the 

last follow-up. 

Protein-protein interaction dataset 

Weighted protein-protein interactions were downloaded from Human Integrated Protein-

Protein Interaction rEference (HIPPIE version 2.0) [267], an online database repository of 

weighted protein-protein interactions. The weights between proteins indicate the 

confidence or the probability of the interactions being reliable. Here, we filtered all 

interactions which had scores of 0.  

4.5.2. PPI network construction 

We represented protein-protein interactions as an undirected network G (V, E) where V is 

the set of proteins and E is the set of edges representing interactions between the proteins. 

We used Python, a scripting language and Networkx (a package in Python for network 

manipulation and analysis) to build a network ‘G’ with the weights between interactions 

included as edge weights for further analysis. The weighted network G was then normalised 

using Laplacian normalisation by first converting the network into a Laplacian matrix L, as 

shown in equation (4.1): 

 𝐿𝐿𝑚𝑚 = 𝑀𝑀𝐷𝐷 −𝑀𝑀𝐴𝐴 (4.1) 

where MA is the adjacency matrix of G, rows and columns represent the nodes and the 

interaction between proteins are indicated by either a 0 (if absent) or the aforementioned 

edge weights (if present). MD, on the other hand, is the diagonal matrix of MA. Laplacian 

normalisation is then performed using the formula shown in equation (4.2): 

 𝐿𝐿 = 𝑀𝑀𝐷𝐷
−1/2𝐿𝐿𝑚𝑚𝑀𝑀𝐷𝐷

−1/2 (4.2) 

The network G was updated with the new normalised edge weights. 

For the SW480 dataset, we classified the gene differential expression into three classes;1, 

0 and -1. Genes which had a fold value >=2 and therefore considered to be upregulated are 
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classified as 1 while genes which had a fold value <=-2 are classified as -1 otherwise they 

are classified as 0. A network 𝐺𝐺𝑠𝑠𝑠𝑠480 was then generated from the aforementioned network 

G and each protein in the network labelled per the corresponding class as above.  

We then repeated the aforementioned procedure for each of the TCGA patient samples and 

the cell lines obtained from COSMIC, and the networks generated were added to a new set, 

N. The 𝐺𝐺𝑠𝑠𝑠𝑠480 network was taken as the gold standard to measure the dynamic changes in 

the networks in set N.  

4.5.3. Analysis of the APC subnetwork 

To understand the differential expression changes among APC interacting partners when 

APC functionality is restored in the SW480 cell line, we generated a subnetwork of APC 

and its interacting partners and overlayed differential expression status of genes 

corresponding to the proteins. Using this network, all proteins whose corresponding gene 

expression status was underexpressed were obtained and used for further downstream 

analysis.  

Local area connectivity 

To understand the topological changes that take place in the networks because of APC 

mutations, we defined a new metric called local area connectivity, similar to node degree 

in graph theory. While node degree is the number of edges that a node is connected to, here, 

to account for the reliability between two interacting proteins as well as the differential 

gene expression status of the genes corresponding to these proteins, we defined local area 

connectivity for a given protein, n (𝑐𝑐𝑛𝑛) as the product of the scaled differential expression 

status of the protein and the sum of the product of the differential expression status of its 

interacting partners. The strength of their interaction as shown in equation (4.3): 

 
𝑐𝑐𝑛𝑛 = �

𝑑𝑑𝑛𝑛 + 1.2
4𝑁𝑁

�𝑥𝑥�𝑒𝑒𝑖𝑖(𝑑𝑑𝑖𝑖 + 1.2)
𝑁𝑁

𝑖𝑖=1

 (4.3) 

where 𝑑𝑑𝑛𝑛 and 𝑑𝑑𝑖𝑖 represent the gene differential expression status of proteins n and I 

respectively while 𝑒𝑒𝑖𝑖 is the reliability of the interaction between proteins n and i, and N is 

the total number of interacting partners for protein n.  



 

90 

 

The concept of guilty by association states that if two proteins interact together, then they 

are more likely to perform similar functions [143]. The concept, therefore, implies that if 

one of the proteins is known to be associated with a disease, then there is a high probability 

that another interacting partner is also likely to be associated with that disease. Using this 

concept, we modified equation (5-3) to include prior knowledge on whether a protein 

interacts with another protein that has been implicated in colorectal cancer or any other 

form of cancer using the COSMIC’s cancer gene census [268]. Prior knowledge is defined 

as the ratio of the number of interacting proteins found in the cancer gene census list to the 

total number of interacting partners that a protein has, as shown in equation (4.4): 

 𝑐𝑐𝑛𝑛′ = 𝛼𝛼 𝑐𝑐𝑛𝑛 (4.4) 

where s is the number of interacting proteins that are part of the cancer gene census and α 

indicates whether n is listed on the cancer gene census list and 𝛼𝛼 ∈ (0,1). 

For each of the aforementioned networks generated, local area connectivity was calculated 

for each protein in the network to form a matrix 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚 where the rows indicate the proteins 

and their local area connectivity values in each sample is represented as a column. Using 

SW480 as the reference dataset, we measured variability in the local area connectivity of 

each gene by computing the z-score as in equation (4.5):  

 𝑧𝑧𝑛𝑛 =
𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑛𝑛𝑠𝑠
𝜎𝜎𝑛𝑛𝑠𝑠

 (4.5) 

where 𝑧𝑧𝑛𝑛 is the z-score for gene ‘n’ and 𝑥𝑥𝑛𝑛 is the LAC score for gene ‘n’ in the SW480 cell 

line while 𝜇𝜇𝑛𝑛𝑠𝑠 and 𝜎𝜎𝑛𝑛𝑠𝑠 are the mean and standard deviation respectively of gene ‘n’ in either 

the TCGA patient samples or cell lines. 

4.5.4. Enrichment analysis 

Enrichment analysis was performed using FunRich [242], a functional enrichment analysis 

tool. A list of all proteins identified as having a change in local area connectivity in 

comparison to the reference dataset was imported into FunRich where functional and 

pathway enrichment analysis was performed.  
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4.5.5. Statistical analysis 

SciPy’s [269] independent samples t-test was used to perform the statistical analysis and 

the differences were considered to be significant if the P value < 0.05. 
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Chapter 5  
Integration of heterogeneous ‘omics’ data using semi-supervised 

network labelling to identify essential genes in colorectal cancer. 
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5.1. Abstract 

Colorectal cancer (CRC) is the third most common form of cancer and has the fourth 

highest mortality rate in the world. To understand the origin and progression of this disease, 

biomedical researchers undertake global analyses of omics data of CRC patient samples 

and representative cell lines. However, due to the heterogeneity and high dimensionality 

nature of omics data, traditional tools for analysing this sort of data are inadequate, and the 

heterogeneous nature of cancer makes the process of identifying essential genes very 

difficult. This work uses network theory-based methods to address the problem of high 

dimensionality in omics datasets and applies network propagation to address the problem 

of heterogeneity in both omics datasets and cancer in identifying the essential genes in 

CRC. The method successfully identifies known essential genes in CRC as well as a new 

set of genes that are likely to be essential in the study of CRC.  

Keywords: Proteomics, Genomics, Networks, Colorectal Cancer, Biomarkers, Machine 

Learning. 
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5.1. Introduction 

Network theory, the study of how complex systems interact, is widely applied in fields such 

as computer networks, social networks, and interactome networks in systems biology [86]. 

Network metrics such as node degree are often used to prioritise nodes within a network. 

Similarly, one of the primary goals in cancer research is the identification of biomarkers or 

essential genes that can be used to understand the development or progression of a specific 

cancer type such as colorectal cancer (CRC).  

To prioritise these genes, researchers often study the complex interactions between the 

numerous molecules within cells such as proteins, deoxyribonucleic acid (DNA), 

ribonucleic acid (RNA) and other small molecules which are obtained from the global 

profiling of patient samples, in addition to representative cell lines at multiple layers. These 

layers constitute what is today referred to as omics data [271] and consist of the 

transcriptome [272], genome [273], epigenome [274], proteome [275] and metabolome 

[276]. The interactions, on the other hand, are collectively known as interactome networks 

and provide a global picture of how molecular interactions influence cellular behaviour, an 

example being protein-protein interactions (PPI). 

Omics data is highly dimensional in nature. Coupled with this is the heterogeneity of cancer 

whereby two individuals with the same type of cancer may have a different set of 

biomarkers. This makes identifying and prioritising cancer-related genes a challenging and 

daunting task that cannot be achieved using traditional statistical methods. As such, 

network theory provides a means by which complexity in such instances can be used to 

model the cellular system behaviour. Barabási et al. in [8] provide a summation of how 

network-based metrics can be applied in associating omics-related molecules to disease. 

Other work in [42, 43, 82, 90, 113, 138, 277-283] applied network-based methods in areas 

such as identifying and associating genes to disease and identifying drug targets in various 

cancer types. In [279, 284, 285], integrated network-based methods with machine learning 

techniques are used not only to reduce the dimensionality of omics data but to also build 

models that can use this data to predict genes associated with disease as well as classify 

multiple cancer types or tumour types. While the integration of omics data with networks 

has been gaining momentum over the years, a typical recurring theme in most of these 

researches has been the use of a single type of omics data as opposed to integrating the 

various types of omics data which are heterogeneous in nature.  
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In this chapter, building on the works discussed in Chapters 3 and 4 we used an integrated 

approach to identify essential genes in CRC, a type of cancer that originates in the bowel, 

is the third most common form of cancer and has the fourth highest cancer mortality rate in 

the world [13]. Unlike in Chapter 4 where we focused on the effect of APC mutations on 

the topology of the PPI network, here, we sought to understand the collective effect of all 

known gene mutations across a range of samples on the topology of the PPI network. Using 

the “central dogma of molecular biology” [286], we hypothesised that the mutation status 

and differential expression status of an individual gene has the potential effect on the 

expression of the protein that it codes for which in turn affects the global PPI network.  

Our method employs a semi-supervised learning algorithm to propagate heterogeneous 

omics data into a PPI network and computes the likelihood distance of proteins from other 

proteins in the network whose corresponding genes are either mutated or differentially 

expressed. This was followed by a downstream enrichment analysis to validate and 

understand the role of the predicted potential essential genes in CRC.  

5.2. Materials and methods 

5.2.1. Proteomics data 
We used proteomics and genomics data as the input to our method. Proteomics data 

consisted of PPIs. Weighted PPIs were downloaded from HIPPIE Version 2.0 [267], an 

online web-based database resource for weighted PPIs. The weights in the interactions 

show the confidence in the interaction between two proteins and are calculated by the 

authors based on the amount and reliability of evidence supporting an interaction. The PPI 

dataset was then filtered to leave out interactions with a confidence score of 0 after which 

16,728 number of unique proteins and 276,183 number of interactions remain. These were 

then assembled into a network using NetworkX [287], a package in Python for network 

manipulation and analysis. 

5.2.2. Genomics data 
Genomics data comprised gene somatic mutations and gene differential expression status 

for CRC patients and representative cell lines. Previously, we collated genomics data 

related to CRC into a web-based resource called the Colorectal Cancer Atlas [11]. It is this 

data together with The Cancer Genome Atlas (TCGA) [28] patient data obtained from 

COSMIC [263] that we used as the genomics input data to our method. Using the 
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corresponding genes for the proteins identified above, we obtained gene mutation details 

of 564 CRC patients from TCGA.  

From the mutation dataset, we then filtered out all silent mutations and for each gene with 

a mutation in each sample, we represented its status using a binary number (1 if a mutation 

was present and 0 if not present), regardless of the number of mutations in a gene in each 

sample. The mutation data were then represented as a matrix, M (16,728x564) with rows 

representing genes and columns representing a gene’s mutation station status in each 

sample. The same was repeated for gene differential expression status in TCGA patient 

data. This was then represented as a matrix, D(16,728x564) with rows representing genes 

and columns representing the differential expression status of genes in each sample. The 

gene differential expression status was denoted 1 for under-regulated or up-regulated genes 

and 0 for genes not differentially expressed. 

5.3. Theory/Calculation  

To identify essential genes, we use a method that integrates the different datasets discussed 

in section 5.2, materials and methods. Figure 5-1 provides a summary of the approach taken 

in this work. 
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Figure 5-1: Architecture of model.  Differential expression status and mutation propagation 

status were propagated through the network. The propagation results were then integrated 

together to form the features which were used in the further downstream analysis. 

5.3.1. Disease gene prioritisation using network theory methods 

A network or a graph is defined as a set of objects (nodes) linked together by lines (edges) 

[86]. A network is, therefore, represented as an ordered pair G=(V, E) where V is the set of 

nodes and E is the set of edges. By grouping a collection of objects as a set of nodes and 

using edges to represent relationships between these objects, researchers have used 

networks to reduce the complexity of large systems. Molecular networks in biology provide 

a global representation of the complex interactions between various molecules within a cell 

such as DNA, RNA and other small molecules. 
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When it comes to disease-gene prioritisation, many researchers use networks to associate 

genes with diseases. A naïve approach that is usually taken is to predict those genes that 

have neighbours associated with a disease as being more likely to be implicated in such a 

disease, that is, using the concept of “guilty by association”. Such methods that implicate 

neighbours as having the likelihood of being associated with a disease include node degree 

as well as shortest path methods. However, these methods are prone to false positives 

because of the biases that exist in current molecular networks’ datasets where proteins 

which are well studied tend to have more interactions than those that are not. Also, 

biological networks tend to obey the concept of the “small world” property where each 

node is reachable to another node through a series of links with other nodes and as such, 

the average number of hops needed to get to the furthest node from any given node is small 

[164]. 

5.3.2. Network propagation 

Here, we used network propagation, a semi-supervised labelling algorithm first proposed 

by Zhou et al. [288] and further extended by Vanunu et al. [166] and Ruffalo et al. [289]. 

The objective was to determine the extent to which a gene’s mutation status or differential 

expression status is propagated globally in a PPI network, and how it ultimately affects the 

topology of the network. The propagation results were then used to perform enrichment 

analysis to validate and determine roles played by the predicted essential genes in CRC. 

The input to the algorithm was a semi-labelled vector of gene mutation status Mv or 

differential expression status Dv, and a protein-protein interaction network 𝐺𝐺 as shown in 

equation (5.1); 

𝐺𝐺(𝑉𝑉,𝐸𝐸,𝑤𝑤)  (5.1) 

where 𝑉𝑉 is the set of proteins, 𝐸𝐸 is the set of interactions and 𝑤𝑤 is the set of interaction 

confidence scores (weight). The aim was to be able to determine the distance of the proteins 

in V (those that have not been labelled as either mutated or differentially expressed) from 

those that have been labelled as either mutated or differentially expressed.  

For each node vεV, we let N (v) be indicative of the direct neighbours of v in G. Let F: 

Vℜ be the propagation function where F(v) denotes the distance of a protein from those 

that are either differentially expressed or mutated. Let Y: V[0,1] denote a prior 
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knowledge function matching genes that are known to be differentially expressed or 

mutated as one (1) and zero (0) if not. 

𝐹𝐹(𝑣𝑣) = 𝛼𝛼 � � 𝐹𝐹(𝑢𝑢)𝑤𝑤′(𝑣𝑣,𝑢𝑢)
𝜇𝜇∈𝑁𝑁(𝑣𝑣)

� + (1 − 𝛼𝛼)𝑌𝑌(𝑣𝑣) (5.2) 

 

where w’ is a [v]x[v] matrix and is a Laplacian normalised form of w as described below, 

the parameter α∈ (0,1) weighs the relative importance of the two constraints discussed 

above, F and Y are vectors of size [n] where Y is the prior knowledge. Using the iterative 

procedure suggested by Zhou et al. [31], we use an iterative procedure to compute network 

propagation as in equation (5.3): 

𝐹𝐹𝑡𝑡 = 𝛼𝛼𝛼𝛼′𝐹𝐹𝑡𝑡−1 + (1 − 𝛼𝛼)𝑌𝑌  (5.3) 

where F1=Y and W’ represents w’. The iterative algorithm can be described as a process 

where proteins for which prior genomic (mutated or differentially expressed) information 

exists iteratively pass on this information to their neighbouring nodes and every other node 

further propagates the information from the previous round to its neighbours repeatedly 

until convergence. 

W’ is a square matrix which represents the Laplacian normalisation of an [n]x[n] adjacency 

matrix W which is built from the set of confidence scores between interactions. We build 

an adjacency matrix W with a non-zero indicating an interaction between the two nodes 

and vice-versa. We then use Laplacian normalisation to get the matrix W’ as shown in 

equation (5.4): 

𝛼𝛼′ = 𝐷𝐷−1/2𝛼𝛼𝐷𝐷−1/2  (5.4) 

where D-1/2 is a diagonal matrix such that D (i, i) is the sum of row i of W.  

After computation of the normalised weighted matrix W’, for each sample in our data sets, 

we then iteratively computed the propagation scores for each of the nodes in the PPI. Vector 

Y was set as the prior knowledge vector where all the nodes whose corresponding genes, 

known to either be mutated or differentially expressed, were set to 1 and 0 otherwise. The 

propagation was computed separately by propagating node mutation status using the 

mutation status dataset as well as for the differential expression status dataset resulting in 
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Pm for mutation-based propagation scores and Pd for differentially expressed-based 

propagation scores. The propagation scores are then used to perform the following 

computations: propagation mean scores for genes in the samples, standard deviation, 

covariance which is then used to perform further downstream analysis to identify essential 

genes. 

5.4. Results and discussion 

5.4.1. Propagation of omics data 

Network propagation of mutation status and that of differential expression status data is 

performed. Figure 5-2 shows the distribution of scores in TCGA samples. The figure also 

shows the relationships between the propagation scores against their corresponding status 

data. From this, it is shown that genes with a high-frequency rate of mutation or differential 

expression across samples are labelled with a propagation score close to their initial label 

in the prior knowledge dataset. This is further confirmed by the sensitivity of the algorithm, 

as shown in Table 5-1. The sensitivity is calculated by comparing the total number of 

correctly predicted/labelled genes against the total number of genes known a priori. 

We hypothesise that genes with high mutation or differential propagation scores have a 

closer relationship to those genes that are either mutated or differentially expressed while 

those with low propagation scores are distant from the mutated or differentially expressed 

genes in the network. Based on the remaining filtered genes, we then pick the genes with 

propagation scores and perform enrichment analysis. 
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Figure 5-2: Summary of propagation scores in TCGA samples. (a) shows the distribution 

of mutation propagation scores (b) shows the differential expression status propagation 

scores (c) shows the relationship between the mean of mutation propagation scores against 

the mutation frequency (d) shows the relationship between the mean of differential 

expression status propagation scores against differential expression frequency 
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Table 5-1: Network propagation algorithm sensitivity scores.  The sensitivity scores are 

used to measure consistency of network propagation in correctly labelling known genes as 

having high propagation scores similar to their previous labels 

 

5.4.2. Enrichment analysis of mutation status propagation scores 

To understand the relevance of the propagation results to CRC, we performed enrichment 

analysis on the propagation results using FunRich [242]. In Figure 5-3 (a) and (b), 

enrichment analysis of the genes with high mean mutation status propagation scores reveal 

that these genes are highly enriched in several cancers in the COSMIC database, 

furthermore, of these, it is found that 47 are also part of the COSMIC cancer gene census 

[268], as shown in Table 5-2.  

Table 5-2: Genes found in COSMIC cancer gene census from propagation score 

Genes from mutation propagation scores Genes from differential expression 

propagation scores 
AKAP9; ARID1A; ASXL1; ATM; 

ATP2B3; ATRX; BCL9L; BCORL1; 

BRAF; CASC5; CHD4; CIITA; FAT1; 

FAT4; FBXW7; GNAS; HLA-A; MT2A; 

KMT2D; KRAS; LIFR; LRP1B; MED12; 

MN1; MTOR; MYH11; NCOR2; NF1; 

NRAS; NRG1; PBRM1; PDE4DIP; 

PIK3CA; POLE; PREX2; PTPRT; 

RBM15; RNF213; RNF43; ROS1; 

RUNX1T1; SALL4; SMAD4; SPECC1; 

TCF7L2; TPR; ZFHX3 

ASXL1; CUX1; ERCC5; MAP2K4; 

MYC; NONO; PHF6; PLCG1; RAD21; 

RB1; SMAD2; SMAD4; SRC; SS18; 

SS18L1; STAG2; TFE3; TOP1; UBR5; 

ZMYM 

In addition, we also performed the biological process and molecular function enrichment 

to determine processes and functions most likely to be affected by the genes with high 

mutation status propagation scores as shown in Figure 5-3 (c) and (d) respectively. Of 

 Mutation 

 

Differential expression 

 Number of correct labels 

 

104505 565582 
Number of incorrect labels 

 

5 0 
Sensitivity 0.999≈1 1.0 
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interest to us from the biological processes were homophilic cell adhesion and cell 

adhesion, as in [290] it is shown that these two processes play an important role in contact 

inhibition. Contact inhibition is cellular changes that lead to the termination of cell 

migration and proliferation because of signals transduced when one cell comes into 

physical contact with another cell. Nonetheless, in tumour microenvironments, it is shown 

that contact inhibition is lost due to the molecular changes in cell-cell adhesion, this, in 

turn, leads to cell proliferation and/or migration. This, therefore, means that changes in cell 

adhesion properties in cancer micro tumour environment play a key role in cancer 

progression and metastasis [16, 291]. Genes enriched in the two pathways are also shown 

in Table 5-3. 

Table 5-3: Biological Process enrichment of genes with high mutation propagation scores 

Biological process Enriched genes 

Homophilic cell 

adhesion 

FAT3; ROBO2; FAT4; SDK1; ROBO1; DCHS2; PCDHA12; 

DSCAM; PCDHA7; PTPRT; PCDH10; FAT1; PCDHA6; 

TENM3; CELSR1; DCHS1; PCDH9; PCDH11X; CELSR2; 

CDH18; PCDHB3; PCDH20; PCDHB8; PCDHA3; SDK2; 

CDH23; PCDHA11; PCDH17; PCDHA2; PCDHA9; PCD-HGB2; 

PCDHA5; DSCAML1; PCDHGA11; PCDHA4; PCDHA10; 

Homophilic cell 

adhesion 

FAT3; ROBO2; FAT4; SDK1; ROBO1; DCHS2; PCDHA12; 

DSCAM; PCDHA7; PTPRT; PCDH10; FAT1; PCDHA6; 

TENM3; CELSR1; DCHS1; PCDH9; PCDH11X; CELSR2; 

CDH18; PCDHB3; PCDH20; PCDHB8; PCDHA3; SDK2; 

CDH23; PCDHA11; PCDH17; PCDHA2; PCDHA9; PCD-HGB2; 

PCDHA5; DSCAML1; PCDHGA11; PCDHA4; PCDHA10; 

On the other hand, from the molecular function enrichment, it was found that genes that 

had high mutation propagation scores were also enriched in calcium ion binding and ATP 

binding molecular functions, as shown in Table 6-1. Calcium ion binding is part of the 

calcium cell signalling pathways whereby proteins bind to the Ca2+ ion. This pathway is 

important in regulating various cellular processes. A dysregulation of calcium ion binding 

function in cancer cells has been linked to the hyperpolarisation of tumour cells and impacts 

cancer cell proliferation and metastasis [292, 293]. In addition, related to calcium ion 

binding functionality is the ATP (adenosine triphosphate) binding function which acts as a 
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source of energy needed by the ATP-binding cassette transporters to translocate substrates 

across membranes. The increased expression of ATP-binding cassette members has been 

shown to play a role in multi-drug resistance in diseases such as cancer [294-296]. These 

results, therefore, demonstrate that by propagating mutation status across the network, we 

can prioritise high scoring genes and their associated pathways and processes that are most 

likely to be affected by mutated counterparts. 

Table 5-4: Molecular function enrichment of genes with high mutation propagation scores 

Molecular 

function 

Enriched genes 

Calcium ion 

binding 

PROC; TTN; FAT3; PCLO; DST; CACNA1B; NRXN1; FAT4; RYR2; 

FLG; DCHS2; PCDHA12; MEGF8; CACNA1E; FBN2; TENM2;  

CDHA7; LRP1B; BRAF; TCHH; ADGRL3; RYR1; PCDH10; GPR98; 

FAT1; PCDHA6; SLIT3; HMCN1; RYR3; CELSR1; SPTA1; CUBN; 

FBN3; DCHS1; PCDH9; PCDH11X; CELSR2; CDH18; FBN1; 

VCAN; PCDHB3; TBC1D9; DNAH7; HRNR; MEGF6; TPO; 

PCDH20; SLC25A12; PCDHB8; SLC25A23; PCDHA3; CDH23; 

PCDHA11; PKDREJ; PCDH17; PCDHA2; PCDHA9; LTBP3; 

PCDHGB2; LRP2; PCDHA5; STAB1; PCDHGA11; EFCAB6; 

ITPR1; ASTN2; LTBP4; PCDHA4; TNNC1; FSTL5; PLCH2; 

PCDHA10; MATN4; 

ATP binding 

TTN; PIK3CA; ABCA13; CACNA1B; OBSCN; DNAH10; 

DNAH14; DNAH2; KIF26B; ABCA7; CHD4; BRAF; ATP10A; 

RYR1; HELZ2; ATRX; DNAH5; DNAH9; MYH11; NLRP7; MDN1; 

DNAH8; EP400; LATS2; NAV3; TTBK1; MYH13; MYO18B; 

DNAH1; ACACB; ATM; DNAH11; ATP2B4; DNA2; SPEG; 

MYO3A; EPHB1; NWD1; SRCAP; DNAH7; ATP8B2; PHA3; 

ADCY8; WNK1; NLRP4; KIF1A; CIITA; CHD6; KIF4B; ATP13A3; 

ATP2B3; ROS1; NLRX1; SETX; ATP7A; 

SCN8A; LRRK2; DNAH6; ATP8B1; ABCA4; SMARCA2; DNAH3; 

ABCA12; MYO15A; NLRP5; MTOR; ATP11A; SMC1B; TTLL11; 

EPHA10; NRK; MYH3; 
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Figure 5-3: Enrichment analysis of genes with high mutation status propagation scores. (a) 

shows that genes with high mutation status propagation scores are highly enriched in 

different types of cancers in COSMIC (b) shows that 47 genes short-listed from the high 

mutation propagation scores are also found in the COSMIC census gene lists, (c) shows the 

biological process of the genes with high mutation status propagation scores, (d) shows the 

molecular function enrichment of genes high propagation scores 
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5.4.3. Enrichment analysis of differential expression status propagation scores 

We also performed enrichment analysis for genes with high mean differential expression 

status propagation scores, as shown in Figure 5-4 and Tables 6.2, 6.5 and 6.6. The results 

show that similar to the mutation status propagation enrichment previously discussed, genes 

with high differential expression status propagation scores are highly enriched in various 

types of cancer from the COSMIC database. A comparison against COSMIC’s cancer gene 

census shows that 20 of these genes are also found on the census list and the biological 

process and molecular function enrichments are not as significant as above. Nonetheless, 

of the significantly enriched molecular functions, dysregulation in Ubiquitin-specific 

protease activity has been shown to be associated with cancer [297-299], and members have 

been studied as potential drug targets for the treatment of cancer [300]. 

Table 5-5: Biological process enrichment of genes with high differential expression 

propagation scores 

Biological process  Enriched genes 

Regulation of 

nucleobase, 

nucleoside, 

nucleotide and 

nucleic

 acid 

metabolism 

DDX27; NELFCD; TAF4; NCOA6; GMEB2; TCFL5; RPRD1B; 

PLAGL2; RBM39; RALY; DHX35; CSTF1; PCIF1; NCOA5; 

SUPT20H; HNF4A; RNF6; ASXL1; RNF113A; PHF20; ADNP; 

PDRG1; ZMYND8; MRGBP; TGIF2; GTF2F2; JADE3; NUFIP1; 

ZGPAT; ZFP64; FTSJ1; GZF1; PAN3; NONO; PQBP1; PARP4; 

UCKL1; SAP18; DKC1; UPF3A; NKRF; GTF3A; XRN2; PHF8; 

HNRNPH2; PABPC1; TRMT2B; ZNF696; HSF1; WBP4; ERCC5; 

ZNF623; CHRAC1; MYBL2; MAF1; ZNF34; PRICKLE3; ZHX3; 

RAD21; ZBTB33; TOP1MT; FAM50A; POLA1; UTP14C; TAF2; 

DCAF13; ZNF7; CRNKL1; TFDP1; DIS3; MED30; GTF2E2; 

RBM41; HUWE1; CNOT7; ZNF217; TOP1; UPF3B; TDRD3; 

MORF4L2; V39H1; CTPS2; GRHL2; HDAC6; PDS5B; HDAC8; 

PUF60; ZNF706; SCML2; ZFP41; INTS6; DSCC1; RBMX2; 

ZNF41; ZC3H13; SS18; DNMT3B; TFE3; POLR3D; HMGB1; 

PHF6; E2F1; POLR1D; KRBOX4; ASH2L; RB1; ZNF335; MBD1; 

CUX1; THOC2; ZNF337; CBFA2T2; SMAD4; MECP2; MYC; 

ID1; ZMYM2; ZSCAN25; ZMIZ2; ZC3H3; ZNF24; ZNF250; 
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Table 5-6: Molecular function enrichment of genes with high differential expression 

propagation scores 

Molecular 

function  

Enriched genes 

Transcription 

regulator activity 

NELFCD; NCOA6; PLAGL2; RBM39; PCIF1; NCOA5; SUPT20H; 

HNF4A; RNF6; ASXL1; PDRG1; ZMYND8; MRGBP; SS18L1; 

JADE3; PQBP1; SAP18; SCAND1; UXT; NKRF; ZNF696; MAF1; 

PRICKLE3; ZHX3; ZBTB33; MED30; SMAD2; CNOT7; 

MORF4L2; HDAC6; HDAC8; SCML2; ZC3H13; SS18; PHF6; RB1; 

ZNF335; MBD1; CUX1; ID1; ZMYM2; ZMIZ2; ZNF24; ZNF250; 

Ubiquitin-specific 

pro-tease activity 

CUL4A; RNF114; LNX2; ITCH; NEURL2; UBE2C; RNF219; 

TMEM189; COPS5; UBR5; UCHL3; UBL3; FBXL3; CUL1; 

UBL4A; SUGT1; UBE2D4; USP12; UBE2A; PSMD10; RNF216; 

PJA1; SCRIB; UBE2G1; 
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Figure 5-4: Enrichment analysis of genes with high differential expression status 

propagation scores. (a) shows that genes with high differential expression status 

propagation scores are highly enriched in various forms of cancers in COSMIC (b) shows 

that 20 genes short-listed from the high differential expression scores are also found in the 

COSMIC census gene lists, (c) shows that genes are only significantly enriched in one 
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biological process, (d) shows that genes with high differential scores are only enriched in 

two molecular functions 

5.4.4. Linking mutation status and differential expression status scores 

From the two lists of genes with high propagation scores, we filter for genes that appear in 

both lists, obtaining a set of 8 genes as shown in Figure 5-5, two of which are also enriched 

in COSMIC cancer gene census. These genes are considered as being close to both mutated 

and differentially expressed genes in the network. The following is the list of the identified 

genes: RALY, ASXL1, DIDO1, AP11A, ZC3H13, UGGT2, CCAR2 and SMAD4. ASXL1 

and SMAD4 are known to be driver genes in cancer and are part of the COSMIC cancer 

gene census dataset. For instance, ASXL1 has been implicated in myelodysplastic 

syndrome (MDS) and chronic myelomonocytic leukaemia (CML) while SMAD4 has been 

implicated in the following cancer types: colorectal, pancreatic, and small intestine. On the 

other hand, a literature search of the remaining six genes shows that they have also been 

implicated in some of form of cancer with varying roles ranging from resistance, metastasis 

and cell proliferation. For example, RALY is a gene that codes for the protein RNA-binding 

protein and in [301] has been implicated to play a role in the development of drug resistance 

in CRC; DIDO1 is a gene which codes for the protein death inducer-obliterator and is 

involved in apoptosis or cell death and has been found to affect cell viability and anchorage 

in CRC cells [302]; and CCAR2 has been implicated in other forms of cancer [303]. 

 

Figure 5-5: The Venn diagram shows the genes found to be closer to genes that are 

differentially expressed and have a mutation.  The Venn diagram also shows the genes that 

were found on the COSMIC’s cancer gene census. 
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5.5. Conclusion 

The rate at which omics data is generated has over the years been rising substantially and 

is expected to rise further due to the continued decline in the cost and the advancements in 

high-throughput technologies such as next-generation sequencing technologies. As such 

traditional statistical methods can no longer be relied upon as a way of analysing such 

gigantic amounts of data. Network analysis, the evaluation of how nodes relate to one 

another coupled with new machine learning methods, has over the years become an integral 

tool for analysing high throughput data such as omics data. 

In this chapter, we demonstrated how heterogeneous omics datasets can be integrated by 

use of network-based methods and how features can be prioritised using a semi-supervised 

technique coupled with further downstream analysis. We found that the method 

successfully identified the essential genes in CRC. Further, we also identified new genes 

that may play a role CRC in the development and progression of cancer. However, the 

genes that were predicted in this paper need further experimental validation to understand 

their specific roles in CRC. In addition, this study was limited by the lack of vast amounts 

of paired wild-type and mutant data, this, in turn, made it difficult to further explore our 

findings and incorporate soft computing techniques. Future works include fine-tuning the 

current model and validating the predicted genes using wet laboratory experiments. We 

also plan on incorporating new machine learning techniques such as deep learning using 

neural networks.  
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Chapter 6  
Physical coherence and network analysis to identify novel 

regulators of exosome biogenesis. 

This chapter is in preparation as a manuscript for submission to a peer-reviewed journal. 
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6.1. Abstract 

Exosomes are small membranous vesicles of endocytic origin with a diameter of 30-150nm. 

Exosomes have been implicated in a range of biological functions such as intercellular 

communication through the transmission of macromolecules such as proteins, nucleic acids 

and lipids, as well as in the pathogenesis and progression of diseases such as cancer. 

Therefore, there has been growing interest in understanding the biogenesis, functionality, 

and applications of exosomes in both physiological and pathological conditions.  

The biogenesis of exosomes has long been associated with the endosomal sorting complex 

required for transport (ESCRT) machinery, together with other accessory proteins. 

However, the mechanisms behind exosome biogenesis are still poorly understood, and the 

proteins involved in the process of exosome biogenesis have not all been characterised. 

Here, we, therefore, attempt to identify novel proteins that regulate the process of exosome 

biogenesis through the ESCRT pathway and improve our understanding of exosome 

biogenesis. To achieve this, network analysis methods are applied to a protein-protein 

interaction (PPI) network of the ESCRT machinery. To counter the bias that exists in PPIs 

due to false positives stemming from experimental errors in the techniques used to identify 

them, we extend the network analysis method by using physical coherence, a technique that 

quantifies the connectedness of a PPI network due to topological changes. Using this 

technique, STAMBP and NEDD4 are predicted as potential novel regulators of exosome 

biogenesis. It was found that STAMBP increased the physical coherence of the ESCRT 

machinery network while NEDD4 reduced the physical coherence of the ESCRT 

machinery network. To validate our findings, SDCBP, a protein that has been previously 

shown to regulate exosome biogenesis was also found to change the physical coherence of 

the ESCRT machinery. Further analysis using CRISPR-Cas9-based knockout cells of 

NEDD4 and STAMBP confirms their active role in exosome biogenesis. 

  



 

113 

 

6.2. Background 

6.2.1. Exosome biogenesis 

Exosomes are small membranous vesicles of endocytic origin with a diameter in the range 

of 30-150 nm that are secreted under normal and pathological conditions [183, 194]. 

Exosomes have been implicated in a range of functions such as acting as a channel of 

communication between cells through the transmission of macromolecules such as 

proteins, nucleic acids and lipids. They have also been implicated in the development and 

progression of diseases such as cancer [198, 304]. In addition to their role of cellular 

communication, exosomes have also been implicated as potential vectors that can be used 

to carry and deliver drugs for therapeutic applications [305]. Because of these functions 

attributable to exosomes, there has been growing interest in the study of the biogenesis, 

functions and applications of exosomes in both physiological and pathological conditions. 

The biogenesis of exosomes starts with the inward budding of endosomal membranes, 

resulting in the formation of intraluminal vesicles (ILVs) within the multivesicular bodies 

(MVBs). Upon maturation, the MVBs fuse with the plasma membrane and their contents 

are then secreted into the extracellular space as exosomes. This process is summarised in 

Figure 6-1. The mechanism by which exosome biogenesis takes place is however not yet 

fully understood. Currently, the ESCRT machinery together with other accessory proteins 

are thought to regulate exosome biogenesis [183, 205, 306]. The ESCRT machinery is made 

up of approximately 20 proteins which interact together to form four components: ESCRT-

0, I, II and III. These components are linked together to form a network complex and work 

in a sequential order in association with other accessory proteins such as ALIX and VPS4 

[204]. The ESCRT machinery components ESCRT-0 recognise ubiquitylated proteins in 

the endosomal membrane while ESCRT-I and II complexes are responsible for the sorting 

of cargo and inward budding of membranes, and the ESCRT-III component is responsible 

for vesicle scission [206].  

In addition to the ESCRT machinery, other ESCRT-independent pathways have been 

shown to regulate exosome biogenesis. Examples of such pathways include those that are 

involved in tetraspanins, Rab GTPases and lipids. Nonetheless, it has been established that 

the ESCRT machinery is conserved in several organisms [307] and is therefore thought to 

regulate exosome biogenesis in various organisms. While there is ongoing research to 
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understand the mechanisms behind exosome biogenesis and how the ESCRT machinery 

performs its role, not all the proteins that are involved in the process of regulating exosome 

biogenesis have been identified. Our aim here, therefore, is to identify proteins that can 

regulate the biogenesis of exosomes through the ESCRT pathway. 

 

Figure 6-1: Exosome biogenesis and secretion. Exosomes are formed by the inward 

budding of the endosomal membranes. The ESCRT and other associated proteins such as 

ALIX and TSG101 are implicated in the sorting of cargo and the formation of the 

intraluminal vesicles (ILV). The MVBs then either merge with the plasma membrane and 

release their content into the extracellular space as exosomes or fuse with lysosomes [183].  

6.2.2. Physical coherence and network analysis 

To understand the interplay of the ESCRT pathway and its interacting partners in regulating 

exosome biogenesis, we apply network theory in this chapter. Network theory, the study of 

how objects interact with each other, has long been used in fields such as computer science 

and engineering [308], sociology [309], and physics [170] for visualisation and the reduction of 

complexity in various systems. In systems biology and medicine, network analysis methods 

are applied in areas such as drug target identification [310, 311], the prediction of protein 

function [312], and protein complex detection [313]. Other areas include the prediction of 

novel interactions and functional associations [314], the identification of disease sub-networks 

[315], disease biomarker identification [82], and the mapping of disease pathways. Network 

theory metrics such as degree centrality (DC), closeness centrality (CC) and betweenness 

centrality (BC) are commonly used in complex networks to identify essential objects within 
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a network. 

Here, network analysis methods are applied to a PPI network of the ESCRT machinery to 

predict novel proteins that are likely to regulate exosome biogenesis via the ESCRT 

pathway. In chapter 2, the role of PPIs in physiological conditions, together with their 

definitions, is discussed. PPIs provide a simplified global picture of the underlying complex 

functional make-up of the cell. Chapter 2 further discusses numerous studies that have been 

conducted to map PPIs and how they have been collated into several online databases such 

as the Human Protein Reference Database (HPRD). However, these mappings are prone to 

high false positives which emanate from errors in experimental techniques used to identify 

them, as well as technical and study biases [316]. Hence, frequently studied proteins such 

as those associated with diseases like cancer tend to have higher degree centralities compared 

to those that are less studied. Therefore, this implies that if using common network metrics, 

such as node degree, and proteins that are frequently and well-studied will often rank 

higher than those genes or proteins that are less studied. 

It is against this background that, in order to identify any novel proteins of importance to 

exosome biogenesis, we need a method that eliminates the bias found in current PPIs. 

Sama and Huynen [9] and Oortveld, et al. [317] developed a technique called physical 

interaction enrichment (PIE), a method that quantifies the change in the physical 

cohesiveness of a PPI network given any topological change in a network. We apply this 

method in this study to measure the physical cohesiveness of an ESCRT PPI network 

when an ESCRT neighbouring protein is added to the network. The physical cohesiveness 

is computed by calculating the ratio of the number of interactions among a set of proteins 

when compared to the number of interactions in randomly generated networks. PIE 

eliminates the bias that exists in PPIs by normalising the degree centrality of proteins 

against randomly generated networks with similar degree distribution from an overall 

network representation.  
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6.3. Materials and Methods 

Figure 4.1 provides a summary of the workflow that describes the steps and methods that 

were applied in predicting proteins that regulate exosome biogenesis through the ESCRT 

pathway. 

6.3.1. Literature mining for ESCRT machinery proteins 

Human proteins that make up the ESCRT machinery were collated and curated into their 

respective components. The human ESCRT proteins were mapped to their corresponding 

orthologs in three other model organisms (Worm (Caenorhabditis elegans), Fly 

(Drosophila melanogaster) and Yeast (Saccharomyces cerevisiae)), using an online 

database resource called InParanoid [318]. 

6.3.2. Construction of PPI Network 

A PPI network is represented as an undirected graph G (V, E), where V is a set of nodes 

which denote proteins while E is a set of edges denoting the interactions between proteins. 

Background PPI network: We downloaded interaction data from BioGRID version 

3.4.134 [319] and HPRD release 9 [320]. From the BioGRID dataset, we obtained all 

interactions belonging to humans and all proteins with their corresponding orthologs in 

our chosen model organisms. These were combined with other unique interactions 

obtained from the HPRD dataset to form a comprehensive PPI network, referred to as the 

background database (Gbg).  

Organism- specific ESCRT machinery network: Using the background PPI established 

above, we generated a human ESCRT PPI network (Gh). PPIs for the three other organisms 

were generated as follows: Gw for the worm, Gy for yeast and Gf for the fly. The four 

individual organisms’ networks were then combined together (Gh + Gf + Gy + Gw) to form 

a bigger ESCRT network called the master network (Gm). By combining the four 

networks, we aimed at identifying as many potential interactions as possible between the 

ESCRT proteins across the four organisms and in turn maximise the number of ESCRT 

proteins’ neighbours.
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Figure 6-2: ESCRT neighbour prediction flowchart.  PPI data was retrieved from HPRD and BioGRID and used to create a background PPI. ESCRT 

proteins were mined from the literature and were mapped to their corresponding orthologs in other organisms. The orthologs ESCRT networks and the 

ESCRT network in humans were combined to form the Master ESCRT network which was then used to mine for neighbouring proteins. Using the 
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neighbouring proteins and the ESCRT master network, test networks were generated for each neighbouring protein and used to calculate PIE and other 

network metrics 
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6.3.3. Physical coherence and network analysis 

To determine which ESCRT machinery neighbouring proteins are likely to play a role in 

exosome biogenesis, we used physical interaction enrichment (PIE), a method proposed by 

Sama and Huynen [9]. To find essential proteins, network metrics such as node degree, 

betweenness centrality and page rank are generally used [8], however, such methods as 

discussed above are prone to false discoveries due to the bias that exists in PPI datasets. The 

physical cohesiveness of a network is calculated by normalising the median node degree of 

a network against the median node degree of a set of random networks that have the same 

node degree distribution as the network whose physical cohesiveness is being determined. 

In this study, to calculate PIE, a new test network is first created by combining the master 

ESCRT machinery (Gm) with all the interactions that neighbour n has with ESCRT proteins. 

The following gives an overview of the algorithm applied; 

Algorithm 

Step 1: For each ESCRT neighbouring protein n, a test network (𝐺𝐺𝑛𝑛𝑡𝑡  ) was constructed by 

combining the master ESCRT PPI network (Gm) and the neighbouring protein’s interactions 

where 𝐺𝐺𝑛𝑛𝑡𝑡  is a subset of  𝐺𝐺𝑏𝑏𝑏𝑏 as shown in equation ( 6-1); 

 𝐺𝐺𝑛𝑛𝑡𝑡 ⊂ 𝐺𝐺𝑏𝑏𝑏𝑏 ( 6-1 ) 
 

Step 2: The node degree for each protein in the test network was calculated as the total 

number of other proteins that it interacts with, as in equation ( 6-2); 

 
degree = �𝑒𝑒

𝑚𝑚

𝑖𝑖=1

 ( 6-2 ) 

where e is the interaction between a given protein and its interacting partners m. 

Step 3: Using the node degrees calculated from step 2, we established the node degree 

distribution for 𝐺𝐺𝑛𝑛𝑡𝑡  where degree distribution was the number of nodes (proteins in this case) 

which have the same node degree from the network. 

Step 4: Using the node degree distribution established in step 3, a set of all proteins 
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n 

(referred to as the background node-set) from 𝐺𝐺𝑏𝑏𝑏𝑏 that had the same degree distribution 

as 𝐺𝐺𝑛𝑛𝑡𝑡  was obtained. Using this set of proteins, a set of random networks were generated 

such that for each random network generated, the number of proteins obtained from each 

node degree distribution was equal to the number of proteins in the corresponding node 

degree distribution obtained from step 3. For each test network 𝐺𝐺𝑛𝑛𝑡𝑡   , a corresponding 1,000 

random networks were generated based on a random combination of nodes from the 

background node set. 

Step 5: The randomly generated networks were compared against the background node 

set using Wilcoxon test to ensure that the background node set was large enough to generate 

the random networks. 

Step 6: Once the random networks were tested as outlined in step 5, the average node degree 

for each of the 1000 random networks was computed and arranged in ascending order (as set 

Nt) from where the median node degree was obtained and then used to calculate the PIE 

score for each neighbouring protein. PIE was calculated as shown in equation ( 6-3); 

 
PIE =

𝜇𝜇𝑑𝑑𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 + 1
𝑚𝑚𝑒𝑒𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑁𝑁𝑡𝑡) + 1

 ( 6-3 ) 

where 𝜇𝜇𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡  is the average node degree for 𝐺𝐺𝑛𝑛𝑡𝑡  and 𝑁𝑁𝑡𝑡 is the set of average node 

degrees for the random networks. 

Step 7: Each PIE score calculated in step 6 was then tested for significance as the ratio of 

the number of times the average node degree for 𝐺𝐺𝑛𝑛𝑡𝑡  was greater than the average node 

degree for a randomly generated network in step 3 to the total number of random networks 

generated, as shown in equation ( 6-4); 

 PIE =
𝑚𝑚
𝑁𝑁

 ( 6-4 ) 

where n is the number of times the average node degree for 𝐺𝐺𝑛𝑛𝑡𝑡  was greater than the average 

node degree for random networks and N is the total number of randomly generated networks. 

This process was repeated for all the ESCRT machinery neighbouring proteins identified 

above after which the proteins were ranked based on the PIE score. 
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6.3.4. GO semantic function similarity 

In addition to PIE, we also calculated the gene ontology (GO) semantic function similarity 

of the ESCRT neighbours to the ESCRT machinery. GO is a collaborative public database 

that offers a controlled vocabulary of terms that are used to describe gene products’ 

functionality and the relationships between them. GO terms are classified into three main 

classes: molecular function, cellular component, and biological process. The GO 

framework is typically represented as a directed acyclic graph whereby each term has 

defined relationships to one or more other terms in the same domain or other domains 

[321], an example of which is shown in Figure 6-3. 

Using GO terms and the three classes, we can deduce the functionalities of a given gene 

and its products. Likewise, here, in addition to physical coherence, we used GO function 

semantic similarity to determine how functionally related the ESCRT neighbouring 

proteins are to the ESCRT proteins. 

GO semantic similarity is a method which measures the functional similarity between two 

genes or gene products based on the number of GO terms that co-occur between them. This 

method was first proposed by Wang, et al. [322]. GOSemSim, a package in R by Yu, et al. 

[323] was used to calculate the GO semantic similarity of each of the ESCRT neighbouring 

proteins n against each ESCRT protein and the results were added to set 𝐺𝐺𝐺𝐺𝑛𝑛 . Overall, 

GO semantic similarity for each neighbouring protein n was taken as the mean of all the 

scores in  𝐺𝐺𝐺𝐺𝑛𝑛. 
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Figure 6-3: Example of a GO tree structure.  The start term is mapped to the other terms to 

which the term is related in a tree-like structure forming a parent-child relationship. 

Exosome here is the RNase complex and is not to be confused with extracellular exosomes 

secreted by cells. 
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6.3.5. Other network     metrics 

Other network metrics were used either to validate the significance of PIE scores or as a 

part of the PIE calculation methodology. Examples include the node degree, which is a 

measure of the number of interacting partners that a node has, average node degree which 

gives the average number of interactions a node has in each network, and node cluster 

coefficient which gives the fractions of possible triangles that go through that node.  

6.4. Results and Discussion 

6.4.1. Identification of ESCRT proteins and ESCRT orthologs 

Using the process described in section 6.3.1 of the materials and methods, we identified 32 

ESCRT proteins together with their corresponding orthologs in worm, fly and yeast, as 

shown in the table. Individual ESCRT PPIs for each of the four organisms were then 

constructed using the interaction as described above. The four networks are summarised in 

Figure 6-4, and it is shown that some of the interactions are conserved across the four 

organisms while others are specific to only some organisms. 

Table 6-1: ESCRT and accessory proteins in Homo sapiens are mapped to their 

corresponding orthologs in C. elegans, D. melanogaster and S. cerevisiae

 H. sapiens C. elegans D. melanogaster S. cerevisiae 

Entrez 

Gene ID 

Official 

Symbol 

Entrez 

Gene ID 

Official 

Symbol 

Entrez 

Gene ID 

Official 

Symbol 

Entrez 

Gene ID 

Official 

Symbol 

27243 CHMP2

A 

174908 vps-2 43164 Vps2 853868 DID4 

81553 FAM49

A 

174234 R07G3.8 39206 CG3206

6 

- - 

51510 CHMP5 179242 vps-60 39964 CG6259 852097 VPS60 

79643 CHMP6 171654 vps-20 37581 Vps20 855101 VPS20 

57132 CHMP1

B 

171801 did-2 40036 Chmp1 853906 DID2 

8027 STAM 172264 stam-1 34505 Stam 856387 HSE1 
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 H. sapiens C. elegans D. melanogaster S. cerevisiae 

Entrez 

Gene ID 

Official 

Symbol 

Entrez 

Gene ID 

Official 

Symbol 

Entrez 

Gene ID 

Official 

Symbol 

Entrez 

Gene ID 

Official 

Symbol 

128866 CHMP4

B 

174091 vps-32.1 35933 shrb 850712 SNF7 

128866 CHMP4

B 

183288 vps-32.2 35933 shrb 850712 SNF7 

51652 CHMP3 173863 vps-24 40542 Vps24 853825 VPS24 

51652 CHMP3 3565940 rnh-1.0 40542 Vps24 853825 VPS24 

51028 VPS36 179520 vps-36 39523 Vps36 851135 VPS36 

51571 FAM49

B 

174234 R07G3.8 39206 CG3206

6 

- - 

10015 PDCD6I

P 

176410 alx-1 43330 ALiX 854449 RIM20 

5119 CHMP1

A 

- - - - 853906 DID2 

10254 STAM2 172264 stam-1 34505 Stam 856387 HSE1 

55048 VPS37C 178944 vps-37 40624 Vps37B 850810 SRN2 

11267 SNF8 175672 vps-22 42572 lsn 856105 SNF8 

79720 VPS37B 178944 vps-37 40624 Vps37B 850810 SRN2 

9525 VPS4B 189590 vps-4 32777 Vps4 856303 VPS4 

7251 TSG101 182474 tsg-101 39881 TSG101 850349 STP22 

27183 VPS4A 189590 vps-4 32777 Vps4 856303 VPS4 

51534 VTA1 172528 T23G11.

7 

38204 CG7967 850878 VTA1 

155382 VPS37D - - - - 850810 SRN2 

9146 HGS 177617 hgrs-1 33458 Hrs 855739 VPS27 

51160 VPS28 173229 vps-28 47408 Vps28 856040 VPS28 

137492 VPS37A 
  

31006 mod(r) 850810 SRN2 

93343 MVB12

A 

    
853120 MVB12 

84313 VPS25 173143 vps-25 35847 Vps25 853566 VPS25 
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 H. sapiens C. elegans D. melanogaster S. cerevisiae 

Entrez 

Gene ID 

Official 

Symbol 

Entrez 

Gene ID 

Official 

Symbol 

Entrez 

Gene ID 

Official 

Symbol 

Entrez 

Gene ID 

Official 

Symbol 

9798 IST1 
  

38750 CG1010

3 

855456 IST1 

25978 CHMP2

B 

182050 C01A2.4 38599 CHMP2

B 

853868 DID4 

29082 CHMP4

A 

183288 vps-32.2 35933 shrb 850712 SNF7 

92421 CHMP4

C 

183288 vps-32.2 35933 shrb 850712 SNF7 

91782 CHMP7 
 

T24B8.2 174442 CG5498 853906 DID2 
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Figure 6-4: Organism-specific ESCRT networks. (A) ESCRT machinery network for Fly 

generated by mapping human ESCRT proteins to corresponding orthologs in Fly, (B) 

Human ESCRT machinery network generated from the background PPI, (C) Yeast ESCRT, 

similarly generated by mapping human ESCRT proteins to their corresponding orthologs 

in Yeast, (D) Worm ESCRT machinery network. By generating organism-specific ESCRT 

machinery networks, we aimed at maximising the number of neighbouring proteins that we 

could identify and check how conserved ESCRT protein interactions are across the four 

organisms. 
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6.4.2. Identification of ESCRT machinery neighbours 

Individual model organisms’ protein-protein interactions were generated based on the 

ESCRT interaction information from the background PPI database 𝐺𝐺𝑏𝑏𝑏𝑏, and then combined 

to form the master network Gm as shown in Figure 6-5 (A). Using the master ESCRT 

machinery PPI, more than 1,800 neighbours were identified by searching in the background 

PPI database 𝐺𝐺𝑏𝑏𝑏𝑏 for those proteins that interact with any of the ESCRT proteins but are 

not part of the ESCRT machinery. For each neighbouring protein identified, its interactions 

with the ESCRT machinery network were mapped and a test network 𝐺𝐺𝑛𝑛𝑡𝑡  generated, as 

shown by the example in Figure 6-5 (B) where STAMBP was mapped to Gm. The physical 

coherence score for each neighbouring protein test network was calculated and the proteins 

ranked by score. 

6.4.3. Physical coherence changes in master network 

To understand the contribution of each ESCRT protein to the physical coherence of the 

master network, we first computed the overall PIE score of the master ESCRT machinery 

Gm in relation to the background network 𝐺𝐺𝑏𝑏𝑏𝑏, and the returned score was approximately 

14.4 with a p-value=0.15. This value is taken as a reference point in the further analysis of 

physical coherence changes in the master network.  

Furthermore, the contribution to the overall physical coherence of Gm by the ESCRT 

proteins was analysed by computing the PIE score of Gm when a given ESCRT protein and 

its interactions are removed from the master network. From the results, most of the ESCRT 

members did not show a significant change in the physical coherence of the network upon 

being removed from the master network. In contrast, HGS and STAM2 showed significant 

changes in the physical coherence of the master network upon being removed from the 

ESCRT network. The results are summarised in Figure 6-6 (A) which compares the 

physical coherence between PIE scores for the ESCRT machinery with and without a given 

ESCRT protein. From the results, we therefore hypothesised that the ESCRT machinery is 

highly coherent and that any protein that significantly changes the physical coherence of 

the network has a high probability of regulating exosome biogenesis.  
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Figure 6-5: Master ESCRT and Test Networks. (A) Organism-specific ESCRT PPI 

networks are combined to form the master ESCRT network (B) STAMBP is added to the 

Master ESCRT Network, Gm to form a test network for STAMBP. The arrows depict the 

iterative process of adding one neighbouring protein to the master network to form a test 

network. 
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Figure 6-6: Bar plot and radar plots of the distribution of pie scores. A) The overall PIE 

score for the ESCRT machinery is calculated (shown by green bars) and then for each 
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ESCRT protein, removed from the network and the remaining ESCRT machinery’s 

physical coherence is calculated (shown by red bars). The resulting PIE scores are 

compared with the overall network PIE for changes in the physical coherence of the 

network when each protein is removed from the network. B) Shows the PIE scores for the 

ESCRT neighbours, spikes pointing inwards represent neighbours that had a PIE score less 

than the average of 14.2 while spikes pointing outwards had a PIE score higher than the 

average. 

6.4.4. Prediction of NEDD4 and STAMBP as novel regulators of exosome biogenesis 

The physical coherence of the master network when a neighbouring protein is added to the 

network is calculated for each of the 1,800 neighbours and ranked. Figure 6-6 (B) shows 

the distribution of PIE scores among ESCRT neighbouring proteins. The average PIE score 

among the neighbours was 14.2 which was slightly less than the ESCRT’s 14.4 which we 

had elected to be a reference point for any physical coherence changes in the master 

network as discussed above. Neighbouring proteins that changed the physical coherence of 

the master network by 0.5−
+  than the 14.4 reference point were shortlisted as potential 

candidates for further analysis.  

From the shortlisted candidates above, we performed a cellular component enrichment 

analysis using FunRich [242] and selected only those proteins that enriched for the terms 

cytoplasm and/or cytosol. In addition to physical coherence, we also used GO function 

semantic similarity scores to validate the physical coherence scores and narrow down the 

selected proteins to those that are indeed functionally related to the ESCRT machinery and 

are biologically relevant to the process of exosome biogenesis. Using a semantic similarity 

threshold of an average of 0.6, we selected all the proteins that had semantic scores above 

the set threshold for semantic similarity as predicted potential candidates were expected to 

regulate exosome biogenesis. Figure 6-7 provides a summary of the relationship between 

physical coherence and the GO function semantic scores as well as the node degrees of the 

neighbour proteins with the master network.  

From the over 1,800 neighbouring proteins identified above, the final list of shortlisted 

candidates consisted of 193 (shown in supplementary table 6.1) ESCRT neighbouring 

proteins as potential candidates likely to regulate exosome biogenesis. Their interactions 
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with the rest of the ESCRT machinery members are mapped, as shown in Figure 6-8. 

Further functional enrichment analysis was performed on the 193 candidates using FunRich 

and they were found to be highly enriched for ubiquitin-specific protease activity, 

chaperone activity, GTPase activity, transporter activity and receptor signalling complex 

scaffolding activity, as shown in Figure 6-9 (A) and (B).  

 

Figure 6-7: 3D scatter plot of PIE vs GO similarity and degree ratio.  The physical 

coherence (PIE) scores for the shortlisted candidates are compared against the GO function 

semantic similarity and the degree ratio. Based on the literature, the proteins NEDD4 and 

STAMBP are selected as novel regulators of exosome biogenesis. SDCBP is known to be 

a regulator of exosome biogenesis and was therefore selected as a control for further 

laboratory experiments to validate the findings 



 

132 

 

 

Figure 6-8: ESCRT proteins and shortlisted neighbours.  Shortlisted proteins are mapped 

to their corresponding ESCRT proteins to form a network. 
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Figure 6-9: Molecular function enrichment (A) the shortlisted proteins are enriched for their 

molecular functions using FunRich [242] (B) the enriched proteins are then mapped to their 

corresponding functionalities in a network using Cytoscape [105]  



 

134 

 

To further validate our list of predicted proteins, we also performed a literature search 

through PubMed for each of the 193 proteins against the terms ‘viral budding’ and/or 

‘exosomes’. The results were manually curated to shortlist potential candidates. Of the 193 

predicted proteins, 28 were found to be associated with the term ‘exosomes’, and ten were 

found to be associated with the term ‘viral budding’ while only NEDD4 was found to be 

associated with both terms. Figure 6-10 provides a summary of the proteins that were found 

to have an association with the terms.  

Based on the results of the literature search and the PIE scores, we selected two proteins, 

STAMBP and NEDD4, for experimental validation. STAMBP had a PIE score of 15.1 

which was more than the reference PIE score of 14.4 for the ESCRT network. The results 

imply that the addition of STAMBP to the ESCRT network increased its physical 

cohesiveness. NEDD4, on the other hand, had a PIE score of 12.4 which in this instance 

was lower than the reference ESCRT PIE score of 14.4 and therefore meant that the addition 

of NEDD4 to the ESCRT network decreased the physical cohesiveness of the complex. In 

addition to the two proteins, we also selected SDCBP as a control as it has been shown 

previously to regulate exosome biogenesis [324]. Further analysis using CRISPR-Cas9 

based knockout cells of NEDD4 and STAMBP confirmed their active role in exosome 

biogenesis.  

 

 



 

135 

 

 

Figure 6-10: ESCRT neighbours associated with exosomes from PubMed. The 193 

shortlisted candidates are searched through PubMed for association with the terms 

exosomes and/or viral budding. The colour coding indicates the proteins that matched or 

did not match the terms 

6.5. Conclusion 

As the role of exosomes in both pathological and physiological conditions continues to be 

unravelled through ongoing research, it is also vital that we understand the mechanisms that 

constitute exosome biogenesis. It has been shown that the ESCRT machinery is a crucial 

complex that is known to play a significant role in exosome biogenesis, however, very little 

is known about the mechanism behind exosome biogenesis. Therefore, in this chapter, we 

embarked on identifying potential proteins that can regulate exosome biogenesis through 

the ESCRT machinery. Using computational tools and network theory, we predicted that 

STAMBP and NEDD4 are potential novel regulators of exosome biogenesis. We found that 

STAMBP increased the physical coherence of the ESCRT machinery network when its 

interactions were added to the network while NEDD4 reduced the physical coherence of 

the ESCRT machinery network. Also, both had significant GO function semantic similarity 
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with the ESCRT proteins. A search through the literature in PubMed further indicated that 

both STAMBP and NEDD4 had been associated with exosomes or viral budding. The 

results were validated using CRISPR-Cas9-based knockout cells of NEDD4 and STAMBP, 

and their active roles in exosome biogenesis were confirmed. 
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Chapter 7  
General discussion 

This thesis aimed to develop bioinformatics tools and resources that utilises network theory 

methods for the analysis of cancer related “omics” data. This was achieved by further 

dividing the main aim into three other sub-aims which consisted of developing an integrated 

repository for CRC related “omics” data, identification of essential genes in CRC using 

network theory and machine learning based techniques and prediction of novel proteins that 

regulate exosome biogenesis. This chapter discusses the results and findings of this thesis 

together with some of the significant limitations, future directions and the relevance of our 

findings to systems biology, and cancer research. 

7.1  Colorectal Cancer Atlas: An integrative resource for genomic and 

proteomic annotations from colorectal cancer cell lines and tissues 

The Colorectal Cancer Atlas is an integrated web-based platform offering CRC researchers 

the opportunity to analyse genomics and proteomics information for genes that have been 

associated with colorectal cancer in the literature. In recent years, there has been 

exponential growth in the amounts of heterogeneous omics data obtained from CRC patient 

samples and cell lines, thanks in part to the introduction of new high-throughput data 

collection techniques, such as NGS and MS. In Chapter 2, after an extensive literature 

review, we found that there was a lack of a database resource that could integrate such types 

of heterogeneous data, and that also enabled the analysis of multidimensional data sets, 

explicitly relating to CRC. We, therefore, collated this data from the literature as well as 

database resources and in Chapter 3 [11], I developed The Colorectal Cancer Atlas 

(http://www.colonatlas.org) which catalogues such data as sequence variants along with 

quantitative and non-quantitative proteomics data. With this resource, researchers can 

analyse data in the context of signaling pathways, protein-protein interactions, gene 

ontology terms, protein domains and post-translational modifications.  

Presently, the Colorectal Cancer Atlas comprises data for >13 711 CRC tissues and >179 

CRC cell lines. This data includes 62 251 protein identifications, >8.3 million MS/MS 

spectra, >18 410 genes with sequence variations (404 278 entries) and 351 pathways with 

sequence variants. This data is continuously updated as new data becomes available. Since 
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its launch, the Colorectal Cancer Atlas has had more than 195,000 page views and has been 

used by over 21,000 unique users from countries such as the United States of America, 

United Kingdom, China, Germany and South Korea. This, therefore, highlights the 

significance of such a resource to the research community.  

After the publication of the paper describing this resource in 2015, a similar database 

resource has since been developed, CoReCG [325]. The resource provides a catalogue of 

genomic data related to CRC. While CoReCG provides a platform with similar 

functionality to ours, unlike our tool which integrates both genomic and proteomic data, 

CoReCG only focuses on genomic-related data. Furthermore, our resource provides a 

comprehensive collection of literature about CRC genes. Overall, the data collated into the 

Colorectal Cancer Atlas formed the basis for further analysis in Chapters 4 and 5.  

7.2  Perturbation of protein-protein interaction network based on APC 

mutations in Colorectal Cancer 

The identification of essential genes in the tumorigenesis, proliferation and metastasis of 

cancer remains one of the significant challenges in cancer research due to the heterogeneous 

nature of cancer. Mutations in APC have been shown to be essential in the tumorigenesis 

of CRC [243]. It is against this background that in Chapter 4, we set out to understand the 

topological changes that take place in PPI networks when APC is mutated and therefore, 

attempted to identify genes that are essential for the proliferation and viability of tumour 

cells in CRC when APC is mutated. I used the data that we collated into the Colorectal 

Cancer Atlas and utilised other heterogeneous omics datasets deposited in various online 

repositories.  

In this chapter, I used the concept of the ‘small-world’ property [244] of PPI networks, 

whereby mutational changes in one gene are cascaded beyond its direct interacting partners. 

I, therefore, sought to define a method that could integrate the various omics data, while at 

the same time quantifies the dynamic changes that take place in a PPI network due to 

mutational and differential gene expression changes. In Chapter 4, I developed a novel 

method, local area connectivity (LAC), that perturbs a PPI network by globally cascading 

APC’s mutation information through a PPI network and quantifies the topological changes 

arising from the perturbation. The method uses node degree to calculate the connectivity of 



 

139 

 

a node but in the process, penalises interacting partners that are either downregulated 

because of a mutation in APC or are known to be cancer related and are either themselves 

mutated or not. 

Using this method, I predicted over 1600 genes as having significant topological changes 

in their local connectivity which included already known candidates as well as new 

potential candidates. Enrichment analysis of the predicted results showed that they were 

significantly enriched for such biological pathways as cell growth, immune response, cell 

communication and signal transduction which are all considered to be important in the 

tumorigenesis, proliferation and metastasis of cancer [16].I found that genes whose average 

LAC samples were highly enriched for signal transduction and cell communication while 

those with low LAC scores were highly enriched for immune response and cell 

growth/maintenance. Here, we hypothesised that when APC is mutated, genes which are 

involved in the signal transduction and cell communication pathways become highly 

interconnected because of APC mutations and consequently, become irresponsive to new 

signals as the signalling processes are never terminated. This view is supported by several 

previous research studies which documented the roles of these pathways in cancer [18, 

245]. On the contrary, when APC is mutated, genes which are involved in immune response 

and cell growth/maintenance are less well connected. As such, their respective pathways 

may become inactivated and which, in turn, may enhance the proliferation of cancer cells 

as the mechanisms responsible for controlling cell growth and/or maintenance or immune 

response are lost [246]. However, the high enrichment for immune response in this case 

can also be explained by the fact that gene expression profiling was conducted in cancer 

cell line.  

To validate the predicted results, I used the Achilles dataset and found several of the 

predicted genes to be essential in the proliferation of CRC cancer cell lines. Among the 

identified genes included direct APC interactors such as AXIN2, CTNNB1, DKK3, 

KRT23, KRT5 and NOSTRIN which were also found to be underexpressed in the 

SW480+APC cell line. The roles of AXIN2 and CTNNB1 in CRC have been well 

documented in the literature [33, 243, 247, 248]. I, therefore, used these as references to 

understand the roles of the other genes when analysing the Achilles data set and as a result, 

we found that DKK3 and KRT23 are essential in cell proliferation in mutant APC cell lines. 

This observation was confirmed further by results from the gene expression profiling of 
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TCGA patient samples which showed that the median expressions of DKK3 and KRT23 in 

mutant APC samples are higher than that in wild-type APC samples. This observation is 

supported by previous research [249] where it has been shown that DKK3 is overexpressed 

in CRC and Birkenkamp-Demtröder, et al. [250] also showed that by knocking down 

KRT23 in CRC samples, cell proliferation is reduced. NOSTRIN and KRT5 did not show 

notable differences in their Achilles scores.  

In addition to APC interactors, I also profiled genes that are not direct interactors of APC 

but had significant LAC scores and were also found to be essential for the viability of CRC 

cancer cell lines. Notable among these were STAT3[251] and TSG101[252] which have 

been implicated in CRC while others included APOBEC3G, ASL, CDKN1A, CTSH, 

DDIT4, DYNC1H1, ELMO3, EVPL, FUBP1, GNA11, GPSM1, NFKBIA, PRSS2, 

PSMA1, SUPT5H, TMOD1, TRAF1, TRIP13, TUBA1B and USP39. A search on PubMed 

for these genes revealed that they had been found to play a role in CRC or some other form 

of cancer. For instance, APOBEC3G, a gene that codes for the protein apolipoprotein B 

mRNA-editing enzyme catalytic polypeptide-like 3G has been found to be associated with 

poor prognosis in CRC patients [253]. ASL, a gene that codes for arginosuccinate lyase, 

has also been shown to dysregulate nitric oxide (an essential mediator in the tumorigenesis 

of various cancers) which, in turn, inhibits the proliferation of cancers such as liver and 

breast cancer [254]. The remaining genes have also been implicated in functions ranging 

from tumorigenesis to metastasis [255-259]. While the roles of some of the predicted genes 

have been documented, there is still a need to understand their roles in the progression of 

CRC when APC is mutated. In this chapter,I have shown that when APC is mutated, these 

genes undergo significant changes in their interactions within a PPI network and therefore 

are likely to play an essential role in CRC. The findings in this chapter have significant 

implications towards unravelling the role of passenger genes in CRC research. Nonetheless, 

caution should be taken when applying LAC in contexts where the effect of a mutation on 

the cell phenotype is known in advance as well as those where certain PPIs are known to 

be either active or not.  
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7.3  Integration of heterogeneous ‘omics’ data using semi-supervised network 

labelling to identify essential genes in colorectal cancer. 

In Chapter 5, building on the work discussed in Chapter 4, I applied a semi-supervised 

machine learning technique to infer genes that are likely to be affected when the PPI 

network topology changes due to genomic changes such as mutations and gene expression 

variations. Unlike in Chapter 4 where I focused on the role of APC mutations on the 

topology of the PPI network, in Chapter 5, I sought to understand the collective effect of 

all known gene mutations across a range of samples on the topology of the PPI network. In 

Chapter 2, literature review showed that many of the network analysis methods that are 

applied in identifying essential genes are often based on the concept of “guilty by 

association” (GBA). GBA methods are based on the premise that proteins within a PPI 

network that interact with proteins that are known to be associated with a given disease are 

themselves considered to be associated with that disease. While such methods have, over 

the years, been useful in identifying essential genes, recent research has shown that attempts 

to apply the same principle to an entire PPI network have yielded varying results. As such, 

in Chapter 5, I applied network propagation, a semi-supervised labelling technique that 

allows genomic information or signal changes in one protein to be cascaded beyond its 

direct interacting partners.  

Although the technique is not new to this thesis, I used it to validate some already known 

pathways, as well as genes that have been implicated in CRC. I further used the technique 

to predict novel genes that are affected by the genomic changes in other genes, even when 

they are not directly interacting partners of genes that had undergone genomic changes. 

Examples of the genes identified include ASXL1, SMAD4, RALY, DIDO1 and CCAR2. 

Several publications have applied this method to the identification of essential genes in 

disease [164, 166, 174], however none has conducted such a study specific to CRC as 

ourselves. Nonetheless, one of the challenges in computational predictions is that they are 

usually prone to false positives [326], thus the need for the experimental validation of the 

predicted results. In this chapter, the roles of the identified proteins in CRC were not 

validated through experimentation, and as such, further experiments will therefore be 

required. This chapter nevertheless demonstrated that by integrating heterogeneous data 

types, overlaying this information on a PPI network and propagating the information 

beyond immediate interacting partners, I could infer the effect of such changes on the entire 
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global PPI network and therefore was able to quantify the distance between the two 

proteins. In addition, I further identified proteins that have been implicated in other types 

of cancers which are likely to have some implications in CRC.  

7.4  Physical coherence and network analysis to identify novel regulators of 

exosome biogenesis. 

In Chapter 6, we identified NEDD4 and STAMBP proteins as novel regulators of exosome 

biogenesis through the ESCRT pathway. These were further verified by wet laboratory 

experimentation and analysis using CRISPR-Cas9-based knockout cells of NEDD4 and 

STAMBP which confirmed their active role in exosome biogenesis. The growing 

importance of exosomes in biomedical research, as well as the lack of a well-established 

mechanism behind exosome biogenesis, necessitated this study. The roles carried out by 

exosomes in both physiological and pathological states have, over the years, been 

uncovered and have ranged from intercellular communication [186, 191], disease [197], to 

being potent drug delivery vehicles [201, 305]. 

Nevertheless, an understanding of the mechanism by which exosomes are formed, 

packaged and released to the extracellular environment remains elusive. Regardless of this, 

several pathways have been identified as potential mechanisms behind exosome biogenesis, 

such as the endosomal sorting complex for transport (ESCRT) pathway and ESCRT 

independent pathways consisting of tetraspanins, Rab GTPases and lipids. In Chapter 4, we 

therefore used computational methods and network theory to the analysis of the ESCRT 

PPI network to uncover the topological changes in the ESCRT pathway when ESCRT 

interacting partners are repeatedly added to and removed from the ESCRT PPI network. In 

Chapter 2, we found that one of the downsides of using PPIs in the inference of essential 

genes was the fact that PPIs are themselves prone to false discoveries due to experimental 

errors and literature bias. That is, genes that have been well studied or have been found to 

be implicated in disease are frequently found to have a high number of interacting partners, 

as opposed to those that are less studied. Against this background, we incorporated physical 

coherence [9] into our pipeline to handle the bias in PPI interactions. Using this method, 

we profiled and computed the physical interaction enrichment scores for over 1800 ESCRT 

PPI interacting partners, of which 193 were found to change the physical coherence of the 

ESCRT PPI network significantly. Upon further validation, we found STAMBP and 
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NEDD4 as novel regulators of exosome biogenesis. To our knowledge, no other study has 

used computational analysis to implicate these two proteins in exosome biogenesis. The 

findings in this chapter, therefore, have substantial implications for improving our 

understanding of the mechanisms behind exosome biogenesis.  
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7.5  Future directions 

The future direction of this study will be the redesign of the Colorectal Cancer Atlas 

described in chapter 3 to incorporate the method (Local Area Connectivity) developed in 

Chapter 4 to help users compute the essentiality of genes in the tumour proliferation and 

viability of CRC cells. This improvement will, in turn, help biomedical researchers who 

conduct wet laboratory experiments to determine beforehand which genes to focus on. We 

expect this will, in turn, help lower the costs and time associated with conducting such 

studies. Furthermore, to enhance the functionality and accessibility of Colorectal Cancer 

Atlas, the resource will be redesigned so as make it mobile device compatible as well as 

the provision of a submission page for new CRC related data or modification of existing 

data by other researches. The inclusion of a submission page will help improve the quality 

as well as the amount of data that Colorectal Cancer Atlas will be able to support. 

Additionally, future works for the work described in chapter 5 include the fine tuning of 

the model used and incorporating new machine learning techniques such as deep learning 

using neural networks to the integration of heterogeneous datasets and inference of essential 

genes in CRC. The genes identified in Chapter 5 will also need validation through the 

conduction of wet laboratory based experiments.  
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Appendix 

Supplementary table 4.1 

List of predicted genes with their associated local area connectivity, differential gene 

expression status and z-score. 
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Supplementary table 6.1 

List of predicted ESCRT neighbours that changed the physical coherence of the ESCRT 

network. The list consists of proteins that either increased or decreased the physical 

coherence of the network and enriched for cytoplasm and/or cytosol.  
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Chapter 14

Network Tools for the Analysis of Proteomic Data

David Chisanga, Shivakumar Keerthikumar, Suresh Mathivanan, 
and Naveen Chilamkurti

Abstract

Recent advancements in high-throughput technologies such as mass spectrometry have led to an increase 
in the rate at which data is generated and accumulated. As a result, standard statistical methods no longer 
suffice as a way of analyzing such gigantic amounts of data. Network analysis, the evaluation of how nodes 
relate to one another, has over the years become an integral tool for analyzing high throughput proteomic 
data as they provide a structure that helps reduce the complexity of the underlying data.

Computational tools, including pathway databases and network building tools, have therefore been 
developed to store, analyze, interpret, and learn from proteomics data. These tools enable the visualization 
of proteins as networks of signaling, regulatory, and biochemical interactions. In this chapter, we provide 
an overview of networks and network theory fundamentals for the analysis of proteomics data. We further 
provide an overview of interaction databases and network tools which are frequently used for analyzing 
proteomics data.

Key words Proteomics, Network theory, Protein–protein interactions, Network tools, Network anal-
ysis, Bioinformatics

1 Introduction

In recent years, the development of high-throughput technologies 
such as next-generation sequencing techniques in the field of 
genomics and tandem mass spectrometry in the field of proteomics 
and metabolomics has led to the birth of the “omics” study [1]. 
These techniques and tools involved in the study of functional 
genomics and other omics data have constantly helped in our 
understanding of cellular biology and have drastically reduced the 
cost of conducting “omics” related studies. The speed with which 
data are generated and disseminated today means that researchers 
can gain insight for the fraction of the cost compared to that in 
past years. For instance, by using tandem mass spectrometry, two 
groups [2, 3] have developed the first draft of the human pro-
teome. Also, using bioinformatics, another group integrated 
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publicly available proteomics datasets to map 96 % of the human 
proteome [1].

However, with terabytes of proteomic data pouring into 
research centers every day, standard statistical methods for analyz-
ing data are becoming ineffective. Researchers are faced with the 
formidable task of how to take advantage of this heterogeneous 
data to gain insight in areas such as disease and drug development 
as well as answering questions such as the following: How can they 
characterize and manipulate complex interactome of basic elements 
such as genes and proteins? How can they visualize these interac-
tomes and infer meaningful information from them?

Network theory has long played a fundamental role in disci-
plines ranging from computer science, sociology, engineering, and 
physics, to molecular and population biology [4]. In biology and 
medicine, network analysis methods are applied in areas such as drug 
target identification, prediction of a gene or protein function, pro-
tein complex or module detection, prediction of novel interactions 
and functional associations, identification of disease  subnetworks, 
disease biomarker identification, and mapping of disease pathways 
[5]. Networks have long been used in a variety of fields to reduce the 
complexity of data [6, 7]. Computational tools, including pathway 
databases and network building tools, have been developed to store, 
analyze, and interpret biological networks [8].

This chapter provides an overview of the application of network 
theory in analyzing and visualization of proteomic data by discussing 
various tools used for storage, analysis, and interpretation of pro-
teomic data through the use of biological networks with an emphasis 
on protein–protein interaction networks. To get started, we provide 
a brief background to both proteomics and network theory.

Coined by Marc Wilkins and colleagues [9] in the mid-1990s to 
mimic the terms “genomics” and “genome,” respectively, pro-
teomics is in essence a systems science whose aim is to identify and 
record the functions as well as structures of proteins in organisms. 
Proteomics is a systems science which involves not only the mea-
surement of proteins but also the measurement of their expressions 
in a cell and the interplay of proteins, protein complexes, signaling 
pathways, and network modules.

Proteins are termed as the workhorses of cellular systems, as 
they perform an array of cellular functions ranging from catalyzing 
reactions, cellular transportation, transcription of DNA informa-
tion to RNA, and acting as molecular motors to signaling [10]. 
They perform these functions not on their own, but within large 
complexes where they interact with other molecules like proteins, 
DNA, RNA as well as with other small molecules. Because of their 
importance, a malfunction in key proteins can lead to serious path-
ological outcomes like cancer, metabolic imbalances, and neurode-
generative diseases. With significant ongoing research into protein 

1.1 Background 
to Proteomics
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functionality and their interactions with other molecules in under-
standing disease, research has turned to network theory concepts 
to model and study these interactions.

A network or a graph (in mathematics) is a collection of objects 
connected by lines. The objects are called nodes or vertices while 
the connections between the objects are called edges or links and 
are drawn as lines between points as shown in Fig. 1

Formally, a network is a graph G defined as an ordered pair 
G = (V, E) where V is a set of nodes and E is a set of edges [4]. 
Nodes are said to be adjacent if they are joined by an edge while 
node ‘A’ is said to be a neighbor to node ‘B’ if adjacent to node ‘B’ 
and vice versa. Edges between nodes can be undirected (Fig. 1) or 
directed (Fig. 2), as such a graph G = (V, E) is called undirected if 

1.2 Background 
to Network Theory 
Concepts

Fig. 1 Shows an example of an undirected network graph in which each node is 
connected by an edge that does not show the origin and destination by way of 
an arrow

Fig. 2 Shows an example of a directed graph in which each node is connected 
by an edge with an arrow indicative of the direction of the relationship

Network Tools for the Analysis of Proteomic Data
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an edge vv’ (where v and v’ are nodes in set V) in set E of edges 
implies that it is the same as edge v’v also in E; otherwise G is called 
directed. A directed acyclic graph, on the other hand, is a directed 
graph that contains no cycles. Finally, a graph is said to be con-
nected if there is a path from any node to any other node.

Using the above network/graph concepts, researchers have 
used networks to reduce the complexity of systems thereby making 
it easier to draw conclusions from them. Networks are applied in 
various fields such as computer networks, social networks, and 
interactome networks in molecular biology research.

Interactome networks provide a global picture that is useful in 
understanding how interactions between molecules influence 
 cellular behavior [11]. It has been established that biological 
behavior arises from the complex interactions between the cell’s 
numerous molecules such as proteins, DNA, RNA, and other small 
molecules. Common examples of interactomes in molecular biol-
ogy are; protein–protein interactions, virus–host networks, tran-
scriptional regulatory networks, metabolic networks, and disease 
networks. Protein–protein interactions (PPIs) form the backbone 
of signaling pathways, metabolic pathways, and cellular processes 
required for normal functioning of cells [12].

The steps to perform proteomic analysis can be summed up by 
use of a flowchart as shown in Fig. 3, it involves identifying a set of 
target proteins of biological interest needs to be studied and then 
followed by retrieval or identification of interacting partners from 
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databases
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DE genes
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throughput 
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Integrate PPIN 
and existing 
knowledge 

Network analysis
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Analysis
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of network

Tissue
specificity 
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partners 

Pathways 
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List of custom 
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Fig. 3 Shows a summary representation of the steps involved in analyzing proteomic data using network 
theory concepts. It also shows the data types required and from where they can be sourced. It also gives an 
example of expected outputs from the network analysis
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various interaction resources discussed below. An interaction network 
is then generated and integrated with any existing knowledge such 
as gene ontology (GO) enrichment, biological pathways or differ-
ential gene or protein expression. A topological analysis of the net-
work is then performed using metrics such as degree, degree 
centrality or betweenness centrality which is further followed on by 
downstream analysis to identify network variations, functional 
enrichment of identified modules, or tissue specificity.

2 Protein–Protein Interaction Databases

The mappings of proteins and their interacting partners have been 
curated by various groups and deposited into online databases. 
These databases are typically Web-based resources that serve as 
archives of information pertaining to the mapping of protein inter-
actions, functional enrichment (GO enrichment) and pathway 
details. These databases act as sources of protein mapping informa-
tion in network analysis. The most widely used PPI databases 
include Human Protein Reference Database (HPRD) [13], 
Molecular Interaction Database (MINT) [14], Biological General 
Repository for Interaction Database (BioGRID) [15], Search Tool 
for Recurring Instances of Neighboring Genes/Proteins (STRING) 
[16], Database of Interacting Proteins (DIP) [17], Biomolecular 
Interaction Network Database (BIND) [18], and the IntAct 
molecular interaction database (IntAct). Depending on the data-
base, the annotations may be based on experimental observations 
while other databases such as STRING can have a high proportion 
of predicted and literature mined interactions. Below, we briefly 
discuss the most commonly used databases while Table 1 provides 
a summary of these database resources with protein–protein inter-
action mappings.

The Biological General Repository for Interaction Datasets 
(BioGRID) is an open, accessible Web-based repository of genetic 
and protein interaction mappings which have been curated from 
the primary biomedical literature of humans and other major 
model organism species [15]. As of May 2016, the database housed 
over 1,000,000 protein and genetic interactions curated from over 
56,000 high-throughput datasets and individually focused publica-
tions for major model organisms.

BioGRID features an easy to use Web interface with a search 
tool which users can use to search against the database, the search 
results then show the interacting partners, interactor details, and a 
graphical network visualization of the interacting partners. Users 
can then manipulate the network by either changing the network 
layout or filtering through the network by node degrees. In addi-
tion, users can also download custom defined or entire interaction 

2.1 BioGRID
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datasets for offline network analysis and downstream analysis. 
BioGRID also features online tools and resources that allow for the 
use of BioGRID data. A number of visualization tools such as 
Osprey, Cytoscape, and GeneMania, data management tools like 
ProHits, plugins like BioGRID Tab File Loader Plugin for 
Cytoscape and BiogridPlugin2 for Cytoscape as well as Web  services 
BioGRID REST Service and PSICQUIC provide users with access 
to or can be used to analyze BioGRID data.

Human Protein Reference Database is a Web-based resource that 
houses experimentally derived human proteome information [13]. 
It is one of the most comprehensive collections of human pro-
teome information resource available online. It houses information 
pertaining to; protein–protein interactions, posttranslational 
modifications and tissue expression. As of May, 2016, the database 
housed over 30,000 protein entries, over 41,000 protein–protein 
interactions, 93,000 posttranslational modifications (PTMs), 
112,000 protein expressions, 22,000 subcellular localization 
details, 400 domains and with over 453,000 PubMed links to 
publications.

The landing page of HPRD provides a range of features rang-
ing from a querying functionality, BLAST feature to a browse 
feature. Users can query the database using the query page 
through a number of search options, the results are then dis-
played using graphical visual displays and are categorized into 
protein information, PTMs, protein length, and protein–protein 
interactions. Users can similarly get protein information through 
the browse page where the information is grouped into molecu-
lar classes, domains, motifs, PTMs and based on localization. 
HPRD further includes a Basic Alignment Search Tool (BLAST) 
which allows users to search against the database based on the 
provided protein or nucleotide sequence. Other features included 
are a phosphor motif finder tool which searches across user sub-
mitted protein sequence for the presence of over 300 phosphor-
ylation-based motifs listed in HPRD. HPRD also provides tab 
delimited files for binary protein–protein interactions which users 
can download for offline processing and further download stream 
analysis.

The Molecular INTeraction database [19] is a Web-based 
resource that stores physical interactions between proteins of 
model organisms that have been curated from the scientific litera-
ture. As of May 2016, MINT had over 241,000 protein–protein 
interactions, 35,000 proteins, and over 5000 PubMed links to 
publications.

MINT data can be downloaded in several formats such as PSI- 
ML, tab-delimited and MINT flat file formats. Otherwise, users 

2.2 Human Protein 
Reference Database

2.3 Molecular 
INTeraction Database 
(MINT)
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can use the search feature that allows users to search the MINT 
database. Users can search the database using several options such as 
by gene name, protein accession number, or any 6-character keyword. 
A user defined list of proteins can furthermore be uploaded and 
used to generate a network visualization based on the information 
in the database.

The Biomolecular Interaction Network Database [18] is a Web- 
based resource for PPI data and was one of the earliest resources 
for biomolecular interactions (proteins, genes, etc.), molecular 
complexes and pathways. BIND initiated by the University of 
Toronto as part of the Biomolecular Object Network Databank 
(BOND) has since been acquired by Thomson Reuters. BIND 
provides tools for data specification plus a database which is accom-
panied by data mining and visualization tools.

IntAct [20] is an open-source Web-based molecular interaction 
database that catalogs data curated from the scientific literature or 
from direct data depositions. As of May 2016, IntAct had over 
591,000 molecular interactions, and 91,000 interactors sourced 
from over 14,000 publications.

Using IntAct users can explore the fine details of the mechanism 
by which a specific protein binds to protein partners or use the 
entire interactome of an organism to perform a network analysis of 
large-scale ‘omics’ experiment. The front-end of IntAct features a 
search tool that can be used to search against the IntAct database. 
Users can then view the interacting partners, interaction details 
and a graphical presentation of the network.

STRING is a freely available Web-based biological database that 
houses information on experimentally derived and predicted pro-
tein–protein interactions for a number of organisms. This informa-
tion has been curated from various sources, including experimental 
data, computational prediction methods, and published literature. 
STRING holds over 184 million interactions, 9,000,000 proteins 
from over 2000 organisms.

STRING provides an easy-to-use Web interface that allows 
users to quickly search for a protein of interest and visualize and 
download interaction data. It further has a Cytoscape plugin which 
allows users to directly access the STRING database from 
Cytoscape. The interaction data returned from STRING is 
weighted and allows for the calculation of confidence scores for 
each interaction. In addition, STRING has capabilities that allow it 
to connect to other databases and consequently perform literature 
mining. It also includes a capability that allows for the drawing of 
simple protein networks based on the provided list of genes and 
the available interactions in the database.

2.4 Biomolecular 
Interaction Network 
Database

2.5 IntAct Molecular 
Interaction Database

2.6 Search Tool 
for Recurring 
Instances 
of Neighboring Genes/
Proteins (STRING)
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3 PPI Data Exchange Formats

Interaction networks are represented in a number of different file 
formats, the most widely used formats are; tab delimited text (.tab 
or .txt format), excel workbooks (.xls format), simple interaction 
file (SIF or .sif format), nested network format (NNF or .nff for-
mat), graph markup language (GML or .gml format), XGMML 
(extensible graph markup and modeling language), SBML, 
BioPAX, PSI-MI level 1 and 2.5 formats. All the interaction repos-
itories provide at least one of these formats as a way to download 
interaction data.

The delimited text and excel workbook file formats are the most 
basic and widely used for working with interactive data and are 
supported by most if not all network analysis tools. Tables in these 
files can contain network and edge (interaction) attributes or val-
ues such as the confidence of an interaction. With these types of 
files, users can specify the columns for source and target nodes as 
well as interaction types, and edge attributes when importing net-
work data into an analysis tool.

This format allows for the construction of a network from a list of 
interactions by easily merging different interaction sets into a larger 
network.

Each line of an SIF file annotates a source node, a relationship 
(or edge type), and one or more target nodes as shown in the fol-
lowing example:
nodeA <relationship type> nodeB
nodeC <relationship type> nodeB
nodeD <relationship type> nodeA

This format is simple and similar to the SIF format except it allows 
the option of nesting a network into a single a node. An interaction 
is specified by either of two possible formats [21, 22]:

• A node “node” contained in a “network”:
 – Network node.

• Two nodes linked together contained in a network:
 – Network node1 interaction with node2.

GML unlike the SIF format comes with a language that supports rich 
graph formatting and is widely supported by most  visualization soft-
ware tools. A GML formatted file can contain information pertaining 
to graphs, nodes, and edges, and hence capable of emulating almost 
every other format. A network can be built using the SIF format and 
by applying network layouts can then be stored as a GML file as this 

3.1 Delimited Text 
and Excel Workbooks

3.2 Simple 
Interaction Format 
(SIF)

3.3 Nested 
Network Format

3.4 Graph Markup 
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preserves the layout of a network. Further details on the GML speci-
fication can be found on the GML documentation website: http://
www.fim.uni-passau.de/index.php?id=17297&L=1.

Other formats such as XGMML is the XML extension of the 
GML format and is the preferred format to GML, Systems 
Biology Markup Language (SMBL) format is an XML format 
used to describe biochemical networks, the specification for 
SMBL can be found on the website: http://sbml.org/
Documents/Specifications, PSI-ML format specification is an 
XML-based format that is used for data exchange of protein–pro-
tein interactions. GraphML is another XML-based format for 
generating graphs. Apart from the XML-based formats, JSON-
based file formats are increasingly being used for data exchange 
of protein–protein interactions (Subheading 2.3).

4 Network Analysis and Visualization Tools

This section discusses some of the commonly used tools in the 
proteomics network analysis, but before delving into what tools to 
use, we begin this discussion by looking at the ways by which net-
works can be quantified in order to provide more informative 
results.

The most commonly applied metric are; degree, degree distribu-
tion, scale-free networks, the degree exponent, shortest path, mean 
path length, and clustering coefficient [23]. By using these net-
work metrics, we can quantify and characterize important network 
features which are not commonly visible.

Protein–protein interactions are the most commonly used 
form of networks in proteomic data analysis. In these networks, 
proteins are represented as nodes while interactions between the 
nodes are depicted by edges or links. This mapping of proteins is 
based on experimental information which has been obtained from 
methods such as mass spectrometer [24], protein chip technolo-
gies [25, 26], yeast two-hybrid screens [27], and predictions from 
computational methods [28]. These mappings have been collected 
and deposited into online databases as discussed below.

Network tools are mainly used to analyze proteomic data 
through functional annotation, knowledge integration, modu-
larity analysis, topological analysis, and basic network property 
analysis [29].

The basic properties of a network such as node degree, degree 
distribution, betweenness centrality, and eigenvector centrality can 
be used to deduce the significance of a protein [30]. Another 
important metric is the identification of modules which represent a 
vital level of organization in biology [31]. A module in proteomics 
can be defined as a set of interacting proteins that can be associated 

4.1 Quantifying 
Networks
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with a common biological process. By using networks, clusters of 
interacting proteins can be identified as modules and associated 
with a functionality. Modules provide a comprehensive and global 
description of interaction patterns to comprehend the complexity 
of biological systems [32]. Module detection enables functional 
annotation of constituent proteins and the discovery of targets for 
therapy in diseases such as cancer. In addition to detection of mod-
ules, the integration of existing knowledge into networks plays a 
vital role in the analysis of proteomic data. Such knowledge may 
include integrating Gene Ontology (GO) annotations, differential 
gene expression, and pathway details. By highlighting such infor-
mation, candidate disease proteins may be identified and module 
functions can be annotated.

To perform network analysis on proteomic data, there are a number 
of steps that are involved; these steps are summarized in Fig. 3. 
The steps involved include but are not limited to:

 1. The first step involves identifying a list of proteins or genes that 
need to be analyzed using a network tool. The researcher can 
select which protein or gene appears on the lists, as per indi-
vidual needs.

 2. Interacting partners of these proteins are then obtained from 
any of the databases discussed above.

 3. A protein–protein interaction network is then built by using a 
visualizing tool from the tools listed in Table 2.

 4. To get more meaningful information from the network, the 
protein–protein interaction network is then integrated with 
already existing knowledge such as pathways, differential 
expressions for genes or proteins obtained from either high- 
throughput custom data or online databases such as The 
Cancer Genome Atlas (TCGA). Other existing knowledge that 
can be integrated includes Gene Ontology enrichment, which 
can help to identify the functional annotations of the modules 
or individual proteins in the network.

 5. During topological analysis, network theory concepts such as 
degree, degree centrality distribution, Eigenvectors, and 
degree distribution are applied to identify proteins or nodes 
playing significant roles in the network, variations between a 
normal and an altered network and modules that can be 
mapped to a functionality.

 6. Topology analysis is further followed by downstream analysis 
whose objective is mostly dependent on the researcher.

 7. Some of the results that may be obtained from a network 
analysis of proteomic data include a visual representation of 
the network, module identification, network variations as well 
as functional enrichment of proteins and modules.

4.2 Steps 
to Performing Network 
Analysis

Network Tools for the Analysis of Proteomic Data
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Table 2 
Summary of Network tools for analyzing proteomic data

Tool Reference URL link Features

Cytoscape [22] http://cytoscape.
org/

Open source,
Data integration,
Network visualization,
Network Analysis,
Functional enrichment,
extensible by plugins,
Stand-alone,
Platform independent

FunRich 
(Functional 
Enrichment 
Analysis)

[8] http://funrich.org/ Open source,
Functional enrichment,
Dataset comparison,
Network visualization and analysis,
Stand-alone,
Runs only on Windows,
Results can be exported in various formats

MetaCore By Thomson 
Reuters

https://portal.
genego.com/

Proprietary,
Network visualization,
Network analysis,
Function enrichment analysis,
Data mining toolkit,
Network alignment

Ingenuity 
Pathways 
Analysis

IPA®, 
QIAGEN 
Redwood 
City

www.qiagen.com/
ingenuity

Proprietary,
Network visualization and modeling,
Causal network analysis,
Network analysis,
Functional enrichment analysis,
Pathway enrichment analysis,
Literature mining,
Allows for collaboration

Gephi Gephi https://gephi.org Network visualization,
Network analysis,
Network clustering,
Module identification,
Dynamic network analysis,
Real-time visualization

PINA: Protein 
Interaction 
Analysis

[37] http://cbg.garvan.
unsw.edu.au/pina/

Network construction,
Module detection,
Functional enrichment,
Network metric analysis,
Network visualization,
Community driven annotation

Osprey [39] http://biodata.mshri.
on.ca/osprey/
servlet/Index

Network visualization,
Integrates BioGRID,
Ability to compare functions between datasets,
Build interaction network from custom datasets,
Search for specific genes within a network,
filtering feature

David Chisanga et al.
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Cytoscape developed by Trey Ideker (a leading pioneer of systems 
biology) is a platform independent and open source software tool 
for the integration, visualization, and statistical modeling of molec-
ular networks together with other systems-level data [21, 33]. The 
core of Cytoscape provides users with the fundamental features to 
perform functions such as data integration, analysis, and network 
visualization. The core also has limited information stored but 
interconnects with other databases to obtain relevant information. 
Cytoscape functionality is extensible through the integration of 
plugins (http://apps.cytoscape.org/) which are now called apps 
from version 3.0 of Cytoscape.

The apps can be categorized into one or more of the following 
functional categories such as clustering, data integration, data 
 visualization, enrichment analysis, graph analysis, and integrated 
analysis. Other functional categories include interaction database, 
layout, local data import, network analysis, network comparison, 
network generation, online data import, ontology analysis, path-
way database, scripting, systems biology, utility, and visualization. 
Figure 4 shows the distribution of these apps across the different 
functional categories.

The first step to a typical Cytoscape workflow is the importa-
tion of interactions. These interactions are imported from either a 
user’s own experiment data or from public databases. Data from 
experiments is loaded directly into Cytoscape using a standard file 
format such as generic tabular formats including CSV, Excel, and 
TSV or network-specific formats such as SIF, XGMML, GML, 
PSI-MI, BioPAX (Biological Pathway Exchange), OpenBEL 
(Open Biological Expression Language), and SBML.

4.3 Cytoscape

Fig. 4 Shows the distribution of apps or plugins across a number of categories in Cytoscape

Network Tools for the Analysis of Proteomic Data
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Importation of data from databases, on the other hand, requires 
the installation of plugins (apps). A list of genes of interest is passed 
as a query for interactions from the database. Examples of apps for 
importing data from databases include the BioGRID database 
plugin that can be used to import an entire interactome from the 
BioGRID database. Other ways in which networks can be imported 
into a network by mining interactions directly from literature or 
using computational inference from non-interaction data such as 
expression profiles. This is also achieved through the use of third-
party apps. An example of such apps that is Agilent Literature 
Search software which is a meta-search tool that can automatically 
search through multiple texts based search engines to extract asso-
ciations among a set of genes or proteins of interest.

Once the networks are imported into Cytoscape and network 
visualization is done, network analysis is achieved using the huge 
collection of apps. For example, using network topology apps like 
Knowledge-fused Differential Dependency Network (KDDN), 
users are able to calculate such statistics as network distribution of 
node degrees. Network clustering apps such as MCODE enable 
users to extract network regions which are densely connected, 
thereby forming modules which can then be related to complexes 
or pathways. Network enrichment apps are used to infer the func-
tions of the identified modules by detecting functional terms that 
are statistically overrepresented among the set of genes making up 
the module. Examples of apps that can perform functional enrich-
ment include BiNGO which is a tool that can determine which 
Gene Ontology categories are statistically overrepresented in a set 
of genes or a module, the ReactomeFIPlugin is another app that 
can be used to associate a set of genes in a module to pathways that 
are related to diseases such as cancer. Furthermore, functional 
modules can also be identified by integrating networks with expres-
sion data to infer network regions that are consistently up- or 
downregulated. Another example of network analysis that can be 
done using apps in Cytoscape is network comparison, this involves 
comparing networks across species or in different conditions to 
identify regions of the network with conserved interactions. 
GASOLINE (Greedy and Stochastic algorithm for Optimal Local 
Alignment of Interaction NEtworks) is an example of an app that 
can be used to compare multiple networks.

Cytoscape also supports the use of scripting languages such as 
Python and R. It enables users to develop their own scripts and 
integrate or call Cytoscape functionality in the order they want it 
to be done.

Functional Enrichment Analysis (FunRich) tool [8] is an open 
source stand-alone desktop software tool for functional enrich-
ment and protein–protein interaction network analysis of biologi-
cal molecules. Features of FunRich include functional enrichment 

4.4 FunRich
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and network analysis of genes and proteins. In addition, FunRich 
allows the representation of results in editable graphical form as 
Venn, Bar, Column, Pie and Doughnut charts. FunRich users can 
perform a biological process, cellular component, molecular func-
tion, protein domain, site of expression, biological pathway, tran-
scription, and clinical synopsis phenotypic term enrichment. Users 
can analyze their datasets against two built-in background data-
bases; FunRich and UniProt or against a customized background 
database. FunRich does not require users to install any additional 
applications or plugins to conduct any of the above analysis. 
FunRich is currently only available for Microsoft’s Windows 
Operating system with plans underway to support other major 
operating system platforms.

The first step to performing an enrichment analysis in FunRich 
is the specification of an annotation database. By default, FunRich 
comes with a human annotation database. Each database consists of 
biological function annotations and an interaction database. FunRich 
also comes with the latest UniProt annotation database, otherwise, 
users can also include a custom database. Once an annotation data-
base has been specified, a list of genes or proteins is then imported. 
The user can perform a range of analyses on the datasets including 
comparison across the datasets using a Venn diagram that shows 
which proteins or genes are common across the datasets. Users can 
also perform gene set enrichment analysis to determine what 
biological functions are statically enriched in the gene or protein 
lists. In addition to these, FunRich also allows users to generate and 
build an interaction network from where users can then manipulate 
the network through enriched pathways and functions.

MetaCore from Thomson Reuters is an integrated proprietary soft-
ware suite capable of analyzing multiple types of biological data, for 
example, Next Generation Sequencing [34], variant, Copy Number 
Variation (CNV), microarray, metabolic, proteomics, microRNA 
etc. Functional analysis in MetaCore is performed against a high 
quality, a manually curated database containing molecular interac-
tions vis-à-vis protein–protein interactions, protein–DNA interac-
tions, and protein–RNA interactions. The database is also made up 
of molecular classes such as transcription factors, signaling and met-
abolic pathways, and disease ontologies. MetaCore was developed 
for the purpose of representing biological functionality along 
with the integration of functional, molecular, or clinical informa-
tion. Using the data mining toolkit available in MetaCore, users 
can perform functions like data visualization, analysis, and 
exchange of data, network alignment using multiple network 
alignment algorithms, and enrichment analysis. While MetaCore 
provides a set of rich features, it is a paid for a suite of software for 
integrated analysis.

4.5 MetaCore

Network Tools for the Analysis of Proteomic Data
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IPA (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) 
is a proprietary software application with features that allow scien-
tists to model, analyze, and understand the complexity of biologi-
cal and chemical systems [35]. IPA offers a host of network analysis 
functions some of these include causal network analysis which 
allows researchers to identify upstream molecules that control the 
expression of genes in their datasets and network analysis which 
allows the building and exploration of transcription of molecular 
networks such as microRNA, transcriptional networks, and pro-
tein–protein interaction networks. Network analysis in IPA can 
identify regulatory events that lead from signaling events to tran-
scriptional effects, help in understanding toxicity responses by 
exploring connections between drugs or targets and related genes 
or chemicals. Users can also edit and expand networks based on 
the molecular relationships most relevant to the project.

IPA is capable of identifying pathways, molecular mechanisms 
and biological processes that are relevant to a given dataset. It is 
also capable of finding biological and chemical knowledge from 
the scientific literature. Other features allow for collaboration, 
sharing of results and insights with project teams.

IPA is a subscription-based software application. It is made 
available as a Web-based, hosted or deployed solution.

Gephi is an open-source data exploratory, network visualization and 
analysis software tool for large network graphs. Gephi allows users to 
explore, analyze, spatialize, filter, cluster, manipulate, and export all 
types of network graphs. With Gephi, users can derive hypotheses 
and identify patterns by analyzing data using networks.

Gephi can be used to analyze a variety of networks ranging 
from biological networks to social networks. It supports the major-
ity of the network file formats discussed in Subheading 2.2 above. 
The core of Gephi can perform basic network metric analysis such 
as calculating betweenness centrality, closeness, clustering, com-
munity detection or module identification. Gephi further includes 
a feature that allows for the analysis of dynamic networks where a 
set of networks representing or derived from different conditions 
or events are compared to infer differences. In addition, Gephi is 
also extensible by a range of plugins which users can install to per-
form functionality that is not included in the core of Gephi. While 
Gephi provides a range of network analysis features, other biologi-
cal specific network analysis features such as functional enrichment 
cannot be easily done due to the unavailability of such functionality 
within Gephi or its associated plugins.

NDEx-The Network Data Exchange is not so much a network 
analysis tool, but rather an open source framework for sharing of 
networks of many types and formats, publication of networks as 
data, and the use of networks in modular software [36]. Unlike 
other similar tools such as KEGG and IntAct, NDEx is a data 
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 commons framework that allows users to manage the sharing and 
the publication of networks. Users can upload any type of net-
works such as pathway models, interaction maps, and novel data-
driven knowledge networks. NDEx supports networks of varying 
formats including simple interaction format (SIF), extensible graph 
markup and modeling language (XGMML), BioPAX3, and 
OpenBEL. Each network uploaded to NDEx is given an accession 
number which acts as a universally unique identifier allowing users 
to share or include such networks in publications. NDEx also pro-
motes the development of network analysis algorithms and applica-
tions by providing access to networks which can be used as inputs 
through a Web-based relational state transfer application pro-
gramming interface (REST API). In addition, users can anony-
mously access networks by searching through the Web interface 
(www.ndexbio.org). The framework can also be downloaded and 
run on a local server or personal computer, depending on the 
needs of a user.

Protein Interaction Analysis is a Web-based integrated network 
analysis platform for protein interaction network construction, 
filtering, analysis, visualization, and management [37]. PINA has a 
quarterly updated backend database consisting of an integration of 
data from six other publicly available databases; IntAct, MINT, 
BioGRID, DIP, HPRD, and MIPS MPact. To construct a net-
work, PINA provides a query feature where users can either query 
a single protein, a list of proteins, a list of protein pairs or two lists 
of proteins.

The constructed PPI networks can be further analyzed by 
PINA’s inbuilt GO term and protein domain annotation tools. 
Other analyses that can be performed include the use of graph 
theoretical tools to either discover basic topology properties of a 
PPI network or identify topologically important proteins, such as 
hubs or bottlenecks, based on several centrality measures from pro-
tein domains and GO terms. In addition, the constructed networks 
can be downloaded in customized tab-delimited, GraphML or 
MITAB formats for further analysis using tools such as Cytoscape 
where they can be integrated with gene expression profiles.

Colorectal Cancer Atlas [38] is an integrated Web-based resource 
mainly meant for those involved in colorectal cancer research. The 
tool provides a platform that catalogs both non-quantitative and 
quantitative proteomic and genomic sequence variation data in 
both colorectal cancer cell lines and tissues. This information has 
been curated from existing literature.

Colorectal Cancer Atlas features an easy to use search func-
tionality that also offers auto-complete. Users can search for a 
given protein, gene, pathway, or cell line that may be of interest to 
them. Depending the type of search term, the tool then performs 
functional, pathway, and GO enrichment, maps sequence variances 
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known in colorectal cancer and associated with the searched term, 
and generates a protein–protein interaction network.

The network integrates proteomic data with genomic sequence 
variations. Users can use this network analysis module to quickly 
get an overall picture of the interacting partners of a given gene in 
colorectal cancer. It uses color intensities to indicate the number of 
sequence variances for a given gene in the database. Users can also 
filter through the network by either a gene symbol or by cell lines.

While this tool is specific to colorectal cancer, it provides fea-
tures that users can quickly use to get functional enrichment infor-
mation for a given protein or gene as well as perform a gene or 
protein centered network analysis. Overall, researchers can quickly 
look up a list of genes or proteins and get an overview of a given 
gene in colorectal cancer.

Osprey [39] is a software tool that allows for the visualization and 
analysis of complex interaction networks. Just like most visualiza-
tion tools, in osprey genes are represented as nodes and interac-
tions as edges. Developed using Java, Osprey is platform 
independent running on both Linux and Windows based systems.

Osprey provides a range of features that allows users to easily 
build data-rich graphical representations of their datasets. In addi-
tion, users can use the default BioGRID’s Gene Ontology interac-
tion datasets to quickly build an interaction network. Some of the 
features in Osprey include ability to compare functions between 
datasets, use of custom datasets to build interaction networks, abil-
ity to search for specific genes within a network as well filter func-
tions to filter for specific nodes within a large a network. Osprey 
also has a number of network layouts including concentric circles, 
spoke, circular, and dual ring, these layouts allow for the compari-
son of large-scale datasets in an additive manner.

5 Conclusions

In order to study and understand complex systems such as cellular 
systems, we show that network theory provides metrics that can be 
used to study such systems using a bottom-up approach. In this 
chapter, we give an overview of how network theory can be applied 
to the analysis and study of proteomics data based on a number of 
network theory metrics. Such metrics include node degree, node 
centrality, Eigen vector values, and modularity.

We also discuss the most frequently used network analysis tools 
in analyzing proteomic data. In doing so, a generic workflow that 
one can use during the analysis is described. Tools discussed include 
databases which are used to house protein–protein interaction net-
work annotations and the analytical tools that can be applied in 
analyzing proteomic data.

4.11 Osprey
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ABSTRACT

In order to advance our understanding of col-
orectal cancer (CRC) development and progres-
sion, biomedical researchers have generated large
amounts of OMICS data from CRC patient samples
and representative cell lines. However, these data are
deposited in various repositories or in supplemen-
tary tables. A database which integrates data from
heterogeneous resources and enables analysis of
the multidimensional data sets, specifically pertain-
ing to CRC is currently lacking. Here, we have devel-
oped Colorectal Cancer Atlas (http://www.colonatlas.
org), an integrated web-based resource that cata-
logues the genomic and proteomic annotations iden-
tified in CRC tissues and cell lines. The data cata-
logued to-date include sequence variations as well as
quantitative and non-quantitative protein expression
data. The database enables the analysis of these data
in the context of signaling pathways, protein–protein
interactions, Gene Ontology terms, protein domains
and post-translational modifications. Currently, Col-
orectal Cancer Atlas contains data for >13 711 CRC
tissues, >165 CRC cell lines, 62 251 protein identifi-
cations, >8.3 million MS/MS spectra, >18 410 genes
with sequence variations (404 278 entries) and 351

pathways with sequence variants. Overall, Colorec-
tal Cancer Atlas has been designed to serve as a
central resource to facilitate research in CRC.

INTRODUCTION

Colorectal cancer (CRC) is the third most common form of
cancer and has the fourth highest mortality rate in the world
(1). In order to advance our understanding of the initiation
and progression of this disease, biomedical researchers have
performed global analyses of the genome, epigenome, tran-
scriptome, proteome and metabolome of CRC patient sam-
ples and representative cell lines (2–5). According to The
Cancer Genome Atlas Network (3), APC, TP53, KRAS,
PIK3CA, FBXW7, SMAD4, TCF7L2 and NRAS are the
most frequently mutated genes in CRC. Identification of
these mutations and associated pathways has advanced our
understanding of CRC, is enabling the sub-classification of
this disease and is unveiling potential new avenues for treat-
ment.

Due to the significant advancements in high-throughput
technologies, vast amounts of multidimensional data rele-
vant to the biology of CRC have been generated. To extract
meaningful biological insights from these data, researchers
previously needed to collate data from a large number of
studies. To facilitate this process, a series of databases have
been created. For example, cancer gene mutations are cur-
rently catalogued in databases including TCGA (3), COS-
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Table 1. Colorectal cancer atlas statistics

Protein entries 62 251
MS/MS spectra 8 378 422
Primary tissues 13 711
Cell lines 165
Genes with sequence variants 18 410
Gene sequence variants 404 278
Pathways with genes having sequence variants 351
Pathways with genes having no sequence variants 1657
Cell lines with drug sensitivity 27
PTMs 88 819
PTMs affected by sequence variants 1631
Protein–protein interactions 253 700

MIC (6), TumorPortal (7), IntOGen (8), Network of Cancer
Genes (9) and TSGene (10). These databases provide valu-
able information of gene variations for a number of tumor
types including CRC, however, they are not specifically de-
signed to integrate sequence variations with proteomic data.
NetGestal (11) is a web-based framework that allows for in-
tegration of OMIC data from multiple species in the context
of biological networks (12) and contains data pertaining to
human CRC from TCGA. However, there is currently no
user-friendly online resource specifically pertaining to CRC
which catalogues genomic and proteomic data from liter-
ature, databases and TCGA, integrates the sequence varia-
tions with protein domain, post-translational modifications
and protein–protein interactions.

Here, we describe Colorectal Cancer Atlas (http://www.
colonatlas.org), an integrated web-based resource which
catalogues genomic and proteomic data from CRC tis-
sues and cell lines. Data catalogued include; quantitative
and non-quantitative protein expression, sequence varia-
tions, cellular signaling pathways, protein–protein interac-
tions, Gene Ontology terms, protein domains and post-
translational modifications (PTMs). Data pertaining to ge-
nomic sequence variations and protein expression have been
manually curated from the scientific literature and collated
from other publicly available databases. Colorectal Cancer
Atlas is designed to enable a user to search for a specific
mutation in any particular cell line, and search for cell lines
with and without specific mutations. Currently, Colorectal
Cancer Atlas contains data for >13 711 primary CRC tis-
sues, >165 CRC cell lines, 62 251 protein identifications,
>8.3 million MS/MS spectra, >18 410 genes with sequence
variations, 404 278 sequence variation entries, 351 pathways
with sequence variants, 88 819 PTMs and 253 700 protein–
protein interactions (Table 1).

DATABASE ARCHITECTURE AND WEB INTERFACE

Colorectal Cancer Atlas is a web-based application devel-
oped using Zope2 (version 2.8.7–1), a python-based web
framework. The back end database is MySQL (version
5.0.95), a well-established open source database. The web
pages were developed using Hyper Text Markup Language
(HTML) in combination with JavaScript for front end func-
tionality, while Python (version 2.4.3), a scripting language
was used for database connectivity. JavaScript modules in-
clude DataTables (version 1.10.4) for the development of
interactive data tables, Data-Driven Documents (D3JS) for
the development of interactive protein–protein interaction

networks, and Highcharts (version 4.1.6) for the develop-
ment of interactive heat maps and column charts.

GENOMIC DATA SETS

Colorectal Cancer Atlas catalogues gene sequence varia-
tions present in primary CRC tissues and cell lines which
were collated by manual curation of the scientific litera-
ture. In addition, the database contains genomic variations
identified in CRC cell lines sequenced in-house. For cell
lines, where available, the gender and age of the patient is
provided, along with the specific cell type, doubling time,
culture properties and stage of cancer. This information
was obtained from the Cancer Cell Line Encyclopedia (13),
ATCC (http://www.atcc.org), COSMIC database and lit-
erature. Sequence variation details including the type of
sequence variants, putative mutational effects, nucleotide
change and amino acid changes are displayed.

PROTEOMIC DATA SETS

Colorectal Cancer Atlas also catalogues proteomic data col-
lated from multiple resources including the scientific lit-
erature (e.g. Zhang et al. (5)), Human Protein Atlas (14),
Human Proteinpedia (15) and Human Protein Reference
Database (16). Experimental techniques used in generat-
ing these data included mass spectrometry, Western blot-
ting, immunohistochemistry, confocal microscopy, immu-
noelectron microscopy and fluorescence-activated cell sort-
ing (FACS). In addition, publicly available label-free quan-
titative mass spectrometry data for CRC cell lines and tis-
sues were re-analyzed using an in-house proteomics pipeline
in order to provide standardized data. The proteomics
pipeline involved conversion of raw mass spectrometry data
files into the Mascot Generic File Format (MGF) using
MsConvert with peak picking (17). The MGF files were
then searched using X! Tandem (Sledgehammer edition ver-
sion 2013.09.01.1) (18) against a target and decoy Human
RefSeq protein database. Peptides were further filtered us-
ing <5% false discovery rate (FDR) as a cut-off, and quan-
tified using the Normalized Spectral Abundance Factor
(NSAF) method (19).

COLORECTAL CANCER ATLAS PROVIDES AN INTE-
GRATED VIEW OF MULTIPLE DATA TYPES

Colorectal Cancer Atlas provides an integrated view of
the sequence variations and the proteomic data. Mass
spectrometry-based quantitative proteomic data are de-
picted as heat maps and column charts in the respective
molecular pages (Figure 1), and users are able to filter the
data sets based on the FDR. The database also contains
protein expression data generated using immunohistochem-
istry, Western blotting, FACS, confocal and immunoelec-
tron microscopy. The database also includes protein data
derived from various cellular fractions including the nu-
cleus, cytoplasm, membrane, the secretome (20) and exo-
somes (21) (from ExoCarta (22)).

The integration of sequence variants with proteomic data
is designed to facilitate the prediction of functional ef-
fects of the protein. For each gene, Colorectal Cancer Atlas

http://www.colonatlas.org
http://www.atcc.org
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Figure 1. Snapshot of Colorectal Cancer Atlas features. An overview of proteomic and genomic data features for APC gene is displayed. A user can query
the database using a gene symbol or a protein name. A gene information page will provide the users with details pertaining to protein domains, post-
translational modifications (PTM), reported mutations in cell lines/tissues, quantitative protein expression, pathway, protein–protein interaction (PPI)
and cell line drug sensitivity.
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Figure 2. PTMs and domains in �-catenin are affected due to mutation. Snapshot of �-catenin molecular page is displayed. The PTMs affected by mutations
can be viewed in the tab PTMs. Mutations in �-catenin at positions important for phosphorylation (S33, S37, T41 and S45) allows for the stabilization
of �-catenin and constitutive activation of the Wnt signaling pathway. The upstream kinases responsible for the phosphorylation is also provided along
with the literature reference. Likewise, mutations in the armadillo domain can be viewed by correlating the sequence variants and the domain span regions.
For example, mutations in the armadillo domain (p.R582) in �-catenin have been described which have been reported to alter the binding of �-catenin to
TCF4 (24).
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enables parallel visualization of CRC-associated sequence
variants with quantitative protein expression across CRC
cell lines and tissues. In addition, PTMs, and protein do-
mains affected by the sequence variation can be visualized
(Figure 1), enabling the potential effect of sequence vari-
ants on protein function to be easily ascertained. For ex-
ample, �-catenin mutations in positions S33, S37, T41 and
S45 occur in CRC, all of which are critical for phosphory-
lation (23). Mutations in these serine/threonine residues al-
low for the stabilization of �-catenin and constitutive acti-
vation of the Wnt signaling pathway. Similarly, Colorectal
Cancer Atlas displays sequence variations in known protein
domains which can provide valuable insight into the puta-
tive effect on protein function. For example, mutations in
the armadillo domain (R582) in �-catenin have been de-
scribed which have been reported to alter the binding of �-
catenin to TCF4 (24) (Figure 2).

Colorectal Cancer Atlas also provides a graphical repre-
sentation of known protein interactions (obtained from Bi-
oGrid (25) and Human Protein Resource Database (16)),
where each protein is depicted as a node with a specific
colour and intensity corresponding to the number of se-
quence variants in the encoding gene (Figure 1). Further-
more, Colorectal Cancer Atlas integrates biological path-
ways with gene sequence variants. Biological Pathways were
obtained from Reactome (26), KEGG (27), Cell map and
HumanCyc. For example, as shown in Figure 1, sequence
variants in APC are implicated in dysregulation of the
Wnt signaling pathway and actin cytoskeletal remodel-
ing. Finally, Colorectal Cancer Atlas contains data on 5-
flurouracil (5-FU) drug sensitivity for CRC cell lines cu-
rated from the literature (studies using at least three CRC
cell lines (28)). Users can view the sensitivity profile of a cell
line of interest relative to other CRC cells.

ACCESSING COLORECTAL CANCER ATLAS

Users can search Colorectal Cancer Atlas through the
home, query or browse pages (Supplementary Figure S1).
In addition, the website features a navigation menu and
a search box at the top of the page. The database can be
queried by gene symbol, Entrez Gene ID, protein name,
cell line name or pathway. The browse page provides users
with the option to access the database by categorized lists
of genes, sequence variations, cell lines and techniques. The
browse page allows the users to search for sequence varia-
tions in genes of interest and displays them in interactive
color-coded table format. The gene information page in-
cludes gene details, associated GO terms, sequence vari-
ations (displayed in an interactive table), domain details,
PTMs, a protein data page leading to experimental tech-
niques and quantitative data with an interactive heat map,
a column chart for spectral abundance and a list of detected
peptides. Other information includes a list of cell lines and
tissues that contain sequence variants in a given gene, a list
of pathways in which the gene is involved, and an inter-
active protein–protein interaction network for the protein
encoded by the gene. The cell line page provides details of
the cell line, an interactive table of gene sequence variants
identified in the cell line, an interactive table of dysregulated
pathways and 5-FU drug sensitivity profile. Data curated

in Colorectal Cancer Atlas are available as tab-delimited
files and is free for download to all users. Using the cus-
tom database option, the tab delimited data can also be up-
loaded into FunRich (29), a functional enrichment analysis
tool to identify classes of genes/proteins that are overrepre-
sented in a specific category.

FUTURE DIRECTIONS

Colorectal Cancer Atlas will be continuously updated with
more studies as they become available and additional fea-
tures. Studies currently being curated include Wnt signal-
ing activity determined by the TOPFLASH assay, and ge-
nomic and proteomic data generated from patient derived
xenografts.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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A B S T R A C T

Colorectal cancer (CRC) is the third most common form of cancer and has the fourth highest
mortality rate in the world. To understand the origin and progression of this disease, biomedical
researchers undertake global analyses of omics data of CRC patient samples and representative
cell lines. However, due to the heterogeneity and high dimensionality nature of `omics’ data,
traditional tools for analysing this sort of data are inadequate and the heterogeneous nature of
cancer makes the process of identifying essential genes very difficult. ‘Omics’ is a term that is
used to refer to areas of study in biology that end with the ending ‘omics’ such as genomics,
proteomics and metabolomics. This paper uses network theory-based methods to address the
problem of high dimensionality in omics datasets and applies network propagation to address the
problem of heterogeneity in both omics datasets and cancer in identifying the essential genes.
The method successfully identifies known essential genes in CRC as well as a new set of genes that
are likely to be essential in the study of CRC.

1. Introduction

Network theory, the study of how complex systems interact is widely applied in fields such as computer networks, social net-
works, and interactome networks in systems biology [1]. Network metrics such as node degree are often used to prioritise nodes
within a network. Similarly, one of the main goals in cancer research is the identification of biomarkers or essential genes that can be
used to understand the development or progression of a specific cancer type such as Colorectal cancer (CRC).

To prioritise these genes, researchers often study the complex interactions between the numerous molecules within cells such as
proteins, deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and other small molecules. The molecules are obtained from the
global profiling of patient samples as well as representative cell lines at multiple layers, these layers constitute what is today referred
to as ‘omics’ data. ‘Omics’ is an informal term that is used to refer to areas of study in biology that end with the term ‘omics’ such as
genomics, proteomics and metabolomics [2]. The interactions, on the other hand, are collectively known as interactome networks
and provide a global picture of how molecular interactions influence cellular behaviour, an example being protein-protein inter-
actions (PPI) [3].

Omics data is highly dimensional in nature, coupled with this, is the heterogeneity of cancer whereby two individuals with the
same type of cancer may have a different set of biomarkers. This makes identifying and prioritising cancer-related genes a challenging
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and daunting task that cannot be achieved using traditional statistical methods. As such, network theory provides a means by which
complexity in such instances can be used to model the cellular system behaviour. Barabási, et al. [4] provides a summation of the
application of network-based metrics in associating omics-related molecules to disease. Other works in [5–7] applied network-based
methods in areas such as identifying and associating genes to disease as well as identifying drug targets in various cancer types. In
[8,9], integrated network-based methods with machine learning techniques are applied in reducing the dimensionality of omics data
and building models to predict genes associated with the disease as well as classify multiple cancer types. While the integration of
omics data with networks has been gaining momentum over the years, a typical recurring theme in most of the research has been the
use of a single type of omics data as opposed to integrating the various types of omics data which are heterogeneous in nature.

In this paper, we used an integrated approach to identify essential genes in colorectal cancer, a type of cancer that originates in
the bowel, is the third most common form of cancer and has the fourth highest cancer mortality rate in the world [10]. The integrated
approach employed a semi-supervised learning algorithm to propagate heterogeneous omics data into a protein-protein interaction
network, which was followed by a downstream enrichment analysis to validate and understand the role of the predicted potential
essential genes in CRC.

The rest of the paper is organised as follows: Section 2 provides a description of the materials and methods used as well as an
overview of related works, Section 3 provides a discussion of the experimental results and the implications of the findings. The paper
concludes with a summary of the findings and the future directions of the research.

2. Materials and methods

2.1. Proteomics data

We used proteomics and genomics data as the input to our method. Proteomics data consisted of protein-protein interactions.
Weighted protein-protein interactions were downloaded from HIPPIE Version 2.0 [11], an online web-based database resource for
weighted protein-protein interactions. The weights in the interactions show the confidence in the interaction between two proteins
and are calculated by the authors based on the amount and reliability of evidence supporting an interaction. The protein-protein
interaction dataset was then filtered to leave out interactions with a confidence score of 0 after which 16,728 number of unique
proteins and 276, 183 number of interactions remain. These were then assembled into a network using NetworkX, a Python package
for network manipulation and analysis.

2.2. Genomics data

Genomics data comprised gene somatic mutations and gene differential expression status for CRC patients and representative cell
lines. Previously, we collated genomics data related to CRC into a web-based resource called the Colorectal Cancer Atlas [12]. It is
this data together with The Cancer Genome Atlas (TCGA) patient data obtained from COSMIC [13] that we used as the genomics
input data to our method. Using the corresponding genes for the proteins identified above, we obtained gene mutation details of 564
CRC patients from TCGA.

From the mutation dataset, we then filtered out all silent mutations and for each gene with a mutation in each sample, we
represented its status using a binary number (1 if a mutation was present and 0 if not present) regardless of the number of mutations
for a gene in each sample. The mutation data were then represented as a matrix, M (16,728× 564) with rows representing genes and
columns representing a gene's mutation station status in each sample. The same was repeated for gene differential expression status in
TCGA patient data. This was then represented as a matrix, D (16,728× 564) with rows representing genes and columns representing
the differential expression status of genes in each sample. The gene differential expression status was denoted 1 for under-regulated
or up-regulated genes and 0 for genes not differentially expressed.

2.3. Theory/calculation

To identify essential genes, we use a method that integrates the different datasets discussed in the materials and methods section.
Fig. 1 provides a summary of the approach taken in this paper.

2.4. Disease gene prioritisation using network theory methods

A network or a graph is defined as a set of objects (nodes) linked together by lines (edges) [1]. A network is, therefore, represented
as an ordered pair G= (V, E) where V is the set of nodes and E is the set of edges. By grouping a collection of objects as a set of nodes
and using edges to represent relationships between these objects, researchers have used networks to reduce the complexity of large
systems. Molecular networks in biology provide a global representation of the complex interactions between various molecules
within a cell such as DNA, RNA and other small molecules.

When it comes to disease-gene prioritisation, many researchers use networks to associate genes with diseases. A naïve approach
that is usually taken is to predict those genes that have neighbours associated with a disease as being more likely to be implicated in
such a disease, that is using the concept of “guilty by association”. Such methods that implicate neighbours as having the likelihood of
being associated with a disease include node degree as well as shortest path methods. However, these methods are prone to false
positives because of the biases that exist in current molecular networks’ datasets where proteins which are well studied tend to have
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more interactions than those that are not. In addition, biological networks tend to obey the concept of the “small world” property
where each node is reachable to another node through a series of links with other nodes and as such, the average number of hops
needed to get to the furthest node from any given node is small [14].

2.5. Network propagation

Here, we used network propagation, a semi-supervised labelling algorithm first proposed by Zhou et al. [15] and further extended
by Vanunu et al. [16] and Ruffalo et al. [17]. The objective was to determine the extent to which a gene's mutation status or
differential expression status is propagated globally in a network, ultimately affecting the topology of the network. The propagation
results were then used to perform enrichment analysis to validate and determine roles played by the predicted essential genes in CRC.
The input to the algorithm was a semi-labelled vector of gene mutation status Mv or differential expression status Dv, and a protein-
protein interaction network as shown in Eq. (1);

G V E w( , , ) (1)

where V is the set of proteins, E is the set of interactions and w is the set of interaction confidence scores (weight). The aim was to be
able to determine the distance of the proteins in V (those that have not been labelled as either mutated or differentially expressed)
from those that have been labelled as either mutated or differentially expressed.

For each node vεV, we let N (v) be indicative of the direct neighbours of v in G. Let F: V→ℜ be the propagation function where F
(v) denotes the distance of a protein from those that are either differentially expressed or mutated as shown in Eq. (2). Let Y: V→[0,1]
denote some prior knowledge function matching genes known to be differentially expressed or mutated as one (1) and zero (0) if not.

∑=
⎡

⎣
⎢ ′ ⎤

⎦
⎥ + −

∈

F v α F u w v u α Y v( ) ( ) ( , ) (1 ) ( )
μ N v( ) (2)

Fig. 1. Architecture of model. Differential expression status and mutation propagation status data were propagated through the network. The
propagation results were then integrated together to form the features which were used in the further downstream analysis.
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Fig. 2. Summary of propagation scores in TCGA samples. (a) distribution of mutation propagation scores with the scores indicating the proximity of
the genes to the genes that had a mutation (b) differential expression status propagation scores where the scores indicate the proximity of genes to
genes that were differentially expressed between normal and tumour samples (c) the relationship between the mean of mutation propagation scores
was compared against the mutation frequency to understand the relationship between the two. The results showed that genes with a high mutation
frequency had high propagation scores, these were filtered and only those with lower scores were obtained for further analysis (d) the relationship
between the mean of differential expression status propagation scores was compared against differential expression frequency and is in (c) only
those genes with lower propagation scores were obtained for further downstream analysis.
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where w’ is a [v]x[v] matrix and is a Laplacian normalised form of w as described below, the parameter α∈ (0, 1) weighs the relative
importance of the two constraints discussed above, F and Y are vectors of size [n] where Y is the prior knowledge. We used an
iterative procedure to compute network propagation as in Eq. (3):

= ′ + −−F αW F α Y(1 )t t 1 (3)

where F1=Y and W’ represents w’. The iterative algorithm can be described as a process whereby proteins for which prior genomic
(mutated or differentially expressed) information exists iteratively pass on this information to their neighbouring nodes and every
other node further propagates the information from the previous round to its neighbours repeatedly until convergence.

W’ is a square matrix which represents the Laplacian normalisation of an [n]x[n] adjacency matrix W which is built from the set of
confidence scores between interactions. We built an adjacency matrix W, with a non-zero indicating an interaction between the two
nodes and vice-versa. We then use Laplacian normalisation to get the matrix W’ as shown in Eq. (4):

′ = − −W D WD1/2 1/2 (4)

where D−1/2 is a diagonal matrix such that D (i, i) is the sum of row i of W.
After computation of the normalised weighted matrix W’, for each sample in our data sets, we then iteratively computed the

propagation scores for each of the nodes in the PPI by setting Y as the prior knowledge vector where all the nodes whose corre-
sponding genes known to either be mutated or differentially expressed were set to 1 and 0 otherwise. The propagation was computed
separately by propagating node mutation status using the mutation status dataset as well as for the differential expression status
dataset resulting in Pm for mutation based propagation scores and Pd for differentially expressed based propagation scores. The
propagation scores are then used to perform the following computations; propagation mean scores for genes across the sample,
standard deviation, covariance which is then used to perform further downstream analysis to identify essential genes.

3. Results and discussion

3.1. Propagation of omics data

Network propagation of mutation status and that of differential expression status data is performed, Fig. 2 shows the distribution
of scores in TCGA samples respectively. The figure also shows the relationships between the propagation scores against their cor-
responding status data. From this, it is shown that genes with a high-frequency rate of mutation or differential expression across
samples are labelled with a propagation score close to their initial label in the prior knowledge dataset. This is further confirmed by
the sensitivity of the algorithm as shown in Table 1. The sensitivity is calculated by comparing the total number of correctly pre-
dicted/labelled genes against the total number of genes known a priori.

We hypothesise that genes with high mutation or differential propagation scores have a closer relationship to those genes that are
either mutated or differentially expressed while those with low propagation scores are distant from the mutated or differentially
expressed genes in the network. Based on the remaining filtered genes, we then pick the genes with propagation scores and perform
enrichment analysis.

3.2. Enrichment analysis of mutation status propagation scores

To obtain an understanding of the relevance of the propagation results to CRC, we performed enrichment analysis on the pro-
pagation results using FunRich [18]. In Fig. 3(a) and (b), enrichment analysis of the genes with high mean mutation status propa-
gation scores reveal that these genes are highly enriched in several cancers in the COSMIC database, furthermore, of these, it is found
that 47 are also part of the COSMIC cancer gene census, as shown in Table A1.

In addition, we also performed the biological process and molecular function enrichment to determine processes and functions most
likely to be affected by the genes with high mutation status propagation scores as shown in Fig. 3(c) and (d) respectively. Of interest to
us from the biological processes were homophilic cell adhesion and cell adhesion, as in [19] it is shown that these two processes play an
important role in contact inhibition. Contact inhibition is cellular changes that lead to the termination of cell migration and pro-
liferation because of signals transduced when one cell comes into physical contact with another cell. Nonetheless, in tumour micro-
environments, it is shown that contact inhibition is lost due to the molecular changes in cell-cell adhesion, this, in turn, leads to cell
proliferation and/or migration. This, therefore, means that changes in cell adhesion properties in cancer micro tumour environment
play a key role in cancer progression and metastasis [20]. Genes enriched in the two pathways are also shown in Table A2.

Table 1
Network propagation algorithm sensitivity scores. The sensitivity scores are used to measure the consistency of
network propagation in labelling correctly known genes as having high propagation scores similar to their
previous labels.

Mutation Differential expression

Number of correct label 104,505 565,582
Number of incorrect label 5 0
Sensitivity 0.999 ≈ 1 1.0
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On the other hand, from the molecular function enrichment, it was found that genes that had high mutation propagation scores
were also enriched in calcium ion binding and ATP binding molecular functions as shown in Table A3. Calcium ion binding is part of
the calcium cell signalling pathways whereby proteins bind to the Ca2+ ion. This pathway is important in regulating various cellular
processes. A dysregulation of calcium ion binding function in cancer cells has been linked to the hyperpolarization of tumour cells

Fig. 3. Enrichment analysis of genes with high mutation status propagation scores. (a) shows that genes with high mutation status propagation
scores are highly enriched in different types of cancers in COSMIC, (b) shows that 47 genes short-listed from the high mutation propagation scores
are also found in the COSMIC census gene lists, (c) shows the biological process of the genes with high mutation status propagation scores, and (d)
shows the molecular function enrichment of genes high propagation scores.
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Fig. 4. Enrichment analysis of genes with high differential expression status propagation scores; (a) shows that genes with high differential ex-
pression status propagation scores are highly enriched in various forms of cancers in COSMIC, (b) shows that 20 genes short-listed from the high
differential expression scores are also found in the COSMIC census gene lists, (c) shows that genes are only significantly enriched in one biological
process, and (d) shows that genes with high differential scores are only enriched in two molecular functions.
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and impacts cancer cell proliferation and metastasis [21]. In addition, related to calcium ion binding functionality is the ATP
(adenosine triphosphate) binding function which acts as a source of energy needed by the ATP-binding cassette transporters to
translocate substrates across membranes. The increased expression of ATP-binding cassette members has been shown to play a role in
multi-drug resistance in diseases such as cancer [22]. These results, therefore, demonstrate that by propagating mutation status across
the network we can prioritise high scoring genes and their associated pathways and processes that are most likely to be affected by
mutated counterparts.

3.3. Enrichment analysis of differential expression status propagation scores

We also performed enrichment analysis for genes with high mean differential expression status propagation scores as shown in
Fig. 4, and Tables A1, A4 and A5. The results show that similar to the mutation status propagation enrichment previously discussed,
genes with high differential expression status propagation scores are highly enriched in various types of cancer from the COSMIC
database. A comparison against COSMIC's cancer gene census shows that 20 of these genes are also found on the census list and the
biological process and molecular function enrichments are not as significant as above. Nonetheless, of the significantly enriched
molecular functions, dysregulation in Ubiquitin-specific protease activity has been shown to be associated with cancer and members
have been studied as potential drug targets in the treatment of cancer [23].

3.4. Linking mutation status and differential expression status scores

From the two lists of genes with high propagation scores, we filter for genes that appear in both lists obtaining a set of 8 genes as
shown in Fig. 5, two of which are also enriched in COSMIC cancer gene census. These genes are considered as being close to both
mutated and differentially expressed genes in the network. The following is the list of the identified genes; RALY, ASXL1, DIDO1,
AP11A, ZC3H13, UGGT2, CCAR2 and SMAD4. ASXL1 and SMAD4 are known to be driver genes in cancer and are part of the COSMIC
cancer gene census dataset. For instance, ASXL1 has been implicated in myelodysplastic syndrome (MDS) and chronic myelomo-
nocytic leukaemia (CML) while SMAD4 has been implicated in the following cancer types; colorectal, pancreatic, and small intestine.
On the other hand, a literature search of the remaining six genes shows that they have also been implicated in some of form of cancer
with varying roles ranging from resistance, metastasis and cell proliferation. For example, RALY is a gene that codes for the protein
RNA-binding protein and in [24] has been implicated to play a role in the development of drug resistance in CRC, DIDO1 is a gene
which codes for the protein death inducer-obliterator and is involved in apoptosis or cell death and has been found to affect cell
viability and anchorage in CRC cells and CCAR2 has been implicated in other forms of cancer [25].

3.5. Conclusions and future directions

The rate at which omics data is generated has over the years been rising substantially and is expected to rise further due to the
continued decline in the cost and the advancements in high-throughput technologies such as next-generation sequencing technol-
ogies. As such traditional statistical methods can no longer be relied upon as a way of analysing such gigantic amounts of data.
Network analysis, the evaluation of how nodes relate to one another coupled with new machine learning methods, has over the years
become an integral tool for analysing high throughput data such as omics data.

In this paper, we demonstrated how heterogeneous omics datasets can be integrated by use of network-based methods and how
features can be prioritised using a semi-supervised technique coupled with further downstream analysis. We found that the method
successfully identified the essential genes in CRC. Further, we also identified new genes that may play a role CRC in the development
and progression of cancer.

However, the genes that were predicted in this paper need further experimental validation to understand their specific roles in

Fig. 5. The Venn diagram shows the genes found to be closer to genes that are differentially expressed and have a mutation. The Venn diagram also
shows the genes that are found on the COSMIC's cancer gene census.
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CRC. In addition, this study was limited by the lack of vast amounts of paired wild-type and mutant data, this, in turn, made it
difficult to further explore our findings and incorporate soft computing techniques. Future works include fine-tuning the current
model and validating the predicted genes using wet laboratory experiments. We also plan on incorporating new machine learning
techniques such as deep learning using neural networks.

Acknowledgements

SM is supported by the Australian NHMRC fellowship (1016599) and Ramaciotti Establishment grant. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

This research was supported by the use of the NeCTAR Research Cloud, a collaborative Australian research platform supported by
the National Collaborative Research Infrastructure Strategy.

Appendices

Table A1
Genes found in COSMIC cancer gene census from propagation scores.

Genes from mutation propagation scores Genes from differential expression propagation scores

AKAP9; ARID1A; ASXL1; ATM; ATP2B3; ATRX; BCL9L; BCORL1; BRAF; CASC5;
CHD4; CIITA; FAT1; FAT4; FBXW7; GNAS; HLA-A; MT2A; KMT2D; KRAS;
LIFR; LRP1B; MED12; MN1; MTOR; MYH11; NCOR2; NF1; NRAS; NRG1;
PBRM1; PDE4DIP; PIK3CA; POLE; PREX2; PTPRT; RBM15; RNF213; RNF43;
ROS1; RUNX1T1; SALL4; SMAD4; SPECC1; TCF7L2; TPR; ZFHX3

ASXL1; CUX1; ERCC5; MAP2K4; MYC; NONO; PHF6; PLCG1; RAD21;
RB1; SMAD2; SMAD4; SRC; SS18; SS18L1; STAG2; TFE3; TOP1; UBR5;
ZMYM

Table A2
Biological process enrichment of genes with high mutation propagation scores.

Biological process Enriched genes

Homophilic cell adhesion FAT3; ROBO2; FAT4; SDK1; ROBO1; DCHS2; PCDHA12;
DSCAM; PCDHA7; PTPRT; PCDH10; FAT1; PCDHA6; TENM3; CELSR1; DCHS1; PCDH9; PCDH11X; CELSR2; CDH18; PCDHB3;
PCDH20; PCDHB8; PCDHA3; SDK2; CDH23; PCDHA11; PCDH17; PCDHA2; PCDHA9; PCD-HGB2; PCDHA5; DSCAML1;
PCDHGA11; PCDHA4; PCDHA10;

Homophilic cell adhesion FAT3; ROBO2; FAT4; SDK1; ROBO1; DCHS2; PCDHA12;
DSCAM; PCDHA7; PTPRT; PCDH10; FAT1; PCDHA6; TENM3; CELSR1; DCHS1; PCDH9; PCDH11X; CELSR2; CDH18; PCDHB3;
PCDH20; PCDHB8; PCDHA3; SDK2; CDH23; PCDHA11; PCDH17; PCDHA2; PCDHA9; PCD-HGB2; PCDHA5; DSCAML1;
PCDHGA11; PCDHA4; PCDHA10;

Table A3
Molecular function enrichment of genes with high mutation propagation scores.

Molecular function Enriched genes

Calcium ion binding PROC; TTN; FAT3; PCLO; DST; CACNA1B; NRXN1; FAT4; RYR2; FLG; DCHS2; PCDHA12; MEGF8; CACNA1E; FBN2; TENM2; CDHA7;
LRP1B; BRAF; TCHH; ADGRL3; RYR1; PCDH10; GPR98; FAT1; PCDHA6; SLIT3; HMCN1; RYR3; CELSR1; SPTA1; CUBN; FBN3; DCHS1;
PCDH9; PCDH11X; CELSR2; CDH18; FBN1; VCAN; PCDHB3; TBC1D9; DNAH7; HRNR; MEGF6; TPO; PCDH20; SLC25A12; PCDHB8;
SLC25A23; CDHA3; CDH23; PCDHA11; PKDREJ; PCDH17; PCDHA2; PCDHA9; LTBP3; PCDHGB2; LRP2; PCDHA5; STAB1; PCDHGA11;
EFCAB6; ITPR1; ASTN2; LTBP4; PCDHA4; TNNC1; FSTL5; PLCH2; PCDHA10; MATN4;

ATP binding TTN; PIK3CA; ABCA13; CACNA1B; OBSCN; DNAH10; DNAH14; DNAH2; KIF26B; ABCA7; CHD4; BRAF; ATP10A; RYR1; HELZ2; ATRX;
DNAH5; DNAH9; MYH11; NLRP7; MDN1; DNAH8; EP400; LATS2; NAV3; TTBK1; MYH13; MYO18B; DNAH1; ACACB; ATM; DNAH11;
ATP2B4; DNA2; SPEG; MYO3A; EPHB1; NWD1; SRCAP; DNAH7; ATP8B2; PHA3; ADCY8; WNK1; NLRP4; KIF1A; CIITA; CHD6; KIF4B;
ATP13A3; ATP2B3; ROS1; NLRX1; SETX; ATP7A;
SCN8A; LRRK2; DNAH6; ATP8B1; ABCA4; SMARCA2; DNAH3; ABCA12; MYO15A; NLRP5; MTOR; ATP11A; SMC1B; TTLL11; EPHA10;
NRK; MYH3;
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