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Abstract

Cayley’s Theorem shows that groups correspond precisely to the isomorphism class
of algebraic structures arising as systems of permutations on some set, under the
operations of composition and inverse. This elementary fact underpins much of the
application of group theory in modern mathematics: as algebras of symmetries. How-
ever, there are very many processes that cannot in general be faithfully reversed. We
study situations such as this, in which the role of permutations is replaced by more
general binary relations.

We survey the representability of reducts of Tarski’s relation algebras as algebras of
binary relations. In particular, we develop necessary conditions for the representability
of semigroups as disjoint transformations. We also prove undecidable the problem
of determining whether or not algebras in some reducts of Tarski’s signature are
representable.

Finally, we explore qualitative representability of nonassociative algebras. These are
a broader class of algebras which includes Tarski’s relation algebras. We determine
the constraint satisfaction properties of small nonassociative algebras, and determine
the representability of all nonassociative algebras on up to four atoms.
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Notation and terminology

The most general algebraic notion considered here is that of an algebra of relations.
It is intended that this phrase be rather ambiguous. The problem of deciding whether
or not an algebra of relations is isomorphic to an algebra of binary relations is often
undecidable, depending on the signature under consideration. Indeed, this is the
motivation of much of this thesis. As such, we refer to a structure as an algebra
of relations whenever we don’t want to commit to anything more specific, even a
particular signature.

One class of algebras of relations is specially defined. Relation algebras are defined
by Tarski [86] with a specific signature and a short list of axioms. We will reserve
the phrase relation algebra to refer to algebras of relations in the signature of and
satisfying the axioms of Tarski.

We denote algebras by calligraphic letters with the underlying set denoted by the
non-calligraphic letter. For example, an algebra A is defined over a set or domain A.
We will usually adopt lower case latin letters a, b, c, . . . to represent elements. Where
possible, we will denote idempotents by e or f .

When we discuss algebras of binary relations, which can be viewed as digraphs, we
will reuse this notation by referring to the nodes of the graph as x, y, z, subscripting
as necessary. We will reserve R, S, T for binary relations.

We denote the underlying associative binary operation of an algebra of relations with ;.
In the world of binary relations, this becomes an associative composition operation ◦.
In either case, we will often omit the notation, denoting ab := a · b for a semigroup
and RS := R ◦ S for binary relations.

If R is a binary relation that relates element x to element y, we denote this (x, y) ∈ R
or xRy. This latter notation is particularly convenient when composing relations, so
that ifR and S are relations such that xRy and yRz, then xRySz and so x(RS)z.

Define N to exclude 0. Finally, we denote the proper subset relation by ⊂, as distinct
from ⊆.
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Chapter 1

Relation algebras

1.1 Permutations and binary relations

Group theory did not begin with the axioms of a group. Group theory began with
the study of permutations.

A permutation on a set X is a special case of a binary relation, which we view as a
subset of the power set ℘(X ×X). For example, the group S3 can be thought of as
a group of binary relations on the set {1, 2, 3}. The permutation (123), for example,
can be viewed as {(1, 2), (2, 3), (3, 1)}.

From these binary relations, we can construct an edge-labelled digraph. We use the
set X as vertices, and interpret an element (x, y) of X × X belonging to a binary
relation r as an r-labelled edge from vertex x to vertex y. Figure 1.1 demonstrates
this by interpreting the group S3 as a digraph on {1, 2, 3}.

Groups are algebras, and so are equipped with operations. In particular, we have a
binary function of composition, a unary function of inverse, and a nullary function
(or constant) which is the identity. These operations can be interpreted in Figure 1.1.
We see that (123) labels an arrow from vertex 1 to vertex 2, and its converse (132)

labels an arrow going in the opposite direction. The identity permutation labels a
loop on every vertex. We also see composition of group elements being represented in
a very intuitive way as composition of binary relations: (12) maps vertex 1 to vertex
2, and (23) maps vertex 2 to vertex 3, so their composition (13) maps vertex 1 to
vertex 3.

We can consider a group of permutations, both its elements and its operations, as
an edge-labelled digraph. This is because a permutation is a special case of a binary
relation. We’ll be relying heavily on this interpretation throughout this entire thesis,
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so much so that we treat a binary relation and all edges having a given label in a
digraph as one and the same.

1 3

2

(12)
(123)

(12)
(132)

(23)
(123)

(23)
(132)

(13)
(123)

(13)
(132)

()

() ()

Figure 1.1: S3 represented as permutations on the set {1, 2, 3}

Looking beyond groups as being simply systems of permutations, Walter von Dyck [23]
was one of the first to treat groups with an axiomatic approach. He begins his paper
with the following1:

“To define a group of discrete operations, which are applied to a certain
object, while abstracting from any special form of representation of the
single objects and supposing the operations to be given only by those
properties that are essential for the formation of the group.”

(Walter Dyck, 1882)

We see two ‘worlds’ here: the world of abstract groups, and the concrete world of
groups of permutations. Von Dyck was interested in separating the worlds so that
an abstract group could be considered without its “special form of representation” —
its associated group of permutations or, as we consider it here, edge-labelled digraph
of binary relations. The axioms that perfectly capture the world of abstract groups
are, of course, the group axioms: associativity of composition, the presence of an
identity element, and the existence of inverses. These group axioms capture the
correspondence between the abstract world and the concrete world perfectly.

1English translation available in [90].
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Indeed, Cayley’s Theorem tells us that the distinction between the world of abstract
groups and the concrete world of groups of permutations is largely one of perspective.
Cayley’s Theorem2 tells us that every abstract group is isomorphic to a group of
permutations. We’re viewing permutations as binary relations, so this gives us a
specific interpretation of Cayley’s Theorem as shown in Theorem 1.1.1. A proof may
be found in any elementary group theory or abstract algebra textbook, such as [26,
Theorem 6.1].

Theorem 1.1.1. Every group is isomorphic to a group of permutations (binary rela-
tions).

The situation is very neat for permutations. But why consider only permutations?
What happens if we consider binary relations in general? Can we axiomatise some
general abstract world of algebras in such a way that the correspondence between the
abstract world and the concrete world is maintained? Can we construct a class of
abstract algebras with a suitable signature of operations and with a corresponding
form of Cayley’s Theorem? Is there such a thing as a class of ‘abstract algebras of
relations’ which are always isomorphic to a concrete algebra of binary relations?

We’ll be constructing both the abstract and concrete worlds of algebras of relations
side-by-side. We’ll then be able to ask if an analogue to Cayley’s Theorem exists.

The group signature—composition, inverse (or converse), and identity—capture an
intuitive notion of what one would want to do with permutations. The same operations
can be used with binary relations, but we can think of a few more ‘natural’ operations.
Consider simple spatial relations like ‘to my left’. I claim that the operations in
Table 1.2 capture an intuitive notion of what one would want to do with binary
relations, using spatial relations as an example. We’ll also be introducing the symbols
used for these operations.

Note that some of these operations can be derived from the others, as per Table 1.14.
These operations exist in the abstract world, but they have corresponding notions in
the concrete world of algebras of binary relations. This is useful because we will use
our intuitions of the concrete world to understand the axioms of the abstract world.
The intended interpretations of these operations are listed in Table 1.3.

We have an idea now of what our operations are for algebras of binary relations.
There’s nothing particularly special about these operations — one could use any sig-
nature — but they are considered ‘natural’ and have historical precedent. We know
what these operations are in the abstract world and how they should look in the

2Cayley did indeed show that the underlying set of a group is in bijection with that of a set of
permutations [16], so this attribution is valid. He failed to show, however, that the bijection is an
isomorphism [67]. This fact would be offered 16 years later by Jordan [47].
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operation symbol intuition
composition ; to the left of my left

join + to my left or right
meet · to my left and ahead of me
order 6 “to my left” is less than “to my left or right”

converse ˘ the converse of “to my left” is “to my right”
complement − not to my left
identity 1′ is equal to, is where I am
zero 0 constant that relates nothing to nothing
top 1 constant that is the largest relation in the domain

Table 1.2: The operations of an algebra of relations and their intuitive interpretation

abstract world concrete world of binary relations
composition composition of binary relations,

R ◦ S = {(x, y) : (∃z)(x, z) ∈ R and (z, y) ∈ S}
join union of binary relations, R ∪ S
meet intersection of binary relations, R ∩ S
order set inclusion, R ⊆ S

converse relational converse, R−1 = {(y, x) : (x, y) ∈ R}
complement set complement U\R, where U is as below3

identity identity relation, {(x, x) : x ∈ X}
zero empty set, idX = ∅
top the biggest binary relation U in A

Table 1.3: Interpreting the relation operations in an algebra of binary relations A over a set X

concrete world. Now let us consider what an actual algebra of binary relations would
look like, with all the details. These exist in the concrete world, like groups of per-
mutations.

Definition 1.1.2 ([36]). Let X be a set. A proper relation algebra with base set
X is an algebra A with nonempty domain A ⊆ ℘(X × X) and signature {◦,∪,∩,⊆
,−1 , \, idX ,U} such that the following hold:

• A together with the operations in {∪,∩, \,∅,U} form a field of sets. That is, if
R, S ∈ A then R ∪ S,R ∩ S,U\S ∈ A. It follows that ∅,U ∈ A. Also, U is the
biggest binary relation in A, and so U = ∪A,

• idX := {(x, x) : x ∈ X} ∈ A, the identity relation over X,

• A is closed under taking converses: R ∈ A implies R−1 ∈ A, where R−1 =

{(y, x) : (x, y) ∈ R},

3Although complement is a unary operation, we can use it as a binary operation by letting
R\S = R ∩ (U\S). The same is true for the abstract operation.
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• A is closed under composition of binary relations: R, S ∈ A implies R ◦ S ∈ A
where

R ◦ S = {(x, y) : (∃z)(x, z) ∈ R and (z, y) ∈ S}.

In 1941 Tarski [86] offered a class of abstract algebras in the signature above along with
a finite set of axioms4. Tarski referred to an algebra in this signature and satisfying
these axioms as a relation algebra. This language is not ideal for two reasons:

1. Not every relation algebra is isomorphic to a proper relation algebra, as we will
soon see.

2. Not every algebra of relations is a relation algebra. There are other algebras of
relations with different signatures or axioms.

We will always refer to an algebra in the signature we have described and satisfy-
ing Tarski’s axioms as a relation algebra, and reserve the more general term algebra
of relations when we wish to be less specific with respect to either signature or ax-
ioms.

Definition 1.1.3. An algebra A over domain A with signature {;,+, ·,6, ,̆−, 1′, 0, 1}
is a relation algebra if for all a, b, c ∈ A the following hold:

1. a+ b = b+ a,
2. a+ (b+ c) = (a+ b) + c,
3. −(−a+−b) +−(−a+ b) = a,
4. a ; (b ; c) = (a ; b) ; c,
5. (a+ b) ; c = a ; c+ b ; c,
6. a ; 1′ = a,
7. (ă )̆ = a,
8. (a+ b)̆ = ă + b̆ ,
9. (a ; b)̆ = b̆ ; ă ,
10. (ă ;−(a ; b)) +−b = −b,
11. 1 = a+−a,
12. 0 = −(a+−a).

Tarski intended that proper relation algebras would be to relation algebras what
permutation groups are to groups. That is, he intended that relation algebras would
form the abstract counterpart to proper relation algebras.

Most of these axioms are fairly straightforward, and are easily seen to be satisfied
in a proper relation algebra. The first three are those of a Boolean algebra (Defini-

4Tarski developed his algebras in the 1941 paper, but the equational axioms were not developed
until the mid ’50s [87, 88]. We will be using the axioms as presented in [58, pp. 233, 289].
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tion 1.2.1), and most of the others cover things like associativity or commutativity.
Axiom 9 gives an interpretation of a particularly satisfying intuition we have regard-
ing converse—we put our socks on before we put our shoes on, but we take our shoes
off before we take our socks off. A proper treatment of the axioms can be found in
Chapter 6 of [58]. Of all of these axioms, the only one which is not intuitively clear
is the tenth.

Axiom 10, which we call the Tarski axiom, deals with the interaction between com-
position and converse in triangles. Consider an element a ; b which is disjoint from
c; that is, (a ; b) · c = 0. Although we’re working in the abstract world, Tarski’s
axioms are inspired by the concrete world of binary relations, so we also look there
for inspiration. This condition excludes certain ‘triangles’ from appearing in a proper
relation algebra. Note that each of the six triangles below is just a rotation of each
of the others. These are called De Morgan’s equivalences, and can be found in [21],
although we present them as given in [58]. Each expression corresponds to a triangle
which is forbidden.

a b

c

(a ; b) · c = 0

a c

b

(ă ; c) · b = 0

c b

a

(c ; b̆ ) · a = 0

c a

b

(c̆ ; a) · b̆ = 0

b a

c

(b̆ ; ă ) · c̆ = 0

b c

a

(b ; c̆ ) · ă = 0

Figure 1.4: De Morgan’s equivalences.

Using all axioms in Definition 1.1.3 except for 4 and 6, one can derive De Morgan’s
equivalences [58, pp. 309], which is a statement of the equivalence of the six trian-
gles above. Thus, the Tarski axiom is necessary to reproduce the intuitive notion
that the triangles above are just rotations of each other, and so present the same
information.
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Lemma 1.1.4 (De Morgan’s equivalences). Let a, b, c be any three elements in a
relation algebra. Then

a ; b 6 c ⇐⇒ a˘ ;−c 6 −b ⇐⇒ −c ; b̆ 6 −a.

The equivalence of the triangles in Figure 1.4 is also referred to by Hirsch and Hod-
kinson in [36] as the Peircean law . They go on to say that from this law it follows
that “any ‘triangle’ of three elements of a relation algebra can be equivalently looked
at in any of the six ways resulting from applying symmetries to it”. This will be
particularly useful to us when describing which compositions are allowed in a given
relation algebra.

Call a triple (a, b, c) of relation algebra atoms consistent if c 6 a ; b. In a concrete
algebra of binary relations, this would be equivalent to seeing one of the triangles in
Figure 1.4; the triangle is not forbidden but instead must be witnessed. If a triple is
not consistent, call it inconsistent or forbidden. By considering symmetries, we can
generate the six equivalent triples

{(a, b, c), (ă , c, b), (b, c̆ , ă ), (b̆ , ă , c̆ ), (c̆ , a, b̆ ), (c, b̆ , a)}.

These triples are Peircean transforms of one another. If one is consistent, then so are
all the others. If one is forbidden, then so are all the others. We call all six triples
taken together a cycle [58].

We can save time by specifying only one of the six triples of a cycle as a representative.
It may even be expedient, as in Section 4.4, to write abc instead of (a, b, c). Note that
a cycle contains six triples at most; for example, some of the atoms could be self-
converse, also known as symmetric, giving fewer than six triples. Since 1′ acts as an
identity element, this forces certain cycles to exist in any relation algebra, for example
(1′, a, a) for any element a. Since these cycles always exist we tend to ignore them in
favour of cycles not guaranteed to exist, which we call diversity cycles.

We have defined the abstract and concrete worlds fairly well, so now we can explore
the link between the two. Every proper relation algebra satisfies the axioms in Defi-
nition 1.1.3. But what about the other direction? Can we translate from the abstract
to the concrete as easily as we can from the concrete to the abstract?

This question is at the core of the concept of a representation of a relation algebra. A
given relation algebra is representable if it is isomorphic to a proper relation algebra,
which is called a representation of that relation algebra. This is much like asking if
a group is isomorphic to a group of permutations. In asking for a representation, we
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are asking if every operation in the signature can be interpreted as per Table 1.3 over
some set.

Again, we exploit in our choice of language the fact that every representation can be
viewed as an edge-labelled digraph. We will occasionally use the word respect here
when referring to individual operations. For example, a representation respects iden-
tity when every vertex has an 1′-labelled loop, and these are the only edges labelled 1′.
The formal notion of a representable relation algebra is given in Definition 1.1.5.

Definition 1.1.5. A relation algebra A over a domain A is representable if there
exists a proper relation algebra B over a set X such that A is isomorphic to B. The
isomorphism h : A→ ℘(X ×X) is called a representation.

Note that a representation is always a faithful function. The concept of a representa-
tion used here should not be confused with the representations of group theory.

We can break the representation of composition down into two major components:
composition moves and witness moves5. Whenever we see a situation as in Figure 1.5
in a representation we must see it completed to Figure 1.6. This makes sense intu-
itively, since if we can relate x to y via a, and y to z via b, then we should be able to
relate x to z via a ; b directly.

x

y

z

a b

Figure 1.5: Composition move

x

y

z

a b

a ; b

Figure 1.6: Composition response

If c 6 a ; b, then whenever we can relate x to z by c we should also be able to relate
them by a ;b through some third point y. This is a witness move, shown in Figures 1.7
and 1.8.

We can also be a bit stricter about the definition of the top element, 1. We are
demanding that this is represented as the largest binary relation U ⊆ X×X. Consider
a relation algebra on two elements, {0, 1′}, and in which 1′ = 1. We can represent
this on a single point x by a representation h such that h(0) = ∅ and h(0) = {(x, x)}.
We could also add a second point y, and now make h(1′) = {(x, x), (y, y)}. In this
representation on 2 points, there is no label from x to y, and the top element, 1′ = 1,

5The language of composition and witness moves is borrowed from [33], and will be explored in
greater detail in Chapter 3.
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x z

c 6 a ; b

c

Figure 1.7: Witness move

x

y

z

a b

c

Figure 1.8: Witness response

is still the largest binary relation. While there is nothing wrong with a representation
like this, we may wish to restrict ourselves to representations in which the top element
relates any point to any point. That is, we may wish to enforce the requirement that
the top element is a universal relation.

We call representations that meet this stricter requirement square representations .
We also refer to a proper relation algebra in which U is the universal relation as
square. In enforcing this requirement, we may suddenly find it impossible to represent
certain relation algebras that were previously representable. Recall that an algebra is
simple if it has only two congruence relations. The following lemma shows that if we
are considering only square representations then we can restrict our view to simple
relation algebras.

Lemma 1.1.6. Every square proper relation algebra is simple.

Proof. Let A be a square proper relation algebra with base set A. Let ∼ be a con-
gruence relation6 of A that is not trivial, that is, ∼ does not put each element into its
own unique congruence class. We will show that ∼ must be the universal7 congruence
relation, that is, a ∼ b for all a, b ∈ A.

Relation algebras are also Boolean algebras (Definition 1.2.1). We have that any non-
trivial congruence on a Boolean algebra has a nontrivial ideal as one of its blocks [13,
Chapter IV, Theorem 3.5]. In particular, a nontrivial congruence relation on a square
proper relation algebra must identify some nonempty R with the empty relation.
Now we have that U relates everything to everything, so that U ;R ;U = U. Similarly,
U ;∅ ; U = ∅. So U ∼ ∅ and so everything is congruent to everything.

We now consider some examples of representable relation algebras, before turning to
the possibility of nonrepresentable relation algebras.

6Note here that congruence relations are relations on the domain of the algebra A itself.
7There is potential confusion here because the elements of the algebra are themselves relations,

and one of these is the ‘universal relation’ U , but these are not of concern to us right now.
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Example 1.1.7 (The point algebra). The point algebra is a simple relation algebra
that describes a simple dense linear order. It has only one cycle not involving identity,
(<,<,<). There are 8 elements, but we only need 3. This is because we can use joins
to develop the full algebra. These 3 basic elements, called atoms, are identity 1′, and
orders < and >. As one would expect, < ˘ = >. The composition table for atoms is
shown in Figure 1.9.

; 1′ < >

1′ 1′ < >

< < < 1

> > 1 >

Figure 1.9: Atom composition table of the point algebra

If we wanted to determine, say, (< + >) ; <, we would use the axioms in Defini-
tion 1.1.3 as follows:

(< + >); < = (< ; <) + (> ; <)

= < +1

= 1

By using atoms to describe a relation algebra, we can see the order of the elements
a little more clearly. First we note that atoms are jointly exhaustive and pairwise
disjoint . This means that the meet of any two distinct atoms is empty, and that
together the atoms give the top element. In this case, we have that

1′· < = 0 and < · > = 0 and 1′· > = 0,

and that 1′+ < + >= 1. The order of the elements of the algebra then describe a
lattice in which the atoms are at the bottom, above only 0. By considering every
element as a join of atoms, we can then see the order more clearly by set inclusion.

Not every relation algebra can be expressed as atoms, but every finite relation algebra
can. This is because the lattice operations of a finite relation algebra (· and +) form
a finite bounded lattice, so we can take the minimal nonzero elements as the atoms.
One benefit of discussing relation algebras in terms of atoms is that we can think of
their representations as being edge-labelled digraphs in which every label is an atom.
This is because the meet of any two distinct atoms is 0, and so at most one atom
can label any edge. Suppose a and b are atoms and a+ b labels an edge (x, y). Then
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either a relates x to y, in which case b does not, or −a relates x to y and so b does as
well. That is, every edge is labelled by exactly one atom.

The point algebra describes a dense linear order. If we have a representation h such
that (x, y) ∈ h(<), then we can witness the composition < below < ; < on this edge.
So we can expect to see a third point z in the representation such that (x, z), (z, y) ∈
h(<). We can ‘perform’ this witness move an infinite number of times, and so any
representation must be infinite; that is, on an infinite set. In particular, there is only
one dense linear order on a countable set (up to isomorphism), the rationals (Q, <).
This is a representation of the point algebra. Later on we will see that for a countable
algebra it suffices to consider only finite or countably infinite representations, since
the existence of an uncountable representation implies the existence of a countable
one.

Example 1.1.8 (Allen’s Interval Algebra). One of the best examples of a relation
algebra is Allen’s Interval Algebra [1]. Its atoms are shown in Table 1.10. Note that
there are 13 atoms, rather than 14, since the converse of identity is identity8.

Example Relation Converse
a

b a before b b after a
a

b a meets b b is met by a
a

b a overlaps with b b is overlapped by a
a

b a starts b b is started by a
a

b a during b b contains a
a

b a finishes b b is finished by a
a

b a equals b b equals a

Table 1.10: The atoms of Allen’s Interval Algebra

This relation algebra is intended to capture the intuition behind how intervals of time
interact with one another. We can see the operations of a relation algebra being used

8To check this, suppose (1′)̆ is some nonidentity element, a.

ă = (1′ ; a)̆ (axiom 6)
= ă ; (1′)̆ (axiom 9)
= ă ; a (assumption)
= 1′ ; a (axiom 7)
= a. (axiom 6)

And so we conclude that a = ă = 1′.
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here in a very intuitive way. The converses are clear, and the composition of the
atoms are easy to guess from the example intervals given in Table 1.10, although a
full composition table is offered in Allen’s original paper.

The example offered in this paper is quite elegant, and warrants repeating here. Con-
sider the story:

John was not in the room when I touched the switch to turn on the light.

Let S be the time of touching the switch, L the time the light was on, and R the
time that John was in the room. Presumably, the light is turned on either exactly as
the switch is touched, or slightly after. Hence, S overlaps or meets L. John may well
have been in the room before or after any of these events occured. He may also have
left the room as the switch was being touched, or entered the room as the switch was
no longer being touched. Hence, S is before, meets, is met by, or is after R.

We are looking at an algebra which is to be interpreted as intervals of time, so intervals
of the rationals Q or reals R are a natural choice. Either will suffice, but we’ll stick
wiith Q for now because it’s countable. These intervals, along with the set-theoretic
signature in Table 1.3, are a representation of Allen’s Interval Algebra.

We began this chapter by discussing the world of abstract groups and the concrete
world of permutation groups. Cayley’s Theorem shows that every group is isomorphic
to a group of permutations, which connects these two worlds. We then generalised
permutations to binary relations and, for a certain signature, constructed a concrete
world of proper relation algebras. We also have the axioms of Tarski, which char-
acterise the abstract world of relation algebras. So the natural question to ask is
whether or not there is an analogue to Cayley’s Theorem for relation algebras? That
is, is every relation algebra isomorphic to a proper relation algebra?

Tarski [86, p. 88] along with Jónsson [45] asked this very question. Specifically, they
asked if every model of the axioms in Definition 1.1.3 was isomorphic to an algebra of
binary relations. In 1950, Lyndon [54] offered an infinite family of nonrepresentable re-
lation algebras that satisfied Tarski’s axioms. Another example of a nonrepresentable
relation algebra was later offered by McKenzie, and we reproduce it here.

Example 1.1.9 (The McKenzie Algebra). This algebra was constructed by McKen-
zie [62, pp. 286] as an example of a nonrepresentable relation algebra. On only four
atoms it is a minimal (but not unique) algebra with this property. Its atoms and their
compositions are shown in Figure 1.11. The elements < and > are converses of each
other, and # is self-converse. Composition is associative, although we omit the proof
here.
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; 1′ < > #

1′ 1′ < > #

< < < 1 < +#

> > 1 > > +#

# # < +# > +# < + > +1′

Figure 1.11: Atom composition table of the McKenzie Algebra
.

The proof of its nonrepresentability is taken from [36, pp. 140–141]. Denote the
McKenzie Algebra by A and suppose h is a representation of the McKenzie Algebra
onto some set X. That is, suppose for contradiction that h is an injective function
h : A → ℘(X × X). Since # is nonzero it cannot be represented as the empty
relation, and so there exists x, y ∈ X such that (x, y) ∈ h(#). As (>,<,#) and
(<,>,#) are consistent cycles, we use witness moves and composition moves to build
a partial representation as shown in Figure 1.12. By a partial representation, we mean
a representation which respects everything except witness moves, and may not (yet)
feature every element of A.

z

x

w

y
#

< <

< <
<

Figure 1.12: A partial representation of the McKenzie Algebra

We also have that (<,#,#) is a consistent cycle, so we use a witness move here to
deduce that there exists some v ∈ X such that (w, v), (z, v) ∈ h(#). Since #˘ = # it
follows that (v, w), (v, z) ∈ h(#). This situation is drawn in Figure 1.13.
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z

x

w

y v
#

<
<

<
<

<

#

#

Figure 1.13: A partial representation of the McKenzie Algebra with a fifth point

Now we have four unlabelled edges, (x, v), (y, v), and their inverses. Suppose that
(x, v) ∈ h(a) and (y, v) ∈ h(b) for some atoms a and b. Considering the triangles
(x,w, v) and (x, z, v) we have that (<,#, a) and (>,#, a) must be consistent. The
only choice here is that a = #. Similarly reasoning about the point y shows that
b = #.

Now, looking at the triangle (x, y, v), we have that (a, b̆ ,#) must also be consistent.
But (#,#,#) is a forbidden cycle. So no representation can exist.

If Tarski’s axioms do not capture representable relation algebras, it is natural to
consider whether or not we can add additional axioms that will fix this, or even
consider a different set of axioms that might be more appropriate. However, Monk [65]
later showed that no finite set of axioms can abstractly capture the concrete world.
Finally, in 2001 Hirsch and Hodkinson [35] showed that representability is undecidable
for finite relation algebras. So we have nonfinite axiomatisability of representability
and, for finite relation algebras, undecidability of representability.

The representability of groups is a neat and tidy matter; the abstract world and the
concrete world are identified with one another. But for binary relations, the abstract
world of relation algebras and the concrete world of proper relation algebras are split.
There can be no elementary Cayley’s Theorem for relation algebras.

What are we to do when the situation is so negative? How can we explore this gap
between the abstract and the concrete worlds?

This thesis considers three approaches. In Chapter 2 we consider signatures smaller
than the relation algebra signature presented here. These are called reducts . We
recover undecidability results for a range of reducts. In Chapter 3 we explore the
representability of a particular reduct but with additional conditions on the represen-
tation. Specifically, we investigate semigroups with meet in which the meet semilattice
is flat ; that is, a·b = a if a = b and 0 otherwise. We demand that the representations of
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these semigroups be disjoint . We prove a necessary condition for this representability,
and conjecture that it is also sufficient.

In Chapter 4, the final and most substantial chapter, we explore notions of repre-
sentability weaker than that of a proper relation algebra, in which witness moves are
not fully respected. The two types of representations we consider are weak and qual-
itative representations. The appropriate abstract world for these representations is
that of nonassociative algebras, which satisfy all axioms of a relation algebra, except
maybe associativity of composition. We survey representability of all nonassociative
algebras on four or fewer atoms. We survey computational properties of all nonasso-
ciative algebras on three or fewer atoms.

1.2 History and known results

In 1854 George Boole [8] presented “the world’s first mathematical treatment of
logic” [18], specifically an algebra of logic. Boole intended his formal treatment of
logic to cover and extend that of Aristotle. The modern approach to Boole’s work
covers the interaction of true (1) and false (0) values as we would today use in pro-
gramming. There are three operations: conjunction (·), disjunction (+), and negation
(−). Informally, we could call these and, or, and not. The modern definition of a
Boolean algebra is offered below.

Definition 1.2.1 ([42, 43, 44]). An algebra A on set A with signature {+, ·,−}
〈2, 2, 1〉 is a Boolean algebra if for all a, b, c ∈ A the following hold:

1. a+ b = b+ a.

2. a+ (b+ c) = (a+ b) + c.

3. −(−a+−b) +−(−a+ b) = a.

We define · by DeMorgan’s laws, with −(a+ b) = −a · −b and −(a · b) = −a+−b.

These axioms are the same as the first three of Definition 1.1.3. That is, every
relation algebra is also a Boolean algebra. If we consider a ‘representation’ of a
Boolean algebra as being like that of a relation algebra, but with concern only for the
operations in {+, ·,−, 0, 1} then every Boolean algebra is representable. In fact, they
can be represented as algebras of unary relations [85], since we do not need to worry
about composition.

A few years later, De Morgan became the first person in the world to consider a
calculus of binary relations [20]. De Morgan also referenced Aristotle, who had denied
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that every relation has a converse. Aristotle’s example was that “rudder of the ship”
lacked the converse “ship of the rudder”. De Morgan challenged this, arguing “Surely
the question, ‘What ship does this rudder belong to?’ must sometimes have been
heard in an Athenian dockyard.” [70].

The birth of algebras of relations as we understand them today is largely due to
C. S. Peirce. Peirce states his motivation clearly, while paying homage to the work of
Boole.

“Boole’s logical algebra has such singular beauty, so far as it goes, that it is
interesting to inquire whether it cannot be extended over the whole realm
of formal logic, instead of being restricted to that simplest and least useful
part of the subject, the logic of absolute terms, which, when he wrote, was
the only formal logic known.” (C. S. Peirce, 1873 [68])

Peirce compared the logical operations of Boole with the other operations in the
relation algebra signature [68]. Denote by 0′ the diversity relation, that is, 0′ =

−1′. In an algebra of binary relations, this would be represented as a relation that
relates every vertex to every other vertex. We also mention, but do not elaborate on,
the relative sum9 †. With modern notation, the following table from [70] expresses
Peirce’s connection between the logical and other operations of the relation algebra
signature.

logical: 0 1 −a a+ b a · b
relative: 0′ 1′ ă a † b a ; b

A treatment of the calculus of relations was also offered by Schröder [83], who gave us
much of the notation we use today for the relation algebra operations [57]. Bertrand
Russell was next to take up the study of the calculus of relations. In particular, he
noted its importance with the following:

“The subject of symbolic logic is formed by three parts: the calculus of
propositions, the calculus of classes, and the calculus of relations.”

(Russell [76])

Löwenheim was also fond of the calculus of relations [53]. Indeed, the first proof of
the downward Löwenheim-Skolem theorem [52] is a work of the calculus of relations.
A consequence of this theorem is that if a countable first-order theory has an infinite
model, then it has a countable model. For our purposes, this means that if a count-
able relation algebra has an infinite representation, then it has a countably infinite

9In an algebra of binary relations over a set X, the relative sum would be defined R † S =
{(x, y) : ∀z ∈ X, either (x, z) ∈ R or (z, y) = S}. This operation is not frequently discussed in
recent literature, relative to the other operations in the relation algebra signature, so we omit a
proper discussion of it here.
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representation. This justifies us in ignoring uncountably infinite representations, since
it suffices to look only at the finite and countable cases.

The study of the calculus of relations was picked up by Tarski in 1941 [86]. In this pa-
per, Tarski listed some axioms for a general calculus and stated without proof that the
calculus was undecidable [70]. The equational form, as presented in Definition 1.1.3,
would later appear in a paper with Tarki’s student, Jónsson, in 1948 [45], thus defining
the variety of relation algebras. In this same paper, Tarski and Jónsson asked if every
relation algebra was isomorphic to a proper relation algebra, leading to the negative
results described previously.

Tarski’s motivations for studying the calculus of relations were not just mathematical
but philosophical [70]. From the calculus of relations he and Givant created a language
for doing set theory [89]. In particular, the language can be used to do set theory
without variables. This might seem like a serious restriction, but the expressive and
deductive powers of this language are equivalent to those of a system of first-order
logic with only three variables [28].

So what does one do after the negative results of representability of relation algebras?
There were several efforts to look into representability of other algebras of relations
with a different signature. Of particular interest to us are reducts of the relation
algebra signature. This is where we omit some of the operations. For example, the
Boolean algebra signature can be considered a reduct of the relation algebra signature.
For a signature τ we may refer to a reduct as a τ -algebra.

In taking a reduct of a relation algebra, we also take some of the relation algebra
axioms as given in Definition 1.1.3. Specifically, we can always assume as necessary any
of Tarski’s axioms that remain expressible in the signature of the reduct. For example,
semigroups contain a binary operation, which we take as composition, and which is
associative. By axiom 4, when we take a reduct of the relation algebra signature
involving composition, the underlying {;}-structure of the reduct is a semigroup.

Cayley’s Theorem, or an analogue thereof, can be used to show that all semigroups are
representable as transformations, which are binary relations10. As we noted earlier, all
Boolean algebras are representable as algebras of unary relations, and unary relations
are easily turned into binary relations. Somewhere between these smaller signatures
and the full relation algebra signature, something changes and representability be-
comes nonfinitely axiomatisable, or even undecidable for finite algebras. Where is
this boundary between representability and nonrepresentability?

10It does not follow from Cayley’s Theorem that all {;, ,̆ 1′}-reducts are representable because
these are not necessarily groups. Specifically, it does not follow from the relation algebra axioms
that a ; ă = 1′.
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Zaretskĭı [91], for example, found in 1959 that the class of representable ordered semi-
groups, that is, with signature {;,6}, is finitely axiomatisable. Yet in 2005 Hirsch
discovered that by simply turning the semigroup into a monoid, that is, by includ-
ing a 1′ in the signature, the situation changes dramatically. In fact, the class of
representable ordered monoids is nonfinitely axiomatisable. The boundary for this
particular case is very sharp.

We survey the representability of all reducts of the relation algebra signature. We
begin by noting that some operations can be defined by others. For example, strictly
speaking 6 is not in the relation algebra signature, but can be derived from · or +.
That is, a 6 b if and only if there exists a c such that a = c ·b, or b = a+c. Table 1.14,
adapted from [34], describes how some operations can be defined by others.

Symbol Defined by

6 {+}, {·}
· {−,+}
+ {−, ·}
1 {0,−}, {+,−}
0 {1,−}, {+,−}

Table 1.14: Signature completion rules

Recall earlier that we represent 1 as U, which we can require to be the biggest binary
relation or, as a stronger requirement, the universal relation. In the absence of order,
the concept of a ‘biggest’ relation may not make much sense. To make matters even
more complicated, if we only require that 1 be represented as the biggest binary
relation, then any representation of an ordered algebra will easily meet this condition.
As such, we take the stronger requirement in this survey that 1 must be represented
as the universal relation.

There is another difficulty that arises when the signature gets smaller. We usually
represent − as set complementation \ relative to 1. In the absence of 1, this definition
falls apart. We can have two options: we can take universal complementation, in
which we complement relative to a universal relation which may or may not be in the
algebra, or we can take relative complementation, in which we complement relative
to a top relation which may or may not be in the algebra. In this latter case, for
a representation h of an algebra A over a set X, we have that (x, y) /∈ h(a) implies
(x, y) ∈ h(−a) but only if there exists some other nonzero element b such that (x, y) ∈
h(b). That is, we maintain the possibility that some vertices in the representation may
not be related at all, and relative complementation is not relevant to those points.
This is discussed further in Chapter 2.
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We survey finite axiomatisability of representability and decidability of representabil-
ity (for finite algebras) for every subsignature of the relation algebra signature. We
also survey the finite representation for finite algebras (FRFA) property. This prop-
erty asserts that every representable finite algebra in that signature is representable
over a finite set. If a signature τ has the FRFA property then representability of
algebras with signature τ is in the class of recursively enumerable problems, denoted
RE. This is because one can enumerate all of the potential finite representations. If a
finite algebra is representable, one will eventually discover the representation. What is
not so obvious is that the FRFA property also implies decidability of representability.
This is a consequence of the Fundamental Theorem of Algebras of Relations, which
we will now briefly cover. This discussion follows that given by Schein [80].

A structure is an object A with domain A, a set of operations (oi)i∈I , and a set of
relations (ρj)j∈J . Let K be an axiomatisable class of structures. We will consider
binary relations on a structure in K. Let M be a set of first-order formulas which
impose properties of binary relations on structures in K, and let G be a set of first-
order formulas defining an arbitrary signature τ of operations and relations in the
language of binary relations on objects from K. Together K, M and G give a class
of concrete algebra of relations—specifically, algebras of binary M -relations over K
satisfying the formulas in G. We also have a corresponding abstract class of all
algebras isomorphic to a member of this concrete class. Denote this abstract class by
R(K,M,G).

As an example, take K to be the class of all nonempty sets and let M be empty. Let
G = (O,P ) where O defines the binary operation of composition ◦ of binary relations,
and P defines the binary relation of inclusion of binary relations ⊆. Then R(K,M,G)

is the isomorphism class of all inclusion-ordered semigroups of binary relations.

There are other choices for K andM . For example, one could let K be the class of all
abelian groups and letM define the condition “is an endomorphism of”. Furthermore,
let G define composition of binary relations as well as the operations of pointwise
addition and subtraction of endomorphisms. Then R(K,M,G) is an isomorphism
class of rings of endomorphisms of abelian groups. Cases such as this are beyond the
scope of this survey, and so we will only consider cases in which K is the class of all
nonempty sets and M is empty. The following theorem and its corollary assume a
knowledge of recursively axiomatisable sets (see, for example, [9]).
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Theorem 1.2.2 (Fundamental Theorem of Algebras of Relations11 [78]). If K is
axiomatisable then R(K,M,G) is universal, that is, it may be characterised by a set
of universal first-order formulas. Moreover, if K is recursively axiomatisable and M
and G are recursive, then R(K,M,G) is recursively universally axiomatisable.

Corollary 1.2.3. Suppose we are interested in representing algebras with signature τ
as members of R(K,M,G). If K is recursively axiomatisable, M and G are recursive,
and τ has the FRFA property, then representability of finite algebras is decidable.

Proof. If τ has the FRFA property then for a finite representable algebra A with this
signature one can enumerate all finite members of R(K,M,G) to find a representation.
Hence, representability is in RE. Likewise since R(K,M,G) is recursively axiomatis-
able, one can generate these axioms and check a finite algebra against them, and at
least one axiom will fail if the algebra is not representable. Hence, representability is
also in co-RE, and so is decidable.

We surveyed representability properties by first generating all possible signatures.
This was done with the Python code given in Section C.5. These methods generate a
signature, fill in the definable operations as per Table 1.14, and order the operations
in the signature in a consistent manner. This produced a large table of signatures
which was then collapsed according to known results. The concise version is given as
Table 1.15.

11This is also referred to as the Fundamental Theorem of Relation Algebras, but we refer to relation
algebras in the sense of Tarski. Since this theorem applies to more than just Tarski relation algebras,
we are using the more general name.
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τ ⊆ {6,+, ·, ,̆−, 1′, 0, 1} yes [81] yes yes [34]
{;} ⊆ τ ⊆ {;, 1′, 0} yes yes yes

{;, 1} ⊆ τ ⊆ {;,6, 1′, 0, 1}
τ = {;, }̆ no [10]

{;, }̆ ⊂ τ ⊆ {;, ,̆ 1′, 0, 1}
{;,−} ⊆ τ ⊆ {;,−, ,̆ 1′, 0, 1}

{;,6} ⊆ τ ⊆ {;,6, 0} yes [81, 91] yes yes [81, 91]
{;,6, 1′} ⊆ τ ⊆ {;,6, 1′, 0, 1} no [33]

{;,6, }̆ ⊆ τ ⊆ {;,6, ,̆−, 1′, 0, 1}
{;,6,−} ⊆ τ ⊆ {;,+, ·,6,−, 1′, 0, 1} no no (Thm 2.2.6) no

{;, ·,6} ⊆ τ ⊆ {;, ·,6, 0, 1} yes [11] yes no (Cor 3.1.9)
{;, ·,6, 1′} ⊆ τ ⊆ {;, ·,6, 1′, 0} no [39] no (Cor 3.1.9)

{;, ·,6, 1′, 1} ⊆ τ ⊆ {;, ·,6, 1′, 0, 1} no (Cor 3.1.9)
{;,+,6} ⊆ τ ⊆ {;,+,6, ,̆ 1′, 0} no [2, 5]

{;,+,6, 1} ⊆ τ ⊆ {;,+,6, ,̆ 1′, 0, 1}
{;,+, ·,6} ⊆ τ ⊆ {;,+, ·,6,−, 1′, 0, 1} no no (Thm 2.2.6) no
{;, ·,6, }̆ ⊆ τ ⊂ {;,+, ·,6, ,̆−, 1′, 0, 1} no no [37] no

τ = {;,+, ·,6, ,̆−, 1′, 0, 1} no [65] no [35] no

Table 1.15: Representability and finite representability of subsignatures of the relation algebra sig-
nature, with 1 to be represented as the universal relation and − to be taken with respect to the
universal relation in the absence of a top element.
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Chapter 2

Undecidability results

This chapter is based on material appearing in [66]. Note that we often omit the
symbol ; for composition, writing ab for a ; b.

2.1 Reducts of the Tarski Signature

In the full relation algebra signature we have non-finite axiomatisability of repre-
sentability and undecidability of representability for finite algebras. A natural ques-
tion then is whether or not these results hold for reducts of the full signature.

A survey on this topic is offered by Schein [81]. In particular, Schein remarks that
“it would be interesting to describe ‘complemented semigroups’. . . This problem may
be more treatable for ordered complemented semigroups.” These are algebras with
signature {;,6,−}. In this chapter, we show that representability in this signature
is undecidable if complements are to be representated with universal complementa-
tion.

Representability over a finite base set is also shown to be undecidable, a result we are
able to extend to a weaker notion of complementation. We also prove undecidability
of finite representability for lattice-ordered semigroups, which are those with signa-
ture {;,+, ·}. Furthermore, these results regarding either representability or finite
representability apply to any signature between one of these and that of a Boolean
monoid, {;,+, ·,−, 1′, 0, 1}.

In order to prove these results we adapt a construction of Boolean monoids used
by Hirsch and Jackson [37], correcting issues that arise from weakening the signa-
ture.
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2.2 Partial groups and Boolean monoids

A partial group is a system A with signature 〈A; ∗, e〉 of type 〈2, 1〉 where ∗ is a partial
binary operation such that whenever (a ∗ b) ∗ c and a ∗ (b ∗ c) are defined, they are
equal, and such that e acts as an identity whenever ∗ is defined.

Furthermore, A is a square partial group1 if in addition there is a subset
√
A of A

containing the identity e such that:

1. a ∗ b is defined if and only if a, b ∈
√
A, and

2.
√
A ∗
√
A = A; that is, for every c ∈ A there are a, b ∈

√
A such that a ∗ b = c.

A partial group A is cancellative if it satisfies the cancellation laws

x ∗ y = x ∗ z =⇒ y = z

and x ∗ y = z ∗ y =⇒ x = z.

The authors of [37] construct a finite Boolean monoid denoted M(A) and with sig-
nature {;,+, ·,−, 1′, 0, 1} from a finite square cancellative partial group A. Consider
such a group A = (A, ∗, e). We define a Boolean monoid (a Boolean algebra with
composition) M(A) with atoms

{eii : i ∈ {1, 2, 3}} ∪ {wij : i, j ∈ {1, 2, 3}} ∪ {a12, a23 : a ∈
√
A} ∪ {b13 : b ∈ A}.

The remaining elements of M(A) are arbitrary joins of these atoms, giving M(A) a
total of 23+9+2×|

√
A|+|A| elements. Composition between atoms is determined by the

following:

1. xijyj′k = 0 if j 6= j′.

2. eiixij = xijejj = xij.

3. a12b13 = (a ∗ b)13, for a, b ∈
√
A.

4. We can now define Aij := 1ij − wij for all i, j ∈ {1, 2, 3}. If i < j, then
aijwjk = 1ik − aijAjk for a ∈

√
A if j − i = 1 and a ∈ A if j − i = 2.

5. If j < k, then wijajk = 1ik − Aijajk for a ∈
√
A if k − j = 1 and a ∈ A if

k − j = 2.

6. wijwjk = 1ik.
1Not to be confused with a square representation.
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We denote by 1ij the sum of all atoms with subscript ij. We also define the constants
1′ = e11 +e22 +e33, 1 =

∑
i,j∈3 1ij, and 0 as the empty sum of atoms. The construction

of M(A) partitions the algebra into three parts, with these parts and some relevant
atoms illustrated in Figure 2.1.

e11

e22

e33

a12

a23

a13

Figure 2.1: An illustration of some atomic elements of M(A)

This does indeed define a Boolean monoid with signature {;,+, ·,−, 1′, 0, 1}, as justi-
fied by Hirsch and Jackson [37, Lemma 4.1].

Define the unary term operations D(x) = (x;1)·1′ and R(x) = (1;x)·1′. The resultant
M(A) is a normal Boolean monoid. That is, if D(a) = (a1) · 1′ and R(a) = (1a) · e
then D(a)a = a = aR(a). In a representation of a normal Boolean monoid, D(a) and
R(a) will be represented as a restriction of the identity relation to the domain and
range of a, respectively. Note also that D(a) and R(a) are idempotent in M(A).

Lemma 2.2.1. M(A) is a finite, simple, normal Boolean monoid with 3 + 9 + 2 ×
|
√
A|+ |A| distinct atoms.

This construction from a partial group references the partial group embedding problem
for a class of groups K. This problem takes a finite partial group A and returns YES
if there is a group G ∈ K and an injective map φ : A → G that respects all products
defined in A. Evans [24] showed that this problem is decidable for a class K if and
only if the uniform word problem for K is decidable. In particular, this problem is
undecidable if K is either the class of groups or class of finite groups, and A is a finite
cancellative square partial group [37, Lemma 3.4].
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One of the key concepts required to prove undecidability of representability is a formal
means of referring to all elements that act as injective partial maps, hereafter called
injective functions. In the full signature of relation algebras, one can consider a unary
relation i as in Definition 2.2.2 to capture these elements.

Definition 2.2.2. Define a unary relation i in the language of relation algebras by

x ∈ i ⇐⇒ xx˘ 6 1′ and x˘x 6 1′.

In a representation respecting converse, composition and identity, elements in i are
exactly those relations that would be represented as injective functions. By consider-
ing the diversity relation 0′ = −1′, we can also view i as the set of elements satisfying
the following formula in a signature containing {;, ·, 0′}.

Lemma 2.2.3 ([37, Lemma 2.12]). Let R be a relation algebra. Then a ∈ iR if and
only if

(a0′) · a = 0 = (0′a) · a.

The final concepts needed are those of domain and range equivalence. Binary relations
r and s in an algebra over base set X are domain equivalent, denoted r s, if

{x ∈ X | (∃y ∈ X)(x, y) ∈ r} = {x ∈ X | (∃y ∈ X)(x, y) ∈ s}.

We use the same notation for the abstraction of this concept in a Boolean monoid,
with x y if D(x) = D(y). Range equivalence is defined similarly. Note that in
signatures weaker than that of a Boolean monoid a representation may preserve or

without necessarily preserving D or R, respectively.

The following theorem is a combination of Propositions 5.1 and 6.3 from [37].

Theorem 2.2.4. Let A be a finite cancellative square partial group. The following are
equivalent, with the statements in square brackets giving a separate set of equivalences.

1. M(A) is representable [over a finite base set].

2. There is a {;, i, , }-embedding of M(A) into ℘(X ×X) for some [finite] set
X.

3. A embeds into a [finite] group G.

We have already observed that both versions of (3) are known to be undecidable, and
so too are (1) and (2). In this chapter we will introduce equivalent statements for de-
cidability of representability of signatures weaker than that of a Boolean monoid.



2.2. PARTIAL GROUPS AND BOOLEAN MONOIDS 27

In considering signatures without converse, we cannot be certain that 1 is represented
as an equivalence relation. It turns out that a representable normal Boolean monoid
can always be represented in such a way that 1 acts as an equivalence relation [37,
Lemma 2.2]. This does not necessarily hold for weaker signatures. While this require-
ment on 1 is not without precedent for reducts of relation algebras (see [64, 81]), we
may wish to remove it, or even consider algebras in which no top element exists, and
so we will always state when this assumption is in use. With this in mind, we intro-
duce statements in Theorem 2.2.5 equivalent to those in Theorem 2.2.4, but regarding
representability of lattice-ordered semigroups and ordered complemented semigroups,
thus proving undecidability of these problems as well.

Theorem 2.2.5. Let A be a finite, cancellative, square partial group. The following
are equivalent.

1. M(A) is representable [over a finite base set].

2. M(A) is representable [over a finite base set] as a lattice-ordered semigroup with
1 represented as an equivalence relation.

3. M(A) is representable [over a finite base set] as an ordered complemented semi-
group with 1 represented as an equivalence relation.

4. There is a {;, i, , }-embedding of M(A) into ℘(X ×X) for some [finite] set
X.

5. A embeds into a [finite] group G.

We note that a representation of M(A) as a lattice-ordered semigroup would respect
the operations in {;,+, ·}, while a representation as an ordered complemented semi-
group would respect those in {;,6,−}. Since both signatures are weaker than that of
a Boolean monoid we can see that (1) =⇒ (2) and (1) =⇒ (3). Similarly we note
that these results apply to any signature between one of these reducts and that of a
Boolean monoid.

The remaining implications are (2) =⇒ (4) and (3) =⇒ (4). Since composition
is preserved in a representation of a semigroup, this aspect is trivial. We must prove
that relations in i are preserved as injective functions under a representation in either
signature. We do this for lattice-ordered semigroups in Lemma 2.3.2 and ordered
complemented semigroups in Lemma 2.3.3. In Lemma 2.3.4, we prove that a repre-
sentation of M(A) in either reduct preserves domain and range equivalence.

Recall from Chapter 1 that there is some ambiguity here as to the definition of com-
plementation in a reduct. In the full signature of relation algebras complementation is
taken with respect to the top element. In the absence of a top element, one can declare
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that if x is related to y by an element of the algebra, then for all relations a we have
that (x, y) belongs to just one of {−a, a}. This mimics the behaviour of complemen-
tation when a top element is present by taking complements with respect to the union
of all elements. We call this relative complementation. A stronger definition would
take complements with respect to a universal relation, demanding that every (x, y)

belongs to just one of {−a, a}. We refer to this as universal complementation.

For lattice-ordered semigroups and ordered complemented semigroups with relative
complementation, the requirement on 1 can be removed if the representation is to be
over a finite base set, and we show this in Lemmas 2.3.6 and 2.3.7. A representation
of an ordered complemented semigroup with universal complementation will always
represent 1 as an equivalence relation if it exists, as shown in Lemma 2.3.8, and so
representability of algebras in this signature is undecidable. These results are stated
in Theorem 2.2.6.

Theorem 2.2.6. Let τ be a signature such that τ ⊆ {;,+, ·,−, 1′, 0, 1}. The following
problems are undecidable:

• Finite representability of algebras with signature τ where {;,+, ·} ⊆ τ .

• Finite representability of algebras with signature τ where {;,6,−} ⊆ τ and −
is to be represented as relative complementation.

• Representability and finite representability of algebras with signature τ where
{;,6,−} ⊆ τ and − is to be represented as universal complementation.

Theorem 2.2.6 also yields results about non-finite axiomatisability for the same sig-
natures. If there exists a finite set of first-order axioms characterising representabil-
ity of a class of algebras, then one can consider an algorithm that checks a finite
algebra against each of these axioms to determine representability. Hence, finite
axiomatisability implies decidability of representability, giving us the results in Corol-
lary 2.2.7.

Corollary 2.2.7. Let τ be a signature such that τ ⊆ {;,+, ·,−, 1′, 0, 1}. The following
classes of algebras are not finitely axiomatisable in first order logic:

• Any class whose finite members are the finitely representable algebras with sig-
nature τ where {;,+, ·} ⊆ τ .

• Any class whose finite members are the finitely representable algebras with sig-
nature τ where {;,6,−} ⊆ τ and − is to be represented as relative complemen-
tation.
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• Representable algebras with signature τ where {;,6,−} ⊆ τ and − is to be
represented as universal complementation.

We note that non-finite axiomatisability of representability of algebras with signature
τ where {;,+, ·} ⊆ τ ⊆ {;,+, ·, ,̆ 1′, 0, 1} was shown by Andréka [3]; see also Andréka
and Mikulás [5].

2.3 Proofs of undecidability results

Let S = {S; ;, 1′} be a monoid. We also consider meet ·, join +, complementation −,
a partial order relation 6, and constants 0 and 1.

Let h : S → ℘(X × X) be a representation of S on a base set X preserving at least
composition. Define an equivalence relation ∼ on X such that for all x, y ∈ X, x ∼ y

if x = y or 1′ acts as the universal relation on the set {x, y}, a situation illustrated
in Figure 2.2. Define a new representation ĥ : S → ℘(X/∼ ×X/∼) such that for
a ∈ S,

ĥ : a 7→ {[x], [y] | (∃x′ ∈ [x])(∃y′ ∈ [y]) (x′, y′) ∈ h(a)}.

x

y

1′

1′

1′

1′

Figure 2.2: 1′ acting as the universal relation on {x, y}

Lemma 2.3.1. If h is a representation of S preserving composition then so too is ĥ.
Furthermore, ĥ preserves Boolean operations and constants 0, 1 and 1′, if they are
correctly represented by h.

Proof. Consider a, b ∈ S such that a 6= b. Then, since h is faithful, we may assume
without loss of generality that there exists (x, y) ∈ h(a)\h(b). Then ([x], [y]) ∈ ĥ(a).
Suppose by way of contradiction that ([x], [y]) ∈ ĥ(b). Then there exists (w, z) ∈ h(b)

with 1′ acting as the universal relation on {x,w} and on {y, z}. That is, (x,w) ∈ h(1′)

and (z, y) ∈ h(1′). Since h preserves composition we have that (x, y) ∈ h(1′b1′) and
so (x, y) ∈ h(b). But this violates the assumptions on (x, y). So ĥ is faithful.
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Now we turn our attention to composition under ĥ. Let ([x], [y]) ∈ ĥ(a) and ([y], [z]) ∈
ĥ(b). Without loss of generality, assume (x, y) ∈ h(a) and (y, z) ∈ h(b), since as before
we can always compose elements with 1′ to move around within equivalence classes.
Then, as h preserves composition, (x, z) ∈ h(ab) and so ([x], [z]) ∈ ĥ(ab). Similarly we
have that ([x], [z]) ∈ ĥ(ab) =⇒ ([x], [z]) ∈ ĥ(a)ĥ(b). So ĥ also preserves composition.

We note that ĥ only contracts binary relations in h(S). Hence, Boolean operations
and constants 0, 1 and 1′ are preserved in ĥ, assuming they were correctly represented
by h. In particular, if 1′ is represented correctly then (x, y) ∈ h(1′) ⇐⇒ x = y, and
so h(1′) = ĥ(1′).

It is by this quotient that we will ensure that the elements of the Boolean monoid
M(A) that are in i are represented as injective functions. Recall from Lemma 2.2.3
that an element a ∈ i if and only if (a0′) · a = 0 = (0′a) · a.

Lemma 2.3.2. Suppose that the Boolean monoid M(A) is representable in a signature
containing {;,+, ·} in such a way that 1 is represented as an equivalence relation. Then
there exists a representation in the same signature with the property that if a ∈M(A)

is such that (a0′) · a = 0 = (0′a) · a, then a is represented as an injective function.

Proof. Let h : M(A)→ ℘(X ×X) be such a representation of M(A) onto some base
set X and consider a ∈ M(A) such that (a0′) · a = 0 = (0′a) · a. By applying
Lemma 2.3.1 we may work under the assumption that h = ĥ, and note that this
preserves the property that 1 is represented as an equivalence relation.

Suppose there exists x, y, z ∈ X such that (y, x) ∈ h(a) and (y, z) ∈ h(a), a situation
illustrated in Figure 2.3. We will show that x = z. As 1 is acting as the universal
relation on {x, y, z} and 01 = 10 = 0, if h(0) relates any two (potentially equal)
elements of {x, y, z} then it must act as the universal relation on all three. Since
0 6 1′, this would imply that 1′ is also acting as a universal relation, a situation we
have precluded unless x = z. So assume otherwise, that is, assume that h(0) is not
relating any two elements of {x, y, z}.

y

x

z

h(a)

h(a)

Figure 2.3: An element a not represented as a function under h

We note also that (x, z) /∈ h(0′) as if this were the case then we would have (y, z) ∈
h(a0′). But a · (a0′) = 0, giving (y, z) ∈ h(0). Similarly, we have that (z, x) /∈ h(0′).
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As 0′ + 1′ = 1 we therefore have (x, z) and (z, x) in h(1′). Hence (x, x) and (z, z) are
in 1′. As ĥ = h it follows that x = z as required. That is, a is a function under h. By
symmetry we also have that a is injective under h.

The requirement that (0′a) ·a = 0 = (a0′) ·a simply ensures that a is disjoint from a0′

and also from 0′a. We can restate this with operations in {;,6,−} such that (0′a)·a =

0 if and only if a 6 −(0′a), and similarly (a0′) · a if and only if a 6 −(a0′). This
allows us to replicate the previous result in the signature of ordered complemented
semigroups.

Lemma 2.3.3. Suppose that the Boolean monoid M(A) is representable in a signature
containing {;,6,−} in such a way that 1 is represented as an equivalence relation.
Then there exists a representation in the same signature with the property that if
a ∈ M(A) is such that a 6 −(a0′) and a 6 −(0′a) then a is represented as an
injective function.

Proof. Let h : M(A)→ ℘(X×X) be a such a representation of M(A) onto some base
set X and consider a ∈ M(A) such that a 6 −(a0′) and a 6 −(0′a). Again we work
under the assumption that h = ĥ. Since 0 is the unique element with the property
that 0 6 −0, we have that h(0) ⊆ h(1)\h(0), and so 0 is represented correctly as the
empty set.

We take x, y, z as in Figure 2.3 with (y, x) ∈ h(a) and (y, z) ∈ h(a). As a 6 −(a0′),
we cannot have (x, z) ∈ h(0′), since we could compose to get (y, z) ∈ h(a0′). Similarly,
(z, x) /∈ h(0′). Because 1′ and 0′ are complementary with respect to 1, we have that
(x, z) and (z, x) are in h(1′). We compose to realise 1′ acting as a universal relation
on {x, z}, a situation we have precluded unless x = z. Hence, a is represented as a
function under h. By symmetry we also have that a is injective under h.

Hence, the i relation, as given in Definition 2.2.2, can be recovered in the case of signa-
tures containing {;,+, ·} or {;,6,−}, as long as 1 is to be represented as an equivalence
relation. To complete the {;, i, , }-embedding required by Theorem 2.2.5, we must
also check that domain and range equivalence are respected in the representation of
a Boolean monoid as either a lattice-ordered semigroup or an ordered complemented
semigroup.

Lemma 2.3.4. Suppose that the Boolean monoid M(A) is representable in a signature
containing {;,+, ·} or in a signature containing {;,6,−}, and in either case suppose
that 1 is represented as an equivalence relation. Then one can define domain and
range equivalence of the elements in M(A) in such a way that they are respected by
the representation.
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Proof. In either case, take x y if x1 = y1, and x y if 1x = 1y.

This establishes that (2) =⇒ (4) and (3) =⇒ (4) in Theorem 2.2.5, completing
the proof. Subject to the assumption that 1 is represented as an equivalence relation,
we have undecidability of representability and finite representability of finite alge-
bras in either signature. If we restrict our attention to representations over a finite
base set then we can remove this assumption. The proofs are largely the same for
lattice-ordered semigroups and ordered complemented semigroups, and both involve
Lemma 2.3.5.

Lemma 2.3.5. Let h be a representation of a Boolean monoid M onto a finite base
set X respecting composition and order. Then for every nonzero idempotent f ∈ M
there exists an element of X fixed by h(f) but not by h(0).

Proof. By faithfulness there exists x, y ∈ X such that (x, y) ∈ h(f) and (x, y) /∈ h(0),
or such that (x, y) /∈ h(f) and (x, y) ∈ h(0). Since 0 is the bottom element, we
conclude that the latter is not possible and assume that (x, y) ∈ h(f). Since f is
idempotent we must witness an element z ∈ X such that (x, z) ∈ h(f) and (z, y) ∈
h(f). We must continue to witness this for every pair in h(f). But the representation
is finite, so we must eventually witness a loop (xa, xa) ∈ h(f). If (xa, xa) ∈ h(0) also,
then we could compose to get (x, y) ∈ h(0), violating our initial assumption. Hence,
f but not 0 fixes xa in the representation.

We first remove the assumption that 1 be represented as an equivalence relation in fi-
nite representations ofM(A) as a lattice-ordered semigroup, although in actuality only
composition and meet are required for the proof. Recall that in the Boolean monoid
signature we defined D(a) = (a1) · 1′ and that D(a) is idempotent in M(A).

Lemma 2.3.6. Let h be a representation of the Boolean monoid M(A) onto a finite
base set X respecting the operations in {;, ·}. Then there exists a representation h◦

in the same signature but representing the top element 1 as an equivalence relation.
Furthermore, if h respects the operations in {+,−, 1′, 0} then so too does h◦.

Proof. For a binary relation r define the symmetric interior

r◦ := {(x, y) | (x, y) ∈ r and (y, x) ∈ r}.

If r is reflexive and transitive then one can view r◦ as the largest equivalence relation
contained in r. Define h◦ : M(A)→ ℘(X ×X) as h◦ : a 7→ h(a) ∩ h(1)◦.

Since we are only omitting non-loops in the representation, we have that h◦ pre-
serves any operation in {+,−, 1′, 0}, assuming that h does. For composition, consider



2.3. PROOFS OF UNDECIDABILITY RESULTS 33

(x, y) ∈ h◦(ab) for some a, b ∈ M(A). Then since h respects composition there exists
z ∈ X such that (x, z) ∈ h(a) and (z, y) ∈ h(b). As (x, y) is in the image of h◦ we
have that (y, x) ∈ h(1)◦. So (y, z) ∈ h(1a) and, as 1 is the top element, (y, z) ∈ h(1).
Similarly, (z, x) ∈ h(1). We conclude that (x, z) ∈ h◦(a) and (z, x) ∈ h◦(b). By
similar composition with 1 we have that if (x, z) ∈ h◦(a) and (z, y) ∈ h◦(b) then
(x, y) ∈ h◦(ab), and so composition is respected by h◦.

Now we must prove that h◦ is faithful. Let a, b ∈M(A) be distinct and assume without
loss of generality that b � a, so that b · (−a) 6= 0. Note that we are only considering
−a as an element of M(A), and do not require complementation to be represented in
any way. As M(A) is normal we have that D(b · (−a))(b · (−a)) = (b · (−a)), and so
D(b · (−a)) 6= 0. We established in Lemma 2.3.5 that nonzero idempotents under h
fix points in X that are not fixed by 0. As such, h◦(D(b · (−a))) 6= h◦(0). But clearly
h◦(D(a · (−a))) = h◦(0). As such h◦(a) 6= h◦(b), and so h◦ is faithful.

Since h respects composition and order, h◦ represents 1 as transitive and symmetric,
and hence reflexive on a subset of X. Since h◦ is faithful, this subset is nonempty.
Hence, h◦ represents 1 as an equivalence relation over a nonempty subset of X.

If we have a representation of M(A) as a lattice-ordered semigroup, then we can take
the symmetric interior and then the quotient used in Lemma 2.3.1 to obtain a similar
representation preserving the i relation and representing 1 as an equivalence relation.
This allows us to remove the requirement in Lemma 2.3.2 that the top element of
M(A) be represented as an equivalence relation, if the representation is to be taken
over a finite set. The following lemma permits us to do the same in the case of
Lemma 2.3.3, which deals with ordered complemented semigroups.

Lemma 2.3.7. Let h be a representation of the Boolean monoid M(A) onto a finite
base set X respecting the operations in {;,6,−}. Then there exists a representation
h◦ in the same signature but representing the top element 1 as an equivalence relation.
Furthermore, if h respects the operations in {+, ·, 1′, 0} then so too does h◦.

Proof. The proof is largely the same as for Lemma 2.3.6, though we must recover
faithfulness with a different approach. Recall that 0 is forced to be represented as the
empty set since 0 6 −0, and so any representation preserving {;,6 −} also trivially
preserves 0. Again we define h◦ : M(A)→ ℘(X×X) as h◦ : a 7→ h(a)∩h(T )◦ and take
distinct a, b ∈ M(A) with the assumption that b � a. Then there exists a nonzero c
such that c 6 b and c 6 −a. Hence we can distinguish between a and b if we witness
a nonempty h◦(c).

Since c is nonzero, we use Lemma 2.3.5 to conclude that D(c) fixes a point x ∈ X

under h. Now we note that, since 1 has maximum domain and range and composition
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on the right cannot restrict domain, D(c) 6 D(c)T = cT . We must witness this
composition as in Figure 2.4 and so h◦(D(c)) 6 h◦(cT ) = h◦(c)h◦(T ). That is, h◦(c)
is nonempty.

x

y

D(c)

1

c

Figure 2.4: Witnessing the composition D(c) 6 cT

We noted before that the definition of complementation requires care in the absence
of a top element. We used here relative complementation which mimics the definition
of complementation when 1 is present: that if x is related to y by an element of the
algebra, then for all relations a we have that (x, y) belongs to just one of {−a, a}.
Under this weaker definition and without 1 acting as the universal relation we could
have, for example, a situation as in Figure 2.3 such that no element relates x to z
or z to x. If this occurs, we cannot take the complement to reason that 1′ acts as
the universal relation on these points, as we did in Lemma 2.3.3. Under the weaker
definition of relative complementation, these proofs require that an element already
relates these two points.

Alternatively, we can represent complementation as universal complementation in
which the complement is taken with respect to ℘(X ×X), where X is the base set of
the representation. That is, in the absence of a top element we can take complements
with respect to a universal relation. Under this interpretation it will turn out that
if 1 does exist then it must act as an equivalence relation in any representation. We
thank Marcel Jackson for the following observation.

Lemma 2.3.8. Let S be a complemented semigroup of binary relations with com-
plement taken with respect to a universal relation. If there exists an idempotent f
such that f(−f) = −f = (−f)f and −f is also idempotent, then f is the universal
relation.

Proof. Suppose f relates x to y and, for contradiction, f does not relate y to x.
Then y(−f)x and, by assumption, x(−f)x. Then composing we get that x(−f)y, a
contradiction. Hence, f is a symmetric, and so a reflexive binary relation.
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We now know that f is an equivalence relation on its domain. Suppose that the domain
of f is not full, and so we have that x(−f)y and y(−f)x. Since −f is idempotent we
compose to get x(−f)x. If x is in the domain of f then we have a contradiction. If
not, take y to be in the domain of f to reach a similar contradiction. Hence, f is an
equivalence relation with full domain.

Hence, any representation of M(A) respecting the operations in {;,6,−} in which
− is represented with respect to a universal relation will always represent 1 as that
universal relation. This extends the undecidability of representability of finite algebras
in this signature to include infinite representations.

It would be interesting to see if we can do the same for infinite representability of
lattice-ordered semigroups.

Problem 2.3.9. Finite representability is undecidable for lattice-ordered semigroups.
Can the same be said of representability in general?

Another problem to consider is semigroups with either form of complementation but
no order. As far as we can determine, this problem remains unexplored in the litera-
ture, and is mentioned by Schein [81].

Problem 2.3.10. Is representability or finite representability decidable in the sig-
nature {;,−}, with either relative or universal complementation? Are representable
algebras in this signature finitely axiomatisable?
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Chapter 3

Disjoint representations of
semigroups

3.1 Finite disjoint representations

Recall from Chapter 1 our discussion of Cayley’s Theorem (Theorem 1.1.1), which
states that every group is isomorphic to a group of permutations. Actually, we rep-
resent a group as a group of permutations over itself. In particular, a 7→ (x, y) if
x ; a = y or, as an alternative representation, x = a ; y. Call either of these a Cayley
representation of the group. As such, we have the following corollary to Cayley’s
Theorem.

Corollary 3.1.1. Every finite group is isomorphic to a group of permutations over a
finite set.

A {;, ,̆ 1′}-reduct of a relation algebra is not the same as a group, since we are unable
to recover the group axiom a ; ă = 1′ from the relation algebra axioms. This is not
an issue for a {;}- or {;, 1′}-reduct, which is a semigroup or monoid, respectively. An
analogue of Cayley’s Theorem exists for semigroups (or monoids), which are repre-
sented as transformations. The only adjustment is that a semigroup S is represented
over S1′ = S ∪ {1′}, the monoid into which S embeds.

Theorem 3.1.2 (Cayley’s Theorem for semigroups). Every (finite) semigroup is iso-
morphic to a (finite) semigroup of transformations.

Groups enjoy cancellativity. Take the Cayley representation h of a group such that
(x, y) ∈ h(a) whenever x ; a = y and suppose (x, y) ∈ h(a) and (x, y) ∈ h(b). Then
one can take inverses to deduce that a = b. Hence in a representation of a group,
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no edge is labelled by two distinct elements1. We call a representation of an alge-
bra of relations in which every edge is labelled by at most one element disjoint. In
semigroups, composition is not generally cancellative, and so we are left with the
question of when a semigroup has a disjoint representation. This notion is formalised
in Definition 3.1.3.

Definition 3.1.3. A semigroup has a disjoint representation if it is isomorphic to a
semigroup of disjoint transformations. The representation is finite if the semigroup
of disjoint transformations is over a finite set.

For our purposes, we can rephrase this not as a special kind of representation of a
a semigroup but rather as a representation of a special kind of {;, ·, 0}-reduct of the
relation algebra signature.

Lemma 3.1.4. For every (finite) semigroup S there exists a pair of algebras {A1,A2},
each with signature {;, ·, 0}, such that S is disjointly representable (over a finite set)
if and only if at least one of {A1,A2} is (finitely) representable.

Proof. We define A1 = S ∪ {0} with 0 acting as a ; 0 = 0 = 0 ; a for all a ∈ A1. If S
already has a zero then that element no longer acts as a zero in A1. If S has no zero
element then we let A2 = A1. Otherwise we define A2 = S with the intention that it
will inherit a zero element from S. Both A1 and A2 inherit the composition of S and
both are equipped with a meet operation · such that, for all a, b ∈ A1 or a, b ∈ A2,

a · b =

{
a if a = b

0 otherwise.

Suppose S does not have a 0 element. Then a representation h of S cannot represent an
element as the empty set. Hence a (finite) representation of S is easily interpreted as
a (finite) representation of A1 with 0 represented as the empty set. If h is disjoint then
it will also respect the semilattice operation of A1, which forbids two elements being
placed on the same edge. Hence a (finite) disjoint representation of S gives a (finite)
and disjoint representation of A1. Conversely, a (finite) and disjoint representation
of A1 respects composition and forbids two elements being represented on the same
edge, and so gives a disjoint representation of S.

If S does have a 0 element then we need to consider how this might be represented
in a representation of S. Let h be a representation of S. If h(0) = ∅ then h gives a
representation of A2 using the argument above, with the representation of A2 finite
if h is finite. If h(0) 6= ∅ then h gives a representation of A1.

1In fact, every edge is labelled by exactly one element.
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We call a semilattice with this meet operation a flat semilattice. It is a consequence
of this lemma that when working with disjoint representations of semigroups we can
assume the existence of a 0 element.

It is a result of Bredikhin and Schein [12] that every semilattice ordered semigroup
(signature {;, ·}) can be represented as an inclusion-ordered semigroup of binary re-
lations respecting greatest lower bound (signature {◦,∩}). Bredikhin later extended
this to include the representation of 0 [11] (see also Andreka and Mikulas [5]). As
such, every semigroup has a disjoint representation.

One can also prove this using the game theoretic techniques of Hirsch and Hodkinson,
an approach we will shortly use. These techniques were introduced to prove unde-
cidability of representability of finite relation algebras [35, 36]. The game theoretic
approach is to build up the representation piece by piece. Apart from an initial move,
the moves of the game are exactly the composition and witness moves introduced in
Chapter 1.

We will be adjusting the game theoretic approach as used by Hirsch to prove the
nonfinite axiomatisability of the class of representable ordered monoids [33]. The
definitions that follow are adapted from this paper. While ordered monoids have
signature {;,6, 1′} we can define the rules of a game so as not to be concerned about
the presence or representability of an identity element and so that 0 is represented as
the empty set. We can then define a strategy for witness moves in such a way that the
resulting representation is disjoint. First we define the ‘board’ on which the games
are played.

Definition 3.1.5. Let S be an ordered semigroup with 0. A prenetwork (D,N) over
S consists of a set of nodes D and a map N : D ×D → ℘(S). Furthermore, (D,N)

is called a network over S if for all x, y, z ∈ D, a ∈ N(x, y), b ∈ N(y, z) there exists
c ∈ N(x, z) with c 6 a ; b.

We may also use N to refer to the set of nodes. That is, x ∈ N refers to a node
of the prenetwork N and N(x, y) is the label between nodes x and y. We say that
a prenetwork M is a subnetwork of prenetwork N , written M ⊆ N , if the nodes of
M are a subset of the nodes of N and for all x, y ∈ M and all a ∈ M(x, y) there is
a− ∈ N(x, y) with a− 6 a. We say that M is an induced subnetwork of N , written
M 6 N , if the nodes of M are a subset of the nodes of N and for all x, y ∈ M we
have M(x, y) = N(x, y).
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We can also take the union of prenetworks. If {Nλ : λ ∈ Λ} is a set of prenetworks
then N =

⋃
λ∈ΛNλ is the prenetwork with nodes the union of the nodes of all Nλ

and
N(x, y) =

⋃
λ : x,y∈Nλ

Nλ(x, y).

The game is played with two players, ∀ and ∃. ∀ will ask for certain states that should
exist if the ordered semigroup S is representable, and ∃ will update the board with
this information.

Let 0 6 n 6 ω and let S be an ordered semigroup with 0. A play of the game Gn(S)

has n rounds and consists of a sequence of n pre-networks N0, N1, . . . , Nn. In round
0 the initial move is played. ∀ chooses a0, a1 ∈ S such that a1 � a0. The response by
∃ to this initial move is a network N0, consisting of nodes x1, x2 with N0(x1, x2) = a1

and with no other edges. Note that the condition that a1 � a0 precludes the choice
of 0 for a1.

Suppose the game has been played to the prenetwork Ni−1. Then Ni is constructed
with either a composition or witness move.

Composition move : ∀ chooses x, y, z ∈ Ni−1, a ∈ Ni−1(x, y) and b ∈ Ni−1(y, z). ∃
responds with Ni ⊇ Ni−1, a copy of Ni−1, but with a ; b ∈ Ni(x, z).

Witness move : ∀ picks x, y ∈ Ni−1 and any a, b such that c 6 a ; b and c ∈
Ni−1(x, y). Unlike with composition moves, ∃ has some choice in how they may
respond. They must choose a node z, either from Ni−1 or a new node, and
respond with Ni ⊇ Ni−1, a copy of Ni−1, but with a ∈ Ni(x, z) and b ∈ Ni(z, y)

(these may already exist). The option for ∃ to choose a new node is how the
network grows.

∀ wins the game if there is i < n and a− 6 a0 with a− ∈ Ni(x1, x2). If a 0 is
introduced into the network at any point and the game is played sufficiently long
then this winning condition would be met, as 0 will propagate through to N(x, y) by
composition moves. Thus, if 0 is not represented properly then ∀ will win.

Strictly speaking, ∃ cannot win the game; they can only not lose. A strategy for ∃
determines a unique move for any given witness move and any Ni−1. This strategy is
a winning strategy for ∃ if it never leads to a winning state for ∀.

Theorem 3.1.6 (Variant of [33, Prop. 4.2]). Let S be a countable ordered semigroup
with 0. Then S is representable if and only if ∃ has a winning strategy in Gω(S).

The proof is not presented here, since the one given in [33] is sufficiently close. We
do need to note how a representation is generated from a winning strategy for ∃. Let
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N0 ⊆ N1 ⊆ . . . be a play of a game starting from an initial move on a0, a1 and for
some sequence of choices made by ∀, and in which ∃ uses their winning strategy.
Let N∗[a0,a1] =

⋃
i∈ωNi. Let

N =
⋃
a1�a0

N∗[a0,a1].

By the proof given in [33], each of N∗[a0,a1] is a network and so too is N . The repre-
sentation is given by the map

h(ρ) = {(x, y) : ∃ρ− 6 ρ, ρ− ∈ N(x, y)}.

Let’s return to the topic of disjoint semigroups, which we think of as ordered semi-
groups with 0, with order given by a flat meet-semilattice. By Theorem 3.1.2, every
such semigroup has a representation, and so there exists a winning strategy for ∃ for
every such algebra. By equipping ∃ with a suitable strategy, however, we can ensure
that the resulting representation is disjoint.

Theorem 3.1.7. Every semigroup has a disjoint representation.

Proof. Recall that in the initial move of the game, ∀ chooses a0, a1 ∈ S such that
a1 � a0. The response to this initial move by ∃ is a network N0, consisting of nodes
x1, x2 with N0(x1, x2) = a1. ∀ wins if, at some stage i, ∃ introduces a− ∈ Ni(x1, x2)

with a− 6 a0. We are dealing with unordered semigroups, so this condition needs
to be reconsidered. We consider all semigroups as being equipped with an antichain
order. The initial move is the same, with N0(x1, x2) = a1. But now ∀ wins if, at
any stage i, ∃ introduces a− ∈ Ni(x1, x2) with a− 6= a1. The choice of element a0 is
irrelevant here, and is disregarded.

∃ has no choice when responding to composition moves, so we need only specify their
response to witness moves. Regardless of the choice of nodes or semigroup elements
made by ∀, we equip ∃ with a strategy of always adding a new node for witness moves.

First we show that the strategy of always adding new nodes is a winning strategy.
It suffices to check that for all i < n there is no a− 6= a1 with a− ∈ Ni(x1, x2).
Equivalently, we show that the only element ∃ can introduce along (x1, x2) is a1.
Suppose that we have two ‘chains’ of directed edges from x1 to x2. That is, we have
a chain of nodes x1k1k2 . . . kKx2 and x1l1l2 . . . lLx2 with two compositions Ni(x1, k1) ;

Ni(k1, k2);. . .;Ni(kK , x2) and Ni(x1, l1);Ni(l1, l2);. . .;Ni(lL, x2). These edges may have
been introduced by witness or composition moves. If an edge was introduced by a
composition move then we can replace it with the two edges used for that composition
move. As such, as we can assume that each of these chains was constructed by a
sequence of witness moves above a1, each one building on the last. By associativity of
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composition, Ni(x1, k1);Ni(k1, k2);. . .;Ni(kK , x2) andNi(x1, l1);Ni(l1, l2);. . .;Ni(lL, x2)

both equal a1. So the only element that can be introduced along Ni(x1, x2) is a1.

The same argument can be applied to any edge in a chain above Ni(x1, x2). This
tells us that a composition move cannot introduce a semigroup element along an
edge on which there is already a different semigroup element. Hence, the resulting
representation is disjoint.

There is an interesting difference here between groups and semigroups. Every fi-
nite group has a finite disjoint representation; its Cayley representation. While an
analogue of Cayley’s Theorem exists for finite semigroups, the resulting Cayley rep-
resentation is finite but not necessarily disjoint. Theorem 3.1.7 shows us that we
can construct a disjoint representation of any semigroup, but over a countably infi-
nite set. Can we construct a representation that entertains both properties—finiteness
and disjointness—for any finite semigroup, as we can for finite groups? We will answer
this question in the negative.

We offer an example here of a finite semigroup (signature {;}) that is, by Theo-
rem 3.1.7, disjointly representable, but not finitely and disjointly representable. Our
particular example includes elements 1′ and 0, though in this specific case we do not
demand that they be represented correctly. Even when not playing a game with ∀
and ∃, we will use the language of witness and composition moves, as they capture
the notion of representing composition correctly.

Theorem 3.1.8. There exists a finite, representable {;, ·}-algebra with no finite rep-
resentation.

Proof. Let A be the algebra with Cayley table defined as in Figure 3.1. Define · to
make A a flat semilattice.

; 0 1′ a
0 0 0 0
1′ 0 1′ a
a 0 a a

Figure 3.1: Cayley table of a finite semigroup permitting no finite disjoint representation

To see that A is representable, observe that we can represent it as we would the point
algebra over Q (Example 1.1.7). Specifically, let h : A → ℘(Q × Q) be defined by
h(0) = ∅, h(1′) = idQ and h(a) = {(x, y) ∈ Q×Q : x < y}. Since (Q, <) is irreflexive,
transitive and dense, h is a representation of A over the domain Q. Now we prove
that A can have no representation over a finite set.
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Assume for contradiction that there exists a representation h : A → ℘(X×X), where
X is a finite set. There must exist an edge (x, y) in h(a)\h(0), or else h is not a
faithful representation. Since a is idempotent, a witness move on (x, y) ∈ h(a) tells
us that there exists z ∈ X such that (x, y), (x, z), (z, y) ∈ h(a). We can continue with
witness moves on each of these edges, giving us a set of vertices z1, z2, . . . , zn ∈ X such
that for all i 6= j and i, j 6 n we have (zi, zj) ∈ h(a) and (z1, zn) /∈ h(0) (relabelling
z1 = x and zn = y). But X is finite, so if n > |X|, the points z1, z2, . . . , zn are not
all distinct and we can find i, j ≤ n such that zi = zj and (zi, zj) ∈ h(a). We cannot
have (zi, zj) ∈ h(0) (else (z1, zn) ∈ h(a; 0; a) = h(0)). Thus there is a node, which we
can assume without loss of generality to be x, such that (x, x) ∈ h(a)\h(0).

Since 1′ ;a = a we can consider y ∈ X such that (x, y) ∈ h(1′) and (y, x) ∈ h(a). Then
we have (x, x) ◦ (x, y) ∈ h(a ; 1′), that is, (x, y) ∈ h(a). This situation is illustrated
in Figure 3.2. But a · 1′ = 0, and this composes with a to give (x, x) ∈ h(0), a
contradiction. So a finite representation cannot exist.

x

y

a

a

a, 1′

Figure 3.2: Relations on an idempotent in a finite representation

This result implies a lack of the finite representability for finite algebras (FRFA)
property for reducts of the relation algebra signature, including composition and meet.
This is because we can take the above example and easily include the other operations
in the relation algebra signature.

Corollary 3.1.9. Let {;, ·} ⊆ τ ⊆ {;,+, ·,≤, ,̆−, 1′, 0, 1}. There are finite, repre-
sentable τ -algebras with no finite representations.

Proof. Consider the point algebra as in Example 1.1.7. This is in the full relation
algebra signature. The reduct of the point algebra with only the operations in {;, ·}
contains a subalgebra isomorphic to the algebra used in the proof of Theorem 3.1.8,
with < acting as a. The point algebra is representable on Q with the usual dense
linear order, and so every reduct of the point algebra is also representable. But every
reduct of the point algebra with a signature containing {;, ·} is not representable over
a finite set, since such a representation would contain a finite representation of the
algebra used in the proof of Theorem 3.1.8.



44 CHAPTER 3. DISJOINT REPRESENTATIONS OF SEMIGROUPS

We now consider the class D of semigroups with a finite disjoint representation. Ini-
tially we might ask if D is a variety, which is a class of algebras closed under taking
direct products, subalgebras, and homomorphic images 2. Since an infinite semigroup
cannot have a finite representation, we know that such a class must consist only of
finite semigroups. This excludes the possibility that D is a variety, since an infinite
direct product of nonempty finite algebras is infinite.

So what if we restrict our attention to finite direct products? This is exactly what a
pseudovariety is—a class of algebras closed under finite direct products, subalgebras,
and homomorphic images. As it turns out, D is not even a pseudovariety. In fact,
as the next result shows, we can move outside the class with just a single direct
product.

Theorem 3.1.10. The class of finite semigroups that are disjointly representable over
a finite set is not closed under finite direct products.

Proof. Consider the semigroup S consisting only of an idempotent f and a 0 element.
This can be represented as a single node with a loop labelled f , and this representation
is finite and disjoint. Consider now the semigroup S ×S, with Cayley table as below:

; (0, 0) (f, 0) (0, f) (f, f)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(f, 0) (0, 0) (f, 0) (0, 0) (f, 0)

(0, f) (0, 0) (0, 0) (0, f) (0, f)

(f, f) (0, 0) (f, 0) (0, f) (f, f)

Relabel 0 := (0, 0), a = (0, f) and 1′ := (f, f). These form a subsemigroup of S × S,
with Cayley table as below:

; 0 a 1′

0 0 0 0

a 0 a a

1′ 0 a 1′

By Theorem 3.1.8, this is not finitely and disjointly representable. Hence, S × S is
not finitely and disjointly representable.

So D is not a pseudovariety. We will shortly see that D is not even closed un-
der taking homomorphic images. However, D is closed under taking subalgebras.
To see this, suppose that a finite semigroup S has a finite disjoint representation

2A variety can also be considered as a class defined by identities. The equivalence of these two
definitions is not trivial, and is the subject of Birkhoff’s Theorem. See [13, Chapter 2, Theorem 11.9].
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h : S → ℘(X ×X). Suppose that R is a subsemigroup of S with R ⊆ S. Then one
can simply take the restriction h|R as a finite disjoint representation of R.

We will now explore a pair of strong necessary conditions for a finite semigroup to
have a finite disjoint representation. Note that from now on we will omit the symbol ;

for composition and write ab as shorthand for a ; b.

Lemma 3.1.11. Let S be a finite semigroup that is disjointly representable over a
finite set. If there are distinct elements b, c, e ∈ S such that e is idempotent and
0 6= bce = bc, then c = ce.

Proof. Let S be a semigroup as above with distinct elements b, c, e ∈ S such that e is
idempotent and 0 6= bce = bc. Let h : S → ℘(X ×X) be a disjoint representation of
such a semigroup over finite X. Suppose that bc = e. Since e is idempotent and X
is finite then h must represent bc = e as a loop on a node somewhere, say x, as per
the proof of Theorem 3.1.8. From x we witness b ; c = bc using another node y, and
then compose to see a cb-labelled loop on y. This situation is drawn in Figure 3.3.
We then compose again to get (y, x) ∈ h(cbc). Since h is a disjoint representation we
have that c = cbc and so c = ce, as desired.

x y

b

c

bc cb

Figure 3.3: Consequence of bc = e

Now suppose that bc 6= e. For an edge labelled bce = bc we must witness the com-
position (bc)e = bce. Suppose we do this by creating a new point and so a new edge
labelled bce = ce. Since X is finite, if we repeat this step we must eventually have a
loop involved in the composition. If the loop holds bce = bc, as in Figure 3.4, then
from that node there must be an edge holding e. We compose to get an edge with
bce = bc and e. Since we are assuming that bc 6= e and our representation h is disjoint,
this is a contradiction, and so the loop must hold e instead, as in Figure 3.5.

If we also consider the witness move b ; c = bc it follows that in h(S) we must witness
the situation in Figure 3.6. Composing with this loop gives an edge holding both c
and ce. Since h represents S disjointly, we conclude that c = ce.

It will prove useful to consider the dual of this property.
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x ye

bce = bc

Figure 3.4: Witnessing bce = bc on a loop

x ybce = bc

e

Figure 3.5: Witnessing e on a loop

e

bce = bc

cce
b

Figure 3.6: A finite representation of a semigroup with bce = bc

Corollary 3.1.12. Let S be a finite semigroup that is disjointly representable over a
finite set. If there are distinct elements b, c, e ∈ S with e idempotent, then

0 6= ecb = cb =⇒ ec = c.

Proof. The proof is similar to that of Lemma 3.1.11.

Corollary 3.1.13. There exists a finitely disjointly representable semigroup with a
quotient that is not finitely and disjointly representable. As a result, the class of
finitely disjointly representable semigroups is not closed under homomorphisms.

Proof. Consider the semigroup with finite disjoint representation in Figure 3.7. The
only nonzero compositions here are b ; c = bc, c ; e = ce, (b ; c) ; e = b ; (c ; e) = bce, and
an idempotent e. Consider the equivalence relation with bce ∼ bc and with everything
else equivalent only to itself. In order to check that this is a congruence, it suffices to
observe that right-composition by e preserves ∼. Then e is idempotent, 0 6= bce = bc,
and c 6= ce. By Lemma 3.1.11, the quotient of this semigroup by ∼ is not finitely
disjointly representable.
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e

c

e
bce

bc

b

ce

Figure 3.7: A finite disjoint representation of a semigroup

3.2 Green’s relations

Before we explore the consequences of these conditions, we will need to introduce some
fundamentals of semigroup theory. Of key importance are the relations of Green [29].
Much of the material used in defining these relations and their properties is from
Chapters 2 and 3 of [41].

Let a and b be elements of a semigroup S. Define S1′ to be the monoid into which S
embeds. Then define quasiorders 6L, 6R and 6J on S as follows:

a 6L b ⇐⇒ a ∈ S1′b,

a 6R b ⇐⇒ a ∈ bS1′ ,

a 6J b ⇐⇒ a ∈ S1′bS1′ .

Now define the equivalence relation L as aLb if a 6L b and b 6L a, and similarly for R
and J . That is, aLb if a and b generate the same left ideals, aRb if they generate the
same right ideal, and aJ b if they generate the same ideal. We include the following
for completeness.

Lemma 3.2.1. L and R commute.

Proof. Let a, b ∈ S such that a(L◦R)b. We wish to prove that a(R◦L)b. Now there
exists c ∈ S such that aLcRb. So there exist x, y, u, v ∈ S such that

xa = c, cu = b, yc = a, bv = c.

So au = ycu. Hence,
auv = yvub = ybv = yc = a.
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Similarly, yb = ycu, and

xyb = xycu = xau = cu = b.

Now aR(ycu) and (ycu)Lb, and so a(R ◦ L)b. The reverse inclusion is shown in a
similar fashion.

With this in mind we can define a new relation D = L◦R and, because of Lemma 3.2.1
D = R ◦ L. We then have that L,R,D ⊆ J . The following lemma, however, tells
us that in a finite semigroup D = J . Since the focus of our investigation is on finite
disjoint representations, this is of particular interest.

Lemma 3.2.2. Let S be a periodic semigroup; that is, a semigroup in which all
elements are of finite order. Then D = J .

Proof. Suppose a, b ∈ S and aJ b. Then there exists x, y, u, v ∈ S such that

xay = b, ubv = a.

Then

a = (ux)a(yv) = (ux)2a(yv)2 = (ux)3a(yv)3 = . . .

b = (xu)b(yv) = (xu)2b(vy)2 = (xu)3b(vy)3 = . . .

Since A is periodic there is an idempotent power ω1 such that (ux)ω1(ux)ω1 = (ux)ω1 .
As such,

a = (ux)ω1a(yv)ω1

= (ux)ω1(ux)ω1a(yv)ω1

= (ux)ω1a

= (ux)ω1−1uxa

Define c := xa. Then aLc. Now consider ω2 such that (vy)ω2(vy)ω2 = (vy)ω2 . Follow-
ing a similar argument to the above, we get that c = bvy(vy)ω2−1. Hence, cRb and so
a(L ◦ R)b, that is, aDb.

Since only finite semigroups can have finite disjoint representations, and all finite
semigroups are periodic, in this chapter we can safely refer to allD-classes as J -classes.
The end result is that we can partition any finite semigroup into a finite number of
J -classes, which in turn we can partition into either L-classes or R-classes.
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So far we have introduced four different relations on the elements of a semigroup:
L, R, D and J , and identified J with D for finite semigroups. There is a pleasing
graphical representation of these relations. We draw each J -class of a semigroup
as a rectangle, divided into a grid. If two elements are in the same row then they
are L-related, and if they are in the same column then they are R-related. That is,
each cell of the grid is an intersection of an L-class and an R-class. Recall that by
Lemma 3.2.1, L and R commute, and so a grid is a valid tool for visualising the L
and R relations within a given J -class.

Furthermore, the J -classes are ordered by the 6J relation. An example is given in
Figure 3.8. Note that the 0 element, if it exists, is in its own J -class, and this is the
unique bottom class with respect to J .

0

Figure 3.8: An example of a finite semigroup partitioned and ordered by its J -classes, with L- and
R-classes shown by grids

An element a ∈ S is called regular if there exists x ∈ S such that a = axa. A
semigroup is regular if all of its elements are. With the following lemma, we can also
discuss regular J -classes of finite semigroups. Denote by Ja the J -class containing a,
and similarly for La, Ra and Ja. The following is a standard lemma that can be found
in any textbook on semigroups, but we include a proof here for completeness.

Lemma 3.2.3. If a is a regular element of a semigroup, then so too is every element
of Ja.
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Proof. Since a is regular there exists x ∈ S such that a = axa. Suppose aLb for some
b ∈ S. Then b = ua for some u ∈ S. Now b = uaxa = bxa. As aLb, we have that
a = vb for some v ∈ S. Hence, b = bxa = b(xv)b and so every element in La is regular.
By similar reasoning, every element in Ra is regular.

We require one final notion before we can discuss Green’s relations in the context of
finite disjoint representations.

Lemma 3.2.4. In a regular J -class of a finite semigroup, each L- and R-class con-
tains an idempotent.

Proof. If a = axa, then xa is an idempotent of La and ax is an idempotent of Ra.

We can use the results of Lemma 3.1.11 and Corollary 3.1.12 to derive information
about the J -classes of a finitely and disjointly representable semigroup. In particular,
we learn the following restriction on where a regular J -class can occur in the 6J
order.

Theorem 3.2.5. In a finitely and disjointly representable semigroup, a non-zero reg-
ular J -class is maximal with respect to 6J .

Proof. Let S be such a representable semigroup with e, x ∈ S such that 0 6= e = ee

and e 6J x. That is, there exists a, b ∈ S such that e = axb. Then

axbe = ee = e = axb.

So we may assume without loss of generality that be = b, or derive the equality from
Lemma 3.1.11. Then bJ e and, in particular, xbJ e. Recall that in a regular J -class,
every L- and R-class contains at least one idempotent. So there exists f ∈ S such
that

eL(xb)Rf = ff.

Then there exist z ∈ S such that fz = xb. So fxb = xb. From Corollary 3.1.12,
x = fx. That is, x 6J fJ e, and so x 6J e. Combined with the initial assumption
that e 6J x, we have that eJ x, and so the regular J -class containing e is maximal
with respect to 6J .

The case in which a finite semigroup contains a single non-zero J -class which is also
regular corresponds to the class of finite completely [0-]simple3 semigroups. These

3The proper definition of a completely [0-]simple semigroup is not considered here. For the finite
case it suffices to consider them as semigroups with a single non-zero J -class, which is regular. The
[0-] prefix indicates that a zero element may or may not be present.
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semigroups correspond exactly to those that have a special type of representation. A
semigroup is completely [0-]simple if and only if has a disjoint transitive representa-
tion [79]. By transitive, we mean that every edge in the representation is labelled by
at least one element of the semigroup. This is different from a disjoint representation
in which we label every edge by at most one element of the semigroup.

The matter of finite disjoint representability is a gap in the literature. The class of
finite semigroups permitting a transitive, disjoint and finite representation is exactly
the completely [0-]simple semigroups, which have a very specific and simple J -class
structure. Every finite semigroup permits a representation which is transitive and
finite but not necessarily disjoint [63]. Thus the finite disjoint representability of
finite semigroups is the missing case. We now know from Theorem 3.2.5 that if such a
representation of a semigroup exists, then a non-zero regular J -class of that semigroup
must be maximal with respect to 6J .

3.3 Rees quotients and pure direct products

In Theorem 3.1.10 we proved that the class D of finite semigroups permitting a finite
disjoint representation is not closed under direct products. In Corollary 3.1.13 we
proved that D is not closed under taking quotients either. We will now discuss two
concepts which are similar to direct products and quotients and under which D is
closed. We begin with a special kind of quotient introduced by Rees [72].

We define a Rees quotient of a semigroup S to be the quotient of S by an ideal.
That is, a Rees quotient of S is obtained by factoring S by a congruence whose one
nontrivial block is an ideal. We note that if S is a semigroup with 0, then taking a
Rees quotient has the same effect as identifying an ideal with 0. Importantly for our
purposes, the class D is closed under taking Rees quotients.

Lemma 3.3.1. Let S be a finitely and disjointly representable semigroup and sup-
pose I is an ideal of S. Then the Rees quotient S/I is also finitely and disjointly
representable.

Proof. Let φ : S → ℘(X × X) be a finite, disjoint representation, representing 0 as
the empty set. Define a new representation ψ such that

ψ : S → ℘((X × S1′\I)× (X × S1′\I))

s → {((x, a), (y, as)) : (x, y) ∈ φ(s) and a, as ∈ S1′\I}.
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We note that if S contains a 0 element, then 0 ∈ I and so ψ would represent 0 as the
empty set.

To verify that composition moves are represented correctly, consider the composition
ab in ψ(S/I). That is, consider the situation as in Figure 3.9. Since tab /∈ I, we can
be sure that (ab) /∈ I. Then, since (x, y) ∈ φ(a), (y, z) ∈ φ(b) and (x, z) ∈ φ(ab),
we have that ((x, t), (z, tab)) ∈ ψ(ab) as in Figure 3.10. That is, compositions are
respected by ψ.

(x, t)

(y, ta)

(z, tab)

a b

Figure 3.9: A composition in ψ(S)

(x, t)

(y, ta)

(z, tab)

a b

ab

Figure 3.10: The completed composition

Now suppose a, b, c ∈ S\I such that ab = c and we witness ((x, t), (z, tc)) ∈ ψ(c).
First we note that there exists y ∈ X such that (x, y) ∈ φ(a) and (y, z) ∈ φ(b), since
φ is a representation of S. Since tc /∈ I and tc = tab it follows that ta /∈ I. Thus
((x, t), (y, ta)) ∈ ψ(a). Then ((y, ta), (z, tab)) ∈ ψ(b) also. Hence are are able to
witness ab = c in ψ(S\I).

Next we note that ψ represents S\I disjointly. This is because ((x, t), (y, ta)) ∈ ψ(a)

and ((x, t), (y, ta)) ∈ ψ(b). So (x, y) ∈ φ(a) and (x, y) ∈ φ(b) which implies a = b.
Hence, ψ is a finite and disjoint representation of S\I.

Finally we observe that ψ represents S\I faithfully. By disjointness, this just requires
that each a ∈ S\I labels some edge. Let (x, y) ∈ φ(a). Then ((x, 1′), (y, a)) ∈ ψ(a),
as required.

There exists something of a weak converse to this lemma.

Lemma 3.3.2. Let I1, I2 be ideals of a semigroup S with 0 such that I1 ∩ I2 = {0}.
If S/I1 and S/I2 are finitely and disjointly representable, then so too is S.

Proof. Let φ1 and φ2 be finite disjoint representations as follows:

φ1 : S/I1 → ℘(X ×X)

φ2 : S/I2 → ℘(Y × Y ).
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Define a function φ such that

φ : S → ℘((X ∪ Y )× (X ∪ Y ))

s → φ1(s) t φ2(s)

where t is the disjoint union. That is to say, the image of φ is the disjoint union of
the images of φ1 and φ2. Since each of these two components is itself a finite disjoint
representation of its respective Rees quotient, composition is preserved in each, and
therefore in the image of φ. Furthermore, a disjoint union of representations, each of
which is itself disjoint, must also be disjoint, since no elements are introduced to an
edge coming from either φ1(S/I1) or φ2(S/I2).

Furthermore, for every element in the image of S under φ, we can witness a composi-
tion above it in either φ1 or φ2, or potentially both. Suppose (x, z) ∈ φ(c) with ab = c.
Since I1 ∩ I2 = {0} the element e cannot appear in both I1 and I2. Suppose without
loss of generality that c /∈ I2. Then c will appear in φ2(S/I2). Since c 6J a and
c 6J b we know that a, b /∈ I2, so none of these elements will be collapsed in S/I2. As
φ2 is a representation there exists y ∈ Y such that (x, y) ∈ φ2(a) and (y, z) ∈ φ2(b).
This node y will also appear in φ(S), and so the composition ab = c is witnessed.
Hence, witness moves are preserved by φ.

Rees quotients can be used to define a special kind of direct product we call a pure
direct product .

Definition 3.3.3. Let S and T be semigroups, each with a 0. The pure direct product
of semigroups S and T , denoted S ⊗ T , is the Rees quotient of the direct product
S × T by the ideal consisting of all elements with at least one coordinate equal to 0.

We say that a congruence θ saturates 0 if x θ 0 =⇒ x = 0. That is, the congruence
class [0] is just the singleton {0}.

Lemma 3.3.4. Let θ1 and θ2 be two 0-saturating congruences on a semigroup S and
such that θ1∧ θ2 = {(x, x) : x ∈ S}, the diagonal congruence. Then S embeds into the
pure direct product S/θ1 ⊗ S/θ2.

Proof. Define the map h as follows:

h : S → S/θ1 ⊗ S/θ2

s 7→

{
0 if s = 0

(s/θ1, s/θ2) otherwise.
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Suppose h(s) = (x, y) ∈ S/θ1 ⊗ S/θ2. If x = 0 then the θ1 class containing s would
be {0}, as θ1 is 0-saturating. Similarly, if y = 0 then the θ2 class containing s would
be {0}. Hence, the map h is well-defined.

Since both θ1 and θ2 saturate 0, if either x or y is 0 then s = 0.

Suppose h(x) = (x/θ1, x/θ2) and h(y) = (y/θ1, y/θ2) are elements of S/θ1⊗S/θ2 with
each coordinate non-zero. Suppose furthermore that (x/θ1, x/θ2) = (y/θ1, y/θ2). So
θ1 and θ2 agree on these coordinates. But θ1 ∧ θ2 = {(x, x) : x ∈ S}, and so x = y.
Hence, h is injective.

Finally we check that h is a homomorphism. If s1 = 0 then h(s1) = 0 and if s2 = 0

then h(s2) = 0. In either case it is trivially true that h(s1)h(s2) = h(s1s2), so suppose
that neither s1 or s2 is 0.

Then

h(s1)h(s2) = (s1/θ1, s1/θ2) (s2/θ1, s2/θ2)

= ((s1/θ1)(s2/θ1), (s1/θ2)(/s2/θ2))

= ((s1s2)/θ1, (s1s2)/θ2) .

If s1s2 = 0 then this last line is equal to h(0, 0) = 0, and so h(s1, s2) = h(s1s2). If
s1s2 6= 0 then this last line is equal to h(s1s2). Hence, h is a homomorphism and so
an embedding.

Theorem 3.3.5. Let θ1 and θ2 be two congruences on a semigroup S saturating 0

and such that θ1 ∧ θ2 = {(x, x) : x ∈ S}, the diagonal congruence. If S/θ1 and S/θ2

are finitely and disjointly representable with 0 represented as the empty relation, then
so is S.

Proof. Let φ1 : S/θ1 → ℘(X×X) and φ2 : S/θ2 → ℘(Y ×Y ) be such representations.
Define a map φ : S/θ1⊗S/θ2 → ℘((X ×Y )× (X ×Y )) such that ((x1, y1), (x2, y2)) ∈
φ(a, b) if and only if (x1, x2) ∈ φ1(a) and (y1, y2) ∈ φ2(b).

Composition is pointwise and, since φ1 and φ2 respect composition, so too does φ.
We also note that 0 cannot appear as a coordinate in the image of S/θ1 ⊗ S/θ2

under φ. Suppose it did appear; that is, suppose without loss of generality that
((x1, y1), (x2, y2)) ∈ φ(0, b) for some b ∈ S. Then (x1, x2) ∈ φ1(0). But φ1 represents
0 as the empty relation, so this cannot be.

Now all that remains is to verify that witness moves are preserved by φ. Suppose
((x1, z1), (x2, z2)) ∈ φ(c1, c2) and (a1, a2)(b1, b2) = (c1, c2). Since witness moves are
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preserved in φ1 and φ2 there exists y1 ∈ X and y2 ∈ Y such that

(x1, y1) ∈ φ1(a1) (x2, y2) ∈ φ2(b1)

(y1, z1) ∈ φ1(a2) (y2, z2) ∈ φ2(b2).

So we can find the composition shown in Figure 3.11 in the image of S/θ1 ⊗ S/θ2

under φ. Hence, witness moves are correctly represented by φ.

(x1, y1)

(x2, y2)

(x3, y3)

(a1, a2) (b1, b2)

(c1, c2)

Figure 3.11: Witnessing a composition in the representation φ

Finally we note that φ represents S/θ1 ⊗ S/θ2 disjointly, for if it did not we could
project down to either coordinate to obtain a non-disjoint representation with φ1 or φ2.
Now we take φ ◦ h : S → ℘((X × Y )× (X × Y )), with h as defined in Lemma 3.3.4,
as our representation.

While D is not closed under taking (finite) direct products or quotients, it is closed
under taking (finite) pure direct products and Rees quotients. Furthermore, we have
from Theorem 3.2.5 that every regular J -class in a semigroup in D must be maximal
with respect to 6J .

As we will prove shortly, the end result is that to consider finite disjoint representabil-
ity of semigroups, we need only consider the semigroups with a particularly restrictive
J -structure. Specifically, we need only consider semigroups in which all nonmaximal
J classes are not regular and in which there is only one J -class above the J -class
containing 0.

The following lemma will set us up to use induction to prove this.

Lemma 3.3.6. Let S be a finite semigroup with 0, and suppose that S has minimal
nonzero J classes U1, U2, . . . , Un. Denote by I1, I2, . . . In the ideals U1 ∪ {0}, U2 ∪
{0}, . . . , Un ∪ {0}. For each subset ∅ 6= A ⊂ {I1, I2, . . . , Ik} let Ā be the ideal of all
elements dividing (below with respect to the J order) the nonzero elements of

⋃
I∈A I

and not dividing the nonzero elements of
⋃
I /∈A I. Then the minimal nonzero J -classes

of S/Ā are those in the ideals in {I1, . . . , Ik}\A.
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Before we get to the proof, let us take a moment to visualise this lemma. Consider
a semigroup with minimal nonzero J -classes U1, U2, U3, U4. When we union each of
these with 0 we get the ideals I1, I2, I3, I4. An example of such a semigroup S is given
in Figure 3.12, and this particular example includes additional J -classes V1 and V2,
and with A = {I3, I4}.

0

U1 U2 U3 U4

V1 V2

I1 I2 A

Figure 3.12: Minimal nonzero J -classes and associated ideals for a semigroup S

If we quotient S by the ideal generated by the union of the ideals in A then we identify
U3 and U4 with 0. The J -class V2 ‘moves down’ the J -ordering. The minimal nonzero
J -classes of S/A are then U1, U2 and V2.

Now we extend A to Ā. In this example every element of V2 is above an element of U4,
but not above any nonzero element in I1∪ I2. Hence, V2 ⊆ Ā. This is not the case for
V1 for which every element is above an element of I2. Hence, V1 * Ā. If we quotient S
by Ā then U3, U4 and V2 are identified with zero, and we are left with two remaining
minimal nonzero J -classes: U1 and U2. This result is shown in Figure 3.13.

In other words, this lemma allows us to quotient in such a way that we can get rid of
minimal nonzero J -classes without introducing new ones.

Proof. When we quotient by an ideal, we identify every element in that ideal with 0.
Since either no element of a J -class or every element of a J -class is in an ideal, this has
the effect of identifying entire J -classes with 0. A nonzero J -class U /∈ {U1, . . . , Uk}
that is minimal in S/Ā can only arise if it is above a nonzero element of Ā and not
above any nonzero element of {I1, . . . , Ik}\A. That is, U would be a non-minimal
J -class in S that ‘moves down’ the J -ordering when we identify J class below it
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0

U1 U2

V1

Figure 3.13: Minimal nonzero J -classes in S/Ā

with 0. Yet we have defined Ā such that no J -class can be above it without being
above a nonzero element in {I1, . . . , Ik}\A.

As a consequence, the number of minimal nonzero J -classes in S/Ā is k − |A|. We
also note that if S/A is representable, then so too is S/Ā by Lemma 3.3.1. This allows
us to prove the following theorem.

Theorem 3.3.7. Let S be a finite semigroup with 0, and suppose that S has minimal
nonzero J classes U1, U2, . . . , Un with n > 2. Denote by I1, I2, . . . In the ideals U1 ∪
{0}, U2 ∪ {0}, . . . , Un ∪ {0} and let I = I1 ∪ I2 ∪ · · · ∪ In. Then S is finitely and
disjointly representable if and only if each of the Rees quotients S/(I\U1), S/(I\U2),
. . . , S/(I\Un) is finitely and disjointly representable.

Proof. Each of the (I\Un) is an ideal of S. If S is finitely and disjointly representable
then by Lemma 3.3.1 so too is each of S/(I\U1), S/(I\U2), . . . , S/(I\Un).

We prove the converse by induction. We note that the base case of n = 2 is a direct
application of Lemma 3.3.2. Suppose the statement is true for semigroups with k

minimal nonzero J -classes. That is, suppose that for all semigroups S with minimal
nonzero J -classes U1, U2, . . . , Uk, if each of S/(I\U1), S/(I\U2), . . . , S/(I\Un) is
representable then so too is S.

Now consider a semigroup with minimal nonzero J -classes U1, U2, . . . , Uk, Uk+1 and
suppose that each of S/(I\U1), S/(I\U2), . . . , S/(I\Uk), S/(I\Uk+1) is finitely and
disjointly representable. Then by Lemma 3.3.6, S/Ik+1 has k minimal ideals. By the
inductive assumption, S/Ik+1 is finitely and disjointly representable. So now we have
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that Ik+1 and (I\Uk+1) are ideals of S intersecting at {0}. By Lemma 3.3.2, S is
finitely and disjointly representable.

This restrictive J -structure outlines a potential proof approach to defining a charac-
terisation of D . While we were unable to find such a representation, we conjecture that
the conditions in Lemma 3.1.11 and its dual, Corollary 3.1.12, are not only necessary
but sufficient for the finite disjoint representability of a semigroup.

Conjecture 3.3.8. Let S be a finite semigroup. Then S is finitely disjointly repre-
sentable if and only if for all distinct elements b, c, e ∈ S with e idempotent, 0 6= ecb =

cb =⇒ ec = c and 0 6= ecb = cb =⇒ ec = c.

3.4 Representations as functions

A special kind of representation is one in which every element of the algebra acts
as a function4. That is, a representation h over a domain X is a representation as
functions if for all x, y, z ∈ X and for all elements a of the algebra, (x, y) ∈ h(a) and
(x, z) ∈ h(a) implies y = z. This is analogous to the requirement that for a function
to be well-formed, an element in the domain must be mapped to a unique element in
the codomain.

We finish this chapter with a brief exploration of representations of meet-ordered
semigroups in which the meet semilattice is flat. First we note that the more general
case has been covered by Garvac′kĭı [27].

Theorem 3.4.1 ([27]). Let A be an algebra in the signature (;, ·). Then A is repre-
sentable as an algebra of functions if and only if the following axioms hold:

1. ((a · b)c) · (ac) = (a · b)c

2. a(b · c) = (ab) · (ac)

3. ((u · v)a) · ((v · w)b) = ((u · w)a) · ((v · w)b)

These conditions are much simpler for the case in which · is flat. Schein [82] was
the first to prove the following using difference semigroups with methods not covered
here. We offer another proof.

4What we call a ‘function’ here might be referred to as a ‘partial function’ in other texts.
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Theorem 3.4.2. Let S be an algebra in the signature (;, ·, 0) such that · is the meet
operation of a flat semilattice. That is, a · b = a if a = b and 0 otherwise. Then S is
representable as an algebra of functions if and only if

0 6= xa = xb =⇒ a = b.

Proof. For such an algebra S we construct a representation similar to that of Cayley’s
theorem (Theorem 3.1.2). Specifically, with S1′ the monoid into which the underlying
semigroup of S embeds, we have that for all x, y ∈ S1′ and a ∈ S, (x, y) ∈ ϕ(s) if and
only if xa = y.

In the representation we then delete the point corresponding to 0, and all edges to
and from it. This also has the effect of forcing 0 to be represented as the empty set.

First we prove that ϕ is a representation of S. Composition moves are respected as
if (x, y) ∈ ϕ(a) and (y, z) ∈ ϕ(b) then y = xa and z = yb. Hence, z = x(ab) and so
(x, z) ∈ ϕ(ab). Witness moves are also respected: if (x, z) ∈ ϕ(sr) then xs 6= 0 and
so (x, xs) ∈ ϕ(s) and (xs, z) ∈ ϕ(r). The representation is faithful since we included
1′ as a point in the domain, and so (1′, a) ∈ ϕ(s) if and only if a = s.

Now we check that the representation is disjoint, that is, it respects ·. Suppose
(x, y) ∈ ϕ(a) and (x, y) ∈ ϕ(b) with a 6= b. Then y = xa and y = xb. Since
we removed the vertex 0 from the representation, we have that 0 6= xa = xb. By
assumption, a = b and so the representation is disjoint.

Finally we check that the representation is that of an algebra of functions. Suppose
(x, y) ∈ ϕ(a) and (x, z) ∈ ϕ(a). Then y = xa and z = xa and so y = z.

For the other direction, suppose that h is a representation of S as an algebra of
functions. Suppose we have that 0 6= xa = xb. That is, in the representation given
by h we have the situation as drawn in Figure 3.14.

y1

y1

x

x

a

b

Figure 3.14: The situation xa = xb in a representation of S as an algebra of functions

Then, since h represents every element as a function, we have that y1 = y2. Hence,
xa = xb. Since the representation is disjoint, a = b.
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Chapter 4

Qualitative representations

The situation with relation algebras is rather dismal. Representability cannot be
characterised by a finite number of elementary axioms. In fact, there isn’t even
any possible algorithm that can decide, for every finite relation algebra, whether
or not a representation exists. In Chapters 2 and 3 we weakened the signature or
placed additional restrictions on the algebra. In this chapter, we will look instead at
weakening the notion of a representation.

First let us fix our terminology. Let’s call the concept of representation that we
introduced in Chapter 1 a relation algebra representation. This is to distinguish it
from the weaker notions of representation that we are about to introduce.

The first such notion is a weak representation1, which has been extensively discussed
in the literature. In weakening the notion of representation, we also need to weaken
the abstract setting as well. What a relation algebra is to a relation algebra represen-
tation, a nonassociative algebra is to a weak representation. Every relation algebra is
a nonassociative algebra, but the converse is not true. Every relation algebra repre-
sentation is a weak representation but here too, the converse is not true.

When we talk about representations of a relation algebra we usually refer to an iso-
morphism onto a proper relation algebra, as per Definition 1.1.5. We would expect
the same when talking about weak representations of nonassociative algebras, but
this is not the case. In fact, nonisomorphic nonassociative algebras can share weak
representations.

This is not the case for qualitative representations . Qualitative representations tend
to be implicit in works on weak representations, e.g. [51], but the first clear defini-
tion is given by Hirsch et al. [38]. We will define all of these concepts properly, but

1We do not discuss the concept of a weak representation as discussed by Jónsson and Tarski [46].
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intuitively, a qualitative representation is stronger than a weak representation but
weaker than a relation algebra representation. In a relation algebra representation,
every composition must be seen wherever it can be seen; that is, composition must
be represented through both composition moves and witness moves. In a weak rep-
resentation, we require only composition moves. In a qualitative representation, we
require composition moves, and that every composition appear at least once in the
representation. That is, if c 6 a ; b, then in a qualitative representation we should
see a triangle representing this composition somewhere. However, we do not need to
witness a ; b above every c.

Weak representations have a plethora of practical applications through the use of
constraint satisfaction. Researchers have used nonassociative algebras and their weak
representations to move a robot past a human in a narrow corridor [30], identify the
leaders of a flock of birds [59], and even to play Angry Birds [92]. A constraint may
be something like “move the robot through the corridor” or “do not collide with a
human” expressed in relational terms. A satisfaction of these constraints is a weak
representation of the underlying nonassociative algebra in which the conjunction of
these constraints is true.

This chapter is primarily concerned with qualitative representations. In Section 4.4
we survey the constraint satisfaction properties of nonassociative algebras on at most
three atoms, in which the desired representation is to be qualitative. In Section 4.5
we survey the qualitative representability of all algebras on at most four atoms, with
the results given in Appendix A. Where a qualitative representation exists, we give a
small example as a digraph or matrix.

4.1 Weak representations

In 1983, James Allen [1] introduced a novel representation of temporal relations now
known as Allen’s Interval Algebra. Rather than associating each fact with a specific
date and time, Allen’s method allowed “significant imprecision”, in that the temporal
knowledge contained within the model is strictly relative—we can claim that one event
occurred before another, even though we might not know the exact relation between
the two events.

There are advantages to such a system. In particular, we abandon the concept of
scale, allowing us to talk about the millennia between archaeological periods and the
nanoseconds between microprocessor operations similarly. Allen’s interval algebra
suits us whenever we care only about the temporal relations between events.
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The algebra itself is defined on binary relations between intervals, with 13 atoms as
shown in Table 4.1, which is a copy of Table 1.10. Every relation has a converse with
an intuitive interpretation; for example, if an interval a occurs before an interval b,
then the converse of this relation is that the interval b occurs after the inverval a.
Note that the converse of equality is equality.

Example Relation Converse
a

b a before b b after a
a

b a meets b b is met by a
a

b a overlaps with b b is overlapped by a
a

b a starts b b is started by a
a

b a during b b contains a
a

b a finishes b b is finished by a
a

b a equals b b equals a

Table 4.1: The Atoms of Allen’s interval algebra

As mentioned in Chapter 1, these are the atoms of a relation algebra [58, Chapter 6].
We can build more binary relations from these atoms by equipping the algebra with the
relation algebra operations. For example, we can compose one relation with another.
If an interval a occurs before an interval b, and b starts an interval c, then we conclude
that a occurs before c. We may also equip our algebra with union and intersection,
to be interpreted as or and and respectively.

This example shows that algebras of relations can be used to express qualitative rea-
soning—a kind of reasoning that seeks to “represent continuous properties of the world
by discrete systems of symbols” [17]. In particular, we consider temporal and spatial
relations as two major families of qualitative reasoning. We’ll make this definition
more precise shortly, but before we do, let us consider the prototypical example of
spatial reasoning: RCC8 .

Taking its name from its authors Randell, Cui and Cohn [71], along with its number
of atoms2, RCC8 discusses the ways in which regions of space can interact. Its atoms
are equality (EQ), disconnected (DC), externally connected (EC), partially overlaps
(PO), tangential proper part and its negation (TPP and NTPP), and converse or
inverses of these last two (TPPI and NTPPI). These relations, along with examples,
are described in Figure 4.2.

2RCC8 is also referred to as the region connective calculus [75, pp. 43].
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Example Relation Example Relation

X Y

X DCY

X
Y

X NTPPY
Y NTPPIX

X Y

X ECY
X

Y

X TPPY
Y TPPIX

X Y

X POY

X, Y

X EQY

Table 4.2: The Atoms of RCC8

As we did with Allen’s interval algebra, we can equip the atoms of RCC8 with the
operations of a relation algebra. Certainly we can conjoin and disjoin spatial relations
with intersection and union, respectively, and the atoms are designed to talk in terms
of converses and negation. Indeed, RCC8 is a relation algebra [74].

The relation algebra representability of RCC falls apart, however, when we consider
composition. Take as an example the spatial relations between regions X, Y and Z
in Figure 4.3, in which we see that EC 6 EC ; EC. In Figure 4.4, we have a region
Y with a hole filled entirely by X, and so X ECY . But there is no room for a third
region Z to witness EC 6 EC ; EC. Therefore our concept of composition is simply
too strong to accurately capture the composition of spatial regions under RCC8.

X Y

Z

Figure 4.3: One possible composition in
RCC8. We see that EC 6 EC ; EC.

X
Y

Figure 4.4: A possible situation in RCC8.
Here region Y has a hole filled entirely by
X, and so X ECY .

Thus far, we have looked at Allen’s interval algebra and RCC8 as relation algebras
to be assigned relation algebra representations. Yet we cannot discuss RCC8 with
the terminology we have developed for relation algebras, since composition is not
fully respected. Indeed, if a and b are elements of some abstract algebra of relations
intended to capture the structure of RCC8, and ϕ→ ℘(U ×U) is a representation of
this algebra onto an algebra of binary relations between spatial regions, then instead
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of ϕ(a ; b) = ϕ(a) ◦ϕ(b) we see that ϕ(a ; b) ⊆ ϕ(a) ◦ϕ(b). We must define a different
kind of weaker notion of representation along with a suitable abstract setting that
accommodates this.

Naturally, we might ask what such an abstract algebra and corresponding notion
of representation would look like. It would have to capture the aspects of relation
algebras that are respected in Allen and RCC8, which are the Boolean operations,
identity relation, and converse. But it would have to support a weaker notion of
composition.

Such an abstract algebra would not only be limited to spatial and temporal reasoning.
As an example, consider the relations of a family—brother, sister, child, etc.—and
how the operations of a relation algebra would behave on this set of relations. We
would have converses (child^ = parent), Boolean operations (brother + sister =

sibling), and an identity relation, self. But composition may fail when we try to
take a representation. For example, the brother of my brother is either my brother
or self. If I am female, then the brother of my brother cannot be self. If I only
have one brother, then brother of my brother cannot be my brother. Hence, in the
representation, composition may only be a subset of what we would expect.

The underlying formalism we seek is explored in [49] and fully developed in [50]. In
particular, we consider the weaker notion of composition as given in Chapter 11 of [50].
Recall the definition of composition of binary relations R and S over a set X:

R ◦ S = {(x, y) ∈ X ×X : (∃z ∈ X)(x, y) ∈ R and (z, y) ∈ S}.

We consider instead weak composition of binary relations, defined on atoms:

Ri �Rj =
⋃
{Rk : (Ri ◦RJ) ∩Rk 6= 0} .

As we would expect, R �S ⊆ R ◦S [50, Lemma 11.1]. This is exactly the composition
we would use when considering representations of RCC8.

Recall that in Chapter 1 we considered the concrete world of algebras of binary re-
lations and from that introduced the abstract world of relation algebras. If abstract
relation algebras are inspired by concrete algebras of binary relations, what abstract
world is inspired by algebras of binary relations with weak composition? Curiously,
the foundations for the abstract world we seek were already in place before both
Allen’s and RCC8 entered the literature. Indeed, Maddux had already introduced the
following concept as part of his work on relation algebras.
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Definition 4.1.1 ([56]). A nonassociative algebra3 is an algebra

A = 〈A; ;,+, ·,−, ,̆ 1′, 0, 1〉

with type 〈2, 2, 2, 1, 1, 0, 0, 0〉 such that:

• 〈A; +, ·,−, 0, 1〉 is a Boolean algebra,

• x = x ; 1′ = 1′ ; x for all x ∈ A. That is, 1′ is an identity element,

• (x ; y) · z = 0 if and only if (x˘ ; z) · y = 0 for all x, y, z ∈ A,

• (y ; x) · z = 0 if and only if (z ; x )̆ · y = 0 for all x, y, z ∈ A.

A nonassociative algebra is a relation algebra4 if, for all x, y, z ∈ A,

x ; (y ; z) = (x ; y) ; z.

What a relation algebra representation is to a relation algebra, a weak representation
is to a nonassociative algebra. Every relation algebra representation is a weak rep-
resentation, although the converse does not hold. Furthermore, relation algebras are
precisely the nonassociative algebras in which composition is associative.

We’ve glossed over the justification for using nonassociative algebras as the abstract
setting for weak representations. This is best explored through the use of partition
schemes. The intuitive idea is that, among all possible relations between two entities
(intervals of time, points in space, etc.), a partition scheme is built on a finite set of
“qualitative” atomic relations [50, Chapter 11]. From a partition scheme, an algebra
can be derived, and this algebra is always a nonassociative algebra, but not necessarily
a relation algebra. The original partition scheme defines a weak representation of the
algebra. This is explored in detail in [51].

We can now formally define a weak representation of a nonassociative algebra.

Definition 4.1.2 ([51, Definition 3]). Let A = 〈A, ;,+, ·,6,−, ,̆ 1′, 0, 1〉 be a nonasso-
ciative algebra over a set A. A weak representation of A is function ϕ : A → ℘(U×U)

such that

• ϕ : 〈A; +, ·,−, 0, 1〉 → ℘(U × U) ,

• ϕ(1′) = {(x, y) ∈ U × U : x = y},

• ϕ(ă ) = {(y, x) ∈ U × U : (x, y) ∈ ϕ(a)}, and
3A more accurate term would be not-necessarily-associative algebra.
4One could also refer to these as associative nonassociative algebras. Of course, we won’t do this.
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• ϕ(a ; b) ⊆ ϕ(a) ◦ ϕ(b).

That is to say, φ is a homomorphism of the Boolean reduct ofA, and preserves identity
1′ and converse ,̆ but does not fully respect composition ;. If ϕ is a weak representation
of A, injective, and respects composition (such that ϕ(a ; b) = ϕ(a) ◦ ϕ(b)), then ϕ is
simply a representation. Clearly if A is a relation algebra and φ is a representation of
A, then φ is also a weak representation. This is the formalism we desired. It respects
all of the properties of relation algebras and their representations that RCC8 does,
but allows for a weaker concept of composition.

4.2 Constraint satisfaction

At the beginning of this chapter we mentioned that qualitative representations form
the basis of a certain kind of constraint satisfaction problem. The general study of
constraint satisfaction problems extends far beyond what we discuss here. We assume
that all constraint networks are on binary relations, yet this does not need to hold
in general. Constraint satisfaction problems are also not limited to nonassociative
algebras and their representations, but could consider any relational structure.

Definition 4.2.1. A constraint network over a nonassociative algebra A is a set of
variables {x1, x2, . . . , xn} and a set of logical expressions xiaxj, where a is an element
of A. These logical expressions are referred to as constraints . We will often write
simply {xi} instead of {xi : i, j 6 n}.

A constraint network over A is satisfiable in a representationM if there is a map f
from the variables {xi} to the vertices ofM respecting the constraints. That is, for
every constraint xiaxj, (f(xi), f(xj)) ∈ aM, where aM is the assignment of a in the
representationM.

For a fixed representation M the problem of deciding whether or not an arbitrary
constaint network is satisfiable in M is denoted CSP(M). When we discuss the
complexity of a CSP problem, we do so with reference to the number of variables.

Recall from Chapter 1 that a relation algebra representation of an atomic relation
algebra is an edge-labelled digraph in which every label is an atom of the relation
algebra. The same is true for weak representations of atomic nonassociative alge-
bras. We can therefore consider a satisfaction of a constraint network over an atomic
nonassociative algebra as a refinement of the constraints into atoms.

Example 4.2.2 (StarVars). Lee, Renz and Wolter [48] define the StarVars constraint
language on m atoms, denoted SVm. The intended qualitative representation is that
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of oriented points in the plane. The language is defined over the domain R2 divided
into m equal sectors centred on an oriented point. For example, SV8 is shown in
Figure 4.5. The relation from A to B is the sector5 in which B falls relative to A with
arrow orientation relative to A.

0

1

2

3 4

5

6

7

Figure 4.5: StarVars on eight variables, SV8

Denote by [[n]] a sector labelled by n. Denote by [[r..s]] the disjunction of sectors r
through s−1. For example, [[1..4]] = [[1]]+[[2]]+[[3]]. A constraint satisfaction prob-
lem over SVm is then a set of variables x1, x2, . . . , xn with a set of constraints Ξ, with
each C ∈ Ξ a relation from the nonassociative algebra generated by [[0]], . . . , [[m]].
To satisfy these constraints, one must assign to each xi a coordinate in R2 and an
orientation such that the relations in Ξ hold.

The problem CSP(SVm) is the problem of deciding whether or not an arbitrary set
of contraints over SVm for an arbitrary finite set of points {xi} is satisfiable. Weak
representations are the ideal setting for this problem because the only requirement
is consistency; we do not need to see every witness move respected. Lee, Renz and
Wolter prove that CSP(SV2) is NP-hard and give an algorithm that solves CSP(SVm)

in NP for all m.

The authors also give a fascinating practical application of SV8, considering each
point as a boat travelling in a particular direction. They then consider the following
regulation from The International Maritime Organization (IMO).

“When two sailing vessels are approaching one another, as to involve the
risk of collision, one of them shall keep out of the way of the other as
follows: (i) when each has the wind on a different side, the vessel which
has the wind on the port side shall keep out of the way of the other.”
(Rule 12 i, IMO)

5We ignore the lines in this example but there are several conventions one can take.
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This regulation describes the disjunction of constraints φ(K,G,W ) for boats K and
G and wind W .

φ(K,G,W ) :=


K[[0..4]]W (wind on port of K)

+G[[0..4]]W (wind on starboard of G)
+G[[0..4]]K (G heading towards K)
+K[[0..4]]G (K heading towards G)

Lee, Renoz and Wolter then go on to define two relations which, according to the
above regulation, force G to turn to either port or starboard.

α(K,G,W ) := φ(K,G,W ) +G[[0..4]]K

β(K,G,W ) := φ(K,G,W ) +G[[4..0]]K

The IMO regulation describes a situation with two boats, but what about three? Can
we find a configuration with three boats, K,G,H such that G must turn to port
and starboard simultaneously? That is, can we find a satisfaction of the constraing
α(K,G,W ) · β(H,G,W )? The authors run these constraints through their algorithm
and find such a situation, shown in Figure 4.6.

G

K H

wind

Figure 4.6: In this situation, G must turn to port and starboard simulataneously.

This is a practical problem which does not rely on the underlying associativity of a
relation algebra at all. We do not need to check that witness moves are represented
correctly, only composition moves. Hence, weak representations are a suitable concept
for spatial constraint problems like this.

The above example considered a fixed representation of oriented points in the real
plane. To study constraint satisfaction more generally, we begin with a nonassociative
algebra. One can either fix a representationM or consider the more general problem
in which a constraint network can be satisfiable in any representation.

Definition 4.2.3 ([19]). Let A be a nonassociative algebra. We define the following
to be agnostic about the type of representation being considered. For a fixed rep-
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resentation M of A, we denote by M-SAT the computational problem of deciding
whether or not an arbitrary instance of CSP(M) is satisfiable. The general satisfac-
tion problem gen-SAT denotes the computational problem of deciding whether or not
an arbitrary constraint network over A is satisfiable in some representation of A.

Clearly if A is not representable, then gen-SAT can be decided in constant time.

The following is a consequence of a theorem of Schaefer [77], and relies on earlier work
of Post [69]. Bodirsky [7] also offers a convenient summary of constraint satisfaction
over templates of size 2.

Theorem 4.2.4 ([69, 77]). If M is a representation of size 2 then M-SAT can be
solved in polynomial time.

Definition 4.2.5. A set of constraints is closed if

• whenever xiaxj and xjbxk are constraints there exists a constraint xicxk such
that c 6 a ; b,

• if xiaxj is a constraint then xj ă xi is a constraint, and

• for all xi there exists an element e 6 1′ such that xiexi is a constraint.

When we consider constraint satisfaction with binary relations there are certain ‘tricks’
that can be performed in polynomial time and so come ‘for free’. One such trick is the
propagation algorithm, which runs in cubic time [1, 19]. For a given set of constraints
Ξ, this algorithm

• adds in the constraint xi1′xi for all xi,

• replaces a constraint xiaxj by xi(a · b̆ )xj whenever xiaxj and xjbxi are con-
straints,

• replaces a constraint xicxk by xi(c ·(a ;b))xk, or adds xi(a ·b)xk if no xicxk exists,
whenever xiaxj and xjbxk are constraints, and

• can repeat the above steps until stabilised.

Because of the propagation algorithm, we can restrict our focus to closed, nonzero
constraint networks. The following lemma is analogous to Proposition 5 in [19].

Lemma 4.2.6. LetM be a qualitative representation of a nonassociative algebra A.
The decision problemM-SAT reduces in cubic time to the problem of deciding whether
or not a closed set of constraints is satisfiable inM.

One can also check to make sure that there are no zero constraints in linear time,
simply by checking every constraint in Ξ. A constraint network with a zero relation
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cannot be satisfied, since 0 must always be represented as ∅. We can also collapse
points related by 1′.

Lemma 4.2.7. We can identify points in a constraint network related by 1′ in LOG-
SPACE.

Proof. Consider each 1′-labelled edge as an edge in an undirected graph. The points
to be identified are those reachable from one another in this graph. Undirected graph
reachability is solvable in LOGSPACE [73].

Definition 4.2.8. A representationM of an algebra is said to be universal if every
nonzero closed network of that algebra embeds intoM.

An important consequence of the existence of a universal representation is the follow-
ing analogue of [19, Lemma 6].

Lemma 4.2.9. If a nonassociative algebra A has a universal representationM then
M-SAT and gen-SAT have at worst cubic complexity, and M-SAT coincides with
gen-SAT.

4.3 Qualitative representations

In a representation of a relation algebra, if a ; b = c and h is a representation, then
whenever (x, y) ∈ h(c) there must exist another point z such that (x, z) ∈ h(a) and
(z, y) ∈ h(b). To recall the terminology introduced in Chapter 1, this is just to
say that all witness moves must be respected. This requirement is dropped when
discussing weak representations. We do still demand, however, that composition
moves are respected; that is, whenever (x, z) ∈ h(a) and (z, y) ∈ h(b), we should see
(x, y) ∈ h(c).

To use slightly different terminology, in a weak representation there are no inconsistent
triangles. In a relation algebra representation there are no inconsistent triangles, and
every consistent triangle appears wherever it can.

Hirsch, Jackson and Kowalski [38] introduce a new concept of a qualitative represen-
tation. Once again, we demand that there are no inconsistent triangles. Unlike a
relation algebra representation, we do not require that every consistent triangle ap-
pears wherever it can. We simply demand that every consistent triangle appears at
least once in the representation. That is, a qualitative representation is between a
weak and a relation algebra representation.
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Just as for weak representations, nonassociative algebras are the ideal abstract setting
for qualitative representations. The main reason to prefer qualitative representations
to weak representations is that a weak representation need not be isomorphic to the
underlying nonassociative algebra. Indeed, different nonassociative algebras can have
the same weak representation, and Hirsch et al. give examples.

As is the case for relation algebras and relation algebra representations, there does not
exist a finite set of elementary axioms that characterise qualitative representability of
nonassociative algebras.

Theorem 4.3.1 ([38, Theorem 20]). The class of qualitatively representable nonas-
sociative algebras is not finitely axiomatisable.

Unlike relation algebras and relation algebra representations [32], qualitative repre-
sentability of finite nonassociative algebras is decidable.

Theorem 4.3.2 ([38, Theorem 15]). The problem of determining whether a finite
atom structure has a qualitative representation is NP-complete.

The algorithm given by Hirsch et al. places every consistent triangle in a partial rep-
resentation and then nondeterministically ‘guesses’ the nonedges, checking for consis-
tency. This algorithm extends to constraint satisfaction.

Theorem 4.3.3 ([38, Theorem 16]). For a finite nonassociative algebra A, gen-SAT
is in NP.

This is not the case for relation algebras, for which gen-SAT is undecidable [32]. For the
remainder of this thesis we will focus on qualitative representations of nonassociative
algebras, to the extent that we will often refer to these simply as representations.
As it turns out, there is an interesting asymptotic result for nonrepresentability of
nonassociative algebras.

Recall from Chapter 1 the distinction between triples and cycles, in that a cycle can
contain up to six triples equivalent under Peircean transforms. We can denote a cycle
by any of the triples it contains. We also speak of an algebra ‘containing’ a cycle,
that is, the algebra satisfies the equations represented by the cycle. Before we state
the next theorem, we’ll relax the notation for cycles so that we do not have to use
commas or brackets. As such, we can refer to a cycle (a, b, c) simply as abc.

Theorem 4.3.4. The proportion of representable nonassociative algebras on n atoms
in which every element is symmetric and with at least two identity atoms tends to 0

as n tends to infinity.
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Proof. Suppose for each possible cycle of a nonassociative algebra on n atoms we
have selected one triple belonging to that cycle to act as a representative. Instead of
referring to the entire set of Peircean transforms contained in a cycle, we simply refer
to its representative triple. For example, in Table 4.9 we list the cycles that might
appear in an algebra on four atoms, where a, b and c are symmetric while r and r˘
are not. The choice of representative is entirely arbitrary. If we want to uniquely
identify a nonassociative algebra by the cycles it contains we can simply specify the
representatives of those cycles, which is exactly the notational approach we take here.

We construct an algebra with K > 2 subidentity atoms. Let e and f be two distinct
subidentity atoms, that is, e · f = 0 and e + f 6 1′. Since these are subidentity
atoms we have that eee and fff are cycles and that ef = 0 = fe. We consider three
symmetric (self-converse) atoms a, b, c and the situation in Figure 4.7.

c

a b

e+ f

e f

Figure 4.7: A nonrepresentable situation that must be represented

We first add cycles in order to force this configuration in any possible representation.
We then create nonrepresentability by forbidding certain cycles in order to make it
impossible to refine the e + f loop to an atom. The cycles we require and forbid
are listed in Table 4.8, where g is any subatomic identity not equal to e or f . This
situation forces us to refine the loop labelled e+ f to be both e and f , and so is not
representable.

required forbidden
eee afa
fff beb
cfc aga
abc
cec
aea
bfb

Table 4.8: Required and forbidden cycles

Suppose we have generated an algebra withK > 2 subidentity atoms. Suppose further
that we have symmetric atoms a1, a2, . . . , an−K , for a total of n atoms. For each cycle
aiajak, decide with probability 1/2 whether or not the algebra contains aiajak. We
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do the same for cycles involving the subidentity atoms, although for every element ai
in the algebra there must exist at least one subidentity atom, say g, such that aigai
is a cycle.

For atoms ai, aj and ak there is a nonzero probability ε > 0 that triples are selected
such that ai, aj and ak act as a, b and c above, and that the forbidden atoms are
rejected. In order for the generated algebra to be representable it is necessary that
every three atoms avoids this configuration. As there are m = bn/3c disjoint sets of
three atoms, and the events of avoiding the configuration are independent, this gives
a bound of (1 − ε)m probability of the generated algebra being representable. As n
goes to infinity, this probability approaches 0.

In Section 4.5 we survey representability for all nonassociative algebras on at most
four atoms. To generate the nonassociative algebras one can use cycles similar to the
method used by Maddux [58]. Since the cycles involving identity are always present
we focus instead on the diversity cycles. Each nonassociative algebra is defined by the
cycles it contains, since we can always take Peircean transforms. All possible cycles
for nonassociative algebras on four atoms and with atomic identity—called integral
algebras—are given in Table 4.9. For each cycle we list the triples it includes as well
as a ‘representative’ triple, which matches that used by Maddux. The possible cycles
for smaller integral nonassociative algebras are easily derived from this table.

Cycles for smaller nonassociative algebras or nonassociative algebras with nonatomic
identity can be derived from these tables. The code we use to generate composition
tables for nonassociative algebras on four atoms is given in Appendix C.3. We actually
use a brute-force method for generating algebras on fewer than three atoms, but
this would be far too slow for larger algebras. Diversity cycles for all nonassociative
algebras on at most four atoms are given in Appendix B.

This mirrors work done much earlier on relation algebras. Maddux notes that the
effort to enumerate integral relation algebras on at most three atoms was started by
Lyndon [55] and continued by McKenzie [61, pp. 38–40] and Backer [6]. A thorough
treatment of representability of all relation algebras with at most eight elements (as
opposed to eight atoms) is given by Andreka and Maddux[4].

Maddux lists the cycles of all relation algebras on at most five atoms, assigning them
an index according to their atom structure. For example, there are 37 integral rela-
tion algebras on 1′, a, r, r ,̆ up to isomorphism, and so he numbers these #137 through
#3737. While we use our own indexing here, we offer Maddux’s label where rele-
vant.

In Section 4.4 we survey the constraint satisfaction properties of all nonassociative
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representative cycle
1′1′1′ 1′1′1′

1′a1′, a1′1′, 1′1′a
1′b1′, 1′1′b, b1′1′

1′1′c, c1′1′, 1′c1′

1′aa aa1′, 1′aa, a1′a
a1′b, ab1′, b1′a, 1′ba, ba1′, 1′ab
1′ca, ac1′, ca1′, 1′ac, c1′a, a1′c

1′bb b1′b, bb1′, 1′bb
1′cb, bc1′, cb1′, c1′b, 1′bc, b1′c

1′cc 1′cc, cc1′, c1′c
aaa aaa
baa aba, baa, aab
caa aca, caa, aac
abb abb, bab, bba
abc bca, abc, bac, cba, cab, acb
acc cca, cac, acc
bbb bbb
cbb cbb, bcb, bbc
bcc cbc, bcc, ccb
ccc ccc
raa aar, raa, r ăa, aar ,̆ ar ă, ara
arr rr ă, arr, r ăr˘
rra r r̆ ă, rar ,̆ arr ,̆ r ăr, ar r̆, rra
rar rar, r r̆a, ar r̆˘
rrr rrr, rr r̆ ,̆ r r̆ r̆ ,̆ r r̆r ,̆ rr r̆, r r̆r
rrr˘ rrr ,̆ r r̆ r̆

Table 4.9: Cycles for integral nonassociative algebras on four atoms

algebras on at most three atoms. This section closely follows the work of Cristani
and Hirsch [19], who did the same but for relation algebras of the same size. In
Section 4.4 we label our small nonassociative algebras #1 through #24 in an attempt
to match the scheme used by Cristani and Hirsch. In Section 4.5—where we survey
the representability of all nonassociative algebras on at most four atoms—we use a
different numbering scheme #1 through #373.

In order to draw representations as small as possible, we will employ some conventions.
We will consider symmetric (or self-converse) atoms a, b and c. We will also consider
an atom r which is not self-converse, and so has converse r .̆ We won’t draw r˘ on any
of the representations, since its existence can always be deduced from the placement
of the atom r. Nor will we place loops on any point unless necessary since, for an
algebra with an atomic identity 1′, we can assume that there is an 1′-labelled loop on
every vertex. If the identity relation is not atomic, it will be the disjunction of atoms
e1, e2, e3, e4, where these atoms exist.
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We do not require brackets or commas when denoting a cycle, for example aaa. Similar
notation is used for relations between vertices. To avoid confusion, we will reserve x, y,
z, u, v and w for vertices. A triple xry would then read as an r-labelled edge between
x and y. We will also assume that, unless otherwise stated, all representations are
square. That is, there is an edge between every two vertices. As such, we will limit
our discussion to simple nonassociative algebras.

4.4 Nonassociative algebras on at most three atoms

Here we survey the nonassociative algebras on fewer than four atoms, including their
constraint satisfaction properties. The numbering of these algebras matches that used
in [19], where applicable. We do not discuss algebras #3 and #6–#8 in detail, as
these are not simple. Algebras #19–#24 are nonassociative algebras but not relation
algebras, and so are not mentioned in [19]. Recall that, unless stated otherwise, all
representations here are assumed to be qualitative, rather than as relation algebras.
We follow the arguments given in [19] where possible.

We begin with an overview of the qualitative representability of all nonassociative
algebras on fewer than four atoms, shown in Table 4.10. Along with an atom table
for the algebra we note whether or not the algebra is a relation algebra (RA). All
relation algebras on fewer than four atoms are representable [4]. We also note the
index of each relation algebra assigned by Maddux [58], where applicable. If the
algebra is qualitatively representable, we give an example of a representation. The
representations given are on the smallest number of vertices possible.

In drawing the representations, it is often convenient to omit 1′. Unless otherwise
noted, assume that all vertices in the representation are related to themselves by an
1′-labelled loop. We can also simplify the representations by representing only one
atom of a pair of converses. For example, if r is an atom and r˘ is its converse, we
can infer from xry that yr˘x. Thus, it suffices to draw only an r-labelled edge.

atom table RA QRNA

#1: no atoms yes yes, on ∅

#2 1′

1′ 1′
yes
11

1′
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atom table RA QRNA

#3 e1 e2

e1 e1 0

e2 0 e2

yes
not simple:
#2×#2

#4 1′ a

1′ 1′ a

a a 1′

yes
12

a

#5 1′ a

1′ 1′ a

a a 1

yes
22

a

a a

#6 e1 e2 e3

e1 e1 0 0

e2 0 e2 0

e3 0 0 e3

yes
not simple:

#2×#2×#2

#7 e1 e2 a

e1 e1 0 0

e2 0 e2 a

a 0 a e2

yes
not simple:
#2×#4

#8 e1 e2 a

e1 e1 0 0

e2 0 e2 a

a 0 a −e1

yes
not simple:
#2×#5

#9 1′ r r˘

1′ 1′ r r˘

r r r˘ 1′

r˘ r˘ 1′ r

yes
23

r

r r

#10 1′ r r˘

1′ 1′ r r˘

r r r 1

r˘ r˘ 1 r˘

yes
13

r

r r
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atom table RA QRNA

#11 1′ r r˘

1′ 1′ r r˘

r r 0′ 1

r˘ r˘ 1 0′

yes
33

r

r

r

r
rr

#12 1′ a b

1′ 1′ a b

a a 1′ b

b b b −b

yes
17

b

b a

#13 1′ a b

1′ 1′ a b

a a −b b

b b b −b

yes
27

a

b

a

b
ba

#14 1′ a b

1′ 1′ a b

a a 1′ b

b b b 1

yes
37

a

b

b

b
bb

#15 1′ a b

1′ 1′ a b

a a −b b

b b b 1

yes
47

b

a

b

a
ba

b

bb

b

#16 1′ a b

1′ 1′ a b

a a −a 0′

b b 0′ −b

yes
57

b

b

a

b
aa

#17 1′ a b

1′ 1′ a b

a a −a 0′

b b 0′ 1

yes
67

a

b

a

b
bb

#18 1′ a b

1′ 1′ a b

a a 1 0′

b b 0′ 1

yes
77

a

b

a

b
bb

a

a
a

a
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atom table RA QRNA

#19 e1 e2 a

e1 e1 0 a

e2 0 e2 a

a a a 1′

no
a

e1 e2

#20 e1 e2 a

e1 e1 0 a

e2 0 e2 a

a a a 1

no

a

a a

e1 e2

e1

#21 1′ r r˘

1′ 1′ r r˘

r r 0 1′

r˘ r˘ 1′ 0

no
r1′ 1′

#22 1′ a b

1′ 1′ a b

a a 1′ 0

b b 0 1′

no no

#23 1′ a b

1′ 1′ a b

a a 1′ 0

b b 0 −a

no no

#24 1′ a b

1′ 1′ a b

a a −b 0

b b 0 −a

no no

Table 4.10: Representability of nonassociative algebras on fewer than four atoms

We will now explore the representability and constraint satisfaction properties of these
algebras in greater detail.

#1

This is the algebra with no atoms and 0 = 1. It has only one representation, and it is
on the empty set. Any nonempty constraint network is trivially unsatisfiable.
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#2

#2 1′

1′ 1′

This algebra contains only one atom, the identity atom. There is only one represen-
tation up to isomorphism, and it is on one point. Any nonzero constraint network is
trivially satisfiable in this representation.

#3

#3 e1 e2

e1 e1 0

e2 0 e2

This algebra is not simple, as it is the direct product of two copies of #2.

#4

#4 1′ a

1′ 1′ a

a a 1′

We claim that this has a unique qualitative representation on 2 points, given in Fig-
ure 4.11. This is because the only non-identity element a is not idempotent; that
is, a � a ; a. So there would be no way to label a triangle on 3 distinct points. As
such, there is only one representationM and, by Theorem 4.2.4,M-SAT is tractable.
Therefore, Gen-SAT is also tractable. Furthermore, this representation is universal [19,
Lemma 8].

a1′ 1′

Figure 4.11: The only representation of #4, up to isomorphism
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#5

#5 1′ a

1′ 1′ a

a a 1

The two atoms of this algebra are identity and an idempotent diversity. One can
construct a representation of any size at least 3 from the complete graph on n vertices,
Kn. Label every edge of Kn by a and add a 1′-labelled loop on every vertex. This
clearly respects all operations as long as n > 3. Hence, M-SAT is NP-complete for
finiteM. The smallest such representation is shown in Figure 4.12.

a

a a

Figure 4.12: The unique smallest representation of algebra #5, up to isomorphism

A universal countably infinite representation for algebra #5 is given in [19]. We offer
a different argument here. We do not need our constraint network to be closed to be
representable; a constraint network only needs to be nonzero and to satisfy one other
condition.

Lemma 4.4.1. A constraint network over algebra #5 is satisfiable if and only if it
is nonzero and does not contain a constraint configuration given in Figure 4.13 with
k > 2.

xk−1

xk−2x3

x2

x1 xka

1′

1′ 1′

1′

Figure 4.13: Unsatisfiable constraints in algebra #5

Proof. A network containing a 0-constraint is trivially inconsistent, so we focus on the
sufficiency and necessity of the absence of the configuration in Figure 4.13 instead.

Let Ξ be a nonzero constraint network over algebra #5. Variables related by 1′ are
identified as equal, while variables related by a are identified as distinct, as a is the
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diversity element. Since Ξ is nonzero it will be satisfiable if and only if two distinct
variables are not identified. This is exactly the situation excluded in Figure 4.13.

#6

#6 e1 e2 e3

e1 e1 0 0

e2 0 e2 0

e3 0 0 e3

This algebra is not simple, as it is the direct product of three copies of #2.

#7

#7 e1 e2 a

e1 e1 0 0

e2 0 e2 a

a 0 a e2

This algebra is not simple, as it is the direct product of #2 and #4.

#8

#8 e1 e2 a

e1 e1 0 0

e2 0 e2 a

a 0 a −e1

This algebra is not simple, as it is the direct product of #2 and #5.

#9

#9 1′ r r˘

1′ 1′ r r˘

r r r˘ 1′

r˘ r˘ 1′ r
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There exists only one representation up to isomorphism, and it is on three points,
illustrated in Figure 4.14. Any representation must witness rrr˘ and so must contain
this triangle. When we attempt to add a fourth point to the representation, there is
no way to label edges to the new point without introducing an inconsistent triangle
rrr. Hence,M-SAT is NP-complete for allM, and so is Gen-SAT. This is the same
as the relation algebra case.

r

r r

Figure 4.14: The unique representation of algebra #9, up to isomorphism

#10

#10 1′ r r˘

1′ 1′ r r˘

r r r 1

r˘ r˘ 1 r˘

The algebra contains only one diversity cycle: rrr. In representing this as a rela-
tion algebra, one would look for dense linear orders. There exists only one countable
dense linear order up to isomorphism, (Q, <). Unlike the relation algebra case, finite
qualitative representations exist, as the density requirement can be dropped. The
smallest qualitative representation is shown in Figure 4.15. Since all finite represen-
tations require at least three points, M-SAT is NP-complete for finite M. Like the
relation algebra case, M-SAT can be checked in O(n3) for infiniteM, and similarly
for gen-SAT.

r

r r

Figure 4.15: The unique smallest representation of algebra #10, up to isomorphism
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#11

#11 1′ r r˘

1′ 1′ r r˘

r r 0′ 1

r˘ r˘ 1 0′

A relation algebra representation of this algebra must be on at least seven vertices [4].
The representation on exactly seven points is unique. To explore qualitative repre-
sentations we introduce the concept of a tournament graph.

A tournament is an orientation of a complete graph [22, Chapter 10]. That is, for
every two distinct vertices x, y of a tournament, exactly one of (x, y) and (y, x) is an
edge. Assume that tournaments do not have loops.

LetM be a representation of #11, finite or otherwise. We will construct a tournament
fromM. Construct a graph G with vertices the domain ofM such that (x, y) ∈ E(G)

if and only if xry. This is a tournament because:

• G has no loops, since xrx violates the representation of 1′,

• xry =⇒ yr˘x by the representation of ,̆ and so every edge is unidirectional,

• for x 6= y, either xry or yrx by the representation of 0.

Hence, exactly one of (x, y) and (y, x) is in E(G).

This translation from representation M to tournament G does work in the other
direction, subject to additional conditions. We can translate every directed edge of
a tournament to an r relation in a representation, and add the identity relation as a
loop on every vertex, but we want to be sure that we witness every composition at
least once. In order forM to include the cycles rrr and rrr ,̆ we need to see the two
graphs in Figure 4.16 as subgraphs in G.

Figure 4.16: Subgraphs needed to be witnessed in order to translate a tournament to a representation
of algebra #11.

A tournament needs at least 4 vertices to contain these two graphs as subgraphs, and
so the minimum size of a representation of M is at least 4. Such a representation
does exist, and is shown in Figure 4.17. There are two representations on 4 points up
to isomorphism, because one can start with the right graph in Figure 4.16, construct
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the left graph by adding an additional vertex, and then fill in the single remaining
nonedge in one of two ways.

r

r

r

r
rr

Figure 4.17: One of two smallest representations of algebra #11, up to isomorphism

One can always add new vertices to either of the graphs giving rise to a smallest
representation, and so representations exist on any finite number of vertices n, as
long as n > 4. It follows that CSP(M) is NP-complete for all finiteM.

As for infinite representations, we might be tempted to consider the class of all count-
able tournaments. It turns out, however, that we need consider only one special
countably infinite tournament. The construction is similar to that of the Rado graph
(algebra #15). A proof that such a graph exists and is unique up to isomorphism is
not easily accessible in the literature, and so is included here for completeness.

This construction relies on something like a limit but for finite relational structures.
This concept—the Fräıssé limit of a Fräıssé class—was introduced by Roland Fräıssé
in 1954 [25] to derive the ordered set of rationals as the Fräıssé limit of the class of
finite linear orderings.

We’ll get to the actual definitions in a moment, but first let us consider what a Fräıssé
class means. Let L be a signature and D an L-structure. The age of D is the class of
all finitely generated structures that can be embedded in D. So for example, the age
of (Q, <) is the class of all finite linear orderings. Similarly, the age of (Z, <) is the
class of all finite linear orderings. The Fräıssé limit can be thought of as something
of a ‘partial converse’ to the procedure of taking an age. When we take the Fräıssé
limit of the class of all finite linear orderings, we get (Q, <), and not (Z, <).

We need to know what separates a Fräıssé class—which has a Fräıssé limit—from a
class that does not have a Fräıssé limit. Fräıssé classes have some special properties.
We will be using the concept as presented in [40].

Definition 4.4.2. Let L be a countable signature and let K be a non-empty finite or
countable set of finitely generated L-structures. K is a Fräıssé class if it satisfies the
following five conditions:

1. K is closed under isomorphism.

2. K is closed under taking induced substructures.
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3. K has at most countably many members up to isomorphism.

4. K has the amalgamation property.

5. K has the joint embedding property.

One might readily accept the first three conditions, but the last two are sure to cause
some confusion.

Definition 4.4.3 (Amalgamation property). Let A,B,C ∈ K. An amalgam is a
tuple (A, f,B, g, C) such that f : A→ B and g : A→ C are embeddings. K has the
amalgamation property if for every such amalgam there exists D ∈ K and embeddings
f ′ : B → D and g′ : C → D such that f ′ ◦ f = g′ ◦ g. This situation is illustrated in
Figure 4.18.

B D

A C

f

f ′

g

g′

Figure 4.18: An amalgam with corresponding embeddings f ′ and g′

Definition 4.4.4 (Joint embedding property). K has the joint embedding property
if for all A,B ∈ K there exists C ∈ K such that both A and B are embeddable in C.

If all of these conditions are satisfied, we can use Fräıssé’s Theorem to construct the
sort of unique, countable structure for which we’re aiming.

Theorem 4.4.5 (Fräıssé’s Theorem). Let L be a countable signature and let K be
Fräıssé class of finitely generated L-structures. Then there is an L-structure D, unique
up to isomorphism, such that:

• D is at most countably infinite,

• K is the age of D, and

• D is ultrahomogenous; that is, every isomorphism between finitely generated
substructures of D extends to an automorphism of D.

We call D the Fräıssé limit of K.

If K contains all the finite representations of a particular algebra, then any repre-
sentation of that algebra embeds into the Fräıssé limit of K. That is, we can use
Theorem 4.4.5 to construct universal representations. This is exactly the approach
we will now take for tournament graphs.
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Lemma 4.4.6. The class K of all finite tournament graphs is a Fräıssé class.

Proof.

1. Graph isomorphisms preserve edges and non-edges, and so a tournament remains
a tournament under isomorphism.

2. Let H be an induced subgraph of a finite tournament graph G, that is, V (H) ⊆
V (G). For all x, y ∈ V (H) just one of (x, y) ∈ E(G) and (y, x) ∈ E(G). So just
one of (x, y) and (y, x) ∈ H, and so H is a tournament graph.

3. For every n ∈ N there are a finite number of tournament graphs on n vertices.
Hence K is a countable union of finite sets, and so is countable. This assumes
the axiom of countable choice for finite sets.

4. Let (A, f,B, g, C) be an amalgam of finite tournaments as in Figure 4.18. Define

VB′ = V (B)\V (f(A)),

EB′ = E(B)\E(f(A)),

VC′ = V (C)\V (g(A)), and

EC′ = E(C)\E(g(A)).

Assume without loss of generality that VB′ ∩ VC′ = ∅. Define a new graph
D with V (D) = V (A) ∪ VB′ ∪ VC′ and E(D) = E(A) ∪ EB′ ∪ EC′ . Replace
the nonedges, but not the nonloops, in E(D) with randomly directed edges, to
ensure that D is a tournament graph.

Define the map f ′ : B → D by

f ′(x) =

{
x if x ∈ VB′

f−1(x) otherwise.

and similarly for g′ : C → D. These are embeddings, and so K has the amalga-
mation property.

5. For the joint embedding property, let A,B ∈ K. Take C to be a the disjoint
union of A and B, with the non-edges randomly filled in. Then C is a finite
tournament with A and B both embeddable in C using the identity map.

Thus the class K of all finite tournament graphs has Fräıssé limit T . By translating
this infinite tournament to a representation, we construct our infinite representation
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M. As K is the age of T , we can represent any nonzero closed set of constraints Ξ in
M. To do this, first we assume without loss of generality that our constraint network
does not contain two distinct points related by 1′, as by Lemma 4.2.7 we can always
remove these. We translate the constraints of Ξ into a partial tournament as before,
treating r ,̆ r + r˘ and 1 as nonedges, and 1′ + r and r as edges.

#12

#12 1′ a b

1′ 1′ a b

a a 1′ b

b b b −b

This algebra has only one diversity cycle: abb. As such, we can construct a represen-
tation on three points as in Figure 4.19. There is also a representation on four points,
also shown in Figure 4.19. Up to isomorphism, these are the only two representations
of algebra #12. The representation on four points—but not the one on three—is also
a representation as a relation algebra.

The reason for such limited representability is that we cannot compose a ; a on three
distinct points. So whenever xay, every non-loop edge coming off x or y must be
labelled by b. Starting with the representation on three points, which witnesses the
abb cycle, we can extend this in only one way to four points. In attempting to add
a fifth point, however, we are forced to witness either bbb or baa, neither of which is
consistent.

Since there exist only finite representations, and on at least three points, M-SAT is
NP-complete for allM, as is gen-SAT.

b

b a
a

b

b

a
bb

Figure 4.19: The two representations of algebra #12, up to isomorphism
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#13

#13 1′ a b

1′ 1′ a b

a a −b b

b b b −b

We begin by noting that this algebra contains cycles aaa and abb, but not bbb. This
means that we can partition any representation of this algebra into two parts, each
of which is a complete graph with every edge between distinct vertices labelled by an
a-relation. Between each two vertices in different parts is a b-related edge. An infinite
representation of this kind is shown in Figure 4.20.

∞

∞

Figure 4.20: An infinite representation of algebra #13

We can look at restrictions of this representation to find other (qualitative) represen-
tations. For example, we can limit one or both a-labelled parts to a finite number
of vertices. This gives us the smallest representation of algebra #13 in Figure 4.21,
which is unique up to isomorphism.

a

b

a

b
ba

Figure 4.21: The unique smallest representation of algebra #13, up to isomorphism

The representation in Figure 4.20 is presented as a universal relation algebra represen-
tation in Lemma 15 of [19]. This is inaccurate. There is an issue with the constraint
network in Figure 4.22, which is a single a+ b-labelled edge surrounded by a chain of
1′ + b-labelled edges of length k.
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xk−1

xk−2x3

x2

x1 xka+ b

1′ + b

1′ + b 1′ + b

1′ + b

Figure 4.22: The problem configuration

In Lemma 4.4.7 we give a nonzero closed network containing this configuration (with
k = 3) and prove that it is not satisfiable6.

Lemma 4.4.7. There does not exist a universal representation of algebra #13.

Proof. It suffices to provide a nonzero closed constraint network which cannot be
refined to a consistent network of atomic constraints. Such a network would then not
be satisfiable in any representation.

Such a network is shown in Figure 4.23. Since bbb is not a cycle in this algebra, exactly
one of (x, v) and (y, v) must refine to 1′. Without loss of generality suppose x1′v. If
vaz then x1′vaz would lead to xaz, which is not allowed by the constraint network.
So vbz and also xbz. As bbb is not a cycle in this algebra, we are forced to refine to
y1′z. Similarly, if zaw, y1′zaw would lead to yaw, also not allowed by the constraint
network. So zbw and ybw. Again, as bbb is not a cycle, wav. Composing these
refinements gives us x1′vaw, that is, xaw. This is not permitted by the constraint
network, and so these constraints cannot be satisfied in any representation. A similar
situation occurs if y1′v.

The issue with the proof of universality given in [19] is that the configuration in Fig-
ure 4.22 is interperted with 1′ + b as equality and a + b as inequality. This causes
problems because equality is transitive, and so two points which are unequal are
made equal. We will now amend the proof given in [19], showing that the configu-
ration in Figure 4.22 is the only set of constraints not representable by the original
strategy.

Theorem 4.4.8. Let Ξ be a non-zero closed set of constraints not containing the
constraint system appearing in Figure 4.22. The constraints Ξ are satisfiable in the

6When I shared this problem with Prof. Robin Hirsch, one of the authors of [19], he provided
such an example. The example presented here was developed subsequently.
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x y

zw

v
1′ + b

a+ b

b

1′ + b
a+ ba+ b

1′ + b 1′ + b

1′ + b1′ + b

Figure 4.23: Nonzero and closed constraint network over algebra #13, but not satisfiable in any
representation

following representation, illustrated in Figure 4.24.

1′
M

= {(x, x) : x ∈ Y ∪ Z}

aM = {(y, y′) : y 6= y′ ∈ Y } ∪ {(z, z′) : z 6= z′ ∈ Z}

bM = {(y, z), (z, y) : y ∈ Y, z ∈ Z}

Z

Y

Figure 4.24: An infinite representation of algebra #13

Proof. Recall algebra #4:

#4 1′ 0′

1′ 1′ 0′

0′ 0′ 1′
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We construct a new constraint network Θ over algebra #4 from Ξ according to the
following correspondence.

Constraint over #13 in Ξ Constraint over #4 in Θ

0 0

1′ 1′

a 1′

b 0′

1′ + a 1′

1′ + b 1

a+ b 1

1 1

Lemma 4.4.9. Θ is a nonzero closed set of constraints in #4.

Proof. Since C 6= 0 for all C ∈ Ξ, the given mapping implies 0 /∈ Θ. Hence, Θ is
non-zero. To check that Θ is closed, we first note that all elements are symmetric and
so for all xiAxj in Θ we have that xjAxi is in Θ, and that A = A .̆

We want to show that for all constraints xiAxj, xjBxk in Θ there exists xiCxk in Θ

such that C 6 A ; B. Since Ξ is closed there must exist at least one constraint in Ξ

that is mapped to a constraint between xi and xk in Θ. As a consequence if either
A or B is 1 then that particular triangle is trivially closed, and so we can disregard
those situations. The only possible nonclosed triangles in Θ are given in Figure 4.25.

xi xk

xj

1′ 1′

0′ xi xk

xj

0′ 0′

0′ xi xk

xj

1′ 0′

1′

xi xk

xj

1′ 1′

1 xi xk

xj

0′ 0′

1 xi xk

xj

1′ 0′

1

Figure 4.25: Nonclosure in Θ can only arise from a nonclosed triangle in Ξ.

In Figure 4.26 we take the ‘preimage’ of the situations in Figure 4.25, converting
constraints in Θ to constraints in Ξ, noting that the only relation that maps to 0′#4

is b. It suffices to consider the minimal elements in the preimage of A and B and
the maximal element in the preimage of C. Each of the situations in Figure 4.26 is a
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nonclosed triangle over algebra #13. Since Ξ is closed we conclude that none of the
nonclosed triangles in Figure 4.25 appears in Θ.

xi xk

xj

1′ 1′

b xi xk

xj

1′ a

b xi xk

xj

a a

b xi xk

xj

b b

b

xi xk

xj

1′ b

1′ xi xk

xj

a b

1′ xi xk

xj

1′ b

a xi xk

xj

a b

a

xi xk

xj

1′ 1′

1 xi xk

xj

1′ a

1 xi xk

xj

a a

1 xi xk

xj

b b

1

xi xk

xj

1′ b

1 xi xk

xj

a b

1

Figure 4.26: Converting the situations in Figure 4.25 into constraints in Ξ

As we noted in our earlier discussion, algebra #4 has only one representation up to
isomorphism, and it is on two points. Moreover this representation is universal, so Θ

is satisfiable.

Suppose that we satisfy Θ on two distinct points u, v by a map ϕ. We consider
preimages ϕ−1(u) of all variables of Θ mapped to u under this representation. We
construct a set of constraints Λ over algebra #5 with variables ϕ−1(u). The constraints
in Λ are defined by E = C · (−b) for all C ∈ Ξ where C is a relation between points
in ϕ−1(u), interpreting a#13 as 0′#5.

#5 1′ 0′

1′ 1′ 0′

0′ 0′ 1

We will now prove that Λ is satisfiable over a countably infinite representation of
algebra #5.
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Lemma 4.4.10. Λ is satisfiable7 over a countably infinite representation of alge-
bra #5.

Proof. Recall that when we mapped Ξ to Θ, we mapped only b#13 constraints to the
diversity element 0′#4. The set of variables of Λ is the preimage of a single variable
in the image of this map, so none of the relations C ∈ Ξ used in the definition of a
relation E ∈ Λ will be equal to b. As such, when we negate by b we cannot introduce
a zero relation, and so Λ is nonzero.

Since Λ is nonzero there is only one set of constraints that can cause it to be unsatis-
fiable. This is shown in Figure 4.13, interpreting a as 0′. This configuration identifies
points related by 0′. The configuration in Figure 4.13 can only occur in Λ when the
configuration in Figure 4.22 occurs in Ξ. The a + b- and 1′ + b-labelled edges in Ξ

would become 0′- and 1′-labelled edges in Λ. Since we have excluded the configuration
in Figure 4.22 from appearing in Ξ we can now satisfy Λ over a countably infinite set
by Lemma 4.4.1.

We can construct a set of constraints ζ similar to Λ but with variables from ϕ−1(v).
These are also nonzero and closed. Represent ϕ−1(u) over an infinite set Y by variable
assignment f0 and ϕ−1(v) over an infinite set Z by f1. From these sets we construct
a satisfaction of Ξ given by

1′
M

= {(x, x) : x ∈ Y ∪ Z}

aM = {(y, y′) : y 6= y′ ∈ Y } ∪ {(z, z′) : z 6= z′ ∈ Z}

bM = {(y, z), (z, y) : y ∈ Y, z ∈ Z}.

The variable assignment f = f0 ∪ f1 is defined on all variables of Ξ and satisfies all of
its constraints.

The tractability of gen-SAT for this algebra is still an open matter, as is that of
M-SAT for infiniteM .

7The original argument claims that Λ is closed and therefore representable. The closure of Λ is
not guaranteed, but fortunately is not necessary for satisfiability.
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#14

#14 1′ a b

1′ 1′ a b

a a 1′ b

b b b 1

The smallest representation is on four points, and is unique up to isomorphism. It is
shown in Figure 4.27. This representation can be built by first witnessing the cycle
abb and then witnessing the cycle bbb. As bb = 1 we can always add an extra point to
a representation and label the nonedges with b. As such, there exist finite represen-
tations of every size at least 3, and soM-SAT is NP-complete for finiteM.

a

b

b

b
bb

Figure 4.27: The unique smallest representation of algebra #14, up to isomorphism

Lemma 16 of [19] gives the following universal relation algebra representation of alge-
bra #14, which can be viewed as a 2× ω grid M = {n, n′ : n ∈ N}.

(1′)M = {(n, n), (n′, n′) : n ∈ N}

(a)M = {(n, n′), (n′, n) : n ∈ N}

(b)M = (1′)M\(a)M

There is a larger class of infinite qualitative representations. For example, one could
start with two vertices x, y such that xay, and then add a countably infinite number
of vertices, labelling all of the new edges by b and putting an 1′-labelled loop on every
vertex. This witnesses both cycles abb and bbb, but does not feature a non-identity
composition of a with a and so is consistent. It is not a relation algebra because
there exist b-edges above which we cannot witness the cycle abb. Note that this is a
restriction of the universal representation.

More generally, let G be a simple graph containing no connected component of more
than two vertices. Suppose G does contain such a component, and that there are three
pairwise nonadjacent vertices. We can construct a representation G of algebra #14
from G with the vertices of G as the domain. We begin by translating every edge
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of G to an a-relation in G and every nonedge to a b-relation. Finally we add the
identity relation as a loop on every vertex. Because of the conditions we imposed on
G, we witness both cycles abb and bbb, without witnessing a non-identity composition
of a with a. That is, G is a representation of algebra #14, with G finite if G is. We
can also turn every finite representation of this algebra into a graph with the same
properties.

Let K be the class of all finite simple graphs containing no connected component of
more than two vertices. By the above we know that K contains, in a sense, all finite
representations of algebra #14. This is a Fräıssé class, and the proof is largely similar
to that used for algebra #11, except that in step 4 of the proof of Lemma 4.4.6 we
do not replace the nonedges in E(D) with any edges.

This gives us a Fräıssé limit D, and we can build from this a universal qualitative
representation D of algebra #14.

#15

#15 1′ a b

1′ 1′ a b

a a −b b

b b b 1

The smallest representation is on five points, and is shown in Figure 4.28. We can
construct this by first representing the bbb cycle on a triangle. From any of the edges
we witness the cycle abb by adding a fourth point. Next we witness aaa from the
only a-edge in the representation, and represent the identity as loops on every vertex.
There is only one way up to isomorphism to label the edges at each step, and so the
representation is unique up to isomorphism. There exist finite representations on any
number of vertices at least five, as we can always add an extra point and label the
missing edges with b. As such,M-SAT is NP-complete for finiteM.

b

a

b

a
ba

b

bb

b

Figure 4.28: The unique smallest representation of algebra #15, up to isomorphism
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Lemma 17 of [19] gives the following universal representation on a domain N×N:

(1′)M = {(n, n) : n ∈ N}

(a)M = {((m,n), (m′, n) : m,m′, n ∈ N,m 6= m′}

(b)M = {((m,n), (m′, n′) : m,m′, n, n′ ∈ N, n 6= n′}

As for algebra #14 we can take restrictions of this algebra to obtain qualitative rep-
resentations which are not relation algebra representations. For example, one could
restrict the domain to all (m,n) ∈ N× N such that 1 6 m 6 3, and still witness the
required cycles.

Once again we can construct a Fräıssé class K, the class of all finite graphs G such that
there does not exist vertices x, y, z such that (x, y), (y, z) ∈ E(G) and (x, z) /∈ E(G).
The argument is carried out similarly to that used for algebra #14.

#16

#16 1′ a b

1′ 1′ a b

a a −a 0′

b b 0′ −b

This algebra forbids the cycles aaa and bbb. It is called the pentagon algebra, because if
one considers a and b to be two distinct colours then an edge-colouring of the complete
graph K5 without monochromatic triangles will give a relation algebra representation
of this algebra.

In fact, there exist only two qualitative representations of algebra #16 up to isomor-
phism, on four and five points. They are shown in Figure 4.30. As such, M-SAT
is NP-complete for all M, as is gen-SAT. The representation on four points is not
a relation algebra representation since along the bottom b-edge we cannot witness
b 6 a ; a.

To develop the representation on four points, we witness our only two cycles, abb and
aab, disjointly on two triangles as in Figure 4.29. No matter how we try to label the
nonedges between y, u, z and v, we are forced to witness a situation isomorphic to
that in which y = u and z = v. Hence we assume this without loss of generality.

From here there is only one way to label the remaining nonedge. This gives a repre-
sentation on four points which is unique up to isomorphism. If we add a fifth vertex
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x

y

z

w

u

v

a

a

b

a

b

b

Figure 4.29: Witnessing the cycles of algebra #16

then there is only one way to label the nonedges, leading to the representation on five
vertices which is also unique up to isomorphism.

These are the only edge-labellings of undirected graphs on four or five vertices that are
consistent with algebra #16. If we attempt to add a sixth vertex to the representation
of size five, there is no way to label the new edges without introducing either an aaa
or bbb cycle.

b

b

a

b
aa

b

b

a

b
aa

b

ba

a

Figure 4.30: The unique representations of algebra #16, up to isomorphism

#17

#17 1′ a b

1′ 1′ a b

a a −a 0′

b b 0′ 1

The smallest qualitative representation is on 4 points. As bb = 1, this can conceivably
be enlarged to any 4 < n < ∞, andM-SAT is NP-complete for all finiteM. Finite
relation algebra representations also exist [19], but not all qualitative representations
are relation algebra representations, for example, Figure 4.31.

Lemma 14 of [19] gives a universal relation algebra representation N based on N ,
the infinite triangle-free graph. This graph can be constructed as a Fräıssé limit
of the class of finite triangle-free graphs, similar to the construction of the infinite
tournament for algebra #11. As such, it is a universal representation of algebra #17.
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a

b

a

b
bb

Figure 4.31: A qualitative representation of algebra #17 on 4 points

The lack of triangles ensures that we never see the composition a 6 a ; a.

(1′)N = {(x, x) : x ∈ V (N)}

(a)N = {(x, y) : x 6= y and (x, y) ∈ E(N)}

(b)N = {(x, y) : x 6= y and (x, y) /∈ E(N)}

#18

#18 1′ a b

1′ 1′ a b

a a 1 0′

b b 0′ 1

The smallest qualitative representation is on 5 points. As bb = 1, this can conceivably
be enlarged to any 5 < n < ∞, andM-SAT is NP-complete for all finiteM. Finite
relation algebra representations also exist [19], but not all qualitative representations
are relation algebra representations, for example, Figure 4.32.

a

b

a

b
bb

a

a
a

a

Figure 4.32: A qualitative representation of algebra #18 on 5 points

Lemma 14 of [19] gives a universal relation algebra representation R based on R, the
infinite random graph, or simply the random graph. The random graph, also known
as the Rado graph, can be constructed in multiple ways, but the random construction
is the most obvious (see [15]). Alternatively, one can use a Fräıssé limit similar to the
construction of the infinite tournament for algebra #11. As such, R can be used to
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construct a universal representation for algebra #18:

R(1′) = {(x, x) : x ∈ V (R)}

R(a) = {(x, y) : x 6= y and (x, y) ∈ E(R)}

R(b) = {(x, y) : x 6= y and (x, y) /∈ E(R)}

#19

#19 e1 e2 a

e1 e1 0 a

e2 0 e2 a

a a a 1′

This algebra is not associative as (a ; e1) ; e2 6= a ; (e1 ; e2). There exists only one
representation up to isomorphism, and it is on two points. This representation is
shown in Figure 4.33. As a is the only nonidentity element and a ; a = 1′, we are
unable to add a third point to the representation. By Theoerem 4.2.4, M-SAT is
tractable for allM, as is gen-SAT.

a
e1 e2

Figure 4.33: The only representation of #19, up to isomorphism

#20

#20 e1 e2 a

e1 e1 0 a

e2 0 e2 a

a a a 1

This algebra is also not associative. First we note that a = −1′ and hence must be the
diversity relation. In order to witness the aaa cycle we must see at least three points
in the representation. A representation on three points is shown in Figure 4.34. As
such,M-SAT is NP-complete for all finiteM.
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a

a a

e1 e2

e1

Figure 4.34: One of the smallest representations of algebra #20

For all n > 3 we can construct 2n − 2 unique (up to isomorphism) representations
of #20 on n points. Our construction relies on the fact that any two distinct points
in a representation of #20 must be related by a. Begin by taking a complete graph
Kn and label every edge by a. For every vertex we add a loop which we can label by
either e1 or e2. This respects composition because e1 ; a = e2 ; a = a = a ; e2 = a ; e1.
This gives us 2n weak representations, but in order to witness all compositions we
require at least one e1-loop and one e2-loop.
This construction can be extended to a countably infinite representation, which arises
from the unique countably infinite complete graph.

We can also construct a universal representation by considering the cartesian product
of two copies of the countably infinite complete graph, Kω × Kω. For one copy we
place an e1-labelled loop on every vertex, and for the other an e2-labelled loop on
every vertex. A nonzero closed constraint network can then be represented using an
inductive method similar to that used for algebra #5. When mapping a new point
in the representation, we place it on an e1-labelled vertex if the constraint network
demands it, otherwise an e2-labelled vertex.

#21

#21 1′ r r˘

1′ 1′ r r˘

r r 0 1′

r˘ r˘ 1′ 0

This algebra is not associative as (r ; r) ; r˘ 6= r ; (r ; r )̆. There exists only one
representation up to isomorphism, and it’s on two points. This representation is shown
in Figure 4.33. As r and r˘ are the only nonidentity elements and r ; r = 0 = r˘ ; r ,̆
we are unable to add a third point to the representation. By Theorem 4.2.4,M-SAT
is tractable for allM, as is gen-SAT.
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r1′ 1′

Figure 4.35: The only representation of #21, up to isomorphism

#22, #23 and #24

#22 1′ a b

1′ 1′ a b

a a 1′ 0

b b 0 1′

#23 1′ a b

1′ 1′ a b

a a 1′ 0

b b 0 −a

#24 1′ a b

1′ 1′ a b

a a −b 0

b b 0 −a

None of these algebras is associative, for in all of the three we have that (a ; a) ; b 6=
a;(a;b). Moreover, none of these algebras is representable. This is because a;b = 0. We
are forced to witness xay along distinct points x and y, and ubv along distinct points
u and v. However there is no way to label the nonedges here without introducing a
composition ab, introducing a 0-labelled edge. As such, gen-SAT can be decided in
constant time.

4.5 Nonassociative algebras on four atoms

In this section we discuss the 373 nonassociative algebras on 4 atoms, which were
generated by the program in Section C.3. These algebras are listed in Appendix A,
along with their cycles in Appendix B. We denote them by #1 through #373. This
is distinct from the numbering system used in Section 4.4. Just in case this is not
confusing enough, Maddux [58] numbers the relation algebras on atoms 1′, a, b, c as
137 through 3737, and the relation algebras on atoms 1′, a, rr˘ as 165 through 6565.
We will replicate his indexing by referring to the 24 algebras on 3 or fewer atoms in
Section 4.4 with subscript 6 3. For example, algebra #1263 is on 3 atoms, while #12

is on 4 atoms.

We consider symmetric atoms a, b and c. We also consider an atom r which is not
symmetric, and so has converse r .̆ We won’t draw r˘ on any of the representations,
since its existence can always be deduced from the placement of the atom r. Nor will
we place loops on any point unless necessary since, for an algebra with an atomic
identity 1′, we can assume that there is an 1′-labelled loop on every vertex. If the
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identity relation is not atomic, it will be the disjunction of atoms e1, e2, e3, e4, where
these atoms exist. We will represent our algebras as edge-labelled digraphs wherever
possible, but if the representation is too big then we will use adjacency matrices in
which the ij-th entry refers to the label on the edge from vertex i to vertex j.

In moving from 3 to 4 atoms there is a large jump in difficulty of proving nonrepre-
sentability. The next few lemmas detail a proof of the qualitative nonrepresentability
of algebras #334 to #339, along with #346 and #347.

Lemma 4.5.1. Let A be a simple nonassociative algebra on atoms {1′, a, r, r˘} con-
taining rra and rrr˘ and not rrr. Suppose also that if A contains raa then it does
not contain any of rar, raa or aaa. Then a qualitative representation of A cannot
contain either of the following as subgraphs.

r

a

r

r
r

Figure 4.36: 1

a

r

r

r
r

Figure 4.37: 2

Proof. 1 excluded by rrr and raa · arr. 2 excluded by rrr and raa · rar.

Lemma 4.5.2. Let A be a simple nonassociative algebra on atoms {1′, a, r, r˘} con-
taining rra and rrr˘ and not rrr. Suppose also that if A contains raa then it does
not contain any of rar, raa or aaa. Then a qualitative representation of A cannot
contain the following as a subgraph.

x y

zw

r

a

r

r
r

Figure 4.38: 3

Proof. We note that this witnesses arr. We exclude all possibilities to get the figure
below, which also witnesses rar. We will now investigate all of the ways in which we
can add a fifth distinct point, u, as in Figure 4.39. In particular, we need to do this
without introducing either rrr or raa, either of which would violate the conditions of
the lemma.
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x y

zw

ur

a

r

r
rr

Figure 4.39: Introducing a fifth point u

yRu zSu problem
r r introduces rrr
r r˘ introduces 1
r a introduces 2
r˘ r introduces rrr
r˘ r˘ introduces rrr
a r˘ introduces 1
a a introduces raa

This leaves us with two options: yr˘u and zau as in Figure 4.40, or yau and zru as
in Figure 4.41. By continuing to exclude rrr and raa we can complete the remaining
nonedges without ambiguity.

x y

zw

ur

a

r

r
rr

r

r
a

a

Figure 4.40: yr˘u and zau

x y

zw

ur

a

r

r
rr

a

r
r

r

Figure 4.41: yau and zru

We are yet to witness rra. We do this by introducing a triangle vut as in Figure 4.42,
although we do not assume that the new points are distinct. That is, we allow for the
possibility that 1′ can relate two points.

x y

zw

u

v

tr

a

r

r
rr

r

r

a

Figure 4.42: Witnessing rra

We will now consider all of the ways in which we can label the nonedges, keeping
in mind that xyzw can only be connected to an external point in a manner that is
consistent with either Figure 4.40 or Figure 4.41. As such, we can only relate y to u
by r˘ or a, and z to v by 1′, r or a. We will consider and eliminate all 6 cases, ensuring
that there is no consistent way to witness rra as well as the structure in Figure 4.38
without introducing either rrr or raa, violating the conditions of the lemma. One
particularly useful trick here is to note that these conditions force aa = 1′ + a.
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x y

z = vw

u

tr

a

r

r
r

r

r

a

a

r

r

Figure 4.43: yau and z1′v

• x1′t would introduce urz,
but zru.
• xrt would introduce urxrt

and urt, and so rrr.
• xr t̆ would introduce urtrx

and urx, and so rrr.
• xat forces xaz as xataz,

and so raa.
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Figure 4.44: yr˘u and zrv

• Introduces rrr on vxu.
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Figure 4.45: yr˘u and zav

• Introduces rrr on vuy.
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Figure 4.46: yr˘u and z1′v

• Introduces rrr on xzv.
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Figure 4.47: yau and zrv

• Introduces rrr on vux.
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Figure 4.48: yau and zav

• x1′t would introduce wavax
and xrw, and so raa.
• xrt would introduce urxrt

and urt, and so rrr.
• xr t̆ would introduce urtrx

and urx, and so rrr.
• xat forces xav because
xarav. Now we have xavaz
and xrz, and so raa.

Lemma 4.5.3. Let A be a simple nonassociative algebra on atoms {1′, a, r, r˘} con-
taining rra and rrr˘ and not rrr. Suppose also that if A contains raa then it does
not contain any of rar, raa or aaa. Then A has no qualitative representation.

x y

zw

r

r

r

a
r

Figure 4.49: 4

Proof. We need to witness rra and rrr ,̆ that is, we need to see the structure in
Figure 4.50. The proof follows by attempting to label (x, u) and (y, v) without in-
troducing a contradiction. In particular, we cannot introduce 1 , 2 , 3 or 4 .
We do not exclude the possibility that two nodes may be related by 1′, that is, that
two nodes may be equal. We iterate through all possible combinations in Table 4.52,
leaving one particularly tricky case for last.

x

y

z

u

v

wr

r

r

r

r

a

Figure 4.50: Witnessing rra and rrr˘

The case in which xau, yav and xav, illustrated in figure 4.51, requires some care in
eliminating. First we note that we see raa on yxv. Since x1′w would violate meet on
(x, u), xrw would introduce arr on xuw and raw would introduce aaa on xvw, we
conclude that xr˘w.
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Finally we consider the edge (y, w). y1′w would introduce 1 , yrw would introduce
rrr on ywx, and yr˘w would introduce rrr on wyx, and yaw would introduce aaa on
ywv. We have exhausted all possibilities, and conclude that there is no way to label
(x, u) and (y, v) that doesn’t lead to an inconsistency in the representation.

x

y

z

u

v

wr

r

r

r

r

a

a

a

a

Figure 4.51: Witnessing rra and rrr˘ with xau, yav and xav

xRu ySv problem
1′ 1′ introduces 2 .
1′ r introduces rrr on yvx.
1′ r˘ introduces rrr on vyx.
1′ a introduces 3 .
r 1′ introduces rrr on yxu.
r r y1′u would violate converse on (u, v).

yru would introduce rrr on yvu.
yr˘u would introduce 2 .
yau would introduce 2 .

r r˘ x1′v would violate converse on (y, v).
xrv would introduce rrr on xvu.
xr v̆ would introduce rrr on vyx.
xav would introduce 1 .

r a x1′v would violate meet on (y, x).
xrv would introduce 2 .
xr v̆ would introcue 3 .
xav would introduce raa on yxu, arr on vxu.

r˘ 1′ introduces rrr on yux.
r˘ r y1′u would violate converse on (u, v).

yru would introduce rrr on yvu.
yr˘u would introduce 2 .
yau would introduce 3 .

r˘ r˘ x1′v would violate converse on (y, v).
xrv introduces 2 .
xr v̆ would introduce rrr on vux.
xav would introduce 1 .

r˘ a y1′u would violate meet on (v, u).
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xRu ySv problem
yru would introduce rrr on yux.
yr˘u would introduce rrr on uyx.
yau would introduce 3 .

a 1′ z1′u violates converse on (y, z).
zru would introduce rrr on zyu.
zr˘u would introduce 3 .
zau would introduce raa on xzu and rar on yxu.

a r x1′v would violate meet on (x, u).
xrv would introduce rrr on yxv.
xconrv would introduce rrr on yvx.
xav would introduce 4 .

a r˘ x1′v would violate converse on (x, y).
xrv would introduce 4 .
xr v̆ would introduce rrr on vyx.
xav would introduce 1 .

a a x1′v would vioalte meet on (x, y).
xrv would introduce 2 .
xr v̆ would introduce 3 .
xav would introduce raa. See additional comments.

Table 4.52: Excluding possible edge-labellings in Figure 4.50

This particular method of proof is essentially a proof by exhaustion within a proof by
exhaustion. It’s an exhausting approach, and a single proof of this style is unlikely
to cover more than a few algebras. As such, we turn to an automated method of
proving nonrepresentability. Using the cycle structure of a nonassociative algebra,
we can create a set of assumptions that can be run through an automated prover,
Prover9 [60], using the syntax we detail below.

#146 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ c b+ c

b b a+ c 1′ + b a

c c b+ c a 1′ + a

Consider the nonassociative algebra #146, with an atom table shown above. This
numbering will be explained shortly. Algebra #146 has the usual cycles involving
identity, as well as bbb, baa, acc and abc. We encode these cycles as binary relations,
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with the assumption that the identity relates every (x, x). So for example, we wish to
witness the cycle baa, so we write:

exists x exists y exists z (B(x,z) & A(z,y) & A(x,y)).

We do not wish to witness an aaa cycle, so we negate it by writing:

A(x,z) & A(z,y) -> -A(x,y).

We also include assumptions for completeness, disjointness, faithfulness and the cor-
rect representation of converse. The input for this particular algebra is given in
Program 1. The output is given in Section C.4.

The same code can be used to generate representations, if they exist. This is done
through Prover9’s counterpart, Mace4. Some algebras, such as #123, are too com-
putationally difficult for Prover9. In these cases, we can rely on Mace4 to reject
representations of any size up to a given number. Jackson et al. give an algorithm for
deciding qualitative representability of nonassociative algebras. The resulting repre-
sentation, if it exists, is on 3 times the number of cycles not involving identity. We
have, at most, 10 such cycles with the algebras we are considering here, and we can
assume that at least two of the resulting triangles are not disjoint, giving us a size of
29. That is, if there do not exist representations up to size 29, we can declare that
the algebra is not qualitatively representable.

If a finite nonassociative algebra has n diversity cycles, one can construct an edge-
labelled disconnected digraph on 3n vertices with each cycle as a separate triangle.
This digraph will contain every consistent triangle. As a consequence of the algorithm
behind Theorem 4.3.2, if this algebra is representable then it will be representable on
3n points.

With these tools we survey the qualitative representability of all nonassociative alge-
bras on 4 atoms, with results given in Appendix A, and corresponding cycles in Ap-
pendix B. For each algebra we provide a possible atom table. We also note whether or
not the algebra is a relation algebra; if so, we give the number used by Maddux [58],
if applicable. If the algebra is qualitatively representable, we give an example of a
representation. The representation is on the smallest number of vertices, but it is not
necessarily the only representation up to isomorphism with that property.

If the representation is on too many points to draw in any useful manner, it is rep-
resented by a matrix with entries from the atoms of the algebra. To interpret these
representations, we interpret the rows and columns of the matrix as vertices of a rep-
resentation, such that the uv-th entry of the matrix is the relation from u to v.
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Program 1 Prover9 input for proving nonrepresentability of algebra #146.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Generic testing of qualitative representations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

formulas(assumptions).

x = y | A(x,y) | B(x,y) | C(x,y). % completeness

A(x,y) -> x != y & -B(x,y) & -C(x,y). % disjointness
B(x,y) -> x != y & -A(x,y) & -C(x,y).
C(x,y) -> x != y & -B(x,y) & -A(x,y).

exists x exists y A(x,y). % faithfulness
exists x exists y B(x,y).
exists x exists y C(x,y).

A(x,y) -> A(y,x). % converses
B(x,y) -> B(y,x).
C(x,y) -> C(y,x).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cycles %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A(x,z) & A(z,y) -> -A(x,y).
exists x exists y exists z (B(x,z) & A(z,y) & A(x,y)).
C(x,z) & A(z,y) -> -A(x,y).
A(x,z) & B(z,y) -> -B(x,y).
exists x exists y exists z (A(x,z) & B(z,y) & C(x,y)).
exists x exists y exists z (A(x,z) & C(z,y) & C(x,y)).
exists x exists y exists z (B(x,z) & B(z,y) & B(x,y)).
C(x,z) & B(z,y) -> -B(x,y).
B(x,z) & C(z,y) -> -C(x,y).
C(x,z) & C(z,y) -> -C(x,y).

end_of_list.
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Chapter 5

Conclusion

Algebras of relations have a rich history. They were born in the late 19th century
with Peirce’s work on extending the algebra of Boole’s logic. Much of the early
work on model theory in the 20th century paid respect to algebras of relations. In
the middle of the 20th century, Tarski’s work on the “calculus of relations” defined
relation algebras as we know them today. Using this calculus, Tarski and Givant were
even able to create a language for doing set theory without variables—a language so
expressive that it’s equivalent equivalent a system of first-order logic with just three
variables.

Tarski, along with Jónsson, asked if every relation algebra is isomorphic to a proper
relation algebra. Lyndon answered this in the negative. And, in 2001, Hirsch and
Hodkinson announced that the problem of deciding if a finite relation algebra is iso-
morphic to a proper relation algebra is undecidable.

We know that representability is easily determined for some reducts of the relation
algebra signature, such as algebras with just an associative binary relation. Where in
the relation algebra signature does the boundary between decidability and undecid-
ability lie? This thesis narrows the gap, by proving undecidability of representability
for lattice-ordered semigroups, as well as for complemented semigroups in which com-
plements are to be represented with universal complementation. Furthermore, these
results apply to any reduct with a signature between that of a lattice-ordered semi-
group and a Boolean monoid, or between that of an ordered complemented semigroup
and a Boolean monoid.

We then explored a special type of representation for finite ordered semigroups—that
of a finite disjoint representation. These representations are a gap in the literature; the
class of finite semigroups permitting a finite transitive disjoint representation has been
classified, and every finite semigroup permits a representation which is finite and tran-
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sitive, but not necessarily disjoint. We explored the J -structure of semigroups which
are finitely and disjointly representable, and in doing so provided necessary conditions
for finite disjoint representability (Lemma 3.1.11 and its dual, Corollary 3.1.12). We
conjectured that these conditions are also sufficient.

One can also study algebras of relations by investigating notions of representability
weaker than that of relation algebra representability. Qualitatative calculi are an
active area of study with many practical applications. We surveyed the qualitative
representability and decidability of qualitative representability for all nonassociative
algebras on at most three atoms. With the assistance of Sage and Prover9Mace4,
we surveyed the representability of all 373 nonassociative algebras on four atoms,
providing examples of qualitative representations where applicable.

Qualitative representability is very different to the traditional representability of re-
lation algebras. Previous work in the area has determined that qualitative repre-
sentability is decidable for finite nonassociative algebras, and that a finite qualita-
tively representable nonassociative algebra is representable over a finite number of
vertices. Qualitative calculi can be used to guide robots, to identify the leader of
a flock of birds, or even to find contradictions in maritime law. Continued work in
the theoretical underpinnings of qualitative calculi will help to bring more results like
these to fruition.
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Appendix A

Qualitative representability of
nonassociative algebras on up to four
atoms

A.1 Atoms: two fragment identity and two symmet-

ric

atom table RA QRNA

#1 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 0

b b 0 0 e1

no
not simple:

#263 ×#2263

#2 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 0

b b 0 0 e1

yes
not simple:

#463 ×#463

#3 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a 1′ 0

b b 0 0 e1

no no
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atom table RA QRNA

#4 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a 1′ 0

b b b 0 1′

no no

#5 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 + a 0

b b 0 0 e1

no
not simple:

#263 ×#2363

#6 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 + a 0

b b 0 0 e1

yes
not simple:

#463 ×#563

#7 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a −b 0

b b 0 0 e1

no no

#8 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 e1 + a 0

b b b 0 1′

no no

#9 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a −b 0

b b b 0 1′

no no

#10 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 + b a

b b 0 a e1

yes
not simple:

#263 ×#1263
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atom table RA QRNA

#11 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 + b a

b b 0 a e1

no no

#12 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a −a a

b b 0 a e1

no a

b

a

e2

e1 e1

#13 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 e1 + b a

b b b a 1′

no no

#14 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a −a a

b b b a 1′

no a

b

a

e1

e1 e2

#15 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 −e2 a

b b 0 a e1

yes
not simple:

#263 ×#1463

#16 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a −e1 a

b b 0 a e1

no no

#17 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a 1 a

b b 0 a e1

no

a

b

a

a
aa

e2 e1

e1e2
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atom table RA QRNA

#18 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 −e2 a

b b b a 1′

no no

#19 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a 1 a

b b b a 1′

no

a

b

a

a
aa

e1 e2

e1e1

#20 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 + a b

b b 0 b e1 + a

yes
not simple:

#263 ×#1363

#21 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 + a b

b b 0 b e1 + a

no no

#22 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a −b b

b b 0 b e1 + a

no no

#23 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 e1 + a b

b b b b −b

no

b

b

a

a
ab

e1 e2

e1e1

#24 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a −b b

b b b b −b

no

b

b

a

a
ab

e1 e2

e1e2
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atom table RA QRNA

#25 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 + b a+ b

b b 0 a+ b e1 + a

yes
not simple:

#263 ×#1663

#26 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 + b a+ b

b b 0 a+ b e1 + a

no no

#27 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a −a a+ b

b b 0 a+ b e1 + a

no

b

a

a

a
ba

e1 e1

e1e2

#28 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a −a a+ b

b b b a+ b −b

no

b

a

a

a
ba

e1 e2

e1e2

#29 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 −e2 a+ b

b b 0 a+ b e1 + a

yes
not simple:

#263 ×#1763

#30 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a −e1 a+ b

b b 0 a+ b e1 + a

no no

#31 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a 1 a+ b

b b 0 a+ b e1 + a

no

b

a

a

b
aa

e1 e1

e2e1
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atom table RA QRNA

#32 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 −e2 a+ b

b b b a+ b −b

no no

#33 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a 1 a+ b

b b b a+ b −b

no

a

a

b

a
ba

e1 e2

e1e2

#34 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 + a 0

b b 0 0 e1 + b

no
not simple:

#263 ×#2463

#35 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 + a 0

b b 0 0 e1 + b

yes
not simple:

#563 ×#563

#36 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a −b 0

b b 0 0 e1 + b

no no

#37 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a −b 0

b b b 0 −a

no no

#38 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 −e2 a

b b 0 a e1 + b

yes
not simple:

#263 ×#1563
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atom table RA QRNA

#39 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a −e1 a

b b 0 a e1 + b

no no

#40 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a 1 a

b b 0 a e1 + b

no

a

b

a

a
aa

b
a

a
b

e1 e1

e1e2

e1

#41 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 −e2 a

b b b a −a

no no

#42 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a 1 a

b b b a −a

no

a

b

a

a
aa

b
a

a
b

e1 e1

e1e1

e2

#43 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 −e2 a+ b

b b 0 a+ b −e2

yes
not simple:

#263 ×#1863

#44 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a −e1 a+ b

b b 0 a+ b −e2

no no

#45 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a 1 a+ b

b b 0 a+ b −e2

no

b

b

a

a
aa

b
a

a
b

e1 e1

e1e1

e2
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atom table RA QRNA

#46 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a 1 a+ b

b b b a+ b 1

no

a

b

b

a
bb

a
a

a a

e1 e1

e1e1

e2

A.2 Atoms: two fragment identity and one nonsym-

metric

atom table RA QRNA

#47 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 0 0

r r 0 0 e1

r˘ r˘ 0 e1 0

no
not simple:

#263 ×#2163

#48 e1 e2 r r˘

e1 e1 0 0 r˘

e2 0 e2 r 0

r r 0 0 e2

r˘ 0 r˘ e1 0

yes r
e2 e1

#49 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r 0

r r 0 0 1′

r˘ r˘ r˘ e1 0

no no

#50 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r r˘

r r r 0 1′

r˘ r˘ r˘ 1′ 0

no no
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atom table RA QRNA

#51 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 0 0

r r 0 r −e2

r˘ r˘ 0 −e2 r˘

yes
not simple:

#263 ×#1063

#52 e1 e2 r r˘

e1 e1 0 0 r˘

e2 0 e2 r 0

r r 0 r −e1

r˘ 0 r˘ −e2 r˘

no no

#53 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r 0

r r 0 r 1

r˘ r˘ r˘ −e2 r˘

no r

r

r

e1

e2 e1

#54 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r r˘

r r r r 1

r˘ r˘ r˘ 1 r˘

no r

r

r

e1

e2 e2

#55 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 0 0

r r 0 r˘ e1

r˘ r˘ 0 e1 r

yes
not simple:

#263 ×#963

#56 e1 e2 r r˘

e1 e1 0 0 r˘

e2 0 e2 r 0

r r 0 r˘ e2

r˘ 0 r˘ e1 r

no no

#57 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r 0

r r 0 r˘ 1′

r˘ r˘ r˘ e1 r

no no
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atom table RA QRNA

#58 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r r˘

r r r r˘ 1′

r˘ r˘ r˘ 1′ r

no r

r

r

e1

e1 e2

#59 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 0 0

r r 0 r + r˘ −e2

r˘ r˘ 0 −e2 r + r˘

yes
not simple:

#263 ×#1163

#60 e1 e2 r r˘

e1 e1 0 0 r˘

e2 0 e2 r 0

r r 0 r + r˘ −e1

r˘ 0 r˘ −e2 r + r˘

no no

#61 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r 0

r r 0 r + r˘ 1

r˘ r˘ r˘ −e2 r + r˘

no

r

r

r

r
rr

e1 e1

e1e2

#62 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r r˘

r r r r + r˘ 1

r˘ r˘ r˘ 1 r + r˘

no

r

r

r

r
rr

e1 e2

e1e2
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A.3 Atoms: three fragment identity

atom table RA QRNA

#63 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 0

e3 0 0 e3 0

a a 0 0 e1

yes
not simple:

#263 ×#263 ×#463

#64 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 a

e3 0 0 e3 0

a a a 0 e1 + e2

no
not simple:

#263 ×#1963

#65 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 a

e3 0 0 e3 a

a a a a 1′

no no

#66 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 0

e3 0 0 e3 0

a a 0 0 e1 + a

yes
not simple:

#263 ×#263 ×#563

#67 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 a

e3 0 0 e3 0

a a a 0 −e3

no
not simple:

#263 ×#2063

#68 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 a

e3 0 0 e3 a

a a a a 1

no a

a

a

e1

e2 e3
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A.4 Atoms: four fragment identity

atom table RA QRNA

#69 e1 e2 e3 e4

e1 e1 0 0 0

e2 0 e2 0 0

e3 0 0 e3 0

e4 0 0 0 e4

yes
not simple:

#263 ×#263 ×#263 ×#263

A.5 Atoms: atomic identity and three symmetric

atom table RA QRNA

#70 1′ a b c

1′ 1′ a b c

a a 1′ 0 0

b b 0 1′ 0

c c 0 0 1′

no no

#71 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 0

b b 0 1′ 0

c c 0 0 1′

no no

#72 1′ a b c

1′ 1′ a b c

a a 1′ + b a 0

b b a 1′ 0

c c 0 0 1′

no no

#73 1′ a b c

1′ 1′ a b c

a a −c a 0

b b a 1′ 0

c c 0 0 1′

no no
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atom table RA QRNA

#74 1′ a b c

1′ 1′ a b c

a a −a a a

b b a 1′ 0

c c a 0 1′

no

a

a

a

a
bc

#75 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a 1′ 0

c c a 0 1′

no

a

a

a

b
aa

c
a

a a

#76 1′ a b c

1′ 1′ a b c

a a 1′ + a b 0

b b b 1′ + a 0

c c 0 0 1′

no no

#77 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ b 0

b b a+ b 1′ + a 0

c c 0 0 1′

no no

#78 1′ a b c

1′ 1′ a b c

a a −c a+ b 0

b b a+ b 1′ + a 0

c c 0 0 1′

no no

#79 1′ a b c

1′ 1′ a b c

a a 1′ + c b a

b b b 1′ + a 0

c c a 0 1′

no no

#80 1′ a b c

1′ 1′ a b c

a a −b b a

b b b 1′ + a 0

c c a 0 1′

no no
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atom table RA QRNA

#81 1′ a b c

1′ 1′ a b c

a a −a a+ b a

b b a+ b 1′ + a 0

c c a 0 1′

no no

#82 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b 1′ + a 0

c c a 0 1′

no

a

a

b

b
aa

c
a

a a

#83 1′ a b c

1′ 1′ a b c

a a 1′ c b

b b c 1′ a

c c b a 1′

yes
2565

RRA

a

b

c

#84 1′ a b c

1′ 1′ a b c

a a 1′ + a c b

b b c 1′ a

c c b a 1′

no no

#85 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ c b

b b a+ c 1′ a

c c b a 1′

no

a

a

a

c
bb

#86 1′ a b c

1′ 1′ a b c

a a −c a+ c b

b b a+ c 1′ a

c c b a 1′

no no

#87 1′ a b c

1′ 1′ a b c

a a −a a+ c a+ b

b b a+ c 1′ a

c c a+ b a 1′

no no
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atom table RA QRNA

#88 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c 1′ a

c c a+ b a 1′

no

a

a

c

b
aa

#89 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b

b b b+ c 1′ + a a

c c b a 1′

yes
2665

RRA

a

a

c

b
ab

#90 1′ a b c

1′ 1′ a b c

a a 1′ + b 0′ b

b b 0′ 1′ + a a

c c b a 1′

no no

#91 1′ a b c

1′ 1′ a b c

a a −c 0′ b

b b 0′ 1′ + a a

c c b a 1′

no

a

a

b

b
aa

b
c

a
b

#92 1′ a b c

1′ 1′ a b c

a a 1′ + c b+ c a+ b

b b b+ c 1′ + a a

c c a+ b a 1′

no no

#93 1′ a b c

1′ 1′ a b c

a a −b b+ c a+ b

b b b+ c 1′ + a a

c c a+ b a 1′

no no

#94 1′ a b c

1′ 1′ a b c

a a −a 0′ a+ b

b b 0′ 1′ + a a

c c a+ b a 1′

no

a

a

b

a
bc
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atom table RA QRNA

#95 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ 1′ + a a

c c a+ b a 1′

no

a

a

b

b
aa

a
c

a
b

#96 1′ a b c

1′ 1′ a b c

a a 1′ b c

b b b 1′ + a 0

c c c 0 1′ + a

no no

#97 1′ a b c

1′ 1′ a b c

a a 1′ + a b c

b b b 1′ + a 0

c c c 0 1′ + a

no no

#98 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ b c

b b a+ b 1′ + a 0

c c c 0 1′ + a

no no

#99 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b 1′ + a 0

c c c 0 1′ + a

no no

#100 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b 1′ + a 0

c c a+ c 0 1′ + a

no no

#101 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b 1′ + a 0

c c a+ c 0 1′ + a

no



1′ a a b a a

a 1′ a a c a

a a 1′ b a a

b a b 1′ a a

a c a a 1′ c

a a a a c 1′
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atom table RA QRNA

#102 1′ a b c

1′ 1′ a b c

a a 1′ b+ c b+ c

b b b+ c 1′ + a a

c c b+ c a 1′ + a

no

b

b

c

c
aa

#103 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b+ c

b b b+ c 1′ + a a

c c b+ c a 1′ + a

yes
2865

RRA

a

a

c

b
ab

b
c

a c

#104 1′ a b c

1′ 1′ a b c

a a 1′ + b 0′ b+ c

b b 0′ 1′ + a a

c c b+ c a 1′ + a

no no

#105 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ 1′ + a a

c c b+ c a 1′ + a

no

a

a

b

b
aa

b
c

a c

#106 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ 1′ + a a

c c 0′ a 1′ + a

no

a

a

a

c
bc

c
a

a
b

#107 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ 1′ + a a

c c 0′ a 1′ + a

yes
3265

RRA

a

a

b

b
aa

a
c

a c

#108 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 0

b b 0 1′ + b 0

c c 0 0 1′

no no
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atom table RA QRNA

#109 1′ a b c

1′ 1′ a b c

a a −c a 0

b b a 1′ + b 0

c c 0 0 1′

no no

#110 1′ a b c

1′ 1′ a b c

a a 1′ + c 0 a

b b 0 1′ + b 0

c c a 0 1′

no no

#111 1′ a b c

1′ 1′ a b c

a a −b 0 a

b b 0 1′ + b 0

c c a 0 1′

no no

#112 1′ a b c

1′ 1′ a b c

a a −a a a

b b a 1′ + b 0

c c a 0 1′

no

a

a

a

a
bc

a
b

a
b

#113 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a 1′ + b 0

c c a 0 1′

no



1′ a a b a b

a 1′ a a c a

a a 1′ a a a

b a a 1′ a b

a c a a 1′ a

b a a b a 1′


#114 1′ a b c

1′ 1′ a b c

a a −c a+ b 0

b b a+ b −c 0

c c 0 0 1′

no

a

a

b

b
aa

b
b

b b

#115 1′ a b c

1′ 1′ a b c

a a 1′ + c b a

b b b −c 0

c c a 0 1′

no no
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atom table RA QRNA

#116 1′ a b c

1′ 1′ a b c

a a −b b a

b b b −c 0

c c a 0 1′

no no

#117 1′ a b c

1′ 1′ a b c

a a −a a+ b a

b b a+ b −c 0

c c a 0 1′

no no

#118 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b −c 0

c c a 0 1′

no



1′ a a b a b

a 1′ a a c a

a a 1′ b a b

b a b 1′ a b

a c a a 1′ a

b a b b a 1′


#119 1′ a b c

1′ 1′ a b c

a a 1′ + a c b

b b c 1′ + b a

c c b a 1′

no no

#120 1′ a b c

1′ 1′ a b c

a a −c a+ c b

b b a+ c 1′ + b a

c c b a 1′

no no

#121 1′ a b c

1′ 1′ a b c

a a 1′ + c c a+ b

b b c 1′ + b a

c c a+ b a 1′

no no

#122 1′ a b c

1′ 1′ a b c

a a −b c a+ b

b b c 1′ + b a

c c a+ b a 1′

no no
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atom table RA QRNA

#123 1′ a b c

1′ 1′ a b c

a a −a a+ c a+ b

b b a+ c 1′ + b a

c c a+ b a 1′

no no

#124 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c 1′ + b a

c c a+ b a 1′

no

a

a

c

b
aa

c
b

b a

#125 1′ a b c

1′ 1′ a b c

a a −c 0′ b

b b 0′ −c a

c c b a 1′

yes
2765

RRA

a

a

b

b
aa

c
b

b b

#126 1′ a b c

1′ 1′ a b c

a a 1′ + c b+ c a+ b

b b b+ c −c a

c c a+ b a 1′

no no

#127 1′ a b c

1′ 1′ a b c

a a −b b+ c a+ b

b b b+ c −c a

c c a+ b a 1′

no no

#128 1′ a b c

1′ 1′ a b c

a a −a 0′ a+ b

b b 0′ −c a

c c a+ b a 1′

no

a

a

b

a
bc

b
b

a
b

#129 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ −c a

c c a+ b a 1′

no

a

a

b

b
aa

c
a

b b
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atom table RA QRNA

#130 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 c

b b 0 1′ + b 0

c c c 0 1′ + a

no no

#131 1′ a b c

1′ 1′ a b c

a a 1′ + b a c

b b a 1′ + b 0

c c c 0 1′ + a

no no

#132 1′ a b c

1′ 1′ a b c

a a −c a c

b b a 1′ + b 0

c c c 0 1′ + a

no no

#133 1′ a b c

1′ 1′ a b c

a a 1′ + c 0 a+ c

b b 0 1′ + b 0

c c a+ c 0 1′ + a

no no

#134 1′ a b c

1′ 1′ a b c

a a −b 0 a+ c

b b 0 1′ + b 0

c c a+ c 0 1′ + a

no no

#135 1′ a b c

1′ 1′ a b c

a a −a a a+ c

b b a 1′ + b 0

c c a+ c 0 1′ + a

no no

#136 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a 1′ + b 0

c c a+ c 0 1′ + a

no



1′ a b a a b

a 1′ a c a a

b a 1′ a a b

a c a 1′ c a

a a a c 1′ a

b a b a a 1′
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atom table RA QRNA

#137 1′ a b c

1′ 1′ a b c

a a 1′ b c

b b b −c 0

c c c 0 1′ + a

no no

#138 1′ a b c

1′ 1′ a b c

a a 1′ + a b c

b b b −c 0

c c c 0 1′ + a

no no

#139 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ b c

b b a+ b −c 0

c c c 0 1′ + a

no no

#140 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b −c 0

c c c 0 1′ + a

no no

#141 1′ a b c

1′ 1′ a b c

a a 1′ + c b a+ c

b b b −c 0

c c a+ c 0 1′ + a

no no

#142 1′ a b c

1′ 1′ a b c

a a −b b a+ c

b b b −c 0

c c a+ c 0 1′ + a

no no

#143 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b −c 0

c c a+ c 0 1′ + a

no no



A.5. ATOMIC IDENTITY AND THREE SYMMETRIC 135

atom table RA QRNA

#144 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b −c 0

c c a+ c 0 1′ + a

no



1′ a a b a a b

a 1′ a a c a a

a a 1′ b a a b

b a b 1′ a a b

a c a a 1′ c a

a a a a c 1′ a

b a b b a a 1′


#145 1′ a b c

1′ 1′ a b c

a a 1′ + a c b+ c

b b c 1′ + b a

c c b+ c a 1′ + a

no no

#146 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ c b+ c

b b a+ c 1′ + b a

c c b+ c a 1′ + a

no no

#147 1′ a b c

1′ 1′ a b c

a a −c a+ c b+ c

b b a+ c 1′ + b a

c c b+ c a 1′ + a

no

a

a

a

b
aa

c
b

b c

#148 1′ a b c

1′ 1′ a b c

a a 1′ + c c 0′

b b c 1′ + b a

c c 0′ a 1′ + a

no no

#149 1′ a b c

1′ 1′ a b c

a a −b c 0′

b b c 1′ + b a

c c 0′ a 1′ + a

no no

#150 1′ a b c

1′ 1′ a b c

a a −a a+ c 0′

b b a+ c 1′ + b a

c c 0′ a 1′ + a

no

a

a

c

a
bc

c
b

a
b
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atom table RA QRNA

#151 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c 1′ + b a

c c 0′ a 1′ + a

yes
3065

RRA



1′ a a b c b

a 1′ a a a c

a a 1′ a b c

b a a 1′ a b

c a b a 1′ a

b c c b a 1′


#152 1′ a b c

1′ 1′ a b c

a a 1′ b+ c b+ c

b b b+ c −c a

c c b+ c a 1′ + a

no no

#153 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b+ c

b b b+ c −c a

c c b+ c a 1′ + a

no

a

a

c

b
ab

b
c

a c

#154 1′ a b c

1′ 1′ a b c

a a 1′ + b 0′ b+ c

b b 0′ −c a

c c b+ c a 1′ + a

no

a

a

b

b
bc

c
b

a
b

#155 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ −c a

c c b+ c a 1′ + a

no



1′ a a b c b

a 1′ a a b c

a a 1′ b c b

b a b 1′ a b

c b c a 1′ a

b c b b a 1′


#156 1′ a b c

1′ 1′ a b c

a a 1′ + c b+ c 0′

b b b+ c −c a

c c 0′ a 1′ + a

no no

#157 1′ a b c

1′ 1′ a b c

a a −b b+ c 0′

b b b+ c −c a

c c 0′ a 1′ + a

no no



A.5. ATOMIC IDENTITY AND THREE SYMMETRIC 137

atom table RA QRNA

#158 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ −c a

c c 0′ a 1′ + a

no

a

a

b

a
bc

c
b

a
b

#159 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ −c a

c c 0′ a 1′ + a

yes
3365

RRA



1′ a a b c b

a 1′ a a a c

a a 1′ b c b

b a b 1′ a b

c a c a 1′ a

b c b b a 1′


#160 1′ a b c

1′ 1′ a b c

a a −a a a

b b a 1′ + c b

c c a b 1′

yes
165

RRA

a

a

b

c
ba

#161 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a 1′ + c b

c c a b 1′

yes
565

RRA

a

a

a

b
aa

a
c

b a

#162 1′ a b c

1′ 1′ a b c

a a −b b a

b b b −b b

c c a b 1′

yes
365

RRA

a

a

a

c
aa

b
b

b b

#163 1′ a b c

1′ 1′ a b c

a a −a a+ b a

b b a+ b −b b

c c a b 1′

yes
1565

RRA

a

a

b

c
ba

b
a

a
b

#164 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b −b b

c c a b 1′

yes
1665

RRA

a

a

b

b
aa

a
c

b a
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atom table RA QRNA

#165 1′ a b c

1′ 1′ a b c

a a −a a+ c a+ b

b b a+ c 1′ + c a+ b

c c a+ b a+ b 1′

no

a

a

b

c
ba

b
a

a c

#166 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c 1′ + c a+ b

c c a+ b a+ b 1′

no

a

a

c

b
aa

a
c

b b

#167 1′ a b c

1′ 1′ a b c

a a −b b+ c a+ b

b b b+ c −b a+ b

c c a+ b a+ b 1′

no

a

a

a

c
aa

b
b

b c

#168 1′ a b c

1′ 1′ a b c

a a −a 0′ a+ b

b b 0′ −b a+ b

c c a+ b a+ b 1′

no

a

a

b

c
ba

c
a

a
b

#169 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ −b a+ b

c c a+ b a+ b 1′

no

a

a

a

b
aa

a
c

b b

#170 1′ a b c

1′ 1′ a b c

a a 1′ + b a c

b b a 1′ + c b

c c c b 1′ + a

no no

#171 1′ a b c

1′ 1′ a b c

a a −c a c

b b a 1′ + c b

c c c b 1′ + a

no no
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atom table RA QRNA

#172 1′ a b c

1′ 1′ a b c

a a −a a a+ c

b b a 1′ + c b

c c a+ c b 1′ + a

no no

#173 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a 1′ + c b

c c a+ c b 1′ + a

no



1′ a a b c a

a 1′ a a a c

a a 1′ a a c

b a a 1′ b a

c a a b 1′ a

a c c a a 1′


#174 1′ a b c

1′ 1′ a b c

a a 1′ + a b c

b b b −b b

c c c b 1′ + a

yes
265

RRA

a

a

b

b
ab

c
c

b c

#175 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b −b b

c c c b 1′ + a

no no

#176 1′ a b c

1′ 1′ a b c

a a 1′ + c b a+ c

b b b −b b

c c a+ c b 1′ + a

yes
965

RRA

a

a

b

b
cb

c
a

b c

#177 1′ a b c

1′ 1′ a b c

a a −b b a+ c

b b b −b b

c c a+ c b 1′ + a

yes
1065

RRA

a

a

c

c
aa

b
b

b b

#178 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b −b b

c c a+ c b 1′ + a

no no
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atom table RA QRNA

#179 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b −b b

c c a+ c b 1′ + a

no

a

a

b

b
aa

a
c

b c

#180 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ c b+ c

b b a+ c 1′ + c a+ b

c c b+ c a+ b 1′ + a

yes
3965

RRA

a

a

c

b
bc

#181 1′ a b c

1′ 1′ a b c

a a −c a+ c b+ c

b b a+ c 1′ + c a+ b

c c b+ c a+ b 1′ + a

yes
4065

/∈ RRA

a

a

a

b
aa

c
b

c c

#182 1′ a b c

1′ 1′ a b c

a a −a a+ c 0′

b b a+ c 1′ + c a+ b

c c 0′ a+ b 1′ + a

yes
4365

/∈ RRA

a

a

b

c
ba

c
a

b c

#183 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c 1′ + c a+ b

c c 0′ a+ b 1′ + a

yes
4465

/∈ RRA

a

a

a

b
aa

a
c

b c

#184 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b+ c

b b b+ c −b a+ b

c c b+ c a+ b 1′ + a

no

a

a

c

b
ab

c
c

b b

#185 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ −b a+ b

c c b+ c a+ b 1′ + a

yes
4565

/∈ RRA

a

a

b

b
aa

b
c

b c
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atom table RA QRNA

#186 1′ a b c

1′ 1′ a b c

a a 1′ + c b+ c 0′

b b b+ c −b a+ b

c c 0′ a+ b 1′ + a

no

a

a

b

b
cc

c
b

a
b

#187 1′ a b c

1′ 1′ a b c

a a −b b+ c 0′

b b b+ c −b a+ b

c c 0′ a+ b 1′ + a

no

a

a

c

c
aa

c
b

b b

#188 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ −b a+ b

c c 0′ a+ b 1′ + a

yes
5465

/∈ RRA

a

a

b

c
ba

c
a

c
b

#189 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ −b a+ b

c c 0′ a+ b 1′ + a

yes
5565

RRA

a

a

b

b
aa

c
c

b a

#190 1′ a b c

1′ 1′ a b c

a a −b 0 a

b b 0 −a b

c c a b 1′

no no

#191 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a −a b

c c a b 1′

yes
765

RRA



1′ a a b c b

a 1′ a a a a

a a 1′ a a a

b a a 1′ b b

c a a b 1′ b

b a a b b 1′


#192 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b 1 b

c c a b 1′

yes
1965

RRA



1′ a a b c b

a 1′ a a a b

a a 1′ b a b

b a b 1′ b b

c a a b 1′ b

b b b b b 1′
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atom table RA QRNA

#193 1′ a b c

1′ 1′ a b c

a a −b c a+ b

b b c −a a+ b

c c a+ b a+ b 1′

no no

#194 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c −a a+ b

c c a+ b a+ b 1′

no



1′ a a b c b

a 1′ a a a c

a a 1′ c a a

b a c 1′ b b

c a a b 1′ b

b c a b b 1′


#195 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ 1 a+ b

c c a+ b a+ b 1′

no

a

a

b

b
aa

a
c

b b

#196 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 c

b b 0 −a b

c c c b 1′ + a

no no

#197 1′ a b c

1′ 1′ a b c

a a −c a c

b b a −a b

c c c b 1′ + a

no no

#198 1′ a b c

1′ 1′ a b c

a a −b 0 a+ c

b b 0 −a b

c c a+ c b 1′ + a

no no

#199 1′ a b c

1′ 1′ a b c

a a −a a a+ c

b b a −a b

c c a+ c b 1′ + a

no no
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atom table RA QRNA

#200 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a −a b

c c a+ c b 1′ + a

no



1′ a a b c a b

a 1′ a a a c a

a a 1′ a a c a

b a a 1′ b a b

c a a b 1′ a b

a c c a a 1′ a

b a a b b a 1′


#201 1′ a b c

1′ 1′ a b c

a a 1′ + a b c

b b b 1 b

c c c b 1′ + a

yes
665

RRA



1′ a a b c b

a 1′ a b c b

a a 1′ b c b

b b b 1′ b b

c c c b 1′ b

b b b b b 1′


#202 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b 1 b

c c c b 1′ + a

no



1′ a a b b b b

a 1′ a a b b b

a a 1′ b b b b

b a b 1′ b b b

b b b b 1′ c a

b b b b c 1′ c

b b b b a c 1′


#203 1′ a b c

1′ 1′ a b c

a a 1′ + c b a+ c

b b b 1 b

c c a+ c b 1′ + a

yes
1265

RRA



1′ a c b a b

a 1′ a b c b

c a 1′ b c b

b b b 1′ b b

a c c b 1′ b

b b b b b 1′


#204 1′ a b c

1′ 1′ a b c

a a −b b a+ c

b b b 1 b

c c a+ c b 1′ + a

yes
1365

RRA



1′ a a c b b

a 1′ a a b b

a a 1′ c b b

c a c 1′ b b

b b b b 1′ b

b b b b b 1′


#205 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b 1 b

c c a+ c b 1′ + a

no



1′ a b c b b b

a 1′ a a b b b

b a 1′ b b b b

c a b 1′ b b b

b b b b 1′ c a

b b b b c 1′ c

b b b b a c 1′


#206 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b 1 b

c c a+ c b 1′ + a

no



1′ a a b c b

a 1′ a a a b

a a 1′ b c b

b a b 1′ b b

c a c b 1′ b

b b b b b 1′
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atom table RA QRNA

#207 1′ a b c

1′ 1′ a b c

a a 1′ + a c b+ c

b b c −a a+ b

c c b+ c a+ b 1′ + a

no no

#208 1′ a b c

1′ 1′ a b c

a a −c a+ c b+ c

b b a+ c −a a+ b

c c b+ c a+ b 1′ + a

yes
4165

/∈ RRA



1′ a a b b b

a 1′ a a c a

a a 1′ a c a

b a a 1′ b b

b c c b 1′ c

b a a b c 1′


#209 1′ a b c

1′ 1′ a b c

a a −b c 0′

b b c −a a+ b

c c 0′ a+ b 1′ + a

no no

#210 1′ a b c

1′ 1′ a b c

a a −a a+ c 0′

b b a+ c −a a+ b

c c 0′ a+ b 1′ + a

yes
4765

/∈ RRA



1′ a b c c a

a 1′ a a b b

b a 1′ b a a

c a b 1′ a c

c b a a 1′ b

a b a c b 1′


#211 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c −a a+ b

c c 0′ a+ b 1′ + a

yes
4865

/∈ RRA



1′ a a b c b

a 1′ a a a c

a a 1′ a c a

b a a 1′ b b

c a c b 1′ b

b c a b b 1′


#212 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b+ c

b b b+ c 1 a+ b

c c b+ c a+ b 1′ + a

no

a

a

b

b
ab

b
c

b c

#213 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ 1 a+ b

c c b+ c a+ b 1′ + a

yes
4665

RRA

a

a

b

b
aa

c
c

b b



A.5. ATOMIC IDENTITY AND THREE SYMMETRIC 145

atom table RA QRNA

#214 1′ a b c

1′ 1′ a b c

a a 1′ + c b+ c 0′

b b b+ c 1 a+ b

c c 0′ a+ b 1′ + a

no



1′ a c b b b

a 1′ a b c c

c a 1′ b b b

b b b 1′ b b

b c b b 1′ a

b c b b a 1′


#215 1′ a b c

1′ 1′ a b c

a a −b b+ c 0′

b b b+ c 1 a+ b

c c 0′ a+ b 1′ + a

no



1′ a a c b a

a 1′ a a b c

a a 1′ c b a

c a c 1′ b b

b b b b 1′ b

a c a b b 1′


#216 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ 1 a+ b

c c 0′ a+ b 1′ + a

yes
5865

/∈ RRA

a

a

b

a
bc

a
b

c
b

#217 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ 1 a+ b

c c 0′ a+ b 1′ + a

yes
5965

RRA



1′ a a b c a

a 1′ a a a c

a a 1′ b b b

b a b 1′ b b

c a b b 1′ c

a c b b c 1′


#218 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 c

b b 0 1′ + b c

c c c c −c

no



1′ a a c c c

a 1′ a c c c

a a 1′ c c c

c c c 1′ b b

c c c b 1′ b

c c c b b 1′


#219 1′ a b c

1′ 1′ a b c

a a −c a c

b b a 1′ + b c

c c c c −c

yes
465

RRA



1′ a a b c b

a 1′ a a c a

a a 1′ a c a

b a a 1′ c b

c c c c 1′ c

b a a b c 1′


#220 1′ a b c

1′ 1′ a b c

a a −b 0 a+ c

b b 0 1′ + b c

c c a+ c c −c

no no
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atom table RA QRNA

#221 1′ a b c

1′ 1′ a b c

a a −a a a+ c

b b a 1′ + b c

c c a+ c c −c

yes
1765

RRA



1′ a b c a b

a 1′ a a c a

b a 1′ c a b

c a c 1′ c c

a c a c 1′ a

b a b c a 1′


#222 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a 1′ + b c

c c a+ c c −c

yes
1865

RRA



1′ a a b c b

a 1′ a a a a

a a 1′ a c a

b a a 1′ c b

c a c c 1′ c

b a a b c 1′


#223 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b −c c

c c c c −c

yes
1165

RRA



1′ a a b c b

a 1′ a a c b

a a 1′ b c b

b a b 1′ c b

c c c c 1′ c

b b b b c 1′


#224 1′ a b c

1′ 1′ a b c

a a −b b a+ c

b b b −c c

c c a+ c c −c

no no

#225 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b −c c

c c a+ c c −c

no no

#226 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b −c c

c c a+ c c −c

no



1′ a a b c b

a 1′ a a a a

a a 1′ b c b

b a b 1′ c b

c a c c 1′ c

b a b b c 1′


#227 1′ a b c

1′ 1′ a b c

a a 1′ + a c b+ c

b b c 1′ + b a+ c

c c b+ c a+ c −c

no

a

a

c

c
ab

b
c

b c
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atom table RA QRNA

#228 1′ a b c

1′ 1′ a b c

a a −c a+ c b+ c

b b a+ c 1′ + b a+ c

c c b+ c a+ c −c

yes
3565

/∈ RRA



1′ a a b c b

a 1′ a a b c

a a 1′ a c c

b a a 1′ c b

c b c c 1′ a

b c c b a 1′


#229 1′ a b c

1′ 1′ a b c

a a −b c 0′

b b c 1′ + b a+ c

c c 0′ a+ c −c

no



1′ a a c a c

a 1′ a a c c

a a 1′ c c c

c a c 1′ b b

a c c b 1′ b

c c c b b 1′


#230 1′ a b c

1′ 1′ a b c

a a −a a+ c 0′

b b a+ c 1′ + b a+ c

c c 0′ a+ c −c

yes
5165

RRA

a

a

c

c
ba

c
b

c
b

#231 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c 1′ + b a+ c

c c 0′ a+ c −c

yes
5265

RRA

a

a

c

b
aa

c
b

b c

#232 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ −c a+ c

c c b+ c a+ c −c

yes
3765

/∈ RRA



1′ a a b c b

a 1′ a a b c

a a 1′ b c b

b a b 1′ c b

c b c c 1′ c

b c b b c 1′


#233 1′ a b c

1′ 1′ a b c

a a −b b+ c 0′

b b b+ c −c a+ c

c c 0′ a+ c −c

yes
4965

/∈ RRA



1′ a a c b b

a 1′ a a b b

a a 1′ a c c

c a a 1′ c c

b b c c 1′ b

b b c c b 1′


#234 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ −c a+ c

c c 0′ a+ c −c

yes
5665

RRA

a

a

c

a
bc

b
b

c
b
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atom table RA QRNA

#235 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ −c a+ c

c c 0′ a+ c −c

yes
5765

RRA



1′ a a b c c

a 1′ a a a c

a a 1′ b b b

b a b 1′ a a

c a b a 1′ b

c c b a b 1′


#236 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b −b b+ c

c c a+ c b+ c −c

yes
2165

/∈ RRA

no

#237 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b −b b+ c

c c a+ c b+ c −c

yes
2265

/∈ RRA



1′ a a b c b

a 1′ a a a a

a a 1′ b c b

b a b 1′ b c

c a c b 1′ c

b a b c c 1′


#238 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ −b 0′

c c 0′ 0′ −c

yes
6265

RRA

a

a

c

c
ba

b
b

a c

#239 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ −b 0′

c c 0′ 0′ −c

yes
6365

RRA

a

a

c

b
aa

c
b

c
b

#240 1′ a b c

1′ 1′ a b c

a a −b 0 a+ c

b b 0 −a b+ c

c c a+ c b+ c −c

no no

#241 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a −a b+ c

c c a+ c b+ c −c

no



1′ a a b c a b

a 1′ a a a c a

a a 1′ a a c a

b a a 1′ b a b

c a a b 1′ a c

a c c a a 1′ a

b a a b c a 1′
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atom table RA QRNA

#242 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b 1 b+ c

c c a+ c b+ c −c

yes
2365

/∈ RRA



1′ a a b c b

a 1′ a a a a

a a 1′ b c b

b a b 1′ b b

c a c b 1′ c

b a b b c 1′


#243 1′ a b c

1′ 1′ a b c

a a −b c 0′

b b c −a 0′

c c 0′ 0′ −c

no



1′ a a c a c

a 1′ a a c c

a a 1′ c c b

c a c 1′ b b

a c c b 1′ b

c c b b b 1′


#244 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c −a 0′

c c 0′ 0′ −c

yes
6065

/∈ RRA



1′ a a b c c

a 1′ a a a c

a a 1′ c b b

b a c 1′ b c

c a b b 1′ b

c c b c b 1′


#245 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ 1 0′

c c 0′ 0′ −c

yes
6465

RRA



1′ a a b c a

a 1′ a a a c

a a 1′ b b c

b a b 1′ b c

c a b b 1′ c

a c c c c 1′


#246 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 0

b b 0 1′ + b 0

c c 0 0 1′ + c

no no

#247 1′ a b c

1′ 1′ a b c

a a −c a 0

b b a 1′ + b 0

c c 0 0 1′ + c

no no

#248 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a 1′ + b 0

c c a 0 1′ + c

no



1′ a a b a b a

a 1′ a a c a c

a a 1′ a a a a

b a a 1′ a b a

a c a a 1′ a c

b a a b a 1′ a

a c a a c a 1′
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atom table RA QRNA

#249 1′ a b c

1′ 1′ a b c

a a −c a+ b 0

b b a+ b −c 0

c c 0 0 1′ + c

no no

#250 1′ a b c

1′ 1′ a b c

a a −b b a

b b b −c 0

c c a 0 1′ + c

no no

#251 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b −c 0

c c a 0 1′ + c

no



1′ a a b a b a

a 1′ a a c a c

a a 1′ b a b a

b a b 1′ a b a

a c a a 1′ a c

b a b b a 1′ a

a c a a c a 1′


#252 1′ a b c

1′ 1′ a b c

a a 1′ + a c b

b b c 1′ + b a

c c b a 1′ + c

no no

#253 1′ a b c

1′ 1′ a b c

a a −c a+ c b

b b a+ c 1′ + b a

c c b a 1′ + c

no no

#254 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c 1′ + b a

c c a+ b a 1′ + c

yes
2965

RRA



1′ a a b c a

a 1′ a a b b

a a 1′ c a c

b a c 1′ a c

c b a a 1′ b

a b c c b 1′


#255 1′ a b c

1′ 1′ a b c

a a −c 0′ b

b b 0′ −c a

c c b a 1′ + c

no no
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atom table RA QRNA

#256 1′ a b c

1′ 1′ a b c

a a −b b+ c a+ b

b b b+ c −c a

c c a+ b a 1′ + c

no no

#257 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ −c a

c c a+ b a 1′ + c

yes
3165

RRA



1′ a a b a b

a 1′ a a c c

a a 1′ b b a

b a b 1′ a b

a c b a 1′ c

b c a b c 1′


#258 1′ a b c

1′ 1′ a b c

a a 1′ + a b c

b b b −c 0

c c c 0 −b

no no

#259 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b −c 0

c c c 0 −b

no no

#260 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b −c 0

c c a+ c 0 −b

no



1′ a a b a a b a

a 1′ a a c a a c

a a 1′ b a a b a

b a b 1′ a a b a

a c a a 1′ c a c

a a a a c 1′ a c

b a b b a a 1′ a

a c a a c c a 1′


#261 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b+ c

b b b+ c −c a

c c b+ c a −b

no no

#262 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ −c a

c c b+ c a −b

no no
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atom table RA QRNA

#263 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ −c a

c c 0′ a −b

yes
3465

RRA



1′ a a b c a

a 1′ a a c c

a a 1′ b a b

b a b 1′ a b

c c a a 1′ c

a c b b c 1′


#264 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a −a b

c c a b 1′ + c

yes
865

RRA



1′ a a b c b c

a 1′ a a a a a

a a 1′ a a a a

b a a 1′ b b b

c a a b 1′ b c

b a a b b 1′ b

c a a b c b 1′


#265 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b 1 b

c c a b 1′ + c

yes
2065

RRA



1′ a a b c b c

a 1′ a a a b a

a a 1′ b a b a

b a b 1′ b b b

c a a b 1′ b c

b b b b b 1′ b

c a a b c b 1′


#266 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c −a a+ b

c c a+ b a+ b 1′ + c

yes
3665

/∈ RRA



1′ a a b b b

a 1′ a a c a

a a 1′ c a c

b a c 1′ b c

b c a b 1′ b

b a c c b 1′


#267 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ 1 a+ b

c c a+ b a+ b 1′ + c

yes
5365

RRA



1′ a a b c c

a 1′ a a a b

a a 1′ b b b

b a b 1′ b b

c a b b 1′ c

c b b b c 1′


#268 1′ a b c

1′ 1′ a b c

a a −c a c

b b a −a b

c c c b −b

no no

#269 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a −a b

c c a+ c b −b

no



1′ a a b c a b c

a 1′ a a a c a a

a a 1′ a a c a a

b a a 1′ b a b b

c a a b 1′ a b c

a c c a a 1′ a a

b a a b b a 1′ b

c a a b c a b 1′
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atom table RA QRNA

#270 1′ a b c

1′ 1′ a b c

a a −b b a+ c

b b b 1 b

c c a+ c b −b

yes
1465

RRA



1′ a a c b b c

a 1′ a a b b c

a a 1′ c b b c

c a c 1′ b b c

b b b b 1′ b b

b b b b b 1′ b

c c c c b b 1′


#271 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b 1 b

c c a+ c b −b

no



1′ a a b c b c

a 1′ a a a b a

a a 1′ b c b c

b a b 1′ b b b

c a c b 1′ b c

b b b b b 1′ b

c a c b c b 1′


#272 1′ a b c

1′ 1′ a b c

a a −c a+ c b+ c

b b a+ c −a a+ b

c c b+ c a+ b −b

yes
4265

/∈ RRA



1′ a a b b b

a 1′ a a c c

a a 1′ a c c

b a a 1′ b b

b c c b 1′ c

b c c b c 1′


#273 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c −a a+ b

c c 0′ a+ b −b

yes
5065

/∈ RRA



1′ a a b b b

a 1′ a a c c

a a 1′ a a c

b a a 1′ b b

b c a b 1′ c

b c c b c 1′


#274 1′ a b c

1′ 1′ a b c

a a −b b+ c 0′

b b b+ c 1 a+ b

c c 0′ a+ b −b

yes
3865

/∈ RRA



1′ a a c b c

a 1′ a a b b

a a 1′ c b c

c a c 1′ b c

b b b b 1′ b

c b c c b 1′


#275 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ 1 a+ b

c c 0′ a+ b −b

yes
6165

RRA



1′ a a b c c

a 1′ a a a c

a a 1′ b b b

b a b 1′ b b

c a b b 1′ c

c c b b c 1′


#276 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b 1 b+ c

c c a+ c b+ c 1

yes
2465

RRA



1′ a a b c b c

a 1′ a a a a c

a a 1′ b c b c

b a b 1′ b b c

c a c b 1′ c c

b a b b c 1′ c

c c c c c c 1′
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atom table RA QRNA

#277 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ 1 0′

c c 0′ 0′ 1

yes
6565

RRA



1′ a a b c c

a 1′ a a a c

a a 1′ b b c

b a b 1′ b c

c a b b 1′ c

c c c c c 1′



A.6 Atoms: atomic identity, one symmetric and one

nonsymmetric

atom table RA QRNA

#278 1′ a r r˘

1′ 1′ a r r˘

a a 1′ 0 0

r r 0 0 1′

r˘ r˘ 0 1′ 0

no no

#279 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a 0 0

r r 0 0 1′

r˘ r˘ 0 1′ 0

no no

#280 1′ a r r˘

1′ 1′ a r r˘

a a −a a a

r r a 0 1′

r˘ r˘ a 1′ 0

no r

a

a

#281 1′ a r r˘

1′ 1′ a r r˘

a a 1 a a

r r a 0 1′

r˘ r˘ a 1′ 0

no

a

a

a

a
ra
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atom table RA QRNA

#282 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r 0

r r 0 0 1′ + a

r˘ r˘ r˘ 1′ 0

no r

r

a

#283 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r 0

r r 0 0 1′ + a

r˘ r˘ r˘ 1′ 0

no

a

r

r

a
ra

#284 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a

r r a 0 1′ + a

r˘ r˘ a+ r˘ 1′ 0

no no

#285 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a

r r a 0 1′ + a

r˘ r˘ a+ r˘ 1′ 0

no

a

a

r

a
ra

#286 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r˘ r

r r r˘ a 1′

r˘ r˘ r 1′ a

yes
1837

RRA

r

r

a

#287 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r˘ r

r r r˘ a 1′

r˘ r˘ r 1′ a

no no

#288 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r˘ a+ r

r r a+ r˘ a 1′

r˘ r˘ a+ r 1′ a

no

a

a

a

r
rr
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atom table RA QRNA

#289 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r˘ a+ r

r r a+ r˘ a 1′

r˘ r˘ a+ r 1′ a

no

a

a

a

r
ra

#290 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r

r r r˘ a 1′ + a

r˘ r˘ r + r˘ 1′ a

no no

#291 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r

r r r˘ a 1′ + a

r˘ r˘ r + r˘ 1′ a

no

a

r

r

a
ra

#292 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ a+ r

r r a+ r˘ a 1′ + a

r˘ r˘ 0′ 1′ a

no

a

r

a

r
ra

#293 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ a+ r

r r a+ r˘ a 1′ + a

r˘ r˘ 0′ 1′ a

no

a

a

a

r
rr

a
a

a r

#294 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r r˘

r r r 0 1′ + a

r˘ r˘ r˘ 1′ + a 0

no

a

r

a

r
rr

#295 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r r˘

r r r 0 1′ + a

r˘ r˘ r˘ 1′ + a 0

no

a

r

r

a
ra

r
r

r a
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atom table RA QRNA

#296 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a+ r˘

r r a+ r 0 1′ + a

r˘ r˘ a+ r˘ 1′ + a 0

no

a

a

r

a
rr

#297 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a+ r˘

r r a+ r 0 1′ + a

r˘ r˘ a+ r˘ 1′ + a 0

no

a

a

r

a
rr

a
a

a r

#298 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r + r˘

r r r + r˘ a 1′ + a

r˘ r˘ r + r˘ 1′ + a a

no

a

r

a

r
rr

#299 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r + r˘

r r r + r˘ a 1′ + a

r˘ r˘ r + r˘ 1′ + a a

yes
2037

RRA

a

r

a

r
rr

a
a

r r

#300 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ 0′

r r 0′ a 1′ + a

r˘ r˘ 0′ 1′ + a a

no

a

a

a

r
rr

r
a

a r

#301 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ 0′

r r 0′ a 1′ + a

r˘ r˘ 0′ 1′ + a a

yes
3137

RRA

a

a

a

r
rr

a
a

r r

#302 1′ a r r˘

1′ 1′ a r r˘

a a 1′ 0 0

r r 0 r −a
r˘ r˘ 0 −a r˘

no no
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atom table RA QRNA

#303 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a 0 0

r r 0 r −a
r˘ r˘ 0 −a r˘

no no

#304 1′ a r r˘

1′ 1′ a r r˘

a a −a a a

r r a r −a
r˘ r˘ a −a r˘

yes
737

RRA

a

a

r

r
ra

#305 1′ a r r˘

1′ 1′ a r r˘

a a 1 a a

r r a r −a
r˘ r˘ a −a r˘

yes
837

RRA

a

a

r

r
ra

a
a

a a

#306 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r 0

r r 0 r 1

r˘ r˘ r˘ −a r˘

no

a

r

r

r
rr

#307 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r 0

r r 0 r 1

r˘ r˘ r˘ −a r˘

no

a

r

r

a
ra

r
r

r r

#308 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a

r r a r 1

r˘ r˘ a+ r˘ −a r˘

no

a

r

r

r
ra

#309 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a

r r a r 1

r˘ r˘ a+ r˘ −a r˘

yes
1337

RRA

a

a

r

r
ra

a
a

a r
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atom table RA QRNA

#310 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r˘ r

r r r˘ a+ r −a
r˘ r˘ r −a a+ r˘

no

a

r

r

r
rr

#311 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r˘ r

r r r˘ a+ r −a
r˘ r˘ r −a a+ r˘

no no

#312 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r˘ a+ r

r r a+ r˘ a+ r −a
r˘ r˘ a+ r −a a+ r˘

yes
2337

RRA

a

a

r

r
rr

#313 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r˘ a+ r

r r a+ r˘ a+ r −a
r˘ r˘ a+ r −a a+ r˘

yes
2437

/∈ RRA

a

a

r

r
rr

a
a

a r

#314 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r

r r r˘ a+ r 1

r˘ r˘ r + r˘ −a a+ r˘

no

a

r

r

r
rr

#315 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r

r r r˘ a+ r 1

r˘ r˘ r + r˘ −a a+ r˘

no

a

r

r

r
rr

a
a

r r

#316 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ a+ r

r r a+ r˘ a+ r 1

r˘ r˘ 0′ −a a+ r˘

yes
2737

/∈ RRA

a

r

r

a
rr
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atom table RA QRNA

#317 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ a+ r

r r a+ r˘ a+ r 1

r˘ r˘ 0′ −a a+ r˘

yes
2837

/∈ RRA

a

a

r

r
rr

a
a

r r

#318 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r r˘

r r r r 1

r˘ r˘ r˘ 1 r˘

yes
137

RRA

a

r

r

r
rr

#319 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r r˘

r r r r 1

r˘ r˘ r˘ 1 r˘

yes
237

RRA

a

r

r

r
rr

a
a

r r

#320 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a+ r˘

r r a+ r r 1

r˘ r˘ a+ r˘ 1 r˘

yes
1437

/∈ RRA

a

a

r

r
rr

r
a

r r

#321 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a+ r˘

r r a+ r r 1

r˘ r˘ a+ r˘ 1 r˘

yes
1537

RRA

a

a

r

r
rr

a
a

r r

#322 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r + r˘

r r r + r˘ a+ r 1

r˘ r˘ r + r˘ 1 a+ r˘

no

a

r

r

r
rr

r
r

r a

#323 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r + r˘

r r r + r˘ a+ r 1

r˘ r˘ r + r˘ 1 a+ r˘

yes
2137

/∈ RRA

a

r

r

r
rr

a
a

r r
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atom table RA QRNA

#324 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ 0′

r r 0′ a+ r 1

r˘ r˘ 0′ 1 a+ r˘

yes
3237

/∈ RRA

a

a

r

r
rr

r
a

a r

#325 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ 0′

r r 0′ a+ r 1

r˘ r˘ 0′ 1 a+ r˘

yes
3337

RRA

a

a

r

r
rr

a
a

r r

#326 1′ a r r˘

1′ 1′ a r r˘

a a 1′ 0 0

r r 0 r˘ 1′

r˘ r˘ 0 1′ r

no no

#327 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a 0 0

r r 0 r˘ 1′

r˘ r˘ 0 1′ r

no no

#328 1′ a r r˘

1′ 1′ a r r˘

a a −a a a

r r a r˘ 1′

r˘ r˘ a 1′ r

yes
937

RRA

a

a

r

r
ra

#329 1′ a r r˘

1′ 1′ a r r˘

a a 1 a a

r r a r˘ 1′

r˘ r˘ a 1′ r

yes
1037

RRA

a

a

r

r
ra

a
a

a a

#330 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r 0

r r 0 r˘ 1′ + a

r˘ r˘ r˘ 1′ r

no no
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atom table RA QRNA

#331 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r 0

r r 0 r˘ 1′ + a

r˘ r˘ r˘ 1′ r

no no

#332 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a

r r a r˘ 1′ + a

r˘ r˘ a+ r˘ 1′ r

no no

#333 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a

r r a r˘ 1′ + a

r˘ r˘ a+ r˘ 1′ r

no



1′ a r r˘ a a

a 1′ a a a r

r˘ a 1′ r a a

r a r˘ 1′ a a

a a a a 1′ r

a r˘ a a r˘ 1′


#334 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r˘ r

r r r˘ a+ r˘ 1′

r˘ r˘ r 1′ a+ r

no no

#335 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r˘ r

r r r˘ a+ r˘ 1′

r˘ r˘ r 1′ a+ r

no no

#336 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r˘ a+ r

r r a+ r˘ a+ r˘ 1′

r˘ r˘ a+ r 1′ a+ r

no no

#337 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r˘ a+ r

r r a+ r˘ a+ r˘ 1′

r˘ r˘ a+ r 1′ a+ r

no



1′ a r r˘ a a

a 1′ a a a r

r˘ a 1′ r a a

r a r˘ 1′ a a

a a a a 1′ r˘

a r˘ a a r 1′
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atom table RA QRNA

#338 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r

r r r˘ a+ r˘ 1′ + a

r˘ r˘ r + r˘ 1′ a+ r

no no

#339 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r

r r r˘ a+ r˘ 1′ + a

r˘ r˘ r + r˘ 1′ a+ r

no no

#340 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ a+ r

r r a+ r˘ a+ r˘ 1′ + a

r˘ r˘ 0′ 1′ a+ r

no

a

a

r

r
rr

#341 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ a+ r

r r a+ r˘ a+ r˘ 1′ + a

r˘ r˘ 0′ 1′ a+ r

no

a

a

r

r
rr

a
a

a r

#342 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r r˘

r r r r˘ 1′ + a

r˘ r˘ r˘ 1′ + a r

yes
337

RRA

a

r

r

r
rr

#343 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r r˘

r r r r˘ 1′ + a

r˘ r˘ r˘ 1′ + a r

yes
437

RRA

a

r

r

r
rr

a
a

r r

#344 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a+ r˘

r r a+ r r˘ 1′ + a

r˘ r˘ a+ r˘ 1′ + a r

no no
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atom table RA QRNA

#345 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a+ r˘

r r a+ r r˘ 1′ + a

r˘ r˘ a+ r˘ 1′ + a r

no

a

a

r

r
ra

a
a

r r

#346 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r + r˘

r r r + r˘ a+ r˘ 1′ + a

r˘ r˘ r + r˘ 1′ + a a+ r

no no

#347 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r + r˘

r r r + r˘ a+ r˘ 1′ + a

r˘ r˘ r + r˘ 1′ + a a+ r

no no

#348 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ 0′

r r 0′ a+ r˘ 1′ + a

r˘ r˘ 0′ 1′ + a a+ r

yes
3437

/∈ RRA

a

a

r

r
rr

r
a

a r

#349 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ 0′

r r 0′ a+ r˘ 1′ + a

r˘ r˘ 0′ 1′ + a a+ r

yes
3537

RRA

a

a

r

r
rr

a
a

r r

#350 1′ a r r˘

1′ 1′ a r r˘

a a 1′ 0 0

r r 0 r + r˘ −a
r˘ r˘ 0 −a r + r˘

no no

#351 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a 0 0

r r 0 r + r˘ −a
r˘ r˘ 0 −a r + r˘

no no
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atom table RA QRNA

#352 1′ a r r˘

1′ 1′ a r r˘

a a −a a a

r r a r + r˘ −a
r˘ r˘ a −a r + r˘

yes
1137

RRA

a

a

r

r
ra

a
r

r r

#353 1′ a r r˘

1′ 1′ a r r˘

a a 1 a a

r r a r + r˘ −a
r˘ r˘ a −a r + r˘

yes
1237

RRA



1′ a r r˘ a r

a 1′ a a a a

r˘ a 1′ r a r˘

r a r˘ 1′ a r˘

a a a a 1′ a

r˘ a r r a 1′


#354 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r 0

r r 0 r + r˘ 1

r˘ r˘ r˘ −a r + r˘

no

a

r

r

r
rr

r
r

r r

#355 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r 0

r r 0 r + r˘ 1

r˘ r˘ r˘ −a r + r˘

no



1′ a r a r r

a 1′ r a r r

r˘ r˘ 1′ r˘ r˘ r

a a r 1′ r r

r˘ r˘ r r˘ 1′ r˘

r˘ r˘ r˘ r˘ r 1′


#356 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a

r r a r + r˘ 1

r˘ r˘ a+ r˘ −a r + r˘

no

a

a

r

r
ra

r
r

r r

#357 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a

r r a r + r˘ 1

r˘ r˘ a+ r˘ −a r + r˘

no



1′ a r r˘ a r

a 1′ a a a a

r˘ a 1′ r˘ r˘ r˘

r a r 1′ a r˘

a a r a 1′ a

r˘ a r r a 1′


#358 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r˘ r

r r r˘ 0′ −a
r˘ r˘ r −a 0′

yes
1937

RRA

a

r

r

r
rr
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atom table RA QRNA

#359 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r˘ r

r r r˘ 0′ −a
r˘ r˘ r −a 0′

no no

#360 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r˘ a+ r

r r a+ r˘ 0′ −a
r˘ r˘ a+ r −a 0′

yes
2537

/∈ RRA

a

a

r

r
ra

r
r

r r

#361 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r˘ a+ r

r r a+ r˘ 0′ −a
r˘ r˘ a+ r −a 0′

yes
2637

/∈ RRA

a

a

r

r
ra

a
a

r r

#362 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r

r r r˘ 0′ 1

r˘ r˘ r + r˘ −a 0′

no

a

r

r

r
rr

#363 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r

r r r˘ 0′ 1

r˘ r˘ r + r˘ −a 0′

no

a

r

r

r
rr

a
a

r r

#364 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ a+ r

r r a+ r˘ 0′ 1

r˘ r˘ 0′ −a 0′

yes
2937

/∈ RRA

a

a

r

r
rr

r
a

r r

#365 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ a+ r

r r a+ r˘ 0′ 1

r˘ r˘ 0′ −a 0′

yes
3037

RRA

a

a

r

r
rr

a
a

r r
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atom table RA QRNA

#366 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r r˘

r r r r + r˘ 1

r˘ r˘ r˘ 1 r + r˘

yes
537

RRA

a

r

r

r
rr

r
r

r r

#367 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r r˘

r r r r + r˘ 1

r˘ r˘ r˘ 1 r + r˘

yes
637

RRA



1′ a r r˘ a r

a 1′ r r˘ a r

r˘ r˘ 1′ r r˘ r˘

r r r˘ 1′ r r˘

a a r r˘ 1′ r

r˘ r˘ r r r˘ 1′


#368 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a+ r˘

r r a+ r r + r˘ 1

r˘ r˘ a+ r˘ 1 r + r˘

yes
1637

/∈ RRA

a

a

r

r
rr

r
r

r r

#369 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a+ r˘

r r a+ r r + r˘ 1

r˘ r˘ a+ r˘ 1 r + r˘

yes
1737

RRA



1′ a r r˘ a r

a 1′ a r˘ a r

r˘ a 1′ r˘ r˘ r

r r r 1′ r r˘

a a r r˘ 1′ r

r˘ r˘ r˘ r r˘ 1′


#370 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r + r˘

r r r + r˘ 0′ 1

r˘ r˘ r + r˘ 1 0′

no

a

r

r

r
rr

r
r

r a

#371 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r + r˘

r r r + r˘ 0′ 1

r˘ r˘ r + r˘ 1 0′

yes
2237

RRA

a

r

r

r
rr

a
a

r r

#372 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ 0′

r r 0′ 0′ 1

r˘ r˘ 0′ 1 0′

yes
3637

RRA

a

a

r

r
rr

r
a

r r
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atom table RA QRNA

#373 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ 0′

r r 0′ 0′ 1

r˘ r˘ 0′ 1 0′

yes
3737

RRA

a

a

r

r
rr

a
a

r r
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Appendix B

Cycles of nonassociative algebras on
four atoms

B.1 Atoms: two fragment identity and two symmet-

ric

The identity is e1 + e2.

atom table e1aa e1bb e2aa e2bb aaa baa abb bbb RA

#1 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 0

b b 0 0 e1

e1aa e1bb . . . . . . . . . . . . . . . . . . no

#2 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 0

b b 0 0 e1

. . . e1bb e2aa . . . . . . . . . . . . . . . yes

#3 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a 1′ 0

b b 0 0 e1

e1aa e1bb e2aa . . . . . . . . . . . . . . . no
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atom table e1aa e1bb e2aa e2bb aaa baa abb bbb RA

#4 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a 1′ 0

b b b 0 1′

e1aa e1bb e2aa e2bb . . . . . . . . . . . . no

#5 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 + a 0

b b 0 0 e1

e1aa e1bb . . . . . . aaa . . . . . . . . . no

#6 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 + a 0

b b 0 0 e1

. . . e1bb e2aa . . . aaa . . . . . . . . . yes

#7 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a −b 0

b b 0 0 e1

e1aa e1bb e2aa . . . aaa . . . . . . . . . no

#8 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 e1 + a 0

b b b 0 1′

e1aa e1bb . . . e2bb aaa . . . . . . . . . no

#9 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a −b 0

b b b 0 1′

e1aa e1bb e2aa e2bb aaa . . . . . . . . . no

#10 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 + b a

b b 0 a e1

e1aa e1bb . . . . . . . . . baa . . . . . . yes

#11 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 + b a

b b 0 a e1

. . . e1bb e2aa . . . . . . baa . . . . . . no
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atom table e1aa e1bb e2aa e2bb aaa baa abb bbb RA

#12 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a −a a

b b 0 a e1

e1aa e1bb e2aa . . . . . . baa . . . . . . no

#13 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 e1 + b a

b b b a 1′

e1aa e1bb . . . e2bb . . . baa . . . . . . no

#14 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a −a a

b b b a 1′

e1aa e1bb e2aa e2bb . . . baa . . . . . . no

#15 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 −e2 a

b b 0 a e1

e1aa e1bb . . . . . . aaa baa . . . . . . yes

#16 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a −e1 a

b b 0 a e1

. . . e1bb e2aa . . . aaa baa . . . . . . no

#17 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a 1 a

b b 0 a e1

e1aa e1bb e2aa . . . aaa baa . . . . . . no

#18 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 −e2 a

b b b a 1′

e1aa e1bb . . . e2bb aaa baa . . . . . . no

#19 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a 1 a

b b b a 1′

e1aa e1bb e2aa e2bb aaa baa . . . . . . no
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atom table e1aa e1bb e2aa e2bb aaa baa abb bbb RA

#20 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 + a b

b b 0 b e1 + a

e1aa e1bb . . . . . . aaa . . . abb . . . yes

#21 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 + a b

b b 0 b e1 + a

. . . e1bb e2aa . . . aaa . . . abb . . . no

#22 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a −b b

b b 0 b e1 + a

e1aa e1bb e2aa . . . aaa . . . abb . . . no

#23 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 e1 + a b

b b b b −b

e1aa e1bb . . . e2bb aaa . . . abb . . . no

#24 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a −b b

b b b b −b

e1aa e1bb e2aa e2bb aaa . . . abb . . . no

#25 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 + b a+ b

b b 0 a+ b e1 + a

e1aa e1bb . . . . . . . . . baa abb . . . yes

#26 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 + b a+ b

b b 0 a+ b e1 + a

. . . e1bb e2aa . . . . . . baa abb . . . no

#27 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a −a a+ b

b b 0 a+ b e1 + a

e1aa e1bb e2aa . . . . . . baa abb . . . no
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atom table e1aa e1bb e2aa e2bb aaa baa abb bbb RA

#28 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a −a a+ b

b b b a+ b −b

e1aa e1bb e2aa e2bb . . . baa abb . . . no

#29 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 −e2 a+ b

b b 0 a+ b e1 + a

e1aa e1bb . . . . . . aaa baa abb . . . yes

#30 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a −e1 a+ b

b b 0 a+ b e1 + a

. . . e1bb e2aa . . . aaa baa abb . . . no

#31 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a 1 a+ b

b b 0 a+ b e1 + a

e1aa e1bb e2aa . . . aaa baa abb . . . no

#32 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 −e2 a+ b

b b b a+ b −b

e1aa e1bb . . . e2bb aaa baa abb . . . no

#33 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a 1 a+ b

b b b a+ b −b

e1aa e1bb e2aa e2bb aaa baa abb . . . no

#34 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 e1 + a 0

b b 0 0 e1 + b

e1aa e1bb . . . . . . aaa . . . . . . bbb no

#35 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a e2 + a 0

b b 0 0 e1 + b

. . . e1bb e2aa . . . aaa . . . . . . bbb yes
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atom table e1aa e1bb e2aa e2bb aaa baa abb bbb RA

#36 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a −b 0

b b 0 0 e1 + b

e1aa e1bb e2aa . . . aaa . . . . . . bbb no

#37 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a −b 0

b b b 0 −a

e1aa e1bb e2aa e2bb aaa . . . . . . bbb no

#38 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 −e2 a

b b 0 a e1 + b

e1aa e1bb . . . . . . aaa baa . . . bbb yes

#39 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a −e1 a

b b 0 a e1 + b

. . . e1bb e2aa . . . aaa baa . . . bbb no

#40 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a 1 a

b b 0 a e1 + b

e1aa e1bb e2aa . . . aaa baa . . . bbb no

#41 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 b

a a 0 −e2 a

b b b a −a

e1aa e1bb . . . e2bb aaa baa . . . bbb no

#42 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a 1 a

b b b a −a

e1aa e1bb e2aa e2bb aaa baa . . . bbb no

#43 e1 e2 a b

e1 e1 0 a b

e2 0 e2 0 0

a a 0 −e2 a+ b

b b 0 a+ b −e2

e1aa e1bb . . . . . . aaa baa abb bbb yes
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atom table e1aa e1bb e2aa e2bb aaa baa abb bbb RA

#44 e1 e2 a b

e1 e1 0 0 b

e2 0 e2 a 0

a 0 a −e1 a+ b

b b 0 a+ b −e2

. . . e1bb e2aa . . . aaa baa abb bbb no

#45 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a 0

a a a 1 a+ b

b b 0 a+ b −e2

e1aa e1bb e2aa . . . aaa baa abb bbb no

#46 e1 e2 a b

e1 e1 0 a b

e2 0 e2 a b

a a a 1 a+ b

b b b a+ b 1

e1aa e1bb e2aa e2bb aaa baa abb bbb no

B.2 Atoms: two fragment identity and one nonsym-

metric

The identity is e1 + e2.

atom table e1rr e1r r̆˘ e2rr e2r r̆˘ rrr rrr˘ RA

#47 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 0 0

r r 0 0 e1

r˘ r˘ 0 e1 0

e1rr e1r r̆˘ . . . . . . . . . . . . no

#48 e1 e2 r r˘

e1 e1 0 0 r˘

e2 0 e2 r 0

r r 0 0 e2

r˘ 0 r˘ e1 0

. . . e1r r̆˘ e2rr . . . . . . . . . yes

#49 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r 0

r r 0 0 1′

r˘ r˘ r˘ e1 0

e1rr e1r r̆˘ e2rr . . . . . . . . . no
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atom table e1rr e1r r̆˘ e2rr e2r r̆˘ rrr rrr˘ RA

#50 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r r˘

r r r 0 1′

r˘ r˘ r˘ 1′ 0

e1rr e1r r̆˘ e2rr e2r r̆˘ . . . . . . no

#51 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 0 0

r r 0 r −e2
r˘ r˘ 0 −e2 r˘

e1rr e1r r̆˘ . . . . . . rrr . . . yes

#52 e1 e2 r r˘

e1 e1 0 0 r˘

e2 0 e2 r 0

r r 0 r −e1
r˘ 0 r˘ −e2 r˘

. . . e1r r̆˘ e2rr . . . rrr . . . no

#53 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r 0

r r 0 r 1

r˘ r˘ r˘ −e2 r˘

e1rr e1r r̆˘ e2rr . . . rrr . . . no

#54 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r r˘

r r r r 1

r˘ r˘ r˘ 1 r˘

e1rr e1r r̆˘ e2rr e2r r̆˘ rrr . . . no

#55 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 0 0

r r 0 r˘ e1

r˘ r˘ 0 e1 r

e1rr e1r r̆˘ . . . . . . . . . rrr˘ yes

#56 e1 e2 r r˘

e1 e1 0 0 r˘

e2 0 e2 r 0

r r 0 r˘ e2

r˘ 0 r˘ e1 r

. . . e1r r̆˘ e2rr . . . . . . rrr˘ no

#57 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r 0

r r 0 r˘ 1′

r˘ r˘ r˘ e1 r

e1rr e1r r̆˘ e2rr . . . . . . rrr˘ no
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atom table e1rr e1r r̆˘ e2rr e2r r̆˘ rrr rrr˘ RA

#58 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r r˘

r r r r˘ 1′

r˘ r˘ r˘ 1′ r

e1rr e1r r̆˘ e2rr e2r r̆˘ . . . rrr˘ no

#59 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 0 0

r r 0 r + r˘ −e2
r˘ r˘ 0 −e2 r + r˘

e1rr e1r r̆˘ . . . . . . rrr rrr˘ yes

#60 e1 e2 r r˘

e1 e1 0 0 r˘

e2 0 e2 r 0

r r 0 r + r˘ −e1
r˘ 0 r˘ −e2 r + r˘

. . . e1r r̆˘ e2rr . . . rrr rrr˘ no

#61 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r 0

r r 0 r + r˘ 1

r˘ r˘ r˘ −e2 r + r˘

e1rr e1r r̆˘ e2rr . . . rrr rrr˘ no

#62 e1 e2 r r˘

e1 e1 0 r r˘

e2 0 e2 r r˘

r r r r + r˘ 1

r˘ r˘ r˘ 1 r + r˘

e1rr e1r r̆˘ e2rr e2r r̆˘ rrr rrr˘ no

B.3 Atoms: three fragment identity

The identity is e1 + e2 + e3.

atom table e1aa e2aa e3aa aaa RA

#63 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 0

e3 0 0 e3 0

a a 0 0 e1

e1aa . . . . . . . . . yes



178 APPENDIX B.: CYCLES

atom table e1aa e2aa e3aa aaa RA

#64 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 a

e3 0 0 e3 0

a a a 0 e1 + e2

e1aa e2aa . . . . . . no

#65 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 a

e3 0 0 e3 a

a a a a 1′

e1aa e2aa e3aa . . . no

#66 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 0

e3 0 0 e3 0

a a 0 0 e1 + a

e1aa . . . . . . aaa yes

#67 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 a

e3 0 0 e3 0

a a a 0 −e3

e1aa e2aa . . . aaa no

#68 e1 e2 e3 a

e1 e1 0 0 a

e2 0 e2 0 a

e3 0 0 e3 a

a a a a 1

e1aa e2aa e3aa aaa no

B.4 Atoms: four fragment identity

The identity is e1 + e2 + e3 + e4. Algebra #69 is the only such nonassociative algebra
with four atoms. It is also a relation algebra.

#69 e1 e2 e3 e4

e1 e1 0 0 0

e2 0 e2 0 0

e3 0 0 e3 0

e4 0 0 0 e4
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B.5 Atoms: atomic identity and three symmetric

The identity is atomic. A cycle involving identity is consistent if and only if it is 1′1′1′,
1′aa, 1′bb or 1′cc.

atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#70 1′ a b c

1′ 1′ a b c

a a 1′ 0 0

b b 0 1′ 0

c c 0 0 1′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no

#71 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 0

b b 0 1′ 0

c c 0 0 1′

aaa . . . . . . . . . . . . . . . . . . . . . . . . . . . no

#72 1′ a b c

1′ 1′ a b c

a a 1′ + b a 0

b b a 1′ 0

c c 0 0 1′

. . . . . . . . . . . . baa . . . . . . . . . . . . . . . no

#73 1′ a b c

1′ 1′ a b c

a a −c a 0

b b a 1′ 0

c c 0 0 1′

aaa . . . . . . . . . baa . . . . . . . . . . . . . . . no

#74 1′ a b c

1′ 1′ a b c

a a −a a a

b b a 1′ 0

c c a 0 1′

. . . . . . . . . . . . baa . . . caa . . . . . . . . . no

#75 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a 1′ 0

c c a 0 1′

aaa . . . . . . . . . baa . . . caa . . . . . . . . . no

#76 1′ a b c

1′ 1′ a b c

a a 1′ + a b 0

b b b 1′ + a 0

c c 0 0 1′

aaa . . . . . . abb . . . . . . . . . . . . . . . . . . no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#77 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ b 0

b b a+ b 1′ + a 0

c c 0 0 1′

. . . . . . . . . abb baa . . . . . . . . . . . . . . . no

#78 1′ a b c

1′ 1′ a b c

a a −c a+ b 0

b b a+ b 1′ + a 0

c c 0 0 1′

aaa . . . . . . abb baa . . . . . . . . . . . . . . . no

#79 1′ a b c

1′ 1′ a b c

a a 1′ + c b a

b b b 1′ + a 0

c c a 0 1′

. . . . . . . . . abb . . . . . . caa . . . . . . . . . no

#80 1′ a b c

1′ 1′ a b c

a a −b b a

b b b 1′ + a 0

c c a 0 1′

aaa . . . . . . abb . . . . . . caa . . . . . . . . . no

#81 1′ a b c

1′ 1′ a b c

a a −a a+ b a

b b a+ b 1′ + a 0

c c a 0 1′

. . . . . . . . . abb baa . . . caa . . . . . . . . . no

#82 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b 1′ + a 0

c c a 0 1′

aaa . . . . . . abb baa . . . caa . . . . . . . . . no

#83 1′ a b c

1′ 1′ a b c

a a 1′ c b

b b c 1′ a

c c b a 1′

. . . . . . . . . . . . . . . . . . . . . . . . . . . abc
yes
2565

#84 1′ a b c

1′ 1′ a b c

a a 1′ + a c b

b b c 1′ a

c c b a 1′

aaa . . . . . . . . . . . . . . . . . . . . . . . . abc no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#85 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ c b

b b a+ c 1′ a

c c b a 1′

. . . . . . . . . . . . baa . . . . . . . . . . . . abc no

#86 1′ a b c

1′ 1′ a b c

a a −c a+ c b

b b a+ c 1′ a

c c b a 1′

aaa . . . . . . . . . baa . . . . . . . . . . . . abc no

#87 1′ a b c

1′ 1′ a b c

a a −a a+ c a+ b

b b a+ c 1′ a

c c a+ b a 1′

. . . . . . . . . . . . baa . . . caa . . . . . . abc no

#88 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c 1′ a

c c a+ b a 1′

aaa . . . . . . . . . baa . . . caa . . . . . . abc no

#89 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b

b b b+ c 1′ + a a

c c b a 1′

aaa . . . . . . abb . . . . . . . . . . . . . . . abc
yes
2665

#90 1′ a b c

1′ 1′ a b c

a a 1′ + b 0′ b

b b 0′ 1′ + a a

c c b a 1′

. . . . . . . . . abb baa . . . . . . . . . . . . abc no

#91 1′ a b c

1′ 1′ a b c

a a −c 0′ b

b b 0′ 1′ + a a

c c b a 1′

aaa . . . . . . abb baa . . . . . . . . . . . . abc no

#92 1′ a b c

1′ 1′ a b c

a a 1′ + c b+ c a+ b

b b b+ c 1′ + a a

c c a+ b a 1′

. . . . . . . . . abb . . . . . . caa . . . . . . abc no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#93 1′ a b c

1′ 1′ a b c

a a −b b+ c a+ b

b b b+ c 1′ + a a

c c a+ b a 1′

aaa . . . . . . abb . . . . . . caa . . . . . . abc no

#94 1′ a b c

1′ 1′ a b c

a a −a 0′ a+ b

b b 0′ 1′ + a a

c c a+ b a 1′

. . . . . . . . . abb baa . . . caa . . . . . . abc no

#95 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ 1′ + a a

c c a+ b a 1′

aaa . . . . . . abb baa . . . caa . . . . . . abc no

#96 1′ a b c

1′ 1′ a b c

a a 1′ b c

b b b 1′ + a 0

c c c 0 1′ + a

. . . . . . . . . abb . . . acc . . . . . . . . . . . . no

#97 1′ a b c

1′ 1′ a b c

a a 1′ + a b c

b b b 1′ + a 0

c c c 0 1′ + a

aaa . . . . . . abb . . . acc . . . . . . . . . . . . no

#98 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ b c

b b a+ b 1′ + a 0

c c c 0 1′ + a

. . . . . . . . . abb baa acc . . . . . . . . . . . . no

#99 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b 1′ + a 0

c c c 0 1′ + a

aaa . . . . . . abb baa acc . . . . . . . . . . . . no

#100 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b 1′ + a 0

c c a+ c 0 1′ + a

. . . . . . . . . abb baa acc caa . . . . . . . . . no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#101 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b 1′ + a 0

c c a+ c 0 1′ + a

aaa . . . . . . abb baa acc caa . . . . . . . . . no

#102 1′ a b c

1′ 1′ a b c

a a 1′ b+ c b+ c

b b b+ c 1′ + a a

c c b+ c a 1′ + a

. . . . . . . . . abb . . . acc . . . . . . . . . abc no

#103 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b+ c

b b b+ c 1′ + a a

c c b+ c a 1′ + a

aaa . . . . . . abb . . . acc . . . . . . . . . abc
yes
2865

#104 1′ a b c

1′ 1′ a b c

a a 1′ + b 0′ b+ c

b b 0′ 1′ + a a

c c b+ c a 1′ + a

. . . . . . . . . abb baa acc . . . . . . . . . abc no

#105 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ 1′ + a a

c c b+ c a 1′ + a

aaa . . . . . . abb baa acc . . . . . . . . . abc no

#106 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ 1′ + a a

c c 0′ a 1′ + a

. . . . . . . . . abb baa acc caa . . . . . . abc no

#107 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ 1′ + a a

c c 0′ a 1′ + a

aaa . . . . . . abb baa acc caa . . . . . . abc
yes
3265

#108 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 0

b b 0 1′ + b 0

c c 0 0 1′

aaa bbb . . . . . . . . . . . . . . . . . . . . . . . . no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#109 1′ a b c

1′ 1′ a b c

a a −c a 0

b b a 1′ + b 0

c c 0 0 1′

aaa bbb . . . . . . baa . . . . . . . . . . . . . . . no

#110 1′ a b c

1′ 1′ a b c

a a 1′ + c 0 a

b b 0 1′ + b 0

c c a 0 1′

. . . bbb . . . . . . . . . . . . caa . . . . . . . . . no

#111 1′ a b c

1′ 1′ a b c

a a −b 0 a

b b 0 1′ + b 0

c c a 0 1′

aaa bbb . . . . . . . . . . . . caa . . . . . . . . . no

#112 1′ a b c

1′ 1′ a b c

a a −a a a

b b a 1′ + b 0

c c a 0 1′

. . . bbb . . . . . . baa . . . caa . . . . . . . . . no

#113 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a 1′ + b 0

c c a 0 1′

aaa bbb . . . . . . baa . . . caa . . . . . . . . . no

#114 1′ a b c

1′ 1′ a b c

a a −c a+ b 0

b b a+ b −c 0

c c 0 0 1′

aaa bbb . . . abb baa . . . . . . . . . . . . . . . no

#115 1′ a b c

1′ 1′ a b c

a a 1′ + c b a

b b b −c 0

c c a 0 1′

. . . bbb . . . abb . . . . . . caa . . . . . . . . . no

#116 1′ a b c

1′ 1′ a b c

a a −b b a

b b b −c 0

c c a 0 1′

aaa bbb . . . abb . . . . . . caa . . . . . . . . . no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#117 1′ a b c

1′ 1′ a b c

a a −a a+ b a

b b a+ b −c 0

c c a 0 1′

. . . bbb . . . abb baa . . . caa . . . . . . . . . no

#118 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b −c 0

c c a 0 1′

aaa bbb . . . abb baa . . . caa . . . . . . . . . no

#119 1′ a b c

1′ 1′ a b c

a a 1′ + a c b

b b c 1′ + b a

c c b a 1′

aaa bbb . . . . . . . . . . . . . . . . . . . . . abc no

#120 1′ a b c

1′ 1′ a b c

a a −c a+ c b

b b a+ c 1′ + b a

c c b a 1′

aaa bbb . . . . . . baa . . . . . . . . . . . . abc no

#121 1′ a b c

1′ 1′ a b c

a a 1′ + c c a+ b

b b c 1′ + b a

c c a+ b a 1′

. . . bbb . . . . . . . . . . . . caa . . . . . . abc no

#122 1′ a b c

1′ 1′ a b c

a a −b c a+ b

b b c 1′ + b a

c c a+ b a 1′

aaa bbb . . . . . . . . . . . . caa . . . . . . abc no

#123 1′ a b c

1′ 1′ a b c

a a −a a+ c a+ b

b b a+ c 1′ + b a

c c a+ b a 1′

. . . bbb . . . . . . baa . . . caa . . . . . . abc no

#124 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c 1′ + b a

c c a+ b a 1′

aaa bbb . . . . . . baa . . . caa . . . . . . abc no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#125 1′ a b c

1′ 1′ a b c

a a −c 0′ b

b b 0′ −c a

c c b a 1′

aaa bbb . . . abb baa . . . . . . . . . . . . abc
yes
2765

#126 1′ a b c

1′ 1′ a b c

a a 1′ + c b+ c a+ b

b b b+ c −c a

c c a+ b a 1′

. . . bbb . . . abb . . . . . . caa . . . . . . abc no

#127 1′ a b c

1′ 1′ a b c

a a −b b+ c a+ b

b b b+ c −c a

c c a+ b a 1′

aaa bbb . . . abb . . . . . . caa . . . . . . abc no

#128 1′ a b c

1′ 1′ a b c

a a −a 0′ a+ b

b b 0′ −c a

c c a+ b a 1′

. . . bbb . . . abb baa . . . caa . . . . . . abc no

#129 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ −c a

c c a+ b a 1′

aaa bbb . . . abb baa . . . caa . . . . . . abc no

#130 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 c

b b 0 1′ + b 0

c c c 0 1′ + a

aaa bbb . . . . . . . . . acc . . . . . . . . . . . . no

#131 1′ a b c

1′ 1′ a b c

a a 1′ + b a c

b b a 1′ + b 0

c c c 0 1′ + a

. . . bbb . . . . . . baa acc . . . . . . . . . . . . no

#132 1′ a b c

1′ 1′ a b c

a a −c a c

b b a 1′ + b 0

c c c 0 1′ + a

aaa bbb . . . . . . baa acc . . . . . . . . . . . . no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#133 1′ a b c

1′ 1′ a b c

a a 1′ + c 0 a+ c

b b 0 1′ + b 0

c c a+ c 0 1′ + a

. . . bbb . . . . . . . . . acc caa . . . . . . . . . no

#134 1′ a b c

1′ 1′ a b c

a a −b 0 a+ c

b b 0 1′ + b 0

c c a+ c 0 1′ + a

aaa bbb . . . . . . . . . acc caa . . . . . . . . . no

#135 1′ a b c

1′ 1′ a b c

a a −a a a+ c

b b a 1′ + b 0

c c a+ c 0 1′ + a

. . . bbb . . . . . . baa acc caa . . . . . . . . . no

#136 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a 1′ + b 0

c c a+ c 0 1′ + a

aaa bbb . . . . . . baa acc caa . . . . . . . . . no

#137 1′ a b c

1′ 1′ a b c

a a 1′ b c

b b b −c 0

c c c 0 1′ + a

. . . bbb . . . abb . . . acc . . . . . . . . . . . . no

#138 1′ a b c

1′ 1′ a b c

a a 1′ + a b c

b b b −c 0

c c c 0 1′ + a

aaa bbb . . . abb . . . acc . . . . . . . . . . . . no

#139 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ b c

b b a+ b −c 0

c c c 0 1′ + a

. . . bbb . . . abb baa acc . . . . . . . . . . . . no

#140 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b −c 0

c c c 0 1′ + a

aaa bbb . . . abb baa acc . . . . . . . . . . . . no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#141 1′ a b c

1′ 1′ a b c

a a 1′ + c b a+ c

b b b −c 0

c c a+ c 0 1′ + a

. . . bbb . . . abb . . . acc caa . . . . . . . . . no

#142 1′ a b c

1′ 1′ a b c

a a −b b a+ c

b b b −c 0

c c a+ c 0 1′ + a

aaa bbb . . . abb . . . acc caa . . . . . . . . . no

#143 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b −c 0

c c a+ c 0 1′ + a

. . . bbb . . . abb baa acc caa . . . . . . . . . no

#144 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b −c 0

c c a+ c 0 1′ + a

aaa bbb . . . abb baa acc caa . . . . . . . . . no

#145 1′ a b c

1′ 1′ a b c

a a 1′ + a c b+ c

b b c 1′ + b a

c c b+ c a 1′ + a

aaa bbb . . . . . . . . . acc . . . . . . . . . abc no

#146 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ c b+ c

b b a+ c 1′ + b a

c c b+ c a 1′ + a

. . . bbb . . . . . . baa acc . . . . . . . . . abc no

#147 1′ a b c

1′ 1′ a b c

a a −c a+ c b+ c

b b a+ c 1′ + b a

c c b+ c a 1′ + a

aaa bbb . . . . . . baa acc . . . . . . . . . abc no

#148 1′ a b c

1′ 1′ a b c

a a 1′ + c c 0′

b b c 1′ + b a

c c 0′ a 1′ + a

. . . bbb . . . . . . . . . acc caa . . . . . . abc no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#149 1′ a b c

1′ 1′ a b c

a a −b c 0′

b b c 1′ + b a

c c 0′ a 1′ + a

aaa bbb . . . . . . . . . acc caa . . . . . . abc no

#150 1′ a b c

1′ 1′ a b c

a a −a a+ c 0′

b b a+ c 1′ + b a

c c 0′ a 1′ + a

. . . bbb . . . . . . baa acc caa . . . . . . abc no

#151 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c 1′ + b a

c c 0′ a 1′ + a

aaa bbb . . . . . . baa acc caa . . . . . . abc
yes
3065

#152 1′ a b c

1′ 1′ a b c

a a 1′ b+ c b+ c

b b b+ c −c a

c c b+ c a 1′ + a

. . . bbb . . . abb . . . acc . . . . . . . . . abc no

#153 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b+ c

b b b+ c −c a

c c b+ c a 1′ + a

aaa bbb . . . abb . . . acc . . . . . . . . . abc no

#154 1′ a b c

1′ 1′ a b c

a a 1′ + b 0′ b+ c

b b 0′ −c a

c c b+ c a 1′ + a

. . . bbb . . . abb baa acc . . . . . . . . . abc no

#155 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ −c a

c c b+ c a 1′ + a

aaa bbb . . . abb baa acc . . . . . . . . . abc no

#156 1′ a b c

1′ 1′ a b c

a a 1′ + c b+ c 0′

b b b+ c −c a

c c 0′ a 1′ + a

. . . bbb . . . abb . . . acc caa . . . . . . abc no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#157 1′ a b c

1′ 1′ a b c

a a −b b+ c 0′

b b b+ c −c a

c c 0′ a 1′ + a

aaa bbb . . . abb . . . acc caa . . . . . . abc no

#158 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ −c a

c c 0′ a 1′ + a

. . . bbb . . . abb baa acc caa . . . . . . abc no

#159 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ −c a

c c 0′ a 1′ + a

aaa bbb . . . abb baa acc caa . . . . . . abc
yes
3365

#160 1′ a b c

1′ 1′ a b c

a a −a a a

b b a 1′ + c b

c c a b 1′

. . . . . . . . . . . . baa . . . caa . . . cbb . . .
yes
165

#161 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a 1′ + c b

c c a b 1′

aaa . . . . . . . . . baa . . . caa . . . cbb . . .
yes
565

#162 1′ a b c

1′ 1′ a b c

a a −b b a

b b b −b b

c c a b 1′

aaa . . . . . . abb . . . . . . caa . . . cbb . . .
yes
365

#163 1′ a b c

1′ 1′ a b c

a a −a a+ b a

b b a+ b −b b

c c a b 1′

. . . . . . . . . abb baa . . . caa . . . cbb . . .
yes
1565

#164 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b −b b

c c a b 1′

aaa . . . . . . abb baa . . . caa . . . cbb . . .
yes
1665
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#165 1′ a b c

1′ 1′ a b c

a a −a a+ c a+ b

b b a+ c 1′ + c a+ b

c c a+ b a+ b 1′

. . . . . . . . . . . . baa . . . caa . . . cbb abc no

#166 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c 1′ + c a+ b

c c a+ b a+ b 1′

aaa . . . . . . . . . baa . . . caa . . . cbb abc no

#167 1′ a b c

1′ 1′ a b c

a a −b b+ c a+ b

b b b+ c −b a+ b

c c a+ b a+ b 1′

aaa . . . . . . abb . . . . . . caa . . . cbb abc no

#168 1′ a b c

1′ 1′ a b c

a a −a 0′ a+ b

b b 0′ −b a+ b

c c a+ b a+ b 1′

. . . . . . . . . abb baa . . . caa . . . cbb abc no

#169 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ −b a+ b

c c a+ b a+ b 1′

aaa . . . . . . abb baa . . . caa . . . cbb abc no

#170 1′ a b c

1′ 1′ a b c

a a 1′ + b a c

b b a 1′ + c b

c c c b 1′ + a

. . . . . . . . . . . . baa acc . . . . . . cbb . . . no

#171 1′ a b c

1′ 1′ a b c

a a −c a c

b b a 1′ + c b

c c c b 1′ + a

aaa . . . . . . . . . baa acc . . . . . . cbb . . . no

#172 1′ a b c

1′ 1′ a b c

a a −a a a+ c

b b a 1′ + c b

c c a+ c b 1′ + a

. . . . . . . . . . . . baa acc caa . . . cbb . . . no
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#173 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a 1′ + c b

c c a+ c b 1′ + a

aaa . . . . . . . . . baa acc caa . . . cbb . . . no

#174 1′ a b c

1′ 1′ a b c

a a 1′ + a b c

b b b −b b

c c c b 1′ + a

aaa . . . . . . abb . . . acc . . . . . . cbb . . .
yes
265

#175 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b −b b

c c c b 1′ + a

aaa . . . . . . abb baa acc . . . . . . cbb . . . no

#176 1′ a b c

1′ 1′ a b c

a a 1′ + c b a+ c

b b b −b b

c c a+ c b 1′ + a

. . . . . . . . . abb . . . acc caa . . . cbb . . .
yes
965

#177 1′ a b c

1′ 1′ a b c

a a −b b a+ c

b b b −b b

c c a+ c b 1′ + a

aaa . . . . . . abb . . . acc caa . . . cbb . . .
yes
1065

#178 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b −b b

c c a+ c b 1′ + a

. . . . . . . . . abb baa acc caa . . . cbb . . . no

#179 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b −b b

c c a+ c b 1′ + a

aaa . . . . . . abb baa acc caa . . . cbb . . . no

#180 1′ a b c

1′ 1′ a b c

a a 1′ + b a+ c b+ c

b b a+ c 1′ + c a+ b

c c b+ c a+ b 1′ + a

. . . . . . . . . . . . baa acc . . . . . . cbb abc
yes
3965
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#181 1′ a b c

1′ 1′ a b c

a a −c a+ c b+ c

b b a+ c 1′ + c a+ b

c c b+ c a+ b 1′ + a

aaa . . . . . . . . . baa acc . . . . . . cbb abc
yes
4065

#182 1′ a b c

1′ 1′ a b c

a a −a a+ c 0′

b b a+ c 1′ + c a+ b

c c 0′ a+ b 1′ + a

. . . . . . . . . . . . baa acc caa . . . cbb abc
yes
4365

#183 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c 1′ + c a+ b

c c 0′ a+ b 1′ + a

aaa . . . . . . . . . baa acc caa . . . cbb abc
yes
4465

#184 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b+ c

b b b+ c −b a+ b

c c b+ c a+ b 1′ + a

aaa . . . . . . abb . . . acc . . . . . . cbb abc no

#185 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ −b a+ b

c c b+ c a+ b 1′ + a

aaa . . . . . . abb baa acc . . . . . . cbb abc
yes
4565

#186 1′ a b c

1′ 1′ a b c

a a 1′ + c b+ c 0′

b b b+ c −b a+ b

c c 0′ a+ b 1′ + a

. . . . . . . . . abb . . . acc caa . . . cbb abc no

#187 1′ a b c

1′ 1′ a b c

a a −b b+ c 0′

b b b+ c −b a+ b

c c 0′ a+ b 1′ + a

aaa . . . . . . abb . . . acc caa . . . cbb abc no

#188 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ −b a+ b

c c 0′ a+ b 1′ + a

. . . . . . . . . abb baa acc caa . . . cbb abc
yes
5465
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#189 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ −b a+ b

c c 0′ a+ b 1′ + a

aaa . . . . . . abb baa acc caa . . . cbb abc
yes
5565

#190 1′ a b c

1′ 1′ a b c

a a −b 0 a

b b 0 −a b

c c a b 1′

aaa bbb . . . . . . . . . . . . caa . . . cbb . . . no

#191 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a −a b

c c a b 1′

aaa bbb . . . . . . baa . . . caa . . . cbb . . .
yes
765

#192 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b 1 b

c c a b 1′

aaa bbb . . . abb baa . . . caa . . . cbb . . .
yes
1965

#193 1′ a b c

1′ 1′ a b c

a a −b c a+ b

b b c −a a+ b

c c a+ b a+ b 1′

aaa bbb . . . . . . . . . . . . caa . . . cbb abc no

#194 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c −a a+ b

c c a+ b a+ b 1′

aaa bbb . . . . . . baa . . . caa . . . cbb abc no

#195 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ 1 a+ b

c c a+ b a+ b 1′

aaa bbb . . . abb baa . . . caa . . . cbb abc no

#196 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 c

b b 0 −a b

c c c b 1′ + a

aaa bbb . . . . . . . . . acc . . . . . . cbb . . . no
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#197 1′ a b c

1′ 1′ a b c

a a −c a c

b b a −a b

c c c b 1′ + a

aaa bbb . . . . . . baa acc . . . . . . cbb . . . no

#198 1′ a b c

1′ 1′ a b c

a a −b 0 a+ c

b b 0 −a b

c c a+ c b 1′ + a

aaa bbb . . . . . . . . . acc caa . . . cbb . . . no

#199 1′ a b c

1′ 1′ a b c

a a −a a a+ c

b b a −a b

c c a+ c b 1′ + a

. . . bbb . . . . . . baa acc caa . . . cbb . . . no

#200 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a −a b

c c a+ c b 1′ + a

aaa bbb . . . . . . baa acc caa . . . cbb . . . no

#201 1′ a b c

1′ 1′ a b c

a a 1′ + a b c

b b b 1 b

c c c b 1′ + a

aaa bbb . . . abb . . . acc . . . . . . cbb . . .
yes
665

#202 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b 1 b

c c c b 1′ + a

aaa bbb . . . abb baa acc . . . . . . cbb . . . no

#203 1′ a b c

1′ 1′ a b c

a a 1′ + c b a+ c

b b b 1 b

c c a+ c b 1′ + a

. . . bbb . . . abb . . . acc caa . . . cbb . . .
yes
1265

#204 1′ a b c

1′ 1′ a b c

a a −b b a+ c

b b b 1 b

c c a+ c b 1′ + a

aaa bbb . . . abb . . . acc caa . . . cbb . . .
yes
1365
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#205 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b 1 b

c c a+ c b 1′ + a

. . . bbb . . . abb baa acc caa . . . cbb . . . no

#206 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b 1 b

c c a+ c b 1′ + a

aaa bbb . . . abb baa acc caa . . . cbb . . . no

#207 1′ a b c

1′ 1′ a b c

a a 1′ + a c b+ c

b b c −a a+ b

c c b+ c a+ b 1′ + a

aaa bbb . . . . . . . . . acc . . . . . . cbb abc no

#208 1′ a b c

1′ 1′ a b c

a a −c a+ c b+ c

b b a+ c −a a+ b

c c b+ c a+ b 1′ + a

aaa bbb . . . . . . baa acc . . . . . . cbb abc
yes
4165

#209 1′ a b c

1′ 1′ a b c

a a −b c 0′

b b c −a a+ b

c c 0′ a+ b 1′ + a

aaa bbb . . . . . . . . . acc caa . . . cbb abc no

#210 1′ a b c

1′ 1′ a b c

a a −a a+ c 0′

b b a+ c −a a+ b

c c 0′ a+ b 1′ + a

. . . bbb . . . . . . baa acc caa . . . cbb abc
yes
4765

#211 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c −a a+ b

c c 0′ a+ b 1′ + a

aaa bbb . . . . . . baa acc caa . . . cbb abc
yes
4865

#212 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b+ c

b b b+ c 1 a+ b

c c b+ c a+ b 1′ + a

aaa bbb . . . abb . . . acc . . . . . . cbb abc no
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#213 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ 1 a+ b

c c b+ c a+ b 1′ + a

aaa bbb . . . abb baa acc . . . . . . cbb abc
yes
4665

#214 1′ a b c

1′ 1′ a b c

a a 1′ + c b+ c 0′

b b b+ c 1 a+ b

c c 0′ a+ b 1′ + a

. . . bbb . . . abb . . . acc caa . . . cbb abc no

#215 1′ a b c

1′ 1′ a b c

a a −b b+ c 0′

b b b+ c 1 a+ b

c c 0′ a+ b 1′ + a

aaa bbb . . . abb . . . acc caa . . . cbb abc no

#216 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ 1 a+ b

c c 0′ a+ b 1′ + a

. . . bbb . . . abb baa acc caa . . . cbb abc
yes
5865

#217 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ 1 a+ b

c c 0′ a+ b 1′ + a

aaa bbb . . . abb baa acc caa . . . cbb abc
yes
5965

#218 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 c

b b 0 1′ + b c

c c c c −c

aaa bbb . . . . . . . . . acc . . . bcc . . . . . . no

#219 1′ a b c

1′ 1′ a b c

a a −c a c

b b a 1′ + b c

c c c c −c

aaa bbb . . . . . . baa acc . . . bcc . . . . . .
yes
465

#220 1′ a b c

1′ 1′ a b c

a a −b 0 a+ c

b b 0 1′ + b c

c c a+ c c −c

aaa bbb . . . . . . . . . acc caa bcc . . . . . . no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#221 1′ a b c

1′ 1′ a b c

a a −a a a+ c

b b a 1′ + b c

c c a+ c c −c

. . . bbb . . . . . . baa acc caa bcc . . . . . .
yes
1765

#222 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a 1′ + b c

c c a+ c c −c

aaa bbb . . . . . . baa acc caa bcc . . . . . .
yes
1865

#223 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b −c c

c c c c −c

aaa bbb . . . abb baa acc . . . bcc . . . . . .
yes
1165

#224 1′ a b c

1′ 1′ a b c

a a −b b a+ c

b b b −c c

c c a+ c c −c

aaa bbb . . . abb . . . acc caa bcc . . . . . . no

#225 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b −c c

c c a+ c c −c

. . . bbb . . . abb baa acc caa bcc . . . . . . no

#226 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b −c c

c c a+ c c −c

aaa bbb . . . abb baa acc caa bcc . . . . . . no

#227 1′ a b c

1′ 1′ a b c

a a 1′ + a c b+ c

b b c 1′ + b a+ c

c c b+ c a+ c −c

aaa bbb . . . . . . . . . acc . . . bcc . . . abc no

#228 1′ a b c

1′ 1′ a b c

a a −c a+ c b+ c

b b a+ c 1′ + b a+ c

c c b+ c a+ c −c

aaa bbb . . . . . . baa acc . . . bcc . . . abc
yes
3565
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#229 1′ a b c

1′ 1′ a b c

a a −b c 0′

b b c 1′ + b a+ c

c c 0′ a+ c −c

aaa bbb . . . . . . . . . acc caa bcc . . . abc no

#230 1′ a b c

1′ 1′ a b c

a a −a a+ c 0′

b b a+ c 1′ + b a+ c

c c 0′ a+ c −c

. . . bbb . . . . . . baa acc caa bcc . . . abc
yes
5165

#231 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c 1′ + b a+ c

c c 0′ a+ c −c

aaa bbb . . . . . . baa acc caa bcc . . . abc
yes
5265

#232 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ −c a+ c

c c b+ c a+ c −c

aaa bbb . . . abb baa acc . . . bcc . . . abc
yes
3765

#233 1′ a b c

1′ 1′ a b c

a a −b b+ c 0′

b b b+ c −c a+ c

c c 0′ a+ c −c

aaa bbb . . . abb . . . acc caa bcc . . . abc
yes
4965

#234 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ −c a+ c

c c 0′ a+ c −c

. . . bbb . . . abb baa acc caa bcc . . . abc
yes
5665

#235 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ −c a+ c

c c 0′ a+ c −c

aaa bbb . . . abb baa acc caa bcc . . . abc
yes
5765

#236 1′ a b c

1′ 1′ a b c

a a −a a+ b a+ c

b b a+ b −b b+ c

c c a+ c b+ c −c

. . . . . . . . . abb baa acc caa bcc cbb . . .
yes
2165
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#237 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b −b b+ c

c c a+ c b+ c −c

aaa . . . . . . abb baa acc caa bcc cbb . . .
yes
2265

#238 1′ a b c

1′ 1′ a b c

a a −a 0′ 0′

b b 0′ −b 0′

c c 0′ 0′ −c

. . . . . . . . . abb baa acc caa bcc cbb abc
yes
6265

#239 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ −b 0′

c c 0′ 0′ −c

aaa . . . . . . abb baa acc caa bcc cbb abc
yes
6365

#240 1′ a b c

1′ 1′ a b c

a a −b 0 a+ c

b b 0 −a b+ c

c c a+ c b+ c −c

aaa bbb . . . . . . . . . acc caa bcc cbb . . . no

#241 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a −a b+ c

c c a+ c b+ c −c

aaa bbb . . . . . . baa acc caa bcc cbb . . . no

#242 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b 1 b+ c

c c a+ c b+ c −c

aaa bbb . . . abb baa acc caa bcc cbb . . .
yes
2365

#243 1′ a b c

1′ 1′ a b c

a a −b c 0′

b b c −a 0′

c c 0′ 0′ −c

aaa bbb . . . . . . . . . acc caa bcc cbb abc no

#244 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c −a 0′

c c 0′ 0′ −c

aaa bbb . . . . . . baa acc caa bcc cbb abc
yes
6065
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#245 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ 1 0′

c c 0′ 0′ −c

aaa bbb . . . abb baa acc caa bcc cbb abc
yes
6465

#246 1′ a b c

1′ 1′ a b c

a a 1′ + a 0 0

b b 0 1′ + b 0

c c 0 0 1′ + c

aaa bbb ccc . . . . . . . . . . . . . . . . . . . . . no

#247 1′ a b c

1′ 1′ a b c

a a −c a 0

b b a 1′ + b 0

c c 0 0 1′ + c

aaa bbb ccc . . . baa . . . . . . . . . . . . . . . no

#248 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a 1′ + b 0

c c a 0 1′ + c

aaa bbb ccc . . . baa . . . caa . . . . . . . . . no

#249 1′ a b c

1′ 1′ a b c

a a −c a+ b 0

b b a+ b −c 0

c c 0 0 1′ + c

aaa bbb ccc abb baa . . . . . . . . . . . . . . . no

#250 1′ a b c

1′ 1′ a b c

a a −b b a

b b b −c 0

c c a 0 1′ + c

aaa bbb ccc abb . . . . . . caa . . . . . . . . . no

#251 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b −c 0

c c a 0 1′ + c

aaa bbb ccc abb baa . . . caa . . . . . . . . . no

#252 1′ a b c

1′ 1′ a b c

a a 1′ + a c b

b b c 1′ + b a

c c b a 1′ + c

aaa bbb ccc . . . . . . . . . . . . . . . . . . abc no
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#253 1′ a b c

1′ 1′ a b c

a a −c a+ c b

b b a+ c 1′ + b a

c c b a 1′ + c

aaa bbb ccc . . . baa . . . . . . . . . . . . abc no

#254 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c 1′ + b a

c c a+ b a 1′ + c

aaa bbb ccc . . . baa . . . caa . . . . . . abc
yes
2965

#255 1′ a b c

1′ 1′ a b c

a a −c 0′ b

b b 0′ −c a

c c b a 1′ + c

aaa bbb ccc abb baa . . . . . . . . . . . . abc no

#256 1′ a b c

1′ 1′ a b c

a a −b b+ c a+ b

b b b+ c −c a

c c a+ b a 1′ + c

aaa bbb ccc abb . . . . . . caa . . . . . . abc no

#257 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ −c a

c c a+ b a 1′ + c

aaa bbb ccc abb baa . . . caa . . . . . . abc
yes
3165

#258 1′ a b c

1′ 1′ a b c

a a 1′ + a b c

b b b −c 0

c c c 0 −b

aaa bbb ccc abb . . . acc . . . . . . . . . . . . no

#259 1′ a b c

1′ 1′ a b c

a a −c a+ b c

b b a+ b −c 0

c c c 0 −b

aaa bbb ccc abb baa acc . . . . . . . . . . . . no

#260 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b −c 0

c c a+ c 0 −b

aaa bbb ccc abb baa acc caa . . . . . . . . . no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#261 1′ a b c

1′ 1′ a b c

a a 1′ + a b+ c b+ c

b b b+ c −c a

c c b+ c a −b

aaa bbb ccc abb . . . acc . . . . . . . . . abc no

#262 1′ a b c

1′ 1′ a b c

a a −c 0′ b+ c

b b 0′ −c a

c c b+ c a −b

aaa bbb ccc abb baa acc . . . . . . . . . abc no

#263 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ −c a

c c 0′ a −b

aaa bbb ccc abb baa acc caa . . . . . . abc
yes
3465

#264 1′ a b c

1′ 1′ a b c

a a 1 a a

b b a −a b

c c a b 1′ + c

aaa bbb ccc . . . baa . . . caa . . . cbb . . .
yes
865

#265 1′ a b c

1′ 1′ a b c

a a 1 a+ b a

b b a+ b 1 b

c c a b 1′ + c

aaa bbb ccc abb baa . . . caa . . . cbb . . .
yes
2065

#266 1′ a b c

1′ 1′ a b c

a a 1 a+ c a+ b

b b a+ c −a a+ b

c c a+ b a+ b 1′ + c

aaa bbb ccc . . . baa . . . caa . . . cbb abc
yes
3665

#267 1′ a b c

1′ 1′ a b c

a a 1 0′ a+ b

b b 0′ 1 a+ b

c c a+ b a+ b 1′ + c

aaa bbb ccc abb baa . . . caa . . . cbb abc
yes
5365

#268 1′ a b c

1′ 1′ a b c

a a −c a c

b b a −a b

c c c b −b

aaa bbb ccc . . . baa acc . . . . . . cbb . . . no
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#269 1′ a b c

1′ 1′ a b c

a a 1 a a+ c

b b a −a b

c c a+ c b −b

aaa bbb ccc . . . baa acc caa . . . cbb . . . no

#270 1′ a b c

1′ 1′ a b c

a a −b b a+ c

b b b 1 b

c c a+ c b −b

aaa bbb ccc abb . . . acc caa . . . cbb . . .
yes
1465

#271 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b 1 b

c c a+ c b −b

aaa bbb ccc abb baa acc caa . . . cbb . . . no

#272 1′ a b c

1′ 1′ a b c

a a −c a+ c b+ c

b b a+ c −a a+ b

c c b+ c a+ b −b

aaa bbb ccc . . . baa acc . . . . . . cbb abc
yes
4265

#273 1′ a b c

1′ 1′ a b c

a a 1 a+ c 0′

b b a+ c −a a+ b

c c 0′ a+ b −b

aaa bbb ccc . . . baa acc caa . . . cbb abc
yes
5065

#274 1′ a b c

1′ 1′ a b c

a a −b b+ c 0′

b b b+ c 1 a+ b

c c 0′ a+ b −b

aaa bbb ccc abb . . . acc caa . . . cbb abc
yes
3865

#275 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ 1 a+ b

c c 0′ a+ b −b

aaa bbb ccc abb baa acc caa . . . cbb abc
yes
6165

#276 1′ a b c

1′ 1′ a b c

a a 1 a+ b a+ c

b b a+ b 1 b+ c

c c a+ c b+ c 1

aaa bbb ccc abb baa acc caa bcc cbb . . .
yes
2465
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atom table aaa bbb ccc abb baa acc caa bcc cbb abc RA

#277 1′ a b c

1′ 1′ a b c

a a 1 0′ 0′

b b 0′ 1 0′

c c 0′ 0′ 1

aaa bbb ccc abb baa acc caa bcc cbb abc
yes
6565

B.6 Atoms: atomic identity, one symmetric and one

nonsymmetric

The identity is atomic. A cycle involving identity is consistent if and only if it is 1′1′1′,
1′aa, r1′r or 1′rr.

atom table aaa rrr rrr˘ arr rar raa rra RA

#278 1′ a r r˘

1′ 1′ a r r˘

a a 1′ 0 0

r r 0 0 1′

r˘ r˘ 0 1′ 0

. . . . . . . . . . . . . . . . . . . . . no

#279 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a 0 0

r r 0 0 1′

r˘ r˘ 0 1′ 0

aaa . . . . . . . . . . . . . . . . . . no

#280 1′ a r r˘

1′ 1′ a r r˘

a a −a a a

r r a 0 1′

r˘ r˘ a 1′ 0

. . . . . . . . . . . . . . . raa . . . no

#281 1′ a r r˘

1′ 1′ a r r˘

a a 1 a a

r r a 0 1′

r˘ r˘ a 1′ 0

aaa . . . . . . . . . . . . raa . . . no

#282 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r 0

r r 0 0 1′ + a

r˘ r˘ r˘ 1′ 0

. . . . . . . . . arr . . . . . . . . . no
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atom table aaa rrr rrr˘ arr rar raa rra RA

#283 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r 0

r r 0 0 1′ + a

r˘ r˘ r˘ 1′ 0

aaa . . . . . . arr . . . . . . . . . no

#284 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a

r r a 0 1′ + a

r˘ r˘ a+ r˘ 1′ 0

. . . . . . . . . arr . . . raa . . . no

#285 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a

r r a 0 1′ + a

r˘ r˘ a+ r˘ 1′ 0

aaa . . . . . . arr . . . raa . . . no

#286 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r˘ r

r r r˘ a 1′

r˘ r˘ r 1′ a

. . . . . . . . . . . . . . . . . . rra
yes
1837

#287 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r˘ r

r r r˘ a 1′

r˘ r˘ r 1′ a

aaa . . . . . . . . . . . . . . . rra no

#288 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r˘ a+ r

r r a+ r˘ a 1′

r˘ r˘ a+ r 1′ a

. . . . . . . . . . . . . . . raa rra no

#289 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r˘ a+ r

r r a+ r˘ a 1′

r˘ r˘ a+ r 1′ a

aaa . . . . . . . . . . . . raa rra no

#290 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r

r r r˘ a 1′ + a

r˘ r˘ r + r˘ 1′ a

. . . . . . . . . arr . . . . . . rra no
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atom table aaa rrr rrr˘ arr rar raa rra RA

#291 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r

r r r˘ a 1′ + a

r˘ r˘ r + r˘ 1′ a

aaa . . . . . . arr . . . . . . rra no

#292 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ a+ r

r r a+ r˘ a 1′ + a

r˘ r˘ 0′ 1′ a

. . . . . . . . . arr . . . raa rra no

#293 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ a+ r

r r a+ r˘ a 1′ + a

r˘ r˘ 0′ 1′ a

aaa . . . . . . arr . . . raa rra no

#294 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r r˘

r r r 0 1′ + a

r˘ r˘ r˘ 1′ + a 0

. . . . . . . . . arr rar . . . . . . no

#295 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r r˘

r r r 0 1′ + a

r˘ r˘ r˘ 1′ + a 0

aaa . . . . . . arr rar . . . . . . no

#296 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a+ r˘

r r a+ r 0 1′ + a

r˘ r˘ a+ r˘ 1′ + a 0

. . . . . . . . . arr rar raa . . . no

#297 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a+ r˘

r r a+ r 0 1′ + a

r˘ r˘ a+ r˘ 1′ + a 0

aaa . . . . . . arr rar raa . . . no

#298 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r + r˘

r r r + r˘ a 1′ + a

r˘ r˘ r + r˘ 1′ + a a

. . . . . . . . . arr rar . . . rra no
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atom table aaa rrr rrr˘ arr rar raa rra RA

#299 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r + r˘

r r r + r˘ a 1′ + a

r˘ r˘ r + r˘ 1′ + a a

aaa . . . . . . arr rar . . . rra
yes
2037

#300 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ 0′

r r 0′ a 1′ + a

r˘ r˘ 0′ 1′ + a a

. . . . . . . . . arr rar raa rra no

#301 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ 0′

r r 0′ a 1′ + a

r˘ r˘ 0′ 1′ + a a

aaa . . . . . . arr rar raa rra
yes
3137

#302 1′ a r r˘

1′ 1′ a r r˘

a a 1′ 0 0

r r 0 r −a
r˘ r˘ 0 −a r˘

. . . rrr . . . . . . . . . . . . . . . no

#303 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a 0 0

r r 0 r −a
r˘ r˘ 0 −a r˘

aaa rrr . . . . . . . . . . . . . . . no

#304 1′ a r r˘

1′ 1′ a r r˘

a a −a a a

r r a r −a
r˘ r˘ a −a r˘

. . . rrr . . . . . . . . . raa . . .
yes
737

#305 1′ a r r˘

1′ 1′ a r r˘

a a 1 a a

r r a r −a
r˘ r˘ a −a r˘

aaa rrr . . . . . . . . . raa . . .
yes
837

#306 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r 0

r r 0 r 1

r˘ r˘ r˘ −a r˘

. . . rrr . . . arr . . . . . . . . . no
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atom table aaa rrr rrr˘ arr rar raa rra RA

#307 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r 0

r r 0 r 1

r˘ r˘ r˘ −a r˘

aaa rrr . . . arr . . . . . . . . . no

#308 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a

r r a r 1

r˘ r˘ a+ r˘ −a r˘

. . . rrr . . . arr . . . raa . . . no

#309 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a

r r a r 1

r˘ r˘ a+ r˘ −a r˘

aaa rrr . . . arr . . . raa . . .
yes
1337

#310 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r˘ r

r r r˘ a+ r −a
r˘ r˘ r −a a+ r˘

. . . rrr . . . . . . . . . . . . rra no

#311 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r˘ r

r r r˘ a+ r −a
r˘ r˘ r −a a+ r˘

aaa rrr . . . . . . . . . . . . rra no

#312 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r˘ a+ r

r r a+ r˘ a+ r −a
r˘ r˘ a+ r −a a+ r˘

. . . rrr . . . . . . . . . raa rra
yes
2337

#313 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r˘ a+ r

r r a+ r˘ a+ r −a
r˘ r˘ a+ r −a a+ r˘

aaa rrr . . . . . . . . . raa rra
yes
2437

#314 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r

r r r˘ a+ r 1

r˘ r˘ r + r˘ −a a+ r˘

. . . rrr . . . arr . . . . . . rra no
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atom table aaa rrr rrr˘ arr rar raa rra RA

#315 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r

r r r˘ a+ r 1

r˘ r˘ r + r˘ −a a+ r˘

aaa rrr . . . arr . . . . . . rra no

#316 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ a+ r

r r a+ r˘ a+ r 1

r˘ r˘ 0′ −a a+ r˘

. . . rrr . . . arr . . . raa rra
yes
2737

#317 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ a+ r

r r a+ r˘ a+ r 1

r˘ r˘ 0′ −a a+ r˘

aaa rrr . . . arr . . . raa rra
yes
2837

#318 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r r˘

r r r r 1

r˘ r˘ r˘ 1 r˘

. . . rrr . . . arr rar . . . . . .
yes
137

#319 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r r˘

r r r r 1

r˘ r˘ r˘ 1 r˘

aaa rrr . . . arr rar . . . . . .
yes
237

#320 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a+ r˘

r r a+ r r 1

r˘ r˘ a+ r˘ 1 r˘

. . . rrr . . . arr rar raa . . .
yes
1437

#321 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a+ r˘

r r a+ r r 1

r˘ r˘ a+ r˘ 1 r˘

aaa rrr . . . arr rar raa . . .
yes
1537

#322 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r + r˘

r r r + r˘ a+ r 1

r˘ r˘ r + r˘ 1 a+ r˘

. . . rrr . . . arr rar . . . rra no
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atom table aaa rrr rrr˘ arr rar raa rra RA

#323 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r + r˘

r r r + r˘ a+ r 1

r˘ r˘ r + r˘ 1 a+ r˘

aaa rrr . . . arr rar . . . rra
yes
2137

#324 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ 0′

r r 0′ a+ r 1

r˘ r˘ 0′ 1 a+ r˘

. . . rrr . . . arr rar raa rra
yes
3237

#325 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ 0′

r r 0′ a+ r 1

r˘ r˘ 0′ 1 a+ r˘

aaa rrr . . . arr rar raa rra
yes
3337

#326 1′ a r r˘

1′ 1′ a r r˘

a a 1′ 0 0

r r 0 r˘ 1′

r˘ r˘ 0 1′ r

. . . . . . rrr˘ . . . . . . . . . . . . no

#327 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a 0 0

r r 0 r˘ 1′

r˘ r˘ 0 1′ r

aaa . . . rrr˘ . . . . . . . . . . . . no

#328 1′ a r r˘

1′ 1′ a r r˘

a a −a a a

r r a r˘ 1′

r˘ r˘ a 1′ r

. . . . . . rrr˘ . . . . . . raa . . .
yes
937

#329 1′ a r r˘

1′ 1′ a r r˘

a a 1 a a

r r a r˘ 1′

r˘ r˘ a 1′ r

aaa . . . rrr˘ . . . . . . raa . . .
yes
1037

#330 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r 0

r r 0 r˘ 1′ + a

r˘ r˘ r˘ 1′ r

. . . . . . rrr˘ arr . . . . . . . . . no
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atom table aaa rrr rrr˘ arr rar raa rra RA

#331 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r 0

r r 0 r˘ 1′ + a

r˘ r˘ r˘ 1′ r

aaa . . . rrr˘ arr . . . . . . . . . no

#332 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a

r r a r˘ 1′ + a

r˘ r˘ a+ r˘ 1′ r

. . . . . . rrr˘ arr . . . raa . . . no

#333 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a

r r a r˘ 1′ + a

r˘ r˘ a+ r˘ 1′ r

aaa . . . rrr˘ arr . . . raa . . . no

#334 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r˘ r

r r r˘ a+ r˘ 1′

r˘ r˘ r 1′ a+ r

. . . . . . rrr˘ . . . . . . . . . rra no

#335 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r˘ r

r r r˘ a+ r˘ 1′

r˘ r˘ r 1′ a+ r

aaa . . . rrr˘ . . . . . . . . . rra no

#336 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r˘ a+ r

r r a+ r˘ a+ r˘ 1′

r˘ r˘ a+ r 1′ a+ r

. . . . . . rrr˘ . . . . . . raa rra no

#337 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r˘ a+ r

r r a+ r˘ a+ r˘ 1′

r˘ r˘ a+ r 1′ a+ r

aaa . . . rrr˘ . . . . . . raa rra no

#338 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r

r r r˘ a+ r˘ 1′ + a

r˘ r˘ r + r˘ 1′ a+ r

. . . . . . rrr˘ arr . . . . . . rra no
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atom table aaa rrr rrr˘ arr rar raa rra RA

#339 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r

r r r˘ a+ r˘ 1′ + a

r˘ r˘ r + r˘ 1′ a+ r

aaa . . . rrr˘ arr . . . . . . rra no

#340 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ a+ r

r r a+ r˘ a+ r˘ 1′ + a

r˘ r˘ 0′ 1′ a+ r

. . . . . . rrr˘ arr . . . raa rra no

#341 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ a+ r

r r a+ r˘ a+ r˘ 1′ + a

r˘ r˘ 0′ 1′ a+ r

aaa . . . rrr˘ arr . . . raa rra no

#342 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r r˘

r r r r˘ 1′ + a

r˘ r˘ r˘ 1′ + a r

. . . . . . rrr˘ arr rar . . . . . .
yes
337

#343 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r r˘

r r r r˘ 1′ + a

r˘ r˘ r˘ 1′ + a r

aaa . . . rrr˘ arr rar . . . . . .
yes
437

#344 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a+ r˘

r r a+ r r˘ 1′ + a

r˘ r˘ a+ r˘ 1′ + a r

. . . . . . rrr˘ arr rar raa . . . no

#345 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a+ r˘

r r a+ r r˘ 1′ + a

r˘ r˘ a+ r˘ 1′ + a r

aaa . . . rrr˘ arr rar raa . . . no

#346 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r + r˘

r r r + r˘ a+ r˘ 1′ + a

r˘ r˘ r + r˘ 1′ + a a+ r

. . . . . . rrr˘ arr rar . . . rra no
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atom table aaa rrr rrr˘ arr rar raa rra RA

#347 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r + r˘

r r r + r˘ a+ r˘ 1′ + a

r˘ r˘ r + r˘ 1′ + a a+ r

aaa . . . rrr˘ arr rar . . . rra no

#348 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ 0′

r r 0′ a+ r˘ 1′ + a

r˘ r˘ 0′ 1′ + a a+ r

. . . . . . rrr˘ arr rar raa rra
yes
3437

#349 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ 0′

r r 0′ a+ r˘ 1′ + a

r˘ r˘ 0′ 1′ + a a+ r

aaa . . . rrr˘ arr rar raa rra
yes
3537

#350 1′ a r r˘

1′ 1′ a r r˘

a a 1′ 0 0

r r 0 r + r˘ −a
r˘ r˘ 0 −a r + r˘

. . . rrr rrr˘ . . . . . . . . . . . . no

#351 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a 0 0

r r 0 r + r˘ −a
r˘ r˘ 0 −a r + r˘

aaa rrr rrr˘ . . . . . . . . . . . . no

#352 1′ a r r˘

1′ 1′ a r r˘

a a −a a a

r r a r + r˘ −a
r˘ r˘ a −a r + r˘

. . . rrr rrr˘ . . . . . . raa . . .
yes
1137

#353 1′ a r r˘

1′ 1′ a r r˘

a a 1 a a

r r a r + r˘ −a
r˘ r˘ a −a r + r˘

aaa rrr rrr˘ . . . . . . raa . . .
yes
1237

#354 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r 0

r r 0 r + r˘ 1

r˘ r˘ r˘ −a r + r˘

. . . rrr rrr˘ arr . . . . . . . . . no
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atom table aaa rrr rrr˘ arr rar raa rra RA

#355 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r 0

r r 0 r + r˘ 1

r˘ r˘ r˘ −a r + r˘

aaa rrr rrr˘ arr . . . . . . . . . no

#356 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a

r r a r + r˘ 1

r˘ r˘ a+ r˘ −a r + r˘

. . . rrr rrr˘ arr . . . raa . . . no

#357 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a

r r a r + r˘ 1

r˘ r˘ a+ r˘ −a r + r˘

aaa rrr rrr˘ arr . . . raa . . . no

#358 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r˘ r

r r r˘ 0′ −a
r˘ r˘ r −a 0′

. . . rrr rrr˘ . . . . . . . . . rra
yes
1937

#359 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r˘ r

r r r˘ 0′ −a
r˘ r˘ r −a 0′

aaa rrr rrr˘ . . . . . . . . . rra no

#360 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r˘ a+ r

r r a+ r˘ 0′ −a
r˘ r˘ a+ r −a 0′

. . . rrr rrr˘ . . . . . . raa rra
yes
2537

#361 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r˘ a+ r

r r a+ r˘ 0′ −a
r˘ r˘ a+ r −a 0′

aaa rrr rrr˘ . . . . . . raa rra
yes
2637

#362 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r

r r r˘ 0′ 1

r˘ r˘ r + r˘ −a 0′

. . . rrr rrr˘ arr . . . . . . rra no



216 APPENDIX B.: CYCLES

atom table aaa rrr rrr˘ arr rar raa rra RA

#363 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r

r r r˘ 0′ 1

r˘ r˘ r + r˘ −a 0′

aaa rrr rrr˘ arr . . . . . . rra no

#364 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ a+ r

r r a+ r˘ 0′ 1

r˘ r˘ 0′ −a 0′

. . . rrr rrr˘ arr . . . raa rra
yes
2937

#365 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ a+ r

r r a+ r˘ 0′ 1

r˘ r˘ 0′ −a 0′

aaa rrr rrr˘ arr . . . raa rra
yes
3037

#366 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r r˘

r r r r + r˘ 1

r˘ r˘ r˘ 1 r + r˘

. . . rrr rrr˘ arr rar . . . . . .
yes
537

#367 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r r˘

r r r r + r˘ 1

r˘ r˘ r˘ 1 r + r˘

aaa rrr rrr˘ arr rar . . . . . .
yes
637

#368 1′ a r r˘

1′ 1′ a r r˘

a a −a a+ r a+ r˘

r r a+ r r + r˘ 1

r˘ r˘ a+ r˘ 1 r + r˘

. . . rrr rrr˘ arr rar raa . . .
yes
1637

#369 1′ a r r˘

1′ 1′ a r r˘

a a 1 a+ r a+ r˘

r r a+ r r + r˘ 1

r˘ r˘ a+ r˘ 1 r + r˘

aaa rrr rrr˘ arr rar raa . . .
yes
1737

#370 1′ a r r˘

1′ 1′ a r r˘

a a 1′ r + r˘ r + r˘

r r r + r˘ 0′ 1

r˘ r˘ r + r˘ 1 0′

. . . rrr rrr˘ arr rar . . . rra no
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atom table aaa rrr rrr˘ arr rar raa rra RA

#371 1′ a r r˘

1′ 1′ a r r˘

a a 1′ + a r + r˘ r + r˘

r r r + r˘ 0′ 1

r˘ r˘ r + r˘ 1 0′

aaa rrr rrr˘ arr rar . . . rra
yes
2237

#372 1′ a r r˘

1′ 1′ a r r˘

a a −a 0′ 0′

r r 0′ 0′ 1

r˘ r˘ 0′ 1 0′

. . . rrr rrr˘ arr rar raa rra
yes
3637

#373 1′ a r r˘

1′ 1′ a r r˘

a a 1 0′ 0′

r r 0′ 0′ 1

r˘ r˘ 0′ 1 0′

aaa rrr rrr˘ arr rar raa rra
yes
3737
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Appendix C

Code

C.1 Sage code for atomic algebra class

This code contains the AtomicAlgebra class used for testing algebras defined on atoms
for isomorphisms and axiom satisfaction. We view the composition operation as a
matrix with rows and columns labelled by atoms.

# Intended for use with AlgebraGenerator.sage

# This class is used to represent and examine algebras on atom tables.

# It is intended to be used for nonassociative algebras, but this is not

assumed.

class AtomicAlgebra:

# A human-readable description of each relation algebra axiom.

AXIOMS = {

"R01": "+-commutativity: x + y = y + x",

"R02": "+-associativity: x + (y + z) = (x + y) + z",

"R03": "Huntington’s axiom: -(-x + -y) + -(-x + y) = x",

"R04": ";-associativity: x;(y;z) = (x;y);z",

"R05": ";-distributivity: (x + y);z = x;z + y;z",

"R06": "identity law: x;1’ = x",

"R07": "converse-involution: con(con(x)) = x",

"R08": "converse-distributivity: con(x + y) = con(x) + con(y)",

"R09": "converse-involutive distributivity: con(x;y) = con(y);con(x)",

"R10": "Tarski/De Morgan axiom: con(x); -(x;y) + -y = y", "WA": "((id . x)

. top) . top = (id . x) . (top . top)", "SA": "(x . top) . top = x .

(top . top)",

"WA" : "((id . x) . top) . top = (id . x) . (top . top)",

"SA" : "(x . top) . top = x . (top . top)"
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}

# Given an atom table as a string, convert it to a matrix (list of

lists).

@classmethod

def stringToAtomicTable(cls, matrixString):

M1 = matrixString.strip()[1:-1]

M2 = M1.strip()[1:-1]

M3 = [line.split(’,’) for line in M2.split(’],[’)]

M4 = [[Set(entry.split("+"))-Set([’0’]) for entry in line] for line

in M3]

return M4

# Give a human readable report on a list of failed axioms, eg. ["R01",

"R02", "R07"].

@classmethod

def reportFailedAxioms(cls, failedAxioms):

for axiom in failedAxioms:

print("Fails axiom " + axiom + ": " + cls.AXIOMS[axiom] + ".")

# Given a map between atoms as a dictionary, returns a map that works on

unions of atoms.

@classmethod

def atomFunction(cls, atomMap, element):

if type(element) == str:

return atomMap[element]

else:

return Set([cls.atomFunction(atomMap, x) for x in element])

# Check if a map between atom structures preserves composition.

# This is required for the function to be an isomorphism.

@classmethod

def preservesComposition(cls, algebra1, algebra2, atomMap):

preservesComposition = True

for x, y in itertools.product(algebra1.atoms, repeat = 2):

if cls.atomFunction(atomMap, algebra1.compose(x, y)) !=

algebra2.compose(cls.atomFunction(atomMap, x),

cls.atomFunction(atomMap, y)):

preservesComposition = False

break

return preservesComposition
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# Checks if a given algebra is isomorphic to self.

# If creating4AtomAlgebras, we’re assuming that our algebras are coming

from the gen4Atoms function.

# If so, we can assume some additional structure about the converses.

# This isn’t necessary, but it does speed up the isomorphism checking.

# Can also return a list of isomorphisms, but this isn’t recommended.

def isIsomorphic(self, algebra2, creating4AtomAlgebras = False,

returnIsomorphisms = False):

# First we check that the algebras are the same size.

if self.nAtoms != algebra2.nAtoms:

return False

# Next we check that the converse pairs match in number and

structure.

converses1 = self.conversePairs

nonSelfConversePairs1 = len(converses1)

selfConverses1 = [x[0] for x in converses1 if x[0] == x[1]]

nonSelfConversePairs1 = [x for x in converses1 if x[0] != x[1]]

converses2 = algebra2.conversePairs

nonSelfConversePairs2 = len(converses2)

selfConverses2 = [x[0] for x in converses2 if x[0] == x[1]]

nonSelfConversePairs2 = [x for x in converses2 if x[0] != x[1]]

if len(selfConverses1) != len(selfConverses2):

return False

# Enumerate all possible functions respecting converse

# First we check if we are creating4AtomAlgebras, so we might make

additional assumptions.

# Note the small number of possible converse structures.

if creating4AtomAlgebras and self.identity == Set([’a’]) and

algebra2.identity == Set([’a’]):

if len(selfConverses1) == 4:

possibleIsomorphisms = [

{’a’: ’a’, ’b’: ’c’, ’c’: ’b’, ’d’: ’d’},

{’a’: ’a’, ’b’: ’b’, ’c’: ’d’, ’d’: ’c’},

{’a’: ’a’, ’b’: ’d’, ’c’: ’c’, ’d’: ’b’},

{’a’: ’a’, ’b’: ’c’, ’c’: ’d’, ’d’: ’b’},

{’a’: ’a’, ’b’: ’d’, ’c’: ’b’, ’d’: ’c’}

]

elif len(selfConverses1) == 2:

possibleIsomorphisms = [

{’a’: ’a’, ’b’: ’b’, ’c’: ’c’, ’d’: ’d’},

{’a’: ’a’, ’b’: ’b’, ’c’: ’d’, ’d’: ’c’},

]
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else:

raise ValueError("Unexpected converse structure. Assumes

either all atoms are symmetric, or only converse pair is

(’c’,’d’).")

# If we are not creating4AtomAlgebras, then we must check for

isomorphisms by brute force.

else:

# First enumerate all possible ways to map symmetric atoms from

the first algebra

# to self converse atoms from the second algebra.

possibleSelfConverseMaps = []

for perm in itertools.permutations(selfConverses2):

possibleSelfConverseMaps.append(zip(selfConverses1, perm))

# Now enumerate all possible ways to map converse pairs from the

first algebra

# to converse pairs from the second algebra.

possibleConversePairMaps = []

for perm1 in list(itertools.product(*[[x,x[::-1]] for x in

nonSelfConversePairs2])):

for perm2 in itertools.permutations(perm1):

map = []

pairing = zip(nonSelfConversePairs1, perm2)

for pair in pairing:

map.append((pair[0][0], pair[1][0]))

map.append((pair[0][1], pair[1][1]))

possibleConversePairMaps.append(map)

# Now combine them to generate all maps respecting the converse

structure.

possibleIsomorphisms = []

for selfConverseMap, conversePairMap in

itertools.product(possibleSelfConverseMaps,

possibleConversePairMaps):

possibleIsomorphisms.append(selfConverseMap + conversePairMap)

possibleIsomorphisms = [dict(x) for x in possibleIsomorphisms]

# Assume that the algebras are not isomorphic.

areIsomorphic = False

isomorphisms = []

# Go through all the maps that preserve converse structure to test

if they also preserve composition.

# If so, they are isomorphic.

# If we want to enumerate all isomorphisms, check all maps.

Otherwise, break if an isomorphism is found.
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for possibleIsomorphism in possibleIsomorphisms:

if self.preservesComposition(self, algebra2, possibleIsomorphism):

areIsomorphic = True

if not returnIsomorphisms:

break

else:

isomorphisms.append(possibleIsomorphism)

if areIsomorphic and returnIsomorphisms:

return areIsomorphic, isomorphisms

else:

return areIsomorphic

# Create an algebra from a table of atoms, which gives compositions, and

a converse structure.

# An atom table is a list of lists, with each entry a Set (as distinct

from set) of atoms.

# The set of atoms is interpreted as a union. Atoms are ’a’, ’b’, ’c’,

etc.

# The converse pair is a list of 2-tuples of atoms.

# If ’a’ is converse to ’b’, write as (’a’,’b’).

# If ’a’ is symmetric, write as (’a’, ’a’).

# Can also give converses as a dictionary.

# Algebra may not necessarily meet all the axioms.

def __init__(self, atomTable, conversePairs = None):

if type(atomTable) == str:

atomTable = self.stringToAtomTable(atomTable)

# If no converses given assume all atoms are symmetric.

if conversePairs == None:

self.conversePairs = [(x,x) for x in self.atoms]

# Can also give converses as a dictionary.

if type(conversePairs) == dict:

self.conversePairs = []

for pair in conversePairs.items():

if pair not in self.conversePairs and pair[::-1] not in

self.conversePairs:

self.conversePairs.append(pair)

else:

self.conversePairs = conversePairs

# Set up the basic properties of the algebra.

self.atomTable = atomTable

self.nAtoms = len(atomTable[0])

self.atoms = [Set([chr(i + 97)]) for i in range(self.nAtoms)]
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self._nonIdentityAtoms = None

self.top = Set([chr(i+97) for i in range(self.nAtoms)])

self.zero = Set()

self.elements = [Combinations(list(self.top),n).list() for n in

range(self.nAtoms+1)]

self.elements = list(itertools.chain.from_iterable(self.elements))

self.elements = [Set(element) for element in self.elements]

self.nElements = 2**self.nAtoms

self.nNonZeroElements = self.nElements - 1

# We may want to call on a converse from a dictionary.

# So here we construct a dictionary of converses from the converse

pairs.

self.atomConverses = dict()

for atom in self.atoms:

for conversePair in self.conversePairs:

if atom[0] in conversePair:

self.atomConverses[atom[0]] =

conversePair[~(conversePair.index(atom[0]))]

break

self._identity = None

self._semigroup = None

# properties

self._isNA = None

self._satisfiesWAaxiom = None

self._isWA = None

self._satisfiesSAaxiom = None

self._isSA = None

self._satisfiesAssociativity = None

self._isRA = None

self._consistentAtomTriples = None

self._consistentMirrorFreeAtomTriples = None

self._isRepresentable = None

self._representation = None

# Turns a single atom ’a’ into a Set([’a’]).

def makeSet(self, x):

if type(x) == str:

x = Set([x])

if type(x) != type(Set()):

raise TypeError(’An element of the algebra needs to be either a

set of atoms or a string representing a single atom.’)

return x
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# Define composition of atoms or sets of atoms using the atom table.

# We allow for inputs of single atoms, but every element is properly

# viewed as a set of atoms.

def compose(self, x, y):

x = self.makeSet(x)

y = self.makeSet(y)

# Composition with the 0 element

if x == Set() or y == Set():

output = Set()

else:

output = Set()

for i, j in itertools.product(x, y):

rowPos = ord(i) - 97

colPos = ord(j) - 97

try:

output = output.union(self.atomTable[rowPos][colPos])

except IndexError:

"Out of bounds: composition "+ str(x) + "*" + str(y) + "

contains a non-atomic element."

return output

# Define intersection as set intersection.

def intersection(self, x, y):

x = self.makeSet(x)

y = self.makeSet(y)

return x.intersection(y)

# Define union as set union.

def union(self, x, y):

x = self.makeSet(x)

y = self.makeSet(y)

return x.union(y)

# Define converse using the converse dictionary we made earlier.

def converse(self, x):

x = self.makeSet(x)

return Set([self.atomConverses[atom] for atom in x])

# Define complement as set complement relative to the top elemenet (set

of all atoms).

def complement(self, x):
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x = self.makeSet(x)

return self.top.difference(x)

# Return the identity of an algebra if it exists, otherwise returns None

# If the identity element is not already recorded, will run through all

elements and check for identity property.

@property

def identity(self):

if self._identity == None:

for candidateId in self.elements:

isId = True

for atom in self.atoms:

if self.compose(candidateId, atom) != atom or

self.compose(atom, candidateId) != atom:

isId = False

break

if isId:

self._identity = candidateId

break

return self._identity

# All non-identity atoms.

@property

# Return a list of atoms which are not the identity atom.

def nonIdentityAtoms(self):

if self._nonIdentityAtoms == None:

if self.identity == None:

return self.atoms

else:

self._nonIdentityAtoms = [x for x in self.atoms if x !=

self.identity]

return self._nonIdentityAtoms

# Determines if the algebra generated by the atom table is a

nonassociative algebra.

# Due to the construction, not all axioms need to be checked.

# Can control the amount of reporting done on failed axioms, if any.

def isNA(self, whatFails = False, report = False):

if report:

whatFails = True

if self._isNA == None or whatFails == True:

self._isNA = True
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failedAxioms = []

# Axiom R01: +-commutativity: x + y = y + x

# Axiom R02: +-associativity: x + (y + z) = (x + y) + z

# Axiom R03: Huntington’s axiom: -(-x + -y) + -(-x + y) = x

for x,y in itertools.product(self.atoms, repeat = 2):

firstTerm = self.complement(self.union(self.complement(x),

self.complement(y)))

secondTerm = self.complement(self.union(self.complement(x),

y))

if self.union(firstTerm, secondTerm) != x:

failedAxioms.append("R03")

break

# Axiom R05: ;-distributivity: (x + y);z = x;z + y;z

#for x,y,z in itertools.product(self.atoms, repeat = 3):

# if self.compose(self.union(x,y), z) !=

self.union(self.compose(x, z), self.compose(y, z)):

# failedAxioms.append("R05")

# break

# Axiom R06: identity law: x;1’ = x

if self.identity == None:

failedAxioms.append("R06")

# Axiom R07: converse-involution: con(con(x)) = x

# - should not be needed if converse pairs are correctly

defined.

for x in self.atoms:

if self.converse(self.converse(x)) != x:

failedAxioms.append("R07")

break

# Axiom R08: converse-distributivity: con(x + y) = con(x) + con(y)

for x,y in itertools.product(self.atoms, repeat = 2):

if self.converse(self.union(x,y)) !=

self.union(self.converse(x), self.converse(y)):

failedAxioms.append("R09")

break

# Axiom R09: converse-involutive distributivity: con(x;y) =

con(y);con(x)

for x,y in itertools.product(self.atoms, repeat = 2):

if self.converse(self.compose(x,y)) !=

self.compose(self.converse(y), self.converse(x)):

failedAxioms.append("R09")

break

# Axiom R10: Tarski/De Morgan axiom: con(x); -(x;y) + -y = y
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for x,y in itertools.product(self.atoms, repeat = 2):

if self.union(self.compose(self.converse(x),

self.complement(self.compose(x,y))), self.complement(y))

!= self.complement(y):

failedAxioms.append("R10")

break

if len(failedAxioms) > 0:

self._isNA = False

if report:

self.reportFailedAxioms(failedAxioms)

return self._isNA

elif whatFails and not report:

return (self._isNA, failedAxioms)

else:

return self._isNA

# Determines if the algebra generated by the atom table satisfies the

weakly associative axiom.

# Axiom WA: ((id . x) . top) . top = (id . x) . (top . top)

@property

def satisfiesWAaxiom(self):

if self._satisfiesWAaxiom == None:

if self.identity == None:

self._satisfiesWAaxiom = False

else:

self._satisfiesWAaxiom = True

for x in self.atoms:

LHS = self.compose(self.compose(

self.intersection(self.identity, x), self.top),

self.top)

RHS = self.compose(self.compose(

self.intersection(self.identity, x), self.top),

self.compose(self.top, self.top))

if LHS != RHS:

self._satisfiesWAaxiom = False

break

return self._satisfiesWAaxiom

# Determines if the algebra generated by the atom table is a weakly

associative algebra.

# The algebra must be an nonassociative algebra and satisfy the weakly

associative axiom.
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def isWA(self, whatFails = False, report = False):

if report:

whatFails = True

if whatFails == True:

self._isWA = True

failedAxioms = []

failedAxioms.extend(self.isNA(True,False)[1])

if self.satisfiesWAaxiom == False:

failedAxioms.append("WA")

if len(failedAxioms) > 0:

self._isWA = False

elif self._isWA == None:

self._isWA = (self.isNA() and self.satisfiesWAaxiom)

if report:

self.reportFailedAxioms(failedAxioms)

return self._isWA

elif whatFails and not report:

return (self._isWA, failedAxioms)

else:

return self._isWA

# Determines if the algebra generated by the atom table satisfies the

semiassociative axiom.

# Axiom SA: (x . top) . top = x . (top . top)"

@property

def satisfiesSAaxiom(self):

if self._satisfiesSAaxiom == None:

self._satisfiesSAaxiom = True

for x in self.atoms:

if self.compose(self.compose(x, self.top), self.top) !=

self.compose(self.compose(x, self.top),

self.compose(self.top, self.top)):

self._satisfiesSAaxiom = False

break

return self._satisfiesSAaxiom

# Determines if the algebra generated by the atom table is a

semiassociative algebra.

# The algebra must be an nonassociative algebra and satisfy the

semiassociative axiom.

def isSA(self, whatFails = False, report = False):

if report:
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whatFails = True

if whatFails == True:

self._isSA = True

failedAxioms = []

failedAxioms.extend(self.isWA(True,False)[1])

if self.satisfiesSAaxiom == False:

failedAxioms.append("SA")

if len(failedAxioms) > 0:

self._isSA = False

elif self._isSA == None:

self._isSA = (self.isNA() and self.satisfiesSAaxiom)

if report:

self.reportFailedAxioms(failedAxioms)

return self._isSA

elif whatFails and not report:

return (self._isSA, failedAxioms)

else:

return self._isSA

# Determines if the algebra generated by the atom table has an

associative composition operation.

# Axiom R04: ;-associativity: x;(y;z) = (x;y);z."

@property

def satisfiesAssociativity(self):

if self._satisfiesAssociativity == None:

self._satisfiesAssociativity = True

for i, j, k in itertools.product(self.elements, repeat = 3):

if self.compose(self.compose(i,j), k) != self.compose(i,

self.compose(j,k)):

self._satisfiesAssociativity = False

break

return self._satisfiesAssociativity

# Determines if the algebra generated by the atom table is a relation

algebra.

# Must be an associative nonassociative algebra.

def isRA(self, whatFails = False, report = False):

if report:

whatFails = True

if whatFails == True:

self._isRA = True

failedAxioms = []
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failedAxioms.extend(self.isSA(True,False)[1])

if self.satisfiesAssociativity == False:

failedAxioms.append("R04")

if len(failedAxioms) > 0:

self._isRA = False

elif self._isRA == None:

self._isRA = (self.isNA() and self.satisfiesAssociativity)

if report:

self.reportFailedAxioms(failedAxioms)

return self._isRA

elif whatFails and not report:

return (self._isRA, failedAxioms)

else:

return self._isRA

C.2 Sage code for brute-force generation of nonasso-

ciative algebras

This code contains the methods for generating all nonassociative algebras on three
atoms by brute force. We generate every possible composition table and pair it with
every possible converse structure before checking the results against the nonassociative
algebra axioms.

The generateIntegralAtomTables method generates every possible composition ta-
ble of a given size n. The hasID option forces the first atom to act as an identity
atom, and so only the bottom (n− 1)× (n− 1) square of the composition table needs
to be added. To make the generation faster, we separate out the case in which the
identity is not integral.

# Should be loaded with AtomicAlgebra.sage and AlgebraGenerator.sage

import itertools

# Generate all possible atom tables given number of atoms.

def generatePossibleAtomTables(size, hasID = False):

atoms = [Set([chr(i + 97)]) for i in range(size)]

n = size - int(hasID)

# By interior, we mean the part of the composition table/matrix to the

# bottom-right of a fixed identity atom, or the whole table/matrix if no

# identity atom is fixed.
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possibleInteriors = []

possibleCells = [Set(cell) for cell in list(powerset([atom[0] for atom

in atoms]))]

possibleInteriorLists = [list(x) for x in

list(itertools.product(possibleCells, repeat = n**2))]

for interiorList in possibleInteriorLists:

interior = [interiorList[i:i+n] for i in range(0, len(interiorList),

n)]

if hasID:

interior = [[atoms[i+1]] + interior[i] for i in range(n)]

interior = [atoms] + interior

possibleInteriors.append(interior)

return possibleInteriors

# Generate all atomic nonassociative algebras with 3 atoms.

# Because this is easier than the 4 atom algebras, we do not construct the

# atom tables with cycles.

# Instead, we generate all potential atom tables and test them against the

axioms.

def gen3Atoms():

return genNonIdentity3AtomicAlgebras() + genIdentity3AtomicAlgebras()

# Generate all atomic nonassociative algebras with 3 atoms, in which the

# identity is the ’a’ atom.

def genIdentity3AtomicAlgebras():

print("Generating 3 atom algebras with atomic identity.")

possibleInteriors = generatePossibleAtomTables(3, True)

possibleConverseStructures = [[(’a’,’a’), (’b’,’c’)], [(’a’,’a’),

(’b’,’b’), (’c’,’c’)]]

algebras = []

nPossibleInteriors = len(possibleInteriors)

# The counter is used to track progress and display a progress bar.

counter = 1

for interior in possibleInteriors:

progress = float(counter) / nPossibleInteriors

for converseStructure in possibleConverseStructures:

validAlgebra = True

newAlgebra = AtomicAlgebra(interior, converseStructure)

if not newAlgebra.isNA():

validAlgebra = False

else:

for algebra in algebras:
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if newAlgebra.isIsomorphic(algebra):

validAlgebra = False

if validAlgebra: algebras.append(newAlgebra)

progressPercent = str(round(progress*100, 2))

text = "\rProgress: " + progressPercent + "%"

sys.stdout.write(text)

sys.stdout.flush()

counter += 1

return algebras

# Generate all atomic nonassociative algebras with 3 atoms, in which the

# identity is NOT an atom.

def genNonIdentity3AtomicAlgebras():

print("Generating 3 atom algebras without atomic identity.")

twoFragmentsTable = [[Set([’a’]), Set()], [Set(), Set([’b’])]]

atoms = [Set([chr(i + 97)]) for i in range(3)]

possibleInteriors = []

possibleCells = [Set(cell) for cell in list(powerset([atom[0] for atom

in atoms]))]

for x1, x2, x3, x4, x5 in itertools.product(possibleCells, repeat=5):

possibleInterior = [twoFragmentsTable[0] + [x1],

twoFragmentsTable[1] + [x2], [x3, x4, x5]]

possibleInteriors.append(possibleInterior)

converseStructure = [(’a’,’a’), (’b’,’b’), (’c’,’c’)]

algebras = []

nPossibleInteriors = len(possibleInteriors)

# The counter is used to track progress and display a progress bar.

counter = 1

for interior in possibleInteriors:

progress = float(counter) / nPossibleInteriors

validAlgebra = True

newAlgebra = AtomicAlgebra(interior, converseStructure)

if not newAlgebra.isNA():

validAlgebra = False

else:

for algebra in algebras:

if newAlgebra.isIsomorphic(algebra):

validAlgebra = False

if validAlgebra: algebras.append(newAlgebra)

progressPercent = str(round(progress*100, 2))

text = "\rProgress: " + progressPercent + "%"

sys.stdout.write(text)
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sys.stdout.flush()

counter += 1

return algebras

C.3 Sage code for generating nonassociative algebras

on four atoms

This code contains the methods for generating all four atom nonassociative algebras.
A brute force method would be computationally infeasible for more than three atoms,
so a method employing cycles as in [58] is used instead.

The greatest computational difficulty is in checking for isomorphisms. In the Atomi-
cAlgebra class, we encoded a restricted set of converse pairs to be used when generat-
ing algebras on four atoms. This is because we are generating the algebras in specific
ways. For example, the atom is always either an identity or subidentity atom, and so
is always symmetric. This speeds up the generation.

The algebras on four atoms are generate in six parts:

1. algebras with a two-fragment identity and all atoms symmetric,

2. algebras with a two-fragment identity and one converse pair,

3. algebras with a three-fragment identity and all atoms symmetric,

4. algebras with a four-fragment identity (there is only one up to isomorphism),

5. algebras with an atomic identity and all atoms symmetric, and

6. algebras with an atomic identity and one converse pair.

To ensure that these don’t overlap, the generateAlgebrasFromFixedEntriesmethod
rejects an algebra if the identiy element grows, that is, if the input is for algebras with
a two-fragment identity but an outputted algebra has a three-fragment identity.

import itertools

# Four atoms.

atoms = [’a’,’b’,’c’,’d’]

# If the identity is atomic it will be represented by ’a’.

# This fixes the left-most column and uppermost row of the composition

table of atoms.
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# A fixed entry is represented by a consistent triple, eg. (’a’,’a’,’a’) or

(’a’,’b’,’b’).

atomicIdentity = [(’a’, atom, atom) for atom in atoms] + [(atom, ’a’, atom)

for atom in atoms[1:]]

# The identity can also be a union of atoms. Here we consider two atoms,

assumed ’a’ and ’b’, unioning to identity.

twoFragmentIdentity = [(atom, atom, atom) for atom in atoms[:2]] + [(atom1,

atom2, 0) for atom1, atom2 in itertools.product(atoms[:2], repeat=2) if

atom1 != atom2]

# Here we consider three atoms, assumed ’a’, ’b’ and ’c’, unioning to

identity.

threeFragmentIdentity = [(atom, atom, atom) for atom in atoms[:3]] +

[(atom1, atom2, 0) for atom1, atom2 in itertools.product(atoms[:3],

repeat=2) if atom1 != atom2]

# Here we consider four atoms unioning to identity.

fourFragmentIdentity = [(atom, atom, atom) for atom in atoms] + [(atom1,

atom2, 0) for atom1, atom2 in itertools.product(atoms, repeat=2) if

atom1 != atom2]

# All 10 possible converse structures.

# We don’t need all 10. We only need to consider 3 cases:

# All self-converse.

# Just 2 self-converse.

# No self-converse.

# All others will be isomorphic or irrelevant, eg. no self-converse atoms

=> no identity element.

converses = [

{’a’: ’a’, ’b’: ’b’, ’c’: ’c’, ’d’: ’d’}, # all self-converse

{’a’: ’b’, ’b’: ’a’, ’c’: ’c’, ’d’: ’d’}, # c,d self-converse, (a,b)

{’a’: ’a’, ’b’: ’c’, ’c’: ’b’, ’d’: ’d’}, # a,d self-converse, (b,c)

{’a’: ’a’, ’b’: ’b’, ’c’: ’d’, ’d’: ’c’}, # a,b self-converse, (c,d)

{’a’: ’c’, ’b’: ’b’, ’c’: ’a’, ’d’: ’d’}, # b,d self-converse, (a,c)

{’a’: ’a’, ’b’: ’d’, ’c’: ’c’, ’d’: ’b’}, # a,c self-converse, (b,d)

{’a’: ’d’, ’b’: ’b’, ’c’: ’c’, ’d’: ’a’}, # b,c self-converse, (a,d)

{’a’: ’b’, ’b’: ’a’, ’c’: ’d’, ’d’: ’c’}, # (a,b), (c,d)

{’a’: ’d’, ’b’: ’c’, ’c’: ’b’, ’d’: ’a’}, # (a,d), (b,c)

{’a’: ’c’, ’b’: ’d’, ’c’: ’a’, ’d’: ’b’} # (a,c), (b,d)

]

# Given a triple and a converse structure, generate the cycle including

that triple.

# This is an implementation of the relation algebra concept of a Peircean

transform.
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# Cycle generated by (x,y,z) is:

# [ (x,y,z), (con(x),z,y),

(y,con(z),con(x)),(con(y),con(x),con(z)),(con(z),x,con(y)),

(z,con(y),x) ]

# A triple in a cycle is consistent if and only if all triples in the cycle

are consistent.

def genCycle(triple, converse):

x, y, z = triple

cycle = []

cycle.append(triple)

cycle.append((converse[x], z, y))

cycle.append((y, converse[z], converse[x]))

cycle.append((converse[y], converse[x], converse[z]))

cycle.append((converse[z], x, converse[y]))

cycle.append((z, converse[y], x))

cycle.sort()

# Remove duplicates.

return list(set(cycle))

# Given a converse structure, partition the triples of elements into cycles.

def genCyclePartition(converse):

parts = []

for triple in itertools.product(atoms, repeat = 3):

cycle = genCycle(triple, converse)

if cycle not in parts: parts.append(cycle)

return parts

# Fix an entry of an atom table to either a single atom or 0.

# Input is a list of tuples of fixed entries, eg. [(’a’,’a’,’b’)] will fix

the upper-left entry to ’b’ and only ’b’.

# Output is a list of necessary cycles, a list of forbidden cycles, and a

list of optional (remaining) cycles.

# Any algebra with consistent cycles at least those that are necessary, and

none of those that are forbidden,

# will have the desired fixed entry.

def fixEntries(entriesToFix, cycles):

cyclesToSort = copy(cycles)

necessaryCycles = []

forbiddenCycles = []

# a, b, c in entriesToFix means that a;b = c is the composition we want

to fix.

for a, b, c in entriesToFix:
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# If c == 0, then a;b composes to nothing.

if c == 0:

for cycle in cyclesToSort:

if (a,b) in [triple[:2] for triple in cycle]:

if cycle not in forbiddenCycles:

forbiddenCycles.append(cycle)

else:

for cycle in cyclesToSort:

# If the cycle contains a;b composing to c, it is necessary.

if (a,b,c) in cycle:

if cycle not in necessaryCycles:

necessaryCycles.append(cycle)

# If the cycle contains a;b composing to something other than

c, it is forbidden.

elif (a,b) in [triple[:2] for triple in cycle]:

if cycle not in forbiddenCycles:

forbiddenCycles.append(cycle)

# A cycle that is neither necessary or forbidden is optional.

optionalCycles = [cycle for cycle in cycles if cycle not in

necessaryCycles and cycle not in forbiddenCycles]

return necessaryCycles, forbiddenCycles, optionalCycles

# Create an algebra from a list of cycles to be included, and a converse

structure.

# First creates an atom table from the cycles, then creates an instance of

the AtomicAlgebra class

def create4AtomAlgebraFromCycles(cycles, converse):

# Create an empty atomTable

atomTable = [[Set() for i in range(4)] for j in range(4)]

# Fill the atom table.

for cycle in cycles:

for triple in cycle:

x, y, z = triple

rowPos = ord(x) - 97

colPos = ord(y) - 97

# For every triple in every cycle, set the relevant entry of the

atomTable to correspond to the cycle.

atomTable[rowPos][colPos] =

atomTable[rowPos][colPos].union(Set([z]))

newAlgebra = AtomicAlgebra(atomTable, converse)

return newAlgebra



238 APPENDIX C.: CODE

# Generate a list of nonassociative algebras with an atomTable with desired

fixed entries and converse structure.

# Returned list contains no two isomorphic algebras.

def generateAlgebrasFromFixedEntries(entriesToFix, converse):

# First generate all of the cycles from the desired converse structure.

cycles = genCyclePartition(converse)

# Then generate the necessary, forbidden and optional cycles fixing the

desired entries.

necessaryCycles, forbiddenCycles, optionalCycles =

fixEntries(entriesToFix, cycles)

# Take the powerset of optional cycles. This is the set of choices of

optional cycles to include.

pset = powerset(optionalCycles)

# Add the necessary cycles to every choice of optional cycles. Each

possible cycle set is an algebra.

possibleCycleSets = [necessaryCycles + choice for choice in pset]

algebras = []

# The counter is used to track progress and display a progress bar.

counter = 1

nCycleSets = len(possibleCycleSets)

for cycleSet in possibleCycleSets:

progress = float(counter) / nCycleSets

# Create the algebra

newAlgebra = create4AtomAlgebraFromCycles(cycleSet, converse)

validAlgebra = True

# The algebra is not valid if it is not a nonassociative algebra.

if not newAlgebra.isNA():

validAlgebra = False

# Strictly speaking, we don’t need to separate the cases in which

the identity is two, three, or four fragments.

# We do this so that the algebras are ordered by this property.

elif entriesToFix == twoFragmentIdentity and

len(newAlgebra.identity) > 2:

validAlgebra = False

elif entriesToFix == threeFragmentIdentity and

len(newAlgebra.identity) > 3:

validAlgebra = False

else:

# Check to see if the new algebra is isomorphic to an algebra we

have already constructed.

for algebra in algebras:

if newAlgebra.isIsomorphic(algebra, True):
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validAlgebra = False

# If an isomorphic algebra is found, we don’t need to

check the rest.

break

# If the algebra is valid, add it to the list of algebras.

if validAlgebra: algebras.append(newAlgebra)

# Update the progress bar

progressPercent = str(round(progress*100, 2))

text = "\rProgress: " + progressPercent + "%"

sys.stdout.write(text)

sys.stdout.flush()

counter += 1

return algebras

def gen4Atoms():

# Generate all algebras and report on progress along the way.

# We generate the algebras in 6 cases according to identity and converse

structure.

# This reduces the number of isomorphism checks needed.

algebras = []

print("Generating 4 atom algebras with two-fragment identity, all atoms

self-converse.")

algebras1 = generateAlgebrasFromFixedEntries(twoFragmentIdentity,

converses[0])

print("Found " + str(len(algebras1)) + " non-isomorphic algebras.")

print("Generating 4 atom algebras with two-fragment identity, only 2

atoms self-converse.")

algebras2 = generateAlgebrasFromFixedEntries(twoFragmentIdentity,

converses[3])

print("Found " + str(len(algebras2)) + " non-isomorphic algebras.")

print("Generating 4 atom algebras with three-fragment identity, all

atoms self-converse.")

algebras3 = generateAlgebrasFromFixedEntries(threeFragmentIdentity,

converses[0])

print("Found " + str(len(algebras3)) + " non-isomorphic algebras.")

print("Generating 4 atom the algebra with four-fragment identity.")

algebras4 = generateAlgebrasFromFixedEntries(fourFragmentIdentity,

converses[0])

print("Found " + str(len(algebras4)) + " non-isomorphic algebras.")

print("Generating 4 atom algebras with atomic identity, all atoms

self-converse.")

algebras5 = generateAlgebrasFromFixedEntries(atomicIdentity,
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converses[0])

print("Found " + str(len(algebras5)) + " non-isomorphic algebras.")

print("Generating 4 atom algebras with atomic identity, only 2 atoms

self-converse.")

algebras6 = generateAlgebrasFromFixedEntries(atomicIdentity,

converses[3])

print("Found " + str(len(algebras6)) + " non-isomorphic algebras.")

return algebras1 + algebras2 + algebras3 + algebras4 + algebras5 +

algebras6

C.4 Example code for nonrepresentability of non-

associative algebras

This is the output from Prover9 [60] used to confirm the nonrepresentability of algebra
#146 on four atoms: 1′, a, b, c.

=================== Prover9 ===================

Prover9 (64) version 2009−11A, November 2009.

=================== end of head ===================

=================== INPUT ===================

formulas(assumptions).
x = y | A(x,y) | B(x,y) | C(x,y).
A(x,y) −> x != y & −B(x,y) & −C(x,y).
B(x,y) −> x != y & −A(x,y) & −C(x,y).
C(x,y) −> x != y & −B(x,y) & −A(x,y).
( exists x exists y A(x,y)).
( exists x exists y B(x,y)).
( exists x exists y C(x,y)).
A(x,y) −> A(y,x).
B(x,y) −> B(y,x).
C(x,y) −> C(y,x).
A(x,z) & A(z,y) −> −A(x,y).
( exists x exists y exists z (B(x,z) & A(z,y) & A(x,y))).
C(x,z) & A(z,y) −> −A(x,y).
A(x,z) & B(z,y) −> −B(x,y).
( exists x exists y exists z (A(x,z) & B(z,y) & C(x,y))).
( exists x exists y exists z (A(x,z) & C(z,y) & C(x,y))).
( exists x exists y exists z (B(x,z) & B(z,y) & B(x,y))).
C(x,z) & B(z,y) −> −B(x,y).
B(x,z) & C(z,y) −> −C(x,y).
C(x,z) & C(z,y) −> −C(x,y).
end_of_list.

=================== end of input ===================

=================== PROOF ===================
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% Proof 1 at 759.29 (+ 11.30) seconds.
% Length of proof is 308.
% Level of proof is 75.
% Maximum clause weight is 24.000.
% Given clauses 38528.

1 A(x,y) −> x != y & −B(x,y) & −C(x,y) # label(non_clause). [assumption].
2 B(x,y) −> x != y & −A(x,y) & −C(x,y) # label(non_clause). [assumption].
3 C(x,y) −> x != y & −B(x,y) & −A(x,y) # label(non_clause). [assumption].
7 A(x,y) −> A(y,x) # label(non_clause). [assumption].
8 B(x,y) −> B(y,x) # label(non_clause). [assumption].
9 C(x,y) −> C(y,x) # label(non_clause). [assumption].
10 A(x,z) & A(z,y) −> −A(x,y) # label(non_clause). [assumption].
11 ( exists x exists y exists z (B(x,z) & A(z,y) & A(x,y))) # label(non_clause). [assumption].
12 C(x,z) & A(z,y) −> −A(x,y) # label(non_clause). [assumption].
13 A(x,z) & B(z,y) −> −B(x,y) # label(non_clause). [assumption].
15 ( exists x exists y exists z (A(x,z) & C(z,y) & C(x,y))) # label(non_clause). [assumption].
17 C(x,z) & B(z,y) −> −B(x,y) # label(non_clause). [assumption].
18 B(x,z) & C(z,y) −> −C(x,y) # label(non_clause). [assumption].
19 C(x,z) & C(z,y) −> −C(x,y) # label(non_clause). [assumption].
20 x = y | A(x,y) | B(x,y) | C(x,y). [assumption].
21 −A(x,y) | y != x. [ clausify (1) ].
22 −A(x,y) | −B(x,y). [ clausify (1) ].
23 −A(x,y) | −C(x,y). [ clausify (1) ].
24 −B(x,y) | y != x. [ clausify (2) ].
25 −B(x,y) | −C(x,y). [ clausify (2) ].
26 −C(x,y) | y != x. [ clausify (3) ].
30 −A(x,y) | A(y,x). [ clausify (7) ].
31 −B(x,y) | B(y,x). [ clausify (8) ].
32 −C(x,y) | C(y,x). [ clausify (9) ].
33 −A(x,y) | −A(y,z) | −A(x,z). [ clausify (10) ].
34 B(c7,c9). [ clausify (11) ].
35 A(c9,c8). [ clausify (11) ].
36 A(c7,c8). [ clausify (11) ].
37 −C(x,y) | −A(y,z) | −A(x,z). [ clausify (12) ].
38 −A(x,y) | −B(y,z) | −B(x,z). [ clausify (13) ].
42 A(c13,c15). [ clausify (15) ].
43 C(c15,c14). [ clausify (15) ].
44 C(c13,c14). [ clausify (15) ].
48 −C(x,y) | −B(y,z) | −B(x,z). [ clausify (17) ].
49 −B(x,y) | −C(y,z) | −C(x,z). [ clausify (18) ].
50 −C(x,y) | −C(y,z) | −C(x,z). [ clausify (19) ].
70 C(x,y) | y = x | A(y,x) | B(y,x). [ resolve (32,a,20,d) ].
74 B(c9,c7). [ resolve (34,a,31,a) ].
75 c9 != c7. [ resolve (34,a,24,a) ].
76 −C(c7,c9). [ur(25,a,34,a) ].
77 −A(c7,c9). [ur(22,b,34,a) ].
78 −A(c9,x) | −A(x,c8). [ resolve (35,a,33,c) ].
81 A(c8,c9). [ resolve (35,a,30,a) ].
82 −B(c9,c8). [ resolve (35,a,22,a) ].
83 c9 != c8. [ resolve (35,a,21,a), flip (a) ].
84 −C(c9,c8). [ur(23,a,35,a) ].
85 −A(c7,x) | −A(x,c8). [ resolve (36,a,33,c) ].
86 −A(x,c7) | −A(x,c8). [ resolve (36,a,33,b) ].
88 A(c8,c7). [ resolve (36,a,30,a) ].
90 c8 != c7. [ resolve (36,a,21,a) ].
92 −C(c7,c8). [ur(23,a,36,a) ].
94 −A(x,y) | −A(z,y) | z = x | A(z,x) | B(z,x). [ resolve (37,a,20,d) ].
95 −C(c9,c7). [ur(37,b,36,a,c ,35,a) ].
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96 −B(c8,x) | −B(c7,x). [ resolve (38,a,36,a) ].
97 −B(c8,x) | −B(c9,x). [ resolve (38,a,35,a) ].
122 A(c15,c13). [ resolve (42,a,30,a) ].
123 −B(c13,c15). [ resolve (42,a,22,a) ].
124 c15 != c13. [ resolve (42,a,21,a) ].
126 −A(c14,x) | −A(c15,x). [ resolve (43,a,37,a) ].
127 C(c14,c15). [ resolve (43,a,32,a) ].
128 c15 != c14. [ resolve (43,a,26,a), flip (a) ].
129 −B(c15,c14). [ resolve (43,a,25,b) ].
131 −A(c14,x) | −A(c13,x). [ resolve (44,a,37,a) ].
132 C(c14,c13). [ resolve (44,a,32,a) ].
133 c14 != c13. [ resolve (44,a,26,a) ].
134 −B(c13,c14). [ resolve (44,a,25,b) ].
135 −A(c13,c14). [ resolve (44,a,23,b) ].
150 −B(c14,x) | −B(c13,x). [ resolve (48,a,44,a) ].
151 −B(c14,x) | −B(c15,x). [ resolve (48,a,43,a) ].
154 −B(x,y) | −B(z,y) | z = x | A(z,x) | B(z,x). [ resolve (48,a,20,d) ].
156 −B(x,c13) | −C(x,c14). [ resolve (49,b,44,a) ].
157 −B(x,c15) | −C(x,c14). [ resolve (49,b,43,a) ].
160 −B(x,y) | −C(x,z) | y = z | A(y,z) | B(y,z). [ resolve (49,b,20,d) ].
162 −B(c15,x) | −C(x,c14). [ resolve (49,c ,43,a) ].
165 −B(x,y) | −C(y,z) | x = z | A(x,z) | B(x,z). [ resolve (49,c ,20,d) ].
166 −B(c15,c13). [ur(49,b,44,a,c ,43,a) ].
171 −C(x,y) | −C(z,y) | z = x | A(z,x) | B(z,x). [ resolve (50,a,20,d) ].
194 −A(c8,x) | −A(x,c9). [ resolve (81,a,33,c) ].
195 −C(c8,c9). [ur(23,a,81,a) ].
196 −A(c8,x) | −A(x,c7). [ resolve (88,a,33,c) ].
197 −C(c8,c7). [ur(23,a,88,a) ].
208 −A(c14,c13). [ur(37,a,43,a,c,122,a) ].
210 −B(c14,x) | −C(x,c15). [ resolve (127,a,49,c) ].
211 −B(x,c14) | −C(x,c15). [ resolve (127,a,49,b) ].
214 −B(c14,x) | −C(x,c13). [ resolve (132,a,49,c) ].
215 −B(x,c14) | −C(x,c13). [ resolve (132,a,49,b) ].
216 −B(c14,c13). [ resolve (132,a,25,b) ].
226 −A(x,c7) | c8 = x | A(x,c8) | B(x,c8). [ resolve (94,a,88,a), flip (b) ].
231 −A(x,c8) | c7 = x | A(x,c7) | B(x,c7). [ resolve (94,a,36,a), flip (b) ].
236 −A(x,c7) | c8 = x | A(c8,x) | B(c8,x). [ resolve (94,b,88,a) ].
237 −A(x,c9) | c8 = x | A(c8,x) | B(c8,x). [ resolve (94,b,81,a) ].
241 −A(x,c8) | c7 = x | A(c7,x) | B(c7,x). [ resolve (94,b,36,a) ].
242 −A(x,c8) | c9 = x | A(c9,x) | B(c9,x). [ resolve (94,b,35,a) ].
248 −B(x,c7) | c9 = x | A(x,c9) | B(x,c9). [ resolve (154,a,74,a), flip (b) ].
254 −B(x,c9) | c7 = x | A(x,c7) | B(x,c7). [ resolve (154,a,34,a), flip (b) ].
266 −B(x,c9) | c7 = x | A(c7,x) | B(c7,x). [ resolve (154,b,34,a) ].
268 −B(c14,x) | c13 = x | A(x,c13) | B(x,c13). [ resolve (160,b,132,a), flip (b) ].
269 −B(c14,x) | c15 = x | A(x,c15) | B(x,c15). [ resolve (160,b,127,a), flip (b) ].
271 −B(x,y) | y = z | A(y,z) | B(y,z) | z = x | A(z,x) | B(z,x). [ resolve (160,b,70,a) ].
274 −B(c15,x) | c14 = x | A(x,c14) | B(x,c14). [ resolve (160,b,43,a), flip (b) ].
279 −B(x,c14) | c15 = x | A(x,c15) | B(x,c15). [ resolve (165,b,127,a), flip (b) ].
288 −C(x,c15) | c14 = x | A(x,c14) | B(x,c14). [ resolve (171,a,127,a), flip (b) ].
292 −C(x,c14) | c13 = x | A(x,c13) | B(x,c13). [ resolve (171,a,44,a), flip (b) ].
298 −C(x,c15) | c14 = x | A(c14,x) | B(c14,x). [ resolve (171,b,127,a) ].
310 c14 = x | A(x,c14) | B(x,c14) | c15 = x | A(x,c15) | B(x,c15). [ resolve (288,a,20,d), flip (d) ].
315 −B(x,c13) | c14 = x | A(c14,x) | B(c14,x). [ resolve (156,b,70,a) ].
316 −B(x,c15) | c14 = x | A(c14,x) | B(c14,x). [ resolve (157,b,70,a) ].
319 c13 = x | A(x,c13) | B(x,c13) | c14 = x | A(c14,x) | B(c14,x). [ resolve (292,a,70,a) ].
324 −B(c15,x) | c14 = x | A(c14,x) | B(c14,x). [ resolve (162,b,70,a) ].
330 c14 = x | A(c14,x) | B(c14,x) | c15 = x | A(c15,x) | B(c15,x). [ resolve (298,a,70,a) ].
351 −B(c14,x) | c15 = x | A(c15,x) | B(c15,x). [ resolve (210,b,70,a) ].
352 −B(x,c14) | c15 = x | A(c15,x) | B(c15,x). [ resolve (211,b,70,a) ].
353 −B(c14,x) | c13 = x | A(c13,x) | B(c13,x). [ resolve (214,b,70,a) ].
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354 −B(x,c14) | c13 = x | A(c13,x) | B(c13,x). [ resolve (215,b,70,a) ].
360 c7 = x | A(c7,x) | B(c7,x) | c9 = x | A(x,c9) | B(x,c9). [ resolve (271,a,74,a), flip (d) ].
526 c14 = x | A(x,c14) | B(x,c14) | c15 = x | B(x,c15) | A(c15,x). [ resolve (310,e ,30,a) ].
737 c13 = c8 | A(c8,c13) | B(c8,c13) | c14 = c8 | B(c14,c8) | c14 = c7 | A(c14,c7) | B(c14,c7).

[ resolve (319,e,231,a), flip (f) ].
751 c13 = c8 | A(c8,c13) | B(c8,c13) | c14 = c8 | B(c14,c8) | −A(c14,c7). [ resolve (319,e ,86,b) ].
1018 c14 = x | A(c14,x) | B(c14,x) | c15 = x | B(c15,x) | A(x,c15). [ resolve (330,e ,30,a) ].
1388 c7 = x | A(c7,x) | B(c7,x) | c9 = x | B(x,c9) | c8 = x | A(c8,x) | B(c8,x). [ resolve (360,e,237,a) ].
1392 c7 = x | A(c7,x) | B(c7,x) | c9 = x | B(x,c9) | −A(c8,x). [ resolve (360,e,194,b) ].
2710 c14 = x | B(x,c14) | c15 = x | B(x,c15) | A(c15,x) | A(c14,x). [ resolve (526,b,30,a) ].
6907 c14 = x | B(c14,x) | c15 = x | B(c15,x) | A(x,c15) | A(x,c14). [ resolve(1018,b,30,a) ].
12555 c13 = c8 | A(c8,c13) | B(c8,c13) | c14 = c8 | B(c14,c8) | c14 = c7 | B(c14,c7).

[ resolve (737,g,751, f) ,merge(h),merge(i),merge(j),merge(k),merge(l)].
15752 c14 = x | B(x,c14) | c15 = x | B(x,c15) | A(c14,x) | A(x,c15). [ resolve(2710,e ,30,a) ].
19024 c14 = x | B(c14,x) | c15 = x | B(c15,x) | A(x,c14) | −B(c15,y) | −B(x,y). [ resolve(6907,e ,38,a) ].
19027 c14 = x | B(c14,x) | c15 = x | B(c15,x) | A(x,c14) | −A(c15,y) | −A(x,y). [ resolve(6907,e ,33,a) ].
21660 c14 = x | B(x,c14) | c15 = x | B(x,c15) | A(c14,x) | −A(x,y) | −A(y,c15). [ resolve(15752,f ,33, c) ].
21809 c7 = x | A(c7,x) | B(c7,x) | c9 = x | B(x,c9) | c8 = x | B(c8,x).

[ resolve(1388,g,1392, f) ,merge(h),merge(i),merge(j),merge(k),merge(l)].
25450 c13 = c8 | B(c8,c13) | c14 = c8 | B(c14,c8) | c14 = c7 | B(c14,c7) | A(c13,c8). [ resolve(12555,b,30,a) ].
28494 c7 = x | B(c7,x) | c9 = x | B(x,c9) | c8 = x | B(c8,x) | A(x,c7). [ resolve(21809,b,30,a) ].
32464 c7 = x | B(c7,x) | c9 = x | B(x,c9) | c8 = x | B(c8,x) | A(c8,x).

[ resolve(28494,g,236,a),merge(g),merge(i)].
32466 c7 = x | B(c7,x) | c9 = x | B(x,c9) | c8 = x | B(c8,x) | −A(c8,x). [ resolve(28494,g,196,b) ].
34678 c7 = x | B(c7,x) | c9 = x | B(x,c9) | c8 = x | B(c8,x).

[ resolve(32466,g,32464,g),merge(g),merge(h),merge(i),merge(j),merge(k),merge(l)].
34766 c7 = x | B(c7,x) | c9 = x | c8 = x | B(c8,x) | A(c7,x). [ resolve(34678,d,266,a),merge(f),merge(h)].
34812 c7 = x | B(c7,x) | c9 = x | B(x,c9) | c8 = x | B(x,c8). [ resolve(34678,f ,31,a) ].
34911 c7 = x | B(c7,x) | c9 = x | c8 = x | B(c8,x) | A(x,c7). [ resolve(34766,f ,30,a) ].
34968 c7 = x | c9 = x | B(x,c9) | c8 = x | B(x,c8) | B(x,c7). [ resolve(34812,b,31,a) ].
35062 c7 = x | B(c7,x) | c9 = x | c8 = x | B(c8,x) | A(c8,x). [ resolve(34911,f ,236,a),merge(f),merge(h)].
35064 c7 = x | B(c7,x) | c9 = x | c8 = x | B(c8,x) | −A(c8,x). [ resolve(34911,f ,196,b) ].
35115 c7 = x | c9 = x | c8 = x | B(x,c8) | B(x,c7) | A(x,c7). [ resolve(34968,c,254,a),merge(f),merge(h)].
35290 c7 = x | B(c7,x) | c9 = x | c8 = x | B(c8,x) | A(x,c8). [ resolve(35062,f ,30,a) ].
35291 c7 = x | B(c7,x) | c9 = x | c8 = x | B(c8,x).

[ resolve(35064,f ,35062, f) ,merge(f),merge(g),merge(h),merge(i),merge(j)].
35292 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c13 = c8 | A(c13,c8) | B(c13,c8).

[ resolve(35291,e,354,a), flip (a), flip (c) , flip (d) ].
35293 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c15 = c8 | A(c15,c8) | B(c15,c8).

[ resolve(35291,e,352,a), flip (a), flip (c) , flip (d) ].
35306 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c15 = c8 | A(c8,c15) | B(c8,c15).

[ resolve(35291,e,279,a), flip (a), flip (c) , flip (d) ].
35330 c7 = x | B(c7,x) | c9 = x | c8 = x | B(x,c8). [ resolve(35291,e ,31,a) ].
35332 c14 = c7 | c14 = c9 | c14 = c8 | B(c14,c8) | c15 = c7 | A(c15,c7) | B(c15,c7).

[ resolve(35330,b,352,a), flip (a), flip (b), flip (c) ].
35338 c13 = c7 | c13 = c9 | c13 = c8 | B(c13,c8) | c14 = c7 | A(c14,c7) | B(c14,c7).

[ resolve(35330,b,315,a), flip (a), flip (b), flip (c) ].
35369 c7 = x | c9 = x | c8 = x | B(x,c8) | B(x,c7). [ resolve(35330,b,31,a) ].
35375 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | −B(c13,c8). [ resolve(35330,e,150,a), flip (a), flip (c) , flip (d) ].
35404 c7 = x | c9 = x | c8 = x | B(x,c7) | B(c8,x). [ resolve(35369,d,31,a) ].
35573 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c7 | A(c13,c7) | B(c13,c7).

[ resolve(35404,d,353,a), flip (a), flip (b), flip (c) ].
35574 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c15 = c7 | A(c15,c7) | B(c15,c7).

[ resolve(35404,d,351,a), flip (a), flip (b), flip (c) ].
35590 c7 = x | c9 = x | c8 = x | B(c8,x) | A(x,c9) | B(x,c9). [ resolve(35404,d,248,a),merge(e)].
35596 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | −B(c13,c7). [ resolve(35404,d,150,a), flip (a), flip (b), flip (c) ].
35856 c7 = x | c9 = x | c8 = x | B(c8,x) | B(x,c9) | A(c8,x). [ resolve(35590,e,237,a),merge(f),merge(h)].
35860 c7 = x | c9 = x | c8 = x | B(c8,x) | B(x,c9) | −A(c8,x). [ resolve(35590,e,194,b) ].
35943 c7 = x | c9 = x | c8 = x | B(c8,x) | B(x,c9) | −A(x,y) | −A(c8,y). [ resolve(35856,f ,33,a) ].
35945 c7 = x | c9 = x | c8 = x | B(c8,x) | B(x,c9).
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[ resolve(35860,f ,35856, f) ,merge(f),merge(g),merge(h),merge(i),merge(j)].
35984 c7 = x | c9 = x | c8 = x | B(x,c9) | −B(c7,x). [ resolve(35945,d,96,a) ].
36008 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c9 | A(c13,c9) | B(c13,c9).

[ resolve(35945,e,353,a), flip (a), flip (b), flip (c) ].
36009 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c15 = c9 | A(c15,c9) | B(c15,c9).

[ resolve(35945,e,351,a), flip (a), flip (b), flip (c) ].
36022 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c15 = c9 | A(c9,c15) | B(c9,c15).

[ resolve(35945,e,269,a), flip (a), flip (b), flip (c) ].
36029 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | −B(c13,c9). [ resolve(35945,e,150,a), flip (a), flip (b), flip (c) ].
36631 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c13 = c8 | B(c13,c8) | −A(c8,c15).

[ resolve(35292,f ,21660, f) ,unit_del(g,133),unit_del(h,134),unit_del(i,124) ,unit_del(j,123) ,unit_del(k,208)].
36643 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c15 = c8 | B(c15,c8) | −A(c14,c8). [ resolve(35293,f ,126,b) ].
36955 c14 = c7 | c14 = c9 | c14 = c8 | B(c14,c8) | c15 = c7 | B(c15,c7) | −A(c14,c7). [ resolve(35332,f ,126,b) ].
36998 c13 = c7 | c13 = c9 | c13 = c8 | B(c13,c8) | c14 = c7 | B(c14,c7) | −A(c13,c7). [ resolve(35338,f ,131,a) ].
37331 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c7 | B(c13,c7) | −A(c15,c7).

[ resolve(35573,f ,19027,g),unit_del(g,133),unit_del(h,216),unit_del(i,124) ,unit_del(j,166) ,unit_del(k,135)].
37962 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c9 | B(c13,c9) | −A(c9,c15).

[ resolve(36008,f ,21660, f) ,unit_del(g,133),unit_del(h,134),unit_del(i,124) ,unit_del(j,123) ,unit_del(k,208)].
37974 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c15 = c9 | B(c15,c9) | −A(c14,c9). [ resolve(36009,f ,126,b) ].
38710 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c13 = c8 | B(c13,c8) | c15 = c8 | B(c8,c15).

[ resolve(36631,g,35306,f) ,merge(g),merge(h),merge(i),merge(j)].
38716 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c15 = c8 | B(c15,c8) | B(c8,c14).

[ resolve(36643,g,35290,f) , flip (g), flip ( i ) , flip (j) ,merge(g),merge(h),merge(i),merge(j)].
38819 c14 = c7 | c14 = c9 | c14 = c8 | B(c14,c8) | c15 = c7 | B(c15,c7) | B(c14,c7).

[ resolve(36955,g,35115,f) , flip (g), flip (h), flip ( i ) ,merge(g),merge(h),merge(i),merge(j)].
38837 c13 = c7 | c13 = c9 | c13 = c8 | B(c13,c8) | c14 = c7 | B(c14,c7) | B(c13,c7).

[ resolve(36998,g,35115,f) , flip (g), flip (h), flip ( i ) ,merge(g),merge(h),merge(i),merge(j)].
38961 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c7 | B(c13,c7) | c15 = c7 | B(c15,c7).

[ resolve(37331,g,35574,f) ,merge(g),merge(h),merge(i),merge(j)].
39267 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c9 | B(c13,c9) | c15 = c9 | B(c9,c15).

[ resolve(37962,g,36022,f) ,merge(g),merge(h),merge(i),merge(j)].
39275 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c15 = c9 | B(c15,c9) | B(c14,c9).

[ resolve(37974,g,35590,e) , flip (g), flip (h), flip ( i ) ,merge(g),merge(h),merge(i),merge(j)].
39709 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c15 = c8 | B(c8,c14) | A(c8,c14).

[ resolve(38716,f ,274,a),merge(g),merge(i)].
39724 c14 = c7 | c14 = c9 | c14 = c8 | B(c14,c8) | c15 = c7 | B(c14,c7) | A(c14,c7).

[ resolve(38819,f ,324,a),merge(g),merge(i)].
39732 c13 = c7 | c13 = c9 | c13 = c8 | B(c13,c8) | c14 = c7 | B(c13,c7) | A(c13,c7).

[ resolve(38837,f ,353,a),merge(g),merge(i)].
39874 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c15 = c9 | B(c14,c9) | A(c14,c9).

[ resolve(39275,f ,324,a),merge(g),merge(i)].
39936 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c15 = c8 | B(c8,c14).

[ resolve(39709,g,35064,f) , flip (g), flip ( i ) , flip (j) ,merge(g),merge(h),merge(i),merge(j),merge(k)].
39937 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c15 = c8 | B(c14,c8). [ resolve(39936,f ,31,a) ].
39960 c14 = c7 | c14 = c9 | c14 = c8 | B(c14,c8) | c15 = c7 | B(c14,c7) | A(c14,c8).

[ resolve(39724,g,226,a), flip (g),merge(g),merge(i)].
39998 c13 = c7 | c13 = c9 | c13 = c8 | B(c13,c8) | c14 = c7 | B(c13,c7) | A(c13,c8).

[ resolve(39732,g,226,a), flip (g),merge(g),merge(i)].
40161 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c15 = c9 | B(c14,c9).

[ resolve(39874,g,35943,f) , flip (g), flip (h), flip ( i ) ,merge(g),merge(h),
merge(i),merge(j),merge(k),unit_del(g,81)].

40291 c14 = c7 | c14 = c9 | c14 = c8 | B(c14,c8) | c15 = c7 | B(c14,c7) | −A(c14,c7). [ resolve(39960,g,86,b) ].
40327 c13 = c7 | c13 = c9 | c13 = c8 | B(c13,c8) | c14 = c7 | B(c13,c7) | −A(c13,c7). [ resolve(39998,g,86,b) ].
40590 c14 = c7 | c14 = c9 | c14 = c8 | B(c14,c8) | c15 = c7 | B(c14,c7).

[ resolve(40291,g,39724,g),merge(g),merge(h),merge(i),merge(j),merge(k),merge(l)].
40591 c14 = c7 | c14 = c9 | c14 = c8 | c15 = c7 | B(c14,c7) | B(c8,c14). [ resolve(40590,d,31,a) ].
40609 c13 = c7 | c13 = c9 | c13 = c8 | B(c13,c8) | c14 = c7 | B(c13,c7).

[ resolve(40327,g,39732,g),merge(g),merge(h),merge(i),merge(j),merge(k),merge(l)].
51904 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c13 = c8 | c15 = c8 | B(c8,c15).

[ resolve(38710,f ,35375,e) ,merge(h),merge(i),merge(j),merge(k)].
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51906 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c13 = c8 | c15 = c8 | B(c15,c8). [ resolve(51904,g,31,a) ].
51908 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c13 = c8 | c15 = c8 | −B(c14,c8). [ resolve(51906,g,151,b) ].
51912 c14 = c7 | B(c7,c14) | c14 = c9 | c14 = c8 | c13 = c8 | c15 = c8.

[ resolve(51908,g,39937,f) ,merge(g),merge(h),merge(i),merge(j),merge(k)].
51913 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c8 | c15 = c8 | B(c14,c9).

[ resolve(51912,b,35984,e) , flip (f) , flip (g), flip (h),merge(f),merge(g),merge(h)].
51926 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c8 | c15 = c8 | B(c9,c14). [ resolve(51913,f ,31,a) ].
51930 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c8 | c15 = c8 | −B(c8,c14). [ resolve(51926,f ,97,b) ].
51944 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c7 | B(c13,c7) | c15 = c7 | −B(c14,c7).

[ resolve(38961,h,151,b) ].
52022 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c9 | c15 = c9 | B(c9,c15).

[ resolve(39267,f ,36029,e) ,merge(h),merge(i),merge(j),merge(k)].
52024 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c9 | c15 = c9 | B(c15,c9). [ resolve(52022,g,31,a) ].
52028 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c9 | c15 = c9 | −B(c14,c9). [ resolve(52024,g,151,b) ].
52031 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c9 | c15 = c9.

[ resolve(52028,g,40161,f) ,merge(g),merge(h),merge(i),merge(j),merge(k)].
52032 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c9 | c15 = c9 | c13 = c8 | c15 = c8.

[ resolve(52031,d,51930,f) ,merge(f),merge(g),merge(h)].
52051 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c9 | c13 = c8 | c15 = c8 | −B(c9,c14). [para(52032(e,1),129(a,1)) ].
52082 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c9 | c13 = c8 | c15 = c8.

[ resolve(52051,g,51926,f) ,merge(g),merge(h),merge(i),merge(j),merge(k)].
52089 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c9 | c13 = c8 | −B(c8,c14). [para(52082(f,1),129(a,1)) ].
52147 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c9 | c13 = c8 | c15 = c9.

[ resolve(52089,f ,52031,d),merge(f),merge(g),merge(h),merge(i)].
52186 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c9 | c13 = c8.

[para(52147(f,1),52082(f ,1) ) ,merge(f),merge(g),merge(h),merge(i),merge(j),unit_del(f,83) ].
52204 c14 = c7 | c14 = c8 | c13 = c9 | c13 = c8 | −A(c9,x) | −A(c13,x). [para(52186(b,1),131(a,1)) ].
52296 c14 = c7 | c14 = c8 | c13 = c9 | c13 = c8 | B(c8,c13) | B(c14,c8) | B(c14,c7).

[ resolve(52204,f ,25450,g),merge(f),merge(h),merge(j),unit_del(e,35) ].
52312 c14 = c7 | c14 = c8 | c13 = c9 | c13 = c8 | B(c8,c13) | B(c14,c7).

[para(52186(b,1),52296(f,1)) ,merge(e),merge(f),merge(g),merge(h),unit_del(f,82)].
52316 c14 = c7 | c14 = c8 | c13 = c9 | c13 = c8 | B(c8,c13) | B(c7,c14). [ resolve(52312,f ,31,a) ].
52317 c14 = c7 | c14 = c8 | c13 = c9 | c13 = c8 | B(c7,c14) | A(c14,c8) | B(c14,c8).

[ resolve(52316,e,315,a),merge(f) ].
52347 c14 = c7 | c14 = c8 | c13 = c9 | c13 = c8 | B(c7,c14) | B(c14,c8) | A(c7,c14).

[ resolve(52317,f ,241,a), flip (g),merge(g),merge(i)].
52381 c14 = c7 | c14 = c8 | c13 = c9 | c13 = c8 | B(c7,c14) | B(c14,c8).

[para(52186(b,1),52347(g,2)),merge(e),merge(f),merge(g),merge(h),unit_del(g,77)].
52386 c14 = c7 | c14 = c8 | c13 = c9 | c13 = c8 | B(c7,c14).

[para(52186(b,1),52381(f,1)) ,merge(e),merge(f),merge(g),merge(h),unit_del(f,82)].
52393 c14 = c7 | c14 = c8 | c13 = c9 | c13 = c8 | B(c14,c7). [ resolve(52386,e ,31,a) ].
60173 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c7 | B(c13,c7) | c15 = c7.

[ resolve(51944,h,40591,e) ,merge(h),merge(i),merge(j),merge(k),merge(l)].
60179 c14 = c7 | c14 = c9 | c14 = c8 | B(c8,c14) | c13 = c7 | c15 = c7.

[ resolve(60173,f ,35596,e) ,merge(g),merge(h),merge(i),merge(j)].
60180 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c7 | c15 = c7 | c13 = c8 | c15 = c8.

[ resolve(60179,d,51930,f) ,merge(f),merge(g),merge(h)].
60198 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c7 | c15 = c7 | c13 = c8 | −B(c8,c14). [para(60180(g,1),129(a,1)) ].
60239 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c7 | c15 = c7 | c13 = c8.

[ resolve(60198,g,60179,d),merge(g),merge(h),merge(i),merge(j),merge(k)].
60248 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c7 | c13 = c8 | −B(c7,c14). [para(60239(e,1),129(a,1)) ].
60338 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c7 | c13 = c8 | c15 = c8.

[ resolve(60248,f ,51912,b),merge(f),merge(g),merge(h),merge(i)].
60381 c14 = c7 | c14 = c9 | c14 = c8 | c13 = c7 | c13 = c8.

[para(60338(f,1),60239(e,1)) ,merge(f),merge(g),merge(h),merge(i),merge(k),unit_del(f,90)].
60382 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | C(c15,c9). [para(60381(b,1),43(a,2)) ].
60393 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | −B(c9,x) | c13 = x | A(x,c13) | B(x,c13).

[para(60381(b,1),268(a,1)) ].
60400 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | −A(c9,x) | −A(c13,x). [para(60381(b,1),131(a,1)) ].
60422 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | −B(c9,x) | c13 = x | A(c13,x) | B(c13,x).
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[para(60381(b,1),353(a,1)) ].
60480 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | A(c7,c13) | B(c7,c13). [ factor(60393,c, f) ,unit_del(e,74) ].
60481 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | A(c13,c7) | B(c13,c7). [ factor(60422,c, f) ,unit_del(e,74) ].
60494 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | −B(c9,x) | −B(c15,x). [ resolve(60382,e ,48,a) ].
60525 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c8,c13) | B(c14,c8) | B(c14,c7).

[ resolve(60400,f ,25450,g),merge(f),merge(h),merge(j),unit_del(e,35) ].
60549 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c7,c13) | A(c13,c7). [ resolve(60480,e ,30,a) ].
60552 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c13,c7) | A(c8,c13) | B(c8,c13).

[ resolve(60481,e,236,a), flip (f) ,merge(f) ].
60554 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c13,c7) | −A(c8,c13). [ resolve(60481,e,196,b) ].
60576 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c7,c13) | −A(c13,x) | −A(x,c7). [ resolve(60549,f ,33, c) ].
60604 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c8,c13) | B(c14,c7).

[para(60381(b,1),60525(f,1)) ,merge(e),merge(f),merge(g),merge(h),unit_del(f,82)].
60609 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c8,c13) | −B(c13,c7). [ resolve(60604,f ,150,a) ].
60622 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c13,c7) | B(c8,c13).

[ resolve(60552,f ,60554, f) ,merge(g),merge(h),merge(i),merge(j),merge(k)].
60624 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c8,c13).

[ resolve(60622,e,60609, f) ,merge(f),merge(g),merge(h),merge(i),merge(j)].
60625 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | A(c14,c8) | B(c14,c8). [ resolve(60624,e,315,a),merge(e)].
60629 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | −B(c7,c13). [ resolve(60624,e ,96,a) ].
60643 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c14,c8) | A(c7,c14) | B(c7,c14).

[ resolve(60625,e,241,a), flip (f) ,merge(f) ].
60649 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c14,c8) | −A(c7,c14). [ resolve(60625,e ,85,b) ].
60678 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c14,c8) | B(c7,c14).

[ resolve(60643,f ,60649, f) ,merge(g),merge(h),merge(i),merge(j),merge(k)].
60685 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | B(c7,c14).

[para(60381(b,1),60678(e,1)) ,merge(e),merge(f),merge(g),merge(h),unit_del(e,82)].
60686 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | c15 = c7 | A(c15,c7) | B(c15,c7). [ resolve(60685,e,352,a) ].
60694 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | c15 = c7 | B(c15,c7) | B(c7,c13).

[ resolve(60686,f ,60576,g),merge(g),merge(h),merge(i),merge(j),unit_del(h,42)].
60717 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | c15 = c7 | B(c7,c13).

[ resolve(60694,f ,60494, f) ,merge(g),merge(h),merge(i),merge(j),unit_del(g,74)].
60718 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8 | c15 = c7.

[ resolve(60717,f ,60629,e) ,merge(f),merge(g),merge(h),merge(i)].
60751 c14 = c7 | c14 = c8 | c13 = c7 | c13 = c8.

[para(60718(e,1),60382(e,1)) ,merge(e),merge(f),merge(g),merge(h),unit_del(e,76)].
60752 c14 = c7 | c13 = c7 | c13 = c8 | C(c15,c8). [para(60751(b,1),43(a,2)) ].
60753 c14 = c7 | c13 = c7 | c13 = c8 | C(c13,c8). [para(60751(b,1),44(a,2)) ].
60756 c14 = c7 | c13 = c7 | c13 = c8 | c15 != c8. [para(60751(b,1),128(a,2)) ].
60757 c14 = c7 | c13 = c7 | c13 = c8 | −B(c15,c8). [para(60751(b,1),129(a,2)) ].
60759 c14 = c7 | c13 = c7 | c13 = c8 | −B(c13,c8). [para(60751(b,1),134(a,2)) ].
61279 c14 = c7 | c13 = c7 | c13 = c8 | c15 = c7 | c15 = c9 | c15 = c8 | B(c15,c7).

[ resolve(60757,d,35369,d), flip (d), flip (e) , flip (f) ].
61283 c14 = c7 | c13 = c7 | c13 = c8 | c13 = c9 | B(c13,c7).

[ resolve(60759,d,40609,d),merge(d),merge(f),merge(g)].
61290 c14 = c7 | c13 = c7 | c13 = c8 | c13 = c9 | −B(c15,c7).

[ resolve(61283,e,19024,g),unit_del(e,133),unit_del(f,216) ,unit_del(g,124),unit_del(h,166),unit_del(i,135) ].
61325 c14 = c7 | c13 = c7 | c13 = c8 | c15 = c7 | c15 = c9 | c15 = c8 | c13 = c9.

[ resolve(61279,g,61290,e) ,merge(g),merge(h),merge(i)].
61372 c14 = c7 | c13 = c7 | c13 = c8 | c15 = c7 | c15 = c8 | c13 = c9.

[para(61325(e,1),60752(d,1)) ,merge(g),merge(h),merge(i),unit_del(g,84)].
61373 c14 = c7 | c13 = c7 | c13 = c8 | c15 = c7 | c13 = c9.

[ resolve(61372,e,60756,d),merge(f),merge(g),merge(h)].
61411 c14 = c7 | c13 = c7 | c13 = c8 | c13 = c9.

[para(61373(d,1),60752(d,1)),merge(e),merge(f),merge(g),unit_del(e,92)].
61412 c13 = c7 | c13 = c8 | c13 = c9 | C(c15,c7). [para(61411(a,1),43(a,2)) ].
61423 c13 = c7 | c13 = c8 | c13 = c9 | −B(c7,x) | c15 = x | A(x,c15) | B(x,c15). [para(61411(a,1),269(a,1)) ].
61430 c13 = c7 | c13 = c8 | c13 = c9 | −B(c7,x) | −B(c13,x). [para(61411(a,1),150(a,1)) ].
61451 c13 = c7 | c13 = c8 | c13 = c9 | −B(c7,x) | c13 = x | A(c13,x) | B(c13,x). [para(61411(a,1),353(a,1)) ].
61489 c13 = c7 | c13 = c8 | c13 = c9 | A(c13,c9) | B(c13,c9). [ factor(61451,c,e) ,unit_del(d,34)].
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61502 c13 = c7 | c13 = c8 | c13 = c9 | −B(c7,x) | −B(c15,x). [ resolve(61412,d,48,a) ].
61598 c13 = c7 | c13 = c8 | c13 = c9 | B(c13,c9) | A(c9,c13). [ resolve(61489,d,30,a) ].
61614 c13 = c7 | c13 = c8 | c13 = c9 | B(c13,c9) | −A(c9,x) | −A(x,c13). [ resolve(61598,e ,33,c) ].
61641 c13 = c7 | c13 = c8 | c13 = c9 | c15 = c9 | A(c9,c15) | B(c9,c15). [ resolve(61423,d,34,a) ].
61642 c13 = c7 | c13 = c8 | c13 = c9 | c15 = c9 | B(c9,c15) | B(c13,c9).

[ resolve(61641,e,61614,e) ,merge(f),merge(g),merge(h),unit_del(g,122)].
61653 c13 = c7 | c13 = c8 | c13 = c9 | c15 = c9 | B(c9,c15).

[ resolve(61642,f ,61430,e) ,merge(f),merge(g),merge(h),unit_del(f,34)].
61659 c13 = c7 | c13 = c8 | c13 = c9 | c15 = c9 | B(c15,c9). [ resolve(61653,e ,31,a) ].
61660 c13 = c7 | c13 = c8 | c13 = c9 | c15 = c9.

[ resolve(61659,e,61502,e) ,merge(e),merge(f),merge(g),unit_del(e,34)].
61697 c13 = c7 | c13 = c8 | c13 = c9. [para(61660(d,1),61412(d,1)),merge(d),merge(e),merge(f),unit_del(d,95)].
61699 c13 = c7 | c13 = c8 | C(c9,c14). [para(61697(c,1),44(a,1)) ].
62257 c13 = c7 | c13 = c8 | c14 = c7. [para(61697(c,1),60753(d,1)) ,merge(d),merge(e),unit_del(d,84)].
63013 c13 = c7 | c13 = c8. [para(62257(c,1),61699(c,2)) ,merge(c),merge(d),unit_del(c,95)].
63015 c13 = c7 | C(c8,c14). [para(63013(b,1),44(a,1)) ].
63016 c13 = c7 | A(c15,c8). [para(63013(b,1),122(a,2)) ].
63023 c13 = c7 | c14 != c8. [para(63013(b,1),133(a,2)) ].
63024 c13 = c7 | −B(c8,c14). [para(63013(b,1),134(a,1)) ].
64794 c13 = c7 | −A(c14,x) | −A(c8,x). [ resolve(63015,b,37,a) ].
64955 c13 = c7 | c15 = c9 | A(c9,c15) | B(c9,c15). [ resolve(63016,b,242,a), flip (b) ].
64959 c13 = c7 | −A(c9,c15). [ resolve(63016,b,78,b) ].
64968 c13 = c7 | c14 = c7 | c14 = c9 | c14 = c8 | c15 = c7. [ resolve(63024,b,60179,d),merge(e)].
65086 c13 = c7 | c15 = c9 | B(c9,c15). [ resolve(64955,c,64959,b),merge(d)].
65208 c13 = c7 | c15 = c9 | c14 = c9 | A(c14,c9) | B(c14,c9). [ resolve(65086,c,316,a) ].
65215 c13 = c7 | c15 = c9 | B(c15,c9). [ resolve(65086,c ,31,a) ].
65339 c13 = c7 | c15 = c9 | −B(c14,c9). [ resolve(65215,c,151,b) ].
65685 c13 = c7 | c15 = c9 | c14 = c9 | B(c14,c9). [ resolve(65208,d,64794,b),merge(e),unit_del(e,81) ].
65686 c13 = c7 | c15 = c9 | c14 = c9. [ resolve(65685,d,65339,c) ,merge(d),merge(e)].
66139 c13 = c7 | c14 = c9 | c14 = c7 | c14 = c8. [para(65686(b,1),64968(e,1)) ,merge(c),merge(e),unit_del(e,75)].
66545 c13 = c7 | c14 = c7 | c14 = c8. [para(66139(b,1),63015(b,2)),merge(d),unit_del(d,195)].
66546 c13 = c7 | c14 = c7. [ resolve(66545,c,63023,b),merge(c)].
67556 c13 = c7. [para(66546(b,1),63015(b,2)),merge(b),unit_del(b,197)].
69312 c14 = c7 | c14 = c8 | B(c14,c7).

[back_rewrite(52393),rewrite([67556(7),67556(10)]), flip (c) , flip (d),unit_del(c,75),unit_del(d,90)].
74868 −B(c14,c7). [back_rewrite(216),rewrite([67556(2)]) ].
74884 c14 != c7. [back_rewrite(133),rewrite([67556(2)]) ].
74895 C(c7,c14). [back_rewrite(44),rewrite([67556(1)]) ].
74902 c14 = c8. [back_unit_del(69312),unit_del(a,74884),unit_del(c,74868)].
74915 $F. [back_rewrite(74895),rewrite([74902(2)]),unit_del(a,92) ].

=================== end of proof ===================

C.5 Python code for generating reduct signatures

Generates the signatures that are reducts of the signature of Tarski’s relation algebras
along with domain and range operators. 487 unique signatures are generated, 239 of
which include composition. Without domain and range operators there are 200 unique
signatures, 100 of which include composition.

The full signature used here is the Tarski signature (see Definition 1.1.3) along with
the partial order 6 and domain and range operators D and R. Thus, the full signature
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considered is
(;,+, ·,6, ,̆−, 1′, 0, 1,D,R)

In particular, the order in which these operations are displayed in each signature is
maintained through the sigSort method.

A signature may be capable of expressing operations not explicitly listed. For example,
any signature containing a lattice operation ∨ or ∧ is equipped with a partial order
inherited from that operation. In order to avoid redundancy in the full list, each
signature is “completed” according to the rules expressed in Table 1.14. This task is
accomplished by the complete method.

import itertools

# The full signature under consideration. Includes composition, lattice

# operations, a partial order, negation, converse, constants, and domain

# and range operators.

fullsig = [ "comp", "join", "meet", "le", "con", "-", "id", "0", "top",

"dom", "ran" ]

# Defines a canonical order on the operations of the signature for aesthetic

# reasons.

# (cdot, lor, land, le, -, con, id, 0, top, dom, ran)

sigKey = {"comp" : 0, "join" : 1, "meet" : 2, "le": 3, "con" : 4, "-" : 5,

"id" : 6, "0" : 7, "top" : 8, "dom" : 9, "ran" : 10 }

# Return all nonempty subsets of a set S.

def findSubLists(S):

allSubLists = []

for i in range(0,len(S)+1):

subList = list(itertools.combinations(S, i))

subList = [list(j) for j in subList]

allSubLists += subList

return allSubLists

# Returns True if every element of the list A is in the list B.

def isSublist(A, B):

isContained = True

for a in A:

if a not in B:

isContained = False

break

return isContained
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# A sorting key used to order the operations in a signature according to the

# canonical order defined above.

def sigSort(x,y):

if sigKey[x] > sigKey[y]:

return 1

elif sigKey[x] == sigKey[y]:

return 0

else:

return -1

# Create a copy of a signature, given as a list, and define new operations

in

# the signature that can be derived from others. For example, a signature

# capable of expressing join and - is also capable of expressing meet.

def complete(S):

T = list(S)

# Standard operations

if ("join" in S) or ("meet" in S):

T.append("le")

if ("-" in S) and ("join" in S):

T.append("meet")

if ("-" in S) and ("meet" in S):

T.append("join")

if (("0" in S) and ("-" in S)) or (("join" in S) and ("-" in S)):

T.append("top")

if (("top" in S) and ("-" in S)) or (("join" in S) and ("-" in S)):

T.append("0")

# Domain and range

if ("con" in S) and ("ran" in S):

T.append("dom")

if ("con" in S) and ("dom" in S):

T.append("ran")

if (("top" in S) and ("dom" in S)) or (("top" in S) and ("ran" in S)):

T.append("id")

if ("meet" in S) and ("id" in S) and ("con" in S) and ("comp" in S):

T.append("dom")

T.append("ran")

# Remove duplicate operations in the signature, and sort according to the

# canonical order.

T = list(set(T))

T.sort(sigSort)
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# If no operations have been added, then the signature is already

complete,

# so return it. If not, try to complete again.

if T == S:

return T

else:

return complete(T)

# Generate a list of reducts of the full signature that contain at least the

# minimumSignature. For example, one might be interested in all

# reducts equipped with composition ("comp").

def generateSignatures(minimumSignature = []):

signatures = []

# Consider the operations in the full signature that are not in the

minimum

# signature. That is, consider the optional operations.

optionalOperations = [operation for operation in fullsig if operation

not in minimumSignature]

# Consider the union of the minimum required signature with every

possible

# reduct of the signature of optional operations, and complete as above.

# Sort by the canonical order, and then add to the output if not already

# included.

for partialSignature in findSubLists(optionalOperations):

S = minimumSignature + partialSignature

S = complete(S)

S.sort(sigSort)

if S not in signatures:

signatures.append(S)

signatures.sort(key = len)

return signatures
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