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Summary

The Discrete Wavelet Transform (DWT) is widely used in signal processing applications
to analyse non-stationary signals. The DWT is implemented using multirate filter banks
(FB). This thesis presents several novel techniques for designing FB and also considers
its applications. Most wavelet filters in the literature have irrational coefficients thus
complicating the implementation in digital hardware. This thesis first proposes new
design techniques to rationalise the filter coefficients while preserving the vanishing mo-
ments (VM) and other important filter properties. For orthogonal filters the technique
is based on the lattice structure and for biorthogonal filter the technique is based on
the complementary filter technique. Orthogonal FBs are energy preserving while the
biorthogonal FBs offer symmetric wavelets. The next part of the thesis proposes a novel
methodology for orthogonal FB design which gives almost symmetric wavelets. The
designed almost symmetric orthogonal FBs show better performance in image compres-
sion applications. Hilbert-pairs of FBs are important building blocks in the dual-tree
complex wavelet which is very popular in many applications. This thesis proposes novel
techniques to design a new class of Hilbert-pairs which are orthogonal but also almost
symmetric. The new Hilbert pairs have the advantages offered by both orthogonal and
biorthogonal systems. These systems are then applied in proteomics and image process-
ing. The directional wavelet transform is a simple improvement to the traditional DWT
by the addition of a quadrant filter. This thesis studies the aliasing phenomena of these
systems and proposes ways to circumvent the problem.
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1 Introduction

1.1 Motivation
Signal processing is an indispensable tool in a wide range of engineering and scientific ap-
plications [1],[2]. Since the inception of the Fourier transform, the signal processing field
has progressed at a rapid pace and provided a lot of tools for the scientific community.
One of the most significant signal processing tool is the wavelets. Most of the tradi-
tional signal processing tools can only be applied to stationary signal. But most of the
practical signals are non-stationary in nature and the traditional tools like the Fourier
transform does not perform well in analysing those non-stationary signals. Wavelets are
well suited for both stationary and non-stationary signals. Wavelets produces efficient
and sparse representation of the signal. After the wavelet decomposition of the signal,
most of the transformed coefficients are close to zero so that the signal can be easily
compressed. The recent JPEG 2000 image coding standard [3] utilises the Discreate
Wavelet Trasform (DWT) to compress the image. Wavelets are used for medical signal
processing because of its ability to identify a specific information and particular event
in the signal (spike dectection, anamoly detection). One of the reason that wavelets
gained so much popularity is its ability to provide multiresolution analysis. Most of the
practical signals have high frequency at short durations and low frequency components
for long duration. Wavelets can provide a good frequency resolution at low frequencies
and good time resolution at high frequencies. The DWT is implemently efficiently using
the multirate filter banks (FB).

Most of the orthogonal wavelet filters in the literature are designed in the continuum
domain (infinite precision) and they have irrrational filter coefficients. During the hard-
ware implementation, there is always rounding or quantisation of the filter coefficients.
If the fixed point arithmetic is implemented, then the quantisation of filter coefficient
has significant effect on the filter characteristics and its performance. The perfect recon-
struction (PR) property of the filter bank is destroyed. The vanishing moment (VM) of

1
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the wavelet filter is also lost which will lead to DC leakage in the high pass filter. This
motivates us to find new ways of rationalising orthogonal filters without losing the PR,
VMs and degradation in the frequency response. If the rational filter coefficients can be
expressed as sum of powers of two, it will lead to multiplier-less hardware implementa-
tion [4],[5],[6].

The orthogonal filters have the energy preservation property i.e. the energy of the
signal is preserved in the transformed domain. The biorthogonal filters are preferred
in image processing application because of the symmetric wavelets. The symmetric
wavelets are vital for processing the salient features of the images such as edges. The
symmetric wavelets do not produce any distortions while processing those salient im-
age features. The biorthogonal wavelets are not energy preserving unlike orthogonal
wavelets. But the dyadic wavelets cannot be symmetric and orthogonal simultaneously
except for the simple two tap Haar filter [7],[8]. The Haar wavelet is not widely used in
image processing application because it is not smooth. There has been many research
[9],[10],[11] on designing symmetric and almost orthogonal filters but the filter lengths
are too long and resulting filters do not satisfy the perfect reconstruction property. This
motivates to design an almost symmetric orthogonal wavelet filter. The almost sym-
metric orthogonal filters can produce almost symmetric wavelet and at the same time
it satisfies the perfect reconstruction property of the filter bank. If the almost symmet-
ric filter bank is used in image processing application, it has the advantages of being
orthogonal and approximately linear phase. The almost symmetric orthogonal wavelets
have approximately flat group delay and approximately linear phase. The technique
to design an almost symmetric orthogonal wavelet filters should be simple and can be
applied to design longer length filters. This design versatility is addressed in our research.

Designing symmetric wavelets is also important in implementing the Dual Tree Com-
plex Wavelet Transform (DTCWT). The DTCWT employs a pair of two channel PR
filter bank. The wavelet function of the two filter banks ψh(t) and ψg(t) should satisfy
the Hilbert transform relationship [12],[13]. The DTCWT offers near shift invariance
and better directionality compared to the DWT. The symmetry of the Hilbert pair of
wavelets is of prime importance for directional selectivity of the DTCWT. The orthog-
onal FB based on IIR filters can produce symmetric Hilbert pair of wavelets but it
requires complex implementation. Most of the Hilbert pair filter design methodology
[12],[14],[15],[16] focusses on satisfying the Hilbert relationship among wavelets and less
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attention is given to symmetry of the wavelets in the design. If the constituent wavelets
are symmetric, it can be deployed in many image processing applications. This moti-
vates to design an almost symmetric Hilbert pair of wavelets.

Mass Spectroscopy (MS) is a widely used technique in molecular biology (see [17] for
a review) for high throughput identification and sequencing of peptides (and proteins).
The MS data is corrupted by electrical and chemical noise which can be modelled as zero
mean additive white Gaussian noise. The preprocessing of the MS data will greatly im-
prove the performance of post processing of MS data. The commonly used preprocessing
methods are denoising of MS data followed by data normalisation. The post processing
process involves peak picking and peak quantification [18],[19]. There have been many
researches done on denoising MS data using DWT, undecimated DWT and Station-
ary Wavelet Transform (SWT). The DTCWT has emerged as an important redundant
transform that offers near shift invariance. The elution time of peptides varies depend-
ing upon the various conditions such as temperature, interaction between molecules, etc.
So, the MS data of a sample collected differs over the time. The DTCWT will perform
best on this type of data. We also demonstrate the capabilities of the almost symmetric
Hilbert pair of wavelet in a Proteomics application. The designed almost symmetric
Hilbert pair of wavelets is applied to denoise the Mass Spectroscopy data and we will
evaluate the performance of the DTCWT with other transforms.

The finer Directional Wavelet Transform (fiDWT) is proposed by Yu [20] to enhance
the directionality of DWT. Even though there are many other transforms available in
the literature [21],[22],[23] that offer better directionality than DWT, the fiDWT is very
simple to implement. It can be used as an “add-on” if you need better directionality.
The fiDWT uses DWT as the basic building block for implementation and also it deploys
the pair of quadrant filters. We found out that fiDWT is prone to aliasing and it has got
significant performance degradation in image processing applications. This motivates us
to propose a new ways to reduce aliasing in fiDWT and enhance its performance.
In the next section, we state all the problems that this thesis is going to address.

1.2 Problem Statement
This thesis will address the following problems.
Orthogonal FB with rational coefficients: How to obtain rational coefficient
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orthogonal and biorthogonal filters while preserving perfect reconstruction, vanishing
moments and frequency response?
Almost Symmetric Orthogonal FB: How to design an almost symmetric orthog-

onal wavelets that performs on par with 9/7 biorthogonal wavelets?
Almost Symmetric Orthogonal Hilbert pair of wavelets: How to design an

almost symmetric Hilbert pair of wavelets such that both the constituent wavelets and
the complex wavelets are symmetric?
Undecimated finer Directional Wavelet Transform: How to increase the di-

rectionality of the DWT?

1.3 Thesis outline
The main goal of this thesis is to design

• orthogonal and biorthogonal FB having rational coefficients

• almost symmetric orthogonal wavelets

• almost symmetric Hilbert pair of wavelets

In addition to designing new family of filter banks, some novel applications of the de-
signed filter banks are also presented in this thesis to emphasis the effectiveness of the
proposed filter banks.
Chapter 2 introduces the fundamentals of filter banks and also reviews the theory

of designing wavelets. Then the literature review for designing the rational coefficient
orthogonal filter banks is presented. The traditonal way of designing rational coefficient
orthogonal filter bank does not preserve the perfect reconstruction property of the filter
banks. The vanishing moments which are crucial for wavelet generation are also lost
during the rationalisation process. We propose a new technique to rationalise the or-
thogonal filter banks while preserving perfect reconstruction, vanishing moments and
good frequency response. We extend the technique to rationalise the Hilbert pair of
filters and show that the proposed technique also preserves the Hilbert pair relation of
filters after rationalisation process. Up to two vanishing moments can be imposed on the
rational filters. An effecient way to implement the rational orthogonal filters based on
lattice structures is also presented. We then propose a generalised method to rationalise
biorthogonal filters.
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Chapter 3 presents a new techique to design almost symmetric orthogonal filter banks.
The wavelet symmetry is preffered in image processing applications because the edges
in the images are susceptible to non-linear distortions. An almost symmetric orthogonal
filter bank can be designed with the proposed design technique. The almost symmetric
orthogonal filter bank performs on par with the 9/7 biorthogonal filter banks in image
coding application. Some image coding applications of the designed almost symmetric
orthogonal wavelet filters is also presented.
In Chapter 4, we review the theory of designing the Hilbert pair of wavelets and the half

sample delay condition required between filters to form a Hilbert pair. The Hilbert pair of
filters form the backbone of the Dual Tree Complex Wavelet Transform (DTCWT). The
DTCWT offers near shift invariance and higher directionality compared to the DWT.
For better directional selectivity, the symmetry of the Hilbert pair is important. The
orthogonal Hilbert pair of wavelets found in the literature produce symmetric complex
wavelet but the constituent wavelets are not symmetric. A new technique is proposed
in this chapter to design almost symmetric orthogonal Hilbert pair of wavelets. We also
argue that designing a symmetric wavelet will correspond to approximately linear phase
characteristics but not vice versa.
Chapter 5 shows the application of almost symmetric orthogonal Hilbert of wavelets

in Proteomics. The Mass Spectroscopy data is corrupted by additive white Gaussian
noise. We apply the DTCWT on the Mass Spectroscopy data to clean the noise using
the soft thresholding method. After peak picking, more peptides are identified compared
to other transforms such as DWT and SWT.
In Chapter 6, we propose the undecimated finer directional wavelet transform (ufiDWT)

as it reduces the aliasing present in the finer directional wavelet transform (fiDWT). We
also show that aliasing is inherent in the finer directional wavelet transform because of
the characteristics of the quadrant filters. The proposed ufiDWT performs better than
fiDWT in image denoising application. The ufiDWT is redundant but it is free from
aliasing.
Finally we conclude and summarise the key contributions in Chapter 7 and also discuss

about the future work.
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1.4 Contributions and Publications
Most of the main results in this thesis has been published in international journals and
conferences. The publications are listed below

• Selvaraaju Murugesan, David B. H. Tay, “New Techniques for Rationalizing Or-
thogonal and Biorthogonal Wavelet Filter Coefficients”, IEEE Transactions on
Circuits and Systems 59-I(3): 628-637 (2012)

• Selvaraaju Murugesan, David B. H. Tay, “Design of Almost Symmetric Orthogo-
nal Wavelet Filter Bank Via Direct Optimization”, IEEE Transactions on Image
Processing 21(5): 2474-2480 (2012)

• Selvaraaju Murugesan, David B. H. Tay, “On the aliasing effect of the finer direc-
tional wavelet transform”, ISCAS 2012: 2345-2348

• Selvaraaju Murugesan, David B. H. Tay, ”A New Class of Almost Symmetric
Orthogonal Hilbert Pair of Wavelets”, Signal Processing 95(2): 76-87 (2014)
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2 New Techniques for Rationalizing
Orthogonal and Biorthogonal
Wavelet Filter Coefficients

Most wavelet filters reported in the literature have irrational coefficients. Hardware
implementation can be simpler if the filter coefficients are rational valued. In this chap-
ter, we present novel methods to rationalize both orthogonal and biorthogonal filter
coefficients with perfect reconstruction and vanishing moments preservation. Rational
orthogonal filter coefficients are obtained using lattice structures. Rational biorthogonal
filter coefficients are obtained using the complementary filter technique in which one
set of filter coefficients is expressed in terms of the other. The rationalized filters have
characteristics that are very close to the original irrational filters. The techniques are
simple yet general enough to be used for almost any filter bank unlike the techniques in
previously reported works.

2.1 Introduction
The Discrete Wavelet Transform (DWT) has emerged as a powerful signal processing
tool [1],[24] and it is widely used in applications requiring multiresolution signal or
image analysis. Transforms based on orthogonal filter banks have the advantage of
energy preservation but they are not preferred in image processing applications because
of the lack of symmetry in the wavelet function. Linear phase filters and symmetric
wavelet functions are preferred in image processing applications and for the FIR case
this can only be achieved with biorthogonal filter banks. However orthogonal linear
phase filter bank is possible with IIR filters [25],[26] and the IIR filters involve complex
implementation than FIR filters. Wavelet theory stipulates that the low-pass filters
should have zeros at the aliasing frequency so that the corresponding wavelet function
has vanishing moments. Vanishing moments (VM) play an important role in determining
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2.1 Introduction

the regularity (smoothness) of the wavelets. More recently the Dual-Tree-Complex-
Wavelet-Transform of Kingsbury [27],[28] has emerged as an important extension of the
traditional non-redundant DWT. Compared to the traditional non-redundant DWT, the
dual-tree complex wavelet transform has the advantages of being approximately shift-
invariant and providing directional selectivity in multidimensions.
Most of the wavelet filters in the literature are designed in the real-number continuum

domain (infinite precision) and the resulting coefficients usually have irrational values.
There will be some rounding or quantization of these irrational values during hardware
implementation [29],[30],[31]. If floating point arithmetic (with sufficient accuracy) is
used the effect of quantization is negligible. However if fixed point arithmetic is used
quantization can have a significant effect. It is therefore advantageous to have rational
valued coefficient filters which (with proper normalization) can be implemented effi-
ciently without multipliers [32],[33]. Direct independent quantization of the coefficients
will generally result in the loss of perfect reconstruction (PR) and VMs. Polyphase
based structures for filter banks, such as lattice or lifting, have structural PR. Therefore
PR is preserved under quantization of the parameters of the lattice structure. Zeros at
z = −1 of the filters are however generally lost and this results in DC leakage and the
loss of VMs.
This chapter will present new techniques to rationalize both two-channel orthogonal

and biorthogonal filter coefficients. The PR property and some of the VMs are preserved
with the new techniques. Unlike previously reported techniques in the literature (many
of which are ad-hoc), the techniques here are general enough to be applied to almost
any two-channel filter bank and yet simple to use. A detailed comparison with previous
works are presented in the Section 2.5. One of the main highlights of the proposed new
technique is that it allows the rationalization of any orthogonal filters with zero DC
leakage preservation. This is something not achievable with previously reported works.
The rationalization technique is based on the use of lattice structures for orthogonal
filters and the concept of complementary filters for biorthogonal filters. The techniques
will be applied on several reported wavelet filters from the literature such as the well
known Daubechies family [8], image compression optimized biorthogonal filters in [34]
and the dual-tree filters in [15]. The results will show that coding gain, frequency
response and other characteristics of the rational filters are close to the original irrational
filters.
This chapter is organised as follows. Section 2.2 reviews the important concepts

and principle of wavelets and filter bank fundamentals elaborately. The technique for
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rationalizing the orthogonal filters is presented in Section 2.3. The Daubechies family
of filters and Dual-Tree filters are rationalized based on the proposed technique and it is
presented in the Section 2.3 along with the efficient implementation of filters in lattice
framework. The technique to rationalize the biorthogonal wavelet filters is presented
in Section 2.4. The popular biorthogonal filters such as “9/7”, “13/11” and “17/11”
are rationalized based on the proposed technique and is also presented in Section 2.4.
In Section 2.5 comparison with previous work is discussed extensively to showcase the
efficiency of the proposed rationalization technique. The chapter is concluded in Section
2.6.

2.2 Preliminaries

2.2.1 Filter Banks Fundamentals

Let H0 and F0 be the analysis and synthesis low pass filters of a two channel biorthog-
onal filter bank system. Then the analysis and synthesis high pass filters H1 and F1

respectively are obtained by quadrature mirroring the low pass filters

H1(z) = z−1F0(−z)

F1(z) = zH0(−z)

and this achieves aliasing cancellation. The perfect reconstruction (PR) condition is
then given by

H0(z)F0(z) +H0(−z)F0(−z) = k (2.1)

where k is a constant. Usually k = 2 but in practice can also have other values (see
section 2.2.4). The orthogonal filter bank is a special case of the biorthogonal filter bank
in which the low pass filters are mirror images of each other F0(z) = H0(z−1). The
product filter is given by

P (z) = H0(z)F0(z)

and as per the PR condition (2.1) the product must satisfy the following condition

P (z) + P (−z) = 2 (2.2)
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The design of the wavelet filters is thus reduced to the design of the product filter P (z)
and the factorisation of P (z) will yield the filters H0(z) and F0(z). For the orthogonal
case, the product filter must satisfy the following non-negativity condition

P (ejω) ≥ 0 ∀ω

The biorthogonal filters are obtained from the family of Lagrange-Halfband-Filters (LHBF)
[8],[35][36] which has a maximum number of vanishing moments (also known as the max-
imally flat product filter). The LHBF of order K is given by

P (z) = zK
(

1 + z−1

2

)2K

RK(z)

where

RK(z) =
K−1∑
n=0

 K + n− 1
n

(2− (z + z−1)
4

)n

The wavelet ψ(t) (spectrum Ψ(ω)) and the scaling function φ(t) (spectrum Φ(ω)) can
be generated from the infinite product formula [2] and are given by

Ψ(ω) = 1
2H1(ejω/2)

∞∏
k=1
{(1/2)H0(ejω/2k+1)}

Φ(ω) = 1
2H0(ejω/2)

∞∏
k=1
{(1/2)H0(ejω/2k+1)}

To ensure the equivalent wavelet function ψ(t) is smooth, zeros at z = −1 are imposed
on the low-pass filter H0 (F0) and this is called the vanishing moment (VM) condition
[2]. Sum rules can be applied to the filter coefficients h0(n) to ensure VMs. The general
expression for the lth sum rule is given by

H
(l)
0 (ejπ) =

∑
n

(−1)nnlh0(n) = 0 (2.3)

For p VMs p sum rules are required, i.e. (2.3) for l = 0, 1, . . . , p − 1. If p ≥ 1, then
H1(ej0)(= H0(ejπ)) = 0. i.e no DC leakage.

2.2.2 Filter bank Design

There are two main frameworks for the construction of two-channel filter bank
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1. Factorization of product filter [7]

2. Polyphase structure which includes lifting [37] and lattice structure [38]

The factorization of LHBF was introduced by Daubechies [7],[8] and the design of wavelet
filters is based on the spectral factorization technique. The lattice structure is utilised
by Vaidyanathan et. al [38] to design a PR FB. Sweldens introduced the lifting struc-
ture [37] to design and implement the FB. The lifting structure is the popular way
to implement the biorthogonal filters even though there are plethora of other methods
[5],[39],[6],[40],[30],[41],[4] available. In this section, the review of the available frame-
work for filter bank design is presented.

2.2.2.1 Factorization of Product Filter

Daubechies [7] used the LHBF to design the wavelet filter bank containing the maximum
vanishing moments using the spectral factorisation technique [7],[8]. In the orthogonal
filter bank the product filter P (z) is given by

P (z) = H0(z)H0(z−1)

and it must satisfy the power complementary property. i.e.

|H0(ω)|2 + |H0(ω + π)|2 = 2

Daubechies used the LHBF as the product filter P (z) and performed a spectral factori-
sation to design a family of Daubechies orthogonal filters. The z-transform of P (z) is
defined as

P (z) =
∑
n

p(n) z−n

For the PR condition (2.1) to be satisfied, we need p(2n) = 0 for n 6= 0. The product filter
P (z) is symmetric i.e., p(2n) = p(−2n). The middle value of the product filter should
be 1/2. i.e., p(0) = 1

2 . Because the product filter contains symmetric coefficients, then
P (z) = P (1/z) i.e., if zi is a root, then 1/zi is also a root. Daubechies’s [7],[8] spectral
factorisation of P (z) allocate the zi and z−1

i roots into H0(z) and H0(z−1) respectively.
Daubechies allocated half the VMs (zeros at ω = π) and all the roots inside the unit
circle z = 1 to design a family of minimum phase filters. The maximum phase filters are
obtained by choosing half the VMs roots and the roots outside the unit circle of product
filter P (z). When the length of the product filter P (z) increases, the choice of selection
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of roots increases. The algorithms used for spectral factorisation may become unreliable
if the product filter length increases above 50. If the filter length is 2L, then the PR
condition (2.1) takes half of degrees of freedom in the design. The remaining degress of
freedom (L) is utilised to have zeros at aliasing frequency. There are many other works
in the literature [11],[42],[43],[44] that uses the remaining degrees of freedom L to tweak
the other characteristics of the filter instead of utilising all of them for VMs. It should
be noted that all the Daubechies filters have irrational coefficients and rationalising the
Daubechies filter coefficients will lead to losing some of the properties of the filters.

2.2.2.2 Polyphase Structure

The polyphase structure can be implemented either using lattic framework [1],[2],[45] or
lifting framework [37]. The analysis filters can be represented as

 H0(z)
H1(z)

 = Hp(z2)
 1
z−1

 (2.4)

where Hp(z) is the (analysis) polyphase matrix and it is given by

Hp(z) =
 H00(z) H01(z)
H10(z) H11(z)


where H00(z) (H10(z)) and H01(z) (H11(z)) are the odd and even coefficients of the low
pass filter H0(z) (high pass filter H1(z)) respectively. The filters H0(z) and H1(z) are
given by

H0(z) = H00(z2) + z−1H01(z2)

H1(z) = H10(z2) + z−1H11(z2)

The polyphase matrix for orthogonal filter banks has a lattice structure that is imple-
mented using rotation matrices and delay matrices [38]. The standard rotation matrix is

given by
 cos θ − sin θ

sin θ cos θ

 [46] and is properly normalized. However for the purpose of

developing the rationalization technique (described in the Section 2.3) an un-normalized
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Figure 2.1: Lattice structure

version as defined by Rl below will be used. The lattice polyphase matrix is given by

Hp(z) = K RLD(z)RL−1 . . .D(z)R1

= K RL

L−1∏
l=1

[D(z)Rl] (2.5)

where

D(z) =
 1 0

0 z−1

 , Rl =
 1 −αl
αl 1


Now L is the number of stages, αl’s are the lattice parameters which can also be expressed
in terms of rotation angles as αl = tan θl. The normalisation constant K is given by

K =
∏
l

1√
(1 + α2

l )
(2.6)

The lattice structure shown in Figure 2.1 is an efficient way to implement the filter banks
[38]. The PR condition (2.1) is structurally imposed and is therefore preserved under
lattice parameter quantization. If the lattice parameters are quantized to rational values
then the filter coefficients will also have rational values.

2.2.3 Sobolev Regularity

Sobolev regularity sc is a measure of smoothness of the wavelet. It is defined as the
smallest real number sc such that Φ(ω) (Fourier transform of the scaling function φ(t))
satisfies:

ˆ ∞
−∞

(1 + |ω|2)s |Φ(ω)|2dω <∞ ∀ s < sc

The Sobolev regularity sc can be obtained by solving an eigenvalue problem and the
procedure to is given below [47]:

13



2.2 Preliminaries

• Eliminate all the factors (1 + z−1) factors (multipicity M) from the product filter
P (z) to give the remainder filter Q(z) with the normalization that is given by
Q(1) = 2(1−M)

• Construct a matrix R with elements given by [Q]k,l = q2k−1for −LQ ≤ k, l ≤ LQ,
where qk(−LQ ≤ k ≤ LQ) are the coefficients of the filter Q(z). The matrix Q will
be of size (2LQ + 1)× (2LQ + 1).

• Find the largest absolute eigenvalue, |λ|maxof Q. Then sc = −1
2 log2 |λ|max.

The Sobolev regularity sc and Holder regularity rc are related by the inequality

rc ≤ sc ≤ rc + 1
2

The Holder measure rc can be obtained using the above inequality from sc. Sobolev
regularity is used as regularity measure in this thesis.

2.2.4 Filter Normalisation

Denote the DC gain of the low-pass filters by ∆H ≡ H0(1) and ∆F ≡ F0(1). The
gain values are related to the k value in (2.1) as follows: ∆H∆F = k. For a strict PR
condition with no scaling of the output k = ∆H∆F = 2. The factor 2 can distributed
between ∆H and ∆F in various ways but the two most common distributions are:
(i) ∆H = 1 (unity DC) and ∆F = 2
(ii) ∆H = ∆F =

√
2.

Case (ii) is an equal distribution and the one specified by wavelet theory. Case (ii) will
ensure the transform using orthogonal filters are energy (or l2 norm) preserving, i.e.
orthonormal filters are obtained. However rational coefficient filters are not possible in
case (ii). If one is willing to accept a more general definition of PR (output is k/2 times
input) then k can be any arbitrary constant. In practical applications the scaling can be
absorbed by the subsequent processing of the signal after the transform, eg. adjustment
of the quantization step sizes in compression. It is however desirable to make ∆H and
∆F as close to

√
2 as possible.

In this chapter, the unnormalised lattice structure, i.e. (2.5) without the K factor,
is used in the design stage. The normalisation constant K can be applied during the
implementation. The K value in (2.6) is irrational (in general) and should be quantized
to a rational value for efficient implementation. If the rational value is a dyadic integer,
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no multiplier is needed. If the rationalized value is close to the original irrational value
then k ≈ 2 and ∆H ≈

√
2.

2.2.5 Canonical Signed Digit

The Canonical Signed Digit (CSD) , a subset of SPT (Sum of Powers of Two) represen-
tation has proven to be useful in efficient implementation of digital filters [48],[49]. If
the filter coefficients are expresed in SPT terms, then the multiplication is performed
using shifts and addition. A ND bit number D having is represented in canonical form
[50] as

D =
ND−1∑
i=0

si2i si ∈ {−1, 0, 1}

The unique properties of CSD are

1. the number of non-zero digits is minimal

2. no two adjacent digits are nonzero.

These properties make the cananical form optimal in terms of how many nonzero digits
are required to represent a given number.
If the lattice coefficient values can be expressed as a SPT (Sum of Powers of Two)

value, i.e. dyadic integer (γ/2c, γ and c are integers), the digital hardware required then
consists of simple shifts and adders. In this chapter, we use the CSD [4],[51] to express
the lattice coefficients.

2.2.6 Performance Measures

2.2.6.1 Coding gain

Coding gain is the widely used performance measure in image processing applications
especially in image compression. We use the expression derived by Katto and Yasuda
[52] , which is valid for nonorthogonal transforms. The input is assumed to be first order
Markov process with unit variance and correlation coefficient ρ. Let hk(i)(k = 1, 2, ..., N)
and gk(i)(k = 1, 2, ..., N) denote the coefficients of the analysis and synthesis filters of
an N band subband decomposition. Usually five levels of decomposition are used and
the correlation coefficient value is taken to be ρ = 0.95. A five level decomposition has
been justified experimentally as providing the best performance measure for the largest
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number of images. The coding gain expression is the best indicator of performance as
it measures the filter bank’s coding efficiency.
There are a few assumptions made while derving the formula for coding gain by Katto

and Yasuda. They are

1. uncorrelated qunatization error

2. input is assumed to be a first order Markov model

The coding gain G(ρ) is given by

G(ρ) =
N∏
k=1

(AkBk)−αk (2.7)

where
Ak =

∑
i

∑
j

hk(i)hk(j)ρ|i−j|,

Bk =
∑
i

gk(i)2

αk is the equivalent downsampling factor for the kth channel

2.2.6.2 Analytic Quality Measures for Hilbert pair

The dual-tree complex wavelet transform of Kingsbury is based on a pair of filter banks
whose corresponding wavelet functions, denoted by ψh(t) and ψg(t), form a Hilbert pair

Ψg(ω) =

−jΨ
h(ω), ω > 0

jΨh(ω), ω < 0
(2.8)

where Ψh(ω) and Ψg(ω) are Fourier transforms of ψh(t) and ψg(t) respectively. The
corresponding low-pass filters of the filter bank, denoted by Hh(z) and Hg(z), should
satisfy [12]

Hg(ejω) = e−jω/2Hh(ejω) (2.9)

but in practice (2.9) and therefore (2.8) can only be approximated. By defining ΨC(ω)
as the complex wavelet spectrum given by

ΨC(ω) = Ψh(ω) + jΨg(ω)
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The quality measures based on the level of analyicity can be defined [15] as

E1 ≡
maxω<0|ΨC(ω)|
maxω>0|ΨC(ω)| (2.10)

E2 ≡
´ 0
−∞ |Ψ

C(ω)|2dω´∞
0 |ΨC(ω)|2dω (2.11)

Ideally E1 = E2 = 0 if (2.8) is exact and ΨC(ω) is complex analytic, i.e. ΨC(ω) = 0 for
ω < 0. In practice E1 and E2 are non-zero and the smaller the values, the better the
analytic quality.

2.3 Rationalizing Orthogonal Filters
The lattice structure is utilized for rationalizing orthogonal filter coefficients. The jus-
tification of this approach is presented in section 2.5 along with comparison with other
techniques. The lattice parameters αl are first determined from the original irrational fil-
ter coefficients. If the filter length is 2L, then the number of lattice parameters would be
L. Quantizing these irrational lattice parameters will not destroy the perfect reconstruc-
tion (PR) property due to the structural PR property in lattice structures. However if
the lattice parameters are quantized independently, the zeros at z = −1 of the low-pass
filter will be perturbed in general, i.e. vanishing moments (VMs) are destroyed. There
should be at least one zero at z = −1 (VM) to generate the wavelet function. One VM
is also needed to avoid DC leakage in the equivalent band-pass and high-pass filters. A
technique that ensure at least one VM is presented next.

2.3.1 Ensuring One Vanishing Moment

Imposing one vanishing moment by using the first sum rule will result in an equation
relating the lattice parameters. We will show that this equation can be solved alge-
braically in closed form for one of the lattice parameter, e.g, αi, in terms of other
parameters α̃ = [α1, α2, ..., αL] \αi. We will also show that αi is rational if α̃ is rational.
Lemma 1: Suppose the first sum rule is imposed ensuring one vanishing moment, then

αi = f1(α̃)
f2(α̃) (2.12)

where i ∈ {1, . . . , L}, f1(α̃) and f2(α̃) are multilinear functions (of [α1, α2, ..., αL] \ αi)
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2.3 Rationalizing Orthogonal Filters

with integer coefficients. Therefore αi is rational if α̃ is rational.
Proof: Using (2.5) in (2.4) we have

 H0(z)
H1(z)

 = S

 1 −αk
αk 1

 .r = S Rk r (2.13)

where r (S) is the product of all the matrices to the right (left) of the matrix Rk.
Equation (2.13) shows the explicit linear dependence on the kth lattice parameter αk.
This means that the filter coefficients of H0(z) are multilinear functions of the lattice
parameters:

h0(n) =
∑
l

Cn
l

(
L∏
k=1

α
ink
k

)

where ink = 0 or 1. The term in brackets represents a general multilinear term, e.g. α1α2

or α2α3. Since the constant coefficients of the all matrices in (2.5) are integers, Cn
l will

also be an integer. Applying the first sum rule

h(0)− h(1) + h(2)− h(3) + ...− h(2L− 1) = 0

will result in an integer coefficient multilinear equation in the lattice parameters. Col-
lecting all terms containing αi together, this multilinear equation can be written in the
form

αi f2(α̃)− f1(α̃) = 0

where f1(α̃) and f2(α̃) are multilinear functions of [α1, α2, ..., αL] \ αi with integer coef-
ficients. The equation (2.12) readily follows. �

It is not possible to have a general closed form explicit expression for the functions
f1(α̃) and f2(α̃). Some symbolic algebraic calculations are required. Firstly the filter
coefficients h0(n) in terms of αk are obtained by expanding the matrix products in (2.5).
Secondly substitute h0(n) into the first sum rule equation, collect all terms containing αi
together and factor out αi. Then the functions f1(α̃) and f2(α̃) can be easily identified
from the equation. This process is illustrated with an example below.
Example I: The Daubechies length 6 (L = 3) filter (Db6) has three lattice parameters:
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α1, α2 and α3. The filter functions are given by H0(z)
H1(z)

 =
 1 −α3

α3 1

 1 0
0 z−2

 1 −α2

α2 1


 1 0

0 z−2

 1 −α1

α1 1

 1
z−1


Expand the above product and consider onlyH0(z). The filter coefficients {h0(0), . . . , h0(5)}
are given by:

{1,−α1,−α1α2 − α2α3,−α2 + α1α2α3,−α1α3,−α3} (2.14)

Applying first sum rule on (2.14) gives

1 + α1 + α2 + α3 − α1α2 − α1α3 − α2α3 − α1α2α3 = 0

Collecting all terms containing α3 and factoring out α3 gives

(1 + α1 + α2 − α1α2)− α3(α1 + α2 + α1α2 − 1) = 0 (2.15)

Using (2.15), α3 can be expressed in terms of α1 and α2 as

α3 = f1(α̃)
f2(α̃) = 1 + α1 + α2 − α1α2

α1 + α2 + α1α2 − 1 (2.16)

The irrational values of α1 and α2 can be quantized to rational values independently.
Using these rational values in (2.16) will yield α3 with rational value. There are many
potential choices for value of the lattice parameters α1 and α2. Two factors need to
be taken into account when the parameters are quantized. Firstly the quantized lattice
parameters values should be close to the original irrational values to ensure the charac-
teristics (and performance) of the filters do not deviate significantly. This constraint sets
the range of allowable values for the lattice parameters. The second factor is the com-
putational complexity of implementing the un-normalized rotation matrix Rl. Simple
dyadic integer values for the lattice parameters α1 and α2 will lead to an efficient mul-
tiplierless implementation. These factors lead to the following procedure to determine
the suitable value for α1 and α2:

1. Determine the maximum deviation from the original irrational values for α1 and
α2 subject to the constraint

´
|H0(ejω) − HO

0 (ejω)|2dω < ε (allowable level of
deviation). H0(ejω) and HO

0 (ejω) are the perturbed and original filter respectively.

19



2.3 Rationalizing Orthogonal Filters

This gives the allowable range (αmink , αmaxk ) (k = 1, 2) of values.

2. Over the allowable range determine the dyadic value that gives the lowest number
of SPT terms.

The original irrational and quantized rational values of the lattice parameters are given in
Table 2.1. The frequency response of the original and rational filters are shown in Figure
2.2. The Sobolev regularity measure, the quantized normalisation constant Q(K̃), DC
gain and number of SPT terms required (using CSD representation) are also shown. If
α1 = −12/5 and α2 = 55/100 (small deviation from the rational value in Table 2.1) are
now chosen instead as the parameters value, the characteristics (and performance) of the
filter is virtually unchanged but the computational complexity is higher as the parameter
values are not dyadic integers. The value of α3 cannot be independently chosen and will
be a non-dyadic integer in general. The implementation of the corresponding rotation
matrix R3 will be discussed in Section 2.3.3.
Choice of dependent parameter: In the example above α3 is chosen as the dependent

parameter (i.e. i = 3 in (2.12)). However the procedure could also be applied with α1 or
α2 as the dependent parameter. If the deviation of the independent parameters (from
the original irrational values) are kept small by using the bounds described above, the
characteristics and performance of the filter will be approximately the same irrespective
of the choice of the dependent parameter (and this has been observed in the examples).
However the complexity in terms of the number of SPT will (in general) depend of the
choice of the dependent parameter. Therefore the procedure should be repeated with all
possible choices of dependent parameter. The choice which gives the smallest number
of SPT terms will be chosen as the final solution. For the example above it turns out
that the best choice is with α3 as the dependent parameter.
Example II: The Daubechies length 8 (L = 4) filter (Db8) has four lattice parameters:

α1, α2,α3 and α4. The irrational values of α1, α2 and α3 are quantised. The value of α4

expressed in terms of other lattice parameters is given by

α4 = −1− α1 − α2 + α1α2 − α3 + α1α3 + α2α3 + α1α2α3

1− α1 − α2 − α1α2 − α3 − α1α3 − α2α3 + α1α2α3

The are many potential choices for α1, α2 and α3 but a simple dyadic value of lattice
parameters (chosen close to irrational values) will lead to multiplierless implementation.
The original irrational and quantized rational values of the lattice parameters for Db8
filter are given in Table 2.1. The frequency response of the original and rational filters
are shown in Figure 2.3.
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Table 2.1: Rational lattice parameters of the Db6 and Db8 filters. Sobolev Regularity
sc also shown.

Db6 Db8
Irrational 1 VM 2VM Irrational 1 VM 2VM

α1 -2.4255 -9/4 -73/32 -3.1029 -3 -3
α2 0.5461 1 / 2 1 / 2 0.8109 3/4 25/32
α3 -0.1059 -3 / 31 -23/251 -0.2593 -1/4 -1/4
α4 - - - 0.0460 3/46 1/22
d - 4 8 - 5 5

Q(K̃) - 13/64 3/8 - 11/64 3/8
∆H 1.4142 1.5393 1.4541 1.4142 1.4267 1.5097
SPT - 10 12 - 13 12
sc 1.415 0.995 1.409 1.775 0.961 1.781

The generic procedure to determine the suitable values for lattice parameters (αl) for
2L length filter is as follows:

1. Determine the maximum deviation from the original irrational values for (α1, α2, ..., αL)\
(αi1) subject to the constraint

´
|H0(ejω)−HO

0 (ejω)|2dω < ε (allowable level of de-
viation). This gives the allowable range (αmink , αmaxk ) (k = 1, 2, ..L− 1)/αi1 of each
lattice values.

2. Over the allowable range determine the dyadic value that gives the lowest number
of SPT terms.

3. The procedure is repeated for all possible choices of αi1

2.3.2 Two Vanishing Moments

The approach is best illustrated with a simple example and can be generalized for any
filter.
Example III: The Daubechies length 6 filter coefficients in terms of the lattice param-

eters are given in (2.14). In order to ensure two vanishing moments, both the first and
second sum rules are used. The first sum rule is given in (2.15). Applying the second
sum rule on filter coefficients in (2.14) gives

3 + 2α1 − α1α2 − 2α3 + α1α3 − α2α3 = 0 (2.17)

Equations (2.15) and (2.17) form an underdetermined system and therefore have many
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Figure 2.2: Frequency response of original and rationalized Daubechies length 6 filter

solutions. There may be rational solutions but it is hard to find these rational solutions.
Furthermore these solutions may not give good quality filters anyway if their values are
very different from the original irrational values. We adopt a different approach for
finding a good approximate solution that is rational. Suppose the α2 parameter is fixed
at a rational value that is close to the original irrational value of 0.5461 (Refer Table
2.1). The simple value α2 = 1/2 (only one SPT term) is chosen here but other rational
values can potentially be used. Using α2 = 1/2 in (2.15) and (2.17) gives

α1 + α3 − 3α1α3 + 3 = 0 (2.18)

3α1 − 5α3 + 2α1α3 + 6 = 0 (2.19)

Solving (2.18) and (2.19) gives two sets of irrational values for α1 and α3. The solution
α1 = −2.28869, α3 = −0.090428 is closest to the original values. The approach we adopt
is to find a rational solution which approximates the second sum rule (eqn. (2.19)) but
satisfies the first sum rule (eqn. (2.18)) exactly. The equation (2.18) can be solved for
α3 and is given as

α3 = 3 + α1

3α1 − 1 (2.20)

Define the approximation error E to the second sum rule (2.19) as

E ≡ 3α1 − 5α3 + 2α1α3 + 6 (2.21)

The goal then is to find the rational values α1 and α3 that are (i) close to the irrational

22



2.3 Rationalizing Orthogonal Filters

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NORMALISED FREQUENCY

M
A

G
N

IT
U

D
E

 

 
Db8
Filter with 1 VM
Filter with 2 VMs

Figure 2.3: Frequency response of original and rationalized Daubechies length 8 filter

values α1 = −2.28869, α3 = −0.090428; (ii) satisfy (2.18) exactly and (iii) minimise the
error E. A reasonably large set of dyadic values for α1 that are close to the irrational value
are used in the search procedure. For each α1 value in the dyadic set, the α3 (which will
be rational) is obtained using (2.20) and the approximation error (2.21) is evaluated. The
α1 and α3 values that give the minimum E are α1 = −73/32 and α3 = −23/251 which
is chosen as the final solution. The corresponding second derivative value (H(2)(ejπ))
is 5.8 × 10−3 (close to zero). The frequency response of the modified filter with two
approximate vanishing moments is close to the original irrational filter’s response as
shown in Figure 2.2. The choice dependent parameter shown above gives the filter with
the lowest number of SPT. The Sobolev regularity of rational Db6 filter with one VM
and (approximate) two VM are 0.9765 and 1.4086 respectively. Even though the second
sum rule is only approximated, the Sobolev regularity has increased compared to the
case with one (exact) vanishing moment.
The technique is then applied to the Daubechies length 8 filter. The quantized lattice

parameters for the one and two vanishing moments cases are given in Table 2.1. The
frequency response of rational Db8 filter with approximate second VMs is close to the
original irrational filter’s response as shown in the Figure 2.3.
For a general L stage lattice with parameters (α1, α2, ..., αL), the procedure can be

summarised as follows.

1. Choose (fix) simple dyadic values for L− 2 parameters (α1, α2, ..., αL) \ (αi1 , αi2).
(Note that general rational values can also be used but this would result in a more
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2.3 Rationalizing Orthogonal Filters

complex implementation).

2. Applying the first sum rule (with (L − 2) parameters already chosen) will result
in a multilinear equation f1(αi1 , αi2) = 0 in the remaining two parameters.

3. Applying the second sum rule will result in another multilinear equation f2(αi1 , αi2) =
0. Now define the approximation error as E ≡ f2(αi1 , αi2).

4. Generate a sufficiently large set of dyadic values for the lattice parameter αi1
which are close to the original irrational value. For each value in the set obtain
the αi2 parameter value by solving the equation f1(αi1 , αi2) = 0. i.e. αi2 = f̂1(αi1).
(The set can be general rational values but this would result in a more complex
implementation).

5. Compute the approximation error E for each set of αi1 and αi2 values and choose
the set which gives the least E as the final solution.

The procedure is repeated for all possible choices of (αi1 , αi2).

2.3.3 Efficient Implementation

The rational orthogonal filters can be efficiently implemented using the lattice structure
as shown in Figure 2.4.

Figure 2.4: Lattice structure implementation

The un-normalized rotation matrices Rl can be implemented without the use of mul-
tipliers if the corresponding lattice parameter αl is a dyadic integer (i.e. γ/2c). With
the rationalization technique presented above there is direct control over the choice of
the value of almost all the lattice parameters (α1, .., αL−1) except one (αL). In all the
examples presented, the lattice parameters α1, .., αL−1 are dyadic integers and therefore
the corresponding rotation matrix can be implemented without multipliers. The last
parameter αL = m/n (m and n integers) in general is non-dyadic as its value cannot be
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directly controlled. The corresponding un-normalized rotation matrix can be expressed
as:

RL =
 1 −m/n
m/n 1



= 1
n

 n −m
m n

 = 2d
n

 n/2d −m/2d

m/2d n/2d



where d is a suitable integer. The matrix
 n −m
m n

 can be multiplierlessly imple-

mented if m and n are expressed as SPT. The scaling factor 2d can be applied to
decrease the dynamic range for larger values of m and n. Then the modified rotation

matrix R̃L ≡

 n/2d −m/2d

m/2d n/2d

 can be implemented without any multipliers. The

scaling factor 2d

n
can be absorbed into K in (2.6) to give the modified normalisation

constant
K̃ ≡ 2d

n

L∏
l=1

1√
(1 + α2

l )

The normalisation constant K̃ can be multiplierlessly implemented if it is quantized to
the nearest dyadic integer (γ/2c). The entire filter bank can therefore be implemented
without any multipliers. However the DC gain of the low-pass filter ∆H will only be
approximately

√
2 due to the quantization of K̃.

2.3.4 Rationalizing Dual-Tree Orthogonal Filters

Example IV: The symmetric self Hilbertian filter [15] of length 8 (with three VMs)
is rationalized. The unquantized and quantized lattice parameters values are shown
in Table 2.2 for the one and two VMs cases. The Sobolev regularity of the rational
symmetric self Hilbertian filter (length 8) with one VM and (approximate) two VMs are
1.0 and 1.7175 respectively. The frequency response of the modified filter is virtually
same as the irrational filter as shown in Figure 2.5 (top). The spectra of the complex
wavelet from the original irrational and rational filter (with one VM) is shown in Figure
2.5 (bottom). The analytic quality measures of the irrational filter are E1 = 3.2088%
and E2 = 0.0889%. The corresponding measures of the rational filter with one VM are
E1 = 3.3416% and E2 = 0.0879%. The corresponding measures of the rational filter with
two (approximate) VMs are E1 = 3.4387% and E2 = 0.0845%. The second derivative
value of this filter (H(2)(ejπ)) is 2.9× 10−3 (close to zero).
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Table 2.2: Original and quantized lattice parameters values of length 8 symmetric self
Hilbertian filter.

α1 α2 α3 α4 d Q(K̃) ∆H SPT
Irrational 0.0633 9.1856 0.6425 0.2656 - - 1.4142 -

Rational 1 VM 3/64 37/4 1552/2335 17/64 10 5/128 1.4577 16
Rational 2 VMs 125/1793 561/64 41/64 17/64 10 7/128 1.4716 17

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NORMALISED FREQUENCY

M
A

G
N

IT
U

D
E

−50 0 50
0

1

2

3

4

FREQUENCY

Figure 2.5: Spectrum of complex wavelet in example IV. Solid line : original filter.
Dotted line: rational filter

2.4 Rationalizing Biorthogonal Filters
The rationalization method proposed here is quite general and can be applied to al-
most any filter pair. It is based on the idea of complementary filters: a low-pass filter
F̂0(z) is said to be complementary to a given analysis low-pass filter Ĥ0(z) if the pair
(Ĥ0(z),F̂0(z)) satisfy the perfect reconstruction (PR) condition (2.1). The complemen-
tary filter technique allows one set of filter coefficients to be expressed in terms of another
set of filter coefficients.
Consider the case with linear phase filters which is the most common. The original

irrational coefficient low-pass filters Ĥ0(z) whose length is LH and F̂0(z) whose length
is LF can be expressed as

Ĥ0(z) = K̂1(z + 1)nR̂1(z)

F̂0(z) = K̂2(z + 1)mR̂2(z)
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where

R̂1(z) = (zi + â1z
i−1 + â2z

i−2 + ...+ â1z + 1)

R̂2(z) = (z ĵ + b̂1z
ĵ−1 + b̂2z

ĵ−2 + ...+ b̂1z + 1)

are symmetric polynomials (linear phase) with degrees i and ĵ respectively. Now n and
m are the number of vanishing moments of Ĥ0(z) and F̂0(z) respectively, LH = n+ i+ 1
and LF = m+ ĵ + 1, K̂1 and K̂2 are normalisation constants. The coefficients â1, â2, . . .

and b̂1, b̂2, . . . are irrational in general. Without loss of generality assume Ĥ0(z) to be the
shorter length filter and F̂0(z) to be the longer length filter, i.e. LF > LH . It is assumed
that the PR condition (2.1) is satisfied for the product filter P̂ (z) = Ĥ0(z)F̂0(z).
Consider now the modified filters which are defined as

H0(z) = K1(z + 1)nR1(z)

F0(z) = K2(z + 1)m−m̂R2(z)

where m̂ (< m) is the number of vanishing moments that is reduced in the longer filter
and

R1(z) = (zi + a1z
i−1 + a2z

i−2 + ...+ a1z + 1)

R2(z) = (zj + c1z
j−1 + c2z

j−2 + ...+ c1z + 1)

are symmetric polynomials with degrees i and j = ĵ + m̂ respectively such that H0 (F0)
and Ĥ0 (F̂0) have the same length. The modified product filter is given by

P (z) = K1K2(z + 1)n+m−m̂R1(z)R2(z)

where K1, K2 are normalisation constants. The length of the product filter P (z) is
LP = LH + LF − 1. For the PR condition (2.1) to be satisfied, we need p(2n) = 0
for n 6= 0. Only half of the p(2n) = 0 equations need to be considered because of
symmetry (i.e. p(2n) = p(−2n)). There are then q = (LP − 3)/4 number of independent
equations. Now p(2n) is a linear function in {c1, c2, . . .} if {a1, a2, . . .} is fixed. If
{a1, a2, . . .} has rational values, then p(2n) = 0 is a linear equation in {c1, c2, .., } with
rational coefficients. If we choose the number of vanishing moments that is reduced to
be m̂ = 2q − j, then the number of unknowns {c1, c2, . . . , cq} is equal to q, which is
the same as the number of linear equations. Solving this determined system of linear
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equations with {c1, c2, . . . , cq} as unknowns will yield a unique rational valued solution.
Remark: It is important to point out that the key to ensuring the method is applicable

to almost any biorthogonal pair is that the reduction of the VMs occurs only in one filter
(F0) and not the other (H0). If the reduction occurs in both filters the solution to a
system of nonlinear equations will be required. Not only will solving nonlinear equation
be difficult in general, it is generally impossible to ensure rational valued solutions.

2.4.1 Choice of parameter values

Two factors need to be taken into account when deciding the choice of parameter values.
Firstly the rationalized parameters values for {a1, a2, . . .} should be close to the original
irrational values to ensure the characteristics (and performance) of the filters do not
deviate significantly. Secondly the choice of parameter values will effect the computa-
tional complexity of the filters in terms of the number of SPT terms. The cascade form
implementation, consisting of the VM part ((1 + z)n) and the remainder part (R1(z)),
of the filters will be considered here. The coefficients of the VM part is always dyadic
and can be implemented efficiently in hardware. For example if the filter has 4 VMs
then the VM part will be [1, 4, 6, 4, 1]/24 which requires 6 SPT terms. Now the com-
putational complexity of the filter H0(z) can be easily controlled by choosing simple
rational numbers for {a1, a2, . . .}. However there is no direct control over the complexity
of filter coefficients {c1, c2, . . . , cq} of the filter F0(z). The control of {c1, c2, . . . , cq} is
indirect through {a1, a2, . . .}. The strategy adopted here is to choose rational values
for {a1, a2, . . .} such that the overall complexity of the filter bank (as measured by the
number of SPT terms) is the lowest. The rationalization procedure for the parameters
{a1, a2, . . .} is then as follows:

1. Bounds for the {a1, a2, . . .} values are determined by imposing the constraint´
|H̃0(ejω) − H0(ejω)|2dω < ε where ε specifies the allowable level of deviation

from the original irrational filter. The bounds then determine the search set.

2. Create a sufficiently large subset of rational values for {a1, a2, . . .} from the search
set.

3. For each {a1, a2, . . .} in the subset, solve the linear equations for the {c1, c2, . . . , cq}
values. Then determine the total number of SPT terms. The parameter values
which give the lowest number SPT terms is chosen as final solution.
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2.4.2 The 9/11 Filter Pair

The 9/11 filter pair from [34] is obtained from factorising the length 19 Lagrange-
Halfband-Filter. The original filters Ĥ0 and F̂0 have four and six vanishing moments
(VM) respectively. The modified filters H0 and F0 (without the normalisation factors)
are given by

H0(z) = (z + 1)4(z4 + a1z
3 + a2z

2 + a1 + 1)

F0(z) = (z + 1)2(z8 + c1z
7 + c2z

6 + c3z
5 + c4z

4 +

c3z
3 + c2z

2 + c1z + 1)

and have four and two vanishing moments (VM) respectively. Here we have reduced
four vanishing moments in F0 since imposing the PR condition on the product filter
P (z) yields four equations (q = 4). Solving the four equations for {c1, . . . , c4} gives the
solution:

c1 = −6− a1

c2 = ((4096 + 192a4
1 + 4a3

1(346 + 35a2) + 12a2
1(340 + 48a2 + 3a2

2)

+ a1(6120 + 628a2 + 70a2
2 + 3a3

2))/S

c3 = −(6656 + 480a4
1 + a3

1(2836 + 438a2) + a2
1(7364 + 1396a2 + 149a2

2)

+ 6a1(1716 + 212a2 + 35a2
2 + 3a3

2))/S

c4 = 2((3840 + 320a4
1 + 4a3

1(434 + 83a2) + 6a2
1(718 + 157a2 + 22a2

2)

+ a1(5940 + 788a2 + 163a2
2 + 19a3

2)))/S

where
S = 256 + 32a3

1 + 6a2
1(26 + 3a2) + a1(308 + 32a2 + 3a2

2)

It can be seen that if {a1, a2} are rational valued, then {c1, c2, c3, c4} and the resulting
filter coefficients will also be rational valued. The original irrational values are â1 =
−3.7997 and â2 = 7.8266. The rational values of a1 = −31/8 and a2 = 8 are chosen
based on the criteria explained in the section 2.4.1 and their normalized (to unity DC)
frequency response is shown in Figure 2.6. The response of the modified pair is very
similar to the original pair’s response. The rationalized coefficients of the remainder
part of the filters are shown in Table 2.3. The coefficients are normalised by 1/2c so
that the DC gain of the remainder section is as close to unity as possible. The number
of SPT terms required to implement the remainder section of H0 and F0 are 4 and 39

29



2.4 Rationalizing Biorthogonal Filters

Table 2.3: Rational coefficient values of remainder part of biorthogonal filter pairs (ori-
gin is the leftmost coefficient, coefficient for negative indices follow by symmetry)

9/11 R1 [64,−31, 8]/24

R2 [9158, 3438,−2626,−697, 328]/213

13/11 R1 [−7522,−2111, 2000,−271,−575, 230]/213

R2 [21,−11, 2]/2
17/11 R1 [2389304, 1234566,−259427,−229548, 147522,

37448,−51613,−5666, 5666]/222

R2 [104, 57,−6,−11, 2, 2]/28
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Figure 2.6: Plot of frequency response of the “9/11” filter pair, solid line: original
filters. Dotted line: rational coefficients filter with a1 = −31/8 and a2 = 8

respectively. The DC gain of H0 and F0 are ∆H = 1.406 and ∆F = 1.456 if the gain
factor of 5/22 (2 SPT terms) and 19/24 (3 SPT terms) are applied respectively.
The coding gain for the original pair and modified pair are 9.643 and 9.709 respectively.

The Sobolev regularity of Ĥ0 and H0 are 1.662 and 1.642 respectively. The Sobolev
regularity of F̂0 and F0 are 2.531 and 1.934 respectively. The decrease of regularity in
F0 (compared with F̂0) is due mainly to the reduction in the number of VMs (from six
to two).

2.4.3 The 13/11 Filter Pair

The 13/11 filter pair from [34] is obtained from factorising the length 23 Lagrange-
Halfband-Filter. The original filters Ĥ0 and F̂0 have six VMs each. The modified filters
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2.4 Rationalizing Biorthogonal Filters

H0 and F0 (without the normalisation factors) are given by

H0 = (z + 1)2(z10 + c1z
9 + c2z

8 + c3z
7 + c4z

6 +

c5z
5 + c4z

4 + c3z
3 + c2z

2 + c1z + 1)

F0 = (z + 1)6(z4 + a1z
3 + a2z

2 + a1 + 1)

and have two and six vanishing moments (VM) respectively.
Here we have reduced four vanishing moments in Ĥ0 since imposing the PR condition

on the product filter P (z) yields five equations (q = 5). The five equations can be solved
for {c1, . . . , c5} in terms of a1 and a2. The original irrational values are â1 = −5.5563
and â2 = 10.6707. The rational values of a1 = −11/2 and a2 = 21/2 are chosen based on
the criteria explained in the section 2.4.1 and their normalized (to unity DC) frequency
response is shown in Figure 2.7. The response of the modified pair is very similar to
the original pair’s response. The rationalized coefficients of the remainder part of the
filters are shown in Table 2.3. The coefficients are normalised by 1/2c so that the DC
gain of the remainder section is as close to unity as possible. The number of SPT terms
required to implement the remainder section of H0 and F0 are 21 and 7 respectively.
The DC gain of H0 and F0 are ∆H = 1.369 and ∆F = 1.406 if the gain factor of 5/22 (2
SPT terms) and 15/24 (2 SPT terms) are applied respectively.
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Figure 2.7: Plot of frequency response of the “13/11” filter pair, solid line: original
filters. Dotted line: rational coefficients filter with a1 = −11/2 and a2 = 21/2

The coding gain for the original pair and modified pair are 9.818 and 9.816 respectively
(almost the same). The Sobolev regularity of Ĥ0 andH0 are 2.126 and 1.991 respectively.
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2.4 Rationalizing Biorthogonal Filters

The Sobolev regularity of F̂0 and F0 are 2.638 and 2.607 respectively. The decrease of
regularity in H0 (compared with Ĥ0) is due mainly to the reduction in the number of
VMs (from six to two).

2.4.4 The 17/11 Filter Pair

The 17/11 filter pair from [34] is obtained from factorising the length 27 Lagrange-
Halfband-Filter. The original filters Ĥ0 and F̂0 have eight and six vanishing moments
(VM) respectively. The modified filters H0 and F0 (without the normalisation factors)
are given by

Ĥ0 = (z + 1)4(z12 + c1z
10 + c2z

9 + c3z
8 + c4z

7 +

c5z
6 + c6z

5 + c4z
4 + c3z

3 + c2z
2 + c1z + 1)

F̂0 = (z + 1)6(z4 + â1z
3 + â2z

2 + â1 + 1)

and have four and six vanishing moments (VM) respectively.
Here we have reduced four vanishing moments in Ĥ0 since imposing the PR condition

on the product filter P (z) yields six equations (q = 6). The six equations can be solved
for {c1, . . . , c6} in terms of a1 and a2. The original irrational values are â1 = −4.9971
and â2 = 9.5260. The rational values of a1 = −5 and a2 = 19/2 are chosen based on
the criteria explained in the section 2.4.1 and their normalized (to unity DC) frequency
response is shown in Figure 2.8. The response of the modified pair is very similar to
the original pair’s response. The rationalized coefficients of the remainder part of the
filters are shown in Table 2.3. The coefficients are normalised by 1/2c so that the DC
gain of the remainder section is as close to unity as possible. The number of SPT terms
required to implement the remainder section of H0 and F0 are 57 and 13 respectively.
The DC gain of H0 and F0 are ∆H = 1.421 and ∆F = 1.406 if the gain factor of 23/24

(3 SPT terms) and 15/23 (2 SPT terms) are applied respectively.
The coding gain for the original pair and modified pair are 9.922 and 9.911 respec-

tively (almost the same). The Sobolev regularity of Ĥ0 and H0 are 2.4984 and 2.630
respectively. The Sobolev regularity of F̂0 and F0 are 2.794 and 2.762 respectively. The
decrease of regularity in H0 (compared with Ĥ0) is due mainly to the reduction in the
number of VMs (from eight to four). The frequency response of the product filter for
the rationalized pair is close to the original product filter.
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Figure 2.8: Plot of frequency response of the “17/11” filter pair, solid line: original
filters. Dotted line: rational coefficients filter with a1 = −11/2 and a2 = 21/2

2.4.5 Selesnick 8/12 Dual-Tree Filter Pair

The Selesnick 8/12 biorthogonal filter pair [14] have approximate linear phase and is
used in the DTCWT. The filters in the tree g are time reversed version of filters in the
tree h. The analysis low pass filter Hh

0 and synthesis low pass filter F h
0 of tree h are

rationalized here. Both Hh
0 (length 8) and F h

0 (length 12) have three VMs each. The
modified filters Ĥh

0 and F̂ h
0 (without the normalization factors) are given by

Ĥh
0 (z) = (1 + z−1)3(1 +

4∑
k=1

âkz
−k)

F̂ h
0 (z) = (1 + z−1)3(1 +

8∑
k=1

ckz
−k)

For the PR condition (2.1) to be satisfied, we need p̂(2n) = 0 for n 6= 0. Since the
filters have non-linear phase, p̂(2n) 6= p̂(−2n) (non-symmetric), the number of equations
resulting is q = (n̂ − 3)/2 = 8 (double the number of the linear phase case). The
coefficients {â1, . . . , â4} are considered as knowns and the coefficients {c1, c2, ..., c8} are
considered as unknowns. Since the number of unknown coefficients is equal to the
number of equations no reduction in VMs is needed. This results in a determined
system of eight equations with eight unknowns {c1, c2, ..., c8}. The solution is therefore
unique and has rational values if {â1, . . . , â4} are rational valued. The original irrational
values are a1 = −1.6025 , a2 = −6.0050, a3 = 1.2795 and a4 = 0.2. With the rational
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2.4 Rationalizing Biorthogonal Filters

values of â1 = −8/5 , â2 = −6, â3 = 5/4 and â4 = 1/5 the rational filter coefficients are
given in Table 2.4.
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Figure 2.9: Spectrum of complex wavelet. Solid line: original filter. Dotted line: ra-
tional filter

The Sobolev regularity of Hh
0 and Ĥh

0 are 2.180 and 2.189 respectively. The Sobolev
regularity of F h

0 and F̂ h
0 are 1.041 and 1.022 respectively. Since there is no VM reduction

in the original and modified filters, the Sobolev regularity remains the same for both
the filters. The spectra of the complex wavelet from the original irrational and modified
filters is shown in Figure 2.9. The E1 and E2 measures from the rational (irrational)
filters are 1.8429% (1.3969%) and 0.0691% (0.0259%) respectively.

Table 2.4: Selesnick 8/12 filter coefficients
n Ĥh

0 (n) F̂ h
0 (n)

0 20 6408449151620
1 28 -8971828812268
2 -156 -530289130918556
3 -411 804118148616079
4 -313 1114311581636023
5 -33 -6315191475273163
6 37 -9230516768524775
7 4 -1711878875277323
8 - 1531732338320909
9 - -159801949594225
10 - -255726357322597
11 - 27646092683524
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2.5 Discussion and Comparisons
The perfect reconstruction (PR) is imposed structurally in lattice and lifting structures
and therefore obtaining rational coefficients is easy but imposing vanishing moment
(VM) is hard. With the factorization of product filter framework imposing VM is easy,
but because factorization is needed, rational coefficients are difficult to achieve. With
orthogonal filters, the factorization is spectral and it is generally impossible to ensure
the spectral factor has rational coefficients even though the product filter has rational
coefficients. This is however not the case with biorthogonal filters as the factorization is
less restrictive.
The framework based on lattice (presented in the Section 2.2.2.2) is therefore the only

approach that is general for rational coefficients orthogonal filters. There are no simple
constraint equations to ensure an arbitrary number of VMs with lattice structures. The
constraint for one VM is [2]: ∑

l

θl = π/4± kπ (2.22)

where θl are the angles of the lattice parameters αl = tan θl in (2.5). This constraint is
augmented with another constraint on the angles for two VMs [53]. Beyond two VMs
there is no reported work. Consider now the simple case of one VM. The constraint
(2.22) is in terms of the angles but the coefficients however depend on the tangent of
the angle, i.e. tan θl. For rational coefficients tan θl needs to be rational valued but
there is no simple way of choosing the angles that will satisfy (2.22) exactly and yield
rational tangent values. Constraint (2.22) was considered by Abbas et. al. [40] in the
construction of orthogonal filters. However (2.22) was only approximately satisfied for
the filters in [40], i.e. the one VM is only approximate and the zero is only in the vicinity
of (and not exactly at) z = −1. The orthogonal filters in [40] therefore have some
DC leakage which was minimized via numerical optimization. The orthogonal filters
presented here however have a zero exactly at z = −1 (one VM) and therefore no DC
leakage. Furthermore some of the filters presented here (using the numerical procedure
presented in section 2.3.2) have an approximate second VM. Our rationalization method
abandons the use of the angles as the parameters and instead works directly with the
tangent values. If the lifting factorization (another possible polyphase structure) is
used on the orthogonal filters and the parameters of the lifting steps are quantized
independently, PR is preserved but the filters are no longer orthogonal, i.e. biorthogonal
in general. Orthogonality however is still preserved by independent quantization of the
lattice parameters, i.e. structural orthogonality.
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Regensburger [54],[55] proposed a framework that parameterize orthogonal filters
based on discrete moments. Regensburger et. al. [54] designed the rational valued
Daubechies length 4 filter having one vanishing moments and showed that it is not
possible to have rational coefficient for a length 4 filter with two vanishing moments.
The design framework in [54] expresses filter coefficients in terms of discrete moment
but the filter coefficients have non-linear relationship with the discrete moments. For
some value of discrete moments, we can get rational valued filter coefficients but the
frequency response of those filters do not have the low pass characteristics. Even though
Rogensburger’s framework have PR and VMs imposition, it is not viable to rationalise
the Daubechies family of orthogonal filters. However, it is easy to generate orthogonal
filters having different discrete moments [54],[43]. The other framework proposed by
Elena et. al. [56] is not suitable for rationalizing the orthogonal filters as well.
For biorthogonal filters, Abbas et. al. [40] use the lifting structures (polyphase frame-

work) which has structural PR but no VM in general except for simple cases with short
filters. Even with simple cases it is difficult in general to impose more than one VM
with lifting. The method presented here is general and applicable to almost any filter
pair as long as there are enough VMs in F0 (longer filter). Furthermore high VM can
be easily achieved.
In [5], Kotteri et al. obtained rational biorthogonal filters using the zero compensation

method. Only the “9/7” pair was considered in [5] but the method could potentially be
used for other biorthogonal pairs. All VMs are preserved for the filters in [5]. However,
even though it is stated in [5] that the PR requirement is used to guide the rational-
ization process, a careful study of the method will reveal that the PR condition (2.1)
is only approximated. In [6], all VMs are preserved but the PR condition (2.1) is only
approximated for the “9/7” filter. In our method the PR condition (2.1) is exactly sat-
isfied. The sacrifice is the reduction of VMs in the longer filter. No sacrifice is needed
however for the shorter filter. There is still a sufficient number of VMs to ensure that the
regularity is not reduced substantially. The coding gain and other filter characteristics
are almost similar to that of the original irrational coefficients filter.
The idea of reducing the number of VMs is similar to the work in [57] but there are

fundamental differences. In [57] only a minimum reduction of two VMs is considered
and the method does not generalize for an arbitrary biorthogonal pair. Closed form
algebraic solution for the coefficients were obtained for the ’9/7’ and ‘6/10’ pairs, the
latter however being a simple variant (through re-factorization) of the former. For the
‘9/11’ pair closed form solution was not possible as the equations are nonlinear and
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the rational solution obtained in [57] serendipitously turned out to be a good solution.
The rationalization method proposed here ensures the equations to be solved are always
linear and this allows the method to be generic. As explained earlier the key to ensuring
linear equations is that the reduction of the VMs occurs only in one filter (F0) and not
the other (H0).
Finally consider the class of polyphase structures in [58],[59] which can be used for

either orthogonal and biorthogonal filter banks. Conditions for one and two VMs were
derived in [58],[59] for these structures and is quite simple for the one VM case. Rational
coefficients filter banks were designed in [60] using these structures. However these
structures are meant for cases when the number of channels M is even and M ≥ 4. A
trivial class of filters consisting of two non-zero coefficients are obtained if the formulas
in [58],[59] are used with M = 2 for the orthogonal case. The structures in [58],[59]
therefore cannot be used to rationalize the 2-channel orthogonal filters considered in
this work.

2.6 Conclusion
This chapter has presented techniques to rationalize orthogonal and biorthogonal filter
banks with perfect reconstruction preserved. It is much harder to preserve vanishing
moments (VM) for orthogonal filters than for biorthogonal filters. Our technique has
been able to preserve at least one VM for orthogonal filters and achieve an approximate
second VM. An efficient way to implement the rational orthogonal filter coefficient based
on lattice structure is also presented. For biorthogonal filters most of the VMs are
preserved. The techniques are simple yet general enough to be applied to almost any
filter bank. The examples presented show that the rationalized filters have characteristics
and performance measures that are close to the original irrational filters.
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3 Design of Almost Symmetric
Orthogonal Wavelet Filter Bank via
Direct Optimisation

It is a well known fact that (compact support) dyadic wavelets (based on the two channel
filter banks) cannot be simultaneously orthogonal and symmetric. Even though orthog-
onal wavelets have the energy preservation property, biorthogonal wavelets are preferred
in image processing applications because of their symmetric property. In this chapter a
novel method is presented for the design of almost symmetric orthogonal wavelet filter
bank. Orthogonality is structurally imposed by using the unnormalised lattice struc-
ture and this leads to an objective function which is relatively simple to optimize. The
designed filters have good frequency response, flat group delay, almost symmetric filter
coefficients and symmetric wavelet function. The designed filters have advantages of
both biorothogonal and orthogonal wavelets. The designed almost symmetric orthog-
onal filters perform on par with the popular 9/7 biorthogonal filter in image coding
applications.

3.1 Introduction
Orthogonal (or more strictly orthonormal) wavelets forms a tight Riesz basis and the
corresponding transform have the l2 norm preserving property. In applications the or-
thogonality property has several advantages such as noise decorrelation in denoising,
simple bit-allocation algorithm in compression and more generally energy preservation
in the transform coefficients. However one of the major drawback with dyadic orthogo-
nal wavelets based on real coefficient FIR filters is that it cannot be exactly symmetric
[8] (except for the simplest Haar wavelets). Orthogonal wavelets based on IIR filters
can however be exactly symmetric [61],[62]. In image processing applications symmetry
(which manifest as phase linearity in the filters) is particularly important as lines and
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3.1 Introduction

edges, which are salient features of most images, are particularly susceptible to non-
linear phase distortion. This is possibly the main reason biorthogonal wavelets, where
symmetry is possible, are prefered in image processing. Biorthogonal transforms are
however not l2 norm preserving and do not have the advantages mentioned above. In
time series analysis orthogonality is important for the analysis of variance [63, chapter
8] and symmetry has the advantage of allowing alignment of the wavelet coefficients [63,
chapter 4].
The desire for both orthogonality and symmetry has lead several researchers to design

orthogonal FB having approximately linear phase [11],[64],[65],[42],[10],[9]. Although the
ultimate aim is the same (orthogonality and symmetry) the design strategies reported
are different. The original orthogonal wavelets of Daubechies have maximum vanishing
wavelet moments and are highly asymmetric. The corresponding filters are obtained from
the minimum phase spectral factor of the maximally flat product filter. Symmlets are a
variation and are obtained from the same product filter but with a spectral factor that
has approximate linear phase. The main idea behind Coiflets (and their generalization) is
the reduction of the number of vanishing wavelet moments so that the available degrees
of freedom can be used for achieving vanishing scaling function moments. Imposing
vanishing scaling function moments has the indirect effect of giving approximately linear
phase filters and increasing the symmetry of the scaling and wavelet functions. In [65]
and [42] the strategy is to reduce the deviation of the filters’ phase response from the
linear response. In [65] a specified degree of flatness in the group delay is imposed
at DC and the DC group delay is allowed to be a non-integer. In [42] non-centered
(wavelet and scaling function) vanishing moments are used and this introduces one
free parameter which can be optimized with respect to the phase distortion. In [64]
partial symmetry is imposed on some of the filter coefficients and the coefficients value
are obtained by imposing the vanishing wavelet moments and orthogonality conditions.
The non-symmetric coefficients are ideally small in value but there is no direct control
over their values in [64]. The main purpose of these non-symmetric coefficients is to
ensure the orthogonality condition is satisfied. In [10] strict symmetry is imposed on
the filter coefficients but the orthogonality condition is approximated by minimizing the
reconstruction error using optimisation techniques.
For M-D (multidimensional) signal the 1-D filters are applied separably (along each

dimensions independently) to give an equivalent separable M-D wavelet system but sep-
arable orthogonal FIR filters cannot be exactly symmetric. It is also possible to use
non-separable orthogonal M-D FIR filters which can be exactly symmetric and the de-
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sign of non-separable symmetric orthogonal wavelets were presented in [66],[67],[68]. The
design of non-separable filters are however more difficult than 1-D filters. Imposing a
higher number of vanishing moments is more complicated in the non-separable case. The
main disadvantage of non-separable filters however is that M-D convolution operations
are required in their implementation and this is significantly more intensive computa-
tionally than the implementation of separable filters (requiring only 1-D convolutions).
In many image processing applications, eg. JPEG2000 compression, separable filters are
used.
A novel method is presented in this chapter for the design of almost symmetric orthog-

onal wavelet filter banks. Unlike the previous methods discussed above which are essen-
tially indirect, the method here is a direct minimization of the asymmetry of the filter
coefficients with structural orthogonality and an imposed number of vanishing wavelet
moments. The chapter is outlined as follows. The review of the design of coiflets and
symmlets is presented in Section 3.2. The new approach to design symmetric orthogonal
FB is presented in Section 3.4. Design examples are presented in Section 3.5 and an
application to image compression is presented in Section 3.6.3. The chapter concludes
in Section 3.7.

3.2 Wavelet Discrete Moments and Coiflets
Let the low pass analysis filter H0(z) be defined as H0(z) ≡ ∑2L−1

n=0 h0(n) z−n. The
degrees of freedom available to design h0(n) is 2L. The PR condition (2.1) takes half of
the degrees of freedom. To impose VMs and other conditions, the remaining L degrees
of freedom are utilised. As detailed in the Section 2.2, Daubechies designed orthogonal
FB having maximum VMs i.e., all the remaining L degrees of the freedom are used to
impose VMs on the orthogonal filter. The rationale behind having the maximum number
of VMs are

• To have a very smooth wavelet function

• To have a simple design methodology

However some degrees of freedom can be utilised to tune other characteristics of the
wavelet filter such as achieving symmetry of the wavelet function. The symmetry of
the wavelet function plays a vital role in the image processing which is the motiva-
tional factor behind designing a symmetric wavelet function. It has been found in the
literature[43],[11],[69] that setting a few scaling moment of the filter to zero will result

40



3.3 Symmlets

in an almost symmetric wavelet function . The kth scaling moments of the filter h0(n)
is defined as

µ(k) =
∑
n

nkh0(n) for k = 1, 2, ..L− 1 (3.1)

Some degrees of freedom are utlised to set the scaling moment to zero. There is a
relationship among scaling moments [70],[55] and it is given by

µ(k) = 1
2
√

2

k−1∑
l=1

 k

l

 (−1)lµ(l)µ(k − l) (3.2)

where k = 2, 4, ..2K − 2. A few derivation from the equation (3.2) shows that

µ(2) = − 1√
2
µ2(1)

µ(4) = 1
2
√

2
[8µ(1)µ(3)− 3µ4(1)] (3.3)

....

From the equation (3.3), if µ(1) is set to zero, then µ(2) is set to zero automatically.
In the Coiflets design, some degrees of freedom are utilised to impose the VMs and the
remaining degrees of freedom are utilised to impose the scaling moments. Even though
Coiflets filters have symmetric wavelet function, an indirect method is used to obtain
a symmetric wavelet. In the Coiflet design, there is no control over the symmetry of
the wavelets and it is not clear how many scaling moments are required to control the
symmetry of the wavelet. The Coiflets filters have approximately linear phase charac-
teristics.

3.3 Symmlets
The Symmlets are designed by Daubechies [7],[8] to have approximately linear phase
and approximately symmetric wavelet function. The design of Symmelet is very simple
and does not involve setting some scaling moments of the filter (3.1) to zero. The design
of Daubechies minimum phase filters are detailed in the Section 2.2.2.1. There are
several different distributions of the roots possible with the given product filter P (z).
Daubechies choose the roots such that it gives an approximate linear phase filters [8].
The Symmlets are the least asymmetric Daubechies wavelet filters.

41



3.3 Symmlets

Table 3.1: Coefficients of Symmlets orthogonal filters. 2L: Filter Length. p: Number
of VMs.
2L p Filter Coefficients
8 4 -0.07576571,-0.02963553,0.49761867,0.80373875,

0.29785780,-0.09921954,-0.01260397,0.03222310
12 6 0.01540411,0.00349071,-0.11799011,-0.04831174,0.49105594,0.78764114,

0.33792942,-0.07263752,-0.02106029,0.04472490,0.00176771,-0.00780071

Example I: The Symmlet filter of length 2L = 8 having 4 VMs is designed. The wavelet
function in Figure 3.1 shows that it is approximately symmetric. The filter coefficients
are shown in Table 3.1.
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Figure 3.1: Scaling and wavelet function of the length-6 Coiflet filter with two VMs

Example II: The Symmlet filter of length 2L = 12 having 6 VMs is designed. The
wavelet function in Figure 3.2 shows that it is approximately symmetric. The filter co-
efficients are shown in Table 3.1.
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Figure 3.2: Scaling and wavelet function of the length-6 Coiflet filter with two VMs

Symmlets are easy to design as it is based on spectral factorisation and it has max-
imum VMs. Symmelet filters of lower length produce asymmetric wavelets and higher
order Symmlets can produce least asymmetric wavelets. The higher order Symmlets are
difficult to design because of unreliability of the spectral factorisation algorithm.

3.4 Asymmetry Minimization
For symmetric scaling and wavelet functions the filter cofficient h0(n) must be symmetric
and the filter has linear phase response. However orthogonal filters cannot be exactly
symmetric except for the simplest two taps filter which corresponds to the Haar wavelet
[8]. The goal is therefore to minimize the asymmetry and this require some objective
measure of asymmetry to be defined.

3.4.1 Asymmetry Measure

Symmetry is naturally defined in the time (or spatial) domain but exhibits as phase
linearity or constant group delay in the frequency domain. In [64] a measure based on
group delay τ(ω) ≡ − d

dω
∠H0(ejω) is defined as

Egrp ≡
1

2N

N−1∑
n=0
|τ( πn2N )− τ0| (3.4)
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where there are N points equally distributed over [0, π2 ] and the mean value is defined
as τ0 ≡ 1

2N
∑N−1
n=0 τ( πn2N ). The value of Egrp will be closer to zero if the filter have

symmetric coefficients. A similar symmetry measure based of phase distortion is used
in [42]. However these frequency domain measures are only proxies. Here we propose
a direct measure to minimise the symmetry of the filter. Now the filter H0(ejω) length
is even (2L) and it should have a low-pass characteristics. Therefore if the filter could
hypothetically be symmetric it should be a Type 2 FIR system:

h0(n) = h0(2L− 1− n) ∀n

i.e. the left-half coefficients are mirror image of the right-half coefficients. The deviation
from this condition is (h0(n)− h0(2L− 1− n)) which leads to the following asymmetry
measure

Esym ≡
L−1∑
n=0

(h0(n)− h0(2L− 1− n))2 (3.5)

The square of the deviation (l2 norm) instead of the absolute deviation (l1 norm) is used
as it leads to an objective function that is easier to differentiate and has continuous
derivative. This measure can also be related to a frequency domain measure as follows.
The non-symmetric filter H0(ejω) can be decomposed into

H0(ejω) = Heven(ejω) +Hodd(ejω)

where the coefficients of Heven and Hodd have even and odd symmetry respectively:

heven(n) ≡ 1
2(h0(n) + h0(2L− 1− n)) = heven(2L− 1− n)

hodd(n) ≡ 1
2(h0(n)− h0(2L− 1− n)) = −hodd(2L− 1− n)

Now Esym is the (scaled) L2 norm of Hodd(ejω), i.e. Esym = 4||Hodd(ejω)||2. Minimizing
Esym is therefore equivalent to minimizing the energy of the odd part of the filterH0(ejω).
In the ideal case when a filter is exactly symmetric it will have linear phase and both
the Egrp and Esym measures will be exactly zero. Filters with near symmetry should
have relatively low Egrp and Esym values compared to filter without near symmetry.
Both Egrp and Esym are therefore measure of deviation from symmetry but there is no
explicit mathematical relationship between Egrp and Esym. It is generally accepted that
the human visual system (HVS) is more tolerant to symmetric errors than asymmetric
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3.4 Asymmetry Minimization

ones [1],[66]. The HVS perceives an image in the spatial domain and therefore it can
be argued that it is more natural to measure asymmetry in the spatial rather than the
frequency domain. From an optimisation perspective Esym is a simpler objective function
(less non-linear) in the filter coefficients compared to Egrp (involves the derivative of the
arctangent function). More comparison between Egrp and Esym will be made later in
the sections 3.5 and 3.6.3.

3.4.2 Optimisation algorithm

Using the lattice parametrization the un-normalized filter coefficients ĥ0(n) (≡
√
Kh0(n))

can be expressed as multilinear functions of the lattice parameters. For example the
length 8 (L = 4) filter coefficients are given by

{ĥ0(0), . . . , ĥ0(7)} = {1,−α1,−α1α2 − α2α3 − α3α4,−α2 + α1α2α3 + α1α3α4,

− α1α3 − α2α4 + α1α2α3α4,−α3 + α1α2α4 + α2α3α4,−α1α4,−α4}

Imposing the sum rule (2.3) results in a multilinear constraint equation in the lattice
parameters. For example with the length 8 filter with k = 0 the constraint equation is

1 + α1 + α2 + α3 − α1α2 − α1α3 − α2α3 − α1α2α3 = 0.

The measure in (3.5) can be expressed as a ratio of two multiquadratic functions of the
lattice parameters as follows:

Esym ≡
∑
n

(h0(n)− h0(2L− 1− n))2

=
∑
n

(ĥ0(n)/
√
K − ĥ0(2L− 1− n)/

√
K)2

= (
∑
n

(ĥ(n)− ĥ(2L− 1− n))2)/K ≡ Êsym/K

Now Êsym is quadratic in ĥ(n) and

K ≡
L∏
l=1

(1 + α2
l ) > 0

The design goal is then to minimize Esym in (3.5) subject to the p VM constraints
in (2.3). This requires the use of the Lagrange multiplier method. Note that both
the objective function and constraints are non-convex, i.e. non-convex optimisation.
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3.4 Asymmetry Minimization

For convenience eqn. (2.3) is scaled by 1/K (> 0) before it is incorporated into the
Lagrangian function that is given by:

H = Êsym
K

+ 1
K

p−1∑
k=0

λk(
∑
n

(−1)nnkĥ0(n)) ≡ Ẽsym
K

Now Ẽsym is multiquadratic in αl’s and linear in λk (the Lagrange mutipliers). Setting
the derivative of H w.r.t. αl to zero gives

∂H

∂αl
≡ Hαl

= KẼsym,αl
− ẼsymKαl

K2 = 0. (3.6)

where
Ẽsym,αl

≡ ∂Ẽsym
∂αl

and
Ksym,αl

≡ ∂Ksym

∂αl

It is easy to show that the greatest common factor gcf(K,Kαl
) = ∏

k 6=l(1 + α2
k) and

Kαl
/K = 2αl/(1 + α2

l ). Equation (3.6) can then be simplified to

Ẽsym,αl
(1 + α2

l )− Ẽsym 2αl = 0 (3.7)

The equation above is a multivariate polynomial equation and is cubic in αl, quadratic
in all other α’s and linear in the Lagrange mutipliers. The optimisation process there-
fore requires the solution to the set on simultaneous polynomial equations (3.7) for
l = 1, . . . , L and (2.3) for k = 0, . . . , p − 1. There are a plethora of methods for the
solution of simultaneous non-linear equations but a relatively straightforward method is
the multivariate version of the classical Newton-Raphson method [71].
Choice of initial values: Iterative methods for solving non-linear equations such the
Newton-Raphson method require the specification of the initial guess values which needs
to be reasonably close to the final solution. Since the optimisation problem here is non-
convex a particular solution may only be a local optimum. To ensure a solution that
gives good filter is obtained multiple (instead of one) sets of initial values are tried.
Note that only real-valued solutions are of interest here. As discussed in [71] insight
or additional information of the particular problem is needed for the iterative methods
to work well. Consider now the case with maximum VM, i.e. p = L, and there are
no degrees of freedom left that can be used to minimize Esym. The lattice parameters
values are the solutions to the set of multilinear equations (2.3) for k = 0, . . . , L − 1
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and correspond to filters that are spectral factors of the maximally flat product filter
P (z). Each unique solution set correspond to a unique spectral factor and the set of
lattice parameters value can be obtained by applying the lattice factorization algorithm
[1] on that spectral factor, i.e. there is no need to explicitly solve the set of multilinear
equations. If the number of VM is reduced p < L some of the multilinear equations
would still apply but there are now some degrees of freedom available to reduce Esym.
This can be viewed as a process of perturbing the maximally flat solution. Therefore
the lattice parameters value obtained from the spectral factors of the maximally flat
product filter are suitable choices for initial values. Since half of the spectral factors of
a given product filter are time-reverse versions (H0(z) → z−(2L−1)H0(z−1)) of the other
half, only half of the spectral factors need to be considered (note that Esym is the same
for two spectral factors that are time reversed version of each other).
A summary of the optimisation algorithm is as follows:

1. Specify the filter length 2L and the number of VMs p.

2. Obtain all distinct spectral factors (exclude time-reverse versions) of the maximally
flat product filter of length 4L− 1.

3. Obtain the sets of lattice parameters value corresponding to the distinct spectral
factors by using the lattice factorization algorithm [1].

4. For each set of lattice parameters value as initial values, apply the Newton-Raphson
(or any other suitable) method to solve the equations (3.7) and (2.3).

5. Choose the solution that gives the lowest Esym measure.

The algorithm was tested on a quad-core PC (Intel i7 2.66GHz) running Matlab (7.9.0.529
(R2009b)) for filters with length up to 40 without any problems.

3.5 Design Examples
Example III : The filter length is 2L = 10 and in the first instance the number of VMs
is set to 3. i.e. p = 3. The corresponding scaling and wavelet functions are shown
in Figure 3.3. The corresponding symmlet functions (with the same filter length) is
also shown (dotted line) for comparison. It can be observed from that the scaling and
wavelet functions designed using the proposed technique is more symmetric compared
to the symmlet functions.
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Figure 3.3: Scaling and wavelet function of length 10 filter with 3 VMs. Solid line:
Almost symmetric filter. Dotted line: Symmlets

The impulse response and group delay response are shown in Figure 3.4. It can be
observed that the impulse response of the filter is symmetric and the filter looks like
a Type 2 filter. The group delay response shown in Figure 3.4 (bottom) is virtually
flat which also confirms that the filter has linear phase characteritics. The asymmetry
measures are

(Esym, Egrp) = (3.08× 10−4, 0.0186)

for this example and is lower when compared to (Esym, Egrp) = (0.0626, 0.1453) for the
symmlet. If the VMs is reduced by one (p = 2) the asymmetry measures are

(Esym, Egrp) = (2.59× 10−4, 0.0197)

i.e. increased symmetry at the expense of reduced VMs. The filter coefficients values
for both the 3 VMs and 2 VMs cases are shown in Table 3.2. The zoomed in zero plot
of the designed filter having 3 VMs is shown in Figure 3.5 showing 3 zeros at z = −1.
The sum rules (2.3) are of order of 10−16 indicating the VM constraints are satisfied to
within the numerical precision.
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Figure 3.4: Impulse response and group delay response of length 10 filter with 3 VMs.

Table 3.2: Coefficients of almost symmetric orthogonal filters. 2L: Filter Length. p:
Number of VMs.

2L p Filter Coefficients
10 3 0.00990261, 0.01289124, -0.08868831, 0.08710378, 0.69798784,

0.69379808, 0.08949212, -0.08790576, -0.00158748, 0.00121945
10 2 0.01182899, 0.01068742, -0.08873840, 0.08881929, 0.69550569,

0.69624669, 0.08797808, -0.08805734, 0.00053242, -0.00058929
12 5 0.01123325, 0.00792041, -0.09472487, -0.07758217,

0.40738677, 0.79695609,0.41944629, -0.05946826,
-0.04250054, 0.04816740, 0.00626588, -0.00888668

12 4 -0.00726021, 0.02753967, 0.02907041, -0.11110287,
0.10320477, 0.69967915 ,0.67890365, 0.11646589, -
0.10273642, -0.02703694, 0.00592457, 0.00156188

12 3 0.00124265, 0.00528768, 0.00621915, -0.08565105,
0.08554397, 0.69632692, ,0.69698767, 0.08508043,
-0.08557914, 0.00669556, 0.00269248, -0.00063276

20 5 0.00043266, 0.00022687, -0.00160659, -0.00204645, -0.00134142,
0.02040479, -0.00238632, -0.11123623, 0.11472244, 0.68901444,
0.68781713, 0.11551674, -0.11108108, -0.00311168, 0.02226677,
-0.00256801, -0.00195077, 0.00135246, 0.00023395, -0.00044617

Example IV : The filter length is 2L = 12 and several cases with different number of
VMs p are considered. Comparisons are also made with other reported works and the
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Figure 3.5: Zero plot of length 10 filter having 3 VMs.

Table 3.3: Asymmetry measures for length 12 filter. Comparison made with other
methods.

Method p Egrp Esym sc

Symlets 6 0.0741 0.5478 2.388
optimisation 5 0.0668 0.3825 2.324
optimisation 4 0.0556 0.0044 1.939

Abdelnour [64] 0.0784 0.0075 2
Coiflets 0.0203 1.1427 1.836
Wei [42] 0.0259 1.1433 1.833

optimisation 3 0.0045 1.11× 10−5 1.465
Abdelnour[64] 0.014 1.1211 1.843
optimisation 2 0.0047 1.03× 10−5 1.464
Abdelnour[64] 9.8× 10−5 0.4336 1.037

results are summarized in Table 3.3. As the number of VMs p is reduced Esym (Egrp) is
also reduced, i.e. a trade-off in VMs for increased symmetry. Reducing p below 3 however
does not improve the symmetry significantly as the scaling and wavelet functions with
p = 3 are already virtually symmetric as can be seen in Figure 3.6 (the corresponding
symmlets (in dotted line) is also shown for comparison). The impulse response and
group delay response are shown in Figure 3.7. It can be observed that the impulse
response of the filter is symmetric and the filter looks like a Type 2 filter. The group
delay is approximately flat over the passband as shown in Figure 3.7 (bottom). The filter
coefficients values are given in Table 3.2. The zoomed in zero plot of the designed filter
having 4 VMs is shown in Figure 3.8 showing 4 zeros at z = −1. The sum rules (2.3)
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Figure 3.6: Scaling and wavelet function of length 12 filter having 3 VMs. Solid line:
Almost symmetric filter. Dotted line: Symmlets

are of order of 10−12 indicating the VM constraints are satisfied to within the numerical
precision.
Our design is superior in terms of the Esym measure compared with earlier reported

works. The Egrp measure in our designs is small but is not necessary the lowest compared
to other reported works. Note however in the p = 4 case the filters with the lower Egrp
value (Coifets and Wei [42]) are also the filter with the higher Esym value. The filter with
p = 2 by Abdelnour [64] has very small Egrp value but quite large Esym value. These
observations suggest that minimizing Egrp may not lead to filters with high symmetry.
On the other hand the filters in this work which is optimized w.r.t. to Esym all have
reasonably small Egrp values.
Example V : The filter length is 2L = 20 and the number of VMs is p = 5. The filter
coefficients are given in Table 3.2. The asymmetry measures are

(Esym, Egrp) = (1.712× 10−5, 0.005)

for this example and is significantly lower when compared to

(Esym, Egrp) = (0.456, 0.1324)

for the corresponding symmlet. The scaling and wavelet functions are shown in Figure
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Figure 3.7: Impulse response and group delay response of length 12 filter with 4 VMs.
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Figure 3.8: Zero plot of length 12 filter having 4 VMs.

3.9 where the corresponding symmlets (in dotted line) is also shown for comparison.
The sum rules (2.3) are of order of 10−10 indicating the VM constraints are satisfied to
within the numerical precision.
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Figure 3.9: Scaling and wavelet function of length 20 filter having 5 VMs. Solid line:
Almost symmetric filter. Dotted line: Symmlets

Example VI : The filter length 2L = 40 having 5 VMs is designed to show the versatility
of the proposed technique. The asymmetry measures are

(Esym, Egrp) = (1.852× 10−5, 0.006)

for this example. The scaling and wavelet functions are shown in Figure 3.10 where
the corresponding symmlets (in dotted line) is also shown for comparison. The impulse
response and group delay response are shown in Figure 3.11. The sum rules (2.3) are
of order of 10−12 indicating the VM constraints are satisfied to within the numerical
precision.
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Figure 3.10: Scaling and wavelet function of length 40 filter having 5 VMs. Solid line:
Almost symmetric filter. Dotted line: Symmlets
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Figure 3.11: Impulse response and group delay response of length 40 filter with 5 VMs.

From all the design examples, it has been proved that the designed filters offer high
level of symmetry compared to other methods reported in the literature. Desired number
of VMs can be imposed on the filter. Instead of using the Lagrange multipler, a versatile
non-linear optimiser based on interior point method [72] can also be used.
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3.6 Application in image compression
In this Section, we will perform image compression using the designed filter, Daubechies
filter, Symmlets and Coiflets and compare all the filter performance.

3.6.1 SPIHT

The Set Partitioning In Hierarchical Trees (SPIHT) algorithm is widely used for ef-
ficiently compression of images. It is a highly refined version of Embedded Zerotree
Wavelet (EZW) algorithm. It was introduced in [73] by Said and Pearlman. The SPIHT
algorithm reduces the number of bits needed for encoding compared to EZW algorithm
and it favours the progressive transmission. The SPIHT algorithm gives better compres-
sion rate and image quality at low bit rates. After the sub-band decomposition of the
image, the wavelet coefficients are grouped into sets known as spatial-orientation tress.
The coefficients in each spatial orientation are coded from Most Significant Bit-planes
(MSB) to Least Significant Bit-planes (LSB). Energy is concentrated in the parent co-
efficients (coefficients at coarser level). The SPIHT algorithm leverages on the fact that
wavelet coefficient values decrease in magnitude from parent to the child. The List of
Insignificant Pixels (LIP) contains the individual coefficients that have magnitude values
smaller than the threshold. The List of Significant Pixels (LSP) contains the individual
coefficients that have magnitude values exceeds or equals the threshold. The List of
Insignificant Sets (LIS) contains set of wavelet coefficients at the node in the spatial-
orientation tree. The LIS can be one of two types of sets. A type A LIS is a set of
four subtrees of pixels where all of the four subtree roots share the same parent and
the pixels in the subtrees rooted by those four pixels are all insignificant, including the
four subtree root pixels themselves. A type B insignificant set is a set of 16 subtrees of
pixels where all of the 16 subtree roots share the same grandparent and the pixels in
the 16 subtrees are all insignificant, including the subtree roots. Let D(i, j) be the set
of coordinates of all descendants of the node (i, j). Let O(i, j) be the set of coordinates
of all offspring of the node (i, j). Let H be the set of all spatial orientation tree roots.
Let L(i, j) = D(i, j)−O(i, j) and

Sn(i, j) =

1 max(i,j) {|ci,j|} ≥ 2n

0 otherwise
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where ci,j represents the (i, j)th wavelet coeffiicient. The SPIHT algorithm [73] is given
in Algorithm 3.1 :

Algorithm 3.1 SPIHT Algorithm
1. Initialisation: Output n= floor(log2(max(i,j) {|ci,j|}))

Set the LSP as an empty list and add the coordinates (i, j) ∈ H to the LIP and
descendants to the LIS

2. Sorting Pass:

a) For each entry (i, j) in the LIP do:
i. Output Sn(i, j)
ii. If Sn(i, j) = 1 then move (i, j) to the LSP and output the sign of ci,j

b) For each entry (i, j) in the LIS do:
i. If the entry is of type A then

A. Output Sn(D(i, j))
B. If Sn(D(i, j)) = 1then

For each (k, l) ∈ O(i, j) do:
Output Sn(k, l)
If Sn(k, l) = 1 then add (k, l) to the LSP and output the sign of ci,j
If Sn(k, l) = 0 then add (k, l) to the end of LIP
if L(i, j) 6= 0 then move (i, j) to the end of the LIS as an entry of

type B and then go to Step iii; otherwise remove entry (i, j) from the
LIS

ii. If the entry is of type B then
A. Output Sn(L(i, j))
B. If Sn(L(i, j))=1 then

add each (k, l) ∈ O(i, j) to the end of the LIS as an entry of type A
remove (i, j) from the LIS

3. Refinement Pass: for each entry (i, , j) in the LSP, except those included in the
last sorting pass ,output the nth most significant bit of |ci,j|

4. Quantisation Step: Decrement n by 1 and go to step 2
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3.6.2 Performance measures

3.6.2.1 MSE, PSNR

The Mean Square Error (MSE) between two images I1(m,n) and I2(m,n) is given by

MSE =
∑
M,N [I1(m,n)− I2(m,n)]

M ×N
The lower the value of MSE, the lower the error between two images. The Peak Signal
to Noise Ratio (PSNR) is computed using the equation:

PSNR = 10× log10

(
2552

MSE

)

The value of PSNR is expressed in terms of decibels (dB). The higher the value of PSNR,
the better the image quality.

3.6.2.2 SSIM

The MSE and PSNR measures do not capture the perceived visual quality of the image.
The Structural SIMilarity (SSIM) index [74] is a method for measuring the similarity
between two images. Even though SSIM measure is different from PSNR, there is
some analytical relationship between PSNR and SSIM [75]. The SSIM compares the
structural similarity between the original image and the synthesised image. The basic
measurements involved in computing SSIM are

1. Luminance measurement

2. Contract measurement

3. Structural measurement

The SSIM index can be computed using the formula

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

where µx and µy are the mean intensity of image x and y respectively. The value σx and
σy are the standard deviation of image x and y respectively. The σxy is the correlation
between two images x and y. For a gray scale image, the value of the constant C1 and
C2 are taken to be 6.5025 and 58.5225. A circular symmetric Gaussian window of size
11 × 11 is used to compute the local measure such as σx, σy and σxy. The Gaussian
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(a) (b)

Figure 3.12: (a) Original Image. (b) zoomed in image.

window has a standard deviation of 1.5 samples and it is normalised to unity sum.
We use the mean value of SSIM to evaluate the overall image quality

MSSIM = 1
Wn

Wn∑
j=1

SSIM(xj, yj)

where Wn is the number of local windows of the image.

3.6.3 Image Compression Experiment 1

The test image of size 256×256 pixels shown in Figure 3.12 contains a lot of sharp edges.
The SPIHT [73] algorithm with 4 levels of wavelet decomposition is applied to compress
the image with a target bit-rate of 0.5 bits-per-pixel. Three length 10 orthogonal filters
and one biorthogonal filter pair are considered for the wavelet decomposition:
(i) Daubechies minimum phase D10
(ii) Symmlets SY10
(iii) Almost Symmetric optimized AS10
iv) Daubechies D9/7 (used in JPEG2000).

The reconstructed images are shown in Figure 3.13(a)-(d). Both the PSNR and SSIM
index (Structural Similarity Index introduced in [74] as a perceptual measure) of the
decompressed images are computed and are shown in Table 3.4. The PSNR with the
D9/7 is the highest but the SSIM index is approximately the same with the AS10 pair.
However the D9/7 pair does not have the energy preservation of the AS10 pair. The
PSNR and SSIM with the D10 is the lowest compared to other filters. The decompressed
image with the AS10 and D9/7 have the best overall image quality. The zoomed in
portion of the images (on the circular shape with a square inset) are shown in Figure
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(a) (b)

(c) (d)

Figure 3.13: SPIHT compressed image at 0.5 bpp using length 10 filters. (a) Using
almost symmetric filter. (b) Using Symmlets. (c) Using Daubechies minimum phase.
(d) Using Daubechies 9/7 filter.

3.14 and all show distortions due to compression. Visually the worst reconstructed image
is with the D10 filter where the edges of the square shape are almost indistinguishable.
The best visually is with the AS10 filter where the edges of the square shape are still
quite distinguishable. The AS10 filter performs the best at preserving the edges as it
is a virtually symmetric even length filter. It was found in [76] that symmetric even
length filters have significantly less shift variance and performs better in preserving the
location, shape and intensity of impulses compared to symmetric odd length filters (eg.
D9/7). Since the AS10 is orthogonal, the task of optimal quantization and bit allocation
is much easier [77].
The Sobolev regulaity of analysis filter of the D9/7 and the AS10 are 1.41 and 1.51
respectively. The analysis wavelet of the AS10 is more smoother than the D9/7 wavelet.
However the synthesis wavelet of D9/7 is smoother than the AS10. The AS10 filter
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3.6 Application in image compression

(a) (b)

(c) (d)

Figure 3.14: Zoomed in image. (a) Using almost symmetric filter. (b) Using Symmlets.
(c) Using Daubechies minimum phase. (d) Using Daubechies 9/7 filter.

Table 3.4: PSNR and SSIM for various filters
Filter PSNR SSIM
AS10 24.91 dB 0.832
D10 24.35 dB 0.785
SY10 24.93 dB 0.829

Daubechies 9/7 25.38 dB 0.837

having more VMs can be designed easily by the proposed technique described in the
Section 3.4.

3.6.4 Image Compression Experiment 2

The length 12 filter by Wei [42] (W12) is designed by minimizing the phase distortion
and has lower Egrp compared to the length 12 designed here (AS12) - see table 3.3 for
p = 4 (VMs). However Esym is significantly larger for W12 - see table 3.3 for p = 4
(VMs). The SPIHT [73] algorithm with 4 levels of wavelet decomposition is applied to
compress the test image shown in Figure 3.12 with a target bit-rate of 0.5 bits-per-pixel.
The PSNR and SSIM using AS12 and W12 are (25.08 dB, 0.823) and (24.07, dB, 0.811)
respectively. The AS12 has the highest value of PSNR and SSIM values compared to the
W12 filter. The edges of the decompressed image shown in Figure 3.15 (b) using W12
were more blurred. This further strengthens the argument of using the spatial domain
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3.6 Application in image compression

measure of asymmetry.

(a) (b)

Figure 3.15: Zoomed in image. (a) Using AS12. (b) Using W12

3.6.5 Image Compression Experiment 3

The test image of size 1024 × 1024 pixels shown in Figure 3.16 (a) contains a lot of
horizontal lines, vertical lines and sharp edges. The SPIHT [73] algorithm with 5 levels
of wavelet decomposition is applied to compress the image with a target bit-rate of
0.5 bits-per-pixel. Three length 12 orthogonal filters are considered for the wavelet
decomposition:

Table 3.5: PSNR and SSIM for various filters
Filter PSNR SSIM
AS12 27.23 dB 0.9251
D12 24.44 dB 0.8235
SY12 24.22 dB 0.7951

(i) Daubechies minimum phase D12
(ii) Symmlets SY12
(iii) Almost Symmetric optimized AS12

The reconstructed images are shown in Figure 3.16(b)-(d). Both the PSNR and SSIM
index are shown in the Table 3.5. The AS12 filter outperforms the D12 and SY12 filter
interms of both PSNR and SSIM. The zoomed in portion of the images are shown in
Figure 3.17. The sharp edges are distorted in the decompressed image using D12 and
SY12 filters. The best overall image quality is obtained from using AS12 filter.
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(a) (b)

(c) (d)

Figure 3.16: (a) Original Image. SPIHT compressed image at 0.5 bpp using length 12
filters. (b) Using Daubechies minimum phase.(c) Using Symmlets. (d) Using almost
symmetric filter.
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(a) (b)

(c) (d)

Figure 3.17: Zoomed in image. (a) Original Image. (b) Using Daubechies minimum
phase. (c) Using Symmlets. (d) Using almost symmetric filter.

3.7 Conclusion
This chapter has presented a novel optimisation technique for designing almost symmet-
ric orthogonal wavelet filter banks. The technique is simple and can be applied to design
relatively long filters. The main advantage of this technique is the structural orthogo-
nality which is achieved by using the lattice parametrization. The required number of
vanishing moment are imposed as constraints. The remaining degrees of freedom are
then utilised to minimize the objective function which measures directly the degree of
asymmetry of the filter. Design examples were presented to show the superiority of the
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results compared to previous works. The application of the designed filters to the image
compression was also presented. The best overall image quality in image compression
application was obtained using the designed almost symmetric orthogonal filters.
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4 Design of Almost Symmetric
Orthonormal Hilbert Pair of
Wavelets

The dual-tree complex wavelet transform offers near shift invariance and better direc-
tional selectivity compared to the traditional discrete wavelet transforms. A new class
of Hilbert-pair of wavelets that can be used in the dual-tree is presented in this chapter.
These Hilbert-pairs are exactly orthogonal but are also virtually symmetric thus have
the advantages found in both orthogonal and biorthogonal wavelets. Symmetry in the
wavelets is of prime importance in many applications as it offers better directional se-
lectivity. An efficient and flexible design technique is proposed for the design of these
new Hilbert-pairs in this chapter. The proposed technique readily allows the designer to
trade-off between the degree of symmetry and the analytic quality. The designed wavelet
filters have good frequency response, flat group delay and achieve a good approximation
to the half sample delay condition which is required for good analytic quality.

4.1 Introduction
The Discrete Wavelet Transform (DWT) is an indispensable tool in a wide range of
engineering and scientific applications and can be implemented efficiently with filter
banks (FB) [2],[1]. However the DWT suffers from some problems

1. Shift variance

2. Lack of directionality

3. Oscillation & Aliasing

The wavelet coefficients oscillate positive and negative around singularities and it com-
plicates the signal modelling. The shift variance is inherent in the DWT and it is
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caused by the downsampling operation in the DWT. A small shift of the signal causes
greater perturbation of the wavelet coefficient around singularities [27]. To overcome
the shift variance of the DWT, the undecimated DWT was proposed in the literature
[78],[79],[2],[24]. The undecimated DWT is a redundant transform (over complete trans-
form) and requires more computation compared to the DWT. A new generation of
wavelet based transforms have also been proposed to overcome the DWT problems and
they are usually overcomplete or redundant [80],[81]. The Dual Tree Complex Wavelet
Transform (DTCWT) introduced by Kingsbury has emerged as one of the most pop-
ular redundant transforms in a wide variety of applications [82],[27]. The DTCWT
has near shift invariance, provides directional selectivity in multidimensions and lower
redundancy than the undecimated DWT [27].
The DTCWT is implemented using a pair of two-channel perfect reconstruction (PR)

multirate filter banks. The equivalent wavelet function of the two filter banks, ψh(t) and
ψg(t) (with Fourier transform Ψh(ω) and Ψg(ω) respectively) should ideally satisfy the
following Hilbert transform relationship

Ψg(ω) =

−jΨ
h(ω), ω > 0

jΨh(ω), ω < 0
(4.1)

The wavelets (ψh(t),ψg(t)) form a Hilbert-pair (and the same can be said of the corre-
sponding pair of filter banks) and can be either biorthogonal or orthogonal. The Hilbert
transform relationship (4.1) can however only be approximated with practical filter banks
and it is tacit that in all practical Hilbert-pairs the relationship is approximate. Reviews
of earlier design techniques for Hilbert-pairs are found in [27] and [83]. Some of the more
recent techniques are found in [84],[85],[86],[87],[88],[89]. Most techniques proposed are
for FIR filters but recently techniques for IIR filters have been proposed in [90].
Biorthogonal wavelets can be exactly symmetric and the design of biorthogonal Hilbert-

pairs with symmetric linear phase odd/even length filters (Type I/II filters) can be found
in [91],[92],[93]. Symmetry is particularly important in image processing as salient fea-
tures such as lines and edges are particularly susceptible to nonlinear distortions. In
time series analysis, symmetry allows for the alignment of wavelet coefficients [63, chap-
ter 4]. Biorthogonal transforms however are not l2 norm preserving. Orthogonal (strictly
orthonormal) transforms are l2 norm preserving and have the advantage of noise decorre-
lation (in denoising), simple bit allocation (in compression), and more generally, energy
preservation in the transform coefficients. However dyadic orthogonal wavelets based
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on a real coefficient finite-impulse-response (FIR) filter cannot be exactly symmetric [8]
(except for the simplest Haar wavelets). Orthogonal wavelets based on infinite-impulse-
response (IIR) or complex coefficient filters can be symmetric but require more complex
implementation.
The two most common types of orthogonal Hilbert-pairs are
(i) those based on the common factor technique [14],[88],[89]
(ii) those based on Symmetric-Self-Hilbertian (SSH) filters [15] (which includes the

Q-shift filters [16]).
All orthogonal Hilbert-pairs reported so far do not have the symmetry of the biorthogonal
Hilbert-pairs. The symmetry of the wavelets ψh(t) and ψg(t) is important for directional
selectivity [14].
In this chapter we present the design of a new class of Hilbert-pairs that have the

advantages of both biorthogonal and orthogonal wavelets. The wavelets are exactly or-
thogonal but are also almost symmetric. The corresponding filters are almost like the
Type I/II filters but are exactly orthogonal and therefore l2 norm preserving. The phase
response is approximately linear and the impulse response is approximately symmetric.
The overview of the chapter is as follows. Section 4.2 briefly reviews Hilbert pair funda-
mentals and the common factor technique that is used to design orthogonal Hilbert pair
of wavelets. The design of Hilbert pair based on almost symmetric filters is presented
in Section 4.3. Techniques to improve the analyticity of Hilbert pair are presented in
Section 4.4. This chapter concludes in Section 4.7.

4.2 Preliminaries

A. Dual-Tree Filter Bank

The dual-tree complex wavelet transform is based on a pair of filter banks. The upper
and lower tree filters are denoted by superscripts h and g respectively. It is proven in
[12] that equation (4.1) will hold if the low-pass filters of the filter banks, Hh

0 (z) and
Hg

0 (z) satisfy
Hg

0 (ω) = e−jω/2Hh
0 (ω) for − π ≤ ω ≤ π (4.2)

(Note the slight abuse of notation, ie. Hg
0 (ω) ≡ Hg

0 (ejω)). Since condition (4.2) can only
be approximated with FIR filters (due to the half sample delay term), the Hilbert trans-
form relationship (4.1) is only approximate. Measures of the degree of approximation
based on the complex wavelet spectrum ΨC(ω) = Ψh(ω) + jΨg(ω) are defined in (2.10)
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and (2.11).

B. Common Factor Technique

Selesnick proposed a common factor technique to design orthonormal Hilbert pair of
wavelets [14]. The scaling low pass filters Hh

0 (z) and Hg
0 (z) are constructed by

Hh
0 (z) = F (z)D(z)

Hg
0 (z) = F (z) z−LpD(z−1)

where F (z) is the common factor, D(z) is the phase factor and Lp is the degree of the
phase factor. The phase factor is given by

D(z) = 1 +
Lp∑
n=1

d(n) z−n

By defining the all pass filter A(z) as

A(z) = z−LpD(z−1)
D(z)

it can be shown that
Hg

0 (z) = F (z)A(z)

The filter A(z) approximates the half sample delay. Firstly A(z) is designed and then
F (z) is designed to have K vanishing moments

F (z) = Q(z) (1 + z−1)K

Then we have

Hh
0 (z) = Q(z) (1 + z−1)K D(z)

Hg
0 (z) = Q(z) (1 + z−1)K z−LpD(z−1)
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The product filter of the CQFs are given by

P (z) = Hh
0 (z)Hh

0 (z−1)

= Hg
0 (z)Hg

0 (z−1)

= Q(z)Q(z−1) (z + 2 + z−1)K D(z)D(z−1)

= R(z) (z + 2 + z−1)K D(z)D(z−1)

where R(z) = Q(z)Q(z−1) = ∑
n r(n) z−n. The coefficients of r(n) is obtained using the

halfband condition (2.2). The factorQ(z) is then obtained from the spectral factorisation
of R(z). Even though the common factor is an easy method to design orthonormal
Hilbert pair of wavelets, the Hilbert pair of wavelets are not symmetric. The design
procedure has no control over the symmetry of the wavelets. The complex wavelet ψC(t)
is symmetric. The spectral factorisation of Q(z) can be done in different ways. The
mid-phase factorisation gives least asymmetric wavelets compared to minimum phase
factorisation. It has been shown in [14] that mid-phase spectral factorisation leads to
better directional selectivity compared to minimum phase spectral factorisation. Zhang
et. al [89] improved the common factor technique to design Hilbert pair with good
analytic quality. Tay et. al [88] improvised the frequency selectivity of the Hilbert
pair of filters. The common factor technique produces Hilbert pair of filters that does
not have approximately linear phase. In some cases (for short filters) the mid-phase
spectral factorisation produces nearly linear phase response. Thus the common factor
technique is not suitable to design a symmetric Hilbert pair of wavelets. A Hilbert pair
of filters is constructed using the common factor techique with K = 4 and Lp = 2. The
complex wavelet and complex spectrum are shown in Figure 4.1 . The wavelets (ψh(t),
ψg(t) ) are not symmetric as shown in Figure 4.1 (top). However the complex wavelet
ψC(t) is approximately symmetric. The analytic quality measures are E1 = 1.83% and
E2 = 0.04%.

C. Symmetric-Self-Hilbertian (SSH) filters

Tay et. al [15] constructed Hilbert pair of wavelets where wavelets in g tree is a mirror
image of wavelet in h tree. i.e.

ψg(t) = ψh(T − t) (4.3)
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Figure 4.1: Impulse Response of Length 12 filters with 2 VMs Top: AES filter Bottom:
AOS filter

where T is a constant and the resulting filters are called SSH filters [15],[94]. Bernstein
polynomial was used to construct the product filter and it is given by

BN(x;κ) =
Nb∑
i=0

f(i)
 Nb

i

 xi (1− x)Nb−i (4.4)

and f(i) is given by

f(i) =

1− κi 0 ≤ i ≤ 1
2(Nb − 1)

κNb−i
1
2(Nb + 1) ≤ i ≤ Nb

where Nb is odd, [κ...κ(Nb−1)/2]T are the Bernstein parameters. The equation (4.4) can
be transformed into a z-transform filter by using the transformation

x = −1
4 z (1− z−1)2 = sin2(ω2 )

and it satisfies the half band filter condition (2.2). The desired number of VMs are
imposed on the filters by setting the appropriate Bernstein parameters to zero. Some
degrees of freedom can be made available by not setting few Bernstein parameters to
zero. In [15], one degree of freedom was utilised to design SSH filters. In [85], two de-
grees of freedom was utlised to design SSH filters. A more versatile technique to design
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Figure 4.2: Impulse Response of Length 12 filters with 2 VMs Top: AES filter Bottom:
AOS filter

SSH filters was propsed in [94] using lattice parameterisation. All of the design tech-
niques [15],[85],[94] produced symmetric complex wavelet ψC(t). However the individual
wavelets ψh(t) and ψg(t) are not symmetric. It is difficult to design symmetric wavelets
(ψh(t), ψg(t) ) because of tight coupling between the SSH filters to satisfy (4.2) and
(4.3). A SSH filter of length 8 with 3 VMs is designed. The complex wavelet and com-
plex spectrum are shown in Figure 4.2 . The wavelets (ψh(t), ψg(t) ) are not symmetric
as shown in Figure 4.2 (top). However the complex wavelet ψC(t) is symmetric. The
analytic quality measures are E1 = 3.06% and E2 = 0.08%. The Q-shift filters [95],[16]
are approximately linear phase filters but the filters’ impulse response is not symmetric.
In [16], a linearisation procedure was adopted to solve the constraints and the resulting
filters approximately satisfy the PR condition. Both in [95] and [16] only simple VMs
are imposed on the Q-shift filters. In [90], an iterative procedure is implemented to im-
pose orthogonality with a tunable flat group delay response. However the Hilbert pair
of wavelets have poor analytic quality.

4.3 Hilbert pair based on Almost Symmetric Filters
Filter symmetry is not a necessary requirement for constructing a Hilbert-pair. Sym-
metry is however a desirable property in many applications and we will show how to
construct orthogonal Hilbert pairs using almost symmetric orthogonal filters. Concep-
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tually the construction of a Hilbert pair can be viewed as the process of finding two filter
banks that match each other through equation (4.2). The main idea behind the con-
struction here is to match a filter having Type I characteristics (symmetric odd length)
with a filter having Type II characteristics (symmetric even length). The details of how
this is achieved will be described in this section.
To construct a Hilbert-pair of wavelets, we need two filters which satisfy the half

sample delay condition (4.2). The complex valued equation (4.2) can be separated into
magnitude and phase parts as follows:

|Hg
0 (ω)| = |Hh

0 (ω)| (4.5)

∠Hg
0 (ω) = −(ω/2) + ∠Hh

0 (ω) (4.6)

It is possible to satisfy either (4.5) or (4.6) exactly but not both simultaneously. With
most of the reported orthogonal Hilbert-pair, e.g. common factor or SSH solution, (4.5) is
exact and (4.6) is approximated. With the symmetric biorthogonal Hilbert-pair designed
using the matching technique [91],[92],[93] (4.6) is exact and (4.5) is approximated. For
these biorthogonal pairs bank h comprise of odd-length linear phase filters (Type I) and
bank g comprise of even-length linear phase filters (Type II):

Hh
0 (ω) = h0(0) + 2

∑
n6=0

hh0(n) cos(nω) (4.7)

Hg
0 (ω) = e−jω/2Hg

0,R(ω) (4.8)

where Hg
0,R(ω) ≡ 2∑n h

g
0(n) cos((n − 1

2)ω). Without any design effort equation (4.6) is
exact due to the presence of the e−jω/2 factor in Hg

0 (ω) (inherent half-sample delay). The
design effort is then to achieve Hg

0,R(ω) ≈ Hh
0 (ω) to approximate (4.5). In the spatial

domain equations (4.7) and (4.8) respectively imply the following relationships:

hh0(n) = hh0(−n)

and
hg0(n) = hg0(1− n)

The center of symmetry is at n = 0 and n = 1/2 respectively.
Firstly, we address the phase requirement (4.6) because the phase approximation is

more important than the magnitude approximation (4.5) as observed in [96]. Now a
CQF H0(ω) cannot be exactly symmetric except for the simple two coefficients filter
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(corresponding to the Haar wavelet) [8]. However a CQF can be designed to have
approximate symmetry (Refer Chapter 3) . As argued in the Chapter 3, since the CQF
length is even (Lf = 2L), if the filter could hypothetically be symmetric, then it should
be a Type II filter, i.e. h0(n) = h0(1−n), where the left-half coefficients are mirror image
of the right-half. A natural measure of deviation from this condition is (h0(n)−h0(1−n))
and the following asymmetry measure

EAES ≡
L∑
n=1

(h0(n)− h0(1− n))2

was proposed in the Chapter 3. The design of CQFs approximating Type II filters in the
Chapter 3 is achieved by minimizing EAES subject to the VM constraints (2.3). These
CQFs will also be referred to as AES (Almost-Even-Symmetric) filters and an example
of AES impulse response is shown in Figure 4.3. What is now required to form an
orthogonal Hilbert-pair is a CQF approximating a type I filter. This may seem rather
counter-intuitive as the CQF is of even length and a type I filter is of odd length. To
make an even length CQF filter look like a type I filter, the following points should be
considered:

1. The first or last coefficient value (h0(−(L − 1)) or h0(L)) should be close to zero
(but cannot be exactly zero as this will violate the orthogonality condition). This
makes the CQF look like an odd length filter. For convenience we choose the last
coefficient, i.e. h0(L) ≈ 0.

2. The center of symmetry is then at n = 0 and the coefficient value h0(0) will not
affect symmetry.

3. The coefficients to the left of h0(0) should ideally be mirror image of the coefficients
to the right of h0(0). A natural deviation measure is then (h0(n) − h0(−n)) for
n = 1, . . . , (L− 1).

These considerations lead to another asymmetry measure

EAOS ≡
L−1∑
n=1

(h0(n)− h0(−n))2 + (h0(L))2

The design of CQFs approximating Type I filter, which will also be referred to as AOS
(Almost-Odd-Symmetric) filters, can therefore be achieved by minimizing EAOS subject
to the VM constraints (2.3). There are also other methods for designing almost sym-
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metric CQFs reported in the literature but they are indirect methods and are reviewed
in the Chapter 3. The design of AES filter is detailed in the Chapter 3 of this thesis.
A pair of (AOS, AES) CQFs will therefore approximate the phase condition (4.6).

However for a Hilbert-pair there is still the magnitude condition (4.5) to consider. Tay
et al. [96] observed that the phase approximation is more crucial than the magnitude
approximation for Hilbert-pairs. Serendipitiuosly it turns out that AES and AOS CQFs
of the same length and having the same number of VMs have magnitude response that are
reasonably close to each other. In summary a reasonably good quality almost symmetric
orthogonal Hilbert-pair can be obtained by designing a pair of (AOS, AES) CQFs with
equal length and equal number of VMs.

4.3.1 Optimisation Algorithm

The optimisation problem for the AOS filter is similar to that of the AES filter. The
objective function EAOS has a form similar to that in EAES as both are quadratic in the
filter coefficients h0(n). As shown in the Chapter 3 the objective function is algebraic
and can be expressed as a ratio of multiquadratic functions of the lattice parameters.
The constraint equations for VMs are multilinear in the lattice parameters as shown in
(2.3). In Chapter 3 the Lagrange multiplier method was used and this required solving
simultaneous multivariate polynomial equations. In this chapter a versatile non-linear
optimizer based on the interior point method [72] is used instead (this algorithm is also
used for further optimisation of the filters described in the next section). Matlab R2011b
has an in-built function fmincon to implement the interior point algorithm that is used
in this work. As argued in the Chapter 3 a suitable set of initial values are the lattice
parameters derived from all the distinct spectral factors [1] of the maximum VM product
filter. The best result is then taken as the final solution.

4.3.2 Design Examples

Example 1: Length Lf = 12 (L = 6) AES and AOS filter having 2 VMs each. The
asymmetry measures of the AOS filter is EAOS = 1.2708× 10−8. The asymmetry mea-
sures of AES filter is EAES = 1.038× 10−5. The group delay measure (3.4) of the AES
and AOS filter are 0.0047 and 9.06× 10−5 respectively and they confirm that both the
filters have approximately flat group delay responses. The impulse response of the AES
and AOS filters are shown in Figure 4.3 and look virtually like Type II and I filters
respectively. The magnitude response and phase difference of the filters shown in Fig-
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ure 4.4 confirms that the magnitude responses are approximately equal and the phase
difference is approximately −0.5ω. Figure 4.5 (top) shows the plot of ψh(t), ψg(t) and
complex envelope that are virtually symmetric. The complex wavelet spectrum shown
in Figure 4.5 (bottom) is approximately analytic with quality measures E1 = 4.28% and
E2 = 0.26%. The filter coefficients are given in Table 4.1.
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Figure 4.3: Impulse Response of Length 12 filters with 2 VMs Top: AES filter Bottom:
AOS filter
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Figure 4.5: Top: Wavelet functions ψh(t), ψg(t) and |ψC(t)|. Bottom: Spectrum of
complex wavelet

Example 2: Length Lf = 16 (L = 8) AES and AOS filter having 4 VMs each.
The asymmetry measures of the AOS filter is EAOS = 1.5573 × 10−6. The asymmetry
measures of AES filter is EAES = 2.97 × 10−4. The group delay measure (3.4) of the
AES and AOS filter are 0.0240 and 0.0017 respectively and they confirm that both the
filters have approximately flat group delay responses.
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Figure 4.6: Impulse Response of Length 16 filters with 4 VMs Top: AES filter Bottom:
AOS filter
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The impulse response of the AES and AOS filters are shown in Figure 4.6 and look
virtually like Type II and I filters respectively. The magnitude response and phase
difference of the filters shown in Figure 4.7 confirms that the magnitude responses are
approximately equal and the phase difference is approximately −0.5ω. Figure 4.8 (top)
shows the plot of ψh(t), ψg(t) and complex envelope that are virtually symmetric. The
complex wavelet spectrum shown in Figure 4.8 (bottom) is approximately analytic with
quality measures E1 = 3.20% and E2 = 0.06%. The filter coefficients are given in Table
4.1.
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Figure 4.7: Top: Magnitude response of the length 16 filters having 4 VMs. Solid line:
AES filter. Dotted line: AOS filter. Bottom: Phase difference between filters

We have demonstrated that reasonable analytic quality Hilbert pairs can be achieved
by designing AES and AOS filters independently. There is a natural matching between
an AES filter and an AOS filter with the same length and number of VMs. Good ap-
proximation to the phase condition (4.6) is achieved between the AES and AOS filters
but no effort is expended to address the magnitude condition (4.5). Both AES and AOS
filters generate virtually symmetric wavelets and have approximate linear phase char-
acteristics. In the next section, we will show how to achieve a better analytic quality
without sacrificing the symmetry of the constituent wavelets.

77



4.4 Improved Analyticity Design

−3 −2 −1 0 1 2 3 4

−1

0

1

2

COMPLEX WAVELET

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

1

2

3

4

ω

COMPLEX SPECTRUM

Figure 4.8: Top: Wavelet functions ψh(t), ψg(t) and |ψC(t)|. Bottom: Spectrum of
complex wavelet

Table 4.1: Filter Coefficients
2L p filters Filter Coefficients
12 2

Hh
0

0.00160560,0.00493665,0.00635809,-0.08554776,
0.08525574,0.69674039,0.69655625,0.08544623,
-0.08575320,0.00653442,0.00308431,-0.00100314

Hg
0 0.00012419,0.00144803,-0.01093270,-0.07322610,

0.36435607,0.85060655,0.36434595,-0.07320559,
-0.01096065,0.00149880,0.00017391,-0.00001492

16 4 Hh
0 -0.00361061,0.00042545,0.00465890,0.01704841,

0.00436633,-0.10378041,0.10600279,0.69252738,
0.68916438,0.10772591,-0.10610459,-0.00040167,
0.01230589,-0.00918527,0.00032368,0.00274698

Hg
0 -0.00064071,-0.00143886,0.00303102,0.02040218,

-0.05102552,-0.07205762,0.40181545,0.81275607,
0.40190044,-0.07220073,-0.05087235,0.02033099,
0.00304235,-0.00074932,-0.00014389,0.00006407

4.4 Improved Analyticity Design
In section 4.3 the AES and AOS filters are designed independently. No attention was paid
to the magnitude condition (4.5) and all effort was used to make the phase condition
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(4.6) to be as close as possible. The analytic quality however depends on both the
degree of magnitude and phase approximations, although the latter condition is more
crucial as observed in [96]. By relaxing the phase approximation, a better magnitude
approximation can be achieved. By allowing the trade-off between magnitude and phase
approximations there is the possibility of achieving a better overall result in terms of
analytic quality.

A. Design via successive re-optimisation

Suppose we have designed a pair of AES and AOS filters using the technique described
in section 4.3. We fix the AES filter and re-optimize the AOS filter using the procedure
described next. Define the magnitude error measure as

G =
ˆ π

0
(| Hh

0 (ω) | − | Hg
0 (ω) |)2 dω

The optimisation problem is

O1: minimize G subject to equality constraints (2.3) and inequality constraint

EAOS ≤ Etol (4.9)

where the parameter Etol determines the degree of asymmetry (compared to a Type
I filter) tolerable and implicitly determines the degree of approximation to the phase
condition (4.6). The value Etol cannot be too small or else O1 is infeasible. The smallest
possible tolerance Etol,min is the EAOS value of the filter designed using the optimisation
described in section 4.3. When Etol = Etol,min, the solution to O1 is the same as that
obtained in section 4.3 which has the best phase approximation. As Etol is progressively
increased the optimizer has more freedom to reduce the magnitude error measure G. In
the other extreme case when (4.9) is not imposed (or when Etol is sufficiently large), the
optimizer will give a solution with the best magnitude approximation (smallest possible
G). Somewhere between these two extremes will be a solution with the lowest E1 (or
E2) value. O1 is effectively magnitude matching, but unlike the matching technique in
[92],[91], there is the constraint (4.9) in the former (that controls the degree of asym-
metry) and there is no constraint in the latter (as the filters have structural symmetry
(Type I/II)).
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The design procedure is then as follows:

1. Generate a sufficiently fine grid of Etol values {Etol,m : m = 1, . . .} over the range
[Etol,min, Etol,max]. The Etol,max is the EAOS value using the solution to O1 without
(4.9).

2. Use the lattice coefficients of the AOS filter from section 4.3 (least asymmetric) as
the initial solution α0. Set m = 1.

3. Solve O1 with Etol = Etol,m to give the solution αm.

4. Increase m by 1 and repeat the previous step with the latest solution as the initial
point.

5. Choose the solution which gives the lowest E1 measure (best analytic quality).

The interior point algorithm implemented in the Matlab R2011b fmincon function is
used here to solve O1. Each O1 optimisation in step 3 converges quickly because the
initial point used is close to the optimal solution (for that particular iterate) since the
increment in Etol is small. In effect we are slowly allowing the magnitudes to match
by allowing the filter to be less symmetric, i.e. relaxation. In all our simulations it was
observed that EAOS = Etol at the optimal solution for each O1, i.e. the optimizer yields
a solution that is at the upper bound of (4.9).
In our design procedure described above one filter (AES) is fixed while the other (AOS)

is re-optimized. It could be argued that if both filters are re-optimized simultaneously
a better analytic quality could be achieved. There are two reasons for not adopting this
approach here. They are

1. The design process would be more complex and computationally intensive.

2. The resulting filter pair may end up not have the Type I/II symmetry properties
(symmetry is not a neccesary condition for analyticity).

If both filters are allowed to change (through re-optimisation) there will be a drift away
from symmetry to achieve higher analytic quality. Achieving symmetry however is one
of the main aim of this work. Fixing one filter with a high degree of symmetry is like
having an anchor that will prevent the other filter from drifting too far from symmetry.
The approach adopted here gave high analytic quality filters with good symmetry as the
next examples will show.
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4.4 Improved Analyticity Design

If the symmetry of the filters are not important both the AES and AOS filters can be
re-optimised to get a better analytic quality but the resulting filters will not be symmetric.
The below are the design examples where the optimisation technique O1 is deployed.
Example 3: Length Lf = 12 (L = 6) AES and AOS filter having 2 VMs each from

example 1. The AOS filter is re-optimized using the procedure described above with
[Etol,min, Etol,max] = [1.2708 × 10−8, 0.2382]. The plot of G vs Etol and E1 vs Etol are
shown in Figure 4.9, top and bottom, respectively.
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Figure 4.9: Top: Plot of G Vs Etol. Bottom: Plot of E1Vs Etol.

The top figure shows that better matching of magnitude is achieved at the expense
of greater asymmetry. i.e. The magnitude error G decreases when Etol is increased.
The bottom figure shows that there is a point of optimal trade-off between magnitude
and phase where the analytic quality measure E1 is the lowest. The optimal trade-off
between magnitude and phase is when EAOS = Etol = 3.058×10−4 and the corresponding
filter impulse and magnitude response (AES filter also shown) is shown in Figure 4.10.
Though more asymmetric than example 1, the impulse response is still very close to a
Type I filter and the magnitude is now more closely matched (compared with Figure
4.4 in Example 1 ). The analytic quality measures are E1 = 1.11% and E2 = 0.02% and
are much lower than in example 1 (E1 = 4.28% and E2 = 0.26%). The designed filter
coefficients are given in Table 4.2. The computation time for successive re-optimisation
is 96.2 seconds.
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Figure 4.10: Top: Impulse response of the designed AOS filter. Bottom: Magnitude
response of the filters. Solid line: AES filter. Dotted line: Designed AOS filter.

Example 4: Length Lf = 16 (L = 8) AES and AOS filter having 2 VMs each from
example 2. The AOS filter is re-optimized using the procedure described above with
[Etol,min, Etol,max] = [1.5573 × 10−6, 0.0215]. The plot of G vs Etol and E1 vs Etol are
shown in Figure 4.11, top and bottom, respectively. Again we see that better magnitude
matching is achieved at the expense of greater asymmetry. The optimal trade-off between
magnitude and phase is when EAOS = Etol = 5.09 × 10−4. The corresponding filter
impulse and magnitude response (AES filter also shown) is shown in Figure 4.12. The
impulse response is still very close to a Type I filter. The analytic quality measures are
E1 = 0.989% and E2 = 0.0112% and are much lower than in Example 2 (E1 = 3.20% and
E2 = 0.06%). The designed filter coefficients are given in Table 4.2. The computation
time for successive re-optimisation is 62.8 seconds.

Table 4.2: Filter Coefficients
2L p filters Filter Coefficients
12 2 Hg

0 0.00303403,0.01451398,-0.02592825,-0.07299089,
0.38113782,0.83474245,0.38122497,-0.07400154,
-0.02974712,0.00429620,-0.00261467,0.00054658

16 4 Hg
0 -0.00045952,-0.00216164,0.00350992,0.02585192,

-0.04632786,-0.07013765,0.40344306,0.81170503,
0.40193836,-0.07365016,-0.05808553,0.01591663,
0.00334873,-0.00047269,-0.00026038,0.00005535
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Figure 4.11: Top: Plot of G Vs Etol. Bottom: Plot of E1Vs Etol.

B. Fine tuning optimisation

The optimisation procedure described in section 4.4.A gives filters with good analytic
quality but does not directly minimize the E1 (or E2) measure. A further re-optimisation
with respect to E1 can improve the analyticity. The optimisation problem is

O2: minimize E1 subject to equality constraints (2.3)

using the lattice coefficients from the procedure in section 4.4.A as the inital solution.
This optimisation can be considered as a fine tuning of the solution from O1 and is similar
in principle to the two stage optimisation strategy proposed in [94] for SSH filters. In the
first stage the optimisation is with respect a measure that is based on the half-sample-
delay condition (4.2). In the second stage the optimisation is with respect to the E1

measure which is based on the Hilbert transform relationship (4.1). Convergence is fast
as the initial point is already close to the optimal point. The interior point algorithm
implemented in the Matlab R2011b fmincon function is used as the solver here.
In summary the design procedure consist of the following steps:

1. Choose the length Lf and number of VMs p of the filter. Design a pair of (AES,
AOS) filters using the procedure described in section 4.3.

2. Re-optimisation of the AOS filter through a sequence of O1 as described in section
4.4.
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Figure 4.12: Top: Impulse response of the designed AOS filter. Bottom: Magnitude
response of the filters. Solid line: AES filter. Dotted line: Designed AOS filter.

3. Fine tune the solution using O2 described above.

Step 2 (Step 3) is optional if one is satisfied with the analytic quality of the filter from
step 1 (step 2). Steps 2 and 3 can be performed on the AES filter instead of the AOS
filter.
Even though there are several steps in the design procedure the whole process is quite

efficient computationally as each re-optimisation converges quickly. This is because the
initial point used is close to the optimal solution. The algorithms were tested on a quad-
core personal computer (Intel i7 2.66 GHz) running MATLAB [7.9.0.529 (R2009b)] for
filters with length up to 40 without any problems.
In the next two examples all three steps are performed and the analytic quality from

steps 2 and 3 are compared.
Example 5: Length Lf = 14 (L = 7) AES and AOS filter having 3 VMs each. After

step 2 the analytic quality measures are E1 = 2.33% and E2 = 0.08%. After step 3, the
analytic quality improved with E1 = 1.70% and E2 = 0.04%. The filter coefficients are
given in Table 4.3. The plot of the wavelet functions and spectra is shown in Figure
4.13. The computation time for optimisation, successive re-optimisation and fine tuning
optimisation are 1.4 seconds, 68.2 seconds and 1.2 seconds respectively. The total time
taken is 70.5 seconds.
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Figure 4.13: Top: Wavelet functions ψh(t), ψg(t) and |ψC(t)|. Bottom: Spectrum of
complex wavelet

Example 6: Length Lf = 20 (L = 10) AES and AOS filter having 6 VMs each. After
step 2 the analytic quality measures are E1 = 2.42% and E2 = 0.06%. After step 3, the
analytic quality improved with E1 = 1.21% and E2 = 0.01%. The filter coefficients are
given in Table 4.3. The plot of the wavelet functions and spectra is shown in Figure 4.14.
The computation time for optimisation, successive re-optimisation and for fine tuning
optimisation are 10.1 seconds, 3.8 minutes and 2.4 seconds respectively. The total time
taken is 4 minutes.
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Figure 4.14: Top: Wavelet functions ψh(t), ψg(t) and |ψC(t)|. Bottom: Spectrum of
complex wavelet
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Table 4.3: Filter Coefficients (optimised w.r.t E1)
2L p filters Filter Coefficients
14 3 Hh

0 -0.00034319,0.00034828,0.00589591,0.00539939,
-0.08765245,0.08777421,0.69588721,0.69634686,
0.08746862,-0.08764890,0.00582341,0.00486007,

0.00002727,0.00002687
Hg

0 -0.00077112,-0.00278968,0.01022038,-0.05386629,
-0.06878604,0.41331752,0.81716199,0.38179201,
-0.07760906,-0.03471922,0.02569016,0.00370428,

0.00120048,-0.00033184
20 6 Hh

0 0.00156092,-0.00051647,-0.00508258,-0.00158263,
0.00175643,0.02742896,0.00220967,-0.11308369,
0.12019887,0.68855283,0.68485517,0.11984911,
-0.11780121,-0.00856934,0.02032843,-0.00916655,
-0.00055393,0.00529762,-0.00036497,-0.0011030

Hg
0 0.00018093,0.00045517,-0.00204006,-0.00965610,

0.01007714,0.03818336,-0.06044400,-0.06411582,
0.41387464,0.79552855,0.41720583,-0.07095943,
-0.08274220,0.01931267,0.01008973,-0.00162496,
0.00099157,-0.00005117,-0.00008681,0.00003451

A high degree of symmetry is still observed in the wavelets even after re-optimisation.
It can be inferred from the Example 5 and Example 6 that the fine tuning optimisation
takes only few seconds because the initial point supplied to the optimisation routine O2

is very close to the optimal solution.

4.5 Hilbert pair of wavelet with different VMs
In this section we construct the Hilbert pair of wavelets with different number of VMs.
The AES filter and AOS filter will have same length but have different number of VMs.
Firstly the AES filter having desired VMs is designed using the procedure described in
Chapter 3. We then design the AOS filter (having one VMs less than the AES filters)
using the procedure described in the Section 4.3. Because the AOS and AES filter have
different number of VMs, their frequency response will be different. In this scenario, the
optimisation sequence O1 is performed. Because the AOS filter has one VM less than
the AES filter, there is one more degree of freedom available to match the frequency
response of the AOS filter with the AES filter.
Firstly we will design the AES and AOS filter having same number of VMs first and
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4.5 Hilbert pair of wavelet with different VMs

then we will re-optimise the AOS filter. During the re-optimisation process, we impose
one less VM compared to the AES filter. We will then compare the analytic measure
and filter symmetry.
Step 1: Length Lf = 12 (L = 6) AES and AOS filter having 3 VMs each. After

the O1 optimisation, the asymmetry measures of the AOS filter and the AES filter are
EAOS = 7.182× 10−4 and EAES = 1.113× 10−5 respectively. The analytic measure after
O1 optimisation is E1 = 3.67% and E2 = 0.10% respectively. The plot of the wavelet
functions and spectra is shown in Figure 4.15.
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Figure 4.15: Top: Wavelet functions ψh(t), ψg(t) and |ψC(t)|. Bottom: Spectrum of
complex wavelet

After O2 fine tuning optimisation, the analytic quality improved with E1 = 1.35% and
E2 = 0.03%.
Step 2: The AES filter (having 3 VMs) is fixed while AOS filter is constrained to

have only 2 VMs during the O1 optimisation. After the O1 optimisation, the asymmetry
measures of the AOS filter and the AES filter are EAOS = 3.182 × 10−4 and EAES =
1.113 × 10−5 respectively. The analytic measure after O1 optimisation is E1 = 1.10%
and E2 = 0.02% respectively. The plot of the wavelet functions and spectra is shown in
Figure 4.16.
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Figure 4.16: Top: Wavelet functions ψh(t), ψg(t) and |ψC(t)|. Bottom: Spectrum of
complex wavelet

After O2 fine tuning optimisation, the analytic quality improved with E1 = 0.51% and
E2 = 0.006%.
Comparison of step 1 and step 2: The EAOS measure of the filter in step 2 in smaller

compared to step 1. The additional degree of freedom available in step 2 (because of
reduction of 1 VM) improved the symmetry of the filter of the AOS filter. The analytic
measures in step 2 are the best compared to step 1.

4.6 Discussion and Comparison
In the signal processing literature linear phase response in the frequency domain is
ususally taken to imply symmetry in the time (or spatial) domain and vice versa. This
however needs to be carefully examined in the context of digital filters. The impulse
response symmetry in Type I/II filters is given by h0(n) = h0(M −n) where M must be
an integer [1] (there is no such restriction however for analog continuous time filters).
The group delay is M/2 must either be an integer or integer plus half. Digital filters can
have approximately linear phase but with a group delay that is NOT approximately an
integer or integer plus half and therefore do not have approximate symmetry.
With the SSH (and Q-shift) filters H0(ejω) ≈ A(ω)ejω(d−1/4) (d integer and A(ω)

the real valued amplitude function) and the group delay is an integer plus one quarter
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[97]. Therefore, even though the SSH filter has approximately linear phase response, the
impulse response h0(n) (and hence the wavelet function) is not approximately symmetric.
The equivalent SSH complex wavelet

ψC(t) ≡ ψh(t) + jψg(t)

envelope is however symmetric, i.e. |ψC(t)| = |ψC(T − t)| (T constant). With the new
class of Hilbert-pairs the constituent wavelets and envelope are approximately symmet-
ric, i.e.

ψh(t) ≈ ±ψh(T − t)

ψg(t) ≈ ∓ψg(T − t)

and
|ψC(t)| ≈ |ψC(T − t)|

Symmetric filters (wavelets) imply phase linearity but the converse is not true.
Example 7: The length 14 Q-shift filter having 2 VMs from [95] is compared with

the AES/AOS filters with same length and number of VMs. Figure 4.17 show that the
AES and AOS filters have significantly more symmetric impulse reponse than the Q-shift
filter.
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Figure 4.17: Impulse Responses of Length 14 filters having 2 VMs. Top: Q-shift filter.
Middle: AES filter Bottom: AOS filter
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Figure 4.18 shows the corresponding wavelet functions. If a wavelet function is sym-
metric, then ψ(t) = ±ψ(∆ − t) (+ for even-function and − for odd-function) for an
appropriate ∆ value. A measure of asymmetry can therefore be defined as

ψsym =
ˆ ∞
−∞
|ψ(t)∓ ψ(∆− t)| dt

where
∆ = argmin

δ

ˆ ∞
−∞
|ψ(t)∓ ψ(δ − t)| dt

The ψsym value with the AES and AOS filters are 3.13 × 10−4 and 0.0081 respectively
compared with the ψsym value of 0.0512 with the Q-shift filter. The wavelets for the
AES/AOS filters are significantly more symmetric than the Q-shift wavelets. The ana-
lytic quality measures with the AES/AOS (Q-shift) filter pair are E1 = 1.29%(1.46%)
and E2 = 0.02%(0.03%).The analytic quality of the AES/AOS filters is better than
Q-shift filters.
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Figure 4.18: Wavelet Function. Top: Q-shift filter. Middle: AES filter. Bottom: AOS
filter

Example 8: The length 16 filter having 4 VMs designed using common factor technique
[14] is compared with the AES/AOS filters with same length and number of VMs. Figure
4.19 show that the AES and AOS filters have significantly more symmetric impulse
reponse than the Q-shift filter.

90



4.6 Discussion and Comparison

0 5 10 15
−0.5

0

0.5

1

n (samples)

 A
m

pl
itu

de

IMPULSE RESPONSE OF THE H TREE FILTER

0 5 10 15
−0.5

0

0.5

1

n (samples)

 A
m

pl
itu

de

IMPULSE RESPONSE OF THE G TREE FILTER

0 5 10 15
−0.5

0

0.5

1

n (samples)

 A
m

pl
itu

de

IMPULSE RESPONSE OF THE AES FILTER

0 5 10 15
−0.5

0

0.5

1

n (samples)

 A
m

pl
itu

de

IMPULSE RESPONSE OF THE AOS FILTER

Figure 4.19: Impulse Responses of Length 16 filters having 4 VMs

The ψsym value with the AES and AOS filters are 0.0104 and 0.0091 respectively com-
pared with the ψsym value of 0.0504 and 0.0545 with the filters designed using common
factor technique. The analytic quality measures with the AES/AOS (filters designed us-
ing common factor technique) filter pair are E1 = 0.79%(0.48%) and E2 = 0.01%(0.03%).
Figure 4.20 shows that the AES and AOS filters have significantly more symmetric
wavelet functions than the filters designed using common factor technique.
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Figure 4.20: Wavelet functions ψh(t), ψg(t) and |ψC(t)|. Top: Filters designed using
common factor technique. Bottom: filters designed using the optimisation O2

All the above examples prove that the Hilbert pair of wavelets designed using the
proposed technique are more symmetric. The Hilbert pair of filters has approximately
linear phase and has flat group delay responses. These filters also have good analytic
measures.

4.7 Conclusion
A new class of Hilbert-pair of wavelets that are exactly orthogonal but also virtually
symmetric has been presented here. The corresponding filters are almost like Type
I/II filters (symmetric linear phase odd/even length filters) and have the advantages
of both biorthogonal and orthogonal systems. The direct design of these almost Type
I/II filters was first presented which yielded reasonably good quality Hilbert-pairs. We
then presented an efficient technique to improve the analyticity of the initial design by
successive re-optimisation. The technique simultaneously approximate both the phase
and amplitude response requirement of the half-sample-delay relation (4.2). The Hilbert
of filters having different VMs can also designed easily using the proposed technique.
The design examples show that almost symmetric Hilbert-pair of wavelets with good
analytic quality can be designed easily.

92



5 Application of Hilbert pair of
wavelets in denoising

Analysis of Mass Spectroscopy (MS) data provides information about proteins. Efficient
identification of proteins enables clinicians to make accurate diagnosis of diseases such
as cancer and bio-scientist to develop more targeted drugs. The MS data size is large
and it is corrupted by noise. The MS/MS spectrum will reveal the amino acid sequence
of the peptide. In this chapter, an efficient algorithm is presented to remove the noise
in the MS/MS data and to detect peaks. The Dual Tree Discrete Wavelet Transform
(DTCWT) using the almost symmetric filters will be applied to analyse the MS/MS
data. The DTCWT is tolerant to shift in the MS/MS data. The algorithms based
on the DTCWT performed better compared to the traditional DWT and Stationary
Wavelet Transform (SWT). We will also apply the DTCWT to denoise the image. In
image processing applications, the almost symmetric Hilbert pair of wavelets preserves
salient features in the image as it offer higher directionality.

5.1 Introduction
The DTCWT has been applied extensively in many research fields especially in signal
processing. In bioinformatics applications wavelet transform is widely used as it provides
sparse representation of signals and has ability to detect specific information from the sig-
nal (signal burst). The multiresolution analysis feature of the wavelet transform is one of
the main reason for its popularity in bioinformatics applications. The DWT has been ap-
plied during the preprocessing stage in proteomics applications [98],[99],[18],[100],[101].
The undecimated DWT is also applied in some proteomics preprocessing stages [18].
However undecimated DWT is not a widely used transform because it requires more
computation time compared to the DWT. The alternative to undecimated DWT is the
DTCWT. The DTCWT is less redundant compared to undecimated DWT and it is
nearly shift invariant. The DTCWT is resillent to the shifts in the signal. In this chap-
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ter we apply the DTCWT using the almost symmetric Hilbert pair filters to denoise
the MS/MS scans. In the later part of this chapter, we also apply the almost sym-
metric Hilbert pair of wavelet in image denoising application to demonstrate its higher
directionality and robustness in preserving the salient features in the images.
The chapter is outlined as follows. Section 5.2 will introduce to the field of MS based

proteomics. Application of the almost symmetric Hilbert pair of wavelets for peptide
identification in MS/MS spectrum is presented in Section 5.3. The image denoising
application of almost symmetric Hilbert pair of wavelets is presented in Section 5.4.
The chapter concludes in Section 5.5.

5.2 Mass Spectroscopy
Proteomics is a study of proteins in the cells and tissues. The proteome gives the
sequences of all the proteins in a cell and thus proteomics can be broadly defined as the
study of proteins. The main aims of proteomics experiments are

• To study interrelation between protein expressions and certain sample groups

• To study relationships between protein themselves

Proteins are made up of different amino acids. Proteins may contain several thousands
of amino acids structure. The amino acids subunits are joined by amide linkages called
peptide bonds. A peptide is a compound containing two or more amino acids linked by
amide bonds between the amino group of each amino acid and the carboxyl group of
the neighboring amino acid. Proteins can be fragmented into peptides and peptides can
be fragmented into to amino acids structure. Mass Spectroscopy (MS) is a widely used
technique in molecular biology (see [17] for a review) for high throughput identification
and sequencing of peptides (and proteins). The basic principle behind MS in proteomics
is to fragment complex protein molecules via soft-ionization techniques into smaller
molecules such as peptides or amnio acids so they are more readily analyzed. The
fragmented ions are separated according to their mass to charge ratio (m/z). There are
two main soft-ionization techniques

1. ESI (Electrospray Ionization)

2. MALDI (Matrix-Assisted Laser Desorption/Ionization)
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Figure 5.1: Plot of a m/z versus retention time

Peptides with lower molecular mass is favoured by ESI whereas larger moelcular weight
peptides can be analysed by MALDI. The MALDI process does not favor the identifi-
cation of hydrophobic peptides. In a typical MS experiment, the protein samples are
prepared and they are mixed with an enzyme. The common enzyme that is used in MS
process is trypsin. Trypsin digest the proteins into peptides. The protein samples are
then injected into Liquid Chromatography (LC) device and peptides with similar amino
acids composition will elute at similar retention times. In LC-MS the liquid that elutes
from the column is directly introduced into a mass spectrometer and the mass spectral
measurements can be obtaining for certain retention time. In the mass spectrometer,
the abundance of ions at each m/z value is meaured. An example plot of m/z value
versus retention time is shown in Figure 5.1. The data generated in a MS experiment is
a series of scans where each scan consists of a plot of intensity (representing abundance)
versus m/z (mass of molecule to electric charge ratio). An example scan is shown in
Figure 5.2. Tandem mass spectrometry is a specialised mass spectrometry technique
whereby the sequence of peptides can be determined. Tandem mass spectrometry is
also called as MS/MS. In MS/MS technique, peptide ions of interest are first selected
in a precursor ion scan. Those ions selection is based on relative abundance. It is also
possible to manually program and instruct the mass spectrometer to do MS/MS at a
particular value of m/z.
Once the MS procedure for a sample is completed, the post processing of the data

generated from the experiment begins. Peptide mass fingerprint is determined by the
extraction of the set of measured peptide masses. There are many algorithms developed
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Figure 5.2: Plot of a MS scan

[102],[103] that match the experimental data against the theoretical masses obtained
from the in-silico digestion at the same enzyme cleavage sites of all protein amino acid
sequences in the database. The proteins in the database are then ranked according to the
number of peptide masses matching their sequence within a given mass error tolerance.
This whole process is called peptide mass fingerprinting (PMF). Generally peptide mass
fingerprinting is used for the rapid identification of a single protein component. There
are free protein databases available in the internet. The most famous database is the
SwissProt. Swissprot is a high quality, currated protein database. SwissProt is ideal for
peptide mass fingerprint searches and MS/MS searches of well characterised organisms.
The more comprehensive database is NCBInr. In this chapter, we have used Mascot
search engine that sends query to the Swissprot database for effective peptide mass
fingerprinting. The direct derivation of peptide sequence from the MS/MS spectrum
can be obtained using de novo sequencing [104]. The de novo sequencing constructs the
peptide that maximises the scoring function [104]. Even though de novo sequencing does
not require any database for protein identification, it requires the correct determination
of the ion types. The MS/MS spectrum is corrupted by noise. The post processing of
MS/MS produces false peaks and thereby complicates the de novo sequencing. For a
given value of m/z (of a precursor ion ), a database of predicted MS/MS spectra is created
for all matching peptides using the rules of peptide fragmentation. The experimental
MS/MS spectrum is compared to all predicted spectra and the best matching peptides
are determined using a predefined scoring system.
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Figure 5.3: Total Ion Chromatogram

Total Ion Chromatogram (TIC) is a surrogate of total amount of protein in the sample
that is being measured. Total count of ions of all masses in each scan are summed and
they are plotted against the retention time. Thus each peak in the TIC corresponds to
one scan. An example of a TIC is shown in Figure 5.3.
All the biological experiments were conducted at LaTrobe Institute of Molecular Sci-

ence (LIMS). The LIMS has mass spectrometer manufactured by Bruker Daltonics and it
supports the ESI technique. The raw spectra obtained from the proteomics experiments
are analysed in this chapter.

5.2.1 MS preprocessing

In order to identify and quantify the proteins in the sample, regions of interest (features)
must be extraceted from the raw spectra which is usually corrupted with noise and base-
line artifacts. Thus the preprocessing stage plays a vital role in the feature identification
stage (post processing). The preprocessing steps involved in MS process is given below
(in order)

1. Noise filtering

2. Baseline correction

3. Peak alignment

4. Peak detection
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5. Normalisation

The first preprocessing step is noise filtering. The data from MS experiment are cor-
rupted by chemical and instrument noise. Since the volume of MS data is large, noise
filtering is essential to clean the data. Some of the noise filtering methods are based on
Fourier transform. Recently wavelet based noise filtering is widely applied to denoise
the MS data [98],[18],[100]. The hard thresholding of wavelet coefficients is performed
after the decomposition of the MS data using DWT. Then the signal is reconstructed by
taking inverse DWT. The DWT based denoising is more suitable for MS data as data
is non-stationary and the noise is usually modelled as white Gaussian. The baseline
artifact is caused due to chemical noise and detector overload in the MS instrument.
The baseline is estimated by taking the local minimum of fixed width window. Once
the baseline is estimated, it is then substracted from the spectrum to get the baseline
corrected spectrum. The important thing in baseline correction is that it should not
remove the peak information from the spectrum. The baseline correction must be per-
formed only after noise filtering step. The peaks in the MS spectrum must be aligned
to reference peaks across all the spectra. This step will ensure that peaks appear in the
correct m/z value. The peaks misalignment is due to various factors such as equipment
calibration procedures, personnel, temperature and sample handling techniques. There
are many algorithms available for peak alignment of MS data [105]. Peak detection is
the process of distinguishing interesting peaks from noise. Peak detection focuses on sci-
entifically interesting features of the MS data. The recent algorithms for peak detection
are based on wavelets [99],[106].
The purpose of normalisation is to identify and remove sources of systematic variation

between spectra due to varying amounts of protein or degradation over time in the sample
or even variation in the instrument detector sensitivity. In MS spectrum, each protein
concentration is measured by Area Under the Curve (AUC) of its peak and the natural
choice scaling is the average AUC. The average AUC can be obtained from the TIC.
The choice of normalisation step alone can greatly affect the post processing stage [107].

5.2.2 MS postprocessing

The post processing process involves quantification of the peaks and searching the protein
database to identify the peptides present in the protein sample that is being examined.
In all MS based methods, the expression levels of the peptides are measured by observ-
ing the signal intensity detected by the mass spectrometer. The peaks can be quantified
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either by using the maximum height of a given peak or by calculating the area under
the curve representing the peak. In [18],[19] peaks are quantified for each individual
spectrum using the maximum log intensity within each peak group. After peak quan-
tification, the peaks (across all the spectra) are written into predefined data format and
sent to a search engine for protein identification.

5.3 MS/MS denoising
In this section, we present techniques to preprocess and post process the MS/MS data.
Most of the literature concentrates on processing the MS data and this is the first work
to concentrate on the MS/MS data. Preprocessing of MS and MS/MS data is vital
for efficient post processing tasks such as peak detection and peak quantification. The
preprocessing steps begin with denoising followed by baseline correction and normalisa-
tion [108]. The post processing begins with peak detection and quantification [18],[19]
to produce a reduced dataset that can then be used by peptide identification and/or
sequencing software. The MS/MS signal is modelled as following

y(t) = s(t) +B(t) + ε(t)

where y(t) is the observed signal, s(t) is the original signal , B(t) is the baseline drift
and ε(t) is the noise which is modelled as zero mean white Gaussian. The main aim of
preprocessing stage is to get s(t) from y(t).
Kwon et. al [98] used the undecimated DWT to remove the chemical and instrument

noise from MS spectra with the hard thresholding technique. Kwon et. al [98] showed
that the noise is heterogeneous and it is not uniform in each MS scan. The variation
in the noise is due to spatial differences in total protein content and laser inefficiency
of the mass spectrometer. In their work, the data is segmented based on the variance
change and threshold for each of the segmented data is computed. The noise variance
of each segment is estimated using the Median Absolute Deviation [38],[2]. To detect
the variance change in the MS spectra, Kwon et. al [98] used an iterated cumulative
sums of squares algorithm proposed by Gabbanini et. al [109]. We observed from all our
experiments that the noise in the MS/MS spectra does not show any variance change.
Hence the noise is assummed to be uniform over the MS/MS spectra. Li et.al [110]
showed that wavelet based denoising improved the performance of machine learning
methods.
Each peptide will be represented by one or more MS/MS (secondary fragmentation)
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scans. The MS/MS scans are used to determine the amino acid sequence of the peptide
by matching observed peaks against theoretical peaks in a large database of potential
peptides. We have used the Mascot software package (Matrix Science, Ltd., London,
United Kingdom) to perform this task. In this work, we apply the DTCWT on MS/MS
scans to perform denoising. The procedure is described below.

1. The first step is noise filtering. We apply the DTCWT to decompose the MS/MS
spectra. The hard thresholding technique is deployed to reduce the noise. The
threshold (Tp) is set to three times the noise variance. The hard thresholding of
the wavelet coefficient is defined as

δT =

djk if |dij| > Tp

0 if |dij| ≤ Tp

where djk is the wavelet coefficient at the level j at kth index. The noise variance
is estimated using the Median Absolute Deviation [111] and it is given by

σ̂ = median(d11)
0.6745

where d11 is the detail coefficient at the first level.

2. After hard thresholding, we apply the inverse DTCWT to reconstruct the MS/MS
signal. The next step is baseline correction. The baseline component is then re-
moved by computing a monotone local minimum curve on the denoised signal. We
have used the Matlab function msbackadj to correct the baseline and the window
width for estimating the local minima is set to 200 separation units.

3. The signal is then normalised using the Matlab command msnorm. The function
msnorm implements the normalisation procedure detailed in the end of the section
5.2.

4. Any local maximum after after denoising, baseline correction and normalisation
is assumed to be a peak. Firstly all the local maxima and the associated peak
endpoints are computed. Then the signal to noise ratio at each local maxima is
calculated. All the local maxima that are greater than a threshold is considered
as peaks. The threshold is set at 10% of the maximum signal to noise ratio of that
particular scan.

100



5.3 MS/MS denoising

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

5

10

15

20

25

30

M/Z

In
te

ns
ity

Figure 5.4: Plot of a MS/MS spectra of Dataset 3666

Table 5.1: Peptide count
Dataset DWT DTCWT SWT
3666 59 64 61
3670 59 67 67
3677 63 63 62
3681 62 61 64
3685 47 48 45
3690 65 68 65

5. After peak picking, the peak lists are written into Mascot Generic Format (mgf)
format and sent to the Mascot search engine for peptide identification. The schema
of the mgf format is available from Matrix Science, Ltd., London, United Kingdom.

6. Raw Mascot search scores are then statistically analysed using Peptide Prophet
[112] to produce a confidence level for each.

7. We then count the number of peptides obtained which have more than 95% of
confidence level.

The above procedure is applied on six datasets corresponding to biologically independent
samples from human cancer cells after enriching for membrane glycoproteins. These data
were obtained from the LaTrobe Institute of Molecular Science. Importantly, all samples
are relatively complex, containing many different peptides with different abundances.
The plot of a MS/MS scan of Dataset 3666 in Figure 5.4 shows that the level of noise
is higher in the lower m/z range. Efficient preprocessing of the datasets will improve
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quality of MS/MS spectra and it will lead to a great number of identified peptides. We
compare the results of DTCWT with other transforms such as DWT and Stationary
Wavelet Transform (SWT). The length 12 Hilbert pair of filters having 2 VMs are used
in DTCWT. The Daubechies length 12 filter having 6 VMs is used in DWT and SWT.
The number of identified peptides are shown in the Table 5.1. In all the cases, the
DTCWT performs better than the DWT and has a comparable performance to the
SWT. However the computational load of the SWT is higher than the DTCWT.

5.4 Image denoising
We apply the almost symmetric Hilbert pair of wavelets to denoise images. The im-
provement in directional selectivity of almost symmetric Hilbert filters would preserve
prominent features in the images and offer higher performance in denoising application.
We compare the performance of three length 14 filters. i.e., Q-shift filter Q14, Almost
Symmetric Hilbert filters ASH14 and SSH filter SSH14. A simple hard thresholding is
applied after four levels of wavelet decomposition. The Gaussian noise is added to the
image and the threshold is set at three times the noise variance (σ). The denoised image
is then reconstructed and the performace both in terms of the peak to signal noise ratio
(PSNR) [2] and structural similarity index (SSIM) [74] are compared. The test image
Tesmos and Lena is shown in Figure 5.5.

(a) (b)

Figure 5.5: Test images: (a) Tesmos (b) Lena

The test image Home is shown in Figure 5.6 (a). Table 5.2 shows the performance
measures for the three test images. The ASH14 filter offers better performance compared
to filter Q14 and SSH14 for the Tesmos and Home images where there are many sharp
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edges. The Home image which is corrupted by noise (σ = 40) is denoised and the
reconstructed images are shown in Figure 5.6 (b)-(d).

(a) (b)

(c) (d)

Figure 5.6: (a) Original Home image. Image denoising using (b) Q14 (c) ASH14 (d)
SSH14

The denoised image using ASH14 has a better visual quality compared to the Q14
and SSH14. The zoomed-in portion of the images (door grill) is shown in Figure 5.7.
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(a) (b) (c) (d)

Figure 5.7: Zoomed-in image (door grill). (a) Original (b) Q14 (c) ASH14 (d) SSH14

The worst reconstructed image is with the SSH14 where the edges are completely
destroyed. The reconstructed image using ASH14 preserved most of the edges and
offered the best visual quality. The zoomed-in portion of the images (chimney) is shown
in Figure 5.8. The ASH14 filter preserve the sharp edges in the chimney and offer better
visual quality. Thus the almost symmetric Hilbert pair of filters would preserve salient
features in the image and offer better directional selectivity. The ASH14 filters offers
an improvement of about 0.1-0.3dB in Home image which contains a lot of directional
features.

Table 5.2: Image Denoising
Image σ Q14 ASH14 SSH14

PSNR SSIM PSNR SSIM PSNR SSIM

Lena

10 31.9041 0.9346 31.9867 0.934 32.1665 0.9276
20 29.0125 0.8773 29.0300 0.8766 28.6539 0.8599
30 27.3280 0.8261 27.4166 0.8297 26.8455 0.8059
40 26.3343 0.7923 26.2287 0.7819 25.6394 0.758
50 25.4451 0.7584 25.4335 0.7479 24.8691 0.7244

Home

10 35.005 0.9466 35.1533 0.9559 35.6935 0.9387
20 31.2819 0.8862 31.4026 0.9004 30.82 0.865
30 29.0959 0.8347 29.1363 0.8450 28.4708 0.8028
40 27.5099 0.7756 27.5938 0.804 27.0532 0.7554
50 26.4690 0.7364 26.6335 0.7650 26.0677 0.7203

Tesmos

10 35.0781 0.9662 35.7264 0.9806 35.4535 0.961
20 31.0579 0.9276 31.7131 0.9509 30.8745 0.9149
30 28.9543 0.8937 29.7136 0.9218 28.6046 0.8771
40 27.6834 0.8686 28.3317 0.8979 27.191 0.8518
50 26.622 0.8432 27.2215 0.8747 26.1878 0.8335
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(a) (b) (c) (d)

Figure 5.8: Zoomed-in image (chimney). (a) Original (b) Q14 (c) ASH14 (d) SSH14

The Tesmos image which is corrupted by noise (σ = 50) is denoised. The noisy Tesmos
image is shown in Figure 5.9 (a) and the reconstructed images are shown in Figure 5.9
(b)-(d). Once again, the ASH14 filter offered better visual quality compared to other
filters.

(a) (b)

(c) (d)

Figure 5.9: (a) Original Home image. Image denoising using (b) Q14 (c) ASH14 (d)
SSH14

The better directional selectivity of ASH14 preserved all the salient features such as
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edges, contours and lines. The ASH14 filters offers an improvement of about 0.2-0.6dB
in Tesmos image which contains a lot of directional features. The approximate linear
phase characteristics of ASH14 filters is thus suitable for image processing applications.

5.5 Conclusion
We have presented the applications of almost symmetric Hilbert pair of wavelets in
proteomics and image processing. In proteomics application of the DTCWT using almost
symmetric Hilbert filters performed better compared to DWT and SWT. We have also
shown that in image denoising application the almost symmetric Hilbert-pair of wavelets
offer better directional selectivity and superior performance compared to other filters.
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6 On the Aliasing effect of the Finer
Directional Wavelet Transform

The 2D separable wavelet transform offers limited directionality because it can only
provide three directional subbands. The finer directional wavelet transform has been
proposed to improve the directionality of the 2D separable wavelet transform. The finer
directional wavelet transform employs quadrant filters on subband outputs of the 2D sep-
arable wavelet transform. It divides the three directional subband of wavelet transform
into six finer directional subbands. Even though the finer directional wavelet transform
has advantages of being non redundant and has efficient separable implementation, it
suffers in performance due to aliasing. The aliasing occurs due to the quadrant filters’
inherent frequency response characteristics and thus cannot be eliminated. This chapter
addresses the aliasing involved in the implementation of the finer directional wavelet
transform and recommends ways to reduce the aliasing. This chapter also shows that
using a higher order quadrant filter in finer directional wavelet transform does not elim-
inate the aliasing completely. This chapter proposes the undecimated finer directional
wavelet transform as a way to reduce the aliasing. Application of the proposed transform
in image denoising shows performance improvements compared with the original finer
directional wavelet transform.

6.1 Introduction
The separable 2D Discrete Wavelet Transform (DWT) is the most commonly used ver-
sion of wavelet transform in image processing but it provides limited directional infor-
mation. Directional information is important for image processing applications such as
image enhancement [113], [114] denoising [27] and feature extraction [115],[116]. The
lack of directional selectivity greatly complicates

• modeling of images
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Figure 6.1: Directionality of 2D wavelets: Left: Vertical band Middle: Horizontal band
Right: Diagonal band

• processing of geometric features of images such as edges and ridges

The separable 2D DWT provides three directional information. They are

1. Horizontal

2. Vertical

3. Diagonal

The three directional componenets of the 2D DWT are shown in Figure 6.1 and they
are generated from the length 12 Daubechies filter. As observed from Figure 6.1, all of
the three wavelets are oriented along several directions and the diagonal band produces
checkerboard artifact. The 2D DWT does not provide any information about phase
of the signal which is essential for signal location information. The phase information
of the signal can aid in efficient motion estimation and detection [117]. The desire
for more directional features has lead several researchers to proposed other types of
transforms [21],[23],[118],[22],[119],[120],[121],[122],[123]. The finer directional wavelet
transform (fiDWT) is proposed in [20] as a simple extension to the separable 2D DWT
to improve the directionality of the subbands. The fiDWT employs a pair of quadrant
filters on the subband outputs of the 2D DWT. The quadrant filters can be used as an
“add-on” to an existing separable 2D DWT. In the separable 2D DWT the diagonal
band output contains a mixture of the 450 and 1350 orientations. The quadrant filters
allow the separation of the 450 orientation from the 1350 orientation.The fiDWT is
popular compared to other transforms [21],[23],[118],[121],[122],[123] because it uses the
DWT transform as the building block. There are efficient algorithms that facilitates the
implementation of DWT [24].
We will show in this chapter that although the fiDWT improves the directionality of

separable 2D DWT this comes at a expense of significant aliasing. The aliasing is inher-
ent in the system and is due to a combination of the downsampling operation and the
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frequency response characteristics of practical quadrant filters. Aliasing is theoretically
zero if the quadrant filter response has an ideal brickwall characteristics. With practical
quadrant filters there is a transition band which introduces aliasing. We will show that
unlike in the 1D case, with the fiDWT the level of aliasing cannot be easily reduced
by using a higher order filter and this is due to the the energies along the edges of the
subbands.
The overview of this chapter is as follows. Section 6.2 presents the overview of the

directional filter banks. Section 6.3 presents the overview of the fiDWT. The Quadrant
filter design technique is reviewed in Section 6.4. Section 6.5 analyzes the aliasing in the
subbands of fiDWT and proposes the undecimated finer directional wavelet transform
(ufiDWT) as a way to improve the performance. The directionality of the fiDWT and
ufiDWT is presented in Section 6.6. Section 6.7 considers an image denoising application
with the fiDWT and (ufiDWT). Section 6.8 concludes the chapter.

6.2 Review of directional filter banks
In this section we review some of the filter banks that has been proposed to improve the
directionality. Some of the transforms are based on 1D filter banks [27] while others em-
ploy non-separable multidimensional filter banks [21],[23],[118],[121],[122],[123]. There
are few hybrid transform that combine both 1D and 2D filter banks to provide multires-
olution representation of images and offer higher directionality[120],[124],[125],[126].

6.2.1 Dual Tree Complex Wavelet Transform

The Dual Tree Complex Wavelet Transform (DTCWT) was introduced by Kingsbury
[27] to address the problems with DWT. The 2D DTCWT is nearly shift invariant and
produces six directional subbands. The six directional bands of the 2D DTCWT is shown
in Figure 6.2 and they are generated from length 14 Q-shift filter [95],[16]. Comparing
with Figure 6.1, it is evident that checkboard artifact is absent in the DTCWT and
all the six wavelets have distinct orientation. Each 2D DTCWT six basis function
has one phase angle which encodes the 1D shift of image features perpendicular to its
orientation and this phase information has been proved useful in many image processing
applications [113], [114],[115],[116],[117]. The 2D DTCWT is an overcomplete transform
and it is four times redundant than tight frames. The 2D DTCWT is implemented using
two filter banks and the two filter banks are related via the Hilbert transform in (4.1).
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Figure 6.2: Directionality of 2D Dual Tree wavelets

The tight coupling between two filter banks makes the filter design tedious. Despite the
tedious design process, the 2D DTCWT has been very popular and widely used in many
applications.

6.2.2 Directional filter banks

Bamburger et. al [21] introduced critically sampled Directional Filter Bank (DFB) to
capture the directional components of images. The DFB is a shift variant transform.
The directional partitioning of the 2D spectrum is shown in Figure 6.3. The input image
needs to be modulated and the DFB uses diamond subband filters to extract directional
information of an image. The attractive feature of DFB is that it is maximally decimated,
has high angular resolution for directional subbands and high computation efficiency.
The efficient implementation of the DFB is done using the polyphase structures. The
DFB suffers from the frequency scrambling phenomenon where low frequency regions of
the images are geometrically repositioned in the subband image and it causes spatial
distortions in the images. Park et. al [127] addressed the frequency scrambling problem
of the DFB and proposed a new efficient framework. In their new framework, only fan
filters were used. Because of the frequency scrambling phenomenon, the DFB has found
limited applications [128].
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Figure 6.3: Directional partitioning (a) Four band (b) Eight band

6.2.3 Contourlets

Contourlets transform was introduced by Do and Vetterli [23] and it addressed the
shortcomings of 2D separable wavelets. The contourlet transform captures the intrinsic
geometrical structures in the images while wavelets are only good at isolating the discon-
tinuities at edge points in the images. The contourlets transform provides a multiscale
and directional decomposition thus allowing to efficiently approximate smooth contours
at multiple resolutions. The contourlet filter bank is a combination of Laplacian pyra-
mid [129] and the conventional DFB [21]. The contourlet transform can be considered
as a natural extenstion of curvelet transform [121],[122] which is implemented in the
continuous domain and the critical sampling is difficult to implement. The contourlet
transform overcomes the disadvantages of the curvelet transform and it uses pyramidal
directional filter bank for its implementation. However designing good filters for pyrami-
dal directional filter bank is a difficult task. A nonsubsampled, shift invariant contourlet
transform was proposed by Cunha et. al [130] and it is easy to implement using ladders
steps. The filter design problem of the nonsubsampled contourlet transform is much
simpler than the pyramidal directional filter bank.

6.2.4 Multiresolution Directional Filter Banks

Nguyen et. al [118],[22] introduced a class of multiresolution directional filter banks.
Those directional filter banks have different frequency partitioning. They are maximally
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decimated and have perfect reconstruction property. There is no DC leakage in any di-
rectional subbands. All of the multiresolution directional filter banks uses tree structure
decomposition. Some filter bank design involves designing two channel parallelogram
filter bank while others uses diamond filter bank. The design of parallelogram and dia-
mond shape filter banks can be easily constructed using the transformation of variables
technique as detailed in [131]. The multiresolution directional filter bank has been used
in many application [118],[22] and can be efficiently implemented using the ladder struc-
ture [132]. The complexity of implementing multiresolution directional filter banks is
the same as that of the conventional DFB.

6.3 Finer directional wavelet transform
The fiDWT has been proposed in [20] to extract directional information from the images
thus providing an efficient multiresolution image representation. The fiDWT employs
quadrant filter after the DWT to improve the directionality of the original DWT. The
The idea of combining 1D and 2D filter banks for multiresolution image representation
has been explored in [124],[125],[126]. The merits of hybrid transforms (by combining
1D and 2D filter banks) are efficient implementation and simpler filter design.
The separable 2D DWT frequency partitioning is shown in Figure 6.4(a). The separa-

ble 2D DWT produces one low pass subband LL (Low) and three directional subbands
namely HL (High-Low), LH (Low-High) and HH (High-High). The HH is the result of
high pass filtering the rows and columns. The HL subband is the result of low pass
filtering the columns followed by high pass filtering the rows. The LH subband is the
resultant of low pass filtering the rows followed by high pass filtering the columns. The
problem with the DWT are

1. HH subband mixes the orientation +450 with +1350

2. HL subband mixes the orientation +150 with +1050

3. LH subband mixes the orientation +750 with +1650

The fiDWT subband partitioning is shown in Figure 6.4(b). The HH subband from
the separable 2D DWT is decomposed into two smaller subbands labeled 5 and 6. The
frequency content of the HH subband is shown in the Figure 6.5(a) and is scrambled
after downsampling as shown in Figure 6.5(b). In order to separate the HH band into
the bands 5 and 6, quadrant filters are used. One of the quadrant filter has an ideal
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6.3 Finer directional wavelet transform

Figure 6.4: Frequency band partitioning of the (a) separable 2D DWT (b) Finer direc-
tional wavelet transform

Figure 6.5: (a) Diagonal subband of separable DWT (b) Frequency band of the HH
band after downsampling

passband shown as shaded (dotted, regions 5a and 5b) in Figure 6.5(b). The other
quadrant is complementary and has an ideal passband shown as unshaded (regions 6a
and 6b) in Figure 6.5(b). The same quadrant filters can be used to separate the LH
and HL subbands into smaller directional subbands. The analysis filter bank structure
to compute the fiDWT is shown in Figure 6.6 which consists of the separable 2D DWT
filter bank structure and the quadrant filter banks as “add-on”. There is a corresponding
synthesis filter bank structure (not shown) that reverses the operations in Figure 6.6 for
the inverse transform.
The separable filter bank is obtained from a 1D two channel filter bank with fil-

ters H1D
0 (z) (analysis low pass), H1D

1 (z) (analysis high pass), F 1D
0 (z) (synthesis low

pass) and F 1D
1 (z) (synthesis high pass). The filters in the filter bank satisfy the fol-

lowing conditions: H1D
1 (z) = z−1F 1D

0 (−z), F 1D
1 (z) = zH1D

0 (−z) and H1D
0 (z)F 1D

0 (z) +
H1D

1 (z)F 1D
1 (z) = 2 which ensures perfect reconstruction. For orthogonal filter banks

there is the extra condition F 1D
0 (z) = H1D

0 (z−1) (time reversal relationship).
The quadrant filter bank has 2D filters HQ

0 (z1, z2), HQ
1 (z1, z2) (complementary analy-

sis) and FQ
0 (z1, z2), FQ

1 (z1, z2) (complementary synthesis). The downsampling is defined
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6.4 Quadrant filter design

Figure 6.6: Analysis filter banks for the fiDWT.

by a diagonal sampling matrix D = diag(2, 1). For perfect reconstruction the follow-
ing condition is required for the filters: HQ

1 (z1, z2) = z−1
1 FQ

0 (−z1, z2), FQ
1 (z1, z2) =

z1H
Q
0 (−z1, z2) and

HQ
0 (z1, z2)FQ

0 (z1, z2) +HQ
1 (z1, z2)FQ

1 (z1, z2) = 2

Although the sampling structure for the quadrant filter bank is similar to that in
the separable filter bank, the 2D filters are not strictly separable, i.e. HQ

0 (z1, z2) 6=
A(z1)B(z2). However there are design techniques yielding quadrant filters that has
some form of generalized separability [131]. The complexity of those quadrant filters is
therefore comparable to that of separable filters.

6.4 Quadrant filter design
There are many ways to design a PR quadrant filter [132],[131]. Transformation of
variables technique is considered as more generalised mapping technique compared with
the McClellan transformation [131],[133],[134] . The McClellan transformation uses the
same kernel to transform 1D filters into 2D filters [134]. Phoong’s method [132] can also
be shown to be a special case of transformation of variables [131]. The transformation
of variable technique to design quadrant filter band is detailed below.
Let H2D

0 and H2D
1 be the 2D analysis low pass and high pass filters respectively. Let

F 2D
0 and F 2D

1 be the 2D synthesis low pass and high pass filters respectively. The perfect
reconstruction (PR) condition of the filter bank is given as
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6.4 Quadrant filter design

H2D
0 (z1, z2)F 2D

0 (z1, z2) +H2D
1 (z1, z2)F 2D

1 (z1, z2) = 2

The below condition achieves aliasing cancellation

H2D
1 (z1, z2) = z−k1

1 z−k2
2 F 2D

0 (−z1,−z2)

F 2D
1 (z1, z2) = zk1

1 z
k2
2 H

2D
0 (−z1,−z2)

where k1 + k2 = odd.
Now define the product filter to be D(z1, z2) = H2D

0 (z1, z2)F 2D
0 (z1, z2). Then the PR

condition can be given as

D(z1, z2) +D(−z1,−z2) = 2

The transformation kernel that facilitates the factorization of the product filter D(z1, z2)
is given as

W = M(z1, z2) =
∑
k1

∑
k2

m(k1, k2) zk1
1 zk2

2

such that

M(−z1,−z2) = −W

The below condition holds based on the definition of the transformation kernel. i.e

m(k1, k2) =

0 for k1 + k2 = even

arbitrary for k1 + k2 = odd
(6.1)

This transform a 1D polynomial DT (W ) into D(z1, z2). DT (W ) is a 1D product filter.
The 1D product filter DT (W ) can be factored to give HT (W ) and FT (W ). Thus 2D filter
can be obtained by transforming 1D filters using the mapping kernel. The transformation
of variable technique can be summarized as below.

1. Design the mapping kernel that approximates the desired frequency response using
the condition (6.1)

2. Design the 1D product filter DT (W ) and factorizes them into HT (W ) and FT (W ).
The 1D filters can be obtained by factorisation of Lagrange half-band filter [36],[132].
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6.5 Aliasing effect in the subband

3. The 2D low pass filters can be obtained as H2D
0 (z1, z2) = HT (M(z1, z2)) and

F 2D
0 (z1, z2) = FT (M(z1, z2))

4. The 2D high pass filters can be obtained using the alias cancellation condition

6.4.1 Quadrant filter mapping kernel

The sampling matrix D = diag(2, 1) =
 2 0

0 1

. The ideal subband shape of the

quadrant filter is given in Figure 6.5(b). The ideal impulse response for the desired
frequency response is calculated using calculus and it is given as

hideal(n1, n2) = sinc(k1π/2)sinc(k2π/2) cos((k1 + k2)π/2)

The transformation kernel can be designed as

m(k1, k2) = m1(k1)m(k2)cos((k1 + k2)π/2)

where m1(k) satisfies the condition (2.1) . The 1D filters can be obtained by factorizing
the Lagrange Half band filter

D(z) = zK
(

1 + z−1

2

)2K K−1∑
n=0

 K + n− 1
n

(2− (z + z−1)
4

)n

The 1D filters HT (W ) and FT (W ) can be obtained by symmetric factorization of the
Lagrange product filter with K = 3. The transformation kernel is obtained by designing
m1(k). The m1(k) is a 1D product filter which is obtained using the Lagrange Half band
filter with K = 4. The frequency response of the quadrant filter HQ

0 (z1, z2) is shown in
Figure 6.7. The frequency response of the complementary quadrant filter FQ

0 (z1, z2) is
shown in Figure 6.8.

6.5 Aliasing effect in the subband
In order to study the effect of aliasing in the fiDWT we designed a pair of linear phase
complementary quadrant filters HQ

0 (z1, z2) and HQ
1 (z1, z2) of size 13 × 13 and 29 × 29

respectively as detailed in the Section 6.4. Their frequency response of HQ
0 (z1, z2) and

HQ
1 (z1, z2) are shown in the Figure 6.7 and 6.8. For the separable filter bank, we initially

considered the 8 tap symmlet filter of Daubechies which has approximate linear phase
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Figure 6.7: Frequency response of HQ
0 (z1, z2)

characteristics and approximate symmetric wavelet function. Using multirate identities
the total effective frequency response of the subband 5 (referring to Figure 6.6 ) is given
by

T5(z1, z2) = H1D
1 (z1)H1D

1 (z2)HQ
0 (z2

1 , z
2
2)

The ideal frequency band support of HQ
0 (z2

1 , z
2
2) (squeezed version in both axes of

Figure 6.5(b)) is shown as the shaded regions in Figure 6.9(a). The ideal frequency
band support of H1D

1 (z1)H1D
1 (z2) is shown as the shaded regions in Figure 6.9(b). The

ideal frequency band support of T5(z1, z2) is therefore the intersection of the shaded
regions of figures 6.9 (a) and (b). Ideally the stopband regions labeled A and B in Figure
6.9(a) is supposed to completely remove the frequency band region labelled 6a and 6b
in Figure 6.9(b). However with practical filters there are transition band regions which
are shown as encircled regions in Figure 6.9(a) and (b) and they are in the vicinity of
the edges. The overlap between the transition bands of HQ

0 (z2
1 , z

2
2) and H1D

1 (z1)H1D
1 (z2)

results in aliasing energy which can also be viewed as energy leakage from one band to
another. Using the real (practical) filters mentioned above the actual frequency response
of subband 5, |T5(ejω1 , ejω2)|, is shown in Figure 6.10. The aliased components shown
as encircled in Figure 6.10 are quite large. A similar frequency domain analysis will
reveal that significant aliasing also occur in the other directional subbands 1, 2, . . . 4 and
this is due to the overlap between the transition bands of the separable and quadrant
filter banks. As another example the actual equivalent frequency response of subband 1,

117



6.5 Aliasing effect in the subband

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

ω
1

FREQUENCY RESPONSE OF H
1
Q(z

1
, z

2
)

ω
2

M
ag

ni
tu

de

Figure 6.8: Frequency response of HQ
1 (z1, z2)

|T1(ejω1 , ejω2)|, is shown in Figure 6.11 with the aliasing component shown as encircled. It
is clearly evident from Figure 6.10 and Figure 6.11 that there is a energy leakage occuring
along the edges and some regions in the stopband. Increasing the order of the filters
can reduce the level of aliasing energy but it is very difficult to achieve a substantial
reduction due to the inherent nature of system which has energy leakage distributed
along the edges of the frequency band. This aliasing will have negative impact in image
processing applications. Even though the fiDWT increases the directionality of the
DWT, the aliasing present in the trasform makes it less useful in many image processing
applications.
If the undecimated version of the fiDWT (ufiDWT) is used, the effective total fre-

quency response of the subband 5 is given by

T (z1, z2) = H1(z1)H1(z2)H(z1, z2)

Using the real (practical) filters mentioned above the actual frequency response of sub-
band 5, |T5(ejω1 , ejω2)|, is shown in Figure 6.12. which exhibit significant reduction in
aliasing compared to Figure 6.10. There are still some aliasing energy present along
some of the edges which cannot be completely eliminated because of the inherent fre-
quency characteristics of quadrant filters. An objective measure of the degree of aliasing
is defined as the ratio of aliasing energy to the signal energy:

EAS ≡
´
Region 6 |T5(ω1, ω2)|2dω1dω2´
Region 5 |T5(ω1, ω2)|2dω1dω2
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6.5 Aliasing effect in the subband

Figure 6.9: Ideal frequency band support of (a) HQ
0 (z2

1 , z
2
2) (b) H1D

1 (z1)H1D
1 (z2).

Shaded region: passband. Unshaded region: stopband

Table 6.1: Ratio of aliasing energy to signal energy EAS values.
HQ

0 order is 13× 13 HQ
0 order is 77× 77

fiDWT ufiDWT fiDWT ufiDWT
Symmlet 8 0.3267 0.1968 0.2399 0.0757

Biorthogonal 9/7 0.2585 0.2083 0.1730 0.0779
Daubechies 8 0.3267 0.1968 0.2399 0.0757
Daubechies 6 0.3593 0.1968 0.2742 0.0757

The EAS measure can also be defined for other subbands as well. In an ideal case where
there is no aliasing energy present in the region 6, the EAS value would be zero. Table
6.1 lists the value of EAS using various 1D filters and different order quadrant filters. It
is evident from Table 6.1 that ufiDWT has significantly lower aliasing compared to the
fiDWT. From Table 6.1, it is also clear that increasing the order of quadrant of filters
cannot reduce the aliasing energy substantially. Thus the ufiDWT is more robust than
fiDWT.
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6.6 Directional Information

Figure 6.10: Magnitude response of subband 5 in the fiDWT. Aliasing components
indicated by the arrows.

Figure 6.11: Magnitude response of subband 1 in the fiDWT. Aliasing components
indicated by the arrows.

6.6 Directional Information
The image shown in Figure 6.13(a) which is made up of lines oriented (the normal vector)
along the 450 and 1350 directions. Using the separable 2D DWT the (zoomed in portion
of) image of HH band is shown in Figure 6.13(b) which captures the diagonal information
(both the 450 and 1350components). Using the fiDWT the (zoomed in portion of) image
of band 6 is shown in Figure 6.14(a). A careful examination of Figure 6.14(a) will reveal
that it consists mainly of features along the 1350 direction but there are also residual
features along the 450 direction. Ideally band 6 is suppose to capture features in the 1350

direction but because of aliasing some of the features in the 450 direction have ’leaked’
into this band. If the ufiDWT is used instead the degree of ’leakage’ is reduced as seen
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6.7 Applications

Figure 6.12: Magnitude response of subband 5 in the ufiDWT. Aliasing components
indicated by the arrows.

in Figure 6.14(b) with reduced residual features along the 450 direction. The ufiDWT
is more robust in extracting the directional information compared to fiDWT. Thus the
ufiDWT has a better performance compared to fiDWT. The computational complexity
of the ufiDWT is however approximately 10 times that of the fiDWT.

(a) (b)

Figure 6.13: (a) Original test image (b) zoomed in image of the HH band

6.7 Applications
The performance of the fiDWT and ufiDWT is compared in image denoising application.
A simple soft thresholding technique [111] is employed to denoise the image corrupted
by additive Gaussian noise. The procedure of image denoising is as follows.
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6.7 Applications

(a)

(b)

Figure 6.14: zoomed in portion of image in band 6 using (a) fiDWT (b) ufiDWT.

1. The Additive White Gaussian Noise (AWGN) of known variance σ2 is added to
standard test image

2. The noise in the image is estimated using Median Absolute Deviation [111]

3. The noisy image is decomposed into 4 level using forward fiDWT and ufiDWT
respectively

4. A soft thresholding is done by having the threshold set to T = 3σ

5. Image is reconstructed using inverse fiDWT and ufiDWT respectively

6. PSNR is computed for the denoised image and comparison is made between fiDWT
and ufiDWT

First, we applied the above denoising process on the standard test image Lena. For the
case where input PSNR is 24.35 dB, the denoised image using the fiDWT and ufiDWT
is shown in Figure 6.15 and Figure 6.16 respectively. Both the output PSNR and visual

122



6.7 Applications

Figure 6.15: Lena image denoised using fiDWT. Output PSNR: 25.11 dB

quality is substantially superior with the ufiDWT. The Figure 6.17 compares the output
PSNR over a range of input PSNR for the ufiDWT, fiDWT and DWT. The ufiDWT is
the superior of the three. We carried out the denoising process on the another standard
image Boat. The Figure 6.18 compares the output PSNR over a range of input PSNR
for the ufiDWT, fiDWT and DWT. The ufiDWT is the superior of the three transform
in both of test images.

Figure 6.16: Lena image denoised using ufiDWT. Output PSNR: 28.11 dB
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Figure 6.17: PSNR in denoising for Lena
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Figure 6.18: PSNR in denoising for Boat

6.8 Conclusion
In this chapter, the aliasing phenomena of the finer directional DWT (fiDWT) has been
studied. There is a significant level of aliasing in the fiDWT which in inherent in the
system and cannot be easily eliminated by using high order filters. The aliasing is due
to the overlapping of transition bands resulting in energy leakage from one band to
another. The aliasing phenomena is fundamentally different in nature to the 1D case
as it involves 2D regions and edges. To reduce the level of aliasing. the undecimated
version of the fiDWT has been proposed (ufiDWT) which has a substantially lower level
of aliasing energy for a given filter order. We have also showed that the ufiDWT offer
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6.8 Conclusion

more defined directional information compared to the fiDWT. In the image denoising
application the ufiDWT gives substantially superior performance but with increased
computational complexity.
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7 Conclusion and Future Directions

7.1 Main contributions
The aim of this thesis is the design of new classes of wavelet filters and its applications
in the fields such as proteomics and image coding. The main contributions of this thesis
can be summarised as follows

1. A new technique is proposed to rationalise the orthogonal and biorthogonal wavelet
filter banks. The rational coefficient of orthogonal filter will simplify the imple-
mentation in hardware. All the properties of the orthogonal filters are preserved
during the rationalisation procedure including the perfect reconstruction, vanish-
ing moments and frequency response. The rationalisation of filter coefficients can
be extended to the Hilbertian filters which implement the DTCWT. A generalised
technique to rationalise the birothogonal wavelet filters is also demonstrated.

2. A new technique to design orthogonal almost symmetric wavelet filters has been
proposed. The symmetric wavelets are crucial in image processing applications as
the image features (edges, lines) are susceptible to non-linear distortions. Haar
wavelet is the only wavelet available in the literature which is orthogonal and
symmetric. With the proposed technique almost symmetric orthogonal wavelet
filters having arbitrary vanishing moments can be designed with ease. The de-
signed wavelet filters perform on par with 9/7 biorthogonal filters in image coding
application.

3. A novel technique based on optimisation to design a new class of almost sym-
metric Hilbert pair of wavelets has been proposed. The symmetry of Hilbert pair
of wavelets is important for directional selectivity. The designed Hilbert pair of
wavelets is symmetric and offers good directional selectivity. The designed Hilbert
pair of wavelets have approximate linear phase and approximately flat group delay.

4. The designed almost symmetric orthonormal hilbert pair of wavelets is applied to
Mass Spectroscopy data to denoise the MS/MS spectra. The processed peak list
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are searched in Mascot database to identify the peptides. Denoising done using
DTCWT with almost symmetric hilbert filters identified more number of peptides
compared to DWT and SWT.

5. The finer directional wavelet transform (fiDWT) has been proposed as a simple
extension to DWT to increase the directionality of DWT. However, the fiDWT
suffers from aliasing which is inherent in its transform. The proposed undecimated
finer directional wavelet transform (ufiDWT) reduces the aliasing and gives better
performance improvements compared with fiDWT.

7.2 Further Improvements and Future Directions

7.2.1 Rationalising Orthogonal Wavelet Filters

The technique to rationalise orthogonal and biorthogonal wavelet filters has been pro-
posed in Chapter II. Up to two VMs has been imposed on rational orthogonal wavelet
filter. Imposition of more than 2 vanishing moments on rational orthogonal filters should
be investigated further as it will lead to a smoother wavelet (higher Sobolev regularity).
The rational biorthogonal wavelet filters are acheived by reducing VMs from the one
of the biorthogonal filter. Since the VMs are reduced on biorthogonal filters, further
investigation should be done to know its effect on image coding applications.

7.2.2 Almost Symmetric Orthogonal Wavelet Filters

Design of almost symmetric orthogonal wavelet filters focuses mainly on the symmetry
of the wavelet. Symmetric orthogonal filters correspond to approximate linear phase.
Symmetric wavelets are crucial in image processing as edges in the images are susceptible
to non-linear distortions. However in some applications, frequency selectivity is also im-
portant in addition to symmetric wavelets. Design of sharper almost symmetric wavelet
filter should be investigated further. If both the symmetry and frequency selectivity are
considered, the problem can be formulated as multi-objective function. Genetic algo-
rithm can be used to solve such problems so that an optimal trade-off between wavelet
symmetry and filter sharpness is achieved. The time and frequency localisation of almost
symmetric orthogonal wavelet should also be studied further. The designed AS10 filter
performs on par with the D9/7 filter and mathematical properties of AS10 filters should
be studied further [47].
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7.2.3 Almost Symmetric Orthogonal Hilbert Pair of Wavelet Filters

Design of almost symmetric Hilbert pair of wavelet filter focuses on symmetry of Hilbert
pair of wavelets. At first, the AES and AOS are designed independently. The AES and
AOS filters form a Hilbert pair as their phase difference is approximately −0.5ω and their
frequency response is approximately equal. To get a better analytic quality, the AES
filter is fixed while the AOS filter is re-optimised iteratively. The re-optimisation can
also be performed on the AES filters while fixing the AOS and this needs to be further
investigated. An iterative re-optimation of both the AES and AOS filters can be also be
done until the best analytic measures are obtained. Will the iterative re-optimisation
on both the filters yield better analytic quality? This question is very interesting as a
detailed study will throw lot of insight on how the filter characteristics change over each
iteration. Designing of sharper almost symmetric orthogonal Hilbert pair of wavelet
filters has to be studied. The phase difference between the designed Hilbert pair of
filters is −0.5ω. Tay et. al [97] showed that Hilbert pair of filters can have an integer
plus half sample. A further investigation is needed to design the AOS and AES filters
to have an integer plus half sample delay to form a Hilbert pair and they can be further
re-optimised to get a better analytic quality.

7.2.4 Applications

The denoising of MS/MS spectra for Mass Spectroscopy using the designed almost sym-
metric hilbert pair of wavelets (implementing DTCWT) leads to finding more number
of peptides compared to other transform such as SWT and DWT. A futher investigation
is required in finding new algorithms to detect peaks efficiently. The feature finding in
MS data is very challenging due to misalignment in MS data and false peaks. Efficient
algorithms need to be developed for better peak detection and feature finding.
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