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Abstract 

The prediction of genetic merit for complex or quantitative traits from high-density SNP 

panels is increasingly used in animal and plant breeding, to select breeding individuals 

early in life in order to accelerate genetic gains. The genomic prediction methodology is 

also of interest in human disease studies for the prediction of disease risk and 

identification of causal mutations (quantitative trait loci, QTL, mapping). Bayesian 

models for genomic prediction, incorporating prior assumptions regarding the distribution 

of QTL effects, have been shown to give good accuracies of genomic prediction across a 

wide range of traits and species. These models are usually implemented with Monte 

Carlo Markov Chain (MCMC) sampling, which results in (impractically) long compute 

time with the very large genomic data sets now available. This study aimed to 

dramatically improve the computational efficiency of Bayesian methods, such that 

genomic prediction is practical in large genomic data sets, while maintaining their 

predictive ability. The thesis included three main areas of work 

  

1) Develop an Expectation-Maximization (EM) algorithm to substitute for MCMC 

sampling in the Bayesian models for genomic prediction, in order to reduce compute 

times. One key improvement over existing fast Bayes approaches was the introduction 

of prediction error variance correction during SNP effect estimation to account for the 

errors generated by estimation of many thousands of SNP effects The EM algorithm was 

up to 30 orders faster than MCMC in large dairy cattle genomic data sets.  However the 

predictive ability of the EM was not flexible to all trait architectures - for the traits affected 

by mutations of large effect, EM methods could have a reduced accuracy of prediction of 

up to 7% compared with MCMC implementations; 

2) To overcome this limitation, the next strategy was to hybridize the EM algorithm 

with a limited number of MCMC sampling iterations (the “Hybrid”). The hybrid version 

was 17 orders of magnitude faster to run than the full MCMC, and gave the same 



xv 

accuracy of genomic prediction across a wide range of traits with different genetic 

architectures.  

 3) Finally, the Hybrid genomic prediction algorithm was demonstrated with a large 

dairy cattle genomic data set, with a sizable subset of imputed whole genomic sequence 

data and phenotypes for milk production, fertility, and heat intolerance traits, for both 

genomic prediction and QTL mapping.  

 

The final stage of this thesis demonstrates that the Hybrid genomic prediction algorithm 

developed here makes simultaneous genomic prediction and QTL mapping feasible in 

large genomic data sets, up to whole genome sequence data.   
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Chapter 1   General Introduction 

1.1 Introduction 

Genomic predictions use information from high-density genetic polymorphisms, 

such as single nucleotide polymorphisms (SNP), to predict the genetic merit of 

individuals for complex traits (Meuwissen et al. 2001). Genomic prediction 

methods could also be used to identify genome regions harboring causative 

mutations, or the mutations themselves (Moser et al. 2015). Genomic selection in 

animal and plant breeding could be implemented in two steps: 1) estimation of the 

effects of SNPs in a reference population given the phenotypes and SNP 

genotypes of reference individuals and (2) calculation of genetic values for 

selection candidates (or target individuals) based on their genotypes, followed by 

selection of the candidates with the highest genomic predictions for breeding. 

Prediction of genetic values for individuals from SNP genotypes, without the 

selection step, is often referred to as genomic prediction.  

  

When estimating SNP effects, any genomic prediction method must overcome the 

! >> " problem – that is there are usually many more SNPs (!, the parameters) 

than observations (the "). A number of genomic prediction methods, which dealt 

with the large-p-with-small-n problem, have been proposed.  

 

Best linear unbiased prediction (BLUP) defined a linear combination of SNPs by 

assuming the normal prior distribution for SNP effects – that is SNP effects were 

treated as random variables derived from a normal distribution with the same 

variance (Meuwissen et al. 2001). SNP-BLUP was also referred to as ridge 

regression when the variance components or # parameter were estimated by 

cross validation (Whittaker JC 2000; Meuwissen et al. 2001). A method termed 

genomic BLUP or GBLUP (Habier et al. 2007; Hayes & Goddard 2008; VanRaden 
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2008) was an equivalent model that made use of the genomic relationship matrix 

(with elements the proportion of the genome shared by each pair of individuals 

estimated from the markers) to estimate genetic value (breeding values) directly.  

 

Alternative prior assumption of SNP effects could be considered. For example, 

there might be a mutation or mutations with moderate or large effects on the trait 

of interest, such that the SNPs in linkage disequilibrium (LD) with this mutation 

were associated with moderate to large effects. Another prior assumption might 

be that only a proportion of the SNPs were in LD with mutations affecting the trait, 

in which case the effect ascribed to these SNP should be zero. To accommodate 

these alternative assumptions, a series of methods (termed Bayesian regression 

models) proposed non-normal prior assumptions for SNP effects that a large 

proportion of SNPs had effects close to zero, or actually were zero, while a 

proportion of SNPs had moderate to large effects. These included Bayes A/B 

(Meuwissen et al. 2001), C(π), D(π) (Habier et al. 2011), Bayesian Lasso (Park & 

Casella 2008), etc. In detail, BayesA proposed a t-distribution for SNP effects, 

while BayesB, C(π), D(π), and Bayesian Lasso (also dubbed as Bayesian 

variable selection models) assumed mixture priors with the possibility of excluding 

some SNPs from the model. All these Bayesian models were also termed as 

non-linear model, as the result of non-linear combination of SNP effects. As a 

typical example of a Bayesian non-linear and variable selection method, BayesR 

(Erbe et al. 2012) assumed a proportion of SNPs with zero effects and that the 

others followed a mixture of three normal distributions with variances 0.0001 ��, 

0.001 ��, and 0.01 ��, where  �� was the total genetic variance of the trait. Due to 

this prior distribution for SNP effects, BayesR could be quite flexible for a range of 

traits of different genetic architectures. 

 

The accuracies of genomic prediction from BLUP and the Bayesian non-linear 

models had now been compared in data sets from a range of species. To 
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summarize these results, non-linear models coupled with Markov Chain Monte 

Carlo (MCMC) scheme had been demonstrated to had superior or equal 

prediction ability in many cases (Kemper et al. 2015; Moser et al. 2015; MacLeod 

et al. 2016), when compared with BLUP model. Increases in accuracy with the 

Bayesian non-linear methods had mostly been observed for traits with large effect 

causal mutations (e.g. Fat percent in dairy cattle; Type 1 diabetes, or rheumatoid 

arthritis in human diseases) (Kemper et al. 2015; Moser et al. 2015). Moreover, 

the advantage of Bayesian methods could further increase as selection 

candidates/validation set became more distant for the reference set, either in time 

or in genetic diversity (e.g. across-breeds). This was because in the BLUP model, 

a linear combination of effects of a large number of markers typically captured the 

effect of each causal variant. However, the long range of the association between 

markers and causal variants could be easily broken down by recombination over 

generations or when the animals to be predicted were more genetically distant 

from the reference set. In comparison with BLUP models, the nonlinear 

assumption from Bayesian models allowed a prediction driven by a limited 

number of markers in close association with each QTL.  

 

In addition to the prediction for unknown phenotypes, the nonlinear assumption of 

SNP effects from Bayesian models, and the fact that all SNPs were fitted 

simultaneously, have also been demonstrated to improve the precision of 

identifying the causal variants (QTL mapping). The traditional methods of 

identifying QTL, genomic wide association studies (GWAS), analyzed a single 

SNP at a time, and then a stringent significance threshold was used to account for 

multiple testing of a very large number of SNPs. GWAS methods have been 

applied for detecting QTL affecting complex traits in human or animals. However 

there were several limitations of GWAS for detecting QTL. One was that because 

SNPs were fitted one by one, the LD between SNPs was not accounted for, which 

could result in quite imprecise QTL regions. This was overcome in the Bayesian 

methods, because all SNPs were fitted simultaneously, so if a small number of 
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SNPs captured the effect of the mutation, it did not “spillover” to other SNPs. 

Bayesian methods (especially for BayesR) have been demonstrated to increase 

the precision of causal mutation identification in human (Loh et al. 2015; Moser et 

al. 2015) and dairy cattle (Kemper et al. 2015). Another limitation with GWAS was 

that SNPs that exceeded the significance threshold had over-estimated effects 

due to the “Beavis effect”, which could greatly reduce accuracy of subsequent 

genomic prediction (Meuwissen et al. 2001). This was overcame in the Bayesian 

methods, by fitting all SNP simultaneously.  

 

Beside the introduction of non-linear Bayesian models, another potential 

improvement for genomic prediction was the advent of whole genomic sequence 

data.  Several researchers have investigated the benefits of using whole genome 

sequence data in genomic prediction, using either simulation (Clark et al. 2011; 

Druet et al. 2014) or real data (MacLeod et al. 2016). Compared with the 

high-density SNP panels, the key merit of whole sequence data was that it 

actually included the causal mutation genotypes. As a result, the potential 

advantage of whole sequence data included better persistence of accuracy 

across generations, more accurate predictions across breeds, and more precise 

QTL mapping (Clark et al. 2011; Druet et al. 2014; MacLeod et al. 2014c; 

MacLeod et al. 2016).  

 

Though Bayesian non-linear models performed well both for genomic prediction 

and QTL mapping, there was one key limitation. These methods were typically 

employed with Monte Carlo – Markov Chain (MCMC) sampling, which resulted in 

very long compute times (10s of thousands of iterations were typically required 

before samples were actually from the posterior distributions of the parameters – 

that is they were not affected by starting values). As the size of genomic data 

dramatically increased to high-density SNP panels or even whole-genome 

sequence variants, the challenge of computational burden for Bayesian models 

became overwhelming. For example, whole genome sequence data of dairy cattle 
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including 28.3 million of variants (SNP and indels) have been published by 1,000 

bull genomes (Daetwyler et al. 2014). Bayesian models coupled with MCMC had 

unfeasible compute times with such large data sets. To deal with the 

computational burden, speed-up algorithms (VanRaden 2008; Meuwissen et al. 

2009; Hayashi & Iwata 2010; Shepherd et al. 2010; Yu & Meuwissen 2011; Sun et 

al. 2012) have been proposed. These algorithms introduced fast heuristic 

algorithms (e.g. Expectation-Maximization, Iterative Conditional Expectation) to 

improve the computational speed with Bayesian models. These methods have 

been demonstrated to speed-up Bayesian models under MCMC sampling by 

several orders of magnitude. However, as pointed out by (Meuwissen et al. 2009), 

a key drawback of these methods stemmed from the fact that within the methods, 

the effect of each SNP was estimated in turn, correcting the phenotypes for the 

effect of all the other SNPs.  When this was done, these methods assumed the 

effects of all other SNPs were estimated perfectly during the estimation of the 

current. That is, the methods did not account for the errors generated by the 

estimation of all the other SNPs, which was unrealistic. This had limited the 

prediction accuracy of these fast methods. As a result, these methods had been 

rarely applied in practice. One exception is the iterative BayesA (B), which 

introduced standard deviation to correct SNP effects and therefore could be 

implemented for the practical application (Olson et al. 2012). 

 

Accounting for the robust prediction accuracy from MCMC samplings and the 

efficient computational time of fast algorithms, one possible scheme was to 

hybridize the fast algorithms with MCMC. In other words, fast algorithms could be 

used to set up start points for the MCMC samplings, which reduced the large 

number of burn-in iterations. Then MCMC sampling for a limited number of 

iterations could be used to improve prediction accuracy. 

 

The main body of the research in this thesis focused on developing 

computationally efficient algorithms for genomic prediction while maintaining 
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similar prediction accuracy to the MCMC methods. The ultimate objective was to 

be able to use whole genome sequence data in genomic prediction.  

1.2 Research Objectives 

The objective of this research was to develop a genomic prediction method that 

was both computationally efficient and which gave similar accuracy to Bayesian 

MCMC methods, in four steps: 

 

 1) Introduce the Expectation-Maximization (EM) algorithm to tackle the 

Bayesian non-linear models, in order to speed-up the computational time (termed 

emBayesR). One improvement of emBayesR over other fast methods was that 

Prediction error variance (PEV) correction was introduced to account for the 

errors generated by estimates from other SNP effects during the estimation of 

current SNP effect. 

 2) Extend the emBayesR model to allow different breeds (populations) and 

phenotype error structures (for example in dairy cattle, cows might have their own 

records, while a bull’s “phenotype” was the average of many daughter records), 

as well as several speed up schemes. The prediction performance of emBayesR 

was then evaluated for multi-breed and across-breed predictions. 

 3) Improve the prediction accuracy of emBayesR by introducing Hybrid 

schemes, where an Expectation-Maximization algorithm was used initially, 

followed by a limited number of MCMC loops. In detail, we hypothesized that 

limited number of EM iterations until convergence promised a good starting point 

for MCMC, which therefore removed the need for a large number of burn-in 

iterations. Afterwards, a limited number of MCMC sampling could help to improve 

the accuracy over what could be achieved with the EM algorithm. 

 4) Apply the Hybrid schemes to whole genome sequence data (or large 

subsets of this data) to evaluate and demonstrate its ability for genomic prediction 

and QTL mapping in large genomic data sets. 
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1.3. The Outline of Thesis 

The thesis included: 

 

Chapter 2, a review of current genomic prediction methodology and the 

applications. The review first described the methodology of current Bayesian 

prediction models from the statistical viewpoint (the data model, the prior 

assumption(s) and the posterior features inferred from different priors). Then the 

performance of different prediction approaches was evaluated in terms of the 

prediction accuracy and computational efficiency. An important conclusion from 

the review of the literature was that an efficient algorithm was required to improve 

the computational time of Bayesian models, especially for the application to whole 

genome sequence data, while maintaining a similar genomic prediction accuracy. 

The paper was accepted by a journal as an invited review. 

 

In Chapter 3 , a novel prediction method was developed by the introduction of an 

Expectation-Maximization algorithm into the BayesR model (termed emBayesR). 

One improvement over existing fast methods was that that emBayesR introduced 

a prediction error variance correction from the GBLUP model to account for the 

prediction errors produced by the estimation of other SNP effects, when the 

current SNP effect was estimated. The performance of emBayesR was evaluated 

on the simulated and practical data. From the results, the superior computational 

speed of emBayesR could be clearly demonstrated but with some accuracy 

reductions in the traits controlled by major causal mutations with large effects. The 

chapter was published as: 

Wang T, Chen YPP, Goddard ME, Meuwissen TH, Kemper KE, Hayes BJ. 

(2015) A computationally efficient algorithm for genomic prediction using a 

Bayesian model. Genetics selection evolution. 47(1):34. 
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The evaluation study in Chapter 4  was conducted to investigate the prediction 

ability of emBayesR in more generalized situations. In detail, this study extended 

the emBayesR model by incorporating a polygenic breeding value (to capture 

genetic variation not picked up by the SNP), and weights on phenotypes to 

accommodate different error variances (e.g. bull phenotypes that were the 

average of many daughter records, versus individual cow records), and different 

breeds. Moreover, two novel speed-up schemes were introduced to further 

improve computational efficiency. The method (termed as optimized emBayesR; 

Opt_emBR) was evaluated for multi-breed prediction and prediction for a 

validation set that was genetically quite diverged from the reference set (a breed 

of cattle not in the reference set). From this study, the advantage and drawback of 

Opt_emBR were discovered when applied on the practical dairy cattle data of 

bulls and cows from Holstein and Jersey breeds. The results were presented in 

the  conference paper:  

Wang T, Chen YPP, Kemper KE, Goddard ME, Hayes BJ. (2015) 

Opt_emBR: Computationally efficient genomic prediction and QTL 

mapping in multi-breed populations. Proceeding of the Association for the 

Advancement of Animal Breeding and Genetics, 21: 449-452. 

 

In Chapter 5 , A hybrid scheme (termed HyB_BR) of the EM algorithm and a 

limited number of MCMC loops was developed to deal with the prediction 

reduction of emBayesR in Chapter 3.  HyB_BR took advantage of the speed up 

schemes and flexibility introduced in Opt_emBayesR in Chapter 4. HyB_BR was 

applied on both dairy cattle genomic and phenotype data and human genomic 

and phenotype data to evaluate accuracy of prediction, performance for QTL 

mapping, and ability to identify genetic architecture. The results demonstrated 

that HyB_BR gave identical prediction accuracy to BayesR under MCMC, while 

reducing computing run time by ten fold.  The paper was published as: 

Wang T, Chen YPP, Bowman PJ, Goddard ME, Hayes BJ. (2016) A hybrid 
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expectation maximization and MCMC sampling algorithm to implement 

Bayesian mixture model based genomic prediction and QTL mapping, 

BMC Genomics, 17:744.  

 

In Chapter 6 , HyB_BR was applied on a large subset of whole-genome sequence 

data from dairy cattle. An additional speed-up scheme was introduced into 

HyB_BR to further improve its computational efficiency. The multi-breed and 

across-breed prediction ability of HyB_BR using the whole genome sequence 

data was also evaluated, as well as potential of the algorithm to detect causal 

mutations in the sequence data. The paper was in preparation for publication. 

 

In the final chapter (Chapter 7 ), the general discussion and overall conclusions 

from Chapters 3-6 were presented. Several key findings from the study were 

described. In addition, issues for future applications of HyB_BR were discussed.  

 

  



 10 

Chapter 2   Review of the Accuracy and Computationa l 

Efficiency of Genomic Prediction Models with High 

Density Genotype Data  

2.1 Chapter preface 

Justification 

This chapter reviewed the methodology and application of genomic prediction. An 

important conclusion from the review of the literature was that a computationally 

efficient algorithm was required to reduce compute time of Bayesian genomic 

prediction models, especially for application to whole genome sequence data, 

while maintaining a similar genomic prediction accuracy. 

 

Publication status: 

Accepted by the journal CAB Reviews. 

 

Submitted as 

Wang T, Chen YPP, Hayes BJ. (2016) Review of the Accuracy and Computational 

Efficiency of Genomic Prediction Models with High Density Genotype Data. CAB 

review, accepted. 

 

Statement of contributions of joint authorship 

Tingting Wang (Candidate): Read and organized several hundred research 

papers. Tingting Wang also carried out writing up of the paper. 

 

Yi-Ping Phoebe Chen (Principle Supervisor): Supervised the writing of the review 

paper. 

 

Ben J. Hayes (Co-Supervisor): Supervised the writing of the review paper, 
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assisted with the logical structure of the paper and gave great contributions 

regarding the revision of the paper. 

 

This chapter was an exact copy of the version submitted to CAB review, except 

that the reference style, table numbers and figure numbers had been reformatted. 

 

2.2 Abstract 

The prediction of complex or quantitative traits from single nucleotide 

polymorphism (SNP) genotypes has transformed livestock  and plant breeding, 

and is also playing an increasingly important role in prediction of human disease. 

Genomic predictions are made using a prediction equation derived from 

regressing the phenotypes of the individuals in a reference population on all 

available SNPs simultaneously. Genomic selection is then selection of animals or 

plants for breeding based on these genomic predictions. As the rate of genetic 

gain that can be achieved with genomic selection is proportional to the accuracy 

of the genomic predictions, a key focus is now to increase the accuracy of 

genomic predictions. This can be achieved by increasing the size of the reference 

set, using denser markers, and using appropriate genomic prediction models. A 

wide range of genomic prediction models have been proposed, some of which 

use marker selection and either linear or non-linear Bayesian models for 

regression. The nonlinear Bayesian models under MCMC sampling give higher 

accuracy of genomic prediction for some traits, particularly as marker density 

increases, but at the cost of high computational burden. Strategies to improve 

computational efficiency of the nonlinear Bayesian methods are becoming more 

important, as the ultimate marker density is whole genome sequence, and this is 

increasingly affordable in many species. In this article, we review the performance 

of alternative models for genomic prediction. Strategies that have been proposed 

to improve the computational efficiency of implementing these models are 
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evaluated. Finally we outline what is required to enable genomic prediction from 

whole genome sequence data. 

 

Keywords: Genomic prediction, Bayesian regression models, Quantitative traits 

locus, Linkage disequilibrium 

 

Review Methodology: We searched the following database: CAB Abstracts, NCBI, 

ISI Web of Science, and Google Scholar. In addition, we used the references from 

the articles obtained by this method to check for additional relevant material. 

2.3 Introduction 

Most of the important traits in livestock and plant breeding are complex, that is, 

the variation in these traits is the result of mutations at many loci (Meuwissen et al. 

2001; Hayes et al. 2010; Huang et al. 2010; de los Campos et al. 2013). Two 

approaches have been proposed to use genetic markers such as SNPs to 

accelerate improvement of these complex traits in livestock and crops. Genome 

wide association studies (GWAS), whereby SNP effects are tested one by one for 

an association with the trait, followed by marker assisted selection (MAS) using 

most significant markers from the GWAS, have been successfully implemented 

for some traits in crops (Huang et al. 2010; Li et al. 2010; Jiao et al. 2012). GWAS 

have also been used to discover genes and pathways involved in human 

diseases (Chen et al. 2007; Nahar et al. 2007; Chen & Chen 2008; de los Campos 

et al. 2012). However, for prediction of complex traits, marker assisted selection 

suffered from over-estimating of the effects of the most significant SNPs (Beavis 

1998; Xu 2003) as well as capturing only a small proportion of the genetic 

variance (Yang et al. 2010). 

 

In contrast, genomic prediction models use all markers simultaneously 

(Meuwissen et al. 2001). No significance threshold is set, so provided a mutation 
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that affects the complex trait is in linkage disequilibrium with the markers, the 

variance causing the mutation in the complex trait could be captured. Even if the 

variation caused by a single mutation is small, by summing the effect of the 

markers across the genome, the genetic variance captured by the markers could 

be a substantial proportion of the total genetic variance (Haile‐Mariam et al. 2013; 

Wood et al. 2014). Genomic prediction is now applied widely in livestock and 

crops to select individuals for breeding (VanRaden et al. 2009; Jannink et al. 2010; 

de los Campos et al. 2013; Meuwissen et al. 2013; Lin 2014).  

 

There are two types of genomic prediction models that are widely used: linear 

models, including best linear unbiased prediction (BLUP (Meuwissen et al. 2001)) 

and nonlinear models (for example Bayesian regression models (Meuwissen et al. 

2001; Habier et al. 2011; Erbe et al. 2012)). As one of simplest prediction models, 

BLUP models assume that each and every marker has a small, but non-zero 

effect. BLUP models are straightforward and computationally efficient to be 

implemented, which have meant they are popular for the practical application.  

However, BLUP does result in the effect of a single causative mutation being 

captured by the linear combination of a large number of SNPs, typically spanning 

reasonably large chromosome chunks. The BLUP model could therefore have 

reduced accuracy in multi-breed or diverse populations, where these large 

chromosome chunks are not shared across breeds, or when genomic predictions 

are made and selected for multiple generations of breeding, as recombination 

could break up the chromosome chunks (Kemper et al. 2015). In comparison with 

BLUP models, Bayesian models could have flexible prior assumptions. For 

example, BayesA assumes many SNPs have small effect and few have moderate 

effect with a Student t distribution; while BayesB assumes SNP effects follow a 

mixture of zero effects and t distributed effects. Because these models allow for a 

small proportion of SNPs to had large effects, the effect of a causal mutation is not 

“smeared” across so many SNPs (i.e. across such large chromosome chunks), as 

the associations might persist better across breeds and time (Kemper et al. 2015). 
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For the same reason, these methods are also attractive for quantitative trait loci 

(QTL, the causative mutations) mapping (Moser et al. 2015). 

  

The accuracy of genomic prediction increases with marker density in some 

species (Yang et al. 2010; Kemper et al. 2015). The ultimate marker density is 

whole genome sequence, and indeed genomic predictions have been attempted 

with whole genome sequence data (Ober et al. 2012; van Binsbergen et al. 2015; 

MacLeod et al. 2016). The advantage of using whole genome sequence data 

should be that the causative mutations are actually in the data set, compared with 

relying on SNPs being in LD with causative mutations, so that all the genetic 

variance could be captured. However what is clear from studies that have used 

whole genome sequence data in genomic prediction to date is that simply adding 

millions of additional variants from the whole genome sequence data for which 

effects must be estimated, while using quite small reference populations and 

BLUP methods, does not lead to higher accuracies of genomic prediction.  

Rather, large reference populations are required to take advantage of the 

sequence data, as well as additional biological information for variant selection 

(MacLeod et al. 2016). This strategy though does lead to very large genomic data 

sets, with a correspondingly large computational burden for analysis, particularly 

for the Bayesian methods.  

 

Here we firstly review alternative statistical models that have been proposed for 

genomic prediction and the algorithms that have been used to implement them. 

The performance of these methods in terms of accuracy of genomic prediction is 

compared for a range of species and traits, and with increasing marker density up 

to the whole genome sequence. Then, the challenge of computational efficiency 

with Bayesian models will be discussed, and strategies that have been proposed 

to improve computational efficiency for implementing these models reviewed.  

Finally, we describe promising future directions that should enable genomic 

predictions to take advantage of whole genome sequence data in reference 
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populations of 100s of thousands of individuals.    

2.4 Models and algorithms for genomic prediction 

One of the major challenges with genomic prediction is that the number of 

markers (m) is typically much larger than the number of individuals with 

observations for the complex trait (n). An overview of the different models that 

have been proposed to deal with this challenge, and their major characteristics, is 

given in Figure 2.1. Bayesian models deal with this challenge by making a priori 

assumptions about the distribution of SNP effects, and using this information, in 

addition to the data (phenotypes) when the SNP effects are estimated. 

Non-Bayesian models for genomic prediction are outlined in Appendix I - File S1, 

but here our focus is on the Bayesian regression models as these are the most 

widely used in genomic prediction, due to their flexibility and performance in terms 

of the prediction accuracy. 

 
Figure 2.1. The classification of genomic prediction methods. 

 

Under the model detailed in Appendix 1 - File S1, the true breeding value of an 

individual is � = %& with the genotype matrix % and the SNP effects &, that is 
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the true breeding value is the sum of the effects of the alleles at the SNPs that the 

individual carries. Considering only the contribution of the additive effect of the loci 

under the model (1), the accuracy of genomic prediction will be greatest if the 

estimate of the trait has the property �' = E(� |′data′), that is the estimates of the 

�' (the genomic estimation breeding values; GEBV), match the expected values of 

�  given the data (the phenotypes), as described by Goddard and Hayes 

(Goddard & Hayes 2007). At the level of the SNP effects, this means that the 

accuracy of the GEBV would be maximized if &- = E(& |′data′) (Goddard & Hayes 

2007).  

 

Therefore, the appropriate posterior estimation (combining information from the 

data and the prior) for &- is:  

&- = . & × ! (′data′|&) × !(&)01 . ! (′data′|&) × !(&)012           (1)           

where, !(′data′|&) is the full likelihood, and !(&) is the prior distribution for SNP 

effects. Equation (1) is the basis of the Bayesian regression methods to derive the 

posterior estimation for SNP solutions and other related parameters according to 

the prior density function !(&) detailed in Appendix 1 - File S2.  

 

One of the simplest and most widely used genomic prediction methods is best 

linear unbiased prediction (BLUP) (Meuwissen et al. 2001). BLUP assumes the 

effect of each marker is derived from normal distribution with the common 

variance across the whole markers, that is !(3)~5(0,  6�). In practice, the impact 

of this prior is that the SNP effects are shrunk (heavily) towards the mean, in 

proportion to the ratio of the error variance, for the complex trait phenotypes, to 

the variance of the normal distribution from which the SNPs are assumed to be 

derived ( 6�). When these variance components are not known (usually the case 

in practice!), either cross-validation, restricted maximum likelihood, or Markov 

Chain Monte Carlo sampling could be used to estimate them, in which case the 

methods are called Ridge Regression, SNP_REML and Bayesian BLUP 
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respectively. An equivalent model to BLUP is Genomic BLUP or GBLUP 

(VanRaden 2008) which predicts genetic values directly (instead of SNP effects) 

using a genomic relationship matrix constructed from the SNPs. GREML is the 

name given to the method that uses restricted maximum likelihood to estimate the 

variances captured by the SNPs in the genomic relationship matrix (Yang et al. 

2010).   

 

Due to the fact that the genomic predictions from the BLUP models are linear 

combinations of the SNP effects, these models are also termed linear random 

regression models. Before moving onto the other models, it is useful to restate the 

“prior” for BLUP (the same for GBLUP), that each and every SNP has a non-zero 

effect (regardless of how many SNPs are in the model), and these effects are very 

small.  

 

Genomic Prediction methods using Bayesian regression models 

Alternative prior assumptions for the distribution of SNP effects can be that there 

will be some SNPs with moderate effects (because these SNPs are in high 

linkage disequilibrium with causative mutations with moderate effects), and many 

SNPs with small effects, or perhaps many SNPs with zero effects, because they 

do not capture any of the effect of causal mutations (Meuwissen et al. 2001). 

Bayesian models with these priors include BayesA and BayesB respectively, first 

proposed by (Meuwissen et al. 2001). There are a growing number of additional 

Bayesian models, which differ in their prior assumptions regarding the distribution 

of SNP effects, Table 2.1. These models have been described collectively as the 

Bayesian alphabet by Gianola et al. (Gianola et al. 2009). To understand the 

ontology of Bayesian methods, it is essential to investigate the priors of these 

methods, and the posterior shrinkage feature inferred from these priors. In the 

following, we will first discuss the priors assumed by different methods that have 

been used widely in the literature (Table 2.1). Next, the effect of these priors on 

the estimates of marker effects will be demonstrated in a test data set. 
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Table 2.1. Summary of prior distribution feature proposed for different Genomic prediction models. 

Model 

Hierarchical Prior Density 

Prior Density 
conditional on the 

parameters !(u8|9, ⋯ ) 

Terms & description 
Prior of &; 

conditional on the 
variance �&;�  

(5<u8=0, σ>?� @) 

Prior of �&;�  

conditional on 
hyper-parameters 9 (!<σ>?� =9@) 

Hyper-parameters 
(!(9)) 

Gaussian 1A~5(0,  6�)  6� was fixed - 1A~5(0,  6�) 

Following uniform normal distribution 

e.g. SNP-BLUP (Meuwissen et al. 

2001), GBLUP (VanRaden 2008) 

Thick tail 1A~5(0,  6B� ) 

 6B� ~CD�(E, F) E, F were fixed 1A~G(0, E, F) 
Following student distribution e.g. 

BayesA (Meuwissen et al. 2001) 

 6B� ~HI(0, #) # was fixed 1A~HI(0, #) 

Following Double exponential 

distribution (DE) e.g. BayesLasso 

(Tibshirani 1996; Park & Casella 2008) 

Spike-around

-zero & Slab 

1A~J5<0,  6� +  L�@+ (1 − J)5<0,  L�@  6�,  L� were fixed; J: uniform prior 

1A~J5<0,  6� +  L�@+ (1 − J)5<0,  L�@ 
The mixture of two normal distributions 

e.g. BSLMM (Zhou et al. 2013b) 

1A~J5<0,  6B� @+(1 −  6B� ~CD�(E, F) J~1"NOPQR(0,1) 1A~JG(0, E, F)+(1 − The mixture of t distributions e.g. 
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J)5<0,0.01 6B� @ E, F were fixed 

J)G(0, E, 0.01F) BayesSSVS (Verbyla et al. 2009; 

Verbyla et al. 2010) 

Spike-at-zero 

& Slabs 

1A~N(0,  6B� ) 
 6B� ~J< 6B� = 0@ + (1 − J)CD�(E, F) 

J~1"NOPQR(0,1) E, F were fixed 

1A~J(1A = 0) 

+(1 − J)t(0, E, F) 

The mixture of point mass at zero and t 

distribution e.g. BayesB (Meuwissen et 

al. 2001) 

1A~J(1A = 0) + (1− J)5<0,  6B� @ 

 6B� ~CD�(E, F) 
J~1"NOPQR(0,1) E, F were fixed 

The mixture of point mass at zero and t 

distribution but with the same variance 

e.g. BayesC(π) (Habier et al. 2011) 

 6B� ~CD�(E, F) 
F~TURRU(1,1) J~1"NOPQR(0,1) 

The mixture of point mass at zero and t 

distribution but with the same variance 

e.g. BayesD (Habier et al. 2011), 

BayesDπ(Habier et al. 2011) 

1A~JV5(0,0.0001 6�)+J�5(0,0.001 6�) +JW5(0,0.01 6�) +JX(1A = 0) 

 6� was fixed 

 

Y JAX
AZV = 1 

JA~HNQN[ℎ]^G(_) 

1A~JV5(0,0.0001 6�)+ J�5(0,0.001 6�)+ JW5(0,0.01 6�)+ JX(1A = 0) 

The mixture of point mass at zero and 

three normal distributions e.g. BayesR 

(Erbe et al. 2012; Moser et al. 2015), 

BayesRC (MacLeod et al. 2016) 
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Models with thick-tailed priors assume all SNPs had effects, but these effects 

follow thick tail distributions. Compared with a normal prior assumption for the 

SNP effects (black dotted line), the family of thick-tailed priors assumes a large 

proportion of SNPs with effects close to zero (regressing these SNPs effects 

closer to zero than BLUP), and a small proportion of SNP with larger effects, 

resulting in the thick tail distribution (red curve in Figure 2.2). There are several 

models with thick-tailed priors: 

 

Figure 2.2. The prior density functions for BLUP and three different Bayesian 

models. 

 

BayesA (Meuwissen et al. 2001) assumes a t-distribution at the level of SNP 

effects. Note that the strategy to make this method computationally efficient is 

usually achieved by allowing each SNP to have its own normal distribution (also 

called a SNP specific variance), and the distribution of these variances is 

assigned an inverted Chi-square distribution (Meuwissen et al. 2001), Appendix I - 

File S3. Many other Bayesian models also use this computational trick.   

 

BayesLasso  assumes a double exponential distribution at the level of SNP 
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effects, which results in greater shrinkage than in BayesA (Tibshirani 1996; Park & 

Casella 2008; de los Campos et al. 2009).  

 

Spike-around-zero & Slab models  (green curve in Figure 2.2 ) use mixture 

model of SNP effects where a proportion of SNPs are derived from a distribution 

with almost zero variance, such that these SNP effects form a “spike around 

zero” , while a smaller proportion of SNPs are derived from distribution with larger 

variance (the “slab”). In comparison with thick-tail priors, Spike-around-zero & 

Slabs will regress more SNPs with small effects near zero resulting in distribution 

with sharper peak (spike) around zero than thick tail model. The green curve in 

Figure 2.2 demonstrates this. BayesSSVS  (Verbyla et al. 2009; Verbyla et al. 

2010), and BSLMM (Zhou et al. 2013b) are two popular prediction methods 

(Table 2.1).  

 

BayesSSVS (Verbyla et al. 2009; Verbyla et al. 2010) implements the stochastic 

search variable selection (hence SSVS) scheme for markers with large effects. 

BayesSSVS can be considered as an extension of BayesA model, with a mixture 

model of two t-distributions with different variances, one 1/100 of the other.  

 

BSLMM  (Zhou et al. 2013b) extends the BLUP model to have one normal 

distribution from which many SNP effects are derived with a variance very close to 

zero, such that the SNP effects are very close to zero, and another normal 

distribution with larger variance, resulting in larger estimates of effects for the 

SNPs assigned to this distribution. BSLMM does not set a priori for either the 

variances of the normal distributions or the proportion of SNPs. Instead they are 

inferred from the data and hyper-parameters (Table 2.1), which allows this method 

to adapt to different underlying genetic architectures of complex traits.  
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Both thick-tail and Spike-around-zero & Slabs allow a large number of SNPs to 

have very small effects but they do not actually remove SNPs from the model.  

 

Spike-at-zero & Slab models (purple curve in Figure 2.2) assume a large 

proportion of SNPs are actually zero (removed from the model), while the rest of 

the SNPs follow a prior distribution (e.g. t distributions or the mixtures of normal 

priors). Spike-at-zero & slab models include BayesB (Meuwissen et al. 2001), 

BayesC(π) (Habier et al. 2011), and BayesR (Erbe et al. 2012).  

 

In the BayesB models (Meuwissen et al. 2001), a fraction (JV) of SNPs have no 

effects while (1-JV) of the SNPs share the same prior assumption as BayesA (t 

distribution of effects). The value of JV is set a priori. The BayesB model (as well 

as BayesA, LASSO, and SSVS) has been criticized by Gianola (Gianola et al. 

2009; Gianola 2013): the strong priors in these models (the degrees of freedom 

for the t-distribution, or shape parameter for the BayesianLASSO) mean that 

when these models are applied, the posterior distribution of SNP effects is largely 

driven by the prior rather than the data. The reason for this is that the SNP specific 

variances are often estimated with more weights from the prior (the weights 

specified by the degrees of freedom) than from the data. To deal with these 

problems, Gianola (Gianola 2013) have proposed two solutions: 1) Increase the 

freedom by grouping the markers into different sets. 2) Define the 

hyper-parameters related to the variance as unknown, but derived in turn from 

some prior distribution.  

 

BayesC(π) (Habier et al. 2011) is a method that adopts both these strategies. 

BayesC(π) assumes SNP effects are either zero, or follow a normal distribution, 

with the same variance across non-zero SNPs (i.e. a BLUP model for SNPs in the 

model). This assumption means the variance of the normal distribution is 
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estimated with large degrees of freedom from the data (with degrees of freedom 

the number of SNPs in the normal distrubtion-1). In contrast to BayesB, the value 

of J is not pre-set, rather it is estimated from the data with a prior assumption, 

Table 2.1. 

 

Another Spike-at-zero & slab model is BayesR (Erbe et al. 2012), which also 

adopts both strategies suggested by Gianola (Gianola et al. 2009; Gianola 2013). 

BayesR defines a large proportion (JV) of SNPs with zero effect and the others 

follows a mixture of three normal distributions (J�, JW, and JX) with a series of 

variances 0.0001 ��, 0.001 ��, and 0.01 �� (shown in Table 2.1), where  �� is the 

genetic variance of the trait. This allows BayesR the flexibility with respect to 

genetic architecture. The mixing proportion parameters JV, J�, JW, and JX are 

assumed to follow Dirichlet distribution. The only problem for BayesR is that the 

genetic variance  �� is pre-specified according to the prior empirical knowledge, 

which might affect the inference of SNP effects. To deal with such problem, Moser 

et al. (Moser et al. 2015) modifies BayesR model by treating the variance  6� as 

unknown. The estimate of the variance is then made from the data and assuming 

a prior distribution for this parameter, Table 2.1.  

 

Since Spike-at-zero & Slabs set a large proportion of SNPs to zero, while the 

remaining SNPs could have up to moderate to large effects, such priors produce 

SNP effect distributed with a high peak at zero point and a fat tail (the purple curve 

in Figure 2.2).  

 

In Figure 2.3, the effect of the priors used by BayesR, BayesB, BayesA, and 

BLUP on the estimates (posterior estimates) of SNP effects is demonstrated in an 

example data set. In practice, the actual degree of shrinkage would depend on the 

size of the data and the genetic architecture of the trait (Gianola 2013). The BLUP 
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prior (single normal distribution) shrinks all SNP effects heavily towards zero 

(black line); the thick tail prior of BayesA shrinks some SNPs near zero more 

heavily than the SNP with moderate to large effects (green curve); BayesB 

shrinks many SNP to zero, while some SNPs have moderate to large effects (red 

curve); and similar to BayesB, BayesR shrinks many SNPs heavily towards zero 

but the mixture of three normal distributions rather than a single t distribution 

results in large effects being shrunk to a greater degree than in BayesB (blue 

curve). 

 

Figure 2.3. Estimated SNP effects from linear model (SNP-BLUP), thick tail model 

(BayesA), and mixture model (BayesB and BayesR). 

2.5 Comparison of the accuracy of genomic predictio n 

methods in simulated and real data 

The genomic prediction models described above have been widely implemented 

in both simulated and empirical data sets. So we could use the results of these 

studies to investigate two questions: 1) does any prediction model outperform the 
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others, and what is the impact of genetic architecture on the relative performance 

of the models? 2) does increasing density of genomic data improve the accuracy 

of predictions? Here, the performance is defined in terms of prediction accuracy, 

which is the correlation of Genomic Estimated Breeding Value (GEBV) and True 

Breeding Value (TBV). In the cases of field data, where the TBV is not known, the 

observed phenotype has been used as the proxy for TBV to calculate the 

prediction accuracy. 

 

As the genetic architecture of the simulated data is well defined, we would start 

with an investigation of relative performance of the models with a range of 

underlying genetic architectures. The impact of the genotype data with different 

densities on prediction accuracy will be discussed as well. Then, some theory 

regarding the accuracy of prediction models will be applied to explain the 

performance of prediction models on the simulation data. Finally, in empirical data 

sets from animal/plant breeding, linear and nonlinear models will be evaluated, 

with both high-density SNP and sequence data. 

 

Genomic prediction in simulated SNP panels and sequence data 

 

In simulated data, the genetic architecture of the simulated complex trait is 

defined by the number of QTLs, the distribution of QTLs effects, and the minor 

allele frequency (MAF) of QTLs (Harris & Johnson 2010; Meuwissen & Goddard 

2010; Clark et al. 2011; Druet et al. 2014; MacLeod et al.). 
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Table 2.2. The impact of increasing density and different model on prediction accuracy for simulation data 

 
Marker 

Size 

No. of QTLs 
 

Distribution 
of QTLs 

 
MAF of 
QTLs 

Results 
 

Reference Small 
(≤100) 

Moderate 
(100~1,000) 

Large 
(1,000~10,000) 

Infinitesimal  
(>10,000) 

Linear VS. 
Non-linear 

Increasing 
density 

One 

genome 

30 - - - Normal ≥0.05 

Nonlinear 

had 40% 

increase 

Sequence 

data had 

5-10% 

advantage 

(Meuwissen 

& Goddard 

2010) 

20K~1000K 
- - 1,500 - Gamma ≥0.05 Similar 

Increasing 

density had 

1% increase 

(Harris & 

Johnson 

2010) 

50K, 500K 
- - 10,000 - Heavy tail ≥0.05 

Nonlinear 

had 1.6% 

higher 

reliability 

500K had 

1.6% 

advantage 

than 50K in 

reliability 

(VanRaden 

et al. 2011) 

5K, 60K, 

sequence 

100 - - - Gamma ≥0.05 

Nonlinear 

had 26% 

increase 

Sequence had 

9% increase 

than 60K. 
(Clark et al. 

2011) 

 
5K, 60K, 

sequence 

- 1,000 - - Gamma ≥0.05 

Nonlinear 

had 6% 

increase 

Sequence had 

7% increase 

than 60K. 
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5K, 60K, 

sequence 

- - 10,000 Infinitesimal Gamma ≥0.05 Similar Similar 

5K, 60K, 

sequence 

100 1,000 - - Gamma 

<0.01 

(Rare 

model) 

Nonlinear 

had 26% 

increase 

- 

60K, 600K 
15~50 - - - Normal ≥0.05 

Nonlinear 

had up to 

3.6% 

increase 

Sequence had 

up to 11.8% 

increase than 

other HD SNP 

chips 

(MacLeod 

et al.) 

50K, 

Sequence 

- 1,000 - - Normal 

≥0.05 

(Neutral 

distribution) 

- 

Sequence had 

1.5% 

advantage 

than 50K (Druet et al. 

2014) 

50K, 

Sequence 

- 1,000 - - Normal 

<0.01 

(Rare 

model) 

- 

Sequence had 

up to 30% 

increase than 

HD 
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A large number of studies have used simulated data to assess performance of 

genomic prediction methods, Table 2.2. Meuwissen and Goddard (Meuwissen & 

Goddard 2010) simulated whole genome sequence data, with a larger number of 

SNPs and 3 or 30 causal mutations (QTLs) affecting a complex trait, on one 

chromosome. In comparison with GBLUP, BayesB gave up to a 40% accuracy 

improvement. They also found that prediction accuracy was improved as marker 

density increased. Macleod et al. (MacLeod et al.) used a similar approach but 

simulated a much larger number of QTLs (3000). GBLUP and BayesR were two 

genomic prediction models that were compared with marker density from 60,000, 

600,000, up to whole genome sequence. The results showed there was up to 11.8% 

advantage from sequence data compared with other SNP panels, and BayesR 

could take a better advantage of sequence data than GBLUP.  

 

In contrast, other authors have found limited advantage from increasing marker 

density. Harris and Johnson (Harris & Johnson 2010) reported very minimal gain 

(1% improvement) by increasing the density of simulated SNP panel (20K, 100K, 

500K, 1000K), while different prediction models (linear and nonlinear methods) 

had very similar prediction accuracy on the same dataset. There were a very large 

number of QTLs in their study.  

 

Clark et al. (Clark et al. 2011) and Druet et al. (Druet et al. 2014) explored the 

relationship between genomic prediction accuracy and genetic architecture in 

more details. Clark et al. simulated a range of different genetic architectures 

including a Rare QTL model (with QTL at low MAF), Common QTL model (with 

QTL at the MAF expected under a neutral model), and a pseudo-infinitesimal 

model. In the pseudo-infinitesimal model, there were a large number of QTLs 

(>10,000) with very small individual effects. When BayesB and GBLUP were 

implemented in the above data sets, BayesB gave more accurate GEBV under 
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the Rare QTLs model. However, for the pseudo-infinitesimal model, the accuracy 

of BayesB was very close to GBLUP. Clark et al. also investigated the effect of 

marker density, simulating full genome sequence with ~1.67 million of SNP, as 

well as 60K, and 5K SNP chips. The results showed that the advantage of 

sequence data over 60K in terms of genomic prediction accuracy was 5% to 15%, 

depending on the MAF of the QTL. Similar to the results from Clark et al., Druet et 

al. reported 1.5% ~30% advantage of using sequence data over 50K SNP chip 

data with a common QTL model and Rare QTL model respectively.  

 

Considering the above results, is there some way of predicting which method 

could perform best on a particular data set? Daetwyler et al. (Daetwyler et al. 

2010) and Goddard (Goddard 2009) presented an equation to predict the 

accuracy:  

b = c defg
defghi                           (2)           

where, b is the accuracy; 5k is the size of reference set; ℎ� is the heritability; 

And l is the number of loci affecting the trait. In the linear models (BLUP), the 

appropriate value of l  is equal to  m�  (the number of effective independent 

chromosome segments in the population), as all the SNPs (which track the 

chromosome segments) are in the model. The number of effective chromosome 

segments is given by m� = �dnopq� (�dn), with 5�= the effective population size, r= the 

size of the genome in Morgans (For Holstein cattle, where Ne is 100 and the 

length of the genome is 30 Morgans, the Me is 2607). For the nonlinear models 

(e.g. BayesB and BayesR), which can set SNP effects to zero, the appropriate 

l = min (m�  , 5vio) (where 5vio is the number of QTLs). That is, the number of 

QTL can actually be less than the number of effective chromosome segments in 

the population. The formula (2) tells us that:  

1) Prediction accuracy will increase as a large number of records Np are used, 
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2) For the same number of records, prediction accuracy will be higher for 

traits with higher heritability,  

3) If the number of QTL is less than the effective number of chromosome 

segments, prediction accuracy will be higher with BayesB and BayesR. 

 

A further point to make is that the advantage of increasing marker density will be 

greater in populations with large Ne, as in those populations a higher density of 

markers is required to ensure at least one marker is in LD with at least one QTL. 

 

Point 3) above explains why Meuwissen and Goddard (Meuwissen & Goddard 

2010) has observed such a large advantage of BayesB over GBLUP – with 3 or 

even 30 QTL, the number of QTL is much smaller than the number of 

chromosome segments. In contrast, Harris and Johnson (Harris & Johnson 2010) 

simulated a much larger number of QTLs, and with 5vio~m� , so there was less 

advantage of BayesB. They also simulated smaller Ne, so there was less 

advantage of increased marker density.  

 

To summarize non-linear Bayesian models have an advantage over BLUP models 

(linear models) when there are a small number of major QTLs (e.g. 30~100 in 

(Meuwissen & Goddard 2010; Clark et al. 2011; MacLeod et al.)). But the 

advantage diminishes gradually with increasing number of QTLs (Clark et al. 

2011). In infinitesimal model with more than 10,000 QTLs, nonlinear Bayesian 

models have minor advantage over BLUP (Harris & Johnson 2010; Clark et al. 

2011; VanRaden et al. 2011). Further, the number of QTLs with low MAF 

determines the impact of the density of genotype data on the accuracy. When the 

QTLs are at reasonable MAF, high-density (600K) data is enough in most 

livestock species to ensure adequate LD between the SNP and QTL for accurate 

genomic prediction. With common SNP architectures, the gain from using 

sequence data over 600K is very small as demonstrated in (Harris & Johnson 
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2010; Druet et al. 2014; MacLeod et al.). But for Rare QTLs models in which there 

exist a number of QTLs with small MAF (<0.01), there could be a substantial 

advantage by using sequence data (Meuwissen & Goddard 2010). An outstanding 

question is of course how many QTLs do actually affect complex traits, and what 

is the allele frequency spectrum of these QTLs. As shown below, for some traits 

the non-linear Bayesian methods do have some advantages over BLUP, while for 

others the advantage is minimal – this would imply that genetic architecture varies 

quite markedly between traits.  

 

Genomic predictions in livestock from empirical HD density SNP chips to 

sequence data 

 

In this section, we first review the overall application of genomic prediction in a 

range of livestock data sets in Table 2.3. Then we focus on comparing the 

performance of linear (BLUP) and nonlinear models (BayesB, BayesCπ and 

BayesR) in terms of the accuracy of GEBV. Afterwards, we investigate the 

advantage of whole genome sequence data over SNP chips.  
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Table 2.3. Genomic prediction on a range of HD SNP chips for livestock. 
Specie Population 

size 

No. Of Marker  Traits Methods Results Reference 

Cattle 2,937 

Norwegian 

Red bulls 

25K/54K 

777K 

22 production and 

functional traits 

BLUP 777K HD data had just Marginal 

increase for prediction accuracy 

than 54K medium density data  

(Solberg et al. 

2011) 

Cattle 33,414 

Holsteins 

50K   500K  -  

LinearNonlin

ear 

1 )The reliability gain by increasing 

the number of markers to 500K was 

only 1.6%;          2) Nonlinear 

model had 1.5~1.6% reliability 

increase than linear 

(VanRaden et 

al. 2011) 

Cattle  2,000 

Holstein 

624,930  

36,673 

Residual Feed Intake      

250-day Body weight 

GBLUP, 

BayesA, 

BayesSSVS 

Bayesian methods had up to 10% 

advantage than GBLUP in Australia 

(Pryce et al. 

2012) 

Cattle 4,539 

Holstein 

4,403 RDC 

777K 

54K 

Protein, Fertility, Udder 

health 

GBLUP,  

Bayesian 

mixture 

1) 0.5% ~1% reliability 

improvement on 777K HD SNP 

than that based on the 54K data on 

two breeds; 2) Bayesian mixture 

had 0.5% higher reliability than 

GBLUP in Holstein, but similar in 

RDC. 

(Su et al. 

2012) 
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Cattle 996 Holstein, 

93 Jersey 

58,532 

624,213 

Milk, Fat, Protein GBLUP_mod

, BayesR, 

BayesA 

1) BayesA≅BayesR   

BayesA(R) >GBLUP ; 2) Compared 

with 50K chips, The improvement of 

accuracy on 600K SNPs was very 

limited. 

(Erbe et al. 

2012) 

Cattle 10,181 

Holstein 

729,068 Residual Feed Intake     

Carcass and meat 

quality 

GWAS, 

GBLUP, 

BayesR 

BayesR was Up to 0.04 greater that 

GBLUP 

(Bolormaa et 

al. 2013) 

Cattle  17,925 

Holstein 

632,003 Milk production in dairy 

cattle 

Multibreed 

GWAS 

identified and confirmed a large 

number of QTL with more accurate 

locations information.  

(Raven et al. 

2014) 

Cattle 161,341 

Holstein 

50K 

300K 

28 traits including yield 

traits and functional 

traits 

GBLUP, 

fastBayesA 

1) nonlinear model only improved 

an average 0.8% reliability of 

prediction than GBLUP; 2) 

Prediction Reliability on 50K SNP 

chip was only 0.2% less than the 

one on 800K SNP. 

(VanRaden et 

al. 2013) 

Cattle 11,527 

Holstein, 

4,687 Jersey 

632,002 5 milk yield traits 

Composition traits 

across breed 

GBLUP, 

BayesR 

BayesR had the average of 7% 

increase compared with GBLUP 

(Kemper et al. 

2015) 

Sheep 2,812 43,929 Milk yield, fat%, 

Somatic cell count 

BayesCJ, BayeCJ had around 2%~5% (Duchemin et 
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(SCC) GBLUP, PLS accuracy advantage than others al. 2012) 

Sheep 8075~10,772 

sheep 

48,599 Carcass and novel 

meat quality, Greasy 

fleece weight, Eye 

muscle depth 

GBLUP, 

BayesSSVS, 

BayesR 

BayesSSVS had 20% accuracy 

advantage than GBLUP in 

crossbreeding population. 

(Daetwyler et 

al. 2012a; 

Daetwyler et 

al. 2012b) 

Pig 351 34,000~40,000 

from 

PorcineSNP60 

Four US breeds - High LD gave the promise of the 

probability of genomic selection 

(Badke et al. 

2012) 

Pig 3534 52,842 Five purebred traits BayesB, 

ssGBLUP 

BayesB≅GBLUP (Cleveland et 

al. 2012) 

Pig 4,763 450, 3k, 6k from 

PorcineSNP60  

Total number born ssGBLUP Strategies to optimize development 

of low-density panels could improve 

GEBV accuracy 

(Cleveland & 

Hickey 2013) 

Pig 8,187 38,453 Growth rate            

Lean meat percentage    

Weight at three weeks 

of age, number of teat 

GBLUP  GBLUP yielded higher prediction 

accuracies than based on pedigree. 

(Meuwissen et 

al. 2014) 

Chicken 2,708 23,356 egg production, egg 

weight, egg color, shell 

strength, age at sexual 

maturity, body weight, 

BLUP family, 

BayesC 

For the accuracy of genomic 

prediction, BLUP ≅BayesC 

(Wolc et al. 

2011) 
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albumen height, yolk 

weight 

Chicken 1,351 580,954 Three traits, body 

weight at 35 days, 

ultrasound area of 

breast meat and hen 

house production 

RKHS Whole-genome based genomic 

selections were the promising tool 

for the genomic prediction of 

complex traits. 

(Kranis et al. 

2013), 

(Morota et al. 

2014) 

*The population size is the total number of animals including reference sets and validation sets, with HD SNP chips (actual genotyped or 

imputed data. 
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The nonlinear models outperform BLUP for many, but not all traits in beef and 

dairy cattle, Table 2.4. The advantage is generally more apparent for traits with 

higher heritability including fat%, milk yield, peak shear force measured in 

longissimus Lumborum muscle (LLPF) related to RFI, and also post weaning 

weight (PWIGF). The advantage is also greater for traits with known genes of 

large effect, including fat% in milk productions of dairy cattle, where a mutation in 

the DGAT1 gene explains up to 30% of the variance (Grisart et al. 2002), and 

traits that could be assumed to have a simpler genetic architecture, such as 

insulin like growth factor 1 (IGF1) levels. For these traits, the nonlinear models 

have up to 20% higher GEBV accuracies. In contrast, for traits with low heritability 

such as fertility, nonlinear methods just have a minor advantage (≤ 1%) over 

linear models (Su et al. 2012; VanRaden et al. 2013), Table 2.4.  

 

In general, the advantage of non-linear models also becomes clearer as the 

number of phenotypes increases. For example, for the protein production in dairy 

cattle, nonlinear models have very similar prediction accuracy as GBLUP when 

there are relatively small number of individuals (Verbyla et al. 2010). However, 

once the reference size increases to 16,000 individuals, the advantage of BayesR 

over GBLUP is clearly observed by (Kemper et al. 2015). When the reference 

population size is increased by combining animals of multiple breeds (Erbe et al. 

2012; Bolormaa et al. 2013; Kemper et al. 2015), the advantage of nonlinear 

models over BLUP model is even more obvious, Table 2.4. This is likely a 

reflection of the fact that the linear combination of SNP effects from the BLUP 

model to capture each mutation effect means that the causative mutations often 

“smear” across many markers encompassing long chromosome segments. Such 

association might be broken down due to the recombination in less closely related 

individuals from different breeds (Kemper et al. 2015), which therefore makes 

BLUP model perform worse than BayesR for multi breeds prediction. 
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Table 2.4. Prediction ability of Linear and Nonlinear model on a range of important traits with different heritability in Cattle. 

Breed Markers Traits ℎ� 

Results 

Reference 
The accuracy advantage 

of nonlinear over linear  
+Multibreeds +Poly 

Beef Cattle 
(Holstein) 

600K 
Residual Feed Intake 0.22 +0.12 - - (Pryce et al. 

2012) 250-day Body weight 0.28 +0.03 - - 

Beef Cattle 

(Bos Taurus, Bos 

indicus & composite) 

729K 

Residual Feed Intake 0.36~0.56 +0.04 (LLPF +0.16) +0.04 - 
(Bolormaa et al. 

2013) 

 

Carcass and meat 

quality 
0.23~0.52 +0.01 +0.04 - 

Growth traits 0.24~0.53  (PWIGF, EIGF +0.23) +0.04 - 

Dairy Cattle 
(Holstein & Jersey) 

600K Milk, Fat, Protein 0.33 +0.05 +0.03 - 
(Erbe et al. 

2012) 

Dairy Cattle 

(Nordic Holstein & 

Red Dairy Cattle) 

 

 

777K 

Protein 0.39 +1.1% in reliability - - 

(Su et al. 2012) 

Fertility 0.04 +0.3% in reliability - - 

Udder health 0.04 +0.6% in reliability - - 
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 Dairy Cattle 
(Holstein & Brown 

Swiss from four 

countries) 

777K 

Milk, Fat, Protein, 

Productive life, calving 

0.3 

0.08~0.09 
+0.3%~1.9% in reliability 

+2.6%~3.2% - 
(Vanraden et al. 

2012) Stature 0.45 +1.3% 

SCC 0.11 +0.4% 

Dairy Cattle 

(Holstein from five 

countries) 

300K 

Fat%, Protein% 0.55 +3%~6% in reliability - - 

(VanRaden et al. 

2013) 

Milk, Fat, body depth, 

Productive life, calving 

0.3 

0.08~0.09 
+1%~3% in reliability - - 

Other functional traits 0.04~0.20 
0~1% or minus in 

reliability 
- - 

Dairy Cattle 

(Holstein, 

Montbeliarde, 

Normande) 

777K 
Milk production trait, 

SCS 
0.3 +0.193 +0.016 - 

(Hozé et al. 

2014) 

Dairy Cattle 

(Hostein & Jersey) 
600K 

Milk production 0.33 +0.16(fat%) +0.08 +0.03 

(Kemper et al. 

2015) 
Stature 0.45 +0.01 +0.01 - 

Fertility, Survival 0.03 +0.01 +0.03 - 

Dairy Cattle 
(Holstein) 

Sequence Milk, fat, protein 0.33 +0.05 - - 
(MacLeod et al. 

2016) 
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However, when the size of markers is increased to a very large number (e.g. 30 

millions), the performance between Bayesian and BLUP model might need further 

investigation. 

 

The difference between sequence data and SNP array data is twofold: (1) there 

are a larger number of rare variants in the sequence data, as the SNPs on the 

SNP arrays are nearly always selected because they have high MAF; 2) The 

actual causative mutations (QTLs) are in the sequence data, which means the LD 

between SNPs and QTLs is now less important. There are relatively few 

examples of the use of whole genome sequence data in genomic predictions. 

Ober et al. (Ober et al. 2012) implemented both GBLUP and BayesB on 157 

inbred lines of Drosophila melanogaster with ~2.5 million of SNPs. The 

Drosophila lines had a range of phenotypes including startle response and 

resistance to desiccation. The results showed that the accuracy gain from using 

sequence data compared with 150K HD SNP chip was very limited, although it did 

have to be pointed out that the reference set was very small in size. Both of two 

other studies, in dairy cattle (van Binsbergen et al. 2015), and chickens 

(Heidaritabar et al. 2016), using 12 million and 4.6 million sequence variants 

respectively, reported very little advantage from using sequence data. Particularly 

in the chicken example, the number of individuals with whole genome sequence 

was very small (24 animals) (Heidaritabar et al. 2016), which might have resulted 

in poor imputation of sequence into the reference population. The study in dairy 

cattle was based on more animals with imputed sequence data (sequence data 

from (Daetwyler et al. 2014)) and a much larger reference set, with the 

BayesSSVS method used to predict SNP effects. The result for this study (van 

Binsbergen et al. 2015) indicated that to take advantage of the sequence data, 

additional biology information was needed to identify a more predictive subset, 

prior to running the genomic prediction methods.     
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In contrary, two other studies have reported an advantage of using sequencing 

data in genomic predictions, both in dairy cattle. Brondum et al. (Brøndum et al. 

2015) used sequence data from the 1000 bull genomes project (Daetwyler et al. 

2014) to impute sequence data into a large multi-breed reference population 

genotyped with high density SNP. These authors then conducted GWAS for each 

target trait, to identify putative causative mutations. The putative causative 

mutations (8-10 per trait) were then added to a 54K SNP panel for genomic 

predictions. Up to a 4% improvement in accuracy was achieved, over the 54K 

SNP panel alone.  

 

Macleod et al. (MacLeod et al. 2016) applied a model, which extended BayesR to 

take in additional biological information (BayesRC) model to derive genomic 

predictions from imputed sequence data in dairy cattle. Gene expression 

information from mammary gland was used to classify sequence variants. In total, 

the genomic data consisted of 16,214 bulls and cows from two breeds (Holstein 

and Jersey), with imputed sequence data for 1,674,245 sequence variants 

(imputed from the 1000 bull genomes project (Daetwyler et al. 2014)). The results 

showed a 2-5% increase in accuracy of prediction as a result of using sequence 

data, depending on traits. Gains in accuracy were even larger for across breed 

predictions (where the predicted breed was not in the reference set).  

2.6 Implementation of Bayesian regression models an d 

computational performance  

As the size of genomic data increases dramatically, the running time of genomic 

prediction algorithms has aroused attentions as well. In the following, we will 

discuss the implementation of these algorithms, and then the computational 

performance of Bayesian regression methods will be evaluated.  
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To date, Bayesian models coupled with the random walking scheme of Markov 

Chain Monte Carlo (MCMC) have been investigated to be the perfect match to 

conduct posterior estimation for parameters (e.g. SNP effects) with no closed 

form. Two typical MCMC algorithms termed Metropolis-Hasting algorithm (MH) 

and Gibbs sampling are implemented for genomic prediction. As an easier and 

faster implementation scheme, Gibbs sampling is usually used when all the 

parameters can be sampled with the known distributions. Compared with Gibbs 

sampling, MH aims at drawing random samples from a probability distribution for 

which direct sampling is difficult. Therefore, since the effects and other 

parameters defined by BayesA, BayesC, and BayesR follow the forms of a known 

distribution, Gibbs sampling can be implemented on BayesA, BayesC and 

BayesR. On the contrary, due to unknown posteriors for SNP effects and other 

random parameters, BayesB, BayesD, and BayesDπ apply MH algorithm. When 

comparing the computational time between BayesA, B, C, D(π) and R, we can 

easily conclude that both BayesC and BayesR are faster than others. The 

assumption for the variance decides this. In detail, the marker-specific variances 

of BayesA, BayesB, and BayesD(π) require to be sampled repeatedly for each 

iteration. However, BayesC defines the common variance across all the SNPs, 

which therefore needs to be updated once; BayesR selects one out of four 

variances for each SNP instead of sampling them. To our best knowledge, as 

much easier and faster implement algorithms, BayesC and BayesR with Gibbs 

sampling have become more popular than BayesB.  

 

The time complexity of MCMC methods is |(R")  for each MCMC cycles. 

Usually, to obtain the best solutions for effects, the choice of the number of the 

cycles is dependent on the size of data. On 800K SNP chips with 16,000 

individuals, around 40,000 iterations are required with first 20,000 loops removed 

out (Kemper et al. 2015; MacLeod et al. 2016). When faced up with millions of 

markers, MCMC scheme of Bayesian regression models could lead to huge 
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computational burden, which is the main limitation of Bayesian prediction 

methods to be applied to practical applications. 

 

2.7 Improving the computationally efficiency of 

implementing Bayesian regression models 

The nonlinear Bayesian models are attractive, resulting in higher prediction 

accuracy for some traits. However, these models are usually implemented with 

Markov Chain Monte Carlo (MCMC) sampling to obtain posterior estimates of the 

SNP effects. This is computationally intensive, and would result in extremely long 

run times if implemented with large reference populations with imputed whole 

genome sequence data.  

 

A series of fast versions of the Bayesian methods have been developed, all of 

which introduce more efficient algorithms to replace MCMC sampling. Heuristic 

algorithms, including Iterative Conditional Expectation (ICE) and 

Expectation-Maximization (EM) are the most popular substitutions. These 

proposals have the same hierarchical models of Bayesian methods (prior 

assumptions, etc.) but with different implementations. Figure 2.4 lists seven fast 

algorithms that have been described including nonlinear BayesA(B) (VanRaden 

2008), fastBayesB (Meuwissen et al. 2009), emBayesB (Shepherd et al. 2010), 

and fastBayesA (Sun et al. 2012) (and see Appendix I - File S4 for more detail).  

 



 43 

 
Figure 2.4. Fast Bayesian methods from the MCMC counterparts and their 

application on simulated and real data. 

 

As shown in Figure 2.5, the results demonstrate that fast methods are up to ten 

orders faster than their MCMC counterparts. However, due to the heavy shrinkage 

for SNP effects, both EM and ICE versions of Bayesian models could lead to a 

reduction in accuracy of genomic prediction. One of the reasons for this might be 

the assumption that when the effect of a current SNP is estimated, the effects of 

all the other SNP are assumed to be estimated without error, which is obviously 

not the case (Sun et al. 2012).  
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Figure 2.5. Computational time of GBLUP, BayesR and fast Bayesian methods 

according to increasing size of animals (A.) and increasing density of SNP panels 

(B.) 

 

Other approaches to speed up the implementation of nonlinear Bayesian models 

have focused on making the MCMC sampling more efficient. A block sampling 

approach (where blocks of SNP were sampled as one) was described in Calus et 

al. (Calus 2014), which demonstrated computational time could be reduced by 

74.5-93%, and memory usage by 13.1-66.4%. Another scheme was proposed by 

Moser et al. (Moser et al. 2015), whereby only the 500 SNPs with the largest 

effects on the trait continued to be sampled in the MCMC chain after a sufficient 

number of chains – this reduced computation time for BayesR by a factor of 3 to 6, 

depending on the size of the data set.  

 
A.) The computational time in hours requires for BayesR, GBLUP, and fastBayes according to 

different number of animas (1,000, 3,000, 5,000, 12,000) on the same density of SNP panels 

(600K).                               

B.) The computational time in minutes requires for BayesR, GBLUP, and fast Bayes according 

to different density of markers (5K, 10K, 50K, 600K) on the same number of animals (3,049).                                      

(All of the methods were running on eight threads for one trait (milk yield) ) 



 45 

2.8 Conclusion 

The availability of whole genome sequence data in the major livestock species 

has potential to improve the accuracy of genomic selection, leading to accelerate 

genetic gains for target traits. A major challenge however is developing genomic 

prediction methods that are both computationally efficient enough to derive 

predictions from this data in reasonable timeframes, and make best use of the 

data, in order to maximize prediction accuracy. In this review, two hot topics are 

investigated:  

1) Do nonlinear models (e.g. Bayesian models) outperform the linear model 

(BLUP), with marker densities up to whole genome sequence data?  

2) Does increasing density of genomic data, up to whole genome sequence, 

improve the accuracy of genomic predictions?  

 

A superficial glance of the literature is far from conclusive on both these points, 

with results in different papers seeming to contradict each other. Deeper 

investigation however leads to the following conclusions.  

 

The genetic architecture of the trait is very important. In cases where there are 

mutations of moderate to large effects, the nonlinear methods have a clear 

advantage. In fact, what is defined as moderate to large actually changes as the 

data set size increases, as the power to accurately identify causative mutations 

increases – the nonlinear methods have greater advantage in larger data sets, 

where a QTL explaining as little as 1% of the genetic variance may be considered 

moderate, and if a QTL as large as 1% of the variance does exist, the nonlinear 

methods will have an advantage. Many traits of interest in livestock breeding 

appear to have this architecture. However, if the trait really is pseudo infinitesimal 

(controlled by an extremely large number of loci all with very small effects), the 

advantage of BayesB, BayesR etc. over BLUP is small or non-existent. And, when 
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the size of markers is increased to a very large number, the performance 

comparison between Bayesian and BLUP model might need further investigation. 

   

Increasing marker density to whole genome sequence is only an advantage (in 

terms of more accurate genomic predictions), if a nonlinear genomic prediction is 

used, if the data set is large, and if some external information is used to assist in 

the identification of sequence variants that are more likely to affect the trait, and if 

the MAF of the QTL is such that the QTL has more extreme allele frequencies 

than the SNP on the SNP chips. Further, the advantage of the sequence data will 

be greatest when the effective population size is large, including in multi-breed 

populations. 

 

Given these conclusions, we suggest the following as useful areas of research, 

with the ultimate goal of using whole genome sequence data routinely in genomic 

predictions:  

 

1) Improve the prediction ability of current fast versions of Bayesian regression 

models. Fast versions (non-MCMC) Bayesian models are necessary for their 

computational efficiency, but published algorithms do give a reduction in accuracy 

relative to MCMC implementations. One possible scheme is to hybridize EM/ICE 

schemes with limited number of MCMC iterations. 

 

2) Make use of external and biological information when estimating effects of 

sequence variants to improve the accuracy. For example McLeod et al. (MacLeod 

et al. 2016) grouped markers into two or more clusters according to various sets 

of biological information, including gene expression and annotations in BayesRC.  

 

3) Include non-genotyped animals in one-step methods, to further improve 

accuracy of genomic predictions and reduce any biases associated with 
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genotyping certain sets of animals (e.g. a bias might be induced if animals are 

heavily selected on genomic estimated breeding values, and only the selected 

animals receive phenotypic records, and this is not accounted for in the genomic 

prediction method). These methods are well developed for GBLUP (Christensen 

et al. 2012; Legarra & Ducrocq 2012; Wang et al. 2012a; Misztal et al. 2014) with 

great advances in computational efficiency being made, but less attention has 

been given to nonlinear one step methods (Fernando et al. 2014a; Liu et al. 2014) 

to improve the accuracy.  

 

2.9 Supporting information 

All the supporting files are located in Appendix I (Chapter 8  ) as follows: 

File S1 - The introduction of non-Bayesian models including Penalized regression 

and orthogonal linear models (the theory and differences). 

File S2 - The description of the model and prior density function for Bayesian 

regression models. 

File S3 - The example of deriving the conditional prior density function according 

to Bayesian theory (BayesA was chosen as the example). 

File S4 - The detailed review of previous fast algorithms under Bayesian models. 
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Chapter 3   A computationally efficient algorithm f or 

genomic prediction using a Bayesian model 

3.1 Chapter preface 

Justification 

This chapter introduced the Expectation-Maximization (EM) (termed emBayesR) 

algorithm to reduce the computational time required to implement  Bayesian 

non-linear models for genomic prediction. One improvement of emBayesR over 

previous methods was that Prediction error variance (PEV) correction was 

introduced to account for the errors generated by estimation of other SNP effects 

during the estimation of the current SNP effect. 

 

Publication status: 

Published in the journal Genetics Selection Evolution. 

 

Published as 

Wang T, Chen YPP, Goddard ME, Meuwissen TH, Kemper KE, Hayes BJ. (2015) 

A computationally efficient algorithm for genomic prediction using a Bayesian 

model. Genetics Selection Evolution, 47(1):34. 

 

 

Statement of contributions of joint authorship 

Tingting Wang (Candidate): implemented EM methods to the BayesR model, 

analyzed the data and drafted the manuscript 

 

Yi-Ping Phoebe Chen (Principle Supervisor): supervised the study. 

 

Michael E Goddard (Collaborator) and Theo HE Meuwissen (Collaborator) 
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contributed the valuable idea of the PEV correction. 

 

Kathryn E Kemper (Collaborator) implemented BayesR on 630 K high-density 

SNP panel. 

 

Ben J. Hayes (Co-Supervisor): supervised this project, instructed the 

implementation of the algorithm on  dairy cattle data, and gave a great 

contribution regarding the organizing/revising of the paper. 

 

This chapter is an exact copy of the version published to Genetics Selection 

Evolution, except that the reference style, table numbers and figure numbers have 

been reformatted. 

3.2 Abstract 

Background 

Genomic prediction of breeding values from dense single nucleotide 

polymorphisms (SNP) genotypes is used for livestock and crop breeding, and can 

also be used to predict disease risk in humans. For some traits, the most accurate 

genomic predictions are achieved with non-linear estimates of SNP effects from 

Bayesian methods that treat SNP effects as random effects from a heavy tailed 

prior distribution. These Bayesian methods are usually implemented via Markov 

chain Monte Carlo (MCMC) schemes to sample from the posterior distribution of 

SNP effects, which is computationally expensive. Our aim was to develop an 

efficient expectation–maximization algorithm (emBayesR) that gives similar 

estimates of SNP effects and accuracies of genomic prediction than the MCMC 

implementation of BayesR (a Bayesian method for genomic prediction), but with 

greatly reduced computation time. 

 

Methods 
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EmBayesR is an approximate EM algorithm that retains the BayesR model 

assumption with SNP effects sampled from a mixture of normal distributions with 

increasing variance. emBayesR differs from other proposed non-MCMC 

implementations of Bayesian methods for genomic prediction in that it estimates 

the effect of each SNP while allowing for the error associated with estimation of all 

other SNP effects. emBayesR was compared to BayesR using simulated data, 

and real dairy cattle data with 632 003 SNPs genotyped, to determine if the 

MCMC and the expectation-maximization approaches give similar accuracies of 

genomic prediction. 

Results 

We were able to demonstrate that allowing for the error associated with estimation 

of other SNP effects when estimating the effect of each SNP in emBayesR 

improved the accuracy of genomic prediction over emBayesR without including 

this error correction, with both simulated and real data. When averaged over nine 

dairy traits, the accuracy of genomic prediction with emBayesR was only 0.5% 

lower than that from BayesR. However, emBayesR reduced computing time up to 

8-fold compared to BayesR. 

Conclusions 

The emBayesR algorithm described here achieved similar accuracies of genomic 

prediction to BayesR for a range of simulated and real 630 K dairy SNP data. 

EmBayesR needs less computing time than BayesR, which will allow it to be 

applied to larger datasets. 

3.3 Background 

Genomic prediction uses information from high-density genetic polymorphisms, 

such as single nucleotide polymorphisms (SNP) panels, to predict the genetic 

merit of individuals for quantitative traits. Selection based on these estimated 

breeding values could substantially increase the rates of genetic improvement for 

quantitative traits in animal and plant species (Meuwissen et al. 2001). 
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Implementation of genomic selection is a two-step process: (1) estimation of the 

effects of SNPs in a reference population given the phenotypes and SNP 

genotypes of reference individuals and (2) calculation of genomic estimated 

breeding values (GEBV) for selection candidates based on their genotypes 

(Meuwissen et al. 2001). If the SNP effects are random variables drawn from a 

prior distribution, the accuracy of GEBV is maximized if, in step (1), SNP effects 

are estimated by their expected value conditional on the data. 

Several methods, which differ in the assumed prior distribution of SNP effects, 

have been proposed to estimate SNP effects for genomic prediction. The prior 

assumption that SNP effects are all drawn from the same normal distribution 

results in the statistical method called best linear unbiased prediction (BLUP). 

BLUP for genomic prediction can be implemented using two equivalent models 

(VanRaden 2008). Either the SNP effects are estimated directly, termed 

SNP_BLUP (e.g. (Meuwissen et al. 2001)), or a genomic relationship matrix is 

calculated from SNP genotypes, termed genomic BLUP (GBLUP) (VanRaden 

2008; Yang et al. 2010). Other models assume that the SNP effects follow a 

non-normal distribution. For example, in the model called BayesA, the SNP 

effects follow a Student’s t distribution (Meuwissen et al. 2001), while mixture 

distributions are used in BayesB (Meuwissen et al. 2001), BayesC, BayesCπ 

(Habier et al. 2011) and BayesR (Erbe et al. 2012), and exponential distributions 

are used in BayesLASSO (Park & Casella 2008). With real data and for some 

traits, GBLUP methods achieve levels of accuracy of genomic prediction similar to 

non-normal distributions methods such as BayesA, BayesB, and BayesR when 

moderate SNP densities (e.g. 50K in dairy cattle; less in some crop species with 

extensive linkage disequilibrium) were used (Habier et al. 2007; Daetwyler et al. 

2012b; Pryce et al. 2012; Gao et al. 2013; Wimmer et al. 2013). As described by 

several authors, GBLUP has the advantage that it is computationally efficient 

(Strandén & Garrick 2009; Aguilar et al. 2011; Misztal et al. 2014). However, for 
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traits with quantitative traits loci (QTL) of large to moderate effect, the Bayesian 

methods can give higher accuracies of prediction than GBLUP (Hayes et al. 2010; 

Verbyla et al. 2010; Riedelsheimer et al. 2012). Moreover, genomic prediction 

models that assume non-normal distributions of effects in some cases give higher 

accuracies than GBLUP when very large numbers of SNPs (e.g. 630K or 

whole-genome sequence data) are used, particularly for multi-breed and 

across-breed predictions (Erbe et al. 2012; Bolormaa et al. 2013; Daetwyler et al. 

2013; MacLeod et al. 2014a; MacLeod et al. ; Kemper et al. 2015). A 

disadvantage of these methods, however, is that it is difficult, if not impossible, to 

write closed form solutions for estimates of SNP effects or other parameters, so 

Markov chain Monte Carlo (MCMC) sampling is used to derive posterior 

distributions for these effects (e.g. (Mäntysaari)). However, this is computationally 

expensive, particularly when the number of SNPs is large. For example, the 

BayesB method can result in the highest accuracy of genomic prediction in some 

situations, but, since it uses a Metropolis Hastings algorithm, computing time with 

large numbers of SNPs (e.g. 800 000 SNPs) is very long. Other methods, such as 

BayesA, BayesLASSO, and BayesR, are usually implemented using Gibbs 

sampling. While Gibbs sampling is faster than the Metropolis Hasting algorithm, it 

is still slow with very large numbers of SNPs genotyped in large numbers of 

individuals. 

In dairy cattle routine genomic evaluations, different genomic prediction methods 

have been implemented by different countries and organizations (Mäntysaari 

2014). According to Mantysaari (Mäntysaari 2014), GBLUP, or its single-step 

implementation (Aguilar et al. 2010; Christensen & Lund 2010), is one of the most 

popular genomic prediction methods implemented for official genomic evaluation 

in many countries, including Canada, New Zealand, Australia, Germany and 

Ireland. By contrast, only two countries, i.e. The Netherlands and Switzerland 

have implemented MCMC non-linear models (BayesA and BayesC) for genomic 
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prediction. In addition, non MCMC versions of BayesA (also termed nonlinear A 

(VanRaden 2008)) are used for genomic prediction in the USA. In the future, 

genomic evaluations may be based on whole-genome sequence data and 

Bayesian methods may be required to take advantage of this data (Meuwissen & 

Goddard 2010; Clark et al. 2011). Therefore, a way to implement Bayesian 

models that is faster to compute than the MCMC methods is desirable. 

There have been a number of proposals to reduce the computing time required to 

arrive at satisfactory estimates of the SNP effects from Bayesian methods (e.g. 

(VanRaden 2007; Meuwissen et al. 2009; Gianola 2013)). These proposals use 

algorithms other than Gibbs sampling. For instance, VanRaden (VanRaden 2008) 

described an iterative method to implement approximations of both BayesA and 

BayesB. Meuwissen (Meuwissen et al. 2009) described a method termed 

fastBayesB by using iterative conditional expectation (ICE) in the BayesLASSO 

model. FastBayesB iteratively calculated each SNP’s posterior mean, 

conditioning on current estimates of all other SNPs as if they were true effects. 

FastBayesB greatly reduces computing time but several parameters required to 

describe the prior distribution of SNP effects are assumed to be known. This issue 

was dealt with in a later publication by an expectation- maximization (EM) 

algorithm that estimated those parameters by  maximizing a joint posterior 

probability based on the prior distribution of SNP effects, in a method called 

EmBayesB (Shepherd et al. 2010). Lower prediction accuracies were observed 

for these methods compared with MCMC implementations (Meuwissen et al. 

2009; Shepherd et al. 2010). Two potential reasons for this are: (1) the errors in 

the estimates of SNP effects other than the SNP for which the effect is being 

estimated were ignored (Meuwissen et al. 2009), and (2) the prior distribution of 

SNP effects that they assume (a double exponential) may not match the true 

distribution of SNP effects as well as the mixture distribution assumed by BayesB 

and BayesR. 
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Our aim in this paper was to develop a fast EM counterpart to MCMC BayesR 

(emBayesR). BayesR assumes that SNP effects are drawn from a mixture of 

normal distributions, one with zero variance (and hence zero effects). BayesR 

shares some of the advantages of BayesB, in that SNP effects can be zero, 

moderate, or large, but is more computationally efficient since it can be 

implemented with Gibbs sampling (Erbe et al. 2012). In BayesR, the proportion of 

SNPs in each normal distribution is estimated from the data, instead of being 

pre-set as a constant value in BayesB. Consequently, BayesR is able to 

approximate a wide range of possible true distributions of SNP effects. With real 

data, BayesR achieves accuracies comparable to BayesA (Erbe et al. 2012) and 

BayesB (Goddard and Meuwissen, unpublished data). 

Our EM algorithm retains the BayesR model assumption that SNP effects are 

assumed to be derived from four different normal distributions, but requires much 

less computing time than BayesR. It also differs from other EM methods by 

estimating the effect of each SNP while accounting for the errors in the estimates 

of all other SNPs. It does this by treating the combined effect of the other SNPs as 

a residual breeding value, and approximating its prediction error variance from a 

GBLUP prediction. To compare speed and accuracy of prediction of emBayesR 

with that from BayesR, we used both a simulated dataset and a real dataset on 

630K SNPs for dairy cattle. 

 

3.4 Methods 

In this section, we first describe the model of BayesR (here also named 

MCMC_BayesR) for genomic prediction and second, an EM algorithm named 

emBayesR. Finally, the 10K simulated data and 630K real dairy data that were 

used to evaluate the performance of emBayesR, are described. 

Statistical model for emBayesR and prior distributions of parameters 
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The linear model for phenotypes is: 

	 = }~� +  %� + �,        (1) 

where, y is a " × 1 vector of phenotypic records (n is the number of animals); 1n 

is a n x 1 vector of 1s, µ is the population mean; % is a " × R design matrix with 

elements %8 = (�8 − 2!A) �2!A(1 − !A)g⁄ , in which x i is the " × 1  vector of 

genotypes for the ith SNP (0, 1 or 2 copies of the second allele), and !A is the 

allele frequency of each SNP i (m is the number of SNPs); � is a " × 1 vector of 

random normal deviates, �~5(0, � ��); � is a R × 1 vector of SNP effects. 

For convenience, polygenic effects were not included in the model but they can be 

readily added (and have been added in the MCMC version of BayesR, e.g. (Erbe 

et al. 2012)). 

BayesR (Erbe et al. 2012) assumes that SNP effects (g) are drawn from a mixture 

of four normal distributions N(0, ���) according to the proportion vector �� =
{�Q�|� = 1,2,3,4}. Variances used were ��� = �0, 0.0001 ∗  ��, 0.001 ∗  ��, 0.01 ∗  ��� 
for the analysis of the real dairy data and ��� = {0, 0.0006 ∗  ��, 0.006 ∗  ��, 0.06 ∗
 ��} for the analysis of the simulated data, where  �� is total genetic variance 

(Erbe et al. 2012). Here, the coefficients of  ��  used to define ��� for the 

simulated data were different to those used for the real data because of the 

criterion that the sum of the variance across all SNPs approaches the overall 

genetic variance explained by SNPs. In the simulation data, with 10 050 SNPs, 

there were only 50 QTL (17 QTL in  ��[2], 16 QTL in  ��[3] and 17 QTL in  ��[4]). 
To make the overall variance summed over all the SNPs approximately equal to 

 ��, vector ��� for the simulated data was set to {0, 0.0006 ∗  ��, 0.006 ∗  ��, 0.06 ∗
 ��}. For the real data (with high-density SNP panels), the value of ��� that is 



 56 

�0, 0.0001 ∗  ��, 0.001 ∗  ��, 0.01 ∗  ��� was assumed as in Erbe et al. (Erbe et al. 

2012). In addition, the proportion of SNPs in each normal distribution (�Q� ; 

∑ �Q�X�ZV = 1) was assumed to follow a Dirichlet distribution with parameter 

� = (1,1,1,1)i, which is a 4 x 1 vector of the pseudo-counts of the number of 

SNPs in each distribution. Therefore, the BayesR model has two fixed parameters 

as input: ��� and � (the prior for Pr). 

For each SNP i, there is a latent binary variable �A� (�A� = 0 or 1) that indicates 

whether or not the effect of SNP i follows the normal distribution with variance ��� 

(k = 1, 2 ,3 ,4). Therefore: 

!(�A� = 1|�Q�) = �Q�.       (2) 

Then, the prior distribution of each SNP effect (TA) conditional on variable �A� is: 

!(TA|�A�) = � V
c����g

exp �− �Bg���g� ,     if �A� = 1 (� = 2,3,4)
�(TA),          if �AV = 1     ,  (3) 

where �(TA) denotes the Dirac delta function with all probability mass at TA = 0. 

Then, the joint distribution !(TA, �;) conditional on Pr is: 

!(TA, �;|��) = � !(TA|�A�) × !(�A�|�Q�)X
�ZV  

= (δ(TA)�QV)LB¡ ∏ ( V
c�£��g

exp �− �Bg���g� �Q�)LB�X�Z� .      (4) 

Expectation- maximization steps for emBayesR 

An EM algorithm is applied to BayesR to obtain estimates of parameters, 

including SNP effects (�') and the proportion of SNP effects in each distribution 

(��¤). The aim of emBayesR is to predict %� by %�' as accurately as possible. 
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The best predictor for TA would be T'A = E(TA|	), but we approximated this by 

estimating T'A  by the value of TA that  maximizes the posterior probability 

P(TA|	, �¥�, �̂,  ��¤) , where �¥�, �̂  and  ��¤  are the MAP (Maximum A Posterior) 

estimator of ��, �, and  ��, conditional on y. In the following, we first deal with 

estimating T'A and then return to �¥�. 

For estimation of TA, we  maximized the marginal posterior of TA rather than the 

joint posterior of all g. To do this, we first introduce two vectors of missing data 

(&, ��) , and use the EM algorithm to integrate them out of the posterior 

distributions. Here, & is the combined effects of all other SNPs except the current 

SNP, i.e. & = %� − %�TA , and the other vector �; = {�A�|� = 1,2,3,4}  is for 

indicator variables that determine which normal distribution each SNP effect is 

derived from, as described above. Then Equation (1) can be re-written as: 

	 = }~� + %8TA + & + �.        (5) 

The full posterior distribution with the missing data, !<TA, &, �, ��=	, ��¤@  is 

(following Bayes’ theorem): 

!<TA, &, ��=	, �̂,  ��¤, ��¤@  = §¨	©�B,&,ª-,�ng¤ ,��¤«k<�B,��=��¤@k(	,&) ∝ O<	=TA, &, �̂,  ��¤, ��¤@!<TA, ��=��¤@ (6) 

where the likelihood of the data O<	=TA, &, �̂,  ��¤, ��¤@ can be expressed as:  

O<	=TA, &, �̂,  ��¤, ��¤@ = V
(���ng¤ )­g ^®! ¯− V��ng¤ (	∗ − & − %8TA)°(	∗ − & − %8TA)±, 

with 	∗ = 	 − }~�̂. Then, the log of the posterior is: 

]PT!<TA, &, ��=	, �̂,  ��¤, ��¤@ = ]PTO<	=TA, &, �̂,  ��¤, ��¤@ + ]PT!<TA , ��=��¤@ + [P"²GU"G. 

This can be re-written as: 

]PTO<	=TA, &, �̂,  ��¤, ��¤@ = −0.5"]PT ��¤ − V��ng¤ (	∗ − & − %8TA)°(	∗ − & − %8TA) (6a) 



 58 

]PT!<TA, ��=��¤@ = �AV]PT<δ(TA)�Q¤V@ + ∑ �A� �− V� ]PT �� − �Bg���g + ]PT�Q¤��X�Z� . (6b) 

In the E-step of emBayesR, we will take expectation of the log posterior function 

of Equation (6) over the missing data (&, �). Only the second term (6b) in the 

equation ]PT!<g8, &, ��=	, �̂, σ��¤, ��¤@ involves ��. Therefore: 

E��]PT!<g8, ��=��¤@ = E�� µ�AV]PT<�(TA)�Q¤V@ + Y �A� ¶− 12 ]PT �� − TA�2 �� + ]PT�Q¤�·X
�Z� ¸ 

     = �AV]PT<�(TA)�Q¤V@ + ∑ �A� �− V� ]PT �� − �Bg���g + ]PT�Q¤��X�Z� , 

where �A� = E(�A�|	, �Q¤�), which is the posterior probability for each SNP to 

belong to each of the four normal distributions. The derivation of �A� is explained 

in Additional file 1. 

Next, we take the expectation over missing data &. Only the quadratic form 

¹ = (	∗ − & − %8TA)°(	∗ − & − %8TA) in the first term of Equation (6a) is related to &. 

To calculate the expectation of Equation (6a) over &, we only need to take the 

expectation of ¹ over &. Applying Searle’s expectation rule (Seber 2002) to 

E&-(¹), we obtain: 

E&-(¹) = E&-[(	∗ − & − %8TA)°(	∗ − & − %8TA)] 
  = (	∗ − &- − %8TA)°(	∗ − &- − %8TA) + GQ(PEV(&-)) , 
where &- = ∑ %»T'¼»½8  and PEV is the predicted error variance. 

Substituting �A� = E(�A�|	)  and using the above E&-(¹) , the expectation of 

Equation (6) over &-, � is: 

E��,&|	]PT!<TA, &, ��=	, �̂,  ��¤, ��¤@ 
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= − "2 ]PT ��¤ − (	∗ − &- − %8TA)°(	∗ − &- − %8TA) + tr<PEV(&-)@2 ��¤  

           +�AV]PT<�(TA)�Q¤V@ + ∑ �A� ¯]PT�Q¤� − 0.5 ∗ ]PT �� − �Bg���g±X�Z�   
           + [P"²GU"G.                         (7) 

The calculation of PEV(&-)  is approximated from a GBLUP model, and is 

explained in Additional file 2. 

The M-step of emBayesR involved estimation of the SNP effects ( TA ). 

Differentiating Equation (7) with regard to TA gives: 

¾E��,&|	]PT!<TA, &, ��=	, �̂,  ��¤, ��¤@¾TA  

= µ− Y �A� ��
X

�Z� − %8°%; ��¤ ¸ TA + %°(	 − &- − }~�̂) ��¤ = 0. 
Setting this equal to 0 results in the following posterior mode estimate for each 

SNP effect (TA). 

T'A = [%8°%; + ¨�A�¿ng¤
¿gg + �AW¿ng¤

ÀÁg+�AX¿ng¤
¿Âg«]DV[%°	Ã],     (8a) 

where, %8 is the NÄf column of matrix Z, and 	Ã=	 − &- − }~�̂. 

The mean of the posterior distribution can also be calculated as follows: 

E<!(TA|	, �Q�)@ = . (∑ ÅB�k(�B|LB�ZV,	,ÆÇ)Â�È¡ÉÊËÊ �BÌ�B. (∑ ÅB�k(�B|LB�ZV,	,ÆÇ)Â�È¡ÉÊËÊ Ì�B , 

which reduces to: 

T̅A = ∑ �A�[(%8°%; + ¿ng¿�g)]DVX�ZV [%°	Ã].      (8b) 
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The mode estimation of SNP effects (Equation 8a) was implemented in our EM 

iterations, unless otherwise stated. The posterior mean of Equation (8b) was used 

in some cases to evaluate the accuracy of genomic prediction using either the 

mode or mean estimates of SNP effects. Furthermore, to investigate the degree of 

shrinkage, the least square estimate of the SNP effect was also calculated for 

some examples: 

TApÎ = (%;′%;)D}%;′(	 − }~�). 

Similar EM steps used for estimating T'A  (but with different full models) are 

applied to estimate other parameters, including the proportion of SNP effects in 

each distribution (��), the error variance ( ��), and the mean (�). 

To obtain ��¤, we return to the full model Equation (1) with all SNP effects (�) 

included. We introduce the missing variables b, so the full likelihood is: 

!(��, �|	, �) ∝ !(	|�)!(�|��)!(��), 

Note that !(	|�) does not involve ��, so when we differentiate with respect to Pr, 

this term drops out and can, therefore, be ignored, resulting in: 

!(�|��) = ∏ ∏ (�Q�)LB�X�ZVÏAZV , 

!(��) = ∏ �Q�X�ZV , 

]PT!(�|��) = ∑ ∑ �A�]PT�Q�X�ZVÏAZV , 

]PT!(��) = ∑ ]PT�Q�X�ZV , and 

E�|	]PT!(�|��) = ∑ ∑ �A�]PT�Q�X�ZVÏAZV , 

where �A� = I(�A�|y, �Q�). 

Then, considering that ∑ �Q�X�ZV =1, we use Lagrange multiplier #  and 
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differentiate with respect to �Q�. Given that Pr follows a Dirichlet distribution: 

¾E�|	]PT!(�, ��, �A�|	, �) + λ(∑ �Q�X�ZV − 1)]¾�Q�  

= ∑ ÅB�ÒBÈ¡ÅÓ� + VÅÓ� + # = 0. 

Therefore, the solution is: 

�Q� = ∑ ÅB�ÒBÈ¡ hV∑ (∑ ÅB�ÒBÈ¡ hV)Â�È¡ .       (9) 

Finally, to estimate the error variance  �� and �, we simplify Equation (5) into 

	 = }~� + &∗ + �, &∗ = ∑ %8T'AÔ8ZÕ  and then the full likelihood based on this model 

is: 

!( ��, �, &∗|	) = 

V
(���ng)­g ^®! Ö− V��ng (	 − &∗ − }~�)°(	 − &∗ − }~�)×. 
The expectation for the full log likelihood based on this model is: 

E&∗|	]PT!( ��, �, &∗|	) 

= E&∗|	 ¯− "2 log �� + 12 �� (	 − &∗ − }~�)°(	 − &∗ − }~�)± 
= − Ï� log �� + V��ng [(	 − &∗¤ − }~�)°(	 − &∗¤ − }~�) + GQ(PEV(&∗¤))].    (10) 

Therefore, differentiating Equation (10) with regard to  �� and �, we get: 

 �� = VÏ [(	 − &∗¤ − }~�)°(	 − &∗¤ − }~�) + tr(PEV(&∗¤))],  (11) 

� = ¡­(}~)°(	 − &∗¤),      (12) 

for which computation of the term tr(PEV(&∗¤) is explained in Additional file 2. 
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In order to demonstrate the importance of the PEV correction for SNP effect 

estimates, the accuracy of emBayesR with and without accounting for PEV will be 

compared in the Results section. emBayesR without PEV has a similar EM step 

as emBayesR with PEV to derive the parameters �A�, T'A, �Q�,  �� and � but 

differs in the equations of emBayesR with PEV to calculate �A� (Equation A3 in 

Additional file 1) and  ��  (Equation 11) in that the term GQ(PEV(&-))  is not 

included in emBayesR without PEV. 

The emBayesR algorithm 

The emBayesR algorithm can be described as follows: 

Step 1 

Initialise starting values for �, ��,  ��,  ��, � and ���. There are two groups of 

parameters: fixed parameters and changing parameters. � = (1,1,1,1),  �� and 

��� are fixed parameters, where � is the prior parameter for ��, and  �� is used 

to set the value of ���. The other variables (�, ��,  ��) are updated during EM 

iterations. We used g = 0.01 and �� = {0.5, 0.487, 0.01, 0.003}, as in (Erbe et al. 

2012). To initialise  ��  and  �� , we used GBLUP implemented through 

ASREML3.0 (Gilmour et al. 2002) to estimate the error variance  �� and the 

genetic variance  �� as inputs for the next steps. Then, as mentioned before, the 

value of  �� defines ���, using ��� = {0, 0.0001 ∗  ��, 0.001 ∗  ��, 0.01 ∗  ��} for the 

real data and ��� = {0, 0.0006 ∗  ��, 0.006 ∗  ��, 0.06 ∗  ��} for the simulated data. 

Step 2 

Calculate PEV with Equation (A7) of Additional file 2 (or it can be taken from 

ASREML in the step above). 

Then for each SNP i (i in 1:m): 
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Step 3 

Correct y for the effects of all other SNPs except the current SNP i, using: 

	Ã = 	 − ∑ %Ü¼½A T'¼ − }~�̂. 

Step 4 

Estimate the probability that the effect of SNP i is from one of four normal 

distributions ]PT]A� with Equation (A5) of Additional file 1. 

Step 5 

Calculate �A� with Equation (A6) of Additional file 1. 

Step 6 

Estimate the effect of SNP i with Equation (8a). 

Step 7 

After all SNP effects have been estimated, calculate �Q�  with Equation (9), 

update  �� with Equation (11), and update � with Equation (12). 

Step 8 

Return to Step 3 and iterate until convergence. Here, the convergence criterion 

evaluated at each iteration q was (�' Ý − �' ÝDV)′(�' Ý − �' ÝDV)/(<�' Ý°�' Ý@ < à . The 

criterion à = 10DVÕ  was selected after trialling the algorithm in a number of 

datasets and investigating changes in SNP effect estimates across iterations. 

We calculated the time complexity of the algorithm (the function with parameters 

number of SNPs and number of animals that determines the time taken for the 

algorithm to run) based on the above eight steps. Time complexity is estimated in 

computer science applications by counting the number of innermost loops for 
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elementary operations, which is notated | . For example, |(")  means the 

elementary operations in the algorithm need to be looped " times. 

EmBayesR need q loops to be converged. For each loop, Equation (A5) of 

Additional file 1 (Step 4 in the EM loop of emBayesR algorithm), is located in the 

innermost loop for the iteration. To be mentioned, both tr<PEV(&-)@  and 

tr<%;%;°PEV(&-)@  in Equation (A5) are required, but fortunately they can be 

calculated outside EM iterations [See Additional file 1 for details]. Then, except for 

these two terms tr<PEV(&-)@  and tr<%;%;°PEV(&-)@ , the calculation number of 

Equation (A5) is the number of SNPs (m) × the number of animals (n). Therefore, 

the time complexity of each iteration in emBayesR is |(R"). 

Simulated data 

Simulated data were used to determine how close the genomic prediction 

accuracy of emBayesR was to that of BayesR. The simulated dataset described 

in (MacLeod et al. 2014a) was used. Briefly, FREGENE was used to simulate 

whole-genome sequence data in a population with an effective size (Ne) of 

25 900 and a genome size of 50 Mb split equally over 10 chromosomes. The 

genome size of 50 Mb was chosen for computing efficiency. The accuracy of 

prediction in a c times larger genome (i.e. 50c Mb) would be approximately the 

same as found in our 50 Mb genome, provided the number of animals was c times 

larger than used here (i.e. 5000c) (Meuwissen & Goddard 2010). The mutation 

rate per bp was 9.38 x 10-9 and the recombination rate was 1 x 10-8 per base pair 

per generation (MacLeod et al. 2014a), based on estimates for these rates in 

mammals. To ensure a drift-recombination-mutation equilibrium, the population 

was run for 370 000 generations. A total of 10 050 markers (including 50 QTL) 

were randomly selected as SNPs for genomic prediction. The SNP density was 

equivalent to ~600 000 SNPs on a 3000 Mb genome, similar to many mammals. 

Fifty QTL were randomly picked from the segregating loci, which is equivalent to 

3000 QTL on a human or bovine genome. To evaluate the genomic prediction 
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performance of emBayesR, BayesR and other algorithms, we generated two 

genetic architectures that differed in the distribution of true QTL effects. For this 

first dataset, named HD_Mix, the 50 QTL allele substitution effects were sampled 

from an equal mixture of three normal distributions with variances 

(0, 0.0006 ��, 0.006 ��, 0.06 ��). For the second genetic architecture (referred to as 

HD_One), QTL allele substitution effects were sampled from a single normal 

distribution. For the breeding values on simulation data, true breeding values 

(TBV) for individuals were obtained by summing genetic values across QTL. For 

each of genetic architecture, heritabilities (h2) of either 0.45 or 0.1 were used. For 

each set, phenotypes of 5000 individuals were generated by means of adding a 

random residual value to the TBV of each individual. This residual value was 

sampled from a normal distribution, N (0, σ2
e), here σ2

e = [σ2
TBV(1-h2)]/h2, where 

σ
2

TBV is the variance of TBV in the population. Thus, we generated four datasets 

named HD_Mix_45 (five replicates following the mixture data model with 

heritability 0.45), HD_Mix_10 (five replicates following the mixture data model with 

heritability 0.10), HD_One_45 (five replicates following the one normal data 

distribution with heritability 0.45) and HD_One_10 (five replicates following the 

one normal distribution with heritability 0.10). Each replicate entailed sampling 

new SNP effects and generating new phenotypes. 

To compare prediction accuracies and computing efficiencies of emBayesR, 

BayesR, GBLUP and fastBayesB, 5000 individuals were randomly separated into 

reference sets and validation sets. With an h2 of 0.45, there were 2500 individuals 

in the reference set and 2500 in the validation set. With an h2 of 0.1, there were 

3750 individuals in the reference set and 1250 in the validation set. Accuracies 

were the correlations between GEBV and TBV. 

Real data 

A total of 3354 Holstein-Friesian bulls were genotyped for both the Illumina Bovine 

HD SNP array (632 003 SNPs following quality controls as described in (Erbe et 
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al. 2012)), and the Bovine SNP 50 array (43 025 SNPs). Bulls genotyped at the 

lower density were imputed to the higher density using Beagle 3.0 (Browning & 

Browning 2009), and applying quality controls as described in (Erbe et al. 2012). 

Phenotypes were daughter trait deviations (DTD) from two groups of traits: 

functional traits, including angularity, mammary conformation, stature, fertility 

(calving interval) and somatic cell count (SCC), and production traits, including 

milk yield, protein yield, protein % and fat %. For some of these traits, known QTL 

with moderate to large effects segregate in this population, for example a mutation 

in the DGAT1 gene affects fat % (Grisart et al. 2002). Bulls were split into 

reference and validation sets by age, with the youngest bulls in the validation set. 

The numbers of bulls in the reference and validation sets for each trait are listed in 

Table 3.1. As a surrogate for prediction accuracy, the correlation of GEBV and 

DTD in the validation set was used. To investigate the computing time required for 

emBayesR relative to BayesR with different numbers of SNPs, we also ran 

genomic predictions in the same data but with the 50K SNP chip genotypes 

(38 968 SNPs) extracted from the 630K data on 3354 animals, for milk yield. 

Table 3.1. Numbers of Holstein bulls in the reference and validation sets for 
functional traits and production traits. 

 Reference set  Validation set  

Milk 3049 262 

Protein 3049 262 

Fertility 2806 396 

Protein% 3049 262 

Fat% 3049 262 

Angularity 1484 251 

Mammary conformation 1484 251 

Stature 1484 251 

Somatic cell count 2662 410 
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3.5 Results 

The results are presented in three sections. First, we investigated the 

convergence of parameters estimated by emBayesR and how close parameter 

estimates from emBayesR were to the true parameter values, and those 

estimated by BayesR, in terms of SNP effects and Pr, in the simulated data. We 

also evaluated the effect of the PEV correction on estimates of these parameters, 

and the accuracy of genomic prediction. Moreover, the accuracy of genomic 

prediction from the joint posterior mode estimation from emBayesR was 

compared to the accuracy when the posterior mean estimate of SNP effects was 

used. The mode estimation for SNP effects (Equation 8a) of emBayesR was used 

for the evaluation of performance of emBayesR. Thus, we also compared the 

accuracy of prediction with mode (8a) and mean (8b) Equations for estimates of 

SNP effects (Equation 8b). In the second section of results, we compared the 

accuracy of genomic prediction from emBayesR to that of BayesR, as well as 

computing speed in simulated and real datasets. Finally, the sensitivity of 

prediction accuracy from emBayesR to the underlying genetic architecture 

(multi-normal distribution, normal distribution of QTL effects, real 630K data) was 

investigated. 

Convergence of parameter estimates with emBayesR 

The algorithm is considered to have “converged” when estimated SNP effects 

from the previous iteration are very close to estimated SNP effects in the current 

iteration. The convergence criterion of emBayesR is (�' Ý − �' ÝDV)′(�' Ý − �' ÝDV)/
(<�' Ý°�' Ý@ <  10DVÕ,  where á  is the current iteration number. Since the 

convergence criterion assessed only changes in SNP effect estimates, it does not 

guarantee that the estimates of the other parameters, i.e. Pr (the proportion of 

SNPs in each distribution) and the error variance, have converged. In the 

simulated dataset HD_Mix_45, convergence was reached after 2500 iterations, 
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and at that point, there was also very little change in the error variance and Pr 

from the previous iteration (Figure 3.1). 

 

Figure 3.1. Convergence of estimated SNP effects, error variance and Pr over 

5000 iterations.  

The x-axis represents the number of iterations that ranged from 0 to 5000; the 

y-axis represents the estimated SNP effects, error variance and the first element 

of Pr (the proportion of SNPs in the distribution with zero variance). 
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Comparison of parameter estimates 

Estimates of SNP effects and Pr from emBayesR can be compared to the 

corresponding estimates from BayesR. For the HD_Mix simulated data, estimates 

of large SNP effects are very similar for BayesR and emBayesR (Figure 3.2). The 

plot of BayesR and emBayesR estimated effects against true effects are in Figure 

3.3. However, for smaller effects, emBayesR shrunk effects to a greater degree 

than BayesR, in some replicates. 

 

Figure 3.2. Correlation between SNP effects from BayesR and emBayesR SNP 

effects in four replicates of HD_Mix_45 (â� = 0.45).  

The x-axis represents the BayesR estimates of SNP effect; blue line plot 

emBayesR estimates of SNP effects on BayesR estimates of SNP effects; black 

line plot BayesR estimates of SNP effects on themselves for four replicates of 

HD_Mix with a heritability of 0.45. 
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Figure 3.3. Estimates of SNP effects from BayesR and emBayesR compared with 

their true effects in one replicate of HD_Mix_45 (HD_Mix_45_2).  

The x-axis represents true effects; blue curve plots BayesR estimates of SNP 

effects on true effects; red line plots emBayesR estimates of SNP effects on true 

effects; the black line plots true effects on themselves for one replicate of 

simulated data HD_Mix with a heritability of 0.45 (HD_Mix_45_2). 

The degree of shrinkage from the BayesR algorithms relative to other algorithms 

can be demonstrated by plotting estimates of SNP effects (HD_Mix data set) from 

BayesR, FastBayesB, emBayesR and SNP-BLUP against their least square 

estimates (Figure 3.4). Both BayesR and emBayesR regressed moderate size 

SNP effects towards 0 more than SNP-BLUP and FastBayesB. However, BayesR 

and emBayesR did not shrink large SNP effects nearly as much as SNP-BLUP. 
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Table 3.2. Estimated mixing proportions (Pr) from BayesR and emBayesR in the 

10k simulation data (HD_Mix_45). 

 
 
 
 
 

 

 

 

 

 

Five replicates of 10K simulation data with h 2 = 0.45 

True value of Pr [0.9950 0.0017 0.0016 0.0017] 

 BayesR  emBayesR 

M45_1 [0.9865 0.0110 0.0010 0.0015] [0.9813 0.0163 0.0009 0.0015] 

M45_2 [0.9861 0.0127 0.0004 0.0008] [0.9852 0.0136 0.0003 0.0009] 

M45_3 [0.9933 0.0046 0.0009 0.0012] [0.9899 0.0083 0.0005 0.0012] 

M45_4 [0.9909 0.0055 0.0022 0.0015] [0.9864 0.0110 0.0010 0.0016] 

M45_5 [0.9944 0.0043 0.0006 0.0007] [0.9910 0.0078 0.0005 0.0007] 

Five replicates of 10K simulation data with h 2 = 0.10 

True value of Pr [0.9950 0.0017 0.0016 0.0017] 

 BayesR  emBayesR 

M10_1 [0.9759 0.0021 0.0024 0.0010] [0.9243 0.0741 0.0009 0.0008] 

M10_2 [0.9624 0.0343 0.0025 0.0009] [0.9086 0.0898 0.0010 0.0007] 

M10_3 [0.9757 0.0022 0.0018 0.0008] [0.9284 0.0702 0.0007 0.0007] 

M10_4 [0.9620 0.0334 0.0032 0.0014] [0.9146 0.0837 0.0008 0.0010] 

M10_5 [0.9664 0.0295 0.0023 0.0018] [0.9265 0.0715 0.0007 0.0014] 
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Figure 3.4. Estimates of SNP effects from SNP-BLUP, BayesR, emBayesR, 

FastBayesB against their least square estimates. 

 The x axis represents the least square estimates of SNP effects; blue line plotted 

BayesR estimates of SNP effects on the least square estimates; red line 

represents emBayesR SNP effect estimates; dotted green line represents the 

fastBayesB estimates of SNP effects; black line represents SNP_BLUP estimates 

of SNP effects for HD_Mix_45. 

Estimates of Pr from emBayesR and BayesR are compared with the true 

proportion of SNP effects in each of the four normal distributions in Table 3.2. The 

genetic architecture of the HD_Mix data was such that 50 QTL were distributed 

evenly in three normal distributions with non-zero variances. The true proportion 

of the SNP effects (around 10 000 markers) in the four normal distributions with 

different variances (0, 0.0006 ��, 0.006 ��, 0.06 ��)  was (0.995, 0.0017, 0.0016, 

0.0017). As shown in Table 3.2, when h2 = 0.45, both BayesR and emBayesR 

estimated the proportions of SNP effects from the four distributions to be roughly 

0.99, 0.01, 0.001, and 0.001. However, when h2 = 0.1, BayesR over-estimated the 

proportion of SNP effects in the smallest non-zero distribution ( �� =  0.0006 ��) 
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and this tendency was even greater with emBayesR. This agreed with results in 

Figure 3.2, where emBayesR shrunk small effects to very small effects more than 

BayesR and this might have contributed to the over-estimation of the proportion of 

SNP effects from the distribution with the smallest non-zero variance (0.0006 ��). 

In the 630K dairy cattle data, the posterior mean estimates of Pr from emBayesR 

were similar to those from BayesR, as shown in Table 3.3. 

Table 3.3. Estimated mixing proportions (Pr) from BayesR and emBayesR for the 

630k real dairy cattle data. 

 BayesR emBayesR 

Milk [0.99291 0.00690 0.00018 0.00001] [0.99511 0.00480 0.00006 0.00003] 

Protein [0.99161 0.00831 0.00005 0.00003] [0.99480 0.00511 0.00007 0.00002] 

Fertility [0.98863 0.01034 0.00092 0.00011] [0.99184 0.00806 0.00009 0.00001] 

Protein% [0.99602 0.00378 0.00019 0.00001] [0.99902 0.00078 0.00004 0.00016] 

Fat% [0.99480 0.00485 0.00021 0.00014] [0.99786 0.00204 0.00001 0.00009] 

Angularity [0.99221 0.00739 0.00039 0.00001]  [0.98514 0.01475 0.00009 0.00002] 

Mammary 

conformation 

[0.99091 0.00859 0.00047 0.00003] [0.99276 0.00714 0.00009 0.00001] 

Stature [0.99013 0.00927 0.00052 0.00008] [0.99305 0.00684 0.00006 0.00005] 

Somatic cell 

count 

[0.98688 0.01272 0.00039 0.00001] [0.98761 0.01229 0.00008 0.00002] 

 

Sensitivity to the prior for the Dirichlet distribution 

Another feature of estimates of Pr, may be sensitivity to its prior parameter ã 

(the pseudo-count of SNPs in each distribution in the Dirichlet distribution). To 

evaluate the sensitivity of emBayesR to �, we used different values for � and 

investigated the effect on Pr with the dataset HD_Mix_45 (Table 3.4). When the 

prior parameter ã was changed from (1, 1, 1, 1) to (100, 1, 1, 1), estimates of Pr 

from emBayesR changed only slightly. Although � = (100, 1, 1, 1) was closer to 

the true situation in the simulated datasets, estimates for Pr (especially Pr[2], 

Pr[3], Pr[4]) deviated from the true values [0.9950 0.0017 0.0016 0.0017]. When 

� was changed to (1, 1, 1, 100) and (1, 1, 100, 1), the estimate of Pr was affected, 

with the proportion of SNP effects estimated to be in the distribution with 
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α[4] = 100 increasing to 0.0027 and 0.0028, respectively, instead of the simulated 

0.0017. It is not surprising that a pseudo-count of 100 affected the estimate of Pr, 

since the true number of SNP effects in these distributions was equal to 17 only. 

Interestingly, the prediction accuracy remained at 0.97 in spite of these changes in 

the prior α. 

Table 3.4. Pr estimates (proportion of SNP in each distribution) with different prior 

values α for the HD_Mix_45 simulated data. 

 
α 

Pr_emBayesR 

0 ä. äääå ∗ ��� ä. ääå ∗ ��� ä. äå ∗ ��� 

(1, 1, 1, 1) 0.9861 0.0127 0.0004 0.0008 

(1, 1, 1, 100) 0.9801 0.0130 0.0042 0.0027 

(1, 1, 100, 1) 0.9863 0.0101 0.0028 0.0008 

(100,1, 1, 1) 0.9883 0.0105 0.0003 0.0009 

The prior α is (1, 1, 1, 1), (1, 1, 1, 100), (1, 100, 1, 1) or (100, 1, 1, 1). 
 

Effect of PEV 

We also compared estimates of parameters and accuracies of genomic prediction 

with and without accounting for PEV or estimates of all other SNPs in the 

emBayesR algorithm. When the PEV was accounted for in the emBayesR 

algorithm, there was a 6% improvement in the accuracy of genomic prediction in 

the simulated data when h2 = 0.45, and 5% when h2 = 0.1 (Table 3.5), compared 

to when PEV was not accounted for. Estimates of SNP effects from emBayesR 

with and without PEV were plotted against estimates of SNP effects from BayesR 

(Figure 3.5A). Estimates of SNP effects from emBayesR without accounting for 

PEV were considerably shrunken, particularly for small effects, compared with 

estimates of SNP effect from BayesR. Estimates of SNP effects with emBayesR 

when PEV were accounted for were much closer to those from BayesR, although 

there was still some over-shrinkage, particularly of small effects. Figure 3.5B, in 

which estimates of SNP effects obtained with BayesR, emBayesR, 

emBayesR_without_PEV were plotted, illustrates this result. 
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Figure 3.5. Comparison of SNP effect estimates from emBayesR with and without 

accounting for PEV with estimates from BayesR.  

A: The x axis represents BayesR estimates of SNP effects; blue line plots 

emBayesR estimates of SNP effects on BayesR estimates of SNP effects; red line 

plots emBayesR_Without_PEV estimates of SNP effect on BayesR estimates of 

SNP effects; black line plots BayesR estimates of SNP effects against 

themselves.  

B: The x axis represents true effects; blue line plots BayesR estimates of SNP 

effects on true effects; green line plots emBayesR estimates of SNP effects on 

true effect; red line plots emBayesR_without_PEV estimates of SNP effects on 

true effects; black line plots true effects against themselves. 
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Table 3.5. Accuracy of genomic prediction from emBayesR_without_PEV and 

emBayesR on HD_Mix dataset. 

Five replicates with h 2 = 0.45 (HD_Mix_45) Correlation (GEBV,TBV)  

Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 

emBayesR_without_PEV 0.91 0.90 0.85 0.90 0.91 

emBayesR 0.97 0.96 0.93 0.97 0.97 

Five replicates with h 2 = 0.10 (HD_Mix_10) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 

emBayesR_without_PEV 0.89 0.82 0.87 0.81 0.79 

emBayesR  0.91 0.87 0.93 0.86 0.87 

 

We also compared the accuracy of prediction based on the joint posterior mean 

(Equation 8b) versus the mode (Equation 8a) in the simulated data (Table 3.6). As 

shown in Table 3.6, using either the mean (emBayesR_Mean) or the mode 

(emBayesR_Mode) for estimates of SNP effect gave similar prediction 

accuracies. 

 

Table 3.6. Accuracy of genomic prediction using in the algorithm posterior mode 

(emBayesR_Mode, Equation 8a) or posterior mean estimates of SNP effects 

(emBayesR_Mean, Equation 8b), in the HD_Mix dataset. 

 Correlation (GEBV,TBV)  

Five replicates with h 2 = 0.45 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 

emBayesR_Mode 0.97 0.96 0.93 0.97 0.97 

emBayesR_Mean 0.97 0.95 0.93 0.97 0.97 

Five replicates with h 2 = 0.10 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 

emBayesR_Mode 0.91 0.87 0.93 0.86 0.87 

emBayesR_Mean 0.91 0.88 0.93 0.87 0.87 

 

Accuracy of genomic prediction with emBayesR and BayesR 

In the simulation data, the accuracy of genomic prediction with emBayesR was 

the same as with BayesR when heritability was 0.10, but 1% lower when 

heritability was 0.45 (Table 3.7). However, both methods resulted in GEBV that 

were close to unbiased, based on the regression of TBV on GEBV being close to 

1, although for HD_Mix_10, the regression was 0.89 with both BayesR and 
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emBayesR. 

Table 3.7. Accuracy of genomic prediction and the regression coefficient of true 

breeding value (TBV) on genomic estimated breeding value (GEBV) for different 

methods for the HD_Mix simulated dataset. 

 Correlation (GEBV,TBV) Regression coefficient (TBV on GEBV)  

h2 = 0.45 
2500 animals  

h2 = 0.10 
3750 
animals  

h2 = 0.45 
2500 animals  

h2 = 0.10 
3750 animals  

BayesR 0.97±0.01 0.89±0.03 1.02±0.02 1.00±0.05 

emBayesR 0.96±0.03 0.89±0.02 0.95±0.03 1.00±0.04 

 

Accuracies of genomic prediction with BayesR, GBLUP, FastBayesB, and 

emBayesR on the 630K dairy data were in Table 3.8. The average accuracy of 

genomic prediction with emBayesR across the nine dairy cattle traits was 0.4% 

lower than with BayesR. The accuracy with emBayesR was on average 5% better 

than with FastBayesB. The average accuracy of BayesR across the nine traits 

was 3% higher than with GBLUP, which was due to very similar accuracies for 

four of the nine traits, and only protein% and fat% showing clear improvements in 

accuracy compared to GBLUP. For these traits, several QTL with moderate to 

large effects are known to exist (Grisart et al. 2002; Blott et al. 2003). 

Table 3.8. Accuracy of genomic prediction from GBLUP, BayesR, fastBayesB and 

emBayesR for the 630K dairy cattle data for production and functional traits. 

 Production traits 

 Milk Protein Fertility Protein% Fat% 

GBLUP 0.57 0.63 0.40 0.63 0.77 

BayesR 0.63 0.64 0.41 0.79 0.83 

FastBayesB 0.57 0.60 0.35 0.70 0.80 

emBayesR 0.62 0.65 0.40 0.76 0.83 

 Functional traits 

 Angularity Mammary conformation  Stature Somatic cell count  

GBLUP 0.45 0.28 0.47 0.71 

BayesR 0.44 0.28 0.47 0.71 

FastBayesB 0.39 0.25 0.43 0.61 

emBayesR 0.45 0.30 0.47 0.69 
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Computing performance of emBayesR compared with BayesR 

We compared the speed of emBayesR with BayesR and fastBayesB using three 

criteria: the time complexity of each iteration (the function in terms of number of 

SNPs and individuals that determines the time taken to do one iteration), the 

number of iterations to convergence (or in the case of BayesR until changes in 

SNP estimates were sufficiently small so that the accuracy of genomic prediction 

did not change), and total computing time required with the 630K real data. 

First, as mentioned in the method section, the time complexity for emBayesR is 

O(nm), which is the same as with the MCMC method for BayesR and with ICE 

iterations for fastBayesB, and with the nonlinear A method of VanRaden 

(VanRaden 2008) and SNP_BLUP (Meuwissen et al. 2001). 

Second, for BayesR, the accuracy of prediction for the trait milk yield exceeded 

0.61 at 20 000 iterations, and did not improve with a larger number of iterations, 

as shown in Figure 3.6. For five traits (milk, protein, fertility, fat % and protein %) 

and using the 630K real data, the numbers of iterations required for convergence 

for emBayesR and fastBayesB are given in Table 3.9. FastBayesB required 

slightly more iterations to reach convergence than emBayesR for most traits.  

 

Table 3.9. Number of iterations required for emBayesR and fastBayesB to reach 

convergence for five traits with the 630K dairy cattle data. 

 Milk  Protein  Fertility  Protein %  Fat % 

EmBayesR 460 476 920 572 496 

FastBayesB 410 540 856 848 564 
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Figure 3.6. Accuracy of genomic prediction and running time for BayesR with an 

increasing number of iterations. 

Finally, the overall computing times for emBayesR, BayesR and fastBayesB with 

the same implementation (each trait on one processor) were compared (Figure 

3.7). The algorithms were implemented on a range of datasets with different sizes, 

including 10K simulated data (HD_Mix model, 2500 animals with around 10 000 

SNPs), 50K data (3049 animals with 38 968 SNPs), and 630K data (3049 animals 

with 632 003 SNPs). As shown in Figure 3.7, the speed advantage of emBayesR 

compared to BayesR was greater as the number of SNPs in the dataset increases. 

For example, with the 630K data, BayesR needed approximately 4 days of real 

computing time, while emBayesR required just 4 hours (including the time to 

calculate PEV in GBLUP) to achieve the final solutions. 



 80 

 

Figure 3.7. Computational time required for BayesR, emBayesR and FastBayesB 

on a range of SNP chips (10K, 50K and 630K).  

The x axis represents the different sizes of the SNP chips, y axis is the 

computational time in minutes; blue bar is BayesR’s running time; red bar is 

emBayesR’s; green bar is FastBayesB’s computing time. 

Sensitivity of parameter estimates from emBayesR to the underlying 
genetic model 

In this final Results section, we investigate the sensitivity of the accuracy of 

genomic prediction and estimates of Pr with emBayesR and BayesR to the 

underlying data model. Three underlying models for QTL effects were 

investigated: (1) an equal mixture of three non-zero normal distributions in 

HD_Mix; (2) all QTL effects follow a normal distribution in HD_One; and (3) an 

unknown model of QTL effects in the 630K real data. 
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Table 3.10. Estimated mixing proportions (Pr) and genomic prediction accuracy 

from BayesR, emBayesR and GBLUP with the HD_Mix_45 and HD_One_45 

datasets. 

HD_Mix_45 (h 2 = 0.45) 

 Pr Accuracy 

True [0.9950 0.0017 0.0016 0.0017]  

BayesR [0.9861 0.0127 0.0004 0.0008] 0.97 

emBayesR [0.9852 0.0136 0.0003 0.0009] 0.97 

GBLUP - 0.67 

HD_One_45 (h 2 = 0.45) 

 Pr Accuracy 

True [0 0 0 1]  

BayesR [0.722 0.2621 0.0115 0.0044] 0.80 

emBayesR [0.012 0.986 0.0007 0.0013] 0.80 

GBLUP - 0.78 

 
 

emBayesR and BayesR gave higher accuracies than GBLUP for the HD_Mix 

model data (M45_2), while for the HD_One data, the advantage of emBayesR 

and BayesR was smaller than that of GBLUP (Table 3.10), as might be expected 

given that the HD_Mix data had a proportion of QTL with larger effects. In 

estimating Pr, emBayesR generally had somewhat poorer agreement with the 

underlying data model than BayesR (Table 3.10), especially for the HD_One_45 

data. 

However, on 630K real data, emBayesR gave very similar estimates of Pr and 

accuracy of genomic prediction than BayesR and GBLUP (accuracy only for the 

later comparison) (Table 3.3 and Table 3.8). One conclusion from the relative 

performance of emBayesR to BayesR in the 10K simulated data and in the 630K 

real data, is that emBayesR could not distinguish SNP effects with zero variance 

from those with a very small variance when there is little information in small 

datasets, as in the HD_One simulated data. However, among the 630K SNPs 

there are likely more SNPs in the non-zero distributions, which should increase 
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the precision of estimates of Pr. 

3.6 Discussion 

Genomic prediction with non-linear Bayesian methods (under MCMC model), 

including BayesR, can be more accurate than GBLUP in some situations, such as 

when QTL with moderate to large effects segregate (VanRaden 2008; Yang et al. 

2010), but at the cost of longer computing time. To retain the accuracy of BayesR 

while reducing computing time, we propose here an EM algorithm, termed 

emBayesR, for genomic prediction, as an alternative to the MCMC 

implementation of BayesR. In both 10K SNP simulated data and 630K real dairy 

cattle data, emBayesR gave accuracies of genomic prediction similar to BayesR, 

with greatly reduced computing time. As in BayesR, emBayesR estimates SNP 

effects, error variances and posterior probabilities of each SNP belonging to the 

kth distribution (here, there were four distributions, one with zero variance). 

Results from BayesR and emBayesR differed in three ways, albeit to a small 

degree. Estimates of Pr with emBayesR tended to have more SNP effect 

estimates in the smallest non-zero distribution than BayesR; emBayesR shrunk 

small SNP effects towards 0 somewhat more than BayesR; and the accuracy of 

emBayesR predictions was approximately 0.5% lower than the accuracy of 

BayesR. Our EM algorithm differed from the MCMC BayesR in several respects, 

which may explain these results. The EM algorithm estimates the SNP effect (TA) 
by the mode of the posterior distribution when the mixing proportions (Pr) and the 

error variance ( ��) are held at their MAP estimates, whereas the MCMC version 

estimates TA by the mean of the posterior distribution while Pr and  �� vary over 

their posterior distributions. Also, when we used the mean instead of the mode of 

the posterior distribution of TA as an estimate of TA, we found that it makes no 

discernible difference in prediction accuracy, as shown in Table 3.6. However, 

varying Pr and  ��  across their posterior distributions in BayesR, but not 
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emBayesR, may explain differences in results. In addition, emBayesR uses an 

approximation of the prediction error variance of all other SNPs when estimating 

TA. 
Bayesian estimates are sensitive to the prior if the data does not contain enough 

information to overwhelm the prior. Estimates of Pr with both BayesR and 

emBayesR were affected by the prior α but not to a large degree, considering that 

the simulated data contained only 50 causal mutations and the prior had little 

effect on the accuracy of genomic predictions. Results from using emBayesR with 

the simulated data indicate the algorithm was unable to consistently distinguish a 

SNP with no effect from a SNP with a very small effect. We would expect that, in 

data in which more causal mutations are segregating and with many more 

animals, estimates of Pr would be less sensitive to the prior. 

Other EM algorithms for genomic prediction have been described using 

thick-tailed t-distributions or exponential distributions as priors for the SNP effects. 

These include EM-BSR (Hayashi & Iwata 2010) and FastBayesA (Sun et al. 2012), 

which aim at enhancing the computing efficiency of BayesA. emBayesR differs 

from most previous non-MCMC implementations of Bayesian methods for 

genomic prediction in two respects, i.e. it uses the BayesR model with a mixture 

of four normal distributions for SNP effects and it accounts for errors in all other 

estimated SNP effects when estimating the effect of the current SNP by including 

the PEV term in the model. When we implemented the EM algorithm without the 

PEV term, the accuracy of prediction declined by 8%. The accuracy of fastBayesB 

was, on average, 9% lower than that of emBayesR, suggesting that much of the 

loss in accuracy of fastBayesB is due to ignoring the errors in all other SNP 

effects when estimating a particular SNP effect. Consistent with this interpretation, 

both fastBayesB and our EM algorithm without accounting for the PEV shrink 

estimates of SNP effects more severely than emBayesR or BayesR. Most of the 

current fast algorithms, such as fastBayesB (Meuwissen et al. 2009), emBayesB 
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(Shepherd et al. 2010), em_BSR (Hayashi & Iwata 2010), and MixP (Yu & 

Meuwissen 2011), ignore the error produced by the estimation of other SNP 

effects. That is, they use an unrealistic assumption that the current solutions of all 

other SNPs effects are known without error when estimating the current SNP 

effect, which is one of the reasons why accuracies of prediction from these 

algorithms are typically lower than that of their counterpart MCMC methods. 

MCMC methods account for the error in the estimates of other SNP effects by 

sampling them from their posterior distributions. For the calculation of PEV, the 

inverse of a matrix with dimensions (number of animals × the number of animals) 

is required (Equation (A7) of Additional file 2). When the number of animals 

exceeds 50 000, this will hinder the computing efficiency of emBayesR. To reduce 

the computing burden of the PEV calculation, the efficient genomic recursion 

algorithms proposed by Misztal et al. (Misztal et al. 2014) could be applied but this 

requires further investigation. 

Our results demonstrated the computing speed of emBayesR over the MCMC 

implementation of BayesR. The time complexity for emBayesR at each iteration is 

proportional to the number of markers and the number of records, as it is in the 

MCMC methods. However, much fewer iterations were required for the 

emBayesR SNP effects to converge than for BayesR to sample sufficiently from 

the posterior distributions of SNP effects to achieve maximum accuracy of 

genomic prediction. Specifically, compared with 20 000 iterations of MCMC 

sampling (Figure 3.6), emBayesR required only 300 to 1000 iterations with the 

630K real dairy data (Table 3.9). As the size of datasets increased, this advantage 

could be even greater, as shown in Figure 3.7. 

With high-density SNP data (630K), the prediction accuracy of emBayesR and 

BayesR was greater than GBLUP only for yield traits. Similar results (an 

advantage of a Bayesian approach over GBLUP for yield traits only) were 

obtained using the nonlinear iterative A method with imputed high-density data 
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from 15 842 reference animals and 28 traits (VanRaden et al. 2013). Computing 

time with high-density data for this nonlinear A method is also |("R), with 

reported times similar to emBayesR. One difference between BayesR and the 

nonlinear A method is that SNP effects can actually be 0 with BayesR, whereas in 

nonlinear A, SNPs will always have a non-zero effect, although it may be very 

small. This difference between the algorithms apparently does not affect 

accuracies of prediction with the 630K real data, although it may become more 

important with whole-genome sequence data, for which the number of variants is 

much larger. However, this is yet to be demonstrated. 

It should also be noted that some reduction in computing time can be achieved by 

“pruning” SNPs that are in very high linkage disequilibrium from the dataset, since 

these SNPs carry redundant information. For example, Su et al (Su et al. 2012) 

reduced a dataset from 770K to 492K SNPs by pruning SNPs that were in very 

high linkage disequilibrium in a Nordic Holstein population prior to estimation of 

SNP effects. 

Our aim is to eventually integrate emBayesR into genetic evaluations for 

Australian dairy cattle. Currently, the Australian National DNA reference 

population has more than 20 000 cattle, including 3719 Holstein bulls, 9630 

Holstein cows, 1017 Jersey bulls and 4249 Jersey cows. For the evaluation of 

these national reference populations, GBLUP is currently used to calculate the 

Australia Genomic Breeding Value on 50K SNP genotypes. However, even with 

the current data, prediction accuracy is higher with Bayes R than with GBLUP for 

some traits and GBLUP is unable to take advantage of the extra information that 

would be contained in whole-genome sequence data. Therefore, we anticipate 

moving to a Bayesian method to take advantage of whole-genome sequence data 

and increase prediction accuracies, and we expect that an EM algorithm will be 

part of this methodology in order to limit computing time. 
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In this paper, we used only bulls in the reference and validation sets, to avoid the 

added complexity of weighting bull and cow trait deviations differently. However, 

further development of the method described in this paper is needed to include 

appropriate weighting of phenotypes, multi-breed effects, polygenic effects in the 

model (as implemented in the MCMC version (Kemper et al. 2015)) and to imbed 

the Bayesian method within a single-step genetic evaluation (Fernando et al. 

2014b; Liu et al. 2014), so that it can be applied to the Australian national dairy 

evaluations. Also, efficient approaches for inversion of the animal by animal matrix 

to obtain the PEV need to be investigated to retain the efficiency advantage of 

emBayesR with very large numbers of animals. 

3.7 Conclusions 

EmBayesR uses an EM-based method to estimate the posterior mode of SNP 

effects, rather than the MCMC sampling used in BayesR. emBayesR can reduce 

computing time up to 8-fold compared to BayesR. Results with simulated data 

and real 630K SNP dairy cattle data show that genomic prediction accuracy of 

emBayesR is similar to that of BayesR (0.5% accuracy loss averaged over traits). 

The computing advantages of emBayesR make it attractive for implementation of 

genomic prediction in very large datasets. 

3.8 Supporting information 

 

All the supporting files were located in Appendix II (0) as follows: 

File S1 - Calculation of P8è = I(b8è|y, Pr¤�), which includes the details on how to 

derive �;�. 

File S2 - PEV calculation from GBLUP, which describes the details on how to 

calculate PEV from GBLUP. 
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Chapter 4   Computationally efficient schemes for 

multi-population genomic prediction and QTL 

mapping for complex traits 

4.1 Chapter preface 

Justification 

As data sets for genomic prediction of complex traits rapidly expanded in size, the 

importance of computational efficiency of genomic prediction algorithms became 

paramount. In this paper, we described an expectation-maximization algorithm for 

genomic prediction (Opt_emBR) that was up to 30 times faster than MCMC 

implementations. The algorithm was suitable for joint analysis of data from 

different experiments, as it accommodated heterogeneous variances, and could 

accommodate effects of factors such as age, sex and additional covariates. A 

further advantage of the method was that QTL mapping was performed 

simultaneously with genomic prediction. 

 

Publication status: 

Published in the conference the Association for the Advancement of Animal 

Breeding and Genetics, 2015. 

 

Published as 

Wang TT, Chen YPP, Kemper KE, Goddard M, Hayes BJ. (2015) Opt_emBR: 

Computationally efficient genomic prediction and QTL mapping in multi-breed 

populations. Proceeding of the Association for the Advancement of Animal 

Breeding and Genetics, 21: 449-452. 
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Tingting Wang (Candidate): implemented the extended version of emBayesR 

methods with two speed-up schemes, analyzed the data for multi-breed and 

across-breed prediction and then drafted the manuscript. 

 

Yi-Ping Phoebe Chen (Principle Supervisor): supervised the manuscript. 

 

Kathryn E Kemper (Collaborator) implemented BayesR on 630 K high-density 

SNP panel for multi-breed and across-breed prediction. 

 

Michael E Goddard (Collaborator): contributed the valuable idea of the  speed-up 

schemes for the algorithm. 

 

Ben J. Hayes (Co-Supervisor): supervised this project, suggested approaches for 

the implementation of the algorithm on real data, and gave a great contribution for 

the organizing/revising of the paper. 

 

This chapter is an extended version of paper submitted to AAABG conference, 

including the more detailed methodology and more comprehensive results on the 

prediction accuracy and QTL mappings. The reference style, table numbers and 

figure numbers have been carefully formatted. 

4.2 Abstract 

Genomic prediction is increasing widely used in selection of livestock and crops, 

as well as for prediction of disease risk in species including humans. Prediction 

using multiple populations (and multiple data sets from different experiments) for 

the same species can result in higher accuracies of prediction and more precise 

QTL mapping, provided denser SNP and methods that allow a non-linear model of 

SNP effects are used. In particular, methods that allow a proportion of SNPs to be 

excluded from the model are necessary to take advantage of very dense SNP 
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genotypes. These methods are usually Bayesian and implemented through 

Markov Chain Monte Carlo (MCMC) sampling. However, MCMC becomes 

impractical with very large numbers of SNP and larger number of individuals, 

particularly when datasets are combined across populations. In this paper, we 

propose a computationally efficient scheme termed Opt_emBR (Optimized 

emBayesR) for multi-population genomic prediction and simultaneous QTL 

mapping. The method implements an expectation-maximization algorithm for a 

non-linear prediction model (BayesR). To increase the range of situations for 

which the method can be applied, we include a polygenic term to take into 

account genetic variance not explained by the SNP, but which can be captured by 

a pedigree. As well, in order to correctly model heterogeneous variances of trait 

observations that may come from different sources, weights are introduced into 

the mixture linear model. Two potential speed-up schemes for Opt_emBR are 

evaluated to reduce time taken for operations on large matrices of genotype data 

as well as to reduce the times of basic operations. The results in a large data set 

with individuals from two breeds (Holstein and Jersey) of dairy cattle and 

genotyped for 630K SNPs show the robust prediction ability of Opt_emBR for 

within-population, and multi-populations prediction when compared with the 

MCMC implementation of the same model. Moreover, the speed up schemes can 

make Opt_emBR up to 30 times faster than the MCMC implementation. This 

computational efficiency will be increasingly important as the size of genomic data 

sets continues to increase. Finally, we were also able to demonstrate that 

Opt_emBR can be used for QTL mapping and genomic prediction simultaneously, 

with more precision of QTL mapping than by standard GWAS approaches. 

 

4.3 Introduction 

Genomic prediction is increasingly used for prediction of disease risk in humans, 

and for selection programs for livestock and crops (de los Campos et al. 2010; 
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Yang et al. 2010). These prediction methods use genome-wide panels of SNPs to 

exploit linkage disequilibrium between these SNPs and the causal mutations 

affecting traits (Meuwissen et al. 2001). Genomic prediction requires deriving the 

prediction equation, the effect of each SNP on the trait, by estimating the SNP 

effects in reference population of individuals that are both genotyped for the SNP 

and have phenotypes for the trait of interest. For example, 45% of genetic 

variance for human height can be explained by common SNPs using linear 

genomic prediction model termed GBLUP, and accuracies of genomic prediction 

approach 0.5 (Yang et al. 2010). At the same time, genomic predictions of disease 

risk have been demonstrated with some accuracy for several human diseases e.g. 

Crohn’s disease, Celiac disease and Type I(II) Diabetes (Barrett et al. 2008; Zhou 

et al. 2013b; Abraham et al. 2014; Speed & Balding 2014; Loh et al. 2015; Moser 

et al. 2015). In dairy cattle, many breeding programs are now based on selecting 

bulls for breeding on the basis of their genomic predictions (of genetic merit) for 

traits such as milk yield, protein yield, and fertility (Goddard & Hayes 2009; 

Meuwissen & Goddard 2010).  

 

The accuracy of genomic prediction is jointly determined by the size of reference 

population, extent of linkage disequilibrium (LD) between SNP and causal 

mutations, heritability of the trait, and method of deriving the prediction equation 

(Hayes & Goddard 2008; Goddard 2009; Daetwyler et al. 2010). Across many 

species, a key finding is that reference populations must be very large to achieve 

high accuracies of genomic prediction, reflecting the limited extent of LD in these 

species, and large number of loci affecting most complex traits (Daetwyler et al. 

2010; Hayes et al. 2010). One way to increase the size of the reference 

population is to combine information across populations from the same species, 

which can be termed multi-population prediction. There have been a wide range 

of previous studies attempting multi-population implementations in both livestock 

(e.g. dairy cattle (Habier et al. 2007; Erbe et al. 2012; Saatchi et al. 2013; Zhou et 
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al. 2013a; Hozé et al. 2014; Lund et al. 2014; Kemper et al. 2015), beef cattle 

(Weber et al. 2012; Bolormaa et al. 2013), sheep (Daetwyler et al. 2012a; 

Daetwyler et al. 2012b) and human (Wray et al. 2007; Visscher 2008; Wood et al. 

2014)). In general, the finding from these studies is that small to moderate 

increases in genomic prediction accuracy for some traits can be achieved by 

combining the populations, provided SNPs are sufficiently dense that SNP-QTL 

associations persist across the populations (Hayes et al. 2010; Bolormaa et al. 

2013; Hozé et al. 2014; Lund et al. 2014).   

The potential multi-population prediction methodology includes linear and 

nonlinear models, which use the same Bayesian regression theory, but have 

different prior assumptions for SNP effects. In detail, linear models (e.g. 

SNP-BLUP or the mathematically equivalent GBLUP) (Meuwissen et al. 2001; 

Yang et al. 2010) assume the same variances for all the SNPs, with a Gaussian 

prior. On the contrary, nonlinear models (also termed Bayesian alphabet e.g. 

BayesA, B, C, D, R etc. ) (Meuwissen et al. 2001; Habier et al. 2011; Erbe et al. 

2012; Zhou et al. 2013b; Speed & Balding 2014) assume the SNPs are not 

normally distributed with different genetic variances varying across the 

chromosome. Compared with nonlinear models, the use of a normal prior in BLUP 

leads to drastic shrinkage of marker effects. As the results, the estimated effect of 

the causative mutation from BLUP will be “smeared” across many markers (e.g. 

Verbyla et al. (Verbyla et al. 2009), Kemper et al. (Kemper et al. 2015)). While 

these associations across many markers can hold for a number of generations 

within a population, they are much less likely to persist across populations (for 

example across breeds). Therefore, for across population prediction, SNP-BLUP 

or GBLUP might reduce up to 20% accuracies in contrast with nonlinear methods 

(non-Gaussian priors) (Hozé et al. 2014; Zhou et al. 2014; Kemper et al. 2015). 

Further, compared to BLUP methods, nonlinear models use priors, which assume 

a large proportion of SNP, have effects to close to zero, or actually are zero, while 
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a proportion of SNP have moderate to large effects. This is important not only to 

improve the accuracy of genomic predictions, but also to improve the precision of 

QTL mapping (Sun et al. 2011; Kemper et al. 2015; Moser et al. 2015). In contrast 

with other non-linear models, BayesR assumes the mixture of four normal priors 

for SNP effects with variances ranging from zero to three increasing variances, 

which leads to more straightforward computation than is possible with t 

distributions of effects (Erbe et al. 2012). As demonstrated by Moser et al. (2015), 

BayesR can accurately estimate genetic architecture (heritability) related to 

popular human diseases. Especially, for human diseases controlled by major loci 

(e.g. type 1 diabetes and rheumatoid arthritis), the prediction analysis and QTL 

mapping from BayesR outperforms BLUP method and Bayesian sparse linear 

mixed model (BSLMM) (Zhou et al. 2013b). More precise QTL mapping leads to 

more accurate genomic predictions across populations, as demonstrated by 

Kemper et al. (2015). 

While the Bayesian methods are very attractive, the major difficulty with these 

methods is long computation time, which with very large data sets becomes 

intractable. The methods are typically implemented using MCMC sampling from 

the posterior distributions of the parameters, which leads to long run times. To 

speed up Bayesian methods, several heuristic convergence methods have been 

proposed (VanRaden 2008; Meuwissen et al. 2009; Hayashi & Iwata 2010; 

Shepherd et al. 2010; Yu & Meuwissen 2011; Sun et al. 2012; Wang et al. 2015) 

(e.g. Iterative Conditional Expectation methods and Expectation-Maximization 

algorithms). For example, VanRadan et al. (2008) proposed the methods termed 

nonlinear A and B to mimic the nonlinear shrinkage of BayesA and BayesB. 

Jacobi iteration was implemented on nonlinear A and B to be the approximations 

of both BayesA and BayesB. Meuwissen et al. (2009) and Yu et al. (2011) applied 

iterative conditional expectation (ICE) to the BayesLASSO model and Bayesian 

mixture models of two normal distributions separately. Also, an expectation- 
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maximization (EM) algorithm was introduced to  maximize a joint posterior 

probability by a number of methods termed EmBayesB (Shepherd et al. 2010), 

wBSR (Hayashi & Iwata 2010), fastBayesA (Sun et al. 2012), and emBayesR 

(Wang et al. 2015), which are based on the prior distribution of SNP effects from 

BayesLASSO, BayesA, and BayesR models respectively. All of these methods 

were reported several orders faster than their counterparts while retaining the 

similar level of prediction accuracy on the simulation data or medium density of 

SNP panels. However, except for nonlinear A (B) and emBayesR, few fast 

versions of Bayesian methods are implemented on practical data of high density, 

not mentioned to be used for multi-populations prediction, as they generally lead 

to lower accuracies of prediction. 

 

Our aim is to develop a computationally efficient algorithm (Opt_emBR for 

Optimized BayesR) for simultaneous multi-population genomic prediction and 

QTL mapping. Similar to emBayesR (Wang et al. 2015), Opt_emBR implements 

an optimized EM algorithm on the prior assumption for SNP effects and other 

parameters from BayesR, that is all SNP effects follow four normal distributions 

with the variances 0, 0.0001 ∗  ��, 0.001 ∗  ��, 0.01 ∗  ��  (  ��  means the genetic 

variance). Also, Opt_emBR retains the advantage of Predicted Error Variance 

(PEV) correction of emBayesR (Wang et al. 2015) to improve the accuracy of 

genomic prediction. For the application on multi-population genomic prediction 

and QTL mapping, and application in very large data sets, Opt_emBR has four 

improvement compared with emBayesR (Wang et al. 2015): 1) weighting on 

phenotypes to allow for different errors in measurement across populations, or for 

example for combining bull phenotypes made up of with many daughter records 

with single cow records; 2) accommodation of fixed effects (e.g. breed, sex) into 

the prediction models; 3) polygenic effects to take advantage of genetic variation 

not captured by the SNP but captured by pedigree; 4) and two speed-up schemes 

to make it 30 times faster than BayesR implemented with MCMC. To evaluate the 
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prediction ability and computation efficiency of Opt_emBR, a data set of 630K 

SNP genotyped in 16,214 of three breeds of Australian dairy cattle was used. 

4.4 Methods and Materials 

Similar to emBayesR (Wang et al. 2015), Opt_emBR implements the EM 

algorithm on the mixture Gaussian model of BayesR to maximize the expectation 

of a posterior probability for SNP effects and all other parameters. In the following, 

we will start with the data model of Opt_emBR, including the description for 

various prior assumptions of the grouped parameter sets ê from the model. Then, 

EM derivation for the parameters set based on different priors is detailed. Next, 

two speed-up optimized schemes will be mainly discussed. Furthermore, the 

overall algorithm in terms of pseudo code is listed step by step. Afterwards, the 

genomic data used to test/demonstrate the algorithms will be described. 

 

The statistical model of Opt_emBR 

Compared with emBayesR, Opt_emBR extends its models by including fixed 

effects (�), polygenic effects (�), and error matrix (ë) which incorporated weights 

to reflect heterogeneous variances across phenotypes, while maintaining the aim 

of emBayesR which was to estimate each SNP effect g8 with the consideration of 

prediction error variance (PEV) produced by other SNPs. Therefore, aiming at the 

estimation for single SNP effect, the data model of Opt_emBR assumes that the 

phenotypic records of " individuals (	), regresses fixed effects (�), each SNP 

effect ( TA ), random genetic effects ( & ), random polygenic effects( � ) and 

environmental errors (�) together via  

	 = ì� + %;TA + & + í� + �,                     (1)         

where, ì is the " × ! design matrix, allocating phenotypes 	 to fixed effects � 

of breed and sex. ! was the number of fixed effects.         

%;  is " × 1 standardised genotype vector for each SNP N , which was each 
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column of " × R standardised genotype matrix % with N = 1, … , R.    

í, the " × á design matrix, allocates the á × 1 vector of polygenic effects to the 

phenotypes 	. 

The parameters set from the data model (1) includes fixed effects (�), each SNP 

effect ( g8 ), random genetic effects ( & ), random polygenic effects ( � ) and 

environmental errors (�), written as = {TA, �, &, �, �}. Here, for the clarification, we 

group the parameter set ê as the one related with SNP effects êV = {TA, …}, the 

one related with genomic breeding values & by other estimated SNPs effects 

which was introduced for PEV calculation , and the set with other parameters 

ê� = {�, �, �}. 
For the parameter set êVrelated to SNP effects, the prior distribution of SNP 

effects was assumed to be the mixture of four normal distributions with the 

variances, i.e. �;� = �0, 0.0001 ∗  ��, 0.001 ∗  ��, 0.01 ∗  ��� , where  ��  is genetic 

variance. Therefore, the prior assumption of each SNP effect TA can be written 

as TA~5(0, �;�). Since there are four possible normal distributions for each SNP, 

three other derivative parameters including �(N, �), !(N, �) and �Q� are required. 

In detail, �(N, �), determines whether or not each SNP effectTA belongs to one of 

four normal distributions � (� = 1,2,3,4). The term !(N, �) defines the probability 

of each SNP effect TA in one of four normal distributions �. The term �Q� is the 

proportion of all the SNPs following each of four normal distributions �, that is 

assumed as Dirichlet distribution with the parameter α = (1,1,1,1)ð. Therefore, 

the parameter set êV for SNP effects also includes �(N, �) and ��, written as 

êV = {TA, �(N, �), ��}. The prior distribution of each SNP effect conditional on 

�(N, �) is  

 P<TA=�(N, �)@ = � 0,           � = 1 V
c��ñ?g[�] exp �− �Bg�ñ?g[�]� ,   � = 2,3,4.  Then, the joint distribution 

p<TA, �;=��¤@ conditional on ��¤ can be written as: 
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 !(TA, �;|��) = ∏ !<TA=�(N, �)@ × !(�(N, �)|�Q�)X�ZV  

       = ∏ ( V
c�£��g

exp �− �Bg���g� �Q�)LB�X�ZV .  

The parameters sets ê�  from other effects includes the fixed effects  � , the 

polygenic effects �, and the environmental errors �. The � have uninformative 

priors, while the prior distributions for two other random effects are as follows: 

�~5(0, ò ó� ); �~5(0, ëσ��)  with  ó�  and σ��  stand for polygenic variance and 

error variance, respectively. Moreover, ò is á × á  pedigree-based relationship 

matrix (á is the number of individuals in the pedigree). The " × " diagonal matrix 

ë is especially designed to evaluate the different contributions of the phenotype 

records from different sex to the error variance. Each diagonal element eAA of 

matrix ë is equal to 1 ôA⁄ , where ôA is used to weight the bull and cow records 

appropriately (Garrick et al. 2009). The weight of bulls and cows was calculated 

using the equations:  

ôA(�1]]²) = (VDfg)õfgh(XDfg)/ö, and ôA([Pô²) = (VDfg)õfgh[Vh(ÓDV)Ä]/ÓDfg ,     (2)                                

where, ℎ� is the heritability of the trait; G is the repeatability of the traits; 0 is the 

number of the daughter of each bulls; Q is the number of records; [ is the 

proportion of genetic variance not accounted for by the SNP (Garrick et al. 2009).  

The latent parameter, &-  is derived by the equation & = ∑ %Ü÷½� g» , which is 

introduced to derive the prediction error variance (PEV) instead of being 

estimated from the posterior. Similar to emBayesR (Wang et al. 2015), Opt_emBR 

derives (PEV) from the estimation of all the SNP effects. i.e. PEV = var(&- − &). 

Under GBLUP model, &-  is assumed to follow 5(0, ù �� ), where ù  is the 

genomic relationship matrix (GRM) (VanRaden 2008; Yang et al. 2010). The PEV 

matrix can be calculated under the GBLUP model, which will be approximately 

implemented to the model (1) to correct estimation for each SNP effect.  
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PEV =  (ëDVσúD� + (ùσû� + íòí′σü�)DV)DV           (3)  

      

EM derivation of Opt_emBR 

Similar to emBayesR, estimation of all the parameters sets ê including each SNP 

effect (TA), the mixing proportions (��), fixed effects (�) and polygenic effects (�) 

as well as the error variance ( ��) will be performed with maximum a posteriori 

(MAP) estimation under different prior assumptions. All the parameters were 

derived according to the similar expectation-maximization process with steps:   

i) Define the log likelihood of the data under the model (1), which is based 

on the distribution (	 − &- − ì� − í�)~5(0, %�σA�%�° + ëσ��). Hence, the full log 

likelihood can be represented as: 

 ]PTr = −0.5 ( ]PT|ý�| + ((	 − X�¥ − &- − �')°ý�DV(	 − X�¥ − &- − �')),   (4)             

where, ý� = %;%;′��� + ëσú�.               

ii) Derive the log posterior function of the parameters using Bayes’ theorem. 

Following Bayes’ theorem, the log posterior distribution of the parameters sets ê 

is based on the rule ]PT!(ê|°0UGU°) ∝ ]PTO(′0UGU°|ê) + ]PT!(ê)  with 

]PTO(′0UGU°|ê) =  ]PTr; ]PT!(ê) = the prior for specific parameter. See below for 

log posterior functions of each parameter. 

iii) Take the expectation on the posterior function with the missing data &- 

(the breeding values from other SNP effects) and �(N, �) (whether or not the SNP 

N follows the normal distribution � of four);  

iv) Differentiate the expected posterior function regarding the required 

parameters set ê, and the latent parameters. 

 

According to the above four step-wise process, the posterior estimation of 
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parameters sets êV, ê� can be derived. In the following, we will firstly brief the 

estimation for the SNP effects related parameters set êV which follows the same 

steps as emBayesR; Then, the parameters set ê� extended by Opt_emBR will 

be derived. 

Then, we derive the posterior probability that each SNP is from each of the four 

distributions according to the equation P(N, �) = I�]PT!(�(N, �)|	, Pr¤è) with 

]PT!<�(N, �)=	, �Q¤�@ = ]PTr + ]PT!<�(N, �) = 1|Pr¤è@, where ]PTp<�(N, �) =
1|Pr¤è@ = ]PTPrè. Then, after treating &- as the missing data (introducing PEV 

term), ]PTr(N, �) = I&-]PT!<�(N, �)=	, Pr¤è@ = I&-]PTr + ]PT!<�(N, �) = 1|Pr¤è@ as 

follows: 

]PTr(N, �) = −0.5�]PT|ýè| + 	Ã�ý�DV 	Ã + tr(ý�DVPEV)� + ]PTPrè,    (5)    

where, ý� = %;%;′��� + ëσú�, 	Ã = 	 − X�¥ − &- − �'.                         

Then, �(N, �) = I�]PT!<�(N, �)=	, �Q¤�@ = I�]PTr(N, �) = ��k (pq�o(A,�))∑ ��k (pq�o(A,�))Â�È¡ .       (6)      

Also, the log posterior function of proportion parameters �� for all the SNPs can 

be simplified as ]PT!(��, �|y) = ]PT!(�|��) + ]PT!(��). Since this function is the 

same as the one of emBayesR (Wang et al. 2015), the parameter �� can be 

derived as: 

�Q� = ∑ Å(A,�)Ò?È¡ hV∑ (∑ Å(A,�)ÒBÈ¡ hV)Â�È¡                                             (7)                                 

Afterwards, based on the posterior probability P(N, �), the SNP effects can be 

derived according to the log posterior distribution: 

]PT!<TA, &, �(N, �)=	, �¥, �', σú�¤, ��¤@ ∝ ]PTr + ]PT!<TA , �(N, �)=��¤@ 

Following the Expectation and Maximization steps of EM, which has the same 

process as emBayesR, we obtain the estimation of SNP effects: 

T'A = [%8°ëDV%8 + ∑ ��(N, �) À�g¤
ÀBg[�]�X�ZV ]DV[%°ëDV	Ã]                (8)          

Compared with the estimation for each SNP effects, the parameters including 
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fixed effects (�), polygenic effects (�) and the error variance (σú�) work on the 

extended model from model (1), which can be written as 	 = ì� + &′′ + í� + �, 

with the breeding values of all animals &°° = %�. Therefore the distribution of the 

data based on this model can be transformed to (	 − ì� − &°° − í�)~5(0, ëσú�). 

Accordingly, the updated log likelihood function ]PTr′′ can be written as:  

 ]PTr′′ = − Ï� ]PTσú� + V�ñ�g (	∗)°ëDV	∗ with 	∗ = <	 − &′′ − ì�¥ − í�'@. 

 

Using Bayes’ theorem, the log posterior function of fixed effects (�), polygenic 

effects (�) and the error variance ( ��) can be expressed separately. For fixed 

effects ( � ) and the error variance (  �� ) with uninformative priors, 

]PT!<σú�, �¥, &′′=	@ = ]PTr′′; while polygenic effects is assumed as �~�(ä, ò ó�), 

with the log posterior function as ]PT!(�, &′′|	) = ]PTr′′ + ]PT!(�). 

 

Applying the Expectation for both of the above posterior function, we get:  

I&°°]PT!<σú�, �¥, &′′=	@ = I&°°]PTr°° = − Ï� ]PTσú� + V�ñ�g [(	∗)°ëDV	∗ + tr(ëDVPEV)] (9)       

I&°°]PT!(�, &′′|	) = I&°°r°° + ]PT!(�)                              (10)          

 

Then, taking the maximization step for the above equations (9-10), the 

parameters are derived as follows: 

σú�¤ = VÏ Ö¨<	 − &′′ − ì�¥ − í�'@«° ëDV<	 − &′′ − ì�¥ − í�'@ + tr(ëDVPEV)×  (11)        

�¥ = (ì°ëDVì)DVì°ëDV(	 − &°° − í�')                      (12)             

�' = (í′ëDVíσ�� + σú�òDV)DVσ��í°ëË¡<	 − &°° − ì�¥@                    (13)           

 

Modified Opt_emBR with two speed-up schemes 

The other improvement of Opt_emBR is to implement two computationally 

efficient schemes to speed up the EM process. The first is by means of statistical 

transformation of the matrix calculation (to simplify the mathematical calculation of 
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the matrix to the vector) for the parameters P(i, k) (equation 6) and �' (equation 

13). The second scheme aims at introducing the threshold criterion for updating 

SNP effects (to speed up the convergence speed of EM algorithm). In detail, 

when SNPs meet the threshold, the effects will not be updated anymore; 

otherwise, SNP effects will be estimated as usual. 

 

Speed-up scheme I.   

Scheme I is to transform the operations on large matrices (e.g. inverse, or 

determinant) to vector or scalar calculations that happen during the calculation of 

the parameter P(i, k) (Equation 6) and � (equation 13). In the equation (6), both 

inverse and determinant operations for matrix ý�  are required, which is 

computationally demanding especially as the calculation of P(N, �) happens in the 

innermost loop of the algorithm (shown in the Pseudo code in Figure 4.1) of the 

following part). According to the Woodbury Identity theory, that is (ò + ì
ì°)DV =
òDV − òDVì(
DV + ì°òDVì)D}ì°òDV, the equation ý�DV can be simplified as: 

ý�D} = (%;%;°σA�[�] + ë���)D} = ��D� �ëD} − ëË}%;%;�ëË}ñBg[�]ñBg[�]%;�ëË}%;h����,     (14)  

which have reduced the inverse of huge square matrix ý� to the product or

 dot product of vectors and the inverse of the diagonal matrix ë.  
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Figure 4.1. The pseudo-code of Opt_emBR algorithm. 

 

 

 

 

Pseudo-code for the overall methods of Opt_emBR 

function Opt_emBR (σú�, σ�� , σ��) 

begin “get σú�, σ�� and σ�� from GBLUP estimation; get vector y, matrix Z, lower triangle matrix 

Ped” 

① Initialize g, Pr, b, v', σA� ; Construct X, A, G, E, W matrices  " ← nrow(%), R ← ncol(%), ! ← 3, á ← ncol(���)  
②   PEV&}(�)  ←  (ëDVσúD� + (ùσû� + íòí′σ��)DV)DV; GQÆ�� ← tr ¨EDVZ8Z8°EDVPEV&}(�)«  

 while unconverged do 

  while N ← 1 to R do 

③   yÃ ← y − ∑ Z»»½8 g' » − Xb� −Wv'   

④   If speed-up scheme �} was true then  
    TA ← 0; �(N, 1) ← 1, �(N, 2: 4) ← 0 

   Otherwise  

    while �V ← 1 to 4 do  

⑤     calculate ]PTr(N, �V) from equation (16)  

    end   

    update each �(N, ��) (�� = (1, … ,4)) with 
��k (pq�o(A,�g)∑ ��k (pq�o(A,�g) )Â�gÈ¡    

⑥    If speed-up scheme �� was true then   
     TA ← 0; �(N, 1) ← 1, �(N, 2: 4) ← 0 

    otherwise    

⑦     calculate T'A from equation (8)   

    end 

   end 

  end 

⑧  update ��, σe2, �, � using equation (7),equation (11), equation (12),equation (13)  

  unconverged←False 

⑨  if (g'# − g'#DV)′(g'# − g'#DV)/(<g'#°g'#@ > 10DVÕ then  

   unconverged←True 

  endif 

 end 

end function 
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Again, applying Sylvester’s theorem (detailed by Kemper et al. (2015)) to 

]PT|ý�|, we obtain: 

log|ý�| = (" − 1)]P T  �� + ]P T|ë| + log(σA�[�]%;°ëD}%; +  ��),    (15)          

which have transformed high dimensional matrix calculations to dot products of 

vectors and the determinant calculation of the diagonal matrix. Substituting (14) 

and (15) into (6), while leaving out the terms irrelevant with  �� (which will be 

eliminated during the calculation of the equation (7)), the formula (6) can be 

re-written as: 

]PTr(N, �) =
]PT�Q� − }� %]PT& − Ö<	Ã�ëD}%;@� − '� ¨ëD}%;%;°ëD}�ë((&-)«× �;�[�]σúD� V⁄ ),     (16) 

With the scalar V = ���%;°ëD}%; + σú�.  

 

Also, for the estimation of polygenic effects �, we apply the transformation of 

equation (13) to (í′ëDVíσ�� + σú�òDV)�' = σ��í′ëDV(	 − &-� − ì�¥) . Let * =
(í′ëDVíσ�� + σú�òDV), and then * = *�;�� +*+,,�;�� (*+,,�;�� means * matrix 

with zero diagonal elements; *�;��  means to keep diagonal elements of * 

matrix but leave others as zero).  

 

Then, *�;���' +*+,,�;���' = σ��í′ëDV(	 − &-� − ì�¥).  

The operation - = *+,,�;���' =
./
//
0*V.v'DV∗…*A.v'DA∗…*Ý.v'DÝ∗ 12

22
3 , where *A.  is the NÄf  row of á × á 

matrix * and �'D�∗  is the current vector �'  with E'A = 0. In other words, when 

estimating current polygenic effect E'A, the NÄf element 4A of the vector - means 

the sum of all the products of the other polygenic effects E'¼,¼½A and the elements 

of *A¼,¼½A . Therefore, instead of the inverse of 2-dimensional matrix * , the 

polygenic effect �' can be calculated via 
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�' =
./
//
0E'V…E'A…E'Ý12
22
3 = *öAó�D}

567
68σ��í′ëDV(	 − &-� − ì�¥) −  

./
//
0*V.v'DV∗…*A.v'DA∗…*Ý.v'DÝ∗ 12

22
3
96:
6;

 ,         (17) 

which shows polygenic effects can be estimated by means of the other estimated 

polygenic effects and the data y. Since the inverse of matrix *  can be 

transformed into the inverse of diagonal matrix and q times of dot product of 

vectors, the computational speed is much improved.  

 

Speed-up scheme II.   

Scheme II includes the modifications from Scheme I, but additionally applies 

updating threshold criterions for SNP effects to remain in the model at each 

iteration, otherwise they are discarded. This improves the convergence speed of 

the EM algorithm. The aforementioned prior assumption for SNP effects is that 

most SNPs have zero effects, while others follow three different normal 

distributions with the variances varying from 0.0001 ∗ σû�, 0.001 ∗ σû� to 0.01 ∗ σû�. 
This Gaussian mixture prior assumption defines the concave log likelihood 

function (Dias & Wedel 2004). Then, EM algorithm will approximate the estimate 

of SNP effects gradually approaching to the final optimums by maximizing their 

log likelihood curves, which decides the trend of SNP effects is monotonic 

increasing or decreasing curve during the EM iterations shown in Figure 4.2.  
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Figure 4.2. Two types of trends of SNP effects during EM iterations. 

 

Therefore, there is a scenario: when the SNP effect T'A is zero or “very adjacent” 

to zero after certain numbers of iterations (e.g. 50 times), it will be considered to 

have zero effect until the convergence of the algorithm. In other words, once SNP 

effect T'A is ensured to have minor effect, there is no need to update SNP N any 

more during subsequent iterations. Since there are a large proportion of SNPs 

(�QV) assumed to have zero effects, such scenario can reduce the updating 

calculations of a large number of SNP effects, so as to speed up the algorithm. 

However, the difficulty is how to set up the thresholds that distinguishes SNP 

effects having no effects (in �QV) or having small effects (in �Q�), which is very 

important as a substantial component of genetic variance is captured by large 

numbers of SNPs with very small effects for many traits (Moser et al. 2015). We 

assess one criterion for determining if SNPs had zero effects:  

�}: |TA| ≤ U;  

 ��:!(N, 0) ≥ �. 

 

The first condition C1 defines the level of the adjacent extent of a SNP effect to 

zero according to its current value. Three values in genetic standard deviations of 

U  are tested:  UV = 0.000001;   U� = 0.0000001;   UW = 0.00000001.  For example, 

when implemented with the criterion|TA| ≤  U�, the effect of SNP N is assumed 

zero if the absolute value of its effect is less than 0.0000001, and therefore will not 
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be updated for the following EM iterations, and will be excluded for all future 

iterations. The second condition C2  judged whether or not SNP N  have the 

effects based on its probability of being in the zero distribution: !(N, 0). A range of 

values are considered for this threshold:  �V = 0.85;   �� = 0.90;   �W = 0.95. For 

example, the condition !(N, 0) ≥ 0.90  means SNP N  have more than 90% 

possibility of having no effects. Once such criterion is reached, SNP N is not 

updated in the further iterations. We investigates the effect of thresholds of U and 

�  for criteria C1 and C2 on the prediction accuracy in our real data set to 

determine the best criteria. 

 

With the investigation on the data, the criteria C1 or C2 are applied after the EM 

steps were running for 50 iterations. 

  

Pseudo-code for the algorithm  

The overall procedure of Opt_emBR is described by means of the pseudo code, 

steps 1~9. Here we will detail these steps according to their sequence appearing 

in the pseudo code descriptions: 

 Step 1: Initialize the parameters g, ��, �;� and Construct X, A, G, E, W 

matrices. Similar to emBayesR (Wang et al. 2015), the starting values of g and �� 

were set as g= 0.01 and Pr = {0.5, 0.487, 0.01, 0.003} , while �;� = {0, 0.0001 ∗
σû�, 0.001 ∗ σû�, 0.01 ∗ σû�} with the genetic variance σû� obtained from GBLUP.  

The " ×3 matrix X is design matrix, allocating the phenotypes to fixed effects. 

In our case, matrix X is set up with first column being the mean, the second and 

third columns defining the breeds (Holstein and Jersey)and sex (bulls and cows) 

of the cattle. For example, if the NÄf animal is Holstein bulls, then ®A,� = 1 with 

®A,W = 0. Pedigree relationship matrix A is built up using the lower symmetrical 

matrix Ped detailed by Henderson (Henderson 1984); while the genomic 

relationship matrix ù is constructed using the equation ù = %%°/" . Diagonal 

error matrix E is defined with the equation (2), and the index matrix W refers the 
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individuals in the reference set to the whole pedigree. For instance, the NÄf 

animal in the reference set is located in the 10Äf of the whole pedigree, and then 

ôA,VÕ = 1. 

Step 2: Calculate PEV matrix under model 1, as aforementioned. Then 

using PEV matrix, GQ ¨ëD}%;%;°ëD}�ë(&}(�)« – that is the term for the equation 

]PTr(N, �) is calculated in front of EM iterations, reducing computational time. 

Then for each SNP N (N in 1 to R) 

Step 3: Correct y for the effects of all other SNPs except current SNP N 
with equation 	Ã = 	 − ∑ %Ü»½8 g' » − ì�< − í�' . 

Step 4: After 50 iterations, the speed-up scheme �}  is implemented 

deciding whether or not SNP N will have a non-zero effect in future iterations. If 

not, g' A = 0; also �(N, 0) was set as 1. 

Step 5: Estimate the probability that the effect of SNP N in from one of four 

normal distributions ]PTr(N, �)  with the equation (23), which has been 

implemented by the speed-up scheme I. After this, �(N, �) is calculated with the 

equation ^®! (]PTr(N, ��) ∑ ^®! (]PTr(N, ��) )X�gZV⁄ . 

Step 6: After 50 iterations, the speed-up scheme ��  is implemented 

according to the probability �(N, 0). 

Step 7: When the criteria for schemes �} or �� are not met, the SNP 

effect g' A is updated via equation (11). 

After effects have been estimated for all SNP,  

Step 8: Calculate  �� with equation (17), fixed effects � with equation (18) 

update �Q� with equation (19) , and update polygenic effects with the simplified 

equation (22). 

Step 9: Assess convergence criterion (�' p − �' pDV)′(�' p − �' ÝDV)/(<�' p°�' p@ ≤
10DVÕ with ] being the loop number of the EM iterations is applied here to test 

whether or not the algorithm is converged. If not converged, then return to Step 3 

for the next EM iteration; Otherwise, exit the EM iterations and return the final 
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estimated results. 

 

Steps from 1 to 9 describe the implementation of Opt_emBR. From these steps, 

the computational complexity can be calculated. Looking through the structure of 

the pseudo code, Step 5 of calculating logL(i, k) is located in the innermost of the 

algorithm. According to the equation (16) of logL(i, k), there are dot products of 

vectors with "  elements, which means "  loops of multiplying operations 

between scalars. Therefore, counting for the outer loop of each EM iteration, there 

are 4 × R × " times of loops for the basic operations, and hence the 

computational complexity can be written as |(4R"). Compared with |(4R"W) 

for equation (6) of logL(i, k), before the application speed up scheme I, the 

computational cost is much reduced. The other intensive calculation lies in the 

step 8 of polygenic effects estimation, which is iterated with á individuals in the 

pedigree instead of each SNP. According to the equation (17) implemented with 

speed-up scheme I, the time complexity is therefore |("á). The operations time 

is much improved in contrast with |("áW) that is required by the equation (13), 

which is not yet applied with speed-up scheme I. As the operations of the equation 

(17) do not happen in the innermost part of the algorithm, the total time complexity 

is |(4R"), after improved with speed-up scheme I. Moreover, because there is a 

large proportion of SNPs without effects, scheme II means SNPs without effects 

don’t need to go through the inner most loop with 4 iterations shown in the step 5 

of the pseudocode, and therefore approximate the time complexity to |(R"). 

 

Data Sets 

Genotypes.  Opt_emBR was implemented in a data set of 16,328 dairy cattle with 

genotypes for 632,003 SNPs from two difference genotyping arrays. One with 

1,745 Holstein and Jersey cattle, and 114 Australian bulls (for validation, not 

included into the reference sets) were genotyped with 777K Illumina HD bovine 

SNP chip; while the other one including 12,049 Holstein and Jersey bulls and 
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cows was genotyped with 54K Illumina Bovine SNP array. After stringent quality 

control and SNP filtering described in (Erbe et al. 2012), there were 632,003 

SNPs remaining from 777K SNP panels, and 43,425 SNPs from the other one. 

Furthermore, for animals genotyped with the 43,425 SNPs, genotypes were 

imputed to 632,003 SNP genotypes using beagle 3.0 (Browning & Browning 

2009). The final data set was 16,328 cattle with real or imputed genotypes for 

632,003 SNP.  

 

Phenotype. Four traits under various genetic architectures (i.e. milk yield, protein 

yield, fat percent (fat%), and fertility) were used for evaluation. In detail, the 

architecture of fat percent (fat%) was known to be affected by a causal variant of 

large effect (e.g. DGAT1); while fertility was characteristic of polygenic 

architecture, with a large number of mutations of small effects (Lund et al. 2014). 

The phenotypes for these traits were daughter trait deviations (DTD) for bulls (the 

average of their daughters phenotypes, corrected for fixed effects), and trait 

deviations (TD) for cows. For genomic prediction, the data was separated into a 

reference set, where SNP effects were estimated, and validation sets, where the 

accuracy of genomic predictions was assessed, by year of birth. All the daughters 

of the bulls, which belong to the validation sets are excluded from the reference 

set. To evaluation the performance of Opt_emBR for within-populations, 

multi-populations, and across-populations prediction, the reference data included 

bulls and cows from two breeds of Holstein and Jersey, which could be 

implemented to evaluate the performance of multi-populations predictions on 

Holstein bulls and Jersey bulls and across-populations predictions on Australian 

Red bulls. The exact number of individuals in these data sets for each trait was 

detailed in Table 4.1.  

 

 

Table 4.1. The number of individuals in the reference sets and validations sets 
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related to three traits including Milk yield (MilkY), Protein yield (ProtY), Fat 

Percent(Fat%) and Fertility. 

Traits Reference Sets Validation Sets 

Holstein Jersey Holstein 
Bulls 

Jersey  
Bulls 

Australian 
Red Bulls Bulls  Cows Bulls Cows 

MilkY/ProtY/

Fat% 

3,049 8,478 770 3,917 262 105 114 

Fertility 2,806 7,838 716 3,830 396 81 114 

 

In the pseudo code of Opt_emBR, three variances parameters ( ��,  ��,  ��) 

related to the reference data sets and traits were required as the input. We ran 

asreml4.0 (Gilmour et al. 2002) (which was implemented with GBLUP methods) 

on these data sets to estimate these variance parameters, listed in Table 4.2. 

Therefore, the heritability of these traits varied from 0.01 (for fertility) up to 0.65 

(for fat%). 

 

Table 4.2. Three input variance parameters related to the reference data sets. 
Reference Set Traits ��� ��� ��� 

 
Holstein and Jersey 
bulls & cows 

Milk yield 133284.0 108619.0 34925.6 

Protein yield 132.579 68.6635 29.1662 

Fat% 0.0180012 0.0575729 0.0127094 

Fertility 3283.80 31.6187 0.000332297 

 

The accuracy of prediction ability was calculated by means of the correlation 

between GEBV and DTD in the validation sets. And the bias was the coefficient of 

regressing DTD on GEBV – unbiased prediction would result in a regression 

coefficient of 1.  

4.5 Results and Discussion 

We first assessed the impact of the speed up schemes (Scheme I and Scheme II) 

on the computational time and prediction accuracy in a range of data sets of 

increasing size. Then the accuracy of genomic prediction from Opt_emBR was 
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compared to other methods within population and across populations for a 

number of complex traits in our dairy cattle data set. We also assessed the 

precision of QTL mapping with Opt_emBR and BayesR in the same data set.  

 

The impact of speed-up schemes on the prediction accuracy and 

computational time 

 

Prediction accuracy of Opt_emBR with speed-up schem es. As speed-up 

scheme I aimed at simplifying the matrix calculations by means of matrix 

transformation, the computational time could be reduced without impact on the 

prediction accuracy. However, the two criteria of speed-up scheme II could 

potentially influence the prediction accuracy. Therefore, the prediction accuracy 

and estimates of two other parameters (the proportion Pr, and error variance ���) 

were assessed with different values for two criterions �} and �� in Table 4.3, 

using the dairy cattle data set and the milk production trait. Criteria for �} were 

|TA| ≤ 0.000001, |TA| ≤ 0.0000001, or |TA| ≤ 0.00000001. The results of Pr in the 

table showed, as total estimated effects of SNP s were relatively small, the first 

threshold was too large so as to remove too many SNPs with small effects (in the 

proportion Pr[2]). In detail, compared with Opt_emBR without C1 (termed Original 

in Table 4.3), around 0.08% extra SNPs of the total (more than 500 SNPs) were 

shrunk to zero with �}: |TA| ≤ 0.000001, leading to the accuracy reduction. The 

second threshold was better to distinguish the SNPs with small effects from SNPs 

without effects, but shrunk the SNPs with very large effects too much, leading to 9% 

reduction of the accuracy. As shown in Table 4.3, the algorithm with the criterion 

C1: |TA| ≤ 0.0000001 achieved 0.0093% SNPs (around 59 SNPs) with very large 

effects more than the largest proportion from Opt_emBR without C1 (Original in 

Table 4.3), which might reduce the prediction accuracy as well. Comparably, the 

third threshold |TA| ≤ 0.00000001 performed well for the detection of the SNPs in 

each proportion of Pr, and the calculation of the error variance, as well as for the 
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prediction accuracy. For the criterion ��, three possible choices were tracked, but 

all of them had the problems to differentiate SNPs with small effects and SNPs 

with zero effects, resulting up to 7% loss of the prediction accuracy Table 4.3. 

Therefore, |TA| ≤ 0.00000001  of criterions �}  was the criteria used in all 

implementations of Opt_emBR that followed.  

 

Table 4.3. The estimated results of Acc. (Accuracy), Pr(the proportion), and σú� 

(error variance) according to different criteria of speed-up scheme II.  

Speed-up 
Scheme II 

Opt_emBR 

Acc.  Pr ��� 

Originala 0.66 [0.998371, 0.001583, 0.000007, 0.000039] 239409 

Apply C1b: |TA| ≤ 0.000001 

0.57 [0.999113, 0.000396, 0.000428, 0.000063] 306361 

Apply C1b: |TA| ≤ 0.0000001 

0.66 [0.998792, 0.001011, 0.000065, 0.000132] 221533 

Apply C1b: |TA| ≤ 0.00000001 

0.68 [0.997545, 0.002394, 0.000009, 0.000052] 247965 

Apply C2c: �(N, 0) ≥ 0.85 

0.59 [0.999938, 0.000002, 0.000002, 0.000058] 327295 

Apply C2c: �(N, 0) ≥ 0.9 0.63 [0.999910, 0.000002, 0.000003, 0.000085] 293821 

Apply C2c: �(N, 0) ≥ 0.95 

0.61 [0.999941, 0.000002, 0.000003, 0.000054] 329221 

a means Opt_emBR without scheme II;  
b and c are two criteria C1 and C2 set up the thresholds for SNP effect TA to 
define whether or not TA was zero. 

 

 

Computational time of Opt_emBR with speed-up scheme s on different 

datasets. Since BayesR and Opt_emBR shared the same data model and prior 

assumption for all the parameters, they had exactly the same computation 

complexity |(R") where R and " were the number of markers and individuals 

separately. Then the difference lied in the number of iterations for Opt_emBR 

versus number of MCMC cycles for BayesR. BayesR required approximately 

50,000 iterations to reach good estimates for SNP effects with this size of data set 
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(Wang et al. 2015). Comparatively, Opt_emBR implemented EM method to 

heuristically converge to the results. To access the computational performance of 

Opt_emBR, the computational time required for BayesR and Opt_emBR was 

compared in Figure 4.3. Also we compared the time demands between BayesR, 

Opt_emBR (Opt_emBR without speed-up schemes), Opt_emBR_Schem I 

(Opt_emBR implemented with first speed-up scheme) and Opt_emBR_Schem II 

(Opt_emBR with two speed-up schemes) to investigate the efficiency of two 

speed-up schemes. Three reference data sets related to milk yield were applied 

here, which had 632,003 SNPs with different sizes of animals ranging from 3,049 

in RefI, 11,527 in RefII, to 16,214 in RefIII. The results from Figure 4.3 

demonstrated an obvious advantage of Opt_emBR over BayesR: 72 hours for 

BayesR compared with 3 hours for Opt_emBR_Schem II on RefI, 408 hours for 

BayesR but 24 hours for Opt_emBR_Schem II on RefII, and 720 hours for 

BayesR but 28 hours for Opt_emBR_Schem II on RefIII. In addition, Figure 4.3 

demonstrated that the speed-up scheme I could help to reduce up to 2/3 of the 

total computational time that was required for the Opt_emBR without the 

implementation of two optimized schemes while adding speed-up scheme II could 

reduce further to approximately 1/8 of the time. 
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Figure 4.3. The computational time in hours compared between BayesR, 

Opt_emBR_Orig, Opt_emBR_SchemeI, Opt_emBR_SchemeII on three reference 

data sets (RefI, RefII, and RefIII). Opt_emBR_Orig means Opt_emBR without 

speed-up schemes; Opt_emBR_SchemeI means Opt_emBR with speed_up 

Scheme I; Opt_emBR_SchemeII is Opt_emBR with speed-up SchemeI and II. 

Sub-fig A is the overall comparison between BayesR with Opt_emBR families. 

Sub-fig B is zoomed in from Sub-fig A, with the label on y-axis scaling from 0 to 

100. 

 

Prediction accuracy and bias evaluation for four complex traits  

The prediction accuracy and bias between BayesR, GBLUP and Opt_emBR 

(using the optimal speed up scheme described above) was compared for milk 

yield, protein yield, fat% and fertility, Table 4.4 and Table 4.5. The impact of the 

method of prediction was compared in three ways,  

1. The accuracy of prediction for validation individuals from a population 

that was included in the reference set, where the reference set included 

only individuals from that population (e.g. a Holstein reference set to 

predict a Holstein validation set), with accuracy calculated as the 
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correlation of genomic estimated breeding value and DTD in the 

validation bulls.  

2. The accuracy of prediction for validation individuals from populations 

that was included in the reference set, where the reference set included 

two populations (e.g. Holstein and Jersey reference set used to predict 

a Holstein validation. 

3. The accuracy of prediction for validation individuals from a third 

population, not included in the reference set (Holstein and Jersey 

reference set used to predict Australian Red bulls and cows).  

Table 4.4. The within-population and multi-populations prediction ability of BayesR, 

GBLUP, and Opt_emBR on Holstein bulls. 

 Holstein reference to predict Holstein validation 

Milk Yield Protein Yield   Fat% Fertility 

Acc.a Bias Acc. Bias Acc. Bias Acc. Bias 

BayesR 0.63   

(-0.02)b 

0.88 

(+0.09) 

0.64 

(-0.01) 

1.01 

(+0.04) 

0.81 

(-0.02) 

1.03 

(+0.07) 

0.43 

(-0.02) 

1.18 

(+0.00) 

GBLUP 0.57 

(-0.01) 

0.86 

(+0.10) 

0.63 

(-0.04) 

0.87 

(+0.11) 

0.73 

(-0.02) 

0.96 

(+0.09) 

0.43 

(-0.01) 

1.19 

(+0.01) 

Opt_em

BR 

0.62 

(-0.00) 

0.79 

(+0.13) 

0.65 

(-0.01) 

0.85 

(+0.09) 

0.77 

(-0.03) 

0.98 

(+0.08) 

0.42 

(-0.01) 

1.15 

(+0.00) 

 Holstein and Jersey reference to predict Holstein v alidation  

 Milk Yield Protein Yield Fat% Fertility 

 Acc.a Bias Acc. Bias Acc. Bias Acc. Bias 

BayesR 0.68 

(-0.01)b 

0.84 

(+0.07) 

0.68 

(-0.01) 

0.88 

(+0.15) 

0.81 

(-0.02) 

0.90 

(+0.08) 

0.44 

(-0.02) 

1.53 

(+0.00) 

GBLUP 0.63 

(-0.01) 

0.83 

(+0.07) 

0.65 

(-0.08) 

0.85 

(+0.03) 

0.74 

(-0.02) 

0.85 

(+0.05) 

0.44 

(-0.02) 

1.66 

(+0.00) 

Opt_em

BR 

0.68 

(-0.03) 

0.90 

(+0.01) 

0.68 

(-0.02) 

0.79 

(+0.06) 

0.77 

(-0.02) 

0.83 

(+0.04) 

0.44 

(-0.00) 

1.27 

(+0.00) 
a means the accuracy 
b means the difference when not using the polygenic effects. 
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Table 4.5. The within-population and multi-populations prediction ability of BayesR, 

GBLUP, and Opt_emBR on Jersey bulls data. 

a means the accuracy 
b means the difference when not using the polygenic effects. 

 

For the Holstein validation set, and with a Holstein reference, BayesR was 1%~8% 

better than GBLUP on milk production traits (i.e. Milk yield, Protein yield, and 

Fat%), but had no advantage for fertility, Table 4.4. Compared with BayesR and 

GBLUP, Opt_emBR had similar accuracy to BayesR. Similar to the results in 

Table 4.4, BayesR had the consistent advantage in accuracy over GBLUP on milk 

production traits when predicting the small breed of Jersey shown in Table 4.5. 

Especially on the trait of Fat Percent, BayesR had up to 16% advantage over 

GBLUP for within population prediction (using Jersey only reference data) while 

increasing the accuracy 10% than GBLUP on multi populations prediction (using 

both Holstein and Jersey data). Compared with BayesR and GBLUP, Opt_emBR 

still had an obvious superiority over GBLUP, but in some cases (e.g. Fat percent), 

would have 3% accuracy reduction than BayesR. On the other hands, the bias 

 Jersey reference to predict Jersey validation 

Milk Yield Protein Yield   Fat% Fertility 

Acc. a Bias Acc. Bias Acc. Bias Acc. Bias 

BayesR 0.64 

(-0.01) b 

0.94 

(+0.04) 

0.68 

(-0.00) 

0.93 

(+0.08) 

0.71 

(-0.02) 

0.87 

(+0.06) 

0.15 

(-0.01) 

1.02 

(+0.02) 

GBLUP 0.59 

(-0.01) 

0.93 

(+0.12) 

0.65 

(-0.01) 

0.91 

(+0.18)  

0.54 

(-0.00) 

0.71 

(+0.06) 

0.15 

(-0.01) 

1.05 

(+0.03) 

Opt_em

BR 

0.64 

(-0.00) 

0.87 

(+0.11) 

0.68 

(-0.02) 

0.92 

(+0.09) 

0.69 

(-0.02) 

0.75 

(+0.04) 

0.15 

(-0.00) 

1.09 

(+0.00) 

 

 

Holstein and Jersey reference to predict Jersey val idation 

Milk Yield Protein Yield Fat% Fertility 

Acc. Bias Acc. Bias Acc. Bias Acc. Bias 

BayesR 0.69 

(-0.01) 

0.85 

(+0.10) 

0.71 

(-0.00) 

0.99 

(+0.10) 

0.76 

(-0.02) 

0.88 

(+0.06) 

0.26 

(-0.01) 

1.23 

(+0.01) 

GBLUP 0.64 

(-0.00) 

0.78 

(+0.12) 

0.68 

(+0.01) 

0.85 

(+0.17) 

0.66 

(-0.02) 

0.73 

(+0.07) 

0.24 

(-0.00) 

1.12 

(+0.00) 

Opt_em

BR 

0.66 

(-0.03) 

0.84 

(+0.02) 

0.69 

(-0.01) 

0.71 

(+0.02) 

0.75 

(-0.05) 

0.76 

(+0.06) 

0.23 

(-0.00) 

1.13 

(+0.00) 
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from Table 4.4 and Table 4.5 showed GBLUP underestimated the SNP effects on 

most of traits. On fertility, all the methods gave a higher regression coefficient than 

1. 

 

The multi-population (e.g. Holstein and Jersey in the reference set, Holstein and 

Jersey validation sets) prediction results from Table 4.4 and Table 4.5 showed the 

superiority of BayesR and Opt_emBR over GBLUP on all the traits. Moreover, the 

combination of two breeds together as the Ref sets did enlarge the population 

size from 3,049 in Holstein and 770 in Jersey up to more than 16,000 animals, 

which would influence the prediction accuracy as well. The accuracy difference 

between within population prediction and multi populations’ prediction from Table 

4.4 and Table 4.5 demonstrated this in Figure 4.4, regarding to the validation sets 

of Holstein bulls and Jersey bulls separately. As show in Figure 4.4, there were 

consistent accuracy improvements for the prediction of Holstein and Jersey bulls 

on most traits. In details, for all the prediction methods, there were up to 10% 

increase in accuracy for Jersey bulls and 6% improvement for Holstein bulls when 

combing two reference populations of Holstein and Jersey, which confirmed the 

results from (Kemper et al. 2015) and (Hozé et al. 2014). Especially for the Jersey 

bulls, since multi-breeds enlarge the reference size 20 times more than original 

Jersey only reference size, the accuracy increase from multi-populations 

prediction was much more obvious than the increase on Holstein data. 

 

Also, the polygenic effects could positively improve the prediction accuracy on all 

the reference data related to all the traits shown in the parenthesis parts of Table 

4.4 and Table 4.5. In detail, for the prediction with single or two populations, 

adding polygenic effects could improve the accuracy around 1~2%. However, on 

the fertility traits, the introduction of polygenic effects for all the prediction methods 

did not impact the accuracy at all. 
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Accuracy of across population prediction with Austr alian red bulls and 

cows. The prediction accuracy on Australian red bulls was not as high as for the 

accuracy of genomic predictions in Holstein and Jersey, which was not surprising 

given there were no Australian reds in the data set. Furthermore, the comparison 

between BayesR, GBLUP and Opt_emBR presented consistently higher accuracy 

of BayesR and Opt_emBR than GBLUP for milk productions traits. Again in the 

Fat Percent traits, BayesR had up to 10% advantage over GBLUP. When 

compared with BayesR, Opt_emBR had very similar accuracy as BayesR on most 

traits. There was the exception: for the prediction on both Australian red bulls and 

cows related to Fat percent, Opt_emBR had 3~4% accuracy reduction in contrast 

with BayesR. For the fertility, all three methods had similar prediction ability. The 

bias showed the underestimation of three methods for SNP effects on most of the 

traits except Fertility. 

 

Altogether, the prediction results presented in Table 4.4, Table 4.5, and Table 4.6 

confirmed the robust prediction ability of our algorithm Opt_emBR for within 

population, multi-populations and across-populations prediction. Especially for 

across population prediction, BayesR and Opt_emBR had an advantage over 

GBLUP (as was observed for BayesR by Kemper et al. 2015). However, there 

existed one main disadvantage for Opt_emBR: for the trait Fat Percent, 

Opt_emBR had systematically reduced (3%~5%) accuracy across all the 

reference sets in comparison with BayesR, which might be contributed by the 

factor that Opt_emBR did not have enough prediction power for the traits (e.g. Fat% 

and Protein%) with major genes.  
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Table 4.6. Across-populations prediction ability of BayesR, GBLUP, and 

Opt_emBR on Australian Red using the reference set Holstein and Jersey 

bulls&cows data. 

 Across-populations prediction on Australian red bulls 

Milk Yield Protein Yield Fat% Fertility 

Acc.a Bias Acc. Bias Acc. Bias Acc. Bias 

BayesR 0.22 0.60 0.12 0.49 0.45 0.92 0.27 1.03 

GBLUP 0.16 0.54 0.11 0.51 0.32 0.90 0.29 0.97 

Opt_emBR 0.24 0.70 0.12 0.42 0.41 0.89 0.29 1.10 

 Across-populations prediction on Australian red cows 

 Milk Yield Protein Yield Fat% Fertility 

BayesR 0.26 0.80 0.17 0.51 0.54 0.94 0.08 0.68 

GBLUP 0.15 0.71 0.08 0.13 0.50 1.19 0.08 0.79 

Opt_emBR 0.24 0.79 0.17 0.53 0.51 0.89 0.08 0.74 
a means the accuracy 
 
 

Estimates of genetic architecture from Opt_emBR - the proportion of SNPs 

in each distribution and QTL mapping 

In BayesR and Opt_emBR, the posterior probability that every SNP was in the 

zero, very small, small or moderate variance distribution was derived. This was 

ideal for QTL mapping – SNP with very high posterior probabilities of being in the 

largest distribution should be strongly associated with causal mutations of 

moderate to large effects (e.g. Moser et al. 2015, Kemper et al. 2015). We 

compared the performance of BayesR and Opt_emBR for QTL mapping, by 

investigating the SNP numbers in each proportion of normal distributions, and 

then the genome location of the effects with a high posterior probability of being in 

the largest distribution.  

 

For BayesR and Opt_emBR, SNPs were classified into four different groups 

according to their effects: A) moderate variance distribution: very small part of 

SNPs had very large effects with the variance 0.01 ∗  �� ; B) small variance 

distribution: small part of SNPs had small effects with the variance 0.001 ∗  ��; C) 
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very small variance distribution: relatively large part of SNPs having very small 

effects with the variance 0.0001 ∗  ��; And D) zero variance distribution: a large 

proportion of SNPs had no effects. Table 4.7 compared the estimation of such 

classification between Opt_emBR and BayesR. Compared with BayesR, 

Opt_emBR resulted in more SNP effects (more than 3,000 SNPs) from the 

proportion with very small effects (very small variance distribution) to zero for all 

the traits (zero variance distribution). Also, Opt_emBR generally detected more 

SNPs with very large effects (in high LD with QTLs or maybe QTLs) than BayesR 

(except for fertility).  

Table 4.7. The number of SNPs in the proportion of each distribution. 

Traits The proportion (Pr) Opt_emBR BayesR 

Milk 

Yield 

A. 0.01 ∗  �� 12 8 

B. 0.001 ∗  �� 17 47 

C. 0.0001 ∗  �� 1,523 3,886 

D. 0 630,451 628,062 

Protein 

Yield 

A. 0.01 ∗  �� 10 5 

B. 0.001 ∗  �� 37 32 

C. 0.0001 ∗  �� 1,842 4,431 

D. 0 630,114 627,535 

Fat% 

A. 0.01 ∗  �� 19 23 

B. 0.001 ∗  �� 206 46 

C. 0.0001 ∗  �� 1,206 2882 

D. 0 630,572 629,052 

Fertility 

A. 0.01 ∗  �� 8 10 

B. 0.001 ∗  �� 114 147 

C. 0.0001 ∗  �� 8,572 3,949 

D. 0 623,309 627,897 
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Figure 4.4. The mapping of all the SNPs estimated from BayesR and Opt_emBR 

on the whole chromosome related to milk yield by the posterior probability. The 

blue circle is the SNPs with location information mapped to known genes. In this 

Figure, there are four different levels (A, B, C, and D) of SNPs that are classed 

into different proportions according to their posterior possibility. 
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Figure 4.5. The mapping of all the SNPs estimated from BayesR and Opt_emBR 

on the whole chromosome related to protein yield by the posterior probability. The 

blue circle is the SNPs with location information mapped to known genes. In this 

Figure, there are four different levels (A, B, C, D) of SNPs that are classed into 

different proportions according to their posterior possibility. 
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Figure 4.6. The mapping of all the SNPs estimated from BayesR and Opt_emBR 

on the whole chromosome related to Fat% by the posterior probability. The blue 

circle is the SNPs with location information mapped to known genes. In this Figure, 

there are four different levels (A, B, C, and D) of SNPs that are classed into 

different proportions according to their posterior possibility. 
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Figure 4.7. The mapping of all the SNPs estimated from BayesR and Opt_emBR 

on the whole chromosome related to Fertility by the posterior probability. The blue 

circle is the SNPs with location information mapped to known genes. In this Figure, 

there are four different levels (A, B, C, and D) of SNPs that are classed into 

different proportions according to their posterior possibility. 
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The genome location of SNPs with high posterior probabilities of being in the 

largest distribution was shown in Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7, 

for Opt_emBR and BayesR, for each trait. Figure 4.4, Figure 4.5, and Figure 4.6 

demonstrated the property of Opt_emBR by contrast with BayesR: 1) more SNPs 

were in the zero variance distribution; 2) more SNPs were in the moderate 

variance distribution. For fertility, even though Opt_emBR detected 2 less SNPs 

with large effects than BayesR, Opt_emBR still shrunk more SNP effects close to 

zero than BayesR in Figure 4.7. This potentially offered Opt_emBR the advantage 

of QTL mapping to filter large proportions of SNPs with very small effects. In the 

meantime, Opt_emBR could still detect SNPs in LD with known causal genes as 

accurately as (or even better than) BayesR. For milk yield, similar to BayesR, 

Opt_emBR found SNPs related to genes names CSF2RB (impacting milk yield) 

located at Chromosome 5 ranging between 75.575 and 75.775 MBP (millions of 

Base pairs); SNPS related to the Casein Gene CSN1S1 on Chromosome 6 

(~87MBP); And SNPs related to CCL28/GHR on Chromosome 20 ranging 

between 29.225MBP and 32.125MBP. For protein yield, the SNP close to 

CSN1S1 on Chromosome 6 (~87MBP) was also detected by Opt_emBR; while 

PAEP specifically for Protein yield was also found on Chromosome 11 (~103MBP). 

Especially, Opt_emBR could detect PAEP with higher posterior probability much 

more clearly than BayesR. For Fat%, the gene termed MGST1 on chromosome 5 

influencing fat yield was obviously detected by both Opt_emBR and BayesR. 

Moreover, the well-known gene DGAT1 (on Chromosome 14) (Grisart et al. 2002) 

was precisely mapped by BayesR and Opt_emBR. For Fertility, both BayesR and 

Opt_emBR detected an excellent SNP located on Chromosome 18 (~57MBP), 

which had been also detected by Pryce et al. (Pryce et al. 2010) and Cole et al. 

(Cole et al. 2011). Also the gene point on the chromosome 21 (ranging ~53K) had 

been described by McClure et al. (McClure et al. 2010), which controlled the 

percentage of unassisted births in first calf heifers in Angus cattle. And the SNP 

located on chromosome 23 (ranging ~51K) might have the linkage with the known 
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gene GMDS, which had not been proved yet for the fertility of cattle. Therefore, All 

above results demonstrated that Opt_emBR could perform QTL mapping with 

similar precision to BayesR with shrinking SNPs with smaller effects towards zero 

in a higher level. Additionally, these figures also showed that Opt_emBR would 

systematically detect more SNPs in high LD with causal mutations than BayesR 

except the fertility. The implementation principle of Opt_emBR and BayesR might 

decide this. As mentioned above, BayesR implemented MCMC and then 

averaged the solutions during the iterations with first certain 10,000~20,000 

iterations as burn-in. For several SNPs with large effects, the effects might shrink 

too much due to averaging calculations. On the contrary, Opt_emBR applied EM 

loops to converge to a final optimal solution, which would not offset SNPs with 

very large effects during the iterations. For example, the detection for well-known 

gene termed PAEP influencing Protein Yield proved this in the Figure 4.5.  

 

All the results demonstrate good performance of Opt_emBR on genomic 

predictions and QTLs mapping, but showing several limitations of Opt_emBR as 

well. Firstly, the EM algorithm of Opt_emBR can reduce up to 3% accuracy in 

comparison with BayesR on the traits with major gene effects (e.g. Fat percent). 

Theoretically, EM algorithms itself have the latent danger of falling into local 

optimal for the posterior distribution with multiple modes. To amend such 

problems, future work will develop hybrid schemes of our EM algorithms and 

Gibbs sampling to improve the prediction accuracy. A further improvement, 

particularly for QTL mapping, would be to include prior biology information into the 

model, which has already been attempted by Macleod et al. (MacLeod et al. 2016). 

In the meantime, as the 1000 bulls projects have been successfully conducted, 

the full sequence data of dairy cattle has been put into practice (MacLeod et al. 

2016). Compared with 600K SNP panels that we use in this paper, the causal 

mutations actually exist in the whole genome sequence data, which can therefore 

improve the accuracy of gene identification.  
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Secondly, there are still one key part of the algorithm of Opt_emBR that 

consumes the running time and memory: calculates GQ(ëD}%;%;°ëD}�ë() for each 

SNP in front of EM loops. In detail, the calculation of GQ(ëD}%;%;°ëD}�ë() requires 

the time complexity of (V� R"�) , which accounts for almost 2/3 of the total 

computational time even though it happens in front of EM loops. Therefore, a 

future task is to implement this part on parallel processing with multi-thread to 

optimize the speed, which could improve the computational efficiency even more. 

 

Our Opt_emBR has some features in common with other QTL mapping 

algorithms, such as BOLT-LMM, which incorporates Bayesian mixture models 

(fastBayesB (Meuwissen et al. 2009)) to improve the power of genetic 

associations identification with appealing outcomes. There are several common 

features between BOLT-LMM and our Opt_emBR methods. Theoretically, similar 

to Opt_emBR, BOLT-LMM borrows the variance information of the output from 

GBLUP and then fits into Bayesian models and associations studies as the start 

points. In addition, BOLT-LMM implement iterative conditional expectation (ICE) 

algorithm on Bayesian Lasso to transform the computational complexity from 

|(R"�)  to |(R")  ( R  is the number of markers and "  is the number of 

individuals); while Opt_emBR implement another type of heuristic algorithms EM 

on BayesR model with the approximated computational complexity |(R") . 

Compared with two distributions prior assumed by BOLT-LMM, the mixture of four 

normal distributions allows Opt_emBR to predict a wider range of gene effects so 

as to capture causal mutations more precisely than BOLT_LMM. Therefore, due 

to above theoretical analysis, the evidence provide by BOLT-LMM that Bayesian 

model can increase the computational efficiency and accuracy of association 

study in large size of human data sets gives us the confidence of implementing 

our Opt_emBR into Human disease prediction and causal gene identifications. 
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4.6 Conclusion 

In summary, Opt_emBR is a computationally efficient method for simultaneous 

genomic prediction and QTL mapping in data sets including multiple populations, 

and with different accuracies of phenotypes. The heuristic 

expectation-maximization algorithm is implemented to make it converge to the 

final optimal using several orders less iteration than BayesR. The introduction of 

polygenic effects and weights terms into the linear model makes it applicable to 

multi-populations and across-populations predictions. Furthermore, the 

applications of two speed-up schemes make it up to 30 times faster than BayesR, 

while maintaining the similar accuracy. All of these results prove Opt_emBR a 

bright future of genomic predictions and QTL mapping on human disease data 

and whole genome sequence data of cattle. 
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Chapter 5   A hybrid expectation maximization and 

MCMC sampling algorithm to implement Bayesian 

mixture model based genomic prediction and QTL 

mapping             

5.1 Chapter preface 

Justification 

In this paper, we propose a hybrid scheme for genomic prediction (termed 

HyB_BR) of an EM algorithm, followed by MCMC iterations without the burn-in 

stage. The EM algorithm effectively substitutes for the burn-in iterations usually 

required for the MCMC, but in a much shorter time. The result for accuracy of 

prediction of quantitative traits in cattle and disease trait in humans demonstrate 

that HyB_BR could perform equally well as Bayesian mixture models 

implemented with full MCMC. However, HyB_BR was up to 17 times faster than 

the full MCMC implementations, with the speed advantage increasing as the size 

of the data set increased. HyB_BR also performed as well as the full MCMC 

implementation of the Bayesian mixture model for QTL mapping, and for the 

inference of the underlying genetic architecture of human disease traits. 
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5.2 Abstract 

Background 

Bayesian mixture models in which the effects of SNP are assumed to come from 

normal distributions with different variances are attractive for simultaneous 

genomic prediction and QTL mapping. These models are usually implemented 

with Monte Carlo Markov Chain (MCMC) sampling, which requires long compute 

times with large genomic data sets. Here, we present an efficient approach 

(termed HyB_BR), which is a hybrid of an Expectation-Maximization algorithm, 

followed by a limited number of MCMC without the requirement for burn-in.  

Results 
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To test prediction accuracy from HyB_BR, dairy cattle and human disease trait 

data were used.  In the dairy cattle data, there were four quantitative traits (milk 

volume, protein kg, fat% in milk and fertility) measured in 16,214 cattle from two 

breeds genotyped for 632,002 SNPs. Validation of genomic predictions was in a 

subset of cattle either from the reference set or in animals from a third breeds that 

were not in the reference set. In all cases, HyB_BR gave almost identical 

accuracies to Bayesian mixture models implemented with full MCMC, however 

computational time was reduced by up to 1/17 of that required by full MCMC. The 

SNPs with high posterior probability of a non-zero effect were also very similar 

between full MCMC and HyB_BR, with several known genes affecting milk 

production in this category, as well as some novel genes.  HyB_BR was also 

applied to seven human diseases with 4,890 individuals genotyped for around 

300K SNPs in a case/control design, from the Welcome Trust Case Control 

Consortium (WTCCC). In this data set, the results demonstrated again that 

HyB_BR performed as well as Bayesian mixture models with full MCMC for 

genomic predictions and genetic architecture inference while reducing the 

computational time from 45 hours with full MCMC to 3 hours with HyB_BR.   

 

Conclusions  

The results for quantitative traits in cattle and disease in humans demonstrate that 

HyB_BR can perform equally well as Bayesian mixture models implemented with 

full MCMC in terms of prediction accuracy, but with up to 17 times faster than the 

full MCMC implementations. The HyB_BR algorithm makes simultaneous 

genomic prediction, QTL mapping and inference of genetic architecture feasible in 

large genomic data sets.  

5.3 Background 

Genomic prediction of genetic merit, using SNP markers, is now routinely used in 

animal and plant breeding to identify superior breeding individuals and so 
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accelerate genetic gain (Meuwissen et al. 2001; Goddard & Hayes 2009; 

Meuwissen et al. 2013). Genomic prediction methodology is also increasingly 

used in human disease studies for the inference of genetic architecture, the 

identification of causal mutations (QTL mapping), and prediction of disease risk 

(de los Campos et al. 2010; Yang et al. 2010; Zhou et al. 2013b; Speed & Balding 

2014; Moser et al. 2015).  

 

Genomic predictions are often implemented using linear prediction models, 

especially best linear unbiased prediction (BLUP) or Genomic BLUP (GBLUP), 

which assume that all the SNPs contribute small effects to the trait and these 

effects are derived from a normal distribution (Meuwissen et al. 2001; VanRaden 

2008; Yang et al. 2010). While GBLUP (Mäntysaari 2014), or its single-step 

implementation (Aguilar et al. 2010; Christensen & Lund 2010; Wolc et al. 2015), 

is one of the most popular genomic prediction methods implemented for official 

genomic evaluation in many countries, including Canada, New Zealand, Australia, 

Germany and Ireland, this approach does have some limitations. One limitation is 

that the prediction accuracy does not persist well across multiple generations, 

because the severe shrinkage in these models results in the effect of causative 

mutation being “smeared” across many markers encompassing long chromosome 

segments – in other words a linear combination of effects of a large number of 

markers is used to capture the effect of a QTL. After several generations, the 

association between markers and QTL might be broken down by recombination, 

thereby reducing prediction accuracy. The smearing of effect of causative 

mutations across many SNP also results in imprecise QTL mapping with BLUP 

methods.   

 

To address these problems, Bayesian mixture models (nonlinear prediction e.g. 

Bayes A, B, C, and R) (Meuwissen et al. 2001; Habier et al. 2011; Erbe et al. 2012; 

Gianola 2013; Zhou et al. 2013b; Kemper et al. 2015) assume non-normal prior 
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distributions of SNP effects. One example of a flexible approach, BayesR (Erbe et 

al. 2012) defines a mixture model with SNP effects following a mixture of four 

normal distributions with zero, very small, small and moderate variances. In 

practice, the prediction accuracy of Bayesian mixture models (including BayesR) 

has been shown to be equal or superior to that of GBLUP for both human 

diseases and dairy cattle milk production traits (Ng-Kwai-Hang 1997; Grisart et al. 

2002; Blott et al. 2003; Zhang et al. 2010; Lippert et al. 2011; Listgarten et al. 

2012; Wang et al. 2012b; Zhou & Stephens 2012; Yang et al. 2014; Kemper et al. 

2015; Loh et al. 2015). 

 

In addition to the prediction of breeding values and future phenotypes using 

genotype data, Bayesian models (such as BayesR) can be used to map the 

causal polymorphisms (quantitative trait loci or QTL). For this purpose they have 

some advantages over traditional single SNP regression, which is commonly used 

to analyze genome wide association studies (GWAS) (Ng-Kwai-Hang 1997; 

Grisart et al. 2002; Blott et al. 2003; Zhang et al. 2010; Lippert et al. 2011; 

Listgarten et al. 2012; Wang et al. 2012b; Zhou & Stephens 2012; Yang et al. 

2014). Single SNP regression fits one SNP at a time as a fixed effect and tests the 

significance of the association between the SNP and the trait, while ignoring all 

other SNPs. To protect against performing multiple tests, stringent P-values 

(P<5*10-8) are used. This method of analysis has three limitations:1) The effect of 

those SNPs declared significant is usually over-estimated; 2) multiple SNPs in 

linkage disequilibrium with the same QTL may show an association with the trait 

leading to imprecision in mapping the QTL; 3) many QTL are not detected at all 

because no SNP reaches the stringent P-value for association with the trait. By 

comparison, Bayesian mixture models fit all SNPs simultaneously by treating the 

SNP effects as random effects drawn from a prior distribution. For example, the 

BayesR model has been implemented for QTL detection in the dairy cattle 

genome and for human disease traits (Kemper et al. 2015). The results show that 
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BayesR can increase the power of identifying the known genes in contrast with 

GBLUP and GWAS.   

 

Even though nonlinear models are attractive, one limitation is that nonlinear 

models typically require long computational times. Due to the hierarchical 

estimation of posterior distributions of SNP effects and their variances, nonlinear 

models have usually been implemented with Markov Chain Monte Carlo (MCMC).  

This requires a large number of iterations with time per iteration scaled linearly 

with the number of markers (m) and the number of individuals (n).  Genomic 

data sets are now often very large and are rapidly becoming larger. For human, 

300,000 to 9 million SNPs arrays genotyped on up to 253K individuals (The 

Wellcome Trust Case Control Consortium 2007; Wood et al. 2014) are available 

for association studies and disease/fitness prediction. In dairy cattle, whole 

genome sequence data including 39 million variants has been published by the 

1,000 bull genomes project (Daetwyler et al. 2014). When confronted with such 

huge genomic data, Bayesian methods can be so computationally expensive that 

it is not possible to use them.   

 

Two approaches have been used to develop more computationally efficient 

algorithms for implementing Bayesian mixture models. One is to modify MCMC 

with speed-up schemes. For example, Moser et al. (Moser et al. 2015) introduced 

a “500SNPs” scheme to pick 500 SNPs with non-zero effects to be updated 

instead of all the SNPs. Such modification schemes could reduce the running time 

by 3~6 fold. Calus et al. (Calus 2014) proposed a right-hand-side updating 

algorithm to cluster multiple SNPs (similar to a haplotype) to be updated as one 

during MCMC iterations. The results on 50K SNP panels demonstrated up to 90% 

reduction in computational time without reducing prediction accuracy. The other 

approach is to introduce heuristic methods (e.g. iterated conditional expectation, 

ICE; expectation maximization, EM) as an alternative to MCMC. There are a wide 
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range of fast versions of Bayesian approaches to genomic prediction using these 

methods (including fastBayesB, emBayesB, emBayesR) (Meuwissen et al. 2009; 

Hayashi & Iwata 2010; Shepherd et al. 2010; Yu & Meuwissen 2011; Sun et al. 

2012; Wang et al. 2015), which are several orders faster than MCMC 

implementations. However, none of these algorithms gives consistently as high 

prediction accuracy as their MCMC counterparts. The EM method of Wang et al. 

(Wang et al. 2015), emBayesR, gave higher accuracy than ICE based methods 

but still had a reduction in accuracy of 5%~7% for traits with mutations of 

moderate to large effect. In other words, the heuristic approximations works best 

when there are no mutations of moderate to large effect, otherwise accuracy can 

be compromised. This is undesirable, especially when the largest advantage of 

the non-linear Bayesian methods over BLUP is observed when there are 

mutations of moderate to large effect (where moderate effect can mean a QTL 

explaining 1% of the variance if the data set is large)!   

 

Motivated by the deficiency of both MCMC (long computing terms) and fast 

versions of nonlinear models (lower prediction accuracy with some genetic 

architectures), we hypothesize that a hybrid scheme, beginning with EM iterations 

and finishing with MCMC sampling iterations, would give similar prediction 

accuracy to a full MCMC implementation, while having a significant speed 

advantage. Here we propose a hybrid algorithm (termed HyB_BR) of 

Expectation-Maximization (EM) (emBayesR) and MCMC under the BayesR 

model. The algorithm also incorporates a speed-up scheme where only a 

proportion of SNP continue to be sampled in MCMC iterations. In comparison with 

emBayesR (Wang et al. 2015), the main improvement is that HyB_BR introduces 

a limited number of MCMC iterations after EM to improve the solutions from 

emBayesR. 

 

To evaluate the predictive ability and computational efficiency of HyB_BR, 
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prediction accuracy was compared with BayesR and GBLUP in two data sets.  

The first data set was 800K SNP genotypes in 16,214 Holstein and Jersey bulls 

and cows. The prediction accuracy within these breeds and in a third breed 

(Aussie Red) was evaluated. The results showed that HyB_BR achieved very 

similar prediction accuracy to BayesR, while reducing the running time by up to 17 

fold, and overcoming the limitations of slightly reduced accuracy of emBayesR. As 

a result of running the algorithm, the posterior probability of each SNP being in the 

model was derived, and this was used for QTL mapping. The resulting QTL 

regions were compared between the approaches and with previous literature 

reports. The results demonstrated that HyB_BR has enough power to detect the 

major known genes affecting milk production traits in dairy cattle as well as some 

novel regions. HyB_BR was also evaluated in a second data set - the Welcome 

Trust Case Control Consortium (WTCCC) human disease data set (The 

Wellcome Trust Case Control Consortium 2007). The results demonstrated that 

HyB_BR is a promising method for risk prediction and genetic architecture 

inference for human disease traits as well. 

 

5.4 Methods and Materials 

The mixture data model 

The overall model at the level of the data for HyB_BR (independent of MCMC and 

EM implementation) including all the relevant parameters and priors is first 

described. The model assumes that 	, the phenotypic records of " individuals, 

was a linear model of fixed effects (�), SNP effect (�), random polygenic effects (�) 

and environmental errors (�):  

	 = ì� + %� + í� + �,                       (1)           

where,  

� = vector of ! fixed effects, following uninformative priors. 
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� = vector of R SNP effects. For each SNP, TA~�(N, 1) × 5<0,0 ∗  ��@ + �(N, 2) ×
5<0,0.0001 ∗  ��@ + �(N, 3) × 5<0,0.001 ∗  ��@ + �(N, 4) × 5<0,0.01 ∗  ��@ , in which 

 �� is the genetic variance of the trait and �(N, �) is a scalar with two possible  

values {0,1}, determining whether or not the effect of the ith SNP is derived from 

the kth distribution.  

�� = vector of probabilities where �Q� =scalar with the value range between 0 

and 1. The parameter �� defines the proportion of all the SNPs following each of 

four normal distributions �. �Q� is assumed to follow a Dirichlet distribution with 

the parameter α = (1,1,1,1)ð. 

� = vector of á polygenic effects (breeding values, for the proportion of variance 

not explained by the SNP), with �~5(0, ò ó�), ò is the á × á pedigree-based 

relationship matrix,  ó� is the polygenic variance, á is the number of individuals 

in the pedigree. 

� = vector of " residual errors. For cattle data, �~5(0, ëσ��), where E is a " × " 

diagonal matrix so that the error variance associated with different records could 

vary. For example, for bulls, the phenotype will be daughter yield deviations, 

which will have a lower error variance than the trait deviations (TD) of cows 

(Garrick et al. 2009). For human data where all phenotypes have the same 

magnitude of error, ë matrix could be replaced by the identity matrix �. 
ì＝ " × ! design matrix, allocating phenotypes 	 to fixed effects �.  

% ＝ the " × R genotype matrix with elements >8» = (?8» − 2!A) �2!A(1 − !A)g⁄ , in 

which ?8» is the genotypes of the jth individual for the ith SNP (0, 1 or 2 copies of 

the second allele), and !A is the allele frequency of each SNP i.     

í = " × á design matrix, allocating the á × 1 vector of polygenic effects to 	.  
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Note that model (1) extends the model used by Wang et al. (Wang et al. 2015) to 

include fixed effects, polygenic effects and weights.  

The prior distribution of each SNP effect TA conditional on  �(N, �) is 

p<TA=�(N, �)@ = � �(TA),                  �(N, 1) = 1 V
c��ñ?g[�] exp �− �Bg�ñ?g[�]� ,        �(N, �) = 1(� = 2,3,4)  .  

Where, δ(g8) denotes the Dirac delta function with all probability mass at g8 = 0. 

The joint distribution p(TA, �(N, �)|�Q�) (i.e. conditional on �Q�) can be written as:   

  !(TA, �(N, �)|�Q�) = ∏ !<TA=�(N, �)@ × !(�(N, �)|�Q�)X�ZV  

  = (δ(TA)�QV)L(A,V) ∏ ( V
c�£ñ?g[�] exp �− �Bg�ñ?g[�]� �Q�)L(A,�)X�Z�              (2)          

The implementation of HyB_BR with the mixture model defined above consists of 

two components: 1) The Expectation-Maximization module.  HyB_BR first 

implements the EM iterations under the mixture Gaussian model (equation 2) to 

give approximations for the parameter set including SNP effects �, proportion of 

SNP in each distribution ��, error variance σ��, and polygenic variance  ó�. For 

the estimation of each SNP effect, the PEV (predicted error variance) correction is 

introduced to account for the errors which are generated from the estimations of 

all other SNP effects (detailed in File S1-Chapter 10). 2) MCMC module. Once the 

EM steps are converged, the output values of the parameters are used in the 

modified MCMC iterations as the start values. For the final step, a MCMC scheme 

is implemented with a limited number of iterations.   

 

EM module 

In the following EM modules, the parameter set = {�, ��, �, �,  σ�� } will be 

estimated by their maximum a posteriori (MAP) value. Similar to emBayesR 
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(Wang et al. 2015), all the parameters ê  were estimated according to the 

expectation- maximization process with steps: 

i) Define the log likelihood O(	|ê) of the data under the data model (1).   

ii) Derive the log posterior function of the parameters using Bayes’ theorem. 

Following Bayes’ theorem, the log posterior distribution of the parameter sets ê 

was based on the rule ]PT!(ê|	) ∝ ]PTO(	|ê) + ]PT!(ê), with !(ê) the prior for 

the parameter.  

iii) Take the expectation on the posterior function over the missing data.   

iv) Differentiate the expected posterior function and solve for this equal to 

zero to obtain MAP (Maximum A Posterior) of the parameter set ê. 

In the Expectation-maximization implementation, the posterior distributions for 

each parameter !(ê|	) are obtained while “integrating out” the other parameters. 

For example, for the estimation of each SNP effect, we maximize the posterior 

distribution of each SNP effect !(TA|	, �(N, �), Prè, �, �, σ��) by integrating out the 

other SNP effects T¼½A, the parameters �(N, �), �, �, but we fix the proportion 

parameter Prè and the error variance σ�� at their maximum posterior estimates. 

In the following, we will detail the inference process for several key parameters 

including SNP effect (�), the mixing parameters (���), fixed effects (�), polygenic 

effects (�) and the error variance ( ��) separately: 

1) Estimation of SNP effect �.  

As in our EM version of BayesR (Wang et al. 2015), in HyB_BR we will update the 

estimated effect of SNPs one at a time. Therefore, we rewrite %� in equation (1) 

as the sum of the effect of the current SNP %;TA and the combined effect of all 

other SNP effects &� (&� = ∑ %ÜT¼÷½� ). We rewrite the model (1) as: 

	 = ì� + %;TA + & + í� + �                  (1a)           
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where, TA(the effect of SNP N)  is the NÄf element of the vector � , and &� =
∑ %ÜT¼÷½� . 

We estimate of T'A by the value of TA that maximises the posterior probability 

P(TA|	, �¥�, σ��¤)  where �¥�  and σ��¤  are the MAP estimates of ��  and σ�� 

conditional on 	.  

To perform this, we first introduce “missing data” (�(N, �), �, �, &) , and then 

“integrate them out” via the Expectation-maximization steps. In detail, the 

marginal posterior distribution of each SNP effect TA can be written as: 

!<TA, �(N, �)=	, �, �, &, σú�¤, �Q�¤ @ ∝ !(	|TA, �(N, �), �, �, &, σú�¤, �Q�¤ )!<TA, �(N, �)=�Q�¤ @. 

Under the model (1a), the first term !(	|TA, �(N, �), �, �, &, σú�¤, �Q�¤ ) is obtained 

according to the following normal distribution: 

	 − X� − %;TA − í� − &~5(0, ëσú�), 

which can be transformed as: 

�∗ − %;TA~5(0, ëσú�), 
Where, �∗ =  	 − X� − í� − &. 

 

Therefore, the term !(	|TA, �(N, �), �, �, &, σú�¤, �Q�¤ )  can be written as: 

!<	=TA , &, �(N, �), �, �, &, σú�¤, �Q�¤ @ = V
(���ng¤ )­g

V|ë| ^®! ¯− V��ng¤ (�∗ − %8TA)°ëD}(�∗ − %8TA)±   

 

Then the log likelihood function is: 

]PT!<	=TA, &, �(N, �), �, �, σú�¤, �Q�¤ @ = −A�logσú�¤ − log|ë| 
        − V�ñ�g¤ (�∗ − %8TA)°ëDV(�∗ − %8TA)            (3) 

The second term !<TA, �(N, �)=�Q�¤ @ is defined in the equation (2). Then the log of 

!<TA, �(N, �)=�Q�¤ @ is:    

]PT!<TA, �(N, �)=�Q�¤ @ = �(N, 1)log<δ(TA)Pr¤V@  

   + ∑ �(N, �) �− V� logσA�[�] − �Bg�ñBg[�] + logPr¤è�XèZ�        (4)                           
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Treating (�∗, �(N, �)) as missing data and omitting the terms without TA , the 

expectation of the log marginal posterior of each SNP effect is:      

 I�∗,L(A,�)]PT!<TA, �(N, �)=	, �, �, &, σú�¤, �Q�¤ @   

 = I�∗,L(A,�)]PT!<	=TA, &, �(N, �), �, �, σú�¤, �Q�¤ @+I�∗,L(A,�)]PT!<TA, �(N, �)=�Q�¤ @       

According to equation (3), the expectation of the first term is: 

I�∗,L(A,�)]PT!<	=TA, &, �(N, �), �, �, σú�¤, �Q�¤ @       

∝ − V�ñ�g¤ {(�∗ − %8g8)°ëDV(�∗ − %8g8) + GQ(ëDVPEV(�∗))}     (5)      

According to the equation (4), the expectation of the second term is: 

 I�∗,L(A,�)]PT!<TA, �(N, �)=�Q�¤ @ 

∝ �(N, 1)log<δ(TA)Pr¤V@ + ∑ �(N, �) �− V� logσA�[�] − �Bg�ñBg[�] + logPr¤è�XèZ�     (6)    

Where, �(N, �) = I(�(N, �)|	, �Q�¤ ). The term �(N, �) can be derived as in the File 

S2 (Chapter 10  ). 

 

Hence, in the Maximization steps of EM, we differentiate equations (5) and (6) 

respect to T'A, and then obtain an estimate for the SNP effect as: 

¾I�∗,L(A,�)]PT!<TA, &, �(N, �)=	, �¥, �', σú�¤, �Q�¤ @¾gA = µ− Y �(N, �)σA�[�]
X

èZ� − %8°ëDV%;σú�¤ ¸ TA + %°ëDV�∗
σú�¤  

 

Setting 
BC�∗,D(B,�)pq�k¨�B,&,L(A,�)©	,�¥,�',ñ�g¤,ÅÓ�¤ «

BûB = 0, then we can derive the effect T'A as: 

T'A = [%8°ëDV%8 + ∑ ��(N, �) À�g¤
ÀBg[�]�X�ZV ]DV[%°ëDV�∗]                    (7)           

2) Estimation of parameter ��.  

This follows a common method for an EM algorithm to analyze a mixture of 

distributions. We introduce the ‘missing data’ �(N, �) , which is the indicator 

variable that indicates which of the k=4 distributions SNP effect i is drawn from. 

The posterior distribution of proportion parameter �� is:  
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!(��, �|	) ∝ !(	|�)!(�|��)!(��) 

 Where, 

The term !(	|�) does not involve ��. So when we differentiate with respect to Pr, 

this term will drop out and therefore can be ignored. 

 !(�|��) = ∏ ∏ (�Q�)L(A,�)X�ZVÏAZV  
 !(��) = ∏ �Q�X�ZV  

Therefore, the log posterior expression of �� can be written as: 

 ]PT!(��, �|	) ∝ ]PT!(�|��) + ]PT!(��) 

    = ∑ ∑ �(N, �)]PT�Q�X�ZVÏAZV + ∑ ]PT�Q�X�ZV . 

Treating �  as the missing data and defining �(N, �) = I(�(N, �)|	, �Q�) , the 

expectation of the posterior can be written as: 

I�|	]PT!(��, �|	) = ∑ ∑ �(N, �)]PT�Q�X�ZVÏAZV + ∑ ]PT�Q�X�ZV .         (8)         

Introducing Lagrange multiplier # to account for the constraint that ∑ �Q�X�ZV =1 

and differentiate with respect to �Q�, the parameter �� can be estimated by: 

¾E�|	[]PT!(��, �|	) + λ(∑ �Q�XèZV − 1)]¾�Q� = ∑ �(N, �)ÔAZV�Q� + 1�Q� + # = 0 

�Q� = ∑ Å(A,�)Ò?È¡ hV∑ (∑ Å(A,�)ÒBÈ¡ hV)Â�È¡                                            (9)                                 

The computation of �(N, �) is given in the File S2 (Chapter 10  ).  

 

3) Estimation of fixed effects ( �) and the error variance ( ���).   

Since fixed effects (�) and the error variance have uninformative priors, their 

posterior distribution is: 

!( ��, �, �'|	) = 1(2J ��)­g
1|ë| ^®! ¯− 12 �� (	 − %�' − ì� − í�')°ëDV(	 − %�' − ì�

− í�')± 
Due to the equation 	 − %�' − ì� − í�' = �, the full log likelihood based on this 

model is:  
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]PT!( ��, �, �'|	) = − A� logσú� + V�ñ�g �°ëDV�             (10) 

Treating � as the missing data, the expectation of the equation (10) can be 

expressed as 

 E�|	]PT!( ��, �, �'|	) = E�|	 Ö− A� logσú� + V�ñ�g �°ëDV�× 
      = − A� logσú� + V�ñ�g [�°ëDV� + GQ(ëDVPEV(�))]     

In theory, PEV(�) ≠ PEV(�∗) due to � = �∗ + %8TA . However, since each SNP 

effect is shrunk severely towards zero by GBLUP (Yang et al. 2010), we 

approximate PEV(�) ≅ PEV(�∗). The calculation of the term PEV(�∗) is detailed 

in the File S1 (Chapter 10  ).  

           

Therefore, differentiating the equation E�|	]PT!( ��, �, �'|	) with regard to σú� and 

�, we achieve: 

σú�¤ = VA [(	 − %�' − ì� − í�')°ëDV(	 − %�' − ì� − í�') + GQ(ëDVPEV(�∗) )]  (11) 

�¥ = (ì°ëDVì)DVì°ëDV(	 − %�' − í�')                        (12)             

  

4) Estimation of polygenic effects ( �) 

Under the model (1), the conditional posterior density function of polygenic effects 

� is: 

!(�|	) = !(	|�, �', �¥,  ��¤)!(�) 

Where, 

!(	|�, �', �¥,  ��¤) = V
(���ng)­g

V|ë| ^®! Ö− V��ng <	 − %�' − ì�¥ − í�@°ëDV<	 − %�' − ì�¥ − í�@× 
(13) 

!(�) = V
(��ñFg)Gg

V|ò| ^®! Ö− V��Hg �°òDV�×                           (14)           

  

Therefore, the log posterior based on equation (13) and (14) is: 

 ]PT!(�|	) = ]PTO<	=�, �', �¥,  ��¤@ + ]PT!(�) 
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 = ¯− A� logσú�¤ − log|ë| + V�ñ�g¤ <	 − %�' − ì�¥ − í�@°ëDV<	 − %�' − ì�¥ − í�@± 
 + Ö− #� logσ�� − log|ò| + V�ñFg �°òDV�×                                                                            (15)                  

According to the equation 	 − %�' − ì� − í�' = � , the equation (15) can be 

written as: 

 ]PT!(�|	) = ]PTO<	=�, �', �¥,  ��¤@ + ]PT!(�) 

    = ¯− A� logσú�¤ − log|ë| + V�ñ�g¤ �°ëDV�± 
 + Ö− #� logσ�� − log|ò| + V�ñFg �°òDV�×                       (16) 

Taking expectation over the missing data �, we get: 

 E�|	]PT!(�|	) = ¯− A� logσú�¤ − log|ë| + V�ñ�g¤ �°ëDV� + GQ<ëDVPEV(�)@± 
     + Ö− #� logσ�� − log|ò| + V�ñFg �°òDV�×                      (17) 

           

Differentiating the equation (17) with regards to �, we get: 

�' = (í′ëDVíσ�� + σú�òDV)DVσ��í°ëË¡<	 − %�' − ì�¥@         (18)          

where, for simplicity, the variance σ�� will be fixed as the specified value from 

GBLUP estimation.  

 

All the parameters and their equation derived from EM steps are listed in Table 

5.1. 
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Table 5.1. The list of all the estimated parameters. The parameter list includes the 

possibility for each SNP (�(;, �)), the proportion parameter (��), each SNP effect 

(�; ), error variance (��� ), fixed effect (� ), and polygenic effects �  and the 

according equation derived from EM steps. 

 
Parameters The data model According equations 

derived from EM I�∗]PT�(N, �) The expected likelihood 

parameters for �(N, �) 

Equation (S3) 

�(N, �) SNP effects related parameters 

under the extended model (1a) 

Equation (S4) Pr Equation (9) TA Equation (7) σú� The overall model (1) Equation (11) 

β Equation (12) v Equation (18) 

 

Steps for EM module.  The overall procedure of EM is described by means of the 

pseudo code, steps ①~⑦. Here we will detail these steps according to their 

sequence appearing in the pseudo code descriptions: 

 Step Im_①: Initialise the parameters g, ��, �;� and Construct X, A, G, E, W 

matrices. Similar to emBayesR (Wang et al. 2015), the starting values of g and �� 

are set as g = 0.01  and Pr = {0.5, 0.487, 0.01, 0.003} , while �;� = {0, 0.0001 ∗
σû�, 0.001 ∗ σû�, 0.01 ∗ σû�}. The genetic variance σû� and polygenic variance σ�� are 

obtained from GBLUP. Both variances will not be updated during EM iterations. 

The " ×3 matrix X is design matrix, allocating the phenotypes to fixed effects. 

In our case, matrix X is set up with first column being the mean, the second and 

third columns defining the breeds (Holstein or Jersey) and sex (bulls or cows) of 

the cattle. For example, if the NÄf animal is a Holstein bull, then ®A,� = 1 with 

®A,W = 0.  

The Pedigree relationship matrix A is built using Henderson’s rules 

(Henderson 1984); while the genomic relationship matrix ù is constructed using 

the equation ù = %%°/". Diagonal error matrix E is calculated following Garrick et 

al. (Garrick et al. 2009), and the index matrix W maps individuals in the pedigree 
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to phenotypes if they had one .  

Step Im_②: Calculate the PEV matrix under model 1, as previously 

described. Then using PEV matrix, calculate GQ ¨ëD}%;%;°ëD}�ë(&}(�)« which is 

used in the equation for I�∗]PT�(N, �) (File S2 (Chapter 10  )) and is calculated 

before EM iterations, to save computational time. 

Then for each SNP N (N in 1 to R) 

Step Im_③: Correct y for the effects of all other SNPs except current SNP 

N with equation 	Ã = 	 − ∑ %Ü»½8 g' » − ì�< − í�' . 

Step Im_④: Estimate the probability that the effect of SNP N is from one 

of four normal distributions I�∗]PT�(N, �) with the equation (S3). After this, �(N, �) 

is calculated with the equation ^®! (I�∗]PT�A� ∑ ^®! (I�∗]PT�A�) )X�ZV⁄  (S4). 

Step Im_⑤: the SNP effect g' A is updated via equation (7). 

After effects have been estimated for all SNP,  

Step Im_⑥ : Estimate  ��  with equation (11), fixed effects �  with 

equation (12), update �Q� with equation (9) , and update polygenic effects � with 

the equation (18). 

Step Im_⑦ : Assess convergence criterion (�' p − �' pDV)′(�' p − �' ÝDV)/
(<�' p°�' p@ ≤ 10DVÕ with ] being the EM iterations number. If not converged, then 

return to Step ③ for the next EM iteration; otherwise, exit the EM iterations and 

return the estimates of parameters from the final iterations. 

 

Modified MCMC module with speed-up scheme 

 

The outputs of the EM including SNP solutions, polygenic effects, error variance 

and genetic variance are used as starting values of parameters for the MCMC 

module, which allows MCMC to begin with no burn in.  

 

The MCMC module of HyB_BR implements the same Gibbs sampling processes 
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as BayesR (Kemper et al. 2015) but modified with one speed-up scheme as 

follows. Over the first 500 iterations, the average probability that the SNP effect 

was zero (!(N, 1)) is calculated. If !(N, 1) ≥ a, then the SNP effect is set to zero 

and was not updated in future iterations. 

 

The test for selecting a reasonable value of the parameter U was conducted as 

follows. The impact of value of a from 0.85 to 0.95 on prediction accuracy was 

investigated for the milk production traits and fertility, Figure 5.1. The results show 

that criterion !(i, 1) ≥ 1, is the lowest threshold which gives an accuracy very 

close to the maximum. The criterion means SNP N has more than 90% probability 

of having no effect. 

 

Figure 5.1. The trend of prediction accuracy according to a range of values of the 

threshold parameter �. 

 

The modified MCMC steps can then be described as follows: 

    Step mKmK_①: sample the error variance σ-ú� according to the distribution 

σ-ú�~L"E − χ�(" − 2, 	∗�ëË¡	∗
ÏD� ), with 	∗ = <	 − %� − ì�¥ − í�'@. 

 Step mKmK_② : sample the fixed effects �  from the distribution 

5( �ª , (ì°ëDVì)DVσ-ú�), with  �ª = (ì°ëDVì)DVì°ëDV(	 − %�' − í�'). 

 Step mKmK_③: Polygenic variance is sampled σ-��~L"E − χ�(" − 2, �'�òË¡�'ÏD� ). 
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 Step mKmK_④: The polygenic effects are sampled from normal distribution 

5(�, ²) , with the mean � = �'  from equation (20) and the variance 

² = (í′ëDVí + òDVσú�/σ��)DV. 

 Then for each SNP N (N in 1 to R), 

 Step mKmK_⑤: Implement the speed-up scheme : if (iterations > 500) and 

(�(N, 1) > 0.9), then stop updating this SNP N. 
 Else, 

Step mKmK_⑥: Estimate the log likelihood that the effect of SNP N is from 

one of four normal distributions r(TA|σA�[�]). Following the derivation steps of 

Kemper et al. (Kemper et al. 2015), the optimized equation of the log likelihood 

function is   

r(TA=σA�[�]) = −V�{log(σA�[�]%;°%; + σú�)
+ ((^∗)°ëD}%;)�σA�[�]σúD� (σA�[�]%;°ëD}%; + σú�)⁄ } 

                +]PTPrè,                       

with ^∗ = 	 − X� − & − í�.  

After this, �(N, �) is calculated with the equation:  

^®! (r(TA|σA�[�]) ∑ ^®! (r(TA|σA�[�]))X�ZV⁄ . 

 

Step mKmK_⑦: Sample g' A  with N(�, ²) , � = [%8°ëDV%8 + À�g¤
ÀBg[�]]DV[%°ëDV ^∗] , 

and ² = [%8°ëDV%8 + À�g¤
ÀBg[�]]DV. 

    Step mKmK_⑧ :Update Pr~Dirichlet(βV + 1, β� + 1,βW + 1, βX + 1) ,where 

βV, β�, … , βX are the number of SNPs in one of four normal distributions. 

  Return to MCMC step 1.  

 

HyB_BR is written in the C++ programming language. 
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Data 

 

Cattle.  1,745 Holstein and Jersey cattle and 114 Australian Red bulls were 

genotyped with the 777K Illumina HD bovine SNP chip. 15,049 Holstein and 

Jersey bulls and cows, 249 Australian red bulls and cows were genotyped with 

the 54K Illumina Bovine SNP array. After stringent quality control and SNP filtering 

described in (Erbe et al. 2012), there were 632,003 SNPs remaining for animals 

genotyped with the 777K SNP panel, and 43,425 SNPs remaining for animals 

genotyped with the 54K SNP array. Animals genotyped with the 43,425 SNPs 

were imputed to 632,003 SNP genotypes using Beagle 3.0 (Browning & Browning 

2009). Therefore, the total data set was 17,157 cattle of three breeds with real or 

imputed genotypes for 632,003 SNP.  

 

The phenotypes include milk yield, protein yield, fat percent(fat%), and cow fertility.  

The heritability of these traits varies from 0.33 (for milk yield, protein yield and 

fat%), to 0.03 (for cow fertility). The fertility (reproductive performance of dairy 

cows) is usually measured according to calving interval (CI, the number of days 

between successive calvings), days from calving to first service (CFS), pregnancy 

diagnosis, lactation length (LL), and survival to second lactation on Australian 

Holstein and Jersey cows (Haile-Mariam et al. 2013; Haile-Mariam et al. 2015). 

Here, the fertility phenotype was calving interval (CI). The phenotypes for all the 

traits were daughter trait deviations (DTD) for bulls (the average of their daughters 

phenotypes, corrected for fixed effects), and trait deviations (TD) for cows (as 

described by Kemper et al. 2015 (Kemper et al. 2015)). For genomic prediction, 

the data was separated into a reference set, where SNP effects were estimated, 

and validation sets, where the prediction accuracy was assessed, and the division 

of animals into reference and validation sets was by year of birth (youngest 

animals in validation set). The reference data includes bulls and cows from two 

breeds (Holstein and Jersey), and the predictions were evaluated in the other 
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animals of the same breeds or in a breed (Aussie red) not included in the 

reference set. The exact number of individuals in these data sets for each trait is 

given in  

Table 5.2.  

 

Table 5.2. The number of individuals in the reference sets and validations sets 

related to three traits including Milk yield (MilkY), Protein yield (ProtY), Fat 

Percent (Fat%) and Fertility. 

Traits Reference Sets Validation Sets 

Holstein Jersey Holstein 
Bulls 

Jersey  
Bulls 

Australian 
Red Bulls Bulls  Cows Bulls Cows 

MilkY/ProtY/ 

Fat% 

3,049 8,478 770 3,917 262 105 114 

Fertility 2,806 7,838 716 3,830 396 81 114 

 

To compare the computational time required by the different genomic prediction 

methods, we also used three reference sets with increasing different numbers of 

animals; Ref 1_ CATTLE had 3,049 Holstein bulls; Ref 2_CATTLE had 11,527 

Holstein bulls and cows, while Ref 3_CATTLE was the complete reference data 

set with 16,214 animals.  

 

For the EM module, estimates of three variance components ( ��,  �� ,  ��) were 

required as the input. We ran Asreml4.0 (Gilmour et al. 2002) (which was 

implemented with GBLUP methods) on these data sets to estimate these variance 

parameters and the results were listed in Table 5.3.  

Table 5.3. Three input variance parameters related to the reference data sets.  

Reference Set Traits ��� ��� ��� 

 
Holstein and Jersey 
bulls & cows 

Milk yield 133284.0 108619.0 34925.6 

Protein yield 132.579 68.6635 29.1662 

Fat% 0.0180012 0.0575729 0.0127094 

Fertility 3283.80 31.6187 0.000332297 

The variances including error variance (���), genetic variance (���), and polygenic 
variance (���) were estimated by ASReml 4. 
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The correlation between GEBV and DTD in the validation sets was used as a 

proxy for accuracy of prediction. The regression of DTD on GEBV in the validation 

sets was used to investigate if any of the methods resulted in biased predictions.  

 

Case/Control human disease trait data.  For predicting human disease risk, 

seven disease traits of the Welcome Trust Case Control Consortium (WTCCC) 

genomic data (The Wellcome Trust Case Control Consortium 2007) including 

bipolar disorder (BD), coronary artery disease (CAD), Crohn’s disease (CD), 

Hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 

diabetes (T2D) were used. Following the steps of strict QC on SNP data (Lee et 

al. ; Speed & Balding 2014; Moser et al. 2015) with Plink (Purcell et al. 2007), we 

had seven combined case/control data sets (one for each trait) with different 

number of markers and records listed in Table 5.4. The input parameters of seven 

datasets for HyB_BR including error variance and genetic variance were 

calculated by GCTA (Yang et al. 2011), given in Table 5.4. To assess accuracy of 

genomic predictions, for each disease, we randomly generated 20 splits of the 

data with 80% of individuals for the reference set and 20% for the validation set. 

To assess the prediction ability, the area under the ROC curve (AUC) (Wray et al. 

2010) was calculated. 
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Table 5.4. The size and genetic architecture of seven combined control/case data 
sets.  

 The error variance (σú�) and genetic variance (σû�) were estimated by GCTA; the 

heritability (ℎ�) was estimated by the equation ℎ� = σû� (σú� + σû�)2 . 

5.5 Results 

Compute time comparison of HyB_BR and BayesR  

To compare computational efficiency, HyB_BR without the speed-up scheme 

(labelled as Hyb_BR_Orig), HyB_BR with the speed-up scheme and pure MCMC 

BayesR were implemented on three data sets with 632,003 markers but different 

numbers of records, varying from 3,049 in Ref 1_CATTLE, 11,527 in Ref 

2_CATTLE, to 16,214 in Ref 3_CATTLE. As used by Kemper et al. (Kemper et al. 

2015), pure MCMC BayesR required 40,000 iterations of complexity |(R") with 

parameters estimated from samples from the posterior distributions (R is the 

number of markers and " is the number of individuals). The first 20,000 iterations 

were removed as burn in. The MCMC module of HyB_BR used only 4,000 

iterations and burn-in stage was replaced by the EM (400 iterations to 

convergence). 4,000 cycles for the MCMC module were used after comparing 

results with increasing number of iterations. The results showed that 4,000 were 

necessary to achieve maximum accuracy (Figure 5.2).  

Diseases  Number of 
Records 

Number of 
Markers 

��� ��� 
� 
 

BD 4,722 292,496 0.070509 0.17156 0.71 

CAD 4,864 296,610 0.149782 0.09189 0.38 

CD 4,577 301,579 0.073900 0.16056 0.69 

HT 4,890 294,404 0.113621 0.12816 0.53 

RA 4,704 295,890 0.070900 0.07120 0.50 

T1D 4,824 296,228 0.064739 0.12567 0.66 

T2D 4,722 294,641 0.099866 0.14497 0.59 
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Figure 5.2. Accuracy of genomic prediction with an increasing number of MCMC 

iterations for BayesR. 

  

 
Figure 5.3. Computational time in hours required for BayesR, HyB_BR_Orig, and 

HyB_BR_sp on three reference sets (Ref 1_CATTLE, Ref 2_CATTLE, Ref 

3_CATTLE). 

 

The prediction accuracy was evaluated for milk yield with a reference set 

containing the Holstein and Jersey bulls&cows data. With the smallest data set 

(Ref 1_CATTLE), 5 hours compute time were required for HyB_BR compared with 
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96 hours for BayesR MCMC (Figure 5.3); 35 hours required by HyB_BR instead 

of 410 hours of BayesR for Ref 2_CATTLE; And in Ref 3_CATTLE, 42 hours for 

HyB_BR_sp but 720 hours for BayesR. These results suggested HyB_BR was at 

least 10 times faster than BayesR MCMC, with the speed advantage increasing 

as data sets became larger (17 times faster with the largest data set). The 

HyB_BR speed-up scheme reduced compute time by approximately 50%, 

compared to HyB_BR_Orig without the speed up scheme (Figure 5.3), with no 

reduction in the accuracy of genomic prediction (Table 5.5, Table 5.6, and Table 

5.7). 

 

These timings were recorded on a server with Intel E5-2680 2.7GHz processors 

and 384GB of 1333MHz RAM. 
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Table 5.5. The accuracy and bias of with-population prediction of GBLUP, 

BayesR(BR), emBayesR (EM), and HyB_BR (HB). +Poly means polygenic effects 

were included in the predictions; while -Poly means the predictions do not include 

polygenic effects into the model. 

 Holstein reference to predict Holstein validation 

Milk Yield Protein Yield   Fat% Fertility 

Acc.  Bias  Acc. Bias Acc. Bias Acc. Bias 

GBLUP +Poly a 0.57 0.96 0.63 0.98 0.73 0.96 0.43 1.26 

-Poly b 0.56 0.86 0.59 0.87 0.71 1.15 0.42 1.27 

BR +Poly a 0.63  0.91 0.64 1.01 0.79 1.06 0.43 1.19 

-Poly b 0.61 1.00 0.63 1.06 0.77 1.13 0.41 1.19 

EM +Poly a 0.62 0.79 0.63 0.85 0.77 0.98 0.42 1.15 

-Poly b 0.62 0.92 0.62 0.94 0.74 1.06 0.41 1.15 

HB +Poly a 0.63 0.93 0.63 0.97 0.79 1.09 0.43 1.19 

-Poly b 0.63 1.03 0.62 1.06 0.76 1.17 0.42 1.19 

  Jersey reference to predict Jersey validation 

Milk Yield Protein Yield   Fat% Fertility 

Acc.  Bias  Acc. Bias Acc. Bias Acc. Bias 

GBLUP +Poly a 0.59 0.93 0.65 0.91 0.54 0.71 0.15 1.05 

-Poly b 0.58 1.05 0.64 1.09 0.54 0.77 0.14 1.08 

BR +Poly a 0.64 0.94 0.68 0.93 0.71 0.87 0.15 1.02 

-Poly b 0.63 0.98 0.68 1.01 0.69 0.93 0.14 1.04 

EM +Poly a 0.64 0.87 0.68 0.92 0.69 0.75 0.15 1.09 

-Poly b 0.64 0.98 0.66 1.01 0.67 0.79 0.15 1.09 

HB +Poly a 0.64 0.97 0.68 0.90 0.71 0.89 0.15 1.02 

-Poly b 0.64 1.06 0.66 0.96 0.69 0.87 0.15 1.02 
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Table 5.6. The accuracy and bias of multi-population prediction of GBLUP, 

BayesR(BR), emBayesR (EM), and HyB_BR (HB). +Poly means polygenic effects 

were included in the predictions; while -Poly means the predictions do not include 

polygenic effects into the model. 

 Holstein and Jersey reference to predict Holstein v alidation 

Milk Yield Protein Yield Fat% Fertility 

Acc.  Bias  Acc. Bias Acc. Bias Acc. Bias 

GBLUP +Poly a 0.63 0.83 0.65 0.85 0.74 0.85 0.44 1.66 

-Poly b 0.62 0.90 0.57 0.88 0.72 0.90 0.42 1.66 

BR +Poly a 0.68  0.84 0.68 0.88 0.81 0.90 0.44 1.53 

-Poly b 0.67 0.91 0.67 1.03 0.79 0.98 0.42 1.53 

EM +Poly a 0.68 0.90 0.68 0.79 0.77 0.83 0.44 1.27 

-Poly b 0.65 0.91 0.66 0.85 0.75 0.87 0.44 1.27 

HB +Poly a 0.68 0.82 0.67 0.88 0.81 0.94 0.44 1.33 

-Poly b 0.67 0.89 0.67 0.95 0.80 1.08 0.44 1.33 

  Holstein and Jersey reference to predict Jersey v alidation 

Milk Yield Protein Yield   Fat% Fertility 

Acc.  Bias  Acc. Bias Acc. Bias Acc. Bias 

GBLUP +Poly a 0.64 0.78 0.68 0.85 0.66 0.73 0.24 1.12 

-Poly b 0.64 0.90 0.69 1.02 0.64 0.80 0.24 1.12 

BR +Poly a 0.69 0.85 0.71 0.99 0.76 0.88 0.26 1.23 

-Poly b 0.68 0.95 0.71 1.09 0.74 0.94 0.25 1.24 

EM +Poly a 0.66 0.84 0.69 0.71 0.75 0.76 0.23 1.13 

-Poly b 0.63 0.86 0.68 0.73 0.70 0.82 0.23 1.13 

HB +Poly a 0.71 0.89 0.74 0.94 0.77 0.89 0.26 1.02 

-Poly b 0.69 0.98 0.73 1.02 0.73 0.97 0.26 1.02 
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Table 5.7. The accuracy and bias of across-breeds prediction of BayesR, GBLUP, 

emBayesR and HyB_BR. 

 Across breeds prediction on Australian red bulls 

Milk Yield Protein Yield Fat% Fertility 

Acc. Bias Acc. Bias Acc. Bias Acc. Bias 

GBLUP 0.16 0.54 0.11 0.51 0.32 0.90 0.29 0.97 

BR 0.22 0.60 0.12 0.49 0.45 0.92 0.27 1.03 

EM 0.24 0.70 0.12 0.42 0.41 0.89 0.29 1.10 

HB 0.23 0.74 0.17 0.49 0.50 0.90 0.30 0.98 

 Across breeds prediction on Australian red cows 

Milk Yield Protein Yield Fat% Fertility 

GBLUP 0.15 0.71 0.08 0.13 0.50 1.19 0.08 0.79 

BR 0.26 0.80 0.17 0.51 0.54 0.94 0.08 0.68 

EM 0.24 0.79 0.16 0.53 0.51 0.89 0.08 0.74 

HB 0.26 0.81 0.16 0.57 0.55 0.91 0.08 0.70 

 

 

The accuracy and bias of within-breeds, multi-breeds and across-breeds 

prediction for four complex dairy traits 

 

Genomic prediction with a single breed reference.  For the within-breed 

prediction (that is, when a Holstein reference was used to estimate SNP effects 

used for calculating GEBV in a Holstein validation set, and likewise for Jersey) in 

Table 5.5, HyB_BR performed as well as BayesR for all traits, including fat%. Both 

BayesR and HyB_BR had a 1%~6% superiority of accuracy over GBLUP for Milk 

yield, Protein yield and Fat%, but had no advantage for fertility. Similarly, for the 

prediction of Jersey validation with Jersey reference, BayesR and HyB_BR had a 

consistent advantage over GBLUP for milk production traits, but not for fertility. 

Especially, for the trait Fat%, BayesR and HyB_BR gave very similar results, with 

a 17% increase in accuracy (0.79 vs 0.73 in Holstein and 0.71 vs 0.54 in Jersey) 

of genomic prediction over GBLUP, as well as an 5% increase in accuracy over 

emBayesR. HyB_BR and BayesR also gave regression coefficients closer to one 

than GBLUP for most traits. 
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Genomic prediction with a multi-breed reference.  When predicting the 

Holstein or Jersey validation with the combined Holstein and Jersey reference, 

HyB_BR had the same accuracy as BayesR, Table 5.5. Compared with GBLUP, 

BayesR and HyB_BR gave consistently higher accuracy increase for the milk 

production traits, though this was not observed for fertility. And for the prediction of 

Jersey validation set, BayesR and HyB_BR improved accuracy for the milk 

production traits by 11% compared with GBLUP. The results showed that there 

were small but consistent accuracy improvements as a result of using the 

multi-breed reference (compare Table 5.5 and Table 5.6), consistent with the 

results of Kemper et al. (Kemper et al. 2015) and Hoze et al. (Hozé et al. 2014).  

 

In addition, including polygenic effects (estimated using the pedigree) in the 

model could improve the prediction accuracy by 1~2%, at least for milk production 

traits, Table 5.5 and Table 5.6. However, for fertility the introduction of polygenic 

effects for all the prediction methods did not affect the accuracy at all. 

 

Compared with GBLUP and emBayesR, BayesR and HyB_BR gave less biased 

predictions for milk production traits. However for fertility the regression values far 

from one indicate bias, from all methods – the low accuracy of fertility phenotypes, 

including in the validation set, likely contributes to this. 

 

Genomic prediction across breeds. For predicting Australian Red validation 

bulls (an additional breed to those in the reference set), BayesR and HyB_BR 

gave higher accuracy than GBLUP for all traits (Table 5.7).  

  

Across all the prediction results shown in Table 5.5, Table 5.6, and Table 5.7, 

emBayesR had a 2%~5% reduction in accuracy compared with BayesR and 

HyB_BR for fat%, while BayesR and HyB_BR gave almost identical accuracies in 
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all cases.  

 

Inferred genetic architecture and QTL mapping for dairy production and 

fertility traits.  

 

Bayes R described the genetic architecture of a trait by the posterior proportion of 

SNPs in each of the 4 different distributions. Table 5.8 reported the estimated 

proportion in each of four distributions from BayesR, emBayesR, and HyB_BR. 

The number of SNPs falling into the distribution with the largest variance was 

similar for all three methods. Compared with BayesR, HyB_BR tended to estimate 

more SNPs (up to 5%) in the distribution with variance 0.001 ∗  ��, and 0.0001 ∗
 ��. In contrast to HyB_BR, emBayesR tended to estimate that a higher proportion 

of SNPs had no effect than did BayesR. This might explain the lower accuracy it 

achieved.  
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Table 5.8. The number of SNPs in each of four distributions. 
Traits The proportion (Pr) BayesR emBayesR HyB_BR 

Milk 

Yield 

A. 0.01 ∗  �� 8 6 8 

B. 0.001 ∗  �� 47 17 327 

C. 0.0001 ∗  �� 3,886 1,523 4039 

D. 0 628,062 630,457 627,629 

Protein 

Yield 

A. 0.01 ∗  �� 5 4 6 

B. 0.001 ∗  �� 32 37 297 

C. 0.0001 ∗  �� 4,431 1,842 6,604 

D. 0 627,535 630,120 625,096 

Fat% A. 0.01 ∗  �� 23 19 20 

B. 0.001 ∗  �� 46 206 119 

C. 0.0001 ∗  �� 2882 1,206 1,852 

D. 0 629,052 630,572 630,012 

Fertility A. 0.01 ∗  �� 10 8 12 

B. 0.001 ∗  �� 147 114 202 

C. 0.0001 ∗  �� 3,949 8,572 7,597 

D. 0 627,897 623,309 624,192 

 

QTL mapping for dairy production and fertility traits.  

 

Both BayesR and HyB_BR estimated the posterior probability that every SNP had 

a non-zero effect on the trait. This was useful for QTL mapping – SNP with very 

high posterior probabilities of having a non-zero effect should be strongly 

associated with causal mutations (e.g. Moser et al. (Moser et al. 2015), Kemper et 

al. (Kemper et al. 2015)). Then, QTL mapping from BayesR and HyB_BR could 

be conducted by plotting the posterior probability of each SNPs having a non-zero 
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effect on the trait by genome position, and then comparing the genome location of 

the effects with a high posterior probability of being in the largest distribution for 

each method.  

  

The estimated posterior possibilities of all the SNPs (y axis) related to four 

different traits were plotted according to the positions (base pairs) of SNPs on the 

whole genome (x axis) in Figure 5.4, Figure 5.5, Figure 5.6, and Figure 5.7. The 

top SNPs with high posterior possibilities were picked up according to the number 

of SNPs in the variance 0.01 ∗  �� (the total number of markers * Pr[4]). Table 5.9 

listed all the top SNPs in the variance related to the previously reported genes 

with a effect on milk production including CSF2RB (Chamberlain et al. 2015), GC 

(Sanders et al. 2006), GHR/CCL28 (Blott et al. 2003), PAEP (Ng-Kwai-Hang), 

MGST1 (Raven et al. 2015), and DGAT1 (Grisart et al. 2002). Both BayesR and 

HyB_BR identified all of these regions, which demonstrated that HyB_BR could 

perform QTL mapping with similar precision to BayesR. For example, HyB_BR 

could detect the DGAT1 as well as BayesR shown in Figure 5.6 (Fat%).  
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Figure 5.4. Mapping all the SNPs’ posterior possibilities estimated from BayesR 

and HyB_BR across the whole chromosome related to milk yield. The posterior 

possibility is calculated based on the sum of the posterior possibilities �(N, �) of 

each SNP with non-zero variances written as ∑ �(N, �)X�Z� . The blue circle is the 

SNPs (picked up based on the high posterior possibility following in the 

distribution with largest variances) with location information mapped to known 

genes. 
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Figure 5.5. Mapping all the SNPs’ posterior possibilities estimated from BayesR 

and HyB_BR across the whole chromosome related to protein yield. The posterior 

possibility is calculated based on the sum of the posterior possibilities �(N, �) of 

each SNP with non-zero variances written as ∑ �(N, �)X�Z� . The blue circle is the 

SNPs (picked up based on the high posterior possibility following in the 

distribution with largest variances) with location information mapped to known 

genes. 
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Figure 5.6. Mapping all the SNPs’ posterior possibilities estimated from BayesR 

and HyB_BR across the whole chromosome related to Fat percent (Fat%). The 

posterior possibility is calculated based on the sum of the posterior possibilities 

�(N, �) of each SNP with non-zero variances written as ∑ �(N, �)X�Z� . The blue 

circle is the SNPs (picked up based on the high posterior possibility following in 

the distribution with largest variances) with location information mapped to known 

genes. 
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Figure 5.7. Mapping all the SNPs’ posterior possibilities estimated from BayesR 

and HyB_BR across the whole chromosome related to fertility. The posterior 

possibility is calculated based on the sum of the posterior possibilities �(N, �) of 

each SNP with non-zero variances written as ∑ �(N, �)X�Z� . The blue circle is the 

SNPs (picked up based on the high posterior possibility following in the 

distribution with largest variances) with location information mapped to known 

genes.  
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Table 5.9. The list of identified causal mutations by both BayesR and HyB_BR. 

 

 

 

Traits loci Information (known 
genes) 

Range (bp) 
[Startpoints~End 
points] 

Milk 
yield 

Chr5:75786153 CSF2RB impacting milk 

yield (Chamberlain et al. 

2015). 

[75724620~75745819] 

Chr6:88741491 GC, encoding the vitamin D 

binding protein, positively 

impacting the milk yield 

(Sanders et al. 2006). 

[88695940~88749180] 

Chr20:30116920 In association with 

CCL28/GHR impacting milk 

production (Blott et al. 

2003). 

[31890736~32199996] 

Protein 
yield 

Chr6:87180731 CSN1S1 positively 

impacting protein yield 

(Sanders et al. 2006). 

[ 87141556~ 87159096] 

Chr11:103302351 PAEP impacting protein 

yield (Wang et al. 2012b). 

[103301664~103306381] 

Fat% Chr5:93945655 MGST1 for Fat percent 

(Raven et al. 2015). 

[93926791~3950162] 

Fertility  Chr18:57548213 -In association with the 

gene CEACAM18, 

Detected by (Pryce et al. 

2010), (Cole et al. 2011). 

~57MBP 

Chr21:53500339 - Control the percentage of 

unassisted births in first calf 

heifers (McClure et al. 

2010). 

~53MBP 

Chr23:51131682 In the linkage with the 

known gene GMDS 

(Wickramasinghe et al. 

2011). 

~51MBP 

All the 
traits 

Chr14:1801116 DGAT1 impacting Fat 

percent (Grisart et al. 

2002). 

[1795351~1804562] 
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The application of HyB_BR to predict the risk of Human disease traits and 

infer genetic architecture for these traits 

 

In the human data, cross validation was used to estimate the accuracy of HyB_BR. 

As there were 20 replicates of 20/80 split (validation/reference), we evaluated the 

mean of the AUC for each disease shown in Table 5.10. Analysis methods 

compared were GBLUP implemented in GCTA (Yang et al. 2011), BayesR from 

Moser et al. (Moser et al. 2015), and HyB_BR. The standard deviations of the 

accuracy (across the 20 replicates) were also listed in the parenthesis of Table 

5.10. HyB_BR and BayesR performed equally well across all seven traits, with the 

same prediction accuracy for each trait. For the diseases of CD, RA, and T1D, 

BayesR and HyB_BR had significantly higher accuracy than GBLUP. Especially 

for T1D, BayesR and HyB_BR could have up to 12% accuracy increase 

compared with GBLUP. However, for other traits including BD, CAD, HT, and T2D, 

BayesR and HyB_BR did not show any superiority over GBLUP. The underlying 

architecture of these traits might explain this, as suggested by Moser et al. (Moser 

et al. 2015). In detail, for CD, RA and T1D, there were known mutations of 

moderate to large effect, and the mixture assumptions of BayesR and HyB_BR 

could take advantage of this. However, for four other diseases including BD, CAD, 

HT, and T2D, there were no known mutations of moderate to large effect, and this 

was reflected in the genetic architecture for these diseases inferred by HyB_BR.  
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Table 5.10. The prediction performance evaluated by the Area under curve (AUC) 

of GBLUP, BayesR and HyB_BR on seven diseases.  

Diseases GBLUP BayesR HyB_BR 

AUC 
� AUC 
� AUC 
� 

BD 0.63(0.0135) 0.71 0.63(0.0131) 0.63 0.64(0.0174) 0.63 

CAD 0.58(0.0116) 0.38 0.59(0.0118) 0.38 0.58(0.0131) 0.38 

CD 0.60(0.0134) 0.69 0.65(0.0159) 0.61 0.65(0.0158) 0.61 

HT 0.58(0.0125) 0.53 0.58(0.0131) 0.52 0.58(0.0140) 0.51 

RA 0.58(0.0109) 0.50 0.70(0.0104) 0.45 0.70(0.0107) 0.45 

T1D 0.64(0.0133) 0.66 0.86(0.0099) 0.63 0.86(0.0102) 0.63 

T2D 0.59(0.0139) 0.59 0.60(0.0117) 0.52 0.60(0.0122) 0.52 

The heritability (ℎ�) was estimated by the equation ℎ� = σû� (σú� + σû�)2  ; σú� was 

derived separately by three methods; fixed genetic variance of σû� for BayesR 
and HyB_BR was obtained from GCTA. 

 

The genetic architecture of human disease traits.  The inferred genetic 

architecture was different for each of the seven diseases (Table 5.11). For 

example, the genetic architecture of BD was controlled by many SNPs (9,077 for 

HyB_BR; 9,611 for BayesR) with small effects (the variance 0.0001 ��), but just 3 

SNPs with large effects (the variance 0.01 ��). These numbers demonstrated the 

polygenic architecture of BD. On the contrary, for T1D, there was relatively 

smaller number of SNPs (3,544 for HyB_BR; 2,750 for BayesR) with small effects 

but many more SNPs (almost 200) with large effects. The proportion numbers 

from Figure 5.8 also demonstrated this (in accordance with the results from Moser 

et al. (Moser et al. 2015)). Large proportion of SNPs with small effects (the 

variance 0.0001 �� ) controlled the polygenic architecture of the diseases BD 

(98.76% for HyB_BR; 99.55% for BayesR), CAD (97.31% for HyB_BR; 96.8% for 

BayesR), HT (96.96% for HyB_BR; 98.09% for BayesR), and T2D (95.14% for 

HyB_BR; 97.79% for BayesR). For these diseases, the mixture model of BayesR 

and HyB_BR did not have much advantage. However, relatively larger proportions 

of SNPs with moderate effects (the variance 0.001 ��) existed for the traits RA 
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(0.77% for HyB_BR; 0.93% for BayesR) and T1D (5.02% for HyB_BR; 5.54% for 

BayesR). For these two traits controlled by major genes, BayesR and HyB_BR 

gave substantially greater accuracy than GBLUP, which explained the results for 

accuracy of prediction (Table 5.10). 

 

Table 5.11. The number of SNPs in each proportion of four distributions estimated 

by BayesR, and HyB_BR on seven human diseases. 

Diseases  BayesR HyB_BR 

Pr[1] Pr[2] Pr[3] Pr[4] Pr[1] Pr[2] Pr[3] Pr[4] 

BD 282,843 9,611 39 3 283,306 9,077 110 3 

CAD 289,491 6,892 214 13 289,203 7,211 183 13 

CD 294,423 6,878 269 9 294,463 6,576 331 9 

HT 286,152 8,094 150 8 286,160 7,993 243 8 

RA 291,401 4,172 275 42 290,420 5,025 403 42 

T1D 293,366 2,607 54 200 292,523 3,396 104 207 

T2D 286,489 7,972 173 7 288,365 5,971 298 7 

 

 Compared with BayesR, HyB_BR detected the same number of SNPs with 

moderate variance (the variance 0.01 ∗  ��) but appeared to systematically detect 

more SNPs in the proportion of small variance (the variance 0.0001 ∗  ��), similar 

to the results observed for the comparison of BayesR and HyB_BR in in dairy 

cattle data (Table 5.8). 
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Figure 5.8. The inferred genetic architecture of seven human diseases from 

BayesR and HyB_BR.  

The blue bar is the proportion of SNPs in Pr[2] (with the variance 0.0001 ∗  ��), 

which is estimated by the number of SNP in Pr[2] divided by the total number of 

SNPs with nonzero variance. The red bar is the proportion of SNPs with the 

variance 0.001 ∗  ��, estimated by the number of SNP in Pr[3] divided by the total 

number of SNPs with nonzero variance. The green bar is the proportion of SNPs 

with the variances 0.01 ∗  ��, estimated by the number of SNPs in Pr[2] divided by 

the total number of SNPs with non-zero variance. 

5.6 Discussion 

We have presented a novel and computationally efficient algorithm termed 

HyB_BR for simultaneous genomic prediction and QTL mapping.  A pure EM 
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algorithm was less accurate for some traits, while pure MCMC requires very long 

computation times.  Therefore, HyB_BR implements the EM algorithm followed 

by a limited number of MCMC iterations. In this way, the algorithm takes 

advantage of the features of an EM algorithm (rapid convergence) and the higher 

accuracy from MCMC implementations in a hybrid scheme. Our accuracies of 

genomic prediction for complex traits in human and cattle from HyB_BR are 

almost identical to those from the full MCMC implementation of the Bayesian 

mixture model, with a 10 fold or greater reduction in computing time required. 

 

For the pure MCMC algorithm, the burn-in stage can account for up to 50% of the 

total running time. One of the key advantages of HyB_BR is that the EM module 

effectively replaces the burn-in cycles that are usually required for MCMC.  

Based on the starting point from EM (with very limited number of iterations; less 

than 500 iterations), the running time of HyB_BR can be much reduced. 

  

The pure EM algorithm, EmBayesR (Wang et al. 2015) has been demonstrated to 

be much faster than BayesR, but had lower accuracy for some traits, particularly 

those with mutations of moderate to large effect. For example, when implemented 

on the trait fat% in dairy cattle, emBayesR had a decreased accuracy of 5%~7% 

compared to BayesR. One possible explanation is that emBayesR shrinks SNP 

effects too much (shown in Table 5.8). This could be because the PEV that is 

used to account for the error of the effects of all the other SNPs while estimating 

the effect of the current SNP is only an approximation. The introduction of PEV 

correction is based on one observation: previous fast algorithm studies (especially 

Iterative conditional expectation algorithms) assumed the effect of the other SNP 

were estimated perfectly while estimating the effect of the current SNP, leading to 

poor performance (Wang et al. 2015). Therefore, EmBayesR and the EM part of 

HyB_BR allow for the errors in the effect of other SNPs and other location 

parameters by using the PEV.  The calculation of the PEV from GBLUP is carried 
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out before the iterations to estimate the effects of each SNP. And since the normal 

priors from GBLUP model do not allow for SNPs of moderate to large effects, 

such PEV calculation is an approximation and this may be one reason for loss of 

accuracy in the EM.  To deal with this, HyB_BR further implements a small 

number of MCMC iterations to improve the outcome of pure EM steps.  

  

HyB_BR has three advantages. First, as the size of genomic data increases, the 

computational efficiency of HyB_BR without burn-in stage (a small number of 

|(R") iterations), is greater than BayesR by full MCMC. And when implemented 

with the speed-up scheme described in the methods, computational time can be 

reduced even further, by sampling a reduced set of SNPs in the MCMC module, 

apparently with no loss of accuracy (but critically the information from the SNPs 

that are not sampled remains in the posterior proportions of SNPs in each 

distribution). Second, the prediction accuracy of HyB_BR is comparable to 

BayesR in all cases including dairy cattle and human disease prediction shown in 

Table 5.5, Table 5.6, Table 5.7 and Table 5.10. Third, HyB_BR, like BayesR, is 

flexible with respect to the genetic architecture of complex traits. As shown in 

Table 5.5, Table 5.6, and Table 5.7, HyB_BR performs well on four different 

complex traits, with architecture ranging from highly polygenic architecture to 

genetic architecture controlled by major genes. In addition to the prediction on the 

continuous quantitative traits of dairy cattle, the investigation on the risk prediction 

of seven case/control human diseases with binary 0/1 phenotypes shows 

HyB_BR and BayesR perform on this type of data, Table 5.10. Finally, the 

posterior probabilities of SNP having a nonzero effect from HyB_BR can be used 

for QTL mapping, Figure 5.6.  

  

Implementing genomic prediction methods with whole genome sequence data 

may improve the prediction accuracy and accelerate the discovery of causal 

variants. However, for this to occur, more computationally efficient genomic 
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prediction algorithms are required. Compared with BayesR, the predicted time of 

HyB_BR on different number of markers with the same reference phenotypes is 

listed in Table 5.12. The time is estimated linearly on the number of markers and 

individuals. When the number of markers reaches 30 million (the number of 

variants discovered in the 1000 bull genomes project, Daetwyler et al. (Daetwyler 

et al. 2014)), the running time of BayesR is around 34,170 hours, which is 

impractical. On the contrary, on the same data with 30 million of variants, HyB_BR 

is predicted to require 2,010 hours. It may be possible to reduce this further by 

optimising the code even more. Therefore, as the size of genomic data increases, 

HyB_BR will remain feasible well beyond the point where the use of BayesR is 

impractical.   

 

Table 5.12. The predicted computational time (in hours) of HyB_BR and BayesR 

on high-density data with different number of variants and the same number of 

individuals (16,214). 

 Different number of markers 

800K SNP panel 1 million 2 million 30 millions 

BayesR 720h 1,139h 2,278h 34,170h 

HyB_BR 42h 67h 134h 2,010h 

 

While HyB_BR performs well with computational efficiency and robust prediction 

accuracy, there are at least still two strategies that could be used to further 

improve efficiency. There is one key part of EM module that consumes running 

time and memory: the calculation of GQ(ëD}%;%;°ëD}�ë() for each SNP in front of 

EM iterations. In detail, the calculation of GQ(ëD}%;%;°ëD}�ë() requires the time 

complexity of (V� R"�) , which accounts for almost 2/3 of the total computational 

time even though it happens in front of EM iterations. Therefore, a future task is to 

implement a multi-threaded version to improve speed. The threshold of limiting 

the number of SNPs to be updated requires further study. Currently we define the 

threshold as O: if(�(N, 1) > 0.9), which is applicable for the current data. However, 
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it’s uncertain whether or not such a threshold is suitable for other types of data. 

 

HyB_BR has some features in common with other mixture methods such as 

BSLMM (Zhou et al. 2013b), and BOLT-LMM (Loh et al. 2015). All of these 

methods declared the merit of computational efficiency with time complexity 

|(R") but under different mixture models. In detail, BSLMM assumed a large 

proportion of SNPs with small effects (under BLUP models), while others had 

large effects (under Bayesian sparse regression models; the mixture of two 

normal priors). Due to limited number of SNPs implemented for MCMC sampling 

(large proportion of SNPs were under GBLUP models), BSLMM could be 

computationally efficient. However, compared with the mixture of four normal 

distributions by BayesR, which provided great flexibility with respect genetic 

architecture, the flexibility of BSLMM with respect to different genetic architectures 

required further investigation. Another algorithm was BOLT-LMM, which had been 

developed mainly for the association studies. BOLT-LMM incorporated Bayesian 

mixture models to improve the power of GWAS with appealing outcomes. Instead 

of MCMC sampling, BOLT-LMM implemented iterative conditional expectation 

(ICE) algorithm on a mixture of two normal distributions to improve the 

computational speed with the approximated computational complexity |(R"). 

There could be three limitations with this method: 1) ICE algorithms did not 

account for the PEVs from all other SNP effects during the estimation of current 

SNP effect. On practical data sets, ICE could lead to the loss of prediction 

accuracy. BOLT-LMM introduced LD score regression technique to calibrate the 

prediction errors. However, since the calibrating factor was constant across all the 

SNPs (the prediction error variance regarding each SNP differed according to our 

equation GQ(ëD}%;%;°ëD}�ë()), such calibration scheme seem not to be effective 

to solve the problem. 2) The leave-one-chromosome-out scheme implemented in 

BOLT-LMM might perform well for GWAS but not be suitable for simultaneous 

genomic prediction. 3) BOLT-LMM treated each SNP effect as a fixed effect for 
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the association statistics. This, combined with the stringent significance threshold 

for multiple testing, leaded to the over-estimation for SNP effects. Another efficient 

method for genomic prediction termed MultiBLUP (Speed & Balding 2014) 

introduced SNPs clusters into BLUP models according to its adaptive algorithm. 

For each SNP class, the linear combination models (using genomic relationship 

matrix) similar to GBLUP were implemented. MultiBLUP has been demonstrated 

to be computationally efficient with robust prediction accuracy in the human data 

sets. However, when moved to dairy cattle genomic data sets, there is long 

Linkage disequilibrium (LD) between markers, which might be easily broken up by 

multiBLUP models. 

5.7 Conclusion 

In summary, HyB_BR is a computationally efficient method for simultaneous 

genomic prediction, QTL mapping and inference of genetic architecture. The 

hybrid scheme of MCMC and EM decreases computational time by a factor of at 

least 10 fold with no reduction in prediction accuracy.  The HyB_BR algorithm 

makes simultaneous genomic prediction, QTL mapping and inference of genetic 

architecture feasible in extremely large genomic data sets including whole 

genome sequence data. 

5.8 Supporting information 

All the supporting files were located in Appendix III (Chapter 10  ) as follows: 

File S1 - PEV calculation from GBLUP. 

File S2 - Calculation of P(i, k). 
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Chapter 6   Application of Hybrid to Sequence data for 

genomic prediction and QTL mapping  

6.1 Chapter preface 

Justification 

While using whole genome sequence data was attractive for genomic prediction 

of complex traits, the computational burden that would be imposed, particularly for 

non-linear Bayesian methods, make this currently infeasible.  In this paper we 

implemented the HyB_BR methods on a large subset of whole genome sequence 

data from dairy cattle to assess feasibility of genomic predictions from sequence.  

The performance of HyB_BR was evaluated in terms of computational efficiency 

and genomic prediction accuracy. The computation advantage of HyB_BR over 

GBLUP and BayesR showed that HyB_BR was 10 fold faster than BayesR and 5 

fold faster than GBLUP. In addition, the accuracy of HyB_BR on a range of traits 

with different genetic architectures was investigated. The results showed similar 

accuracy of HyB_BR and BayesR. A further advantage of the method was that a 

similar precision of QTL mapping to BayesR was demonstrated. 
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6.2 Abstract 

Using whole genome sequence data for genomic predictions can improve the 

prediction accuracy, compared with what is possible from high-density SNP arrays, 

and can lead to identification of variants affecting complex traits. The most 

accurate genomic predictions for some traits are achieved with non-linear 

Bayesian methods. However, as the number of variants and the size of the 

reference population increases, the computational time required to implement 

these Bayesian methods (typically with Monte Carlo Markov Chain sampling) 

becomes unfeasibly long. Here, we apply a new method, HyB_BR (for Hybrid 

BayesR), which implements a mixture of normal model and hybridizes an 

Expectation-Maximization (EM) algorithm followed by Markov Chain Monte Carlo 

(MCMC) sampling, to genomic prediction in a large subset of whole genome 

sequence data in a dairy cattle reference population. The imputed whole genome 

sequence data includes 994,019 variant genotypes in 16,214 bulls and cows from 

the Holstein and Jersey breeds. Traits include Fat yield, Milk volume, Protein kg, 

Fat% and Protein% in milk, fertility and heat tolerance. HyB_BR achieves 
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genomic prediction accuracies as high as a full MCMC implementation of BayesR, 

both for predicting a validation set of Holstein and Jersey bulls (multi-breed 

prediction) and a validation set Australian red bulls (across-breed prediction).. The 

computation time on the data sets shows that HyB_BR (48 hours) can reduce 

compute time by tem fold compared with the MCMC implementation of BayesR 

(594 hours). We also demonstrate that in some cases HyB_BR can identify similar 

mutations to BayesR in the sequence data, including mutations in or close to the 

genes DGAT1, FASN, CSN2, CSN3, and CEACAM18, affecting milk production or 

fertility traits. For heat tolerance, both HyB_BR and BayesR find nine potential 

causative mutations not detected by previous studies. The results demonstrate 

that HyB_BR is a feasible method for simultaneous genomic predictions and QTL 

mapping with whole genome sequence in large reference populations. 

6.3 Introduction 

Whole genome sequence data is available for an increasing number of species, 

and in some cases, enough individuals have been sequenced to serve as a 

reference panel for imputation, for the thousands of individuals that have been 

genotyped with SNP arrays, to whole genome sequence variant genotypes. A 

good example of such a reference set is the 1000 bull genomes project which 

includes 234 bulls with whole-genome sequencing data and 28.3 million 

genotyped sequence variants (MacLeod et al. 2016). Compared with dense SNP 

arrays, the advantage of using whole genome sequence data might include more 

accurate genomic predictions, better persistence of accuracy of genomic 

predictions across generations, more accurate genomics predictions across 

breeds (Clark et al. 2011; Druet et al. 2014; MacLeod et al. 2014c; MacLeod et al. 

2016), and more precise QTL mapping (MacLeod et al. 2016), all as a result of 

including the causal mutation genotypes in the data set. 

 

As the resulting data sets will be extremely large (large numbers of individuals 
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with millions of imputed genotypes), the algorithms used to derive genomic 

predictions must be extremely computationally efficient. Ideally, they should also 

implement a non-linear model at the level of the SNP effects, including the 

possibility of excluding some SNP from the model, as such models have been 

demonstrated to give higher accuracies of genomic predictions for some traits 

with high-density genotype data (Kemper et al. 2015; MacLeod et al. 2016). 

Although computationally efficient, GBLUP and BLUP do not satisfy the second 

criteria (they implement a liner model and all SNPs are in the model). BayesR 

(Erbe et al. 2012) is one type of flexible non-linear model, which assumes that 

SNP effects follow a mixture of four normal distributions (with zero variance, very 

small variance, small variance, and moderate variance). Compared with GBLUP, 

BayesR results in superior accuracy of genomic prediction for some traits 

(VanRaden et al. 2011; Bolormaa et al. 2013; VanRaden et al. 2013; MacLeod et 

al. 2014a; Kemper et al. 2015; Moser et al. 2015). However, as the Bayesian 

models are typically implemented with MCMC (Markov Chain Monte Carlo) 

sampling, application of BayesR with sequence data is currently not feasible.  

 

Another advantage of non-linear models such as BayesR is the application for 

QTL mapping (Speed & Balding 2014; Kemper et al. 2015; Loh et al. 2015; Moser 

et al. 2015; MacLeod et al. 2016). In detail, Loh et al. (Loh et al. 2015) pointed out 

that Bayesian mixed-model with speed-up schemes (termed fastBayesB 

(Meuwissen et al. 2009)) could improve the power of detecting genes in 

association with human diseases. Speed and Balding (Speed & Balding 2014) 

developed an efficient approach termed multiBLUP (the mixture model of SNP 

effects, similar to nonlinear models) on the Welcome Trust Case Control 

Consortium (WTCCC) human disease data to perform simultaneous disease risk 

prediction and causal variants analysis with complex traits. The results showed 

that multiBLUP could efficiently detect the genome regions associated with seven 

diseases. Later, Kemper et al. (Kemper et al. 2015) implemented nonlinear model 
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BayesR for QTL mapping in dairy cattle. Kemper et al. (2015) showed that 

BayesR could be successfully used to detect causal mutations (e.g. DGAT1) 

affecting milk production traits with local GEBV windows. Then, Moser et al 

(Moser et al. 2015) applied modified BayesR (updating the genetic variance in the 

MCMC chain instead of fixing it as in the original BayesR) to WTCCC human 

disease data. The posterior probability for each SNP being in the model (e.g. Not 

having a zero effect) was used to simultaneously map variants in association with 

seven diseases. The precision of BayesR was demonstrated to be higher than a 

mixed linear model and GWAS (Moser et al. 2015). Furthermore, Macleod et al 

(MacLeod et al. 2016) proposed the algorithm termed (BayesRC), which modified 

BayesR to incorporate biological prior information. Compared with GWAS, 

BayesRC could improve the power and precision of discovering known causal 

mutations (e.g. in or close to DGAT1 and PAEP, and many other genes),as well as 

several novel mutations, in dairy cattle data. All these previous studies 

demonstrated that nonlinear models, which might exclude SNPs from the models 

with the assumptions of Bayesian mixture priors for SNP effects, could actually 

help to improve the precision of QTL mapping or association studies in human or 

dairy cattle. 

 

To take advantage of the accuracy superiority of MCMC nonlinear models but 

improve their time-efficiency, a hybrid scheme (termed HyB_BR) was proposed by 

Wang et al. (Wang et al. 2016). This scheme had three steps: 1) Implement the 

mixture model of BayesR, which had been demonstrated to be quite flexible for 

genomic prediction. 2) Converge the parameters to the optimum with 

Expectation-Maximization steps to speed up the program; 3) Using as starting 

points the solutions from the EM, run a limited number of MCMC iterations to 

improve the parameter estimates.  The results of Hybrid algorithm on 600K dairy 

cattle data and 300K human disease data from Welcome Trust Case Control 

Consortium (WTCCC) demonstrated that Hybrid algorithm performed as well as 
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BayesR while requiring half of the running time demanded by MCMC iterations 

(Wang et al. 2016). 

 

With the aim of investigating whether HyB_BR gives comparable accuracies of 

genomic prediction and precision of QTL mapping with whole genome sequence 

data to BayesR, we implemented HyB_BR on a large subset of imputed 

whole-genome sequence data with 994,019 variants in 16,214 cattle and. This 

genotype data came from the imputed sequence variants in or close to gene 

coding regions and 600K Bovine HD SNP genotypes. The HyB_BR algorithm was 

evaluated on this data set with three criteria: 1) computational performance 

(speed) compared to a full MCMC implementation, 2) prediction accuracy for a 

range of traits of different genetic architectures. The traits included Fat yield, Milk 

yield, Protein yield, Fat percent, Protein percent, fertility and heat tolerance 

(defined as the decrease in milk yield, fat yield or protein yield with increasing 

heat stress). 3) the precision of HyB_BR for QTL mapping for the milk production, 

fertility and heat tolerance traits.  

6.4 Materials and Methods 

High density and Sequence genotypes 

 

Two types of genomic data, 600K Bovine HD SNP array, and imputed sequence 

data were used in this study. As described by Kemper et al. (Kemper et al. 2015), 

10,311 Holstein, 4,738 Jersey and 249 Australian red bulls and cows were 

genotyped with the Bovine SNP50 Array (Illumina, San Diego, CA). In addition, 

1,620 Holstein bulls and cows, 125 Jersey bulls, and 114 Australian Red bulls 

were genotyped with the 777K bovine HD SNP panel. After quality control steps 

described in Erbe et al. (Erbe et al. 2012), all genotypes were imputed to 632,003 

SNP using Beagle 3.0 (Browning & Browning 2009).  
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For the Sequence data (termed SEQ), the sequences of 136 Holstein and 27 

Jersey bulls from 1000 Bulls Genome Project (Daetwyler et al. 2014) were used 

as a reference for imputation. Using this reference set, all the animals described 

above with real or imputed 600K SNP genotypes were imputed into the whole 

genome sequence data using FImpute software (Sargolzaei et al. 2014). In total, 

there were 2.785 million sequence variants imputed, including both SNPs and 

indels (MacLeod et al. 2016). After quality control including minor allele frequency 

check and LD pruning by PLINK (Purcell et al. 2007), there were 994,019 variants 

remaining including 370,259 markers from the 600K SNP panel, and 623,760 

sequence variants in gene coding region or 5000bp up- and down-stream of the 

gene start stop positions, as detailed by (MacLeod et al. 2016).  

 

Genomic predictions from 600K HD SNP panel and sequence data were 

compared in the following investigation. 

 

Phenotypes  

The phenotype data included bulls (daughter trait deviations; DTD) and cows (trait 

deviations on their lactation records; TD) from Holstein and Jersey cattle, for milk 

production traits and fertility, detailed in Table 6.1. For milk production traits 

including fat yield, milk yield, protein yields, fat percent and protein percent, there 

were 16,214 bulls and cows from Holstein and Jersey breeds. For fertility, the 

number of bulls and cows in the reference set was 15,190. Then, for the validation 

sets, Holstein bulls and Jersey bulls (closely related to the reference set) were 

used to assess the accuracy of within-breed prediction.  These bulls were the 

youngest cohort in the data set. In addition, Australian Red bulls (a third breed) 

were included for the validation set to evaluate the performance of across-breed 

prediction. We implemented the calculation of Garrick et al. (Garrick et al. 2009) to 

appropriately weight phenotypes of bulls and cows as follows: 

ôA(�1]]²) = (VDfg)õfgh(XDfg)/ö , and ôA([Pô²) = (VDfg)õfgh[Vh(ÓDV)Ä]/ÓDfg 
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where, ℎ� is the heritability of the trait; G is the repeatability of the traits; 0 is the 

number of the daughter of each bulls; Q is the number of records; [ is the 

proportion of genetic variance not accounted for by the SNP (Garrick et al. 2009). 

To compare the prediction accuracy of GBLUP, BayesR and HyB_BR for 

multi-breeds and across-breed, the weight calculation is included into all of three 

models. 

 

For heat tolerance, the traits were the rate of the decline of the production traits 

(e.g. fat, milk and protein yield) with increasing heat stress. The rate of decline for 

each trait was estimated for each cow in the data set with a linear random 

regression of yield on daily temperature-humidity index (THI), when the THI was 

above a threshold of 60 units (Hayes et al. 2003; Haile-Mariam et al. 2008; 

Nguyen et al. 2016). The total number of animals recorded for heat tolerance was 

5,657 from Holstein and Jersey, including cows and bulls. The validation set for 

heat tolerance was a set of Holstein bulls and a set of Jersey bulls, Table 6.1.  

  

Table 6.1. The number of animals in the reference sets and validation sets. 

Traits 

Reference Sets Validation Sets 

Holstein Jersey Holstein 
Bulls 

Jersey 

Bulls 

Australi
an Red 
Bulls Bulls Cows Bulls Cows 

Milk production traits 

(FatY/MilkY/ProtY/F

at%/Protein%) 

3,049 8,478 770 3,917 262 105 114 

Fertility 2,806 7,838 716 3,830 396 81 114 

Heat Tolerance traits 

(FatY decline/MilkY 

decline/ProtY 

decline) 

2,028 2,037 476 1,116 252 101 - 

 

The input parameters for HyB_BR included genetic variance, error variance, and 
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polygenetic variance, which were estimated from the data with ASReml4 (Table 

6.2). Compared with milk production traits, low heritabilities for heat tolerance 

traits and fertility were estimated. 

Table 6.2. The genetic architecture of milk production traits, Fertility, and Heat 

tolerance traits estimated by ASReml. 

 Genetic variance 
(PQ� ) 

Polygenetic variance 

(PR�) 

Error variance 

(���) 

Heritability 

(
�) 

FatY 118.594 48.6891 234.326 0.42 

MilkY 114827.0 38532.3 135598.0 0.53 

ProtY 72.4877 36.0716 140.417 0.44 

Fat% 0.0555 0.0082 0.0183827 0.78 

Protein% 0.01155 0.0028 0.0032 0.82 

Fertility 42.9901 0.0003 3402.87 0.01 

HT_Fata 0.041 0.58e-07 0.571 0.07 

HT_MKb 0.004 0.35e-06 0.035 0.09 

HT_Protc 0.035 0.56e-07 0.561 0.06 

a means Heat tolerance traits with Fat decline (HT_Fat); b means Heat tolerance 
traits with milk decline (HT_MK); c means Heat tolerance with protein decline 
(HT_Prot). 
 

 

Genomic prediction methods 

 

GBLUP. GBLUP assumes all marker effects follow the normal distribution with the 

same genetic variance. The overall model of GBLUP is: 

	 = ì� + S& + í� + �                          (1) 

Where, 

	 = vector of n phenotypes. 

� = vector of � fixed effects, following uninformative priors. 
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& = vector of á random genetic values (q=number of animals) captured by the 

SNP, with 5(0, ù ��). ù is the q x q genomic similarity matrix between pairs of 

individuals;  �� is the additive genetic variance.  

� = vector of á polygenic effects (q=number of animals), with �~5(0, ò ó�), ò 

is the á × á pedigree-based relationship matrix,  ó� is the polygenic variance. 

� = vector of " residual errors. For cattle data, �~5(0, ëσ��), the " × " diagonal 

matrix ë is especially designed to evaluate the different contributions of the 

phenotype records from different sex to the error variance, de-regressing 

estimated breeding values and weighting information for genomic regression 

analyses (Garrick et al. 2009).  

ì = " × � design matrix, allocating phenotypes 	 to fixed effects �. � is the 

number of fixed effects 

í = " × á design matrix, which aims at allocating the á × 1 vector of polygenic 

effects to 	. 

S = " × á design matrix, allocating the á × 1 vector of genetic values to 	. 

 

ASReml 4 (Gilmour et al. 2002) iss used to estimate variance components and 

genomic breeding values, and ù iss constructed as described by (Yang et al. 

2010). 

 

BayesR.  Compared with the common prior distributions of GBLUP, BayesR (Erbe 

et al. 2012) assumes SNP effects are drawn from the mixture of four normal 

distributions. BayesR aims at estimating each SNP effects instead of estimating 

breeding values directly for each animal. Therefore, the genetic values & in the 

model (1) is substituted into %� in the BayesR model. Briefly, the data model of 

BayesR can be written as: 

	 = ì� + %� + í� + �                      (2)          

Where, 

� = R vector of SNP effects, �~5<0, I�;�@, �;� = �0, 0.0001 ∗ σû�, 0.001 ∗ σû�, 0.01 ∗
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σû��. Therefore, each SNP has four possible normal distributions: 5(0,0 ∗  �� ), 

5(0,0.0001 ∗  ��), 5(0,0.001 ∗  ��), and 5(0,0.01 ∗  ��). Related to such mixture 

priors, there are two other parameters including �(N, �) and ��.  

 

�(N, �) = {0,1}, which defines where or nor SNP N follows normal distribution � 

(� = 1,2,3,4). Therefore, the prior distribution of each SNP N conditional on �(N, �) 

could be written as:  

p<TA=�(N, �)@ = �           �(N, 1) = 1 V
c��ñ?g[�] exp �− �Bg�ñ?g[�]� , �(N, �) = 1(� = 2,3,4) . 

 

�� = the vector of proportions parameter, which defines the proportion SNPs in 

each of four normal distributions. The prior of ��  is drawn from Dirichlet 

distribution ��~Dirichlet(α), with � = [}, }, }, }]. The conditional distribution of 

SNP effect on the proportion parameter ��  is: !(TA|��) = �QV × 5(0,0 ∗
 ��)+ �Q� × 5(0,0.0001 ∗  ��)+ �QW × 5(0,0.001 ∗  ��) + �QX × 5(0,0.01 ∗  ��). 

 

% is the standardized (for mean and variance) " × R genotype matrix. 

 

To implement the BayesR model, and arrive at posterior estimates of parameters, 

Gibbs sampling has been used as detailed by Kemper et al (Kemper et al. 2015). 

On the sequence data, we use five independent replicate chains of the Gibbs 

sampling, and for each independent chain, there are 40,000 iterations, with the 

first 20,000 iterations discarded as burn in, as described by Kemper et al (2015) 

(for 630K SNP data). 

 

HyB_BR.  Motivated by improving the speed of BayesR, the HyB_BR model 

(Wang et al. 2016) incorporates the same assumption for SNP effects as BayesR 

but serially hybridizes the expectation-maximization (EM) and MCMC to reduce 
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large number of iterations required by MCMC. That is, HyB_BR first implements 

an EM algorithm to perform the Maximum A Posterior (MAP) estimation until 

converged. Then, to improve accuracy, a limited number of MCMC iterations are 

performed to improve parameter estimates (Wang et al. 2016). 

 

As described in Wang et al. (Wang et al. 2016), the HyB_BR model for a SNP 

effect is : 

	 = ì� + %�g8 + & + í� + �                 (3)         

  

Assumptions in the model are 1) each SNP effect g8 follows the same prior 

assumption as BayesR with %� being the standardized genotype for SNP N. 2) to 

correct the prediction errors generated by all other SNPs, HyB_BR introduces the 

genetic values &, whereby a correction based on the prediction error variance 

(PEV) is introduced to account for the effects of all the other SNP with a GBLUP 

model as detailed by Wang et al. (Wang et al. 2016). Then under the model (3), 

the posterior distribution for all related parameter sets including {TA, ��, �, &, �, σ��} 

are derived according to the theory: !(ê|	) ∝ O(	|ê)!(ê) where O(	|ê) is the 

likelihood function based of model (3) and !(ê) is the prior density function for 

the parameter sets ê. Based on the derived marginal posterior distribution !(ê|	), 

the expectation- maximization steps are implemented to estimate each parameter 

while “integrating out” the other parameters detailed by Wang et al. (2016). 

Therefore, the process of EM module can be presented according to the pseudo 

code (Figure 6.1).  

 



 188 

 

Figure 6.1. The pseudo-code of the EM module. 

 

As shown in Figure 6.1, the EM module begins by initializing all the input 
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parameters including SNP effects (�), Proportion parameter (��), the variance for 

each SNP (�;�), the fixed matrix (ì), the pedigree based relationship matrix (ò), 

the genomic relationship matrix (ù), the error matrix (ë), and index matrix for 

polygenic effects (í). Similar to emBayesR (Wang et al. 2015), the starting 

values of Q  and ��  were set as Q = 0.01  and Pr = {0.5, 0.487, 0.01, 0.003} , 

while �;� = {0, 0.0001 ∗ σû�, 0.001 ∗ σû�, 0.01 ∗ σû�}. The genetic variance σû� , error 

variance σú�, and polygenic variance σ�� are obtained from ASReml, with the 

value of genetic variance and polygenic variance then fixed. The " ×3 matrix ì 

is design matrix, allocating the phenotypes to fixed effects. In our case, matrix ì 

is set up with first column being the mean, the second and third columns defining 

the breeds (Holstein and Jersey) and sex (bulls and cows) of the cattle. The 

pedigree relationship matrix ò is built up using the lower symmetrical matrix Ped 

detailed by Henderson (Henderson 1984); while the genomic relationship matrix 

ù  is constructed using the equation ù = %Î%Î°/" , %Î  is the standardized % 

matrix with %ÎA¼ = (%A¼ − 2!A) �2!A(1 − !A)2 . Diagonal error matrix E is constructed 

according to the equation defined by Garrick et al. (Garrick et al. 2009). 

 

Then, after initializing step, the pseudo code of Figure 6.1 describes the process 

of the EM module (which was detailed in Wang et al. (2016)). 

 

The EM steps require the time complexity |(R") . For the calculation of 

GQ ¨ëD}%;%;°ëD}PEV&(�)« which is calculated prior to the EM steps, the required 

time is |(R�"). This calculation accounts for 40% of the total computational time. 

Since the calculation is independent SNP by SNP, we parallelize the operations 

by chromosomes, which can reduce around 30% of the total running time.  

 

Once the EM has converged using the criterion ( (g'# − g'#DV)′(g'# − g'#DV)/



 190 

(<g'#°g'#@ > 10DVÕ with á be the iteration number, the parameter estimates from 

the EM are used as starting points of parameter values in the MCMC iterations. 

The steps of MCMC iterations were detailed by Kemper et al. (Kemper et al. 

2015). Furthermore, Wang et al. (Wang et al. 2016) suggested a speed-up 

scheme to improve computational efficiency. The scheme is as follows.  After 

500 MCMC iterations, the SNPs with high probability in the distribution with zero 

variance will be excluded from the model. In other words, when �(N, 1) ≥ 0.90, 
the SNP effects will be set as zero. Also, as investigated by Wang et al. 2016, 

HyB_BR requires 4,000 MCMC iterations for both 600K SNP panel and imputed 

sequence data to maximize accuracy of genomic prediction (Wang et al. 2016). 

 

To compare the computational cost between BayesR and HyB_BR and how this 

changes with an increasing number of individuals in the reference set, we 

subseted the data of Table 6.1 into three different reference sets (Ref1, Ref2, and 

Ref3) (with the number of sequence variants hold constant). Ref1 had Holstein 

bulls only with 3,049 bulls; Ref2 included Holstein bull and cow data with 12,527 

animals; Ref3 had all data with 16,214 animals.  

 

On all three reference sets, the speed advantage of HyB_BR compared with 

BayesR was investigated. Then the accuracy of genomic prediction from BayesR, 

HyB_BR and GBLUP was compared in the full data (including the sequence 

variants). In addition, the precision of mapping QTL from the three methods was 

compared. 
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6.5 Results 

Computational time comparison between GBLUP, BayesR and HyB_BR 

On both 600K and SEQ data sets, HyB_BR was more than 10 times faster than 

BayesR, Figure 6.2. As the size of the data set increased (from Ref 1 to Ref3 or 

from 600K to SEQ data), the computational time required for HyB_BR reduced by 

a greater and greater margin relative to BayesR. On 600K data, HyB_BR had a 

similar compute time to GBLUP. For the SEQ data, HyB_BR was up to four fold 

faster than GBLUP.  

 

Figure 6.2. The computational time comparison between GBLUP, BayesR and 

HyB_BR on 600K and SEQ data. Three reference sets (Ref1, Ref2 and Ref3) with 

the same number of variants (600K or SEQ) are used here. Ref1 has Holstein 

bulls data only with 3,049 animals; Ref2 has Holstein bull and cow data with 

12,527 animals; Ref3 has Holstein and Jersey bulls and cows with 16,214 

animals. 

Accuracy of genomic prediction for GBLUP, BayesR, and Hybrid with 

sequence data 
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Prediction accuracy for milk production traits and fertility. For the milk 

production and fertility traits, the combined Holstein and Jersey reference sets 

were used to predict three validation sets including Holstein bulls (Table 6.3), 

Jersey bulls (Table 6.3), and Australian red bulls & cows (Table 6.4). 

 

When predicting the Holstein validation bulls data, BayesR and HyB_BR 

performed equally well. Compared with GBLUP, BayesR and HyB_BR had 

consistent accuracy improvement for the milk production traits except Protein 

percent. For Fat% trait, BayesR and HyB_BR gave 5% higher accuracy than 

GBLUP. However, on the traits Protein% and Fertility, there was no difference 

between these methods. The results were similar when the Jersey validation set 

was used. However there were several exceptions for the prediction of Jersey 

bulls as the validation set: 1) on the Jersey validation set, the accuracy superiority 

of HyB_BR and BayesR over GBLUP became more obvious. For example, for Fat 

percent, BayesR and HyB_BR gave a 10% higher accuracy than GBLUP; 2) 

HyB_BR even had 1% accuracy increase than BayesR on most cases. HyB_BR 

and BayesR also gave regression coefficients (DTD on GEBV) closer to one than 

GBLUP for most traits. 

 

In addition, when incorporating polygenic effects into the prediction model, a small 

but consistent accuracy improvement was observed, Table 6.3. However, for 

fertility, including polygenic effects did not affect the prediction accuracy at all. 

 

When predicting Australian red bulls and cows using the combined Holstein and 

Jersey reference set (across breed prediction), both HyB_BR and BayesR had a 

considerable accuracy advantage (up to 12% increase) over GBLUP for all the 

traits (Table 6.4). Compared with BayesR, HyB_BR performed equal or better in 

terms of accuracy for all traits except fat yield.   
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Accuracy of genomic prediction for heat tolerance. The accuracy of genomic 

prediction for the heat tolerance traits was similar for GBLUP, BayesR, and 

HyB_BR, Table 6.5. There were two exceptions when predicting the validation set 

of Jersey bulls: 1) On the heat tolerance for fat yield, there was 6% accuracy 

reduction of BayesR and HyB_BR in comparison with GBLUP; 2) For the milk 

yield, 9% increase in accuracy from BayesR and HyB_BR over that from GBLUP 

was observed.  HyB_BR and BayesR also gave regression coefficients closer to 

one than GBLUP for all the traits. 
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Table 6.3. The multi-breed prediction accuracy (Holstein and Jersey validation sets) and bias of GBLUP, BayesR, and HyB_BR on 

SEQ data related to Fat Yield, Milk Yield, Protein Yield, Fat%, Protein% and Fertility. +Poly is the prediction accuracy when adding 

the polygenic term in the model; While -Poly is the prediction accuracy when leaving out the polygenic term from the model. 

  

Holstein and Jersey reference to predict Holstein v alidation 

Fat Yield Milk Yield Protein Yield Fat% Protein% Fe rtility 

Acc. Bias Acc. Bias Acc. Bias Acc. Bias Acc. Bias A cc. Bias 

GBLUP 
+Poly a 0.64 1.07 0.66 0.92 0.63 0.95 0.76 0.95 0.83 0.98 0.42 1.70 

-Poly b 0.62 1.32 0.60 0.83 0.58 1.15 0.75 1.01 0.81 1.09 0.42 1.70 

BayesR 
+Poly a 0.65 1.27 0.69 0.91 0.68 1.04 0.81 1.01 0.83 0.99 0.42 1.32 

-Poly b 0.63 1.17 0.67 0.85 0.65 0.91 0.80 1.01 0.82 0.96 0.42 1.32 

HyB_BR  
+Poly a 0.66 1.04 0.69 0.89 0.68 0.96 0.81 0.99 0.83 0.96 0.42 1.32 

-Poly b 0.63 0.96 0.69 0.89 0.66 0.88 0.81 0.99 0.81 0.94 0.42 1.32 

 
 

 

Holstein and Jersey reference to predict Jersey val idation 

Fat Yield Milk Yield Protein Yield Fat% Protein% Fe rtility 

Acc. Bias Acc. Bias Acc. Bias Acc. Bias Acc. Bias A cc. Bias 
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The bulls and cows from two breeds of Holstein and Jersey are used as reference set to predict Holstein bulls and Jersey bulls 
separately. 
 
 
 
 
 
 
 
 
 
 
 
 
 

GBLUP 
+Poly a 0.54 0.76 0.65 0.88 0.69 0.94 0.67 0.86 0.77 0.94 0.23 1.13 

-Poly b 0.52 0.93 0.65 1.03 0.68 1.24 0.66 0.93 0.75 1.02 0.23 1.13 

BayesR 
+Poly a 0.57 0.88 0.70 0.96 0.72 1.22 0.77 0.97 0.77 0.89 0.23 1.03 

-Poly b 0.52 0.73 0.68 0.87 0.67 1.02 0.76 0.95 0.77 0.87 0.23 1.02 

HyB_BR  
+Poly a 0.58 0.87 0.69 0.95 0.73 0.91 0.77 0.93 0.79 0.87 0.23 0.97 

-Poly b 0.57 0.74 0.69 0.85 0.73 0.91 0.76 0.93 0.78 0.85 0.23 0.97 
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Table 6.4. The across breed prediction accuracy (validation data set Australian red bulls and Australian red cows) of GBLUP, 

BayesR, and HyB_BR on SEQ data related to Fat Yield, Milk Yield, Protein Yield, Fat%, Protein% and Fertility.  

 

 Across breeds prediction on Australian red bulls 

Fat Yield Milk Yield Protein Yield Fat% Protein% Fe rtility 

Acc. Bias Acc. Bias Acc. Bias Acc. Bias Acc. Bias A cc. Bias 

GBLUP 0.13 0.58 0.21 0.59 0.15 0.71 0.39 0.61 0.50 1.32 0.22 0.96 

BayesR 0.35 1.31 0.22 0.77 0.24 0.92 0.40 0.61 0.53 0.86 0.27 0.97 

HyB_BR  0.28 0.74 0.36 0.70 0.26 0.74 0.47 0.66 0.53 0.88 0.27 0.95 

 Across breeds prediction on Australian red cows 

 Fat Yield Milk Yield Protein Yield Fat% Protein% F ertility 

 Acc. Bias Acc. Bias Acc. Bias Acc. Bias Acc. Bias Acc. Bias 

GBLUP 0.15 0.77 0.11 0.37 0.12 0.57 0.31 0.92 0.34 1.09 0.07 0.61 

BayesR 0.28 1.02 0.22 0.55 0.16 0.60 0.37 0.94 0.34 0.93 0.07 0.52 

HyB_BR  0.25 0.88 0.23 0.54 0.16 0.59 0.37 0.91 0.34 0.91 0.07 0.57 

The bulls and cows from two breeds of Holstein and Jersey are used as reference set to predict Australian red bulls and cows. 
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Table 6.5. The multi-breed prediction accuracy (Holstein and Jersey validation sets) and bias of GBLUP, BayesR, and HyB_BR with 

SEQ data and heat tolerance traits.  

 

Holstein and Jersey reference Prediction on Holstei n bulls 

Fat Milk Protein 

Acc. Bias Acc. Bias Acc. Bias 

GBLUP 0.35 1.47 0.24 0.84 0.32 1.24 

BayesR 0.35 1.05 0.29 0.88 0.33 0.92 

HyB_BR 0.35 1.05 0.28 0.86 0.33 1.01 

 

Holstein and Jersey reference Prediction on Jersey bulls 

Fat Milk Protein 

Acc. Bias Acc. Bias Acc. Bias 

GBLUP 0.33 1.25 0.37 1.11 0.35 0.72 

BayesR 0.27 0.89 0.46 0.89 0.35 0.76 

HyB_BR 0.27 0.88 0.46 0.89 0.35 0.77 

The bulls and cows from two breeds of Holstein and Jersey are used as reference set to predict Holstein bulls and Jersey bulls 
separately. 
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The impact of sequence data on the prediction accuracy of GBLUP, BayesR, 

and HyB_BR. 

  

Compared with 600K SNP panels, the impact of sequence data (SEQ) on the 

prediction accuracy of GBLUP, BayesR, and HyB_BR depended on trait and 

validation population (Figure 6.3). For the prediction of the validation sets of 

Holstein or Jersey bulls (which were closely related to the reference set), only 

small accuracy gain (1%~2%) was observed from using sequence data compared 

to using the 600K panel. However, for the validation set Australian Red bulls and 

cows, there was more advantage of using the sequence data, provided BayesR or 

HyB_BR were used. For example, the accuracy using BayesR and HyB_BR on 

sequence data was up to 13% higher than when the 600K SNP panel was used. 

In the same situation, GBLUP gave only a very limited increase (or even reduction 

for Fat Yield trait) when using the sequence data.  
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Figure 6.3. The prediction accuracy of GBLUP, BayesR, and HyB_BR on 600K 

and SEQ data related to three milk production traits including Fat Yield (A.), Milk 

Yield (B.), Protein Yield (C.), Fat Percent (D.), and Protein Percent (E.). 
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Inference of genetic architecture 

To infer the underlying genetic architecture, the proportion of SNPs contributing 

the total additive genetic variances was expressed as the posterior estimate of the 

proportion of SNPs in each of the three non-zero distributions (with the variance 

0.0001 ∗  ��, 0.001 ∗  ��, or 0.01 ∗  ��) relative to the total number of SNPs fitted in 

the model (Figure 6.4). Across all the traits, BayesR and HyB_BR gave a similar 

proportion of SNP in each distribution. For example, both BayesR and HyB_BR 

estimated a relatively larger proportion of SNPs in the largest distribution 

(0.01 ∗  ��; the red bars) for Fat percent and Protein percent than for the other 

traits. In detail, as shown in the Figure 6.4, the red bars for trait Fat percent is5.5% 

more than Fat yield, Milk yield, and protein yield; while on trait Fat percent, there 

is 5.8% more. Such inference agreed with the discovery of several mutations of 

moderate or large effects for the % traits, including DGAT1 (Grisart et al. 2002) on 

Chromosome 14 and GHR (Blott et al. 2003) on Chromosome 20.  

 

For fertility, HyB_BR and BayesR both gave estimates of a very large number of 

SNP in the smallest non-zero distribution, consistent with a highly polygenic 

architecture for fertility investigated by previous researches (Pryce et al. 2010; 

Sahana et al. 2011; Schulman et al. 2011). In addition, from Figure 6.4, we could 

detect some differences between HyB_BR and BayesR. For milk yield and protein 

yield, HyB_BR derived more SNPs in the distribution with variance 0.001 ∗  �� but 

a smaller number of SNPs in the distribution with very small variance 0.0001 ∗
 �� , than BayesR.  
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Figure 6.4. The genetic architecture of six traits inferred by BayesR and HyB_BR. 

The proportion parameter Pr is the proportion of SNPs in each of four possible 

normal distributions with variances (0, 0.0001 ∗ σû�, 0.001 ∗ σû�, 0.01 ∗ σû� ). Three 

bars with different colors label the proportion of SNPs contributing the total 

additive genetic variances, which is standardized from the proportion of SNPs per 

non-zero distribution relative to the total number of SNPs fitted in the model. 

 

QTL mapping 

For each trait, the top variants with highest posterior probability of being in the 

distribution with the largest variance (0.01 ∗  ��), and largest effects, from BayesR 

and HyB_BR were investigated.  
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QTL mapping for milk production traits and fertilit y. Table 6.6 listed all the top 

variants influencing milk production and fertility detected by BayesR and HyB_BR, 

which have also been demonstrated by previous studies (novel variants were 

described below). The top variants detected by both BayesR and HyB_BR (Table 

6.6) were in or close to many previously described causal mutations involved in 

milk productions. For example, in Table 6.6, there were some well-known 

mutations impacting milk fatty acid synthesis include DGAT1 (Grisart et al. 2002; 

Schennink et al. 2007; Schennink et al. 2008), FASN (Roy et al. 2006), SCD 

(Mele et al. 2007), PAEP (Ng-Kwai-Hang), AGPAT6 (Wang et al. 2012b; Littlejohn 

et al. 2014), and CNS2/3 (MacLeod et al. 2016). In addition, HyB_BR could detect 

some novel causal mutations including GC (encoding the vitamin D binding 

protein, affecting milk yield), SMEK1 (regulating the Insulin/IGF pathway, 

indirectly impacting milk production and fertility) and MYH9 (myosin, heavy chain 

9, non-muscle; impacting protein yield (Chamberlain et al. 2015; Raven et al. 

2015; MacLeod et al. 2016). In fertility, the causal mutations located on 

Chromosome 18 including (CTU1 and CEACAM18) detected by BayesR and 

HyB_BR had been demonstrated to significantly affect direct calving traits (Mao et 

al. 2015; Purfield et al. 2015).  
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Table 6.6. Known genes (impacting milk production traits and fertility) identified by HyB_BR using the variants with the largest 

variances 0.01 ∗  ��.  

Gene BTA 
Position 
(bp) 

Fat Milk Protein 
Fat
% 

Fertility Description 

ROBO1 1 26212317   �   

Roundabout, axon guidance receptor; Positively impacted the 

protein yield related to milk productions (Chamberlain et al. 2015; 

Raven et al. 2015). 

SLC37A1 1 144437682 � �    
Glucose transport, which negatively impacted the milk and Fat yield, 

but with higher Fat% and Protein% (Fritz et al. 2013). 

MYH9 5 75157624   �   

Myosin, heavy chain 9, non-muscle; Positively impacting the protein 

yield (Chamberlain et al. 2015; Raven et al. 2015; MacLeod et al. 

2016). 

CSF2RB 5 75736516 � �    
The JAK-STAT signal pathway, which strongly contributed the Milk 

and Fat yield (Chamberlain et al. 2015). 

LDHB 5 88975951     � 
lactate dehydrogenase B, the highest expression level on the 

lactation (Mishra et al. 2013). 

GYS2 5 89080460     � 

Involvement in glycogen biosynthesis, showing significant 

under-expression in mammary tissue (Hwang et al. 2012; 

Chamberlain et al. 2015). 
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MGST1 5 
93950493~ 

93954943 
� �  �  

Microsomal glutathione S-transferase, which was reported to 

negatively impact fat yield and fat% (Wang et al. 2012b; 

Chamberlain et al. 2015; Raven et al. 2015), but positively 

contributed milk yield. 

GRID2 6 32205789   �   

Encoding an ionotropic glutamate receptor, which impacted protein 

yield (Chamberlain et al. 2015; Raven et al. 2015; MacLeod et al. 

2016). 

GC 6 88741762  �   � 

Group-specific Component, encoding the vitamin D binding protein, 

which had been investigated to positively impact the milk yield 

(Raven et al. 2015). 

CSN2 6 87180731   �   Well-known casein gene cluster, strongly impacting the protein 

content of bovine milk (MacLeod et al. 2016). CSN3 6 87390576   �   

HSD17B3 8 84379597     � 
Hydroxysteroid–dehydrogenases, known to affect reproductive 

processes (e.g. steroidogenesis) (Cochran et al. 2013). 

PAEP 11 103303475  � � �  

The alias beta-lactoglobulin gene, encoding the primary whey 

protein of bovine milk. PAEP had been reported to had a large effect 

on protein yield and smaller effects on MY and Fat%(Ng-Kwai-Hang 

1997). 

SLC39A4 14 1716713 �  � �  
The member of the Zinc/Iron-regulated transporter-like family, 

encoding a zinc-specific transporter (Schmitt et al. 2009). In bovine, 

SLC39A4 affecting fat/fat percent and protein content of milk 
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productions (D'Alessandro et al. 2011) 

CPSF1 14 1726659 �     The gene near to DGAT1, impacting milk fat composition. 

DGAT1 14 
1801116~ 

1802266 
� � � �  

The diacylglycerol O-acyltransferase 1, well-known gene which had 

a large influence on the milk fat composition (Grisart et al. 2002; 

Schennink et al. 2007; Schennink et al. 2008). 

CTU1 18 
57521276~ 

57527946 
    � 

The missense variant, affecting direct carving difficulty (Purfield et al. 

2015). 

CEACAM

18 
18 57548213     � 

The member of the carcinoembryonic antigen (CEA) gene family, 

which had been reported to significantly affect direct calving traits 

(Mao et al. 2015). 

KRT19 19 42366926 �     

The member of a family of cytokeratins responsible for the structural 

integrity of epithelial cells. KRT19 was reported to indirectly affect fat 

content of milk yield (Chamberlain et al. 2015). 

FASN 19 51381233    �  
The multifunctional protein that carried out the synthesis of fatty 

acids highly affecting the fat milk content (Roy et al. 2006). 

GHR 20 31699535  �  �  
The growth hormone receptor, positively impacting the milk 

productions (Blott et al. 2003). 

SMEK1 21 56798101  � �  � 
The gene, regulating the Insulin/IGF pathway. SMEK1 had been 

investigate to indirectly impact the milk and protein content of the 

milk productions (MacLeod et al. 2016). Also, SMEK1 had been 
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demonstrated to regulate the differentiation of embryonic stem cells 

for fertility (Lyu et al. 2011). 

GMDS 23 51280200  �   � 

The enzyme GDP-mannose-4, 6-dehydratase, which was reported 

to indirectly impacting the milk production (Wickramasinghe et al. 

2011).  

SCD 26 21139935 �     

The stearoyl-CoA desaturase, which was in milk fat synthesis 

pathways and highly impacted the fat content of milk productions 

(Mele et al. 2007). 

GINS4 27 36155097    �  
Near to AGPAT6 gene, which had been reported to impact the Fat 

milk (Littlejohn et al. 2014; Raven et al. 2015).  

AGPAT6 27 36211252    �  

A family of 1-acylglycerol-3-phosphate acyltransferases (AGPATs), 

which had been reported to be strongly associated with high milk fat 

percentage (Wang et al. 2012b; Littlejohn et al. 2014). 

The blue bar highlights the genes that cannot be detected by BayesR in the proportion with the largest variances.
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Figure 6.5. Effects of all the variants on fat yield estimated from BayesR (A.) and 

HyB_BR (B.) according to their positions (base pairs) across the whole genome. 

The top SNPs with moderate to large effects are labelled with blue circle. 
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Figure 6.6. Effects of all the variants for milk yield estimated from BayesR (A.) and 

HyB_BR (B.) according to their positions (base pairs) across the whole genome. 

The top SNPs with moderate to large effects are labelled with blue circle. 
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Figure 6.7. Effects of all the variants for protein yield estimated from BayesR (A.) 

and HyB_BR (B.) according to their positions (base pairs) across the whole 

chromosome genome. The top SNPs with moderate to large effects are labelled 

with blue circle. 



 210 

 

Figure 6.8. Effects of all the variants for fat percent estimated from BayesR (A.) 

and HyB_BR (B.) according to their positions (base pairs) across the whole 

genome. The top SNPs with moderate to large effects are labelled with blue circle. 
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Figure 6.9. Effects of all the variants on fertility estimated from BayesR (A.) and 

HyB_BR (B.) according to their positions (base pairs) across the whole genome. 

The top SNPs with moderate to large effects are labelled with blue circle. 
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QTL mapping for Heat tolerance traits.  There were relatively little previous 

literatures reporting QTL for heat tolerance in cattle. A QTL (close to FGF4) 

(Hayes et al. 2009), later suggested to be SHANK2 by (Dikmen et al. 2015) was 

located at Chromosome 29 with the position 48329079 bp.  In our study, neither 

BayesR nor HyB_BR detected this gene with a high posterior probability of 

non-zero effect. In Figure 6.11, the gene SHANK2 was detected but not in the list 

of top causal mutations.  

 

To avoid the impact of several major causal mutations (e.g. DGAT1) affecting milk 

production traits, we first fitted these well-known variants including DGAT1, 

ROBOT1, PAEP, and MGST1 as fixed effects for our further investigation. Then, 

aiming at detecting all the top variants, the posterior possibilities of all the variants 

estimated by HyB_BR and BayesR were plotted across the whole genome in 

Figure 6.10, Figure 6.11, and Figure 6.12. In total, we found fourteen novel 

variants (Table 6.7), which were in response to heat tolerance in human or other 

species. There were several typical instances. YBEY (Rasouly et al. 2009; 

Grinwald & Ron 2013), located at BTA1 with the position 147710807 bp, has been 

reported to be important in Escherichia coli of human or other animals under 

heat-shock response. Two unknown genes locating at BTA2: 112901035 (near the 

region harbored by SERPINE2) and BTA22: 47737890 (near the region harbored 

by CACNA1D) have been reported to impact the sweating rate and respiration 

rate of dairy cattle (Dikmen et al. 2015). DYRK3 (The dual specificity 

tyrosine-phosphorylation-regulated kinase 3), has been proved to affect 

respiration rate (breaths per minute) in dairy cattle (Dikmen et al. 2015).  HSF1, 

heat shock factor protein 1, coordinated stress-induced transcription in Human 

(Rabindran et al. 1991). One single nucleotide polymorphism (SNP) in the 

3'-untranslated region (g.4693G>T) of HSF1 has been reported to be in 

association with thermo tolerance in Chinese Holstein cattle (Li et al. 2015). 
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STIP1, stress inducible protein 1, has been reported to be homologous to 

hsc70/hsp90 in human (Schmid et al. 2012). In mouse, STIP1 could play a key 

role on in the ability of germ cells to survive in stress conditions including high 

temperatures (Mizrak et al. 2006). Further investigation is required for all of these 

genes. 
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Figure 6.10. Mapping posterior probabilities of all the variants estimated from 

BayesR (A.) and HyB_BR (B.) according to their positions (base pairs) across the 

whole chromosome related to Fat yield affected by heat tolerance.  

The top SNPs with highest posterior possibilities are labelled with blue circle. 
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Figure 6.11. Mapping the posterior probabilities of all the variants estimated from 

BayesR (A.) and HyB_BR (B.) according to their positions (base pairs) across the 

whole chromosome related to Milk yield affected by heat tolerance.  

The top SNPs with highest posterior possibilities are labelled with blue circle. 
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Figure 6.12. Mapping the posterior probabilities of all the variants estimated from 

BayesR (A.) and HyB_BR (B.) according to their positions (base pairs) across the 

whole chromosome related to protein yield affected by heat tolerance.           

The top SNPs with highest posterior possibilities are labelled with blue circle
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Table 6.7. Known genes interacting with heat stress.  

Gene BTA Position 
Traits 

Description 
Fat Milk Protein 

YBEY 1 
14771080

7 
  � 

The translation-associated heat shock genes, playing key roles in the heat-shock 

response of E. coli under heat shock stress (Rasouly et al. 2009; Grinwald & Ron 

2013). 

Unknown 2 
11290103

5 
� � � 

In association with the gene SERPINE2, which had been proved to impact the 

sweating rate of dairy cattle (Dikmen et al. 2015) 

SOCS2 5 23522032 �   
Suppressor of cytokine signaling 2, might regulate with heat tolerance abatement 

during the dry period of dairy cattle (do Amaral et al. 2011). 

HSF1 14 1806291   � 
Genes involved in the bovine heat stress response (Collier et al. 2008; Li et al. 

2015). 

DYRK3 16 4288402 �   
The dual specificity tyrosine-phosphorylation-regulated kinase 3, impacting 

Respiration rate (breaths per minute) in dairy cattle (Dikmen et al. 2015) 

NFAT5 18 36897740   � 
Nuclear factor of activated T cells, simulating transcription of Heat shock protein 70 

(Woo et al. 2002). 

SSTR1 21 48804372   � 
Somatostatin receptor 1, played a role in heat stress sensing or communicating 

stress status between cells (Raychaudhuri et al. 2014). 

CACNA2

D3 
22 46612204   � 

Methylation of the Calcium Channel-Related Gene, showing impaired behavioral 

heat pain sensitivity in mice and human studies (Neely et al. 2010). 

MED17 29 1021424 �   The mediator mutant yeast, which was temperature-sensitive (Paul et al. 2015). 
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ME3 29 8968989  �  
Malic Enzyme 3, conferring heat-stable resistance to root-knot nematodes in plants 

(Djian-Caporalino et al. 2001). 

MACROD

1 
29 43097815 �   

Heat shock protein 90kDa alpha (cytosolic), class A member 1, which might be 

association with PAR (had been proved to function heat shock response) (Petesch & 

Lis 2012; Di Giammartino et al. 2013). 

STIP1 29 43108351 �  � 
Stress inducible protein 1, was homologous to the human heat shock cognate 

protein 70 (hsc70)/heat shock protein 90 (hsp90) (Mizrak et al. 2006). 

GSTP1 29 46094664 �   

Glutathione S-transferase Pi, which was reported to plays positive role under heat 

stress in controlling cellular toxicants and to alleviate the destructive effect on cattle 

(Rao et al. 2013). 

ATG2A 29 43751656   � 
Autophagy Related 2 Homolog A, which had been referred as the Heat 

Stress-repressed target genes by (Niskanen et al. 2015). 

All the listed genes are identified by HyB_BR using the variants with the largest variances 0.01 ∗  ��. 
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6.6 Discussion 

In this paper, we demonstrated that HyB_BR (Wang et al. 2016) could be 

efficiently implemented for simultaneous prediction of genomic estimated 

breeding values, inference of genetic architecture, and causal mutation discovery 

using whole-genome sequence data. As mentioned by Wang et al (2016), 

HyB_BR was developed to overcome two challenges:  

 

1) The heavy computation burden has been the main limitation of traditional 

MCMC Bayesian models to be applied to the whole genome sequence data with 

very huge data size. Therefore, Expectation-Maximization converge scheme was 

introduced to largely reduce the iteration times of MCMC. 

 

2) Fast schemes (mainly including Iterative Conditional Expectation, and 

Expectation-Maximization algorithms) implemented for Bayesian models has 

been criticized due to the accuracy limitation for practical application.  

HyB_BR implemented EM algorithm to quickly convergence for estimates of SNP 

effects and other parameters, followed by a limited number of MCMC iterations to 

optimize the posterior estimation for SNP effects. When implemented on the 

whole genome sequence data, our results indicated HyB_BR had similar 

accuracy of genomic prediction and precision of QTL mapping to BayesR 

implemented with full MCMC, but with 10 fold less computational time required. 

Furthermore, compared with the prediction accuracy on 600K SNP panels, we 

demonstrated that using the sequence data improved the accuracy of genomic 

prediction for some traits.  

 

The key improvement for computational efficiency was that HyB_BR reduced the 
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iteration times. BayesR required a huge number of MCMC iterations, which was 

dependent on the size of the data. For example, on the whole genome sequence 

data with 16,214 animals and almost 1 million of variants, 40,000 iterations with 

first 20,000 as burn-in were required. For each MCMC iteration, the basis 

operation times were |(R"�). In comparison with BayesR, HyB_BR kept the 

same number of basic operations. But after the EM converged (with very small 

number of iterations as demonstrated by Wang et al. (Wang et al. 2015)), 

HyB_BR implemented its MCMC iterations with speed-up schemes, which could 

reduce the iteration number to 4,000 iterations. Therefore, the main advantage of 

HyB_BR was to reduce huge amount of random-walking time of BayesR to very 

limited number. The results from Figure 6.2 provided the evidence that HyB_BR 

showed up to 10 orders faster than BayesR. 

 

In addition to the computational time, the prediction accuracy of HyB_BR for 

multi-breed prediction and across-breed prediction was very similar to BayesR for 

a range of traits with various genetic architectures, shown in Table 6.3, Table 6.4, 

and Table 6.5. The accuracy advantage of HyB_BR and BayesR over GBLUP for 

across-breeds prediction demonstrated the benefit of the non-linear Bayesian 

models. Also, increase in accuracy using whole genome sequence data for 

across-breed prediction confirmed the results from (MacLeod et al. 2016). That is, 

nonlinear model from Bayesian methods could take full advantage of the 

high-density data to predict the validation set, particularly when the predicted set 

was less related to the reference set.  

 

There was one difference between BayesR and HyB_BR for the inference of 

genetic architecture, Figure 6.4. In comparison with BayesR, HyB_BR 

systematically detected larger proportion of SNPs in the distribution with the 

variance 0.001 ∗  ��; while smaller proportion SNPs in the variance 0.0001 ∗  ��. 
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Such results suggested less from HyB_BR for a proportion of the SNP effects. 

Such difference mainly happened on the traits including Fat yield, Milk yield, and 

protein yield. One explanation was that the speed-up scheme from HyB_BR 

contributed this. In detail, during MCMC sampling, the speed-up scheme helped 

HyB_BR to quickly decide a large proportion of SNPs to be excluded out of the 

model. Then, for the remaining SNPs, MCMC iterations could more accurately 

estimate SNP effects instead of shrinking them too hardly. The evidence could be 

detected in the QTLs discovery. That is, less shrinkage feature of HyB_BR for 

variant effects might help to increase the power of causal mutations detection 

shown in Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8, and Figure 6.9. 

 

Also, QTL mapping performance of BayesR and HyB_BR was evaluated on traits 

with low heritability (heat tolerance and fertility). As been discussed by previous 

researches, heat stress (e.g. temperature, humidity) leaded to the reduction of 

milk production in dairy cattle (Hayes et al. 2003; Haile-Mariam et al. 2008; 

Nguyen et al. 2016). Therefore, the identification of mutations improving heat 

tolerance became a valuable field for investigation. Only two genetic variants 

(located at Chromosome 29), affecting milk production traits under heat stress, 

were previously detected (Hayes et al. 2009). Using sequence data, BayesR and 

HyB_BR did not find these two genes with strong signals. However, the two 

methods did pick up mutations in or close to twelve genes (e.g. YEBY, HSF1, 

DYRK3, MED17, ME3, STIP1, etc.), which have been investigated by previous 

studies to be in response with the heat shock stress in human, mice, or other 

species. In addition, HyB_BR also detected two other unknown variants. The 

position information from these two variants conveyed that they were very close to 

the regions harbored by two known genes (SERPINE2 and CACNA1D), which 

were investigated to impact the sweating rate and respiration rate in dairy cattle 

(Dikmen et al. 2015) . All these nine variants required the further investigation in 
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regards to their functions of regulation between milk productions and heat 

tolerance. 

 

In the future research, the speed-up scheme of HyB_BR requires more 

investigation for optimization. For the current stage, the threshold of the speed-up 

scheme (�(N, 1) ≥ 0.90) might not be perfect for different traits and genomic data, 

which will hinder its flexibility for different applications. Therefore, a reasonable 

rule to define the threshold is required.  

 

6.7 Conclusion 

A hybrid scheme of Expectation-Maximization algorithm and MCMC sampling was 

implemented on the whole-genome sequence data for simultaneous genomic 

prediction, inference of genetic architecture inference and causal mutation 

identification. The accuracy of HyB_BR for multi-breed and across breed 

prediction for all traits was very similar to the results from BayesR (implemented 

with full MCMC) while requiring only 1/10 of the total running time of BayesR. In 

addition, HyB_BR could identify some well-known mutations (e.g. DGAT1) with 

the highest posterior probability, which proved its power of QTL mapping in 

complex traits. In the near future, HyB_BR could be implemented on very huge 

size of genomic data for genomic prediction and QTL mapping.  
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Chapter 7   General Discussion 

7.1 Introduction 

The aim of this thesis was to develop a computationally efficient algorithm for 

genomic prediction with robust prediction ability for complex traits with varying 

genetic architectures. The study started with the development of the emBayesR 

method, which introduced a Expectation-Maximization (EM) algorithm to 

implement the BayesR mixture of normal models for genomic prediction (In 

Chapter 3). The emBayesR algorithm was extended to incorporate a polygenic 

term and the ability to appropriately weight bull and cow phenotypes (Chapter 4). 

With the extension, emBayesR was implemented on the combined reference sets 

from Holstein and Jersey, which was used to predict the breed within these 

breeds and a third breed. The results from both Chapter 3 and Chapter 4 showed 

that emBayesR performed well on most traits but not for the traits where there 

were mutations of moderate or large effects affecting the underlying genetic 

architectures. With the aim of improving prediction accuracy across the full range 

of genetic architectures, in Chapter 5 and Chapter 6, a scheme was developed 

which hybridized the EM algorithm with limited number of MCMC iterations, called 

HyB_BR. In Chapter 6, it was demonstrated that this scheme was fast enough to 

apply to whole genome sequence data, while maintaining the accuracy of a full 

MCMC scheme. 

7.2 The key findings 

Computation time 

The advantage of computational time of both emBayesR and HyB_BR could be 

easily detected through Chapter 3 – Chapter 6. All the methods of BayesR, 

emBayesR and HyB_BR required the same number of basic operations that was 
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|(R") for each loop. In other words, their time complexity was proportional to the 

number of markers (R ) times the number of individuals (" ). However, the 

difference happened with how many loops were required by each method. In 

detail, BayesR required 40,000 iterations with the first 20,000 iterations as burn in. 

For emBayesR, a very limited number (300~1,000 depending on the trait) of EM 

loops for the convergence was required (Chapter 3). Compared with emBayesR, 

HyB_BR needed the extra limited number of MCMC loops (around 4,000 

iterations) (Chapter 4), which made HyB_BR require longer time than emBayesR. 

Compared with BayesR (the full MCMC implementation), the main contribution of 

HyB_BR was that it reduced large number of burn-in iterations of MCMC sampling. 

In practice, when moved to genomic data with very huge size, BayesR, 

emBayesR, HyB_BR demanded quite different running time. The curves from 

Figure 7.1 were the predicted time for BayesR, emBayesR, and HyB_BR 

according to different number of markers with the same number of individuals. For 

example, on the 800K SNP panels, the running time was 24 hours for emBayesR 

and 29 hours for HyB_BR in comparison with 330 hours required by BayesR. And 

when moved to huge genomic data with 10 million of markers, it took BayesR up 

to 5,940 hours, whereas emBayesR required 370 hours with 480 hours for 

HyB_BR. Therefore, for such data, BayesR required extremely huge 

computational time, which was intractable for the practical application. Compared 

with BayesR, both emBayesR and HyB_BR improved the computational speed by 

up to 17 fold. The time difference between emBayesR and HyB_BR could be 

detected as well. However, when accounting for the trade-off between running 

time and prediction accuracy, we could easily accept minor increase of the 

running time by HyB_BR. 
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Figure 7.1. The predicted computational time required by BayesR, emBayesR 

and HyB_BR according to increasing number of markers with the same number of 

individuals (16,214) related to milk yield trait. 

 

Predicted Error Variance correction 

One key advance with emBayesR and HyB_BR was the introduction of prediction 

error variance (PEV) correction. Other fast methods (Meuwissen et al. 2009; 

Hayashi & Iwata 2010; Shepherd et al. 2010; Yu & Meuwissen 2011; Sun et al. 

2012) hypothesized that the estimations of other SNP effects were 100% correct 

during the estimation of current SNP effect, which was unrealistic. Therefore, one 

of motivation of emBayesR was to introduce the prediction error variance to 

correct the calculation for current SNP effect. In theory, PEV correction should 

happen during each EM loop. That was, before the estimation of each SNP effect, 

the PEV matrix needed to be generated according to the estimated effects of all 

other SNPs. Such strategy could be very time consuming. To avoid the huge 

computational burden from the above theoretical PEV correction, there was 

another type of strategy, which approximated the PEV calculation (from GBLUP 
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models) in front of EM loops. Such approximate steps of PEV correction had been 

detailed in Chapter 3 and Chapter 5. The results from Chapter 3 had 

demonstrated the improvement of the PEV correction as shown in Table 3.5. The 

prediction accuracy could be improved up to 6% by the PEV calculation. The 

shrinkage feature illustrated from Figure 3.5 could explain this. In detail, 

compared with estimates of SNP effect from BayesR, emBayesR without 

accounting for PEV considerably shrunk SNP effects (particularly for small 

effects). However, with PEV correction, estimates of SNP effects with emBayesR 

were much closer to those from BayesR, although there was still some 

over-shrinkage, particularly for SNPs with small effects.  

 

The other finding from the results of Chapter 3 and Chapter 4 was that the 

optimization steps of PEV correction were not perfect enough. On the traits 

controlled by major mutations (e.g. Fat%), emBayesR (also including the 

extension models in Chapter 4) had up to 5% accuracy reduction in comparison 

with BayesR (Table 4.4-Table 4.5). As demonstrated in Chapter 4, the extended 

emBayesR with PEV correction still over-shrunk SNPs with small effects too 

heavily especially on the bigger size of data incorporating multi-breeds of animals. 

The finding related to the deficiency of PEV correction was the reason that we 

introduced Hybrid schemes to improve the prediction performance of emBayesR 

(Chapter 5 and Chapter 6). 

 

The prediction accuracy of HyB_BR in comparison with emBayesR, BayesR 

and GBLUP. 

 

The performance of HyB_BR was evaluated by comparing the prediction 

accuracy between HyB_BR, emBayesR, BayesR, and GBLUP on two situations 

(Chapter 4, Chapter 5 and Chapter 6). On the one hand, the combined Holstein 
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and Jersey reference sets (separately genotyped with 800K SNP panel and whole 

genome sequence data) were used to predict the Holstein or Jersey bulls, termed 

as multi-breed prediction. On the other hand, the combined reference of Holstein 

and Jersey was also used to predict the other breed (Australian Red bulls), which 

was termed as across-breed prediction. The results demonstrated the following 

conclusions: 

 

 1) For multi-breeds prediction, GBLUP gave a consistent accuracy reduction 

(up to 11%) when compared with BayesR, emBayesR, and HyB_BR for the milk 

production traits. Especially for the traits such as Fat%, GBLUP showed much 

lower prediction accuracy than BayesR, emBayesR, and HyB_BR. This result 

conformed to the conclusions from other studies (Kemper et al. 2015; MacLeod et 

al. 2016). When performed for across-breed prediction, BayesR and HyB_BR 

gave higher accuracy (up to 18%) than GBLUP for all traits. Such results 

confirmed the hypothesis that the linear combination of SNPs from GBLUP could 

be easily broken down when the prediction happens between the breeds, which 

were distantly far from each other. 

 

 2) EmBayesR had 2%~7% reduction in accuracy compared with BayesR and 

HyB_BR for fat%. As mentioned before, the heavy shrinkage feature of 

emBayesR contributed this.  

 

 3) The comparison of the results between BayesR and HyB_BR showed that 

the prediction accuracy of HyB_BR was comparable to BayesR on all the cases. 

In detail, Both BayesR and HyB_BR were implemented on a range of traits with 

different heritabilities including milk production, fertility and heat tolerance traits in 

cattle. That was, there were higher heritabilities (ranging from 33% or 45%) in milk 

production traits, compared with the fertility (only having 3% heritability) and heat 
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tolerance (around 5%~9% heritabilities). Furthermore, the underlying genetic 

architectures of Fat% and all other traits varied. In detail, for most of the traits (e.g. 

milk yield, protein yields), the genetic architectures were decided by a number of 

variants with moderate or small effects. In comparison with the above traits, Fat% 

was controlled by one well-known major gene (DGAT1) with very large effects. 

Rather than the accuracy reduction of emBayesR on the trait Fat%, the results 

from HyB_BR demonstrated that HyB_BR could perform as well as BayesR on all 

these traits including Fat%, which demonstrated that HyB_BR was flexible for 

various applications. 

 

 4) Increasing the number of animals (multi-breeds reference sets) could had 

small but consistent accuracy improvements, in accord with the results from 

previous researches (Hozé et al. 2014; Kemper et al. 2015). 

 

Furthermore, in addition to the prediction on the continuous quantitative traits of 

dairy cattle, the investigation on the risk prediction of seven case/control human 

diseases with binary 0/1 phenotypes showed HyB_BR and BayesR performed 

equally well. Moreover, for the traits (e.g. CD, RA, and T1D), HyB_BR and 

BayesR outperformed GBLUP with higher accuracy. 

 

The impact of the sequence data in comparison with 800K SNP panels 

 

The results from Chapter 6 demonstrated the impact of the sequence data. For 

the prediction of the validation sets Holstein or Jersey bulls using combined 

Holstein and Jersey reference sets, there was minimal accuracy gain (1%~2%) 

when implementing both BayesR and HyB_BR on the sequence data. However, 

for the validation set Australian Red distantly far from the reference set, both 

BayesR and HyB_BR could take full advantage of sequence data to improve the 



 229 

prediction accuracy. In detail, the accuracy using BayesR and HyB_BR on 

sequence data was up to 13% higher than on 800K SNP panels. On the same 

situation, GBLUP could only had very minimal increase (or even reduction for Fat 

Yield trait) when using the sequence data. One explanation was that the linear 

combination of BLUP model shrunk all the SNPs with small effects, which 

therefore did not allow true causal mutations to had large effects, while some 

others had zero effects. On the high-density SNP panels (e.g. 800K) or whole 

genome sequence data, it was unreasonable for BLUP model to define all the 

SNPs with small effects. Therefore, a number of such little errors from BLUP 

models added up to the reduction in prediction accuracy. 

 

The causal variants discovery across 800K SNP panel and whole genome 

sequence data 

 

Both BayesR and HyB_BR could calculate posterior possibilities for each SNP 

effect following in the distribution with largest variance. Therefore, they could 

easily be used to pick up top SNPs with large effects. HyB_BR and BayesR were 

implemented on both 800 SNP panels (in Chapter 5) and whole genome 

sequence data (in Chapter 6) for QTL mapping. The top SNPs with highest 

non-zero posterior possibilities were picked up.  

 

In regards with causal mutation identification, there were several key findings: 

1) In comparison with BayesR, HyB_BR showed the similar precision of 

detecting the causal mutations in or near known genes affecting milk production, 

fertility, and heat tolerance. In addition, when compared with BLUP models, both 

BayesR and HyB_BR were more powerful to detect some causal mutations, 

which were in the region of some famous genes. For example, both BayesR and 

HyB_BR found the variant located at 103302351 of Chromosome 11, which was 
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in the region of well-known gene PAEP impacting milk yield and protein yield 

(Chapter 6).  

 

2) The QTL mappings of BayesR and HyB_BR on 800K SNP panels and 

imputed sequence data (Chapter 5 and 6) demonstrated that BayesR and 

HyB_BR could detect many causal mutations on the sequence data, which did not 

appear on the 800K SNP panels. For example, for several causal mutations in the 

region of famous genes including CSN2/CSN3 (MacLeod et al. 2016), KRT19 

(Chamberlain et al. 2015), FASN (Roy et al. 2006), and SCD (Mele et al. 2007), 

which had been proved to impact the milk production traits by previous studies, 

HyB_BR and BayesR could detect them from whole genome sequence data but 

not from 800K SNP panels. 

 

3) Another important discovery was that HyB_BR and BayesR could detect 

nine novel variants affecting milk productions but also being in response with heat 

tolerances. One of them (HSF1 at Chromosome 14 with the position 1806291) 

had been reported to be associated with heat tolerance in Chinese dairy cattle (Li 

et al. 2015). DYRK3 (Dikmen et al. 2015) was reported to affect Respiration rate 

(breaths per minute) in dairy cattle. Two variants with unknown names might be 

associated with two genes (SERPINE2 and CACNA1D), which had been reported 

to impact the sweating rate and respiration rate of dairy cattle (Dikmen et al. 2015). 

Six other variants including YEBY (Rasouly et al. 2009; Grinwald & Ron 2013), 

MED17 (Paul et al. 2015), ME3 (Djian-Caporalino et al. 2001), MACROD1 

(Petesch & Lis 2012; Di Giammartino et al. 2013), STIP1 (Mizrak et al. 2006), and 

ATG2A (Niskanen et al. 2015) and had been detected to be in response with heat 

shock stress in human, mice or other species. Nevertheless, none of these genes 

was previously reported to impact milk production traits in dairy cattle. Therefore, 

the results might be valuable in the further studies for detecting the function of 
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these variants in the interaction between milk production traits and heat shock 

stress of dairy cattle. 

7.3 Future investigation 

In the near future, optimally using whole genome sequence data with millions of 

variants and increasing number of individuals for genomic prediction would 

benefit from the following research regarding to three aspects: 

 

1) Incorporate the biological priors into the model. To date, Macleod et al., 

(2016) developed a new method (termed BayesRC) to group markers into two or 

more categories according to their biology properties (i.e. variant annotation, 

candidate gene lists and known causal variants). Then, BayesRC implemented a 

similar approach to BayesR with a uniform prior, but processing each category 

independently across the MCMC iterations. The results demonstrated the 

accuracy improvement of BayesRC in comparison with BayesR, especially when 

the reference sets for genomic prediction were not closely related to the validation 

sets. And, it had been detected that the combination of biological information 

could help to improve the precision of causal mutations identification. Therefore, 

we had confidence that incorporating biological information into HyB_BR models 

could help to improve the prediction performance of HyB_BR. 

2) Apply HyB_BR for multi-traits genomic prediction. A number of previous 

researches (Calus et al. 2008; Hayashi & Iwata 2010; Aguilar et al. 2011; Jiao et al. 

2012; Schulthess et al. 2016) on multi-traits genomic predictions aimed to 

improve the prediction accuracy of the traits, which were difficult or expensive to 

record. In cattle, some economically important traits (e.g. Feed efficiency) were 

quite hard to be recorded due to the properties, which were sex-linked or 

expressed late in life. To improve the prediction accuracy of these traits, multiple 

traits (in genetically relationship) prediction could be used. In practice, the results 
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from previous researches provided the evidence that the multiple traits based 

genomic prediction could improve the prediction accuracy of rarely recorded traits 

(with missing phenotypes). In addition, HyB_BR implemented for multi-traits 

prediction could be even more usefully when including gene expression (RNASeq 

data) or protein expression as additional traits. 

3) Speed up HyB_BR even further. As genomic data increases to very huge 

size (especially the dramatically growing number of individuals), HyB_BR might 

also be threatened with heavy computational problems in terms of computational 

time and memory cost. The key part was due to the calculation of 

GQ(ëD}%;%;°ëD}�ë()) (linearly scaled on the number of markers and quarterly on 

the number of individuals), which account for more than half of the total running 

time of EM module. Therefore, one further investigation was to implement 

HyB_BR with multi-threaded programming technology. Actually, some 

investigations at testing stage had already been conducted in our research team. 

7.4 Conclusions 

The main outcome of this thesis was the design and development of a 

computationally efficient and robust method (HyB_BR) for the prediction on 

unknown phenotypes, genetic architecture dissection, and genes identifications. 

The computational time demonstrated HyB_BR could be more than 17 times 

faster than BayesR. The prediction accuracy of HyB_BR across a wide range of 

traits covering milk productions, fertility, and heat tolerance proved that HyB_BR 

could perform as well as BayesR. In addition, the gene identifications of HyB_BR 

on all the above traits also demonstrated the precision of HyB_BR for QTL 

mapping. In summary, the efficient speed, flexible prediction performance, and 

precise QTL mapping all shed light on the application of HyB_BR to the 

whole-genome sequence data with very large number of variants and animals.  
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Chapter 8   Appendix I 

(For Chapter 2) 

8.1 File S1 - Non Bayesian Penalized regression and  

orthogonal linear regression models for genomic 

prediction 

Penalized regression, of which Least Angle Regression (LAR) was the most 

widely used (Usai et al. 2009) shrinks the estimation towards zero or other fixed 

points when minimizing the residual sum of squares. For example, the least 

absolute shrinkage and selection operator (LASSO), a variant of LAR, implements 

the LARS algorithm to estimate SNP effects, subsequently followed with a 

cross-validation step to select the best subset of SNPs (Usai et al. 2009). Unlike 

BLUP, LASSO sets a subset of SNPs to had zero effects while others have effects 

shrunk towards zero. For traits where there are some mutations of large effect, 

LASSO could result in a higher accuracy of genomic prediction. However, when 

the number of markers dramatically exceeds the number of records, LASSO loses 

its superiority over BLUP (Usai et al. 2009). The LARS algorithm is also 

computationally very intensive, making it impractical for large data sets.  

 

Similar to BLUP models, orthogonal linear regression models (Jannink 2010; 

Macciotta et al. 2010; Colombani et al. 2012) are also linear models, in that the 

predicted breeding values or future phenotypes are linear combinations of effects. 

However, rather than considering individual markers as in the BLUP models, 

orthogonal linear models regress the phenotypes on linear combination of 

“components”, constructed from the markers. In detail, there are two key steps for 

orthogonal linear regression methods: 1) build orthogonal linear combinations (the 
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components) of the markers according to the correlation among the markers, or 

among the markers and the phenotypes; 2) regress the phenotypes on to a small 

number of the above linear combinations. Principal component (PC) (Solberg et al. 

2009) and Partial Least Squares (PLS) (Colombani et al. 2012) are two typical 

approaches of orthogonal linear regression models, and both have been used for 

genomic prediction. The main difference between them is the way in which the 

orthogonal linear combinations are constructed. Specially, PLS builds the 

combinations using the markers in a maximum correlation with the phenotypes. 

PC derives the components by calculating the eigenvalues or the regression sum 

of square (SS) contribution from the genotype data. The orthogonal linear 

regression approaches reduce the dimensionality of genomic data, and therefore 

improve the computational efficiency of genomic prediction. However, the 

dimensionality reduction could cause some loss of genomic prediction accuracy. 

As the density of genomic data increases, the potential advantage of selecting 

individual SNP in higher linkage disequilibrium to use in the genomic prediction 

equation might be lost in the PLS or PC approaches (Solberg et al. 2009; 

Colombani et al. 2012). Further investigation is required before applying these 

approaches to higher density SNP data or whole genome sequence data. 

8.2 File S2 - The description of the model and prio r 

density function 

In genomic prediction, all the SNPs were fitted simultaneously:  

	 =  � + %& + � 

Where, 	 was the " × 1 vector of phenotypes, " was the number of individuals; 

    � was the mean; 

 & was the R × 1 vector of SNP effects, R was the number of SNPs; 

 � was " × 1 vector of random residual error terms, following the distribution 

�~5(0,  ��), where  �� was the error variance.  
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  % was the " × R matrix of standardised genotypes, where the genotype for 

the ith individual at the jth SNP, xij was coded as 0=aa, 1=Aa,2=AA, where a and A 

were the two alleles at the SNP, and genotypes were standardized as TA¼Z �BUD�kB�kB(VDkB, 
where pi was the allele frequency of the ith SNP. 

 

For the prior density function !(&), the prior density function !(u8|9, ⋯ ) for each 

SNP i conditional on the hyper parameters could be represented as: 

!(1A|9) = V5<1A=0,  6B� @!< 6B� =9@!(9)0 6B�  

where, 5<u8=0, σ>?� @ was the prior normal distribution of SNP effects conditional 

on its variance σ>?� ; 

   !<σ>?� =9@ was the prior distribution for the variance of SNPs conditional on its 

hyper parameters 9; 

   !(9) was the density function of the hyper parameters set 9. 

 

The density function !(u8|9, ⋯ ) encompasses three stages of prior assumption 

detailed in Table 2.1: 

 

1) The first stage defines the normal prior for each SNP effect (where each SNP 

was assumed to come from a normal distribution with it’s own variance) 

conditional on the genetic variance σ>?� , which could be written as 5<u8=0, σ>?� @. 

The difference between BLUP and Bayesian alphabet families happens at this 

stage. In detail, BLUP assumed the common genetic variances σ>?�  across all the 

SNPs written as σ>?� = σ>W� = σ>� . On the contrary, Bayesian alphabet families 

assign the variance σ>?�  specific to each SNP N or each group of SNPs.  

 

2) The second stage (applicable for Bayesian regression model) relates to the 
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density function !<σ>?� =9@  which defines the variance σ>?�  conditional on the 

hyper parameters 9. Different assumption for the distribution of the variances 

!<σ>?� =9@ generate a range of Bayesian regression models. For example, BayesA 

assumed that the variance σ>?�  for each SNP was independently draw from the 

inverted chi-square distribution, resulting in a Students t distribution at the level of 

the SNP; BayesB assumed the small proportion (π) of the variance σ>?�  with 

inverted chi-square distribution while allowing others to be zero (1-J). 

 

3) For the third stage (only used in a small number of Bayesian genomic 

prediction models to date), the density function !(9)  defines the prior 

distributions of hyper parameters for the variance. For example, BayesD, which 

could be treated as a modified BayesB method, assumed the hyper parameter F 

follows gamma distribution. 

 

With the above three-stage prior assumption, the conditional density function 

!(u8|9, ⋯ ) conveys two types of information: the proportion of SNPs effects 

around zero area and the kurtosis feature of the density (the thickness of the tail). 

Such information from the priors classifies the Bayesian regression models into 

four groups shown in Figure 2.2: normal priors (black dotted curve; e.g, BLUP), 

thick tail such as t distribution (red curve; e.g. BayesA), Spike-around-zero & 

slabs such as the mixture of two normal priors with small variances (small but 

nonzero) and relatively large variances (green curve; e.g. BayesSSVS), and 

Spike-at-zero &Slabs such as the mixture distributions with zero variances and 

non-zero variances (purple curve; e.g. BayesB/BayesR).  
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8.3 File S3 - An example of deriving the conditiona l prior 

density function 

BayesA (Meuwissen et al. 2001) assumed two stages prior assumption for SNP 

effects shown in Table 2.1: 

1A~N(0, σ>?� ), σ>?� ~χD�(E, S�) with fixed hyper-parameters v, S. 
 

Then, the prior density function !(u8|v, S) for BayesA could derived according to 

the following steps: 

    !(1A|E, F) = . 5<1A=0,  6B� @!< 6B� =E, S�@0 6B�hXÕ  

     ∝ . ( 6B� )D¡g × exp (− 6Bg
��YBg ) × ( 6B� )DVDZg × exp (− �[g

��YBg ) hXÕ )0 6B�  

     ∝ . ( 6B� )DVDZÉ¡g exp (− 6Bgh�[g
��YBg ) hXÕ  

     ∝ (1 + �YBg
�[g)DZÉ¡g  (the t distribution density) 

 

Based on the above deriving process, the conditional prior density of BayesA on 

the hyper-parameters follows a t distribution G(1A|0, E, F). 

8.4 File S4 - The detailed fast version of Bayesian  

algorithms 

VanRaden et al. (VanRaden 2008) proposed the methods termed nonlinear A and 

B to mimic the nonlinear shrinkage of BayesA and BayesB. Jacobi iteration was 

implemented on nonlinear A and B to be approximations of BayesA and BayesB.  

 

Meuwissen (Meuwissen et al. 2009) described a method termed fastBayesB by 

using ICE in the BayesLASSO model. FastBayesB iteratively calculated each 

SNP’s posterior mean, conditioning on current estimates of all the other SNPs as 
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if they were true effects. With the same Bayesian model, a method dubbed 

EmBayesB applied an expectation- maximization (EM) algorithm by  maximizing 

a joint posterior probability based on the prior distribution of SNP effects.  

 

Hayashi and Iwata (Hayashi & Iwata 2010) proposed the method termed em_BSR, 

which introduced SNP weights to define the association between SNP and the 

traits. Then, treating such association as missing data, em_BSR performed partial 

maximization so as to implement EM for both BayesA and BayesB models.  

 

Yu and Meuwissen (Yu & Meuwissen 2011) described a method termed MixP, 

which first used the pareto principle method (80:20 rules) to define the mixture of 

two normal distributions with big and small variance (similar to BayesSSVS 

models). Then under such mixture prior, MixP implemented the ICE algorithm to 

approximate the mean of the SNP effects. 

 

Sun et al. (Sun et al. 2012) developed fastBayesA, which implemented an EM 

algorithm instead of MCMC on the BayesA model. Unlike other EM methods, 

fastBayesA  maximized the posterior estimation for all the SNPs simultaneously 

using BLUP model.  
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Chapter 9   Appendix II 

(For Chapter 3) 

9.1 File S1– Calculation of �;� = �(�;�|	, ��¤�) 

In the expectation step of the EM algorithm we require the Eb|y of equation 6b. 

This requires the �(�;�|	, ��¤�) which was derived in this appendix. 

The model was 	 = }~μ+ %8g8 + & + �,  

Then, 

  �&(b8è|	, Pr¤�)  =  !<b8è = 1=	, Pr¤�@ 

     = k(	|]?^ZV)×k<]?^ZV|ÆÇ¤�@k(	)  

     ∝  !(	|b8è = 1) × !<b8è = 1|��¤�@      (A1) 

       

where, 

!<b8è = 1|��¤�@ = ��¤� , and  

!(	|b8è = 1) = ¡
c=í�=ú_` ( − ¡g(	 − }~μ− &)′íèDV(	 − }~μ− &)),  

so ]PT!(	|b8è = 1) =  −0.5 ( ]PT|íè| + ((	 − }~μ − &)°íèDV(	 − }~μ− &)) 

based on (y − }~μ− &)|(b8è = 1)~N(0, í�), and í� = %;%;′σè� + �σú�. 

 

Therefore,  

]PT]A� = ]PT !<b8è = 1=	, Pr¤�@ = ]PT!(	|b8è = 1) + ]PT!<b8è = 1|��¤�@ + [P"²GU"G 

The [P"²GU"G  appears on both denominator term and numerator term of 

equation (A7), and therefore could be ignored.  

 

The expression above for ]PT!(	, |b8è = 1) involves the unknown &. Therefore, 

we take the expectation over &|	. That was,  

]PT!(	|b8è = 1) = −0.5�&|	�]P T|íè| + (	 − }~μ− &)′íèDV(	 − }~μ− &)� 
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Only the quadratic form a = (	 − }~μ− &)°íèDV(	 − }~μ − &)  of 

]PT!(	|b8è = 1) involves &. Therefore, apply Searle’s expectation rule for a as 

follows:  

E&-a = (	 − }~μ− &-)°íèDV(	 − }~μ− &-)+tr(íèDV�I&((&-)) 

 

Hence, ]PT!(	, |b8è = 1) = −0.5{]P T|íè| + E&-a}        

     = −0.5�]P T|íè| + 	Ã�íèDV 	Ã + tr(íèDV�I&((&-))� 
where, 	Ã = (	 − }~μ− &-).  

 

Although íè was a " × " matrix. the calculation of ]PT|íè| and íèDV could 

be simplified by using the Woodbury identity so that 

íèDV = <%;%;′σè� + �σú�@DV = σúD� �L − %;%;�ñĝ
ñĝ%;�%;hñ�g�          (A2)       

      |íè| = σú(�AD�)(σè�%;°%; + σú�),  

so, 

 ]PT|íè| = (2n − 2)lo g σú� + ]PT<σè�%;°%; + σú�@                           (A3) 

 

Such transformation could transfer the inverse calculation of a large matrix íè to 

the multiplication of the vectors, which could reduce the cost for matrix 

calculation.  

 

Therefore, substitute (A3) and (A4) into ]PT!(	|b8è, &-) as follow: 

]PT!(	|b8è = 1) = −0.5�(n − 1)lo g σú� + log<σè�%;°%; + σú�@� 
    −0.5 %<	∗�	∗@σúD� − <	∗�%;@�σè�σúD� <σè�%;°%; + σú�@b ) 

       −0.5�tr<PEV(&-)@σúD� − tr<%;%;°PEV(&-)@σè�σúD� <σè�%;°%; + σú�@b �             (A4) 

 

Then, 

]PT]A� = ]PT!(	|b8è = 1) + ]PT!<b8è = 1|��¤�@ 
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  = ]PTPrè − 0.5{2(n − 1)lo g σú� + log V} 
  −0.5 %<	Ã�	Ã@σúD� − <	Ã�%;@�σè�σúD� &b ) 
     −0.5�tr<PEV(&-)@σúD� − tr<%;%;°PEV(&-)@σè�σúD� &⁄ �                                                     ( A5)               

where, 	Ã = 	 − }~μ− &-, & = σè�%;°%; + σú�  and n was the number of animals. 

PEV(&-) (" × " symmetric matrix) could be approximated by PEV(u∗¥ ) as derived 

in File S2 (Chapter 10  ) and could be calculated based on GBLUP, outside the 

iterations of EM algorithm. The term tr<%;%;°PEV(&-)@  means to add up the 

diagonal elements of symmetric matrix. In other words, we just need to calculate 

and then add up the diagonal elements of the multiplication of %;%;° (also a " × " 

symmetric matrix) and PEV(&-). Because tr<%;%;°PEV(&-)@ and tr<PEV(&-)@ did not 

change each iterations, they could be calculated once and stored in front of the 

EM steps. 

 

With the expression for logl8è =  ]PT!<b8è = 1=	, ��¤�@, we could now calculate the 

probability that each SNP was in one of four normal distributions: 

�A� = �&<b8è=	, Pr¤�@ = ú_`(pq�pB�)∑ ú_`(pq�pB�)Â�È¡                               (A6)            
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9.2 File S2– PEV calculation from GBLUP 

In the EM algorithm, we would need the prediction error variance of &- (PEV). &- 

is the sum of the estimated effects of all the SNP multiplied by the genotypes for 

each animal but we approximate its PEV by assuming it is normally distributed 

and therefore could be calculated by the GBLUP model. That was, 

 

For n animals, the phenotype could be modelled as a simplified model: 

	 = }~μ+ &∗ + � 

Where, �~N(0, �σú�) 

 &∗ is the breeding value for all of the animals(&∗ = %�), &∗~5(ä, ùσû�). 

Here G is the genomic relationship matrix (Yang et al. 2010), written as ù = cc�d , 

with e�÷ = f�÷DkB�� ∑ kB(VDkB)g , R is the number of SNPs, and !A is the frequency of the 

second allele “1” for SNP N.  

Then, the prediction error variance of &∗¤ is: 

PEV(&∗¤) = Var(&∗ − &∗¤) = (ùDVσûD� +  �σúD�)DV               (A7)          

 

In emBayesR, we also use the model 
	 = }~μ+ & + Z8g8 + � 

Where & = &∗ − Z8g8. But we assume PEV(u') = PEV(u∗¥ ). In fact, u∗ differs from 

u. That is, u∗ includes the effect of the current SNP (Z8g8) whereas u does not. 

Consequently, PEV (u') < PEV(u∗¥ ) . However, the difference should be small 

because the effect of each SNP is small and the estimated effect is even smaller 

because it is shrunk especially in the GBLUP model. 
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Chapter 10   Appendix III 

(For Chapter 5) 

File S1 - PEV calculation from GBLUP 

The prediction error variance PEV(�∗) was derived using GBLUP under the data 

model as follows: 

	 = ì� + &∗ + í� + �, 

here, &∗ = %�, &∗~5(0, ùσ��) . In theory, �∗ = � + %8g8 , therefore, PEV(�∗) ≠
PEV(�). However, the difference should be small since the estimated effect from 

GBLUP model was shrunk to very small number. Therefore, PEV(�) could be 

treated as the approximated calculation of PEV(�∗). 

 

The calculation of PEV(�) was described as follows: 

PEV(e) = Var(� − �') = Var(� − g°(D}	) 
where,  (  was the variance of phenotype 	 ; ( = ù° + ¹ + g  ( ù°  was the 

variance and co-variance matrix of &  by SNPs, ¹  was the variance and 

co-variance matrix by polygenes, R was the variance and co-variance error 

matrix). 

 

Therefore,  

 PEV(�) = Var(� − g(D}	) 

  = Var(�) + Var(g(D}	) − 2cov(&,g(D}	) 

  = g + g(D}Var(	)(D}g− 2g(D}h+�(&, 	) 

  = g + g(D}g− �g(D}g 

  = g − g(D}g 

  = [(¹ + ù°)D} + gD}]D} 

Substitute it with ù° = ùσ��  ,g = ëσ��, ¹ = òσó�  , we get: 
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PEV =  (ëDVσúD� + (ùσû� + òσ��)DV)DV      (S1)        

Afterwards, such PEV matrix would be used in File S2 (Chapter 10  ). 

File S2 - Calculation of �(;, �) 

The parameter �(N, �) defines the probability that each SNP N follows in the �Äf 

normal distribution (� = 1,2,3,4) conditional on the data. An important part of the 

EM algorithm for the mixture BayesR model was estimating: 

�(N, �) = !(�(N, �) = 1|	, �Q� , σ��, �, �). 

Suppressing the parameters not involving �(N, �), we get: 

 �(N, �) = !(�(N, �) = 1|	, �Q� , σ��, �, �) 

  ∝ !(�(N, �) = 1|	, �Q�) 

   ∝ !(	|�(N, �) = 1)!(�(N, �) = 1|�Q�) 

Under the model (1a), we introduce the “missing data” ^∗ = 	 − X� − & − í� =
%;TA + ^ . Therefore, ^∗~5(0,  ý� ), with ý� = %;%;′σ�[�] + ëσú� . The posterior 

expression of �A� could be rewritten as: 

�(N, �) ∝ !(^∗|�(N, �) = 1)!(�(N, �) = 1|�Q�) 

]PT�(N, �) = ]PT!(^∗|�(N, �) = 1) + ]PT!(�(N, �) = 1|�Q�) 

     = −¡g(]PT|ýè| + (^∗)′ý�DV ^∗ + ]PT�Q�) 

Take expectation of ]PT�A� regarding the missing data ^∗ as follows:  

I�∗]PT�(N, �) = −¡g(]PT|ýè| + (^∗)′ý�DV ^∗ + tr(ý�DVPEV(^∗)) + ]PT�Q�).  (S2)   

Here, ý� = %;%;′σ�[�] + ëσú�, PEV(^∗) was estimated in the File S1(Chapter 10  ). 

According to the Woodbury Identity theory, the calculation of the equation ý�DV 

and ]PT|ý�| could be simplified as 

ý�D} = (%;%;°σA�[�] + ë���)D} = ��D� ¶ëD} − ëD}%;%;°ëD}σA�[�]σA�[�]%;°ëD}%; + ���· 

]PT|ý�| = (n − 1)lo g σú� + log |ë| + ]PT(σA�[�]%;°ëDV%; + σú�) 

Therefore, the equation (S2) could be simplified as:  
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I�∗]PT�(N, �) = ]PTPrè − ¡g{(n − 1)lo g σú� + log|ë| + log(σA�[�]%;°%; + σú�)}  −
¡g %<(^∗)°ëË}�∗@σúD� − <(^∗)°ëË}%;@�σA�[�]σúD� (σA�[�]%;°ëD}%; + σú�)b )    

−¡g{tr(ëD}PEV(^∗))σúD� − tr(ëD}%;%;°ëD}PEV(^∗))σA�[�]σúD� (σA�[�]%;°ëD}%; + σú�)⁄ }  

(S3) 

Then, �(N, �) = ^®! (I�∗]PT�(N, �)) ∑ ^®! (I�∗]PT�(N, �))X�ZV2 .                (S4)
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