
Distribution-Free Confidence

Intervals for

Functions of Quantiles

Submitted by

Chandima N.P.G. Arachchige

Bachelor of Science (Honours)

A thesis submitted in total fulfilment

of the requirements for the degree of

Doctor of Philosophy

School of Engineering and Mathematical Sciences 

College of Science, Health and Engineering

La Trobe University

Victoria

Australia

December 16, 2019



Contents

List of Figures v

List of Tables vi

List of Publications vii

Acknowledgements viii

Statement of Authorship ix

Abbreviations x

Summary xii

I Introduction 1

1 Background 2

1.1 Comparing location and scale of two independent populations . . . . . . . 3

1.1.1 Comparing locations of two independent populations . . . . . . . . 3

1.1.2 Comparing scales of two independent populations . . . . . . . . . 4

1.2 Measuring relative dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Measuring relative dispersion using a coefficient of variation . . . . 12

1.2.2 Interval estimators for the coefficient of variation . . . . . . . . . . 13

1.2.3 Alternatives to the coefficient of variation . . . . . . . . . . . . . . 16

1.3 Measuring skewness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Density-based measures of skewness . . . . . . . . . . . . . . . . 18

1.3.2 Quantile-based measures of skewness . . . . . . . . . . . . . . . . 19

1.3.3 Further extensions of the γp . . . . . . . . . . . . . . . . . . . . . 20

1.4 Major contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . 22

ii



1.4.1 Summaries of original papers . . . . . . . . . . . . . . . . . . . . 22

1.4.2 My contribution in all four papers . . . . . . . . . . . . . . . . . . 24

2 Theory of quantile estimators 27

2.1 Key definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 The quantile function . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Estimation of the quantile function . . . . . . . . . . . . . . . . . . 28

2.1.3 Density quantile function . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.4 Quantile density function . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.5 Quantile density estimation . . . . . . . . . . . . . . . . . . . . . 32

2.2 Influence function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Theoretical influence function . . . . . . . . . . . . . . . . . . . . 36

2.2.2 Partial influence functions . . . . . . . . . . . . . . . . . . . . . . 38

2.2.3 Influence function for quantile estimators . . . . . . . . . . . . . . 41

2.3 Asymptotic variances and standard errors . . . . . . . . . . . . . . . . . . 43

2.3.1 Asymptotic Variance based on Delta method . . . . . . . . . . . . 45

2.3.2 Asymptotic variance of quantiles . . . . . . . . . . . . . . . . . . . 46

2.3.3 Asymptotic covariance of quantiles . . . . . . . . . . . . . . . . . 47

2.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1 Point estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.2 Interval estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Additional work 50

3.1 Additional work related to Paper I . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Partial influence function comparison . . . . . . . . . . . . . . . . 50

3.1.2 Asymptotic variance comparison . . . . . . . . . . . . . . . . . . . 51

3.1.3 Extra plot and table for house price data example . . . . . . . . . . 51

3.1.4 Doctor visits data example . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Additional work related to paper II . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Confidence interval for median absolute deviation from a target . . 53

3.2.2 Confidence interval for ratios of median absolute deviations from a

target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Mathlevel data example . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Additional work related to paper III . . . . . . . . . . . . . . . . . . . . . 56

iii



3.3.1 Comparing two relative spreads using confidence intervals for differences

of CV, RCVQ and RCVM . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Melbourne house price data example . . . . . . . . . . . . . . . . 57

3.4 Additional works related to paper IV . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Simulation results for the generalized Bowley’s coefficient, γp . . . 58

3.4.2 Comparison of measures of skewness . . . . . . . . . . . . . . . . 59

3.4.3 Comparison of measures of skewness . . . . . . . . . . . . . . . . 60

3.5 R shiny web applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Interface of the R shiny web applications created in Paper I . . . . . 60

3.5.2 Interface of the R shiny web applications created in Paper II . . . . 61

3.5.3 Interface of the R shiny web applications related to Paper III . . . . 64

3.5.4 R shiny web applications related to paper IV . . . . . . . . . . . . 65

4 Summary and future work 66

A Example R Programs 68

A.1 R programs related to the Introduction . . . . . . . . . . . . . . . . . . . . 68

A.1.1 R program to compare the SIF and EIF . . . . . . . . . . . . . . . 68

A.2 R programs related to paper I . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2.1 Function to calculate an estimate, confidence interval and standard

error for the ratio of quantiles, ratio of variance and ratio of squared

IQRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2.2 Function to calculate the true asymptotic variance of the ratio of

variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2.3 Function to calculate true asymptotic variance of ratio of quantiles

and squared ratio of IQRs . . . . . . . . . . . . . . . . . . . . . . 73

A.3 R programs related to paper II . . . . . . . . . . . . . . . . . . . . . . . . 75

A.3.1 Function to calculate an estimate, confidence interval and standard

error for MAD, difference and squared ratio of MADs . . . . . . . 75

A.4 R programs related to paper III . . . . . . . . . . . . . . . . . . . . . . . . 77

A.4.1 Function to calculate an estimate, confidence interval and standard

error for CV, RCVQ and RCVM . . . . . . . . . . . . . . . . . . . 77

A.4.2 Function to calculate true asymptotic variance of CV, RCVQ and

RCVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.5 R programs related to paper IV . . . . . . . . . . . . . . . . . . . . . . . . 86

iv



A.5.1 Function to calculate an estimate, confidence interval and standard

error for γp, λp, and AUC measures . . . . . . . . . . . . . . . . . 86

A.5.2 Function to calculate true asymptotic variance of γp, λp and AUC

measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 98

II Papers 115

v



List of Figures

3.1 PIF1 comparisons for the ratio of variances (left) and squared ratio of IQRs

(right) for ratios for two exponential populations with rates equal to 1 and

p = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 ASV comparisons for the LN(0,1), EXP(1) and Uniform(2,5) distributions

with assumed equal sample sizes (so w1 = w2 = 1/2). The distributions are

chosen to be equal in each example so that the estimators of ρ = ρp = 1. . . 51

3.3 Box plots of house price distributions for suburbs which show a higher

number of different conclusions between the two methods . . . . . . . . . 52

3.4 Box plot of the SAT Math score for males and females students. . . . . . . 56

3.5 Comparison of skewness measures over p for LN(0, 1) and Exp(1) distributions 59

3.6 Relative asymptotic variance comparisons of skewness measures over p for

LN(0, 1) and Exp(1) distributions . . . . . . . . . . . . . . . . . . . . . . 61

3.7 The R shiny interface to compare the performance of ratio of variances,

squared ratios of IQRs and ratios of squared MADs. . . . . . . . . . . . . . 62

3.8 The created R shiny interface to check the performance of interval estimators

for the MAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.9 The R shiny interface to check the performance of interval estimators of

differences of MAD and ratios of MAD . . . . . . . . . . . . . . . . . . . 64

3.10 The R shiny interface to compare the performance of CV, RCVQ and RCVM. 64

3.11 The created R shiny interface to compare the performance of interval

estimators for γp ,λp with our new measures γp , γ
∗
p , λp , λ

∗
p . . . . . . . . . 65

vi



List of Tables

3.1 Suburbs which show a higher number of different conclusions between the

two methods in the pairwise comparisons . . . . . . . . . . . . . . . . . . 52

3.2 95 % confidence interval lower bounds (LB) and upper bounds (UB) for the

doctor visits data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Simulated coverage probabilities (and widths in parentheses) for the 95%

confidence interval for the MAD when the target value is the population

median and is assumed known. . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Simulated coverage probabilities (and widths in parentheses) for the 95%

confidence interval for the MAD when the target value is the estimated median. 54

3.5 Simulated coverage probabilities (and widths in parentheses) for the 95%

confidence interval for the ratio of MADs when the target values are the two

population medians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 95% asymptotic confidence intervals (CI) for the ratio of variances, ratio of

MADs (RM) and difference of MADs (DM) for SAT Math score for males

and females. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 95% confidence interval lower bounds (LB) and upper bounds (UB) for

differences of CV, RCVQ and RCVM between neighbouring suburbs house

prices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Simulated coverage probabilities (and widths) for 95% confidence interval

estimators for γp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



List of Publications

The part II of this thesis consists with the following four accepted or submitted papers. The

author contributed to developing theories, simulations, examples and finally manuscript

writing under the valuable guidance received from two supervisors throughout the whole

process.

I Arachchige, Chandima NPG, Cairns, Maxwell, & Prendergast, Luke A. 2019a.

Interval estimators for ratios of independent quantiles and interquantile ranges.

Communications in statistics-simulation and computation, 1-17.

II Arachchige, Chandima NPG, & Prendergast, Luke A. 2019. Confidence intervals for

median absolute deviations. arxiv preprint arxiv:1910.00229.

III Arachchige, Chandima NPG, Prendergast, Luke A, & Stuadte, Robert G. 2019b.

Robust analogues to the coefficient of variation. arxiv preprint arxiv:1907.01110.

IV Arachchige, Chandima NPG & Prendergast, Luke A 2019b. Mean skewness measures

arXiv:submit/2971320

viii



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my principal supervisor,

Prof. Luke A. Prendergast for giving me the opportunity to do a PhD and providing excellent

supervision throughout my candidature. His invaluable guidance helped me in all aspects,

research, preparing manuscripts and finally writing this thesis. He was an excellent advisor

and mentor during my PhD and I am extremely grateful for his friendship, patience and a

great sense of humour. I’m very grateful to my co-supervisor Prof. Robert G. Staudte for his

valuable guidance, advice and enormous support throughout my PhD in relation to research,

preparing manuscripts and writing this thesis. I could not have imagined better supervisors.

Many thanks to all the academic and non-academic staff of the Department of

Mathematics and Statistics at La Trobe University for their invaluable support and

friendliness. I would also like to thank La Trobe University for significant financial support

in the form of a Postgraduate Research Scholarship. Special thanks goes to La Trobe security

staff for providing me with a secure transport service during the last period of my PhD and

their friendliness. Thank you so much for all the Sri Lankan friends and other colleagues

who did PhD at La Trobe for their kindness and support which made me happy and feel like

La Trobe is my home. Thanks so much for the “Broadway” and “Kingsbury” housemates

for their friendliness and numerous help during my PhD candidature. My sincere thanks

also goes to all the academic and non-academic staff of the Department of Statistics, the

University of Colombo for their support and valuable encouragement before and during my

PhD.

Many thanks to my family, my mother, father, brother, sister, brother-in-law and their two

lovely children for believing that I would do my best throughout my PhD studies and which

made me feel like that I’m with them, even though I’m thousands of miles away. Finally, for

everyone who helped me, even with just from a single encouraging word and for making me

more independent and stronger during my PhD candidature and throughout my whole life.

ix



Statement of Authorship

Except where reference is made in the text of the thesis, this thesis contains no material

published elsewhere or extracted in whole or in part from a thesis submitted for the award of

any other degree or diploma.

No other person’s work has been used without due acknowledgement in the main text of the

thesis.

The thesis has not been submitted for the award of any degree or diploma in any other

tertiary institution.

Chandima N.P.G. Arachchige

16th December 2019

x



Abbreviations

EDF Empirical Distribution Function

ECDF Empirical Cumulative Distribution Function

EQF Empirical Quantile Function

QOR Quantile Optimality Ratio

GLD Generalized Lambda Distribution

IC Influence Curve

IF Influence Function

TIF Theoretical Influence Function

SIF Sample Influence Function

EIF Empirical Influence Function

PIF Partial Influence Function

ASV Asymptotic Variance

ASE Asymptotic Standard Error

ASD Asymptotic Standard Deviation

SD Standard Deviation

IQR Inter Quantile Range

MAD Median Absolute Deviation

PB Price and Bonett

LN Log Normal

xi



EXP Exponential

PAR Pareto

cp coverage probability

CI Confidence Interval

w width of the confidence interval

Est. Estimator

CV Coefficient of Variation

iid independent and identically distributed

xii



Summary

The objective of this thesis is to provide new distribution free point and interval estimators for

measures of spread, relative spread and skewness involving quantiles. The main advantages

of these new quantile-based measures are that they are comparatively efficient to compute

with minimal distributional assumptions. In the two-samples case, the location and scale of

two independent samples can be compared using ratios of linear combinations of quantiles.

In the single-sample case, distribution-free inferences can be made using quantile versions

of the coefficient of variation and measures of skewness. The new estimators can be

directly applied to many areas, such as economics, medical statistics, bio-statistics and social

sciences. This thesis consists of four papers, either published or submitted at the time of

thesis submission, and also includes some introductory material.

In paper I, the distribution-free point and interval estimators were introduced for ratios of

independent quantiles to compare the location of two independent samples. The interquantile

range, which is the most natural quantile-based estimator of scale, was considered to compare

the scale of two independent samples. The distribution-free point and interval estimators were

introduced to the squared ratios of interquantile ranges. The best choice of the probability to

achieve the minimum asymptotic variance for the squared ratio of interquantile ranges was

proposed. Robustness properties of the estimators were investigated using partial influence

functions. The simulation results reveal that all the intervals provide excellent coverage

probabilities even for small sample sizes and for a wide range of distributions. An R shiny

web application was developed and is publicly available to readers to run the simulations as

they desire. Some real-world data examples were considered, and the results suggest that

new estimators perform really well compared to the classical parametric tests such as t-test

and F-test.

In paper II, the median absolute deviation which is the most robust estimator of scale

with respect to the breakdown point was considered. The distribution-free point and interval

estimators were introduced to the median absolute deviation and the difference and squared

ratio of median absolute deviations to make inferences on spread of a single sample and

xiii



to compare the spread of two populations respectively. Robustness properties of the new

estimators were investigated using an influence function and partial influence functions.

Simulations were conducted to check the performance of the new estimators and the results

suggest that the coverage probabilities are very close to the nominal coverage even with small

sample sizes and for a variety of distributions. A real-world data example was considered,

and the results suggest that the new estimators are more robust to the outliers when compared

to the F-test.

In paper III, two robust versions of the coefficient of variation based on linear combinations

of quantiles were considered to make distribution-free inferences of relative dispersion for

a single sample. The first measure was the interquartile range divided by the median

and the second measure was the median absolute deviation divided by the median. The

distribution-free point and interval estimators were constructed to the two robust versions of

the coefficient of variations and the robustness properties were investigated using influence

functions. The performance of the new estimators was compared with several existing

estimators via simulations and the results suggest that the new methods perform well for a

wide variety of distributions. The R shiny web application was developed and is publicly

available to compare the performance of the new estimators of spread with some existing

estimators. The interval estimators were introduced to the ratios of the robust coefficient

of variations as an extension to compare the relative dispersion between two independent

samples. The examples reveal that different conclusions can be made based on robust and

non-robust versions of the coefficient of variation.

In paper IV, some integrated versions were constructed to existing measures of skewness

based on ratios of linear combinations of quantiles. These existing skewness measures are

some generalizations of Bowley’s well-known skewness coefficient. The validity of the

properties that any measures of skewness should satisfy was tested for new measures of

skewness. The distribution-free point and interval estimators were introduced for new

measures of skewness to make inferences about the skewness of a single sample. A

simulation study was conducted to compare the performance of the new estimators with

the existing estimators and the results suggest that the new measures perform well for wide

range of distributions. The R shiny web application was developed and is publicly available

to compare the performance of new skewness estimators. The interval estimators were

introduced to the difference of the measures of skewness to compare the skewness between

two independent samples. Some real-world examples were used and different conclusions

were observed based on different methods.
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Part I

Introduction
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1. Background

There is a vast body of literature on interval estimators for population quantiles and ratios

of linear combinations of population quantiles. However, it is relatively rare to find a

distribution-free inference regarding linear combinations of quantiles. The two-sample case

includes a comparison of location and scale of the linear combination of quantiles between

two independent samples. The one-sample case includes making distribution-free inferences

for quantile versions of the coefficient of variation and the measures of skewness. One of the

main concerns is to find the best choice of quantile combinations to obtain efficient robust

tests and confidence intervals. These results can be directly applied in many areas such as

economics, medical statistics, bio-statistics and social sciences. The objective of this thesis is

to provide new point and interval estimators for functions of linear combinations of quantiles.

The main advantage of these new quantile-based measures is that the intervals are shown

to have good coverage properties with minimal distributional assumptions, while being

comparatively efficient to compute. Additionally, the robustness of quantiles to extreme

outliers that often arise from highly skewed population distributions is another advantage.

The results are supported by theory, extensive simulation studies and applications to real-

world data sets. New R shiny web applications were developed to run the simulations and

are publicly available.

This thesis is divided into two sections: Part I and Part II. Part I comprises four chapters

and Part II comprises four publications. This chapter consists of a brief discussions of

previous research work related to the location and scale comparisons of two independent

populations, the coefficient of variation and measures of skewness for a single population.

The second chapter summarises the theory of quantile estimators and the influence function

which was used to build the new methods that are introduced later in all four publications in

Part II. The third chapter consists of some additional works which were not included in the

four publications but are still worth discussing. Finally, the fourth chapter contains the main

results of the thesis, conclusions and the further works. The most important R programs

used can be found in the Appendix.
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1.1 Comparing location and scale of two independent

populations

1.1.1 Comparing locations of two independent populations

The t-test is the most commonly used test to compare the differences of means between

two independent populations under the assumption of normality. However, when the

distributions are skewed or highly non-normal, the median may be a more appropriate

measure of location. If two independent samples are coming from identical shape distributions,

the Mann-Whitney-Wilcoxon (Hollander & Wolfe, 1999) method can be used to construct

confidence intervals for differences and ratios of medians, but is limited in use since it is not

robust to violations of the identical shape assumption (Pratt, 1964). The Mood (1950) and

the Hettmansperger (1984) methods also can be used to construct the confidence interval

for a difference of medians under the identical shape assumptions. Howevere, the Mood

(1950) and the Hettmansperger (1984) methods were more robust to a violation of the

identical shape assumption compared to the Mann-Whitney-Wilcoxon method, although the

coverage probabilities of the 95% confidence interval for differences of medians be lower

than the nominal coverage (Pratt, 1964). Hettmansperger (1984) introduced a two-sample

test and a confidence interval for differences in population medians based on the one sample

confidence intervals which he calls “sign-intervals”. This confidence interval is constructed

by subtracting the endpoints of the two sign-intervals. McKean & Schrader (1984) showed

through a simulation study that this method is highly unstable for small to moderate sample

sizes, even for normal distributions. However, Hettmansperger (1984) stated that this method

has well-defined asymptotic distribution theory and the same asymptotic efficiency as the

Mood (1950) test.

Wang & Hettmansperger (1990) derived two sample tests and confidence intervals for

differences of median survival times for the censored survival data following the method

described in Hettmansperger (1984) which is for uncensored data. In the presence of

censored data, Wang & Hettmansperger (1990) modified the sign-interval to a new interval

called “quantile-interval” whose endpoints constitute the quantiles of the Kaplan & Meier

(1958)’s product-limit estimator. Wei & Gail (1983) derived a non-parametric confidence

interval to compare the ratio of scales of two populations based on the method described by

Hodges Jr & Lehmann (1963) which estimates the location in terms of rank tests. Wang &

3



Hettmansperger (1990) stated that the method described in Wei & Gail (1983) can also be

used to obtained interval estimators of differences of locations. Su & Wei (1993) showed the

main drawback of the Wang & Hettmansperger (1990)’s method is the difficulty of estimating

the density function in the presence of censored data. To overcome this limitation, Su &

Wei (1993) introduced a simple and purely non-parametric interval estimation procedure

for the difference or ratio of two median failure times of censored data which does not

require any non-parametric density estimation. Since the identical shape assumption is

unrealistic (Lehmann & D’Abrera, 1975), the main advantage of this method is that it is

valid asymptotically even when the distributions are different in shape. Even though the

method described by Su & Wei (1993) is restricted to survival data, Price & Bonett (2002)

stated that this method is worthy since it does not require the unrealistic identical shape

assumption.

Price & Bonett (2002) introduced asymptotic distribution-free confidence intervals for

the difference and ratio of medians to compare the locations of two populations. The main

advantage of this method is that it does not require the identical shape distribution assumption

of the populations which was the main drawback of the existing classical non-parametric

confidence intervals for the difference or ratio of medians. Price & Bonett (2002) suggested

that the ratio of medians is more meaningful than the differences in medians when the

response variable is measured on a ratio scale. Price & Bonett (2002)’s proposed method

is easy to compute, performs well even for small samples, is valid for unequal sample

sizes and can be applied to any continuous random response variable including survival

times. We discussed Price & Bonett (2002)’s methods in detail in Arachchige et al. (2019a).

Motivated by this method, as an improvement, we propose the ratio of quantiles to compare

the locations of two populations and our completed work can be found in Arachchige et al.

(2019a).

1.1.2 Comparing scales of two independent populations

The F-test is the most commonly used test to compare the differences of variances in two

independent populations when the populations are normally distributed. However, if the

normality assumption is violated, then the F-test can be highly unreliable and the level of

significance (size of the test) can be very different from the assumed level. Pearson (1931)

first highlighted the sensitivity of the F-test to departures from normality and concerns were

also confirmed later by Geary (1947) and Gayen (1950). The F-test is highly sensitive to

the fourth moment of the distribution, which is kurtosis (Miller Jr, 1997), and therefore the

4



size of the test can be very high (>0.05) for heavy-tailed distributions and low (<0.05) for

light-tailed distributions. Recently, Hosken et al. (2018) noted that “do not use F-test to

compare variances” due to its sensitivity to deviations from the normality. Shoemaker (2003)

showed that lnF is approximately distributed as normal when the two samples are coming

from two identically distributed populations with possibly different in locations and spreads.

Shoemaker (2003) introduced two adjustments to the F-test which improve its robustness

properties and power. In the first adjustment of the F-test (the F1-test), the distribution

of F is approximated by Snedecor’s F distribution using an appropriate adjustment to the

degrees of freedom. To approximate the degrees of freedom, the matching of the moment

technique was applied for the moment of Snedecor’s F distribution and to the moment of

the F-statistic. Since this is a complex procedure, as an alternative approach, Shoemaker

(2003) suggested applying a matching of the moment technique to match the moment of the

normalized F-statistic to the moment of the normal distribution. In the second adjustment to

the F-test (F2 - test), Shoemaker (2003) directly matched the mean and variance between the

F-statistic and Snedecor’s F distribution again using the matching of the moment technique

to approximate the degrees of freedom. Shoemaker (2003) compared the level and power of

the F1-test and the F2-test to the F-test, Levene (1961) and Brown & Forsythe (1974) tests

(discussed later) via a simulation study and concluded that the F1-test is the often best choice

out of all the selected tests for comparisons based on both level and power.

There are several parametric alternatives to the F-test in the literature. The Levene

(1961) test, Box-Anderson (Box & Andersen, 1955) test, Brown & Forsythe (1974) test,

O‘Brien test (O’brien, 1979; O’Brien, 1981) test and Smith’s test (GBÜNEBERG et al.,

1966; Van Valen, 2005) are amongst the most popular. In the Levene test, the original values

are replaced by their mean absolute deviations. Initially, the Levene test was designed only

for equal sample sizes and Draper & Hunter (1969) generalized the test for unequal sample

sizes. The Levene test is robust even for extreme changes of the skewness and kurtosis of

the distribution. Also, the Levene test is very straightforward and easy to implement since

the test function is readily available in R. The Box-Anderson test is an robust test which was

developed based on permutation theory. The Brown-Forsythe test replaces the mean in the

Levene test by 10% trimmed mean and hence it is more robust compared to the Levene test

for non-normality and better for heavy- tailed distributions. The O‘Brien test is another way

to test the homogeneity of variances which uses a transformation of the original values of

the distribution. The O‘Brien test minimises both type I and type II errors and is often better

for skewed distributions. The Smith test is a rarely used robust test which does not require
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the normality assumption.

There are several re-sampling tests such as the bootstrap, jackknife (Miller, 1968) and

permutation tests which are an alternative to the F-test. The bootstrap method is a sometimes

used method for testing differences in variances. However, not all the bootstrap methods

are robust or perform well (Hall & Wilson, 1991). The jackknife method performs well for

samples of reasonable size and is robust for both skewness and kurtosis, except for extreme

kurtosis. For extreme kurtosis, the type I error of the jackknife method is less than 0.05. An

advantage of the jackknife method is that there is an interval estimator associated with the

test (Bissell & Ferguson, 1975). However, the jackknife method produces the unstable type I

error for unequal sample sizes (Conover et al., 1981). The test statistic of the permutation

tests is distribution-free and hence power is low for small samples.

Hosken et al. (2018) compared the performance of a few parametric and re-sampling

tests to testing the differences between two population variances. Under the parametric tests,

Hosken et al. (2018) compared Levene (1961)’s test, the Box-Anderson (Box & Andersen,

1955) test and Smith’s (Van Valen, 2005) test. Under the re-sampling tests, Hosken et al.

(2018) compared the Jackknife (Miller, 1974), bootstrap and permutation tests. Hosken

et al. (2018) formed several conclusions based on their simulation results such as (i) the

Smith test is resistant to extreme skewness and kurtosis and type I error is less than 0.05, (ii)

permutation tests are more powerful than the jackknife test for samples of a small sizes and

is robust and powerful for large sample sizes and (iii) Levene’s test performs best compared

to the other tests for variance comparisons.

There is a vast body of literature on non-parametric alternative tests to the F-test. The

Mood (1954) test, Siegel-Tukey (Siegel & Tukey, 1960) test and Klotz (Klotz et al., 1962)

test are a few of the more popular tests. The Mood test has a higher efficiency (Mood, 1954)

than the other methods. The Siegel-Tukey test assumes the locations of the two populations

are equal or approximately equal, and can be applied when the two samples are different

in size. It is also preferred for distributions which have heavy tails (Siegel & Tukey, 1960).

Klotz et al. (1962) compared the asymptotic relative efficiencies of the Siegel-Tukey test,

Mood test and the Normal Scores Rank test (Klotz test) which uses the more convenient

normal quantiles. Raghavachari (1965) introduced a modified version of the Klotz test

which can be used when the locations of the distributions are completely unknown. Several

non-parametric tests were introduced by Sukhatme (1957, 1958); Sukhatme et al. (1958).

Moses (1963) also introduced a class of non-parametric tests called “Rank Like” tests. The

Ansari-Bradley (Ansari et al., 1960) test is another non-parametric test which has a modified
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version when the differences of locations of the populations are unknown. The efficiency of

the Ansari-Bradley is lower than the efficiency of some of the other tests, but its advantage

is that it is simple to apply.

The W50 test is a popular non-parametric test which replaces the mean of the Levene’s

(Levene, 1961) test by the median. The W50 test is an asymptotically distribution-free

(Miller, 1968), simple, powerful (Brown & Forsythe, 1974), efficient and robust (Brown

& Forsythe, 1974; Conover et al., 1981) test for testing differences in variation, when

the underlying distributions are long-tailed distributions. Hall (1972); Geng et al. (1979);

Balakrishnan & Ma (1990) also recommended the W50 test based on their simulation

studies. Lim & Loh (1996) showed that the bootstrap version of the W50 test has high power.

However, the W50 test has a hidden structural problem. In particular, for some underlying

distributions, the power of the test never reaches the highest value of 1, even when the

population variances are very different (Pan, 1999). The W50 test consists of an interval

estimator, however, for some underlying distributions, this interval becomes non-informative

by providing intervals such as (0, +∞).

To overcome the limitations of the W50 test, Pan (1999) introduced two modifications,

these being the M50 and L50 tests. In Pan (1999)’s simulation study, the simulated sizes of

the W50 test were less than the assumed significance level of 0.05. Therefore, Pan (1999)

changed the cut-off value of the W50 test from tα/2 to the normal upper quantile Zα/2 to

become closer to the size of the W50 test up to a nominal level and hence introduced the

M50 test. However, the main drawback of the W50 test remains in the M50 test, but is

less severe. The M50 test is more powerful than the W50 test since Zα/2 < tα/2. The L50

test was calculated using logarithms of the mean absolute deviations from the medians and

it completely overcomes the limitation of the W50 test while retaining all the beneficial

properties of the W50 test. For symmetric or approximately symmetric distributions with

moderate to heavy tails, the sizes of the L50 test are becoming closer to the nominal 0.05

level (Pan, 1999). The L50 test is more powerful than the M50 test. Balakrishnan & Ma

(1990) showed that the L50 test is more robust than the Jackknife test (Miller, 1968). All

three tests, W50, M50 and L50 are associated with interval estimators (Pan, 1999).

The R-test (O’brien, 1979) is another popular non-parametric test which is most suitable

for light tailed distributions. Conover et al. (1981) modified the FK test by using the median

instead of the mean (Fligner & Killeen, 1976) and this is one of the best tests of the linear

rank tests proposed by Fligner & Killeen (1976) due to its robustness properties and high

power. Since the FK test performs poorly for skewed distributions, Hall & Padmanabhan
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(1997) introduced the HP test, which is an adaptive version of the FK test. Balakrishnan

& Ma (1990) compared the power performance of the FK and W50 tests and concluded

that they are similar for most of the underlying distributions. Hall & Padmanabhan (1997)

showed the FK test and HP test have similar power performance. Therefore, the L50 is

competitive against the modified FK test based on power performance (Pan, 1999).

Another popular test is the Squared Rank test (Conover & Conover, 1980) which is

a non-parametric version of Levene’s test for the equality of variances. Shoemaker &

Hettmansperger (1982) proposed a test based on the asymptotic variance of an M-estimator

of location, which is called “ midvariance” . Lax (1985) studied the robustness of the

family of A-estimators for long-tailed, symmetric and uni-modal distributions. However,

the associated measure of dispersion of most of the aforementioned tests cannot be easily

calculated. Also, most of these tests can handle a violation of normality only in heavy tailed

distributions and are unreliable for skewed distributions.

Shoemaker (1995) introduced a test for differences in dispersion based on the easy-

to-compute and the more natural measure of variability known as “interquantile range

(IQRp, where 0 < p < 1/2)” which is a generalization of the commonly used measure of

the dispersion the “interquartile range (IQR0.25)” (Chu et al., 1957). Shoemaker (1995)

investigated the properties of the interquantile range for symmetric distributions such as

breakdown point, influence functions and asymptotic variance and concluded that the

estimators have bounded influence functions and a nonzero breakdown point while variance

has a zero breakdown point. The breakdown point is the proportion of bad points that

is needed to be able to render estimator non-sensical and more details can be found in

Hampel (1974). Shoemaker (1995) showed that the interquartile range performs poorly for

both heavy-tailed and light-tailed distributions while the interquantile range performs well

compared to using the sample standard deviation, for light-tailed distributions. Shoemaker

(1995) further demonstrated the excellent performance of the interquantile ranges which were

calculated using more extreme quantiles for a wide range of distributions. The Shoemaker

(1995)’s test is based on the pth and (1− p)th quantiles based on the order statistics of the

combined sample related to two populations with the same location (median) but which

are different in scale. Comparisons have been made of the proposed test which is based

on the interquantile test to the classical F-test, normal scores test (Klotz et al., 1962) and

the squared rank test (Conover & Conover, 1980). The two interquantile tests (10th and

16th) have been studied for a wide variety of distributions such as Exponential, Laplace, t,

standard normal, Beta, uniform and the triangle distribution for three different sample sizes,

8



n = {10,25,50} with 1000 simulation trials. According to Shoemaker (1995), the proposed

test based on the interquantile range performed well for light-tailed distributions and small

sample sizes. Shoemaker (1995) highlighted some limitations of the selected tests, including

the interquantile test based on simulations. One of the main limitations is that none of the

tests were able to reach the assumed level of significance for the exponential distribution and

some highly skewed distributions. Shoemaker (1995) also noted that further investigation is

needed to find a test which can compare the dispersion of highly skewed distributions with

unknown location parameters.

Shoemaker (1999) introduced a class of new tests as an improvement of his previous

test (Shoemaker, 1995), based on the interquantile range which is valid for both skewed

and symmetric distributions with known or unknown locations. First, Shoemaker (1999)

compared the asymptotic relative efficiencies of IQR0.1 and IQR0.25 to the standard deviation

based on the ratios of the squared coefficient of variation for a wide variety of distributions

and concluded that IQR0.1 performed well for skewed distributions compared to the standard

deviation and IQR0.25 performed comparatively poorly for all the selected distributions

except the log-normal distribution. We discussed the Shoemaker (1999)’s test including

all conditions in detail in Section 2.2 of Arachchige et al. (2019a). Shoemaker (1999)

compared the new test with the F-test and the squared rank test (Conover & Conover, 1980)

for finite samples through a simulation study for a wide range of distributions such as

normal, log-normal, chi-square, Weibull, Beta, and exponential with different parameter

choices with 1000 simulation trials. Shoemaker (1999) studied the effect of both equal

((n1,n2) = {(10,10),(25,25),(50,50)}) and unequal ((n1,n2) = {24,49}) sample sizes and

used different interquantile ranges for different sample sizes for comparisons. The results

show that the proposed test performs well over a variety of distributions compared to the F-

test and squared rank test and more extreme interquantile tests are more powerful compared

to the less extreme interquantile tests except for very highly skewed distributions. Shoemaker

(1999) also noted that the power can be improved by choosing p between 0.1 and 0.25.

Shoemaker (1999) further suggested that more than one interquantile range can be calculated

as an alternative approach.

Marozzi (2011) compared the performance of some non-parametric, and parametric

tests with quantile-based tests of Shoemaker (1995) and Shoemaker (1999) considering

their robustness and power. Marozzi (2011) selected W50, L50, M50, R tests and their

permutation and bootstrap versions, modified FK test and HP test under non-parametric

tests and F-test as the parametric test. Marozzi (2011) used a wide range of distributions such
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as normal, bimodal, uniform, double exponential, t, chi-squared and exponential distribution

with sample sizes of 10, 30 for 10000 simulation trials for his simulation study. Marozzi

(2011) considered a test to be robust if the estimated type I error is at most 0.075 which

is 1.5 times the significance level of 0.05. Marozzi (2011) found that the W50 test is

computationally the simplest robust test which has a higher power and the re-sampling

versions of the W50, L50, M50, R tests are more robust and powerful than the original tests.

Marozzi (2012) noted that the main drawbacks of Shoemaker (1999)’s test are that it

requires finite population variances and an awareness of whether the underlying distributions

are highly skewed or not. Marozzi (2012) firstly introduced a permutation version of

Shoemaker (1999)’s two selected interquantile range tests such that one test is more suitable

for highly skewed distributions while the other test is for less skewed distributions which

do not require finite population variances. Marozzi (2012) secondly introduced a combined

interquantile test based on a combination of two of Marozzi (2012)’s permutation versions

of Shoemaker (1999)’s interquantile range tests which does not require an awareness of

whether or not the underlying distributions are highly skewed. Marozzi (2012) compared the

results of his new test with a few different tests such as the W50 test (Brown & Forsythe,

1974), M50 test and L50 test (Pan, 1999), the R test (O’brien, 1979) and the modified FK

test (Conover et al., 1981) by avoiding the F-test and squared rank test for comparisons

since these two tests are not suitable for differences in scales (Conover et al., 1981). Marozzi

(2012) conducted a simulation study which has settings similar to Shoemaker (1999)’s

simulation study and compared the performance of the permutation version and combined

interquantile test. Marozzi (2012) concluded, based on the simulation results, that the overall

most powerful test is M50 except for exponential and log-normal distributions. Marozzi

(2012) also stated the combined interquantile test is the most powerful test for for exponential

and log-normal distributions and the W50 and R tests are less powerful than the M50 test.

Marozzi (2012) found that the permutation test is robust and more powerful than Shoemaker

(1999)’s test and the combined interquantile test is robust and more powerful than both the

traditional and the permutation version of Shoemaker (1999)’s test.

Motivated by Shoemaker (1995, 1999, 2003)’s tests which are based on a more natural

measure of dispersion which is the interqunatile range, we introduce a ratio of interquantile

ranges with the interval estimator to compare the variation between two populations. Our

complete work can be found in Arachchige et al. (2019a) and some extra work can be found

in Section 3.1 in Chapter 3.

Median absolute deviation (MAD) is another robust alternative to measure the dispersion
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of a distribution (Hampel, 1974). MAD is the median of the absolute residuals from the

median and hence it is the natural scale counterpart of the median (Hampel et al., 1986).

Gauss (1816) had considered MAD much earlier and this was rediscovered by Hampel

(1968). Later, Hampel (1974) called MAD “median deviation” . Hampel (1974) showed that

the MAD is the “ most robust” estimator of scale with regard to both the break-down point

and gross error sensitivity. Gross error sensitivity is the supremum of the absolute value of

the influence function and can be found more details in (Hampel et al., 1986). The MAD

consists of the highest possible value of the breakdown point for a scale estimator which is

equal to 1/2. Therefore, it appears to be the most useful single estimate of scale and is the

symmetrised version of the interquantile range (Huber, 1981). Rousseeuw & Croux (1993)

stated that MAD has a bounded influence function with the sharpest bound compared to all

the other estimators of dispersion, and hence it is very robust. MAD is the non-parametric

natural estimator of the “probable error” of a single observation which was widely used

in the history of statistics. Furthermore, MAD is widely used in regression analysis as a

measure of dispersion due to its high breakdown property (Rousseeuw & Croux, 1993).

Mean absolute deviation from the median is another measure of variability which is simple to

understand and easy to compute (David, 1998). Pan (1999) introduced an interval estimator

for the ratio of median absolute deviation from the median. However, Pan (1999)’s method

did not perform well for small sample sizes and very unequal samples (David, 1998). Bonett

& Seier (2003) introduced approximate interval estimators for mean absolute deviation from

the median for a single sample and ratios of mean absolute deviation by median for two

samples. Bonett & Seier (2003) also noted that mean absolute deviation from a target value

instead of the median is another good alternative.

Since MAD is highly resistant to outliers, it has many applications including outlier

detection in areas such as medical statistics, pharmaceutical and bio-pharmaceutical sciences

and bio-statistics. Wellmann & Gather (2003) used MAD to identify the outliers in a one-

way random effects model. Mishra et al. (2008) applied MAD to determine the effect of

outliers in the estimation of coefficients of linear regression using the ordinary least squares

method. Leys et al. (2013) used MAD with the median to create a new rejection criterion

for detecting outliers by avoiding traditional criteria based on mean and standard deviations

which are very sensitive to outliers. Vastrad et al. (2013) use MAD to identify the outliers in

Oxazolines and Oxazoles molecular description data. Rajput et al. (2011) selected the most

relevant dimensions from high dimensional data by minimizing MAD in high dimensional

data clustering. Chung et al. (2008) used MAD as a robust measure to improve hit selection
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rather than the popular measure standard deviation in genome scale RNAi screens. Wu et al.

(2002) used MAD as an estimator of standard deviation in Shewhart control charts. These

are just some examples of where and how the MAD has been used.

Bonett & Seier (2003) suggested a bootstrap confidence interval for median absolute

deviation from the median as a good choice. Bonett & Seier (2003) suggested distribution-

free confidence intervals for median absolute deviation from the target (instead of median)

using an approach given on page no. 137 in Snedecor & Cochran (1980) for a single sample.

Bonett & Seier (2003) also suggested ratios of median absolute deviations from the target

(instead of median) using an approach given in Price & Bonett (2002) as other possible

alternatives. In both cases, the target is a known point and so if the median is used, then

this differs from the standard MAD since the median must be known, and not estimated.

Motivated by the aforementioned reasons, we propose a distribution-free interval estimator

for median absolute deviation to make inference on the spread of a single population and

ratios and differences of MAD with their interval estimators as robust alternatives to compare

the spread of two populations. Our complete work regarding this can be found in Arachchige

& Prendergast (2019) and some additional work can be found in Section 3.2 in Chapter 3.

1.2 Measuring relative dispersion

1.2.1 Measuring relative dispersion using a coefficient of variation

Pearson (1896) introduced the coefficient of variation (CV) which is the ratio of the standard

deviation to the mean. The CV has broad applications for measuring relative spread since

it is expressed in absolute units. The CV is very useful in many areas such as engineering,

physics, chemistry, climatology, economics, business and finance for reliability or quality

assurance studies. Since the CV is dimensionless and therefore does not vary with changes

in measurement units, it is broadly used to express the precision and repeatability of an assay

in analytical chemistry (e.g. Reed et al., 2002). In finance, the CV is used as a measure

of relative risk (e.g. Brief & Owen, 1969; Miller & Karson, 1977; Boyle & Rao, 1988;

Weinraub & Kuhlman, 1994; Worthington & Higgs, 2003). For example, the equality of the

CVs for two stocks can be tested to find out whether the two stocks produce the same risk or

not. In economics, CV is considered as a summary measure of inequality (e.g. Atkinson,

1970; Chen & Fleisher, 1996). In medicine, the CV has been used to assess the homogeneity

of bone test samples produced from a specific method to determine the effect of external
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treatments on the bones (Hamer et al., 1995). In fault tree analysis, the CV has been used

to analyse the uncertainty Ahn (1995). In climatology, CV has also been used to analyse

rainfall data (Singh et al., 1987; Ananthakrishnan & Soman, 1989; Ma & Zhang, 1991). In

business, jobs are scheduled to minimize the CV (e.g. De et al., 1996). Gong & Li (1999)

used the CV to assess the measured strength of ceramics. Cole et al. (2000) used the CV

as a summary measure, when developing age and sex specific cut-off points for the body

mass index for overweight and obesity in children. Hillier & SO (1991) studied the effect of

the CV of operation times on the allocation of storage space optimally in production line

systems. Another advantage of CV is that the squared ratio of CVs can be used to compare

the efficiency between scale estimators (Shoemaker, 1999). D’Alvise et al. (1999) introduced

new techniques which estimate the statistical properties of SAR images by estimating CV.

The reciprocal or inverse of the of CV, called the signal to noise ratio (McGibney & Smith,

1993), has important applications in quality control and reliability. A measure of relative

dispersion is more meaningful if the response variable can be measured on a ratio scale and

the variability is proportional to centrality (Zar, 1984, pg. 32). One of the main drawbacks of

CV is it assumes the measurement error is proportional to the mean (Eisenberg, 2016). The

CV statistic is an appropriate measure only for ratio variables, that is continuous variables

with natural zero points (Eisenberg, 2016). The CV is not an efficient measure of spread

when the distributions depart from normality (Fisher, 1922; Norris, 1938; Eisenberg, 2016).

The standard deviation and mean are not the most efficient estimators of dispersion and

location for skewed distributions. The statistics based on sample moments can be affected

by the presence of a few outliers (Hampel et al., 1986) and so some supplementary estimates

of relative variation have been proposed in the literature.

1.2.2 Interval estimators for the coefficient of variation

McKay (1932) derived an interval estimator for CV and suggested its use when CV < 0.33.

Pearson (1932) and Fieller (1932) showed that the McKay interval is very accurate for

CV < 0.33. Umphrey (1983) also showed that the McKay interval is very accurate for

CV < 0.33. Iglewicz & Myers (1970) compared the McKay interval with an exact interval

under the asumption of normal data based on the non-central t distribution and concluded that

the McKay interval is efficient for n≥ 10 and CV < 0.33. Later this interval was modified by

Vangel (1996) which is known as the “modified McKay interval” and is shown to be nearly

exact under normality and more accurate compared to McKay’s original interval. Hendricks
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& Robey (1936) studied the distribution of the sample CV when the data is sampled from a

normally distributed population. Koopmans et al. (1964) constructed confidence intervals

for the CV for normal and log normal distributions. Iglewicz (1967) derived some properties

of the CV estimator such as, mean, variance and the exact distribution of the sample CV

under normality and independent and identically distributed (iid) assumptions. The classical

interval estimators for the CV are not robust to violation of the normality assumption.

Sharma & Krishna (1994) introduced point and interval estimators for the inverse of the

CV without assuming the normality of the parent population, based on the asymptotic

sampling distribution of the inverse of the CV. Chaturvedi & Rani (1996) developed a

sequential procedure to construct a confidence interval of fixed-width for the inverse of the

CV of a normal population. Edward Miller (1991) introduced a one sample test statistic

for a CV for a normal population and a two sample test statistic for CVs to compare the

dispersion in two normal populations. Edward Miller (1991) showed that the McKay interval

is reasonably accurate for 0.33 < CV < 0.67. Verrill (2003) also constructed an exact

confidence interval for the CV for normal and log normal distributions and developed web-

based computer programs to easily compute the intervals. Pang et al. (2005) constructed the

point and interval estimators of the CV for log-normal, gamma and Weibull distributions.

Panichkitkosolkul (2009) introduced an interval estimator for the CV for a normal distribution

by replacing the sample CV of Vangel (1996)’s interval by a maximum likelihood estimator.

Ng (2006) compared the performance of the McKay (1932), Sharma & Krishna (1994) and

Edward Miller (1991) intervals and concluded that the McKay interval is more suitable for

n≥ 15 and CV < 0.33 and Miller interval is more suitable for CV > 0.33. Panichkitkosolkul

(2009) conducted Monte Carlo simulations to compare the performance of the new method

with the McKay (1932) method and Curto & Pinto (2009) derived the asymptotic sampling

distribution of the CV for non iid random variables as a special application to finance

data and introduced two tests to compare the CVs of two populations. Mahmoudvand &

Hassani (2009) introduced a new unbiased point estimator for the population CV from a

normal distribution which has lower variance than the usual sample CV. Mahmoudvand &

Hassani (2009) constructed two new interval estimators for the population CV based on a

new point estimator of the CV Mahmoudvand & Hassani (2009) compared the performance

with McKay (1932), Edward Miller (1991), Vangel (1996) and Sharma & Krishna (1994).

Mahmoudvand & Hassani (2009) concluded that the proposed two interval estimators

are simple to use and perform well even for small sample sizes. Banik & Kibria (2011)

compared the performance of Hendricks & Robey (1936), McKay (1932), Edward Miller
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(1991), Sharma & Krishna (1994) and Curto & Pinto (2009) intervals and some proposed

bootstrap intervals such as non-parametric, parametric-t and bootstrap Miller (Bootstrap

interval for Edward Miller, 1991) for symmetric and positively skewed distributions. Banik

& Kibria (2011) concluded that McKay (1932), Edward Miller (1991), Sharma & Krishna

(1994) and bootstrap Miller intervals performed well for symmetric distributions and McKay

(1932) performed well for highly skewed distributions.

Groeneveld (2011a) re-investigated a confidence interval method for the CV which was

originally proposed by Sharma & Krishna (1994) based on the inverse of the CV (1/CV

which is called the signal to noise ratio). Groeneveld (2011a) also derived the influence

function Hampel (1974) of the CV (see the next chapter for discussion and examples of

the influence function), the inverse of the CV and the difference of two CVs as well. Later,

we use this method for our comparisons and more details can be found in Arachchige

et al. (2019b). Gulhar et al. (2012) compared 15 parametric and non-parametric interval

estimators of the population CV. These 15 different interval estimators of CV consist

of six existing interval estimators including three parametric and three non-parametric,

three median modified interval estimators, four bootstrap intervals following Banik & Kibria

(2011) and Gulhar et al. (2012)’s newly introduced interval estimator of the CV. The selected

interval estimators include Edward Miller (1991), Sharma & Krishna (1994), Curto & Pinto

(2009), McKay (1932), modified McKay Vangel (1996), Panichkitkosolkul (2009) intervals

and their median modifications. Gulhar et al. (2012) introduced median modification to

estimate the variance instead of the mean under the modified intervals since the median

performed well compared to the mean for skewed distributions (Kibria, 2006; Shi & Golam K,

2007). In addition, Gulhar et al. (2012) proposed a new interval estimator based on the

interval estimator for the population variance (σ2). Gulhar et al. (2012) selected sample sizes

as n = {15,25,50,100,500}, both symmetric (normal) and skewed (chi-square and gamma)

distributions with different parameter choices, CV = 0.1,0.3,0.5 with 2000 simulation trials

and 1000 bootstrap samples for their simulations. Finally, Gulhar et al. (2012) concluded

that eight methods perform really well compared to the other methods, these being Miller,

MacKay, modified MacKay and their median modifications, Panich and their proposed

method. Later, we summarise in detail a few of the methods which preformed reasonably

well, at least for some distributions considered. Later, we use a few of these intervals for our

comparisons in Arachchige et al. (2019b). Albatineh et al. (2014) compared the performance

of McKay (1932), Edward Miller (1991), Vangel (1996) and Mahmoudvand & Hassani

(2009) intervals for rank-based samples by avoiding more common simple random sampling
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procedures.

There are several methods in literature to compare two populations based on the CV.

Lohrding (1975) introduced a likelihood ratio test to compare the CV in two populations.

Rao & Bhatt (1995) introduced tests based on jackknife and bootstrap procedures to compare

the CV in two populations. Cabras et al. (2006) introduced a statistical test to compare the

CV of two populations based on non-parametric bootstrapping. Cabras et al. (2006)’s test

is a modified version of Sachs (n.d.)’s test statistics which is to compare the CV in two

populations. Cabras et al. (2006) compared the performance of his test with the performance

of Lohrding (1975)’s parametric bootstrap test and the Fisher F-test. Cabras et al. (2006)

also introduced test statistics based on the ratios of two population CVs and log transformed

ratios of two population CVs to compare the CV in two populations and stated that they had

not satisfied the relevant properties compared to their other new method. Amiri & Zwanzig

(2010) introduced another test to compare the equality of CVs between two populations

based on Sachs (n.d.)’s test statistic, which works even when CV > 0.33. Amiri & Zwanzig

(2010) stated that the new test is quick and easy to implement compared to the other existing

bootstrap tests.

1.2.3 Alternatives to the coefficient of variation

There are several alternatives to the CV in the literature such as ratios of mean deviation from

the mean or median and ratios between sums and differences of upper and lower quartiles

(Q3 and Q1) which is called the “coefficient of variability” defined as (Q3−Q1)/(Q3 +Q1);

for example see page no. 134 of Lovitt & Holtzclaw (1929), page no. 41 of Arkin & Colton

(1935), page no. 153 of Sorenson (1936). The coefficient of variability is more popular with

these researchers as it is a robust measure compared to the other measures. But there were

no attempts to to find the usage of the considerations of the minimum sampling variances

of these methods (Norris, 1938). Zwillinger & Kokoska (1999) called this measure as

the “coefficient of quartile variation” . Bonett (2006) stated that the coefficient of quartile

variation is more appropriate when data come from non-normal distributions. Bonett (2006)

introduced an interval estimator for the coefficient of quartile variation which exhibited

good coverage even for small samples and even in highly non-normal distributions. Bulent

& Hamza (2018) constructed the percentile (non-parametric) and t-bootstrap (parametric)

confidence intervals to coefficient of quartile variation and compared with the Bonett (2006)’s

confidence interval. Bulent & Hamza (2018) concluded that the bootstrap intervals typically
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provide more conservative coverages for small samples (n≤ 15) compared to the Bonnet’s

(Bonett, 2006) confidence interval and both methods performed similarly and well for large

samples (n = 20, . . . ,100). Bulent & Hamza (2018) further noted that the average width of

the (Bonett, 2006)’s were high for small sample sizes.

Another unit free alternative measure to the CV is called as “ coefficient of dispersion”

and defined as τ/m where, τ is the mean absolute deviation from median and m is the

median. The coefficient of dispersion is widely used in tax assessments (Gastwirth, 1988,

pg.28,29) and in biological applications since τ and m are more suitable as location and scale

estimators compared to mean and standard deviation when the distribution is not normal.

Bonett & Seier (2005) constructed distribution-free confidence intervals for τ/m based on

the asymptotic distribution of the estimator of τ/m which was derived by Gastwirth (1982).

Bonett & Seier (2005) compared the performance of the interval estimator of τ/m with the

BCa bootstrap interval (page no. 180 of Efron & Tibshirani, 1994) and concluded that the

confidence interval for τ/m performed well compared to the BCa bootstrap method for small

samples and non-normal distributions. Bonett & Seier (2005) mentioned that the τ/m is

more preferred compared to the CV for non-normal distributions. Bonett & Seier (2005)

’s method does not perform well for extremely non-normal distributions unless the sample

sizes are large (Bonett, 2006).

Shapiro (2005) introduced a robust alternative to the CV based on the interquartile range

(IQR) and the median which we will label here as RCVQ for convenience. Reimann et al.

(2008) and Varmuza & Filzmoser (2009) considered another robust version of the CV, which

we will denote RCVM, which uses the median absolute deviation (MAD) in place of the

standard deviation and the median. However, to the best of our knowledge, there has been

little, if any, research into interval estimators for either the RCVQ or RCVM and it is this

fact that motivates our research. Given recent findings highlighting excellent coverage for

estimators based on ratios of quantiles, we introduce asymptotic interval estimators of RCVQ

and RCVM and also the both non-parametric and parametric bootstrap interval estimators

for RCVM. In addition, we introduce interval estimators for ratios of RCVQs and RCVMs to

compare the relative dispersion between two independent populations. We compared the

performance of our new interval estimators with some selected existing interval estimators

from Groeneveld (2011b) and Gulhar et al. (2012) as discussed above. Our complete work

regarding to this can be found in Arachchige et al. (2019b) and some extra works can be

found in Section 3.3 in Chapter 3.
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1.3 Measuring skewness

Skewness measures the shape and the asymmetry of a continuous distribution. Skewness is

zero for a symmetric distribution. If there is a long right tail, then the distribution is positively

skewed and if the tail is to the left, then the distribution is negatively skewed. Therefore,

the measures of skewness provide the degree and the direction of the skewness. There is

a vast body of literature on measures of skewness. Two popular measures of skewness

are Pearson’s first skewness coefficient (Pearson’s mode skewness) and Pearson’s second

skewness coefficient (Pearson’s median skewness) which are defined as SK1 = (µ−M)/σ

and SK2 = 3(µ−m)/σ, where µ, M and m are the mean, mode and median respectively

(Pearson, 1894, 1895). In addition, the standardised third central moment, introduced by

Charlier (1905) and Edgeworth (1908), is often used to measure skewness of a random

variable X and is defined as γ1 = µ3/σ3 where µ3 is the third central moment and σ is the

standard deviation. The main drawback of these three measures of skewness is that they

can be strongly affected by outliers and one single outlier can highly influence the skewness

coefficient. In addition, γ1 can be arbitrarily large and hence hard to interpret. Benjamini

& Krieger (1996) described the measures of skewness in terms of skewness and spread

functions.

Ngatchou-Wandji (2006) introduced three tests for measures of skewness of an unknown

distribution and compared the level and power of these tests with some existing tests.

Boshnakov (2007) introduced some measures of asymmetry in terms of mode rather than

mean or median. Boshnakov (2007) measured the asymmetry of an absolute continuous

distribution using confidence transformation which is described in Boshnakov (2003).

1.3.1 Density-based measures of skewness

Critchley & Jones (2008) introduced the density based functional measure of skewness called

“asymmetry functions ” and discussed the properties and the method of estimation. Critchley

& Jones (2008)’s prototype asymmetry function was similar to Boshnakov (2007)’s odds

asymmetry function and their preferred function was obtained by replacing the quantile

functions in γp (Hinkley, 1975) by asymmetric density functions. Since the density-based

asymmetry functions measure asymmetry with respect to mode, they were naturally defined

only for uni-modal densities. Critchley & Jones (2008) stated that their asymmetric function

consists of natural location and scales measures which are median (m) and f−1(m) which can
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be easily interpreted in terms of the probability density function ( f ). In addition, Critchley

& Jones (2008) introduced an integrated version of γp with asymmetric density functions

over p and concluded that it is more robust.

1.3.2 Quantile-based measures of skewness

The well-known Bowley’s coefficient (pg. 162 Yule, 1912; Bowley, 1920) defined as B1 =

(Q3 +Q1−2m)/(Q3−Q1), is an entirely quantile-based and robust measure of skewness

where Q3 and Q1 represent the 3rd and 1st quartiles respectively. A more general case

of the Bowley’s coefficient, denoted γp for p ∈ (0,0.5), has been defined by David &

Johnson (1956) and considered by Hinkley (1975) and Groeneveld & Meeden (1984).

The γp ∈ [−1, 1] and γp = 0 for symmetric distributions. γp becomes equal to Bowely’s

coefficient (B1) when p = 0.25.

Van Zwet (1964) introduced a method ordering two distributions based on skewness. Oja

(1981) introduced four properties any measure of skewness should satisfy. MacGillivray

et al. (1986) also introduced some skewness ordering. Groeneveld & Meeden (1984)

tested whether γp satisfies the four properties of the measure of skewness. Groeneveld

(1991) described positive skewness form another angle, that is, as a location and scale-free

movement of the probability mass of the symmetric distribution and used the influence

function to compare the γ1 and γp measures of skewness. Groeneveld (1991) stated that

the influence function describes changes in the skeweness measures with deviations from

symmetry. Arnold & Groeneveld (1995) introduced γM = 1−2F(Mx) where Mx is the mode

of the assumed uni-modal distribution of X and γM is a function of the distribution function

(F) at Mx. Arnold & Groeneveld (1995) compared γM with γ1 using the influence function.

The γM is an analogous scalar skewness measure of the natural average of Critchley & Jones

(2008)’s asymmetry function.

Brys et al. (2003) introduced four new measures of skewness called “medcouple”,

“medtriple”, “repeated medcouple”and “repeated medtriple”, which are based only on ranks

and are robust against outliers. These new measures are obtained by replacing some or

all of the quantiles in γp with actual data points. The medcouple replaces the other two

quantiles, except the median, while the medtriple replaces all three quantiles of γp with

actual data points. The repeated versions of medcouple and medtriple are obtained by using

repeated medians instead of considering the medians of all couples or triples of actual data

points. Brys et al. (2003) stated that the repeated versions are computationally more complex
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compared to the original measures even though they have similar or higher breakdown

points. Brys et al. (2003) carried out a simulation study to compare the performance of

these four new skewness measures with γp when p = 0.25,0.125 for both contaminated and

non-contaminated as well as symmetric and asymmetric distributions and concluded that

medcouple is the best measure of the six measures. Brys et al. (2003) stated that γp when

p = 0.25 is less sensitive to outliers while γp when p = 0.125 is more suitable for capturing

the asymmetry in the data since it uses more information from the tails of the distribution.

Subrahmanya N & Aruna Rao (2003) also compared the robustness properties of the new

estimators using breakdown points and found that all four measures of skewness positive

points which are 25%, 20.6%, 25%, 50% and repeated medtriple has the highest point.

Brys et al. (2004) further studied medcouple which has a 25% breakdown point and

showed that, it satisfies the properties which should be followed by any measure of skewness.

Medcouple belongs to Hössjer et al. (1996)’s class of incomplete generalized L-statistics

and hence is asymptotically normally distributed. Nevertheless, Brys et al. (2004) computed

the influence function of medcouple and compared this with the influence functions of γp

when p = 0.25,0.125 and found that the influence function of medcouple is continuous,

except at the median, while the other two are step functions and all three are bounded. The

influence function of medcouple is a smoothed version of the influence functions for γp

when p = 0.25,0.125 and its gross error sensitivity is approximately equal to the gross

error sensitivity of γp when p = 0.25. Brys et al. (2004) derived the asymptotic variance of

medcouple and compared this with the finite sample variances of samples of different sizes.

Brys et al. (2004) finally concluded that medcouple has a combined strength of γp when

p = 0.25,0.125 in terms of sensitivity to detect skewness and robustness towards outliers.

1.3.3 Further extensions of the γp

Groeneveld et al. (2009) introduced an improved version of the γp called λp for right skewed

distributions for p∈ (0, 0.5) for which good point and interval estimators can be found easily.

Later, we define γp and λp properly with their conditions. The λp measure is appropriate only

when the direction of the skewness is known. Groeneveld et al. (2009) stated that λp is easy

to interpret compared to γp and influence functions have been used to compare the sensitivity

of λp and γp to right skewness. Groeneveld et al. (2009) showed that the influence function of

λp is more sensitive to right skewness with decreasing p and its sensitivity to right skewness

is at least four times higher than the influence function of γp. Groeneveld et al. (2009)
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estimated the γp and λp based on the usual “plug in” method and the Bayesian bootstrap

method (Rubin, 1981). They stated that the reason for selecting the Bayesian bootstrap

method is that Meeden (1993) showed the Bayesian bootstrap method is better than the

usual “plug in” method to estimate the quantiles. Groeneveld et al. (2009) constructed a 95%

bootstrap confidence interval of the usual “plug in” method and 0.95 credible interval of the

Bayesian bootstrap method for γp and λp when p = {0.05,0.1,0.15}. Based on their results,

they recommended p = 0.05 is a good choice since it does not ignore the tail behaviour of

the distribution while showing some robustness against outliers. In addition, they concluded

that the Bayesian bootstrap interval is narrower than the usual “plug in” interval even though

the coverage tends to be high. Groeneveld et al. (2009) have introduced another measure of

skewness denoted ηp for left-skewed distributions and derived the influence function.

Staudte (2014) constructed distribution-free tests and confidence intervals for γp. These

confidence intervals are distribution-free since their average width depends only on p, the

confidence level and the sample size n for a variety of symmetric and asymmetric models.

Staudte (2014) stated that the intervals provide good coverage for moderate to large sample

sizes. In addition, Staudte (2014) derived a simple formula to find the required sample size

to obtain a good coverage for the intervals with a pre-specified width. In addition, Staudte

(2014) conducted a power comparison between tests including two distribution-free tests

from Ngatchou-Wandji (2006).

One drawback of γp and λp is that p must be chosen. To overcome this limitation in

γp, Groeneveld & Meeden (1984) introduced another skewness coefficient by integrating

the numerator and denominator of the γp with respect to p on (0, 0.5) and defined it as

b3 = (µ−m)/E | X−m |. In addition, Groeneveld & Meeden (1984) derived the influence

function of b3 to make comparisons with the influence functions of γ1 and γp. One of our

main objectives is to integrate γp and λp over p rather than integrating the numerator and

denominator separately to overcome the limitation of the need to choose p in both γp and λp.

Nevertheless, we introduce another two powerful skewness measures, integrated pγp and

pλp over p as alternatives to the existing measures of skewness. Staudte (2014) provided

the distribution-free confidence intervals for γp. Therefore, we introduce the distribution

free interval estimators for λp, integrated versions of γp, λp, pγp and pλp and conduct a

simulation study to make comparisons between these estimators, before applying them to

some real-world examples. Our complete work related to this can be found in Paper 4 and

Section 3.4 in Chapter 3.
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1.4 Major contribution of this thesis

The main objective of this thesis is to provide new point and interval estimators for some

function(s) of linear combinations of quantiles. This thesis is divided into two parts. Part I

consists of four chapters and an Appendix. Part II consists of four publications.

Part I

Chapter 1 - Provides the background of the thesis. Previous research works

related to the main research problems are briefly discussed.

Chapter 2 - Discusses the theory of quantile estimators and their influence function

which were used in the four publications to develop new theories and

methods.

Chapter 3 - Provides additional works related to publications which

was not included in the papers but is worth discussing.

Chapter 4 - Presents the main results and findings of the thesis, conclusions and

future work.

Appendix - Provides the most important R programs that we developed to run the

simulations related to the works in the four publications.

Part II

Part II of this thesis comprises the four accepted or submitted papers.

1.4.1 Summaries of original papers

Paper I

The t-test and the F-test are the most commonly used methods to compare the location

and scale of two populations under the normality assumption. However, these tests are

highly unreliable for skewed distributions. The difference and the ratio of medians are two

existing non-parametric alternatives to the t-test for location comparisons. Researchers

suggested non-parametric tests to compare the scale based on the most natural estimator of

scale which is the interquantile range (IQR). The ratios of independent quantiles and the
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squared ratios of IQRs with their point and interval estimators were proposed as alternatives

to the existing methods to compare the location and scales of two independent populations

respectively. The performance of the new measures was compared with the existing methods

via simulations and the results suggest that the new methods provide very good coverage

probabilities which are very close to nominal even for small sample sizes and a wide range of

distributions. The R shiny web application was developed to run the simulations efficiently.

The best choice of p was suggested for the squared ratio of IQRs by minimizing asymptotic

variance. The robustness properties of the estimators were investigated using partial influence

functions. Finally, some real-world data examples were used to compare the performance of

the new measures and the results reveal that the new estimators provide different conclusions

compared to existing methods.

Paper II

The median absolute deviation (MAD) is a robust measure of dispersion which is applied in

many areas, including pharmaceutical and bio-pharmaceutical research. Motivated by this,

an interval estimator for MAD was introduced to make inferences on the dispersion of a

single population. The difference and squared ratios of MAD with their point and interval

estimators were introduced to compare spread for two independent populations. Simulations

were conducted to check the performance of the new estimators and the resulting coverage

probabilities were very close to nominal coverage, even for small sample sizes and a wide

variety of distributions. The robustness properties of the estimators were investigated using

the influence function and partial influence functions. The example reveals that the difference

and squared ratio of MAD are robust to outliers compared to the F-test.

Paper III

The coefficient of variation (CV) is the most commonly used method to measure relative

dispersion. However, CV is highly unreliable for outliers and skewed distributions since it is

based on mean and standard deviation. The IQR divided by median and the MAD divided

by median are two existing quantile-based robust alternatives to the CV. The main objective

of this paper is to further investigate these two robust versions of the CV. First, comparisons

were made between all three measures of relative dispersion for some distributions. Then

several properties which should satisfy any measure of relative dispersion were tested for CV

and the two robust alternatives to CV. The distribution-free interval estimators were proposed
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for the two robust alternatives of CV and a simulation study was conducted to compare

the performance of the new interval estimators with several existing interval estimators

of CV. The results suggest that coverage probabilities are very close to nominal even for

small sample sizes and for a wide range of distributions. The R shiny web application

was developed to run the simulations to make comparisons between the point and interval

estimators of CV and two robust CV’s for a wide range of distribution. As an extension to

the two populations, interval estimators were introduced for ratios of CVs and the two robust

alternatives and examples reveal that different conclusions can be formed by using robust

alternatives compared to CV.

Paper IV

Skewness measures the shape and the asymmetry of a continuous distribution. There are

several skewness measures available in the literature and of these, Bowley’s well-known

skewness coefficient is a quantile-based measure of skewness. There are some generalised

versions of Bowley’s skewness coefficient. However, the main drawback of these existing

measures is that p must be chosen. Therefore, the objective of this paper is to introduce

more powerful alternatives to the existing measures of skewness which remove the “need to

choose p” requirement with their interval estimators. The integrated versions are introduced

to the generalized versions of Bowley’s skewness coefficient. First, it was tested for the

validity of the four properties for the new measures of skewness which should be satisfied by

any of the measures of skewness. Then, distribution-free confidence intervals were derived,

and the performance of the intervals was compared via a simulation study. The observed

coverage probabilities were very close to nominal, even for small sample sizes and a wide

range of distributions considered. The point and interval estimators for the difference of the

new measures of skewness were introduced to compare the skewness of two populations.

Some real-world data examples were used to compare the conclusions obtained by different

measures of skewness.

1.4.2 My contribution in all four papers

Paper I

In Paper I, research related to the ratio of independent quantiles to compare the location of

two independent quantiles was undertaken by one of my colleagues, Maxwell Cairns. My
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contribution was to develop theories, simulations and finally examples related to the ratio of

interquantile ranges. First, I investigated the existing methods to compare the scale of two

independent populations. Then, I contributed to the construction of the confidence intervals,

partial influence function derivations and comparisons, asymptotic variance derivations and

comparisons of the squared ratio of IQRs and ratio of variances. The best choice of p to

obtain the minimum asymptotic variance for the squared ratio of IQRs was investigated.

Simulations were conducted for a wide range of distributions, including skewed distributions,

to compare the performance of the existing estimators and the new estimators. R programs

and the R shiny web application were developed to run the simulations. I was able to find two

very nice data sets which were named Melbourne house price data and prostate cancer data

to compare the conclusions made by the existing and new estimators. Finally, I contributed

to the manuscript preparation.

The main results of this paper were presented at the 1st Victorian Research Students

Meeting in Probability and Statistics (VRSMiPS) which was held on 5th June 2017 at

Latrobe University, Melbourne, Australia and the International Robust Statistics Conference

(ICORS) 2017 which was held on 2nd to 7th of July 2017 at the University of Wollongong,

Sydney, Australia. Positive feedback, suggestions and comments regarding the research

works were received.

Paper II

For Paper II, I first conducted a literature search to find early work related to median absolute

deviations. Then, distribution-free interval estimators for MAD, difference and squared

ratios of MADs were constructed. Partial influence function derivations and comparisons

were conducted. R programs were developed to conduct the simulations for a wide range of

distributions. Then, different conclusions provided by the estimators were compared using

the prostate cancer data. Finally, I contributed to the manuscript writing.

The main results of this paper were presented at the 3rd Victorian Research Students

Meeting in Probability and Statistics (VRSMiPS) which was held on 2nd October 2019 at

the University of Melbourne, Melbourne, Australia.

Paper III

For Paper III, I first conducted a literature search for existing interval estimators of CV and

alternatives to CV. Two robust quantile-based alternatives, IQR divided by median (RCVQ)
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and MAD divided by median (RCVM) were investigated and numerical comparisons were

conducted between the measures for a wide range of distributions. Then, the robustness

properties of RCVQ and RCVM were investigated using influence functions and I conducted

an influence function comparison of CV, RCVQ and RCVM. Asymptotic variances of

the estimators were derived and relative asymptotic standard deviation comparisons were

conducted. The distribution-free point and interval estimators were constructed for RCVQ

and RCVM. In addition, parametric and non-parametric bootstrap intervals were constructed

for RCVM. Interval estimators for the ratios of RCVQs and RCVMs were constructed to

compare the relative spread between two independent populations. R programs and the R

shiny web application were developed to run the simulations. Simulations were conducted

for a wide range of distributions. Two real-world data sets were used to compare the different

conclusions provided by CV and two robust alternatives to the CV. Finally, I contributed to

the manuscript writing.

The main results of this paper were presented at the 2nd Victorian Research Students

Meeting in Probability and Statistics (VRSMiPS) which was held on 25th September 2018

at Monash University, Melbourne, Australia and the International Society for Clinical

Biostatistics and Australian Statistical Conference 2018 (ISCB ASC 2018) which was held

on 26th to 30 August 2018, Melbourne, Australia.

Paper IV

For Paper IV, I first conducted a literature search on the existing measures of skewness.

Then, γp and λp the two generalized versions of Bowley’s well-known skewness coefficient

were further investigated. Then, the new measures of skewness were checked to ensure

they satisfied the four properties which should be satisfied by any measures of skewness.

Since closed form expressions are not available, numerical approximations were used

to estimate the measures of skewness and asymptotic variances. A relative asymptotic

variance comparison was conducted graphically. Distribution-free confidence intervals were

constructed for new measures of skewness. R programs and the R shiny web application

were developed to run the simulations. Simulations were conducted for a wide range of

distributions. Two very nice new data sets, called “computer data” and “income data”

were compared with an existing data set to compare the conclusions achieved by different

measures of skewness. Finally, I contributed to the manuscript writing.
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2. Theory of quantile estimators

In this chapter, first we discuss the key definitions related to the quantile function, quantile

density function and quantile density estimation. Most of these definitions can be found

in, for example, Tukey (1965), and Parzen (1962, 1977, 1979). Then we discuss the theory

behind the influence function and the partial influence functions in detail, including some

examples and their application to quantiles. Finally, we discuss the theory behind asymptotic

variances, the connection between asymptotic variance and the influence function, point

and interval estimations including their application to functions of quantiles. These results

can be found in more detail, for example, in Hampel (1968, 1974); Hampel et al. (1986),

Huber (1981), Staudte & Sheather (1990) and Clarke (2018). In addition to these references,

some early works of my supervisors which are related to our research topic can be found in

Prendergast & Staudte (2017a,b, 2016b,a).

This chapter details the methodology that is used to develop our new theorems and

the results related to the point and interval estimators of the functions of quantiles that

we introduce in four publications. Therefore, readers who are already familiar with these

concepts can omit this chapter.

2.1 Key definitions

This section contains key definitions related to quantiles such as the quantile function,

quantile density function and several quantile density estimators. The methods defined in

this section are used in subsequent chapters to develop the new quantile-based estimators

and to discuss their properties.

2.1.1 The quantile function

Let X1, ...,Xn be n independent sample realisations of random variable X ∼ F , where we

assume a continuous distribution function F(x) = Pr(X ≤ x) with positive domain. The
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probability density function is f (x) = F ′(x). Then the quantile function, G(F ; p) = G(p), is

(e.g. Parzen, 1979)

G(p) = F−1(p) = inf{x : F(x)≥ p} (2.1)

where 0≤ p≤ 1. The quantile function was earlier called the “representing function” by

Tukey (1965). When −∞ < x < ∞ and 0 < p < 1, G(p) has a fundamental property which

is F(x)≥ p if and only if G(p)≤ x.

When F is continuous and uniformly distributed on [0, 1], the quantile function G(p)

satisfies,

G(p) = inf{x : F(x) = p}, (2.2)

F(G(p)) = p for 0≤ p≤ 1, (2.3)

1−F(G(p)) = 1− p. (2.4)

Note that xp and G( ·, p) are other commonly used notations to represent the quantile function

G(F ; p) = G(p).

2.1.2 Estimation of the quantile function

In this section, we provide several definitions for the empirical quantile function and sample

quantile function.

Empirical quantile function

Tukey (1965) called a sample quantile function an “empirical representing function”. Wilk &

Gnanadesikan (1968) called a sample quantile function an “empirical cumulative distribution

function (ECDF)” and explained its advantages. Wilk & Gnanadesikan (1968) stated that a

sample quantile function provides the nonparametric estimator of the quantile function. In

addition, the ECDF can be applied even in situations where the sample is non-random.

Parzen (1979) called the sample quantile function an “empirical quantile function” and

introduced several definitions for this. Let X1, ...,Xn be an independent sample from a

continuous random variable X , then the empirical distribution function (EDF) can be defined

as,

Fn(x) = F̃(x) =
1
n

n

∑
i=1

IXi≤x , (2.5)
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where Ia is the indicator function equal to one if its argument, a, is true and zero otherwise,

and this is the usual formula where Fn(x) = F̃(x) is the empirical distribution that assigns

probability mass 1/n to each observation Xi. Then, Parzen (1979)’s first definition of the

empirical quantile function (EQF) is,

G̃(p) = F̃−1(p) = inf{x : F̃(x)≥ p} . (2.6)

Let X(1),X(2), ...,X(n) be the order statistics of the random sample. Then, Parzen (1979)’s

second definition of the empirical quantile function is based on order statistics. The EQF is

a piece-wise constant function and its values are the order statistics X(1) < X(2) < ... < X(n)

and defined as,

G̃(p) = X(i) for (i−1)/n < p≤ i/n, i = 1, ...,n . (2.7)

Parzen (1979)’s third definition of the empirical quantile function is as a piece-wise

linear function which is his preferred definition out of the three definitions. In the third

definition, the empirical quantile function G̃(p) is defined as,

G̃(p) = n
(

i
n
− p
)

X(i−1)+n
(

p− i−1
n

)
X(i) (2.8)

for i−1
n ≤ p ≤ i

n and i = 1, ...,n.

Sample quantile function

Parzen (1979) stated that there are three different ways to estimate quantiles. These

estimation methods are parametric, non-parametric and non-parametric pre-flattened. For

the parametric method, to estimate the quantile function, G(p), one can assume the form

G(p) = µ+σG0(p) (2.9)

and this is analogous to the classical location and scale parameter model of f (x) which is

f (x) =
1
σ

f0

[
(x−µ)

σ

]
(2.10)

and where,

µ =
∫ 1

0
G(p)d p and σ

2 =
∫ 1

0
{G(p)−µ}2d p . (2.11)
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Then the sample quantile function, Ĝ(p), is

Ĝ(p) = µ̂+ σ̂G0(p) (2.12)

where G0 is the quantile function associated with f0 and µ̂ and σ̂ the estimates of µ and σ

from (2.11).

For the non-parametric approach to estimate the quantile, the estimator is written in the

form of a kernel estimator by averaging over the values of G̃(u) for u in a neighbourhood of

p. Then, the kernel estimator of the Ĝ(p) is defined as,

Ĝ(p) =
∫ 1

0
G̃(u)

1
b

k
(

p−u
b

)
du (2.13)

where k is a suitable kernel, b is the bandwidth or smoothing parameter and i−1
n ≤ u ≤ i

n

for i = 1, ....,n. For a specific sample size n, the amount of smoothness in the estimator is

controlled by the bandwidth.

If k is differentiable, Ĝ(p) can be approximated as (e.g. Welsh, 1988),

Ĝ(p)≈
n

∑
i=1

X(i)
1
b

k
(

p−u
b

)
. (2.14)

Sheather & Marron (1990) stated that considering a linear combination of order statistics,

the efficiency of the sample quantiles can be improved. An appropriate weight function can

be used to form a weighted average of all the order statistics and a class of such estimators

are called kernel quantile estimators. Sheather & Marron (1990) also noted that for a given

kernel, k, the asymptotically optimal bandwidth of the kernel quantile function depends on

the first and second derivative of the quantile function, G′(p) and G′′(p), and if the first and

second derivative of the kernel function k exist, one can estimate G′(p) and G′′(p) using the

first and second derivative of the kernel quantile function. Sheather & Marron (1990) also

suggested a method to find the optimal bandwidth which minimizes the asymptotic mean

square error of the kernel quantile estimator.

Sample quantiles in statistical software R

The sample quantiles which are used in statistical software R (Development Core Team,

2018) are based on one or two order statistics. There are nine definitions for the sample

quantile in the R function quantile. Hyndman & Fan (1996) compared these nine

definitions and recommended definition 8 to be the best choice since it provides median-
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unbiased estimates of the quantile function G(p) regardless of the distribution. Therefore, we

used definition 8 to estimate the quantiles in our simulations and real-world data applications

that follow. In addition, Hyndman & Fan (1996) found six desirable properties for a sample

quantile and checked whether the sample quantile types satisfy these properties.

Let {X1, .....,Xn} be the set of independent observations from distribution F and let the

order statistics be denoted {X(1), .....,X(n)}. Then the sample quantile of type l (l = 1, . . . ,9)

denoted Ĝl(p) is written as (Hyndman & Fan, 1996),

Ĝl(p) = (1−δl)X( j)+δlX( j+1) (2.15)

where and j−tl
n ≤ p < j−tl+1

n for some tl ε R and 0≤ δl ≤ 1. The value of δl is a function

of j = [pn+ tl] and vl = np+ tl− j where tl is a constant determined by the type of sample

quantile.

Sample quantile definition 8

Let X( j) be the jth order statistic where j is the nearest integer to np. The median position

is mF(X( j)) ≈ ( j− 1
3)/(n+

1
3), where m denotes the median. Therefore, sample quantile

type 8, Ĝ8(p), is defined by setting p j = ( j− 1
3)/(n+

1
3) and then p j ≈ mF(X( j)). Ĝ8(p)

is a continuous function of p with δ = v, t = ( p+1
3 )p j = (k−1/3)/(n+1/3) and p j is the

plotting position in a quantile plot in which X( j) is plotted against p j (Hyndman & Fan,

1996). The resulting sample quantile is approximately median-unbiased of order o(n−1/2)

(pg. 248 Reiss, 1989).

2.1.3 Density quantile function

The density quantile function is defined as,

q(p) = f (G(p)) = f (xp) (2.16)

where xp, the pth quantile, will be used for simplicity when necessary in what follows.
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2.1.4 Quantile density function

Assuming F has a positive and continuous derivative F ′(x) = f (x) on its domain, the quantile

density function is defined as (Parzen, 1979)

g(p) = G ′(F ; p) = G′(p) = 1/ f (xp) (2.17)

and it was earlier called the “sparsity function” by Tukey (1965). Note that the density

quantile function f (xp) and quantile density function g(p) are reciprocals of each other.

2.1.5 Quantile density estimation

There is much literature on quantile density estimation. The empirical quantile density

function g̃(p) can be obtained using the empirical quantile function in (2.8) and is defined as

g̃(p) = n(X(i)−X(i−1)) (2.18)

for (i−1)/n≤ p < i/n where the n(X(i)−X(i−1)) are called spacings of the sample (Pyke,

1965; Pyke et al., 1972) and g̃(p) is asymptotically exponentially distributed with mean

g(p) (Parzen, 1979). The quantile density can be estimated using three approaches, namely

parametric, non-parametric and non-parametric pre-flattened (Parzen, 1979). The kernel

density estimation approach is a non-parametric approach to estimate the quantile density.

If the kernel estimator is defined as in (2.13) and if one chooses the G̃(p) as a piece-wise

linear function as in (2.8), then by differentiating (2.13), a smooth estimator of the quantile

density function can be obtained as

ĝ(p) =
∫ 1

0
g̃(u)

1
b

k
(

p−u
b

)
du. (2.19)

Parzen (1979) noted that the quantile density estimator which is defined in (2.19) provides

good properties only for a fixed value of p. The non-parametric pre-flattened approach

overcomes this issue by multiplying g(p) by a factor f0(G0(p)) and, by then letting b(p) =

f0(G0(p))g(p), the kernel density estimator is defined as

b̂(p) =
∫ 1

0
b̃(u)

1
b

k
(

p−u
b

)
bu (2.20)

32



Bofinger (1975) also described the estimation of quantile density functions in the form of

(2.19) based on the sample quantile function under nonparametric density estimation. If F(x)

is a strictly increasing, unknown and continuous distribution function in the neighbourhood

of x = a and f = F ′ is the density function, then to estimate f (a) at a particular quantile,

Moore & Yackel (1977) investigated the properties of nearest neighbour density function

estimators which are in the form of (2.19) and stated that the nearest neighbour estimators

and the bandwidth estimators with same kernel k have the same consistency properties. In

addition, Moore & Yackel (1977) noted that the nearest neighbour estimators are extensively

used, and many researchers prefer them to bandwidth estimators. Jones (1992) compared

the two methods, the first derivative of the kernel quantile estimator and the reciprocal of the

kernel density estimator to estimate the quantile density and concluded that the first method

is preferable than to the second method.

Falk (1997), Welsh (1988) and Jones (1992) studied the asymptotic properties of the

quantile density estimator ĝ(p) which is given as, for bandwidth b,

ĝ(p) =
n

∑
i=1

X(i)

{
kb

(
p− i−1

n

)
− kb

(
p− i

n

)}
, (2.21)

where kb(.) is an even function on [-1, 1] with variance σ2
k =

∫
x2k(x)dx and roughness

K =
∫

k2(y)dy. It is this estimate that we favor in our work to follow.

Epanechnikov (1969) examined some properties of multivariate probability density with

an arbitrary kernel as an improvement of univariate (Rosenblatt, 1956; Parzen, 1962) and

bivariate (Maniya, 1961; Nadaraya, 1964) kernel density estimations. Researchers often

use the Epanechnikov (1969) kernel as the kernel function in kernel density estimation.

Therefore, we also used the kernel density estimator in (2.21) with Epanechnikov (1969)’s

kernel in estimation.

Parzen (1979) noted that the main drawback of the kernel density estimation approach

is the complication of optimally choosing bandwidth b. To avoid this limitation, as an

alternative approach Parzen (1979) suggested an autoregressive quantile density estimator

which uses a sequence of autoregressive densities of order l, where l = 1,2, . . . to estimate

the true density. The critical thing in this approach is to decide a suitable value for l to

estimate the optimal density. A graphical approach is currently the most reasonable approach

to determine the value of l. Parzen (1979) stated that it is easy to estimate the autoregressive

quantile density for different values of order l compared to the estimation of kernel density

for different values of bandwidth b.
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Jones (1992) compared the two methods, the first derivative of the kernel quantile

estimator and the reciprocal of the kernel density estimator which used to estimate the

quantile density and concluded that the first method is preferred.

Falk (1986) and Welsh (1988) suggested estimating g(p) and the second derivative

of quantile density, g′′(p), separately and use the ratio of g(p)/g′′(p) to find the optimal

bandwidth by minimizing the asymptotic mean square error of the kernel estimator. The b

determines the connection between the amount of smoothness and how close the estimation

is to the true distribution. Jones (1992) also derived the asymptotic mean square error of the

kernel density estimator and found that the optimal choice of b to minimize the mean square

error to estimate the quantile density depends on g(p)/g′′(p). Cheng et al. (2006) found

that the kernel smoothed quantile estimators are more efficient than the empirical quantile

estimators, especially for small samples and have been used for the ratio of g(p)/g′′(p) to

calculate the mean squared error of the quantile estimators.

Quantile optimality ratio

Prendergast & Staudte (2016a) introduced the quantile optimality ratio (QOR) approach to

choose an optimal bandwidth for a kernel density estimator that is needed to estimate the

quantile densities. We used the QOR approach to find the optimal bandwidth to estimate

the quantile density for the purpose of computing the asymptotic standard errors of the

estimators in our interval estimators in what follows. The QOR is defined as,

QOR =
g(p)
g′′(p)

(2.22)

and it is location and scale invariant. The quantile density can be estimated using the kernel

density estimator and the kernel density estimator can be written as a linear combination of

order statistics as in (2.21). Jones (1992) derived the asymptotic mean square error of the

quantile density in (2.21) as,

MSE[ĝ(p)] =
b4σ4

k [g
′′(p)2]

4
+

Kg2(p)
bn

(2.23)

where K and σk are defined following (2.21). Prendergast & Staudte (2016a) showed that

the minimum MSE[ĝ(p)] occurs when

b = a(p)n(−1/5) (2.24)
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where

a(p) =

{
K
σ4

k

[
g(p)
g′′(p)

]2
}1/5

. (2.25)

Therefore, considering (2.24) and (2.25), it can be clearly seen that the asymptotically

optimal choice of bandwidth b to estimate the quantile density only depends on the underlying

distribution through the QOR. The best choice of bandwidth b in (2.21) depends on the p

and the underlying distribution. Since the performance of the interval estimators depends on

the choice of b, we use the QOR to select our b although other choices of b are also possible.

Su (2009) proposed two methods called “Normal-GLD” and “Analytical maximum

likelihood-GLD” to find the interval estimators of quantiles based on the generalised lambda

distribution (GLD). Alternatively, Prendergast & Staudte (2016a) proposed “GLD-QOR” and

“LN-QOR (Lognormal QOR)” to select good values for the bandwidth to find the interval

estimators of quantiles. Furthermore, Prendergast & Staudte (2016a) conducted comparisons

between their proposed methods and the methods in Su (2009) and concluded that both

“GLD-QOR” and “LN-QOR” performed well. Considering the efficiency in simulation time,

we select “LN-QOR” to construct the interval estimators for our newly introduced functions

of quantiles.

2.2 Influence function

Hampel (1968, 1974) introduced the influence function (IF) which was originally called

the “influence curve (IC)”. It is an important tool which is used to describe and measure

the robustness of an estimator. Later, it was called the “influence function ” because of its

generalisation to higher dimensional spaces. The IF measures the infinitesimal robustness

of an estimator and it provides a measurable understanding of how the estimator responds

to a small proportion (ε) of contamination x0. The IF provides information about on the

rate of change of an estimator with respect to the proportion of observations which are not

from distribution F . Therefore, the IF can be expressed as an approximation to the relative

change of an estimator due to the addition of a small proportion of contamination at any

point x0. Campbell (1978) viewed the influence function from another angle and considered

it to be a random variable. Campbell (1978) justified this by saying the influence function

is a mathematical transformation of a random variable X so that then it has a probability

distribution.
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2.2.1 Theoretical influence function

Throughout, let F denote a distribution function. Then, define the contamination distribution,

a mixture distribution, as

Fε = (1− ε)F + ε∆x0 (2.26)

where F is the uncontaminated distribution, ε ∈ [0,1] is the proportion of contamination and

∆x0 has all of its mass at the contaminant x0. The mixture distribution Fε is an appropriate

model to represent contamination and it consists of observations from both F and point

x0 with high probability 1− ε and small probability ε, respectively. Therefore, sampling

from Fε runs the risk of getting a bad observation at x0 with small probability ε and a good

observation from distribution F with probability 1− ε.

Suppose that for F , there is a parameter of interest, θ (where θ ∈ Θ and Θ is an open

convex subset in real line R), and associated estimator with the statistical functional T

such that T (F) = θ and T (Fn) = θ̂. Here Fn denotes the empirical distribution function,

assuming a sample of size n from F , which gives 1/n probability at each of the n data points.

Hence, T (Fn) is the estimate of θ and T (Fn) weakly converges to T (F) when n goes to

∞. The relative influence on estimator functional T (F) of ε proportion of contaminated

observations at x0 is given by,
T (Fε)−T (F)

ε
,

where F is the uncontaminated distribution, ε ∈ [0,1] is the proportion of contamination and

∆x0 has all of its mass at the contaminant x0.

Hampel (1974) defined the influence function as,

IF(x0;T ,F)≡ lim
ε→0

T (Fε)−T (F)

ε
(2.27)

which provides the rate of change in estimator functional T , at F , caused by introducing an

infinitesimal amount of contamination at x0.

Another definition of the influence function is that it is the first derivative of the estimator

functional at Fε when ε = 0 (e.g. p48 Clarke, 2018). That is

IF(x0;T ,F)≡ ∂

∂ε
T (Fε)

∣∣∣∣
ε=0

(2.28)

Therefore, the influence function is a directional derivative of T at F in the direction of ∆x0

(Hampel et al., 1986). As an example, here we illustrate how to obtain the influence function
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for the mean and variance estimators. Let M denote the functional for the mean parameter µ,

we have µ = M (F) =
∫

xdF , where dF = f (x)dx. Then the mean estimator of the mixture

distribution Fε can be written as,

M (Fε) =
∫

xdFε

=
∫

xd[(1− ε)F + ε∆x0]

= (1− ε)
∫

xdF + ε

∫
x∆x0

= (1− ε)µ+ εx

= µ+ ε(x0−µ). (2.29)

Then, using the definition of the influence function in (2.27), the influence function of the

mean estimator can be obtained as

IF(x0;M ,F) = lim
ε→0

[µ+ ε(x0−µ)]−µ
ε

= x0−µ. (2.30)

Note that the IF for the mean is unbounded in that influence grows the further x is moved

away from µ. Hence, this supports the common notion that outliers are highly influential on

the sample mean.

Similarly, let V denote the functional for the variance parameter σ2, we have σ2 =

V (F) =
∫
(x−µ)2dF . Then the variance of the mixture distribution Fε can be written as

V (Fε) =
∫
[x−M (Fε)]

2dFε

=
∫
{x− [µ+ ε(x0−µ)]}2d[(1− ε)F + ε∆x0 ]

=
∫
[(x−µ)2−2ε(x0−µ)(x−µ)+ ε

2(x0−µ)2][(1− ε)dF + εd∆x0 ]

= (1− ε)
∫
(x−µ)2dF−2ε(1− ε)(x0−µ)

∫
(x−µ)dF + ε

2(1− ε)(x0−µ)2
∫

dF

+ ε

∫
(x−µ)2d∆x0−2ε

2(x0−µ)
∫
(x−µ)d∆x0 + ε

3(x−µ)2
∫

d∆x0

= (1− ε)σ2 + ε
2(1− ε)(x0−µ)2 + ε(x0−µ)2−2ε

2(x0−µ)2 + ε
3(x0−µ)2

= σ
2 + ε

[
(x0−µ)2−σ

2]− ε
2(x0−µ)2. (2.31)
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Then the influence function for the variance estimator is,

IF(x0;V ,F) = lim
ε→0

[(1− ε)σ2 + ε(x0−µ)2− ε2(x0−µ)2]−σ2

ε

= lim
ε→0

ε[(x0−µ)2−σ2]− ε2(x0−µ)2]

ε

= (x0−µ)2−σ
2. (2.32)

Considering (2.31) and (2.32) the V (Fε) can be approximated as,

V (Fε)≈ σ
2 + εIF(x0;V ,F) (2.33)

since the result is that in (2.31) but ignoring the o(ε2) term. This is another way of thinking

about influence functions and power series expansions of T (Fε). That is, in general,

T (Fε) = T (F)+ εIF(x0;T ,F)+o(ε2)

so that a large IF(x0;T ,F) means that T (Fε) will be very different from T (F).

Hampel (1974) and Hampel et al. (1986) introduced the influence function for Fisher-

consistent (Fisher, 1922) functionals. Let X1,X2, .....,Xn be a random sample with probability

distribution function F , then we say that any estimator θ̂n is a Fisher consistent estimator

of θ, if θ̂n = T [Fn] and it satisfies θ = T [F ], where T is the estimator functional (e.g.

pg.12 Jurečková et al., 2019). Rousseeuw & Ronchetti (1981) extended the Hampel (1974);

Hampel et al. (1986)’s influence function for non-Fisher-consistent functionals with the

purpose of investigating the infinitesimal robustness of more general statistics.

2.2.2 Partial influence functions

Campbell (1978), Hampel et al. (1986) and Critchley & Vitiello (1991) explained how to

extend the theoretical influence function for more than one population. Of these, Campbell

(1978) showed how to expand the theoretical influence function for a number k of populations

in multivariate between-group studies. Hampel et al. (1986) considered the partial influence

function when defining the influence function for two sample tests. However, Pires & Branco

(2002) gave a proper definition for influence functions when there are two populations,

introducing the name “partial influence function” and noted that this can be extended

to more than two populations. When there is more than one population, the influence

function is determined by contaminating each of the populations, one at a time, while the
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other population remains uncontaminated. The partial influence functions of the estimator

functional T at (F1,F2) with relation to F1 and F2, respectively, are given by

PIF1(x0;T ,F1,F2) = lim
ε→0

[
T [(1− ε)F1 + ε∆x0,F2]−T (F1,F2)

ε

]

= lim
ε→0

[
T (F1,ε,F2)−T (F1,F2)

ε

]

PIF2(x0;T ,F1,F2) = lim
ε→0

[
T [F1,(1− ε)F2 + ε∆x0]−T (F1,F2)

ε

]

= lim
ε→0

[
T (F1,F2,ε)−T (F1,F2)

ε

]
. (2.34)

Campbell (1978) explained how the sample versions of the influence function works

when there is more than one population. In the sample version of the partial influence

function, eliminate an observation from only one of the samples. According to Pires &

Branco (2002) the interpretation of the partial influence function, e.g. PIF1(x0;T ,F1,F2), is

that it measures the n1 times the change on the relevant component of T that is caused by

an additional observation in x, in the first sample, when T is applied to a combined sample

of size (n1 + n2) and similarly can be interpreted for PIF2(x0;T ,F1,F2). As an example,

here we illustrate how to obtain the partial influence functions for the ratio of independent

variance estimators in detail (a shortened version of this can be found in Equation 8, Section

3.2 of Publication I).

Recall V (Fε) ≈ σ2 + εIF(x0;V ,F) and IF(x0;V ,F) = (x0 − µ)2 − σ2 in (2.33) and

(2.32) respectively. Let M (Fj) = µ j, V (Fj) = σ2
j ( j = 1,2) and R is the functional for

the ratio of variances where R (F1,F2) = V (F1,F2) = V (F1)/V (F2) = σ2
1/σ2

2 = ρ. Let,

z j = (x0−µ j)/σ j ( j = 1,2) and then we can derive the PIF of the ratio of variances as,
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PIF1(x0;R ,F1,F2) = lim
ε→0

[
V (F1,ε,F2)−V (F1,F2)

ε

]

= lim
ε→0

[
V (F1,ε)/V (F2)−V (F1)/V (F2)

ε

]

= lim
ε→0

[
[σ2

1 + εIF(x0;V ,F1)]/σ2
2−σ2

1/σ2
2

ε

]

=
IF(x0;V ,F1)

σ2
2

=
(x0−µ1)

2−σ2
1

σ2
2

=
(x0−µ1)

2

σ2
2

− σ2
1

σ2
2

=
σ2

1

σ2
2

[
(x0−µ1)

2

σ2
1

−1
]

= ρ[z2
1−1].

Similarly,

PIF2(x0;R ,F1,F2) = lim
ε→0

[
V (F1,F2,ε)−V (F1,F2)

ε

]

= lim
ε→0

[
V (F1)/V (F2,ε)−V (F1)/V (F2)

ε

]

= lim
ε→0

[
σ2

1/[σ
2
2 + εIF(x0;V ,F2)]−σ2

1/σ2
2

ε

]

= lim
ε→0

{
σ2

1

σ2
2

[
σ2

2− [σ2
2 + εIF(x0;V ,F2)]

ε[σ2
2 + εIF(x0;V ,F2)]

]}

= lim
ε→0

{
−σ2

1

σ2
2

[
IF(x0;V ,F2)

σ2
2 + εIF(x0;V ,F2)

]}

=−ρ

[
IF(x0;V ,F2)

σ2
2

]

=−ρ

[
(x0−µ2)

2−σ2
2

σ2
2

]

=−ρ

[
(x0−µ2)

2

σ2
2

−1
]

=−ρ[z2
2−1]

Rousseeuw & Ronchetti (1981) extended the influence function to more than one

population for non-Fisher consistent functionals.
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2.2.3 Influence function for quantile estimators

Let xp = F−1(p) for p∈ [0,1] be the pth quantile. Assuming F has a continuous and positive

density f at xp, the influence function of the xp estimator is defined as, e.g. see page 59 of

Staudte & Sheather (1990) and page 21 of Rieder (2012),

IF(x0,xp,F) = {p− I[xp ≥ x0]}g(p) (2.35)

where, g(p) is the quantile density as in (2.17).

Staudte & Sheather (1990) explained how to derive the influence function of the pth

quantile. Let the mixture distribution be Fε as in (2.26) and g(ε) = F−1
ε (p) defined in (2.36).

Since

F−1
ε (p) =





F−1 ( p
1−ε

)
, p≤ (1− ε)F

x0, (1− ε)F ≤ p < (1− ε)F + ε

F−1 ( p−ε

1−ε

)
, (1− ε)F + ε≤ p

(Staudte & Sheather, 1990, p.56). Let, (1− ε)F + ε≤ p, then

g(ε) = F−1
ε (p) = F−1

(
p− ε

1− ε

)
. (2.36)

Hence

g′(ε) =
d
dε

F−1
ε (p) =

d
dε

F−1
(

p− ε

1− ε

)
=

( d
dε

)( p−ε

1−ε

)

f
[
F−1

( p−ε

1−ε

)] .

For simplicity, let IF(x0,xp,F) = IFp(x) and using the definition of IF in (2.28),

IFp(x) =
d
dε

g(ε)
∣∣∣∣
ε=0

=
d
dε

F−1
(

p− ε

1− ε

)∣∣∣∣
ε=0

= g′(ε)
∣∣
ε=0

Therefore, IFp(x) = g′(ε)
∣∣
ε=0 =

p−1
f (xp)

= (p−1)g(p), x < xp
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Similarly, we can prove the rest and finally,

IFp(x) =





p−1
f (xp)

= (p−1)g(p) x < xp

0 x = xp

p
f (xp)

= pg(p) x > xp

(2.37)

which is the expression also found on page 53 of Clarke (2018).

Therefore, the contamination at xp has zero influence on the pth quantile of F . The

contamination at any x > xp has a fixed positive influence on the pth quantile of F , since

for any proportion of contamination ε the contamination shifts the pth quantile to the right

by F−1(p/(1− ε)) without considering the value of x. Similarly, the contamination at any

x < xp has the same negative influence on the pth quantile of F , since the contamination

shifts the pth quantile to the left by F−1(p− ε/(1− ε)) without considering the value of x.

As an example, we illustrate how to derive the influence function of the interquantile

range (IQRp) (see for example page 111 of Huber, 1981). Let IQRp = x1−p− xp,

IF(x0, IQRp,F) = IF(x1−p− xp)

= IF(x1−p)− IF(xp)

Then recall the IF(xp) which is in (2.35) and (2.37) and also recall that p ∈ (0,0.5). Hence,

if x < xp then x < x1−p. Therefore,

IF(x0, IQRp,F) =
−p

f (x1−p)
− p−1

f (xp)

=−pg(1− p)− (p−1)g(p)

When, x ∈ [xp,x1−p] then x≥ xp and x≤ x1−p. Therefore,

IF(x0, IQRp,F) =
−p

f (x1−p)
− p

f (xp)

=−pg(1− p)− pg(p)
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When, x≥ x1−p then x≥ xp. Therefore,

IF(x0, IQRp,F) =
p−1

f (x1−p)
− p

f (xp)

= (p−1)g(1− p)− pg(p)

Finally, we can summarize this as,

IF(x0, IQRp,F) =





−p
f (x1−p)

− p−1
f (xp)

x < xp

−p
f (x1−p)

− p
f (xp)

x ∈ [xp,x1−p]

p−1
f (x1−p)

− p
f (xp)

x > x1−p

.

2.3 Asymptotic variances and standard errors

Asymptotic variances

Influence functions also exhibit useful asymptotic properties including an often-convenient

means to derive the asymptotic variances of the estimator. Asymptotic variance (ASV) is

one of the summary values of the influence function and was earlier called the “expected

square” of the influence curve.

As examples, Hampel et al. (1986) and Staudte & Sheather (1990) described the

relationship between the influence function and the asymptotic variance and how to derive

the asymptotic variance using the influence function. We review this material below.

If some distribution G is in a neighbourhood of F then the influence function appears in

the first order von Mises expansion of T (G) which is given by (e.g. p. 53 of Clarke, 2018),

T (G) = T (F)+
∫

IF(x0,T ,F)d(G−F)(x)+R ,

where R is the remainder.

For X ∼F and Fn denoting the empirical distribution for n iid random variables distributed

F , under some mild regularity conditions such as differentiability of T (F) and by the Central

Limit Theorem we have the following ((see, e.g., page 85 of Hampel et al., 1986) and (see,

e.g., page 63 of Staudte & Sheather, 1990)),

For X ∼F and Fn denoting the empirical distribution for n iid random variables distributed

F and if G = Fn in (2.3), then for large enough n the expansion of T (Fn) for Fn in a
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neighbourhood of F can be written as,

T (Fn) = T (F)+
∫

IF(x0,T ,F)d(Fn−F)(x)+Rn .

When n→ ∞, Rn→ 0 in probability and by evaluating the integral over Fn, it resulted in the

approximation,
√

n [T (Fn)−T (F)]≈ 1√
n

n

∑
i=1

IF(Xi;T ,F) .

By the central limit theorem, the right-hand side of (2.3) is asymptotically normal. Therefore,

√
n [T (Fn)−T (F)]

a∼ N (0,ASV(T ))

where a∼ denotes ‘approximately distributed as ’and

ASV[T (F)] = E
[
IF(X ;T ,F)2] (2.38)

is the asymptotic variance of the estimator with functional T . Further details and discussion

can be found in Ch. 2 and 3 of Clarke (2018).

As an example, when the X1, ....,Xn is a simple random sample the influence function

for the sample mean where µ = M (F) =
∫

xdF is IF(x0;M ,F) = x0−µ as in (2.30). Then

(2.3) becomes

Xn = µ+
1√
n

n

∑
i=1

IF(Xi;M ,F)+Rn ,

where Rn = 0 and
√

n
[
Xn−µ

] a∼ N (0,ASV(M )) ,

where EF [IF(X ;M ,F)] = 0, ASV[M (F)] = E
[
IF(X ;M ,F)2] = EF [(X − µ)2] = σ2 for

EF(.) denoting expectation when X ∼ F .

When there are two populations, we have to consider the partial influence functions in

(2.34) and let Fn1 and Fn2 denote the empirical distribution functions for iid samples of size

n1 and n2 from F1 and F2 then from (Hampel et al., 1986, pg.196) and Pires & Branco (2002)

we have that
√

n1 +n2 [T (Fn1,Fn2)−T (F1,F2)] is asymptotically normal with mean zero

and asymptotic variance

ASV[T (F1,F2)] =
1

w1
EF1 [PIF1(X ;T ,F1,F2)

2]+
1

w2
EF2[PIF2(X ;T ,F1,F2)

2] (2.39)

where wi = ni/(n1 +n2) (i = 1,2).
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Asymptotic standard deviations

The asymptotic standard deviation of an estimator with functional T , can be found by

ASD[T (F)]≡
√

ASV[T (F)] , (2.40)

where ASV[T (F)] is defined as in (2.38).

When there are two populations,

ASD[T (F1,F2)]≡
√

ASV[T (F1,F2)] , (2.41)

where ASV[T (F1,F2)] is defined as in (2.39).

2.3.1 Asymptotic Variance based on Delta method

The delta method gives an approximate variance for a nonlinear function of a random variable

using Taylor series expansion.

If Xn is a sequence of random variable that satisfies (Verrill, 2003)

√
n(Xn−µ)→ N(0,σ2) , (2.42)

where, µ is mean and then,

√
n( f (Xn)− f (µ))→ N(0, f ′(µ)2

σ
2) (2.43)

Where, f ′ is the first derivative of the density function f evaluated at µ (Agresti, 1990).

Therefore, if the Var(Xn) = σ2, Var( f (Xn)) = f ′(µ)2σ2.

Let the X (1), ...,X (n) be a random sample with EX ( j)
i = µi and Cov(X ( j)

i ,X ( j)
k ) = σi j.

Then from multivariate delta method (Papanicolaou, 2009), for for µ = (µ1, ...,µn) for which

θ2 = ΣiΣ jσi j f ′i (µ) f ′j(µ)> 0,

√
n( f (X̂ (1), ..., X̂ (n))− f (µ1, ...,µp))→ N(0,θ2) (2.44)
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2.3.2 Asymptotic variance of quantiles

For the quantile estimator with functional xp and influence function given in (2.35), it can be

shown that EF [IF(X ;xp,F)] = 0 and

ASV(xp) = EF [IF2(X ;xp,F)] = p(1− p)g2(p). (2.45)

For more details we suggest to refer (David, 1981, Ch.2), (Staudte & Sheather, 1990, page

64) and (DasGupta, 2006a, Ch.7).

Let F be a continuous and positive density f at G(p) = xp = F−1(p), then Bahadur

(1966) has shown that

√
n[X(np)− xp] =

1√
n

n

∑
i=1

IF(Xi;xp,F)+
√

nRn

where IF(Xi;xp,F) is the influence function of the xp estimator given in (2.35) and (2.37),

Rn = O(n−
3
4 logn) with probability one and Rn become negligible when n→ ∞. Then, using

(2.3), the (2.46) can be approximated to,

√
n[Xnp− xp]≈

1√
n

n

∑
i=1

IF(Xi;xp,F). (2.46)

From the central limit theorem,

√
n[Xnp− xp]

a∼ N (0,ASV(G)) ,

where EF [IF(X ;G ,F)] = 0 and (e.g see pages 63,64 Staudte & Sheather, 1990)

ASV[G(F)] = ASVF [xp] = EF [IF2(X ;xp,F)] =
p(1− p)
f 2(xp)

.

Since the quantile density g(p) = 1/ f (xp) as in (2.17), then

ASVF [xp] = p(1− p)g2(p) . (2.47)

When the statistical functional is applied to the empirical distribution denoted Fn, then the

asymptotic variance of xp(Fn) is then the asymptotic variance of xp(Fn) is same as in (2.47).

For more details, we refer the reader to Bahadur (1966), Staudte & Sheather (1990) and Ch.

7 of DasGupta (2006a).
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2.3.3 Asymptotic covariance of quantiles

Similarly, and as also found in the preceding references, the asymptotic covariance between

the p-th and q-th quantile estimators is, provided 0 < p < q < 1,

E [IF(X ;G(·, p),F)IF(X ;G(·,q),F)] = p(1−q)g(p)g(q). (2.48)

and when, 0 < q < p < 1, we have

E [IF(X ;G(·, p),F)IF(X ;G(·,q),F)] = q(1− p)g(p)g(q). (2.49)

As an example, we derive the ASV of IQRp (see for example page 112 of Huber, 1981).

Recall the ASV as in (2.38), ASVF [xp] in (2.47) and the asymptotic covariance of quantiles

in (2.48). Then,

ASV(IQRp) =EF [IF2(IQR)]

=EF [(IF(x1−p)− IF(xp))
2]

=EF [IF2(x1−p)+ IF2(xp)−2IF(x1−p)IF(xp)]

=EF [IF2(x1−p)]+EF [IF2(xp)]−2EF [IF(x1−p)IF(xp)]

=p(1− p)g2(1− p)+ p(1− p)g2(p)−2p2g(p)g(1− p).

2.4 Estimation

2.4.1 Point estimation

Point estimation when there is a single population

Suppose that for F , there is a parameter of interest, θ (where θ ∈Θ and Θ is an open convex

subset in real line R), and associated estimator with the weakly continuous (Pg. 41, 42 of

Clarke, 2018) statistical functional T such that T (F) = θ and T (Fn) = θ̂ then T (Fn) is the

estimator of T (F), where Fn denotes the empirical distribution function which gives 1/n

probability at each of the n data points and T (Fn) converges to T (F) when n goes to ∞.
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Point estimation when there are two populations

Suppose that for F1 and F2, there is a parameter of interest, θ where θ ∈Θ and Θ is an open

convex subset in real line R, and associated estimator with the weakly continuous (Pg. 41,

42 of Clarke, 2018) statistical functional T such that T (F1,F2) = θ and T (Fn1,Fn2) = θ̂ then

T (Fn1,Fn2) is the estimator of T (F1,F2), where Fn1 and Fn2 denote the empirical distribution

functions which gives 1/(n1 + n2) probability at each of the data points in the combined

sample. Then, T (Fn1 ,Fn2) converges to T (F1,F2) when n1 and n2 go to ∞.

2.4.2 Interval estimation

Interval estimation when there is a single population

Let zα = Φ−1(α) denote the α quantile of the standard normal distribution. All our 100(1−
α)% asymptotic confidence intervals for estimator functional T (F) will be of the form:

T (Fn)± z1−α/2 ÂSE[T (Fn)] , (2.50)

where ÂSE[T (Fn)] = ÂSD[T (Fn)]/
√

n is an estimate of its standard error based on the

sample where ÂSD[T (Fn)] is the estimated asymptotic standard deviation. The actual

coverage probability of this estimator depends on how quickly the distribution of T (Fn)

approaches normality, as well as the rate of convergence of T (Fn) to T (F) and ÂSE[T (F)]

to ASE[T (F)].

In constructing the interval estimators for the ratios, due to the improved statistical

performance such as quicker convergence to normality and symmetrising so that choice of

numerator and denominator does not matter, it is common to first construct the interval for

the log transformed ratio followed by exponentiation to return to the original ratio scale. Let

W denotes an arbitrary statistical functional and W (F) = ln[T (F)] then, using the Delta

Method (e.g. Ch.3 DasGupta, 2006b),

ASV[W (F)]
.
=

1
[T (F)]2

ASV[T (F)] . (2.51)

Then ÂSE[W (Fn)] = {ÂSV[W (Fn)]}1/2/
√

n. This enables one to construct the confidence

interval for lnT (F), which is based on the asymptotic normality of lnT (Fn). A confidence

interval for T (F) can then be found by exponentiating the lower and upper bounds.
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Interval estimation when there are two populations

The 100(1−α)% confidence intervals for T (F1,F2) will be of the form:

T (Fn1 ,Fn2)± z1−α/2 ÂSD(T ,Fn1,Fn2)/
√

n1 +n2 ,

where T (Fn1,Fn2) is the estimator of T (F1,F2) and ÂSD(T ,Fn1,Fn2)/
√

n1 +n2 is an estimate

of its standard deviation (standard error) based on two samples. The actual coverage

probability of this estimator depends on how quickly the distribution of T (Fn1 ,Fn2) approaches

normality, as well as the rate of convergence of T (Fn1,Fn2) to T (F1,F2) and ÂSD(T ,Fn1,Fn2)

to ASD(T ,F1,F2).

Let W (F1,F2) = ln[T (F1,F2)] then, using the Delta Method (Ch.3 DasGupta, 2006b),

ASV[W (F1,F2)]
.
=

1
[T (F1,F2)]2

ASV[T (F1,F2)] . (2.52)

Then ÂSE[W (Fn1,Fn2)] = {ÂSV[W (Fn1,Fn2)]/(n1 +n2)}1/2 enables one to construct the

confidence interval for T (F1,F2), which is based on the asymptotic normality of T (Fn1,Fn2).
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3. Additional work

In this chapter, we have included some additional works that have not been included in the

publications. To avoid reintroducing notations and concepts etc., the reader should first read

the corresponding papers that are included in full in the next part of this thesis.

3.1 Additional work related to Paper I

This is supplementary work to Paper I, and so the reader should first read Paper I in Part II.

3.1.1 Partial influence function comparison

Figure 3.1: PIF1 comparisons for the ratio of variances (left) and squared ratio of IQRs
(right) for ratios for two exponential populations with rates equal to 1 and p = 0.2.

Figure 3.1 depicts the PIFs for the ratio of variances (left) and IQRs (right) for p = 0.2

for two exponential distributions with rate 1. The PIF for the variance ratio is unbounded

and increasing with x0 and rate. The PIF for the IQR ratio is bounded and in three segments

depending on the location of x0 in relation to x0.2 and x0.8. Consequently, the IQR ratio will

be less influenced by outliers.
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3.1.2 Asymptotic variance comparison

As examples, we have selected the LN(0,1), EXP(1) and Uniform(2,5) distributions to

compare the asymptotic variances of the ratio of variances and squared ratio of interquantile

range estimators.
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Figure 3.2: ASV comparisons for the LN(0,1), EXP(1) and Uniform(2,5) distributions
with assumed equal sample sizes (so w1 = w2 = 1/2). The distributions are chosen to be
equal in each example so that the estimators of ρ = ρp = 1.

As shown in Figure 3.2, the ASV of the squared IQR ratio (black curve) can vary greatly

with p. Here the plots are over the domain p ∈ [0.01,0.45] and for choices of p for the

log-normal distribution we can see that the ASV is smaller than that for the ratio of variances

(red line). For the exponential distribution, a choice of p of around 0.15 will result in a

smaller ASV for the squared IQR although if p is either very small or moderately large then

ASV for the ratio of variances is smaller. An interesting finding arises for the continuous

uniform distribution. The ASV is minimized when p is chosen to be as small as possible.

This implies that, in practice, we should choose to select the range (max − min) as the

interquantile range to decrease estimator variability.

3.1.3 Extra plot and table for house price data example

In Table 5 of Paper 1, since 30% of intervals gave different conclusions comparing the two

methods (ratio of variance and ratio of IQR) of all the pairwise comparisons between suburbs,

our next aim is to find the suburbs which show a higher number of different conclusions.

Since there are 301 suburbs in the cleaned data set, there are 300 choose 2 or 45,150 unique

pairwise comparisons. Table 3.1 shows the names of the suburbs which show a higher

number of different conclusions between the two methods and Figure 3.3 depicts the house

price distributions of these eleven suburbs. It can be clearly seen that the house price
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distribution of all the suburbs except Warranwood is positively skewed and some suburb’s

house price distributions contain outliers and in some cases very extreme values.

Table 3.1: Suburbs which show a higher number of different conclusions between the two
methods in the pairwise comparisons

Suburb No/Yes Yes/No Total
Beaumaris 227 7 234
Docklands 9 200 209
Edithvale 13 204 217
Frankston North 0 206 206
Glen Waverley 183 26 209
Hampton Park 10 205 215
Kingsbury 238 1 239
Langwarrin 7 232 239
Oakleigh 203 10 213
Tullamarine 220 10 230
Warranwood 2 211 213

0e+00

2e+06

4e+06

6e+06

Bea
um

ar
is

Doc
kla

nd
s

Edit
hv

ale

Fra
nk

sto
n 

Nor
th

Glen
 W

av
er

ley

Ham
pt

on
 P

ar
k

King
sb

ur
y

La
ng

war
rin

Oak
lei

gh

Tu
lla

m
ar

ine

W
ar

ra
nw

oo
d

Suburb

H
ou

se
P

ric
e

Figure 3.3: Box plots of house price distributions for suburbs which show a higher number
of different conclusions between the two methods

3.1.4 Doctor visits data example

The doctor visits data is a sub-sample of 3066 individuals of the AHEAD cohort (born before

1924) for wave 6 (year 2002) from the Health and Retirement Study (HRS) which surveys

more than 22,000 Americans over the age of 50 every 2 years. The response variable that we

are interested in is the number of doctor visits. We grouped this data into two groups using

gender as the grouping variable. The summary statistics of the response variable for the two

gender groups can be found in Table 6 of Arachchige et al. (2019b).

According to the summary statistics, the doctor visit distributions are positively skewed

and there is a large outlier in the female group. The summary statistics suggest a positive
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skew in the number of female visits to the doctor, even after removing the outliers. Our

objective was to compare the variation in the number of doctor visits between males and

females. We used the ratio of variance approach and the squared IQR ratio to compare the

variation in the number of doctor visits between males and females with and without the

outlier.

Table 3.2: 95 % confidence interval lower bounds (LB) and upper bounds (UB) for the
doctor visits data.

Confidence x= male, y= female
Interval With outlier Without outlier
Method LB UB LB UB

Ratio of Variance 0.2155 1.8582 0.5367 2.3671
Squared IQR ratio, p = 0.01 0.2489 2.5223 0.2814 2.8186
Squared IQR ratio, p = 0.05 0.4861 1.2268 0.5356 1.3759
Squared IQR ratio, p = 0.1 0.8789 1.1378 0.8799 1.1365
Squared IQR ratio, p = 0.2 0.4610 0.9454 0.4610 0.9454
Squared IQR ratio, p = 0.25 0.5983 1.1416 0.5985 1.1412

Table 3.2 provides the confidence interval bounds of the 95% confidence intervals using

the two methods. It can be clearly seen that there is a large difference between the ratio of

variance confidence intervals depending on whether the outlier is included. On the other

hand, the confidence interval for the squared IQR ratio is hardly influenced by the outlier.

The squared IQR ratio does not measure the same thing for different p. Additionally, the

interval for the ratio of variances is wide compared to the interval for the squared IQR ratio

with the exception of when p = 0.01 is chosen for the latter. This suggests that the IQR

approach is a better choice to compare the variation between the two groups for this example.

3.2 Additional work related to paper II

This is supplementary work to Paper II, and so the reader should first read Paper II in Part II.

3.2.1 Confidence interval for median absolute deviation from a target

Bonett & Seier (2003) suggested constructing distribution-free confidence intervals for

median absolute deviation from a target by applying the usual confidence interval for the

median described on page no. 137 of Snedecor & Cochran (1980) to the transformed values

|Yi−h|. Note here that the target, h, is known and fixed so that this differs from the MAD

where the target is the median which needs to be estimated.

Snedecor & Cochran (1980) describe a simple way to construct the confidence interval

for the population median. Let X(1) ≤ X(2) ≤ . . .≤ X(n) be the ordered random sample. Then
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two of the order statistics become the lower and upper bounds of the confidence interval.

The (1−α)×100% confidence interval for position of the population median is,

(n+1)/2± z(1−α/2)
√

n. (3.1)

After rounding the lower limit and upper limit to the nearest integer, two order statistics

can be selected as the lower and upper bounds for the confidence interval for the population

median. When Xi = |Yi−M| where M is the true population median and Yi is the actual

value, this confidence interval becomes the interval for the median absolute deviation with

the exception that M is assumed fixed and not estimated.

In Arachchige & Prendergast (2019), we stated when h is the population median and

is known, the simulation results were very good showing that the coverage probabilities

are very close to nominal. Here we show the simulation table which is not included in

Arachchige & Prendergast (2019). From Table 3.3, the coverage probabilities are close to

the nominal coverage (0.95) even for small sample sizes under this assumption of known

population median.

Table 3.3: Simulated coverage probabilities (and widths in parentheses) for the 95%
confidence interval for the MAD when the target value is the population median and is
assumed known.

Sample size X ∼ LN(0,1) X ∼ EXP(1) X ∼ χ2
5 X ∼ PAR(1,7)

50 0.940(0.31) 0.937(0.23) 0.937(1.07) 0.932(0.04)
100 0.944(0.22) 0.940(0.17) 0.937(0.79) 0.946(0.03)
200 0.940(0.15) 0.941(0.12) 0.939(0.56) 0.942(0.02)
500 0.945(0.10) 0.946(0.08) 0.946(0.36) 0.944(0.01)

1000 0.946(0.07) 0.944(0.05) 0.946(0.25) 0.950(0.01)

Table 3.4: Simulated coverage probabilities (and widths in parentheses) for the 95%
confidence interval for the MAD when the target value is the estimated median.

Sample size X ∼ LN(0,1) X ∼ EXP(1) X ∼ χ2
5 X ∼ PAR(1,7)

50 0.751(0.31) 0.765(0.24) 0.900(1.09) 0.723(0.04)
100 0.756(0.22) 0.773(0.17) 0.908(0.80) 0.746(0.03)
200 0.755(0.15) 0.777(0.12) 0.912(0.56) 0.737(0.02)
500 0.753(0.10) 0.781(0.08) 0.912(0.36) 0.734(0.01)

1000 0.754(0.07) 0.790(0.05) 0.911(0.25) 0.740(0.01)

Table 3.4, shows the simulated coverage probabilities for the confidence interval for the

MAD when the target is the estimated median. The coverage probabilities are typically much

lower than the nominal coverage of 0.95 even for large sample sizes under this assumption of

estimated population median for these selected distributions. This provides further evidence
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of the need for confidence intervals with good coverage such as those we provided in

Arachchige & Prendergast (2019).

3.2.2 Confidence interval for ratios of median absolute deviations from

a target

Bonett & Seier (2003) also suggested constructing distribution-free confidence intervals for

a ratio of median absolute deviations from a target by applying the Price & Bonett (2002)

method for transformed values |Yi j−h|. The two populations medians were considered as

target values. The Price & Bonett (2002) method can be found in detail in Section 2.1 of

Arachchige et al. (2019a).

Table generated by Excel2LaTeX from sheet ’Results for Bonnet and Series M’

Table 3.5: Simulated coverage probabilities (and widths in parentheses) for the 95%
confidence interval for the ratio of MADs when the target values are the two population
medians.

Sample sizes X ∼ LN(0,1) X ∼ EXP(1) X ∼ χ2
5 X ∼ PAR(1,7)

(n1,n2) Y ∼ LN(0,1) Y ∼ EXP(1) Y ∼ χ2
2 Y ∼ PAR(1,3)

50,50 0.906(0.93) 0.892(0.89) 0.900(1.81) 0.889(0.33)
100,100 0.918(0.59) 0.910(0.57) 0.912(1.20) 0.904(0.21)
200,200 0.925(0.39) 0.913(0.38) 0.918(0.81) 0.916(0.14)
200,500 0.878(0.31) 0.871(0.30) 0.859(0.65) 0.861(0.11)
500,500 0.930(0.24) 0.929(0.24) 0.927(0.50) 0.929(0.09)

500,1000 0.901(0.20) 0.896(0.20) 0.879(0.43) 0.895(0.07)
1000,1000 0.934(0.17) 0.935(0.16) 0.929(0.35) 0.930(0.06)

According to the results in Table 3.5, it seems this method works only for moderate to

large and equal sample sizes. The coverage probability is bit low for unequal sample sizes.

3.2.3 Mathlevel data example

The Mathlevel data set, available in the Ecdat package (Croissant, 2016) in R

(Development Core Team, 2018), measures the level of calculus attained for undergraduate

students who took advanced micro-economics between August 1983 and August 1986 in the

United States. The data set contains records for 609 (male-373, female-236) students and

the response variable that we considered is SAT Math score.

Figure 3.4 depicts the math scores for male and female students. It can be clearly seen

that there are some outliers for both the male and female students. Table 3.6 shows the

estimate and the confidence intervals for the ratio of variances using the F distribution

(assuming the data are drawn from normal distributions), the squared ratio of MADs and the
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Figure 3.4: Box plot of the SAT Math score for males and females students.

Table 3.6: 95% asymptotic confidence intervals (CI) for the ratio of variances, ratio of MADs
(RM) and difference of MADs (DM) for SAT Math score for males and females.

Method Estimate CI
Ratio of variances 1.2317 (0.9742, 1.5477)

RM 1.7778 (1.1806, 2.6771)
DM 10 (3.0825, 16.9175)

difference of MADs. The interval estimator of the ratio of variances includes one, making

it difficult to conclude that there are differences in the spread. However, both the interval

estimators of the squared ratio of MADs and the difference of MADs indicate a significant

difference in the spread of the math scores between males and females.

3.3 Additional work related to paper III

This is supplementary work to Paper III, and so the reader should first read Paper III in Part

II.

3.3.1 Comparing two relative spreads using confidence intervals for

differences of CV, RCVQ and RCVM

In Section 4.2 of Arachchige et al. (2019b), we introduced the interval estimator for the ratio

of two relative spreads to compare the relative spreads of two independent populations. The

interval estimators for differences in the two relative spreads can also be used to compare

the relative spread of two independent populations. For example, an interval estimator for
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RCVM,1−RCVM,2 is,

d̂± z1−α/2

[
ÂSD

(
R CV M,1,Fn1

)
√

n1
+

ÂSD
(
R CV M,2,Fn2

)
√

n2

]
, (3.2)

where d̂ = r̂cvM,1− r̂cvM,2 and n1 and n2 are the sample sizes of the simple random samples

from the two populations.

3.3.2 Melbourne house price data example

The house price data example which is described in Section 5.2.2 of Arachchige et al.

(2019b) is based on the Melbourne house price data set which is available at https://

www.kaggle.com/anthonypino/melbourne-housing-market. Figure 2 of Arachchige

et al. (2019b) depicts the house price distribution of 3 pairs of neighbouring suburbs. Our

objective is to check whether there are any differences in the relative spreads of house prices

between neighbouring suburbs. In Arachchige et al. (2019b), we used interval estimators of

the ratios of the relative spreads of CV, RCVQ and RCVM and here we use the differences

of the relative spreads of CV, RCVQ and RCVM to check whether there are any differences

in the relative spreads of house prices between neighbouring suburbs.

Table 3.7: 95% confidence interval lower bounds (LB) and upper bounds (UB) for differences
of CV, RCVQ and RCVM between neighbouring suburbs house prices.

Confidence x=Bundoora x=Beaumaris x=Oakleigh
Interval y=Kingsbury y=Black Rock y=Oakleigh East
Method LB UB LB UB LB UB

CVx−CVy 0.0062 0.2771 -0.1621 0.2478 -0.1789 0.1655
RCVQx−RCVQy -0.5406 0.0283 0.0308 0.3497 -0.3629 0.0354
RCVMx−RCVMy -0.3152 0.0563 0.0238 0.2546 -0.2624 0.0090

According to the results in Table 3.7, the three measures provide different conclusions.

For Bundoora and Kingsbury, the intervals of the differences of CV suggest that there is a

difference in the relative spread of house price between these two suburbs while the intervals

of the differences of RCVQ and RCVM suggest there is no difference in relative spread, but

the intervals are wide. For Beaumaris and Black Rock, the differences of CV suggest there is

no significant difference in the relative spread of house price between these two suburbs but

the other two intervals suggest a significant difference in relative spread. All three measures

suggest that there are no significant differences in the relative spread of house price between

Oakleigh and Oakleigh East.

57

https://www.kaggle.com/anthonypino/melbourne-housing-market
https://www.kaggle.com/anthonypino/melbourne-housing-market


3.4 Additional works related to paper IV

This is supplementary work to Paper IV, and so the reader should first read Paper IV in Part

II.

3.4.1 Simulation results for the generalized Bowley’s coefficient, γp

Table 3.8: Simulated coverage probabilities (and widths) for 95% confidence interval
estimators for γp.

n Dist. γp=0.05 γp=0.1 γp=0.15 γp=0.2 γp=0.25

50 N(2,1) 0.968(0.64) 0.974(0.66) 0.979(0.71) 0.980(0.77) 0.979(0.85)
LN(0, 1) 0.945(0.49) 0.962(0.58) 0.972(0.66) 0.980(0.74) 0.987(0.83)
EXP(1) 0.960(0.55) 0.968(0.60) 0.972(0.67) 0.979(0.75) 0.985(0.84)
Chi(2) 0.956(0.54) 0.967(0.60) 0.974(0.67) 0.979(0.75) 0.981(0.84)
PAR(1, 7) 0.955(0.57) 0.963(0.61) 0.972(0.69) 0.980(0.76) 0.984(0.86)

100 N(2,1) 0.974(0.46) 0.974(0.46) 0.976(0.49) 0.974(0.54) 0.972(0.59)
LN(0, 1) 0.955(0.35) 0.964(0.39) 0.972(0.45) 0.971(0.51) 0.976(0.57)
EXP(1) 0.963(0.37) 0.962(0.41) 0.965(0.45) 0.971(0.51) 0.973(0.57)
Chi(2) 0.958(0.37) 0.962(0.41) 0.969(0.45) 0.970(0.51) 0.971(0.57)
PAR(1, 7) 0.959(0.37) 0.962(0.41) 0.965(0.45) 0.972(0.51) 0.974(0.58)

200 N(2,1) 0.973(0.32) 0.974(0.33) 0.973(0.34) 0.972(0.37) 0.967(0.41)
LN(0, 1) 0.962(0.24) 0.964(0.27) 0.964(0.31) 0.968(0.35) 0.971(0.39)
EXP(1) 0.958(0.25) 0.963(0.28) 0.963(0.31) 0.964(0.35) 0.966(0.39)
Chi(2) 0.959(0.25) 0.960(0.28) 0.965(0.31) 0.966(0.35) 0.964(0.39)
PAR(1, 7) 0.959(0.25) 0.965(0.28) 0.967(0.31) 0.967(0.35) 0.965(0.39)

500 N(2,1) 0.975(0.20) 0.970(0.20) 0.969(0.22) 0.966(0.23) 0.961(0.25)
LN(0, 1) 0.960(0.15) 0.962(0.17) 0.963(0.19) 0.960(0.21) 0.961(0.24)
EXP(1) 0.962(0.15) 0.957(0.17) 0.959(0.19) 0.959(0.22) 0.956(0.24)
Chi(2) 0.959(0.15) 0.960(0.17) 0.956(0.19) 0.958(0.22) 0.956(0.24)
PAR(1, 7) 0.957(0.15) 0.962(0.17) 0.957(0.19) 0.962(0.21) 0.961(0.24)

1000 N(2,1) 0.972(0.14) 0.964(0.14) 0.963(0.15) 0.960(0.16) 0.955(0.17)
LN(0, 1) 0.961(0.10) 0.958(0.12) 0.960(0.13) 0.959(0.15) 0.954(0.17)
EXP(1) 0.956(0.11) 0.955(0.12) 0.959(0.13) 0.956(0.15) 0.955(0.17)
Chi(2) 0.953(0.11) 0.960(0.12) 0.958(0.13) 0.953(0.15) 0.955(0.17)
PAR(1, 7) 0.959(0.10) 0.962(0.12) 0.958(0.13) 0.957(0.15) 0.958(0.17)

5000 N(2,1) 0.955(0.06) 0.956(0.06) 0.956(0.06) 0.955(0.07) 0.955(0.08)
LN(0, 1) 0.952(0.04) 0.956(0.05) 0.953(0.06) 0.955(0.06) 0.952(0.07)
EXP(1) 0.951(0.05) 0.953(0.05) 0.951(0.06) 0.954(0.07) 0.954(0.07)
Chi(2) 0.953(0.05) 0.950(0.05) 0.955(0.06) 0.955(0.07) 0.953(0.07)
PAR(1, 7) 0.950(0.04) 0.953(0.05) 0.953(0.06) 0.954(0.07) 0.955(0.07)

10000 N(2,1) 0.959(0.04) 0.955(0.04) 0.952(0.04) 0.951(0.05) 0.953(0.05)
LN(0, 1) 0.960(0.03) 0.953(0.04) 0.951(0.04) 0.954(0.05) 0.954(0.05)
EXP(1) 0.953(0.03) 0.955(0.04) 0.948(0.04) 0.948(0.05) 0.952(0.05)
Chi(2) 0.955(0.03) 0.956(0.04) 0.951(0.04) 0.950(0.05) 0.951(0.05)
PAR(1, 7) 0.954(0.03) 0.954(0.04) 0.950(0.04) 0.952(0.05) 0.953(0.05)

Simulated coverages based on 10,000 trials for the interval estimator of γp in Paper

IV are provided in Table 3.8. The interval estimator of γp provides very good coverage

compared to the nominal 0.95 and the interval width decreases with increasing sample sizes.

Also, γp=0.05 provides a lower interval width compared to the γp of all the other choices of p
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for all n.

3.4.2 Comparison of measures of skewness
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Figure 3.5: Comparison of skewness measures over p for LN(0, 1) and Exp(1) distributions

Figure 3.5 depicts the comparisons of measures of skewness, γp (gamma.p), λp

(lambda.p) with the new measures of skewness, γp (AUC.gamma), γ
∗
p (AUC.gamma), λp

(AUC.lambda) and λ
∗
p (AUC.lambda*) over p for the LN(0, 1) and Exp(1) distributions. The

γp and λp measures vary over p while the integrated versions remain constant since they are

averaged over all p. The highest variation can be seen in the λp over p and the lowest value

represents γ
∗
p. The values of the γp, γ

∗
p and the λ

∗
p are approximately similar and the value of

the λp is somewhat higher compared to the others.
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3.4.3 Comparison of measures of skewness

We now consider the relative asymptotic variance (rASV) where, e.g., for γp, rASV =

ASV/γ2
p. Figure 3.6 depicts the rASV comparisons of all six skewness measures, γp, λp, γp,

γ
∗
p, λp and λ

∗
p over p∈ [0.01,0.25] for the LN(0,1) and EXP(1) distributions. For the LN(0,1)

distribution, the rASV for the estimator of γp
∗ (rASV.AUC.gamma) is comparatively higher

than the rASV of the other integrated versions. The rASV of both the γp (rASV.gamma.p)

and λp (rASV.lambda.p) estimators are increasing when p increases. The rASV of γp also

becomes lower with lower values of p. The best choice of p for λp to get a minimum

rASV is around 0.05 and this choice of p is Groeneveld et al. (2009)‘s recommendation of

p = 0.05 for λp. When it comes to the EXP(1) distribution, a similar comparison can be

seen among the six measures of skewness. However it is clear that for small p ∈ [0.01,0.05]

rASV of λp is lower than the rASV of γp (rASV.AUC.gamma) and λ
∗
p (rASV.AUC.lambda*)

and the rASV of the γp estimator is less than the rASV of λ
∗
p. In addition, selecting a

p ∈ [0.025,0.05] will be a good choice for λp to minimise the rASV.

3.5 R shiny web applications

We created R shiny (Chang et al., 2017) web applications for Publications I, II, III and IV

and included the links for the applications in each paper. Here we describe the interface of

the R shiny web application related to each publication.

3.5.1 Interface of the R shiny web applications created in Paper I

Figure 3.7 shows the interface of the created R shiny web application which can be accessed

via the link given in Arachchige & Prendergast (2019). Here we introduced a wide range of

additional distributions in the shiny web application that we did not report in the simulation

results given in Arachchige & Prendergast (2019). The user can change the numerator and

denominator distributions, parameters, sample sizes, probability and the number of trials

to any values they choose. The simulation results can be obtained by clicking on the ‘Run

Simulation’ button and the relevant estimates and the two performance measures, coverage

probability (CP) and the average confidence interval width (Width) will be calculated. For

clarity, we developed the web application to create two separate tables to compare the

performance of the location and scale estimators separately. In addition, anyone can use

the “ copy” and “ Print“ buttons to copy or print the results. The first table in Figure 3.7
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Figure 3.6: Relative asymptotic variance comparisons of skewness measures over p for
LN(0, 1) and Exp(1) distributions

illustrates the simulation results for point and interval estimators of t-test (t), Price and

Bonnet method (r) Price & Bonett (2002) and ratio of quantiles (rp) when both the numerator

and denominator distributions are LN(0,1), sample sizes (n1,n2) are 100, 1000 simulation

trials and p = 0.2 for rp. The second table in Figure 3.7 details the simulation results for the

point and interval estimators of the F-test (F), ratio of variances (R) and squared ratio of

IQR (Rp) for the same settings as for the first table.

3.5.2 Interface of the R shiny web applications created in Paper II

Figures 3.8 and 3.9 show the interfaces of the R shiny web applications which are related

to the simulations conducted in Arachchige & Prendergast (2019) and are available via

following links
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Figure 3.7: The R shiny interface to compare the performance of ratio of variances, squared
ratios of IQRs and ratios of squared MADs.

https://lukeprendergast.shinyapps.io/MADcalc/

and

https://lukeprendergast.shinyapps.io/MADRmDm/

Figure 3.8 shows the interface of the created R shiny web application to check the

performance of the interval estimator of the MAD which is used to make inferences about

spread in a single population. We introduce a wide range of other distributions that we

did not report in the simulation results given in Table 1 of Arachchige & Prendergast

(2019). The user can change the distribution, parameters, sample size and the number of

trials they choose. Simulation results can be obtained by clicking on the ‘Run Simulation
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’button and the relevant estimates and the three performance measures, coverage probability

(CP), average confidence interval width (Avg.W.) and median confidence interval width

(Med.W.) are calculated. Here, we have included median confidence interval width also

as a performance measure due to some excessively large confidence interval widths for a

small number of intervals that skew the mean and this is noted in Table 1 of Arachchige &

Prendergast (2019). Here also, anyone can use the “Copy” and “print” buttons to copy the

whole table at once or print the results. The table in Figure 3.8 details the simulation results

for the point and interval estimators of MAD for the LN(0,1), EXP(1), χ2
5 and PAR(1,7)

distributions when the sample size (n) is 500 and for 1000 simulation trials.

Figure 3.8: The created R shiny interface to check the performance of interval estimators for
the MAD.

Figure 3.9 shows the interface of the R shiny web application to compare the performance

of the interval estimators of differences and ratios of MADs (Dm and Rm) which are used to

compare the spread in two populations. Again, we introduce a wide range of distributions

that we did not report in the simulation results given in Table 2 of Arachchige & Prendergast

(2019). The user can change the numerator and denominator distributions, parameters,

sample sizes and the number of trials they choose. Then, the simulation results can be

obtained by clicking on the ‘Run Simulation ’button and the relevant estimates and the

three performance measures, coverage probability (CP), average confidence interval width

(Avg.W.) and median confidence interval width (Med.W.) are calculated. Here we have

included median confidence interval width as a performance measure due to some excessively

large confidence interval widths for a small number, between 1% and 2%, of intervals and

this is noted in Table 2 of Arachchige & Prendergast (2019). Again, the tables can be copied

or printed. The table in Figure 3.9 details the simulation results for the point and interval
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Figure 3.9: The R shiny interface to check the performance of interval estimators of
differences of MAD and ratios of MAD

estimators of differences and the ratios of MADs (Dm and Rm) when both the numerator and

denominator distributions are LN (0,1) and EXP(1) and when the numerator and denominator

distributions and when they are χ2
5 and χ2

2 respectively for sample sizes (n1,n2) both equal to

500 and for 1000 simulation trials.

3.5.3 Interface of the R shiny web applications related to Paper III

Figure 3.10: The R shiny interface to compare the performance of CV, RCVQ and RCVM.

Figure 3.10 shows the interface of the R shiny web application which can be accessed via

the link given in Arachchige et al. (2019b). The user can change distributions, parameters,

sample size and the number of trials as they choose. Then the simulation results can be
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obtained by clicking on the ‘Run Simulation’ button and the relevant estimates and the

two performance measures, coverage probability (CP) and the average confidence interval

width (width) will be calculated for all the confidence interval estimators of CV (various

estimators, see the paper for details), RCVQ and RCVM. The table in Figure 3.10 provides

the simulation results for the point and interval estimators of CV, RCVQ and RCVM for the

LN(0,1) distributions when the sample size (n) is 100 and for 1000 simulation trials.

3.5.4 R shiny web applications related to paper IV

Figure 3.11: The created R shiny interface to compare the performance of interval estimators
for γp ,λp with our new measures γp , γ

∗
p , λp , λ

∗
p .

Figure 3.11 shows the interface of the created R shiny web application which related can

be accessed via the link

https://lukeprendergast.shinyapps.io/meanskew/

The user can change the distribution, parameters, sample size, probability and the number

of trials to which ever they choose. Then the simulation results can be obtained by

clicking on the ‘Run Simulation ’button and the relevant estimates and the two performance

measures, coverage probability (CP) and the average confidence interval width (Width) will

be calculated for all the intervals estimators of the measures of skewness, γp (Gp), λp (Lp)

and our new measures γp (int. Gp), γ
∗
p (int. pGp), λp (int. Lp), λ

∗
p (int. pLp). The table in

Figure 3.11 details the simulation results for the point and interval estimators of CV, RCVQ

and RCVM for LN(0,1) distributions when the sample size (n) is 100 and for 1000 simulation

trials.
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4. Summary and future work

This thesis is divided into two parts, as Part I (Chapters 1-3) and Part II. In Chapter 1,

previous work related to the research in this thesis was briefly reviewed. In Chapter 2,

theory and methods which used for developing new measures were discussed. In Chapter

3, some additional works related to each paper were included, including a description of R

Shiny applications that the reader can use. The Appendix consists of the most important R

programs related to the all the papers.

Part II consists of four accepted or submitted papers which cover the main contents of

this thesis. The objective of this thesis is to introduce quantile-based measures of location,

scale, relative spread and skewness with their distribution-free interval estimators to compare

two populations or to make inferences about a single population. Paper I and Paper II consist

of some research works related to quantile-based measures to compare the location and

scale of two populations respectively. Paper III and Paper IV detail research related to the

quantile-based measures of relative spread and skewness to make inferences on a population.

In Paper I, distribution free point and interval estimators were introduced for ratios of

independent quantiles and squared ratios of IQRs. Robustness properties were investigated

using partial influence functions. Asymptotic variance comparisons were conducted, and the

respective probabilities related to the minimum ASV in squared ratios of IQRs were shown

for selected distributions. Simulation studies were conducted to compare the performance

of the interval estimators and the coverage probabilities were very close to the nominal

coverage even for moderate sample sizes of 50. Several examples were used as applications

to the real-world data and new location and scale estimators provided different conclusions

compared to the existing measures of location and scales such as t-test and the F-test. Future

work will be to find a new measure of scale which avoids the ”need to choose p” requirement.

In Paper II, distribution-free point and interval estimators for the MAD and difference

and ratios of MADs were introduced to make inferences on scale of a single population

and to compare the scale of two populations respectively. Robustness properties were

investigated using influence functions and partial influence functions. Simulations were
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conducted to compare the performance of the new estimators. Results suggest that the

coverage probabilities are very close to the nominal coverage even for moderate sample

sizes of 50. Examples reveal that the difference and ratios of MADs resulted in different

conclusions compared to the F- test. Future works will be to find intervals to alternatives to

the MAD.

In Paper III, distribution-free point and interval estimators were introduced for two robust

versions of the coefficient of variation, the RCVQ and RCVM. Parametric and non-parametric

bootstrap intervals were introduced for RCVM and robustness properties of the estimators

were investigated using influence functions. The relative asymptotic standard deviation

comparisons were made among the estimators. Performances of the new interval estimators

were compared using simulations and results suggest that the coverage probabilities are very

close to the nominal coverage even for small sample sizes for the intervals of the robust

alternatives to the CV when compared to the CV. Examples reveal that different conclusions

can be made based on robust and non-robust versions of the CV. Future works may be

comparing these new intervals with other existing intervals which were not investigated and

finding some other robust alternatives to the CV.

In Paper IV, more powerful robust alternatives were introduced to existing quantile-based

measures of skewness. The integrated versions were introduced for two alternatives to

the well-known Bowely’s skewness coefficient, γp and λp, to avoid the ”need to choose

p requirement”. The new estimators were tested to determine whether they satisfied the

properties that skewness estimators should satisfy. The distribution-free point and interval

estimators were constructed for the new measures of skewness. Performances of the new

interval estimators were tested using simulations for a wide range of distributions and results

suggest that the coverage probabilities are very close to nominal coverage for moderate to

large sample sizes. Future work may be to investigate the robustness properties of the new

estimators using their influence functions.

The R functions for the two robust versions of the CV which is given in paper III are

available in ”MKmisc” package in R (Kohl & Kohl, 2019). Therefore, Future work may be

to create an R package including the estimators introduced in paper I, paper II and paper Iv

or publish the all R scripts on a website or some public repository such as GitHub or GitLab

or R-Forge.
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A. Example R Programs

A.1 R programs related to the Introduction

A.1.1 R program to compare the SIF and EIF

n <- 100

mean <- 0

sigma <- 1

x <- rnorm(n,mean ,sigma)

EIF <- rep(0,n)

SIF <- rep(0,n)

M <- mean(x)

S1 <- var(x)

for(i in 1:n){

EIF[i] <- ((x[i]-M)ˆ2)-S1

S1.i <- var(x[-i])

SIF[i] <- (n-1)*(S1-S1.i)

}

EIF

SIF

windows(width = 10, height = 5)

plot(EIF,type="o",col="blue",ann=FALSE)

lines(SIF,type="o",col="red",lty=2)

abline(h=0)

#title(main="Influence Function for the Variance")

title(ylab="Influence Functions")

title(xlab="Index")

g_range <- range(0, EIF, SIF)

legend(1, g_range[2], c("EIF","SIF"), cex=1,
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col=c("blue","red"),bty="o",pch=1:1,lty=1:2)

A.2 R programs related to paper I

A.2.1 Function to calculate an estimate, confidence interval and

standard error for the ratio of quantiles, ratio of variance and

ratio of squared IQRs

VarQuaIQRratio <- function(x, y, p, conf.level = 0.95){

# Computes the ratio of quantiles , ratio of variances

# and squared ratio of IQRs between two vectors.

# Args:

# x: One of two numeric vectors whose sample quantile ,

# sample variance and IQRs are to be calculated.

# y: The other numeric vector whose sample quantile ,

# sample variance and IQR are to be calculated.

# conf.level: The relevant confidence level to obtain the

# confidence interval for ratio of quantiles ,

# ratio of variance and squared ratio of IQRs.

# Returns:

# The sample ratio of quantiles , ratio of variance and

# squared ratio of IQRs between x and y, confidence

# intervals and the Standard errors of the estimates under

# the specified confidence level.

n1 <- length(x)

n2 <- length(y)

S1 <- sd(x)

M1 <- mean(x)

S2 <- sd(y)

M2 <- mean(y)

Z1 <- (x - M1) / S1

Z2 <- (y - M2) / S2

R <- (S1 / S2) ˆ 2
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log.R <- log(R)

Var.R <- R ˆ 2 * (mean(Z1 ˆ 4 - 1) / n1 +

(mean(Z2 ˆ 4) - 1) / n2)

Var.log.R <- (1 / R) ˆ 2 * Var.R # Using Delta Method

# CI for ratio of variances

CI.log.R <- log.R + c(-1, 1) * qnorm(0.975) * sqrt(Var.log.R)

CI.R <- exp(CI.log.R)

QOR.ln <- function(p) {

# QOR function for the log-normal

q.n.0 <- 1 / dnorm(qnorm(p))

q.n.1 <- qnorm(p) * q.n.0 ˆ 2

q.n.2 <- (1 + 2 * qnorm(p) ˆ 2) * q.n.0 ˆ 3

1 / (q.n.0 ˆ 2 + 3 * q.n.1 + q.n.2 / q.n.0)

}

# will estimate 1/f(x_p)

qHat <- function(m, p, QOR.FUN = QOR.ln, lambda = NULL ,

hn = 0.15, bw.correct = TRUE , method = "TL", ...){

m.sorted <- sort(m)

n <- length(m)

kernepach <- function(u) 3/4 * (1 - u ˆ 2) * (abs(u) <= 1)

qor <- QOR.FUN(p, ...)

band.width <- 15 ˆ (1/5) * abs(qor) ˆ (2/5) / n ˆ (1/5)

if (bw.correct) band.width <- min(band.width , p)

consts <- kernepach((p - (1:n - 1) / n) / band.width)/

band.width - kernepach((p - (1:n) / n) /

band.width) / band.width

sum(consts * m.sorted)}

qu.x1 <- qHat(x, p)

qu.x3 <- qHat(x, 1-p)

qu.y1 <- qHat(y, p)

qu.y3 <- qHat(y, 1-p)

ASVar.q1.x <- p * (1 - p) * (qu.x1 ˆ 2)

ASVar.q3.x <- p * (1 - p) * (qu.x3 ˆ 2)

ASCov.q1q3.x <- p ˆ 2 * qu.x1 * qu.x3
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ASVar.q1.y <- p * (1 - p) * (qu.y1 ˆ 2)

ASVar.q3.y <- p * (1 - p) * (qu.y3 ˆ 2)

ASCov.q1q3.Y <- p ˆ 2 * qu.y1 * qu.y3

ASVar.IQR.x <- ASVar.q1.x + ASVar.q3.x - 2 * ASCov.q1q3.x

ASVar.IQR.y <- ASVar.q1.y + ASVar.q3.y - 2 * ASCov.q1q3.Y

Q.x <- quantile(x, p)

Q.y <- quantile(y, p)

rp <- Q.x/Q.y

log.rp <- log(rp)

Var.rp <- (1 / n1) * (1 / Q.y ˆ 2) * ASVar.q1.x

+ (1 / n2) * (rpˆ2 / Q.y ˆ 2) * ASVar.q1.y

Var.log.rp <- (1 / rpˆ2) * Var.rp # using Delta Method

# CI for the ratio of quantiles

CI.log.rp <- log.rp + c(-1, 1)*qnorm(0.975)*sqrt(Var.log.rp)

CI.rp <- exp(CI.log.rp)

IQR.x <- quantile(x, 1-p) - quantile(x, p)

IQR.y <- quantile(y, 1-p) - quantile(y, p)

a <- IQR.x / IQR.y

a <- IQR.x / IQR.y

Rp <- a ˆ 2

log.a <- log(a)

Var.a <- (1 / n1) * (1 / IQR.y ˆ 2) * ASVar.IQR.x

+ (1 / n2) * (Rp / IQR.y ˆ 2) * ASVar.IQR.y

Var.log.a <- (1 / Rp) * Var.a # using Delta Method

# CI for the IQR Ratio square

CI.log.a <- log.a + c(-1,1) * qnorm(0.975) * sqrt(Var.log.a)

CI.a <- exp(CI.log.a)

CI.Rp <- (CI.a) ˆ 2

list(Est2 = rp, Est1=R, Est3 = Rp, conf.int2 = CI.rp,

conf.int2 = CI.R, conf.int3 = CI.Rp, SE.rp=sqrt(Var.rp),

SE.R = sqrt(Var.R), SE.Rp=sqrt(Var.Rp))}
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x <- rnorm(100)

y <- rnorm(200, sd = 2)

p <- 0.2

QuaIQRratio(x, y, p)

A.2.2 Function to calculate the true asymptotic variance of the ratio

of variance

V <- function(d, lower = 0, upper = Inf,

subdivisions = 1000L, ...){

Fx <- function(x, ...){

x*d(x, ...)

}

Fv <- function(x, ...){

mu <- integrate(Fx, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value

(x - mu)ˆ2*d(x, ...)}

integrate(Fv, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value}

Z4 <- function(d, lower = 0, upper = Inf,

subdivisions = 1000L, ...){

Fx <- function(x, ...){

x*d(x, ...)}

Fx2 <- function(x, ...){

xˆ2*d(x, ...)}

Fz4 <- function(x, ...){

mu <- integrate(Fx, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value

sd <- sqrt(integrate(Fx2, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value - muˆ2)

((x - mu)/sd)ˆ4*d(x, ...)

}

integrate(Fz4, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value}
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ASVrv2 <- function(n1, n2, dlist1 = dlist1, dlist2 = dlist2){

V1 <- do.call(V, dlist1)

V2 <- do.call(V, dlist2)

R <- V1/V2

w1 <- n1 / (n1 + n2)

w2 <- n2 / (n1 + n2)

E.Z4.x <- do.call(Z4, dlist1)

E.Z4.y <- do.call(Z4, dlist2)

A <- E.Z4.x

B <- E.Z4.y

ASVar.R <- R ˆ 2 * ((A - 1) / w1 + (B - 1) / w2)

list(Est = R, ASV.R = ASVar.R )

}

dlist1 <- list(d = dlnorm , lower = 0, upper = Inf,

meanlog = 0, sdlog = 1)

dlist2 <- list(d = dlnorm , lower = 0, upper = Inf,

meanlog = 0, sdlog = 1)

ASVrv2(1000, 1200, dlist1 = dlist1, dlist2 = dlist2 )

dlist1 <- list(d = dexp , lower = 0, upper = Inf, rate=1)

dlist2 <- list(d = dexp , lower = 0, upper = Inf, rate=1)

ASVrv2(1000, 1200, dlist1 = dlist1, dlist2 = dlist2 )

A.2.3 Function to calculate true asymptotic variance of ratio of

quantiles and squared ratio of IQRs

ASVQ1 <- function(d, q, p , ...){

p * (1 - p) / d(q(p, ...), ...)ˆ2

}

ASVQ3 <- function(d, q, p, ...){
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p * (1 - p)/ d(q(1-p, ...), ...)ˆ2

}

ASCov <- function(d, q, p, ...){

p ˆ 2 / (d(q(p, ...), ...)*d(q(1-p, ...), ...))

}

Qu <- function(q, p, ...){

q(p, ...)

}

InQuRa <- function(q, p, ...){

q(1-p, ...) - q(p, ...)

}

QunIQRratio <- function(n1, n2, p, d1, q1, d2, q2, ... ){

w1 <- n1 / (n1 + n2)

w2 <- n2 / (n1 + n2)

ASVar.q1.x <- ASVQ1(d1, q1, p, ...)

ASVar.q3.x <- ASVQ3(d1, q1, p,...)

ASCov.q1q3.x <- ASCov(d1, q1, p, ...)

ASVar.q1.y <- ASVQ1(d2, q2, p, ...)

ASVar.q3.y <- ASVQ3(d2, q2, p, ...)

ASCov.q1q3.Y <- ASCov(d2, q2, p, ...)

ASVar.IQR.x <- ASVar.q1.x + ASVar.q3.x - 2 * ASCov.q1q3.x

ASVar.IQR.y <- ASVar.q1.y + ASVar.q3.y - 2 *ASCov.q1q3.Y

Q.x <- Qu(q1, p, ...)

Q.y <- Qu(q2, p, ...)

rp <- Q.x/Q.y

ASVar.rp <- (1 / w1) * (1 / Q.y ˆ 2) * ASVar.q1.x + (1 / w2) *

(rpˆ2 / Q.y ˆ 2) * ASVar.q1.y

IQR.x <- InQuRa(q1, p, ...)
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IQR.y <- InQuRa(q2, p, ...)

r <- IQR.x / IQR.y

R2 <- r ˆ 2

ASVar.r <- (1 / w1) * (1 / IQR.y ˆ 2) * ASVar.IQR.x +

(1 / w2) * (R2 / IQR.y ˆ 2) * ASVar.IQR.y

ASVar.R2 <- (ASVar.r) ˆ 2

list(Est1 = rp, Est2 = R2, ASVar.rp=ASVar.rp, ASV.R2 = ASVar.R2)

}

QunIQRratio(1000, 1200, 0.1, dlnorm , qlnorm , dlnorm , qlnorm)

A.3 R programs related to paper II

A.3.1 Function to calculate an estimate, confidence interval and

standard error for MAD, difference and squared ratio of MADs

library(gld)

CIMADs <- function(x, y, conf.level = 0.95){

# Computes MAD, the difference and squared ratio

# of MADs between two vectors.

# Args:

# x: One of two numeric vectors whose MAD

# is to be calculated.

# y: The other numeric vector whose MAD

# is to be calculated.

# conf.level: The relevant confidence level to

# obtain the confidence interval for

# MAD, the difference and squared

# ratios of MADs.

# Returns:

# The sample MAD of x and difference and squared ratio of

# MADs between x and y, confidence intervals and the

# Standard errors of the estimates under the specified

# confidence level.

n1 <- length(x)

n2 <- length(y)
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MAD <- function(z){

median(abs(z - median(z)))}

MAD.x <- MAD(x)

MAD.y <- MAD(y)

rm <- MAD.x/MAD.y

Rm <- (rm)ˆ2

log.Rm <- log(Rm)

Dm <- MAD.x - MAD.y

ASV.mad <- function(z, method){

lambda <- fit.fkml(z, method = method)$lambda

m <- median(z)

mad <- MAD(z)

fFinv1 <- dgl(m - mad, lambda1 = lambda)

fFinv2 <- dgl(m + mad, lambda1 = lambda)

fFinv3 <- dgl(m, lambda1 = lambda)

FFinv1 <- pgl(m - mad, lambda1 = lambda)

FFinv2 <- pgl(m + mad, lambda1 = lambda)

A <- fFinv1 + fFinv2

C <- fFinv1 - fFinv2

B <- Cˆ2 + 4*C*fFinv3*(1 - FFinv2 - FFinv1)

(1/(4 * Aˆ2))*(1 + B/fFinv3ˆ2) # ASV for the MAD

}

ASV.MAD.x <- ASV.mad(x, method = "TL")

ASV.MAD.y <- ASV.mad(y, method = "TL")

Var.MAD.x <- ASV.MAD.x/n1

Var.MAD.y <- ASV.MAD.y/n2

CI.MAD.x <- MAD.x + c(-1,1) * qnorm(0.975) * sqrt(ASV.MAD.x/n1)
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Var.Dm <- Var.MAD.x+Var.MAD.y

Var.rm <- (1 / n1) * (1 / MAD.y ˆ 2) * ASV.MAD.x +

(1 / n2) * (Rm / MAD.yˆ 2) * ASV.MAD.y

Var.Rm <- 4 * Rm * Var.rm

Var.log.Rm <- (1 / Rmˆ2) * Var.Rm

CI.log.Rm <- log.Rm + c(-1,1) * qnorm(0.975) * sqrt(Var.log.Rm)

CI.Rm <- exp(CI.log.Rm)

CI.Dm <- Dm + c(-1,1) * qnorm(0.975) * sqrt(Var.Dm)

list(Est1 = MAD.x, Est2 = Rm, Est3 = Dm, conf.int1 = CI.MAD.x,

conf.int2 = CI.Rm, conf.int3 = CI.Dm, SE.MAD=sqrt(Var.MAD.x),

SE.Rm=sqrt(Var.Rm), SE.Dm=sqrt(Var.Dm))

}

x <- rnorm(100)

y <- rnorm(200, sd = 2)

CIMADs(x, y)

A.4 R programs related to paper III

A.4.1 Function to calculate an estimate, confidence interval and

standard error for CV, RCVQ and RCVM

library(gld)

library(stats)

CVRcvrCV <- function(x, conf.level = 0.95){

n <- length(x)

S <- sd(x)

M <- mean(x)

CV <- S/M

Mo3.f <- function(d, lower = 0, upper = Inf,

subdivisions = 1000L, ...){
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Fx1 <- function(x, ...){

x*d(x, ...)}

Fv1 <- function(x, ...){

mu1 <- integrate(Fx1, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value

(x - mu1)ˆ3*d(x, ...)}

integrate(Fv1, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value}

Mo4.f <- function(d, lower = 0, upper = Inf,

subdivisions = 1000L, ...){

Fx2 <- function(x, ...){

x*d(x, ...)}

Fv2 <- function(x, ...){

mu2 <- integrate(Fx2, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value

(x - mu2)ˆ4*d(x, ...)}

integrate(Fv2, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value}

Mo3 <- do.call(Mo3.f, dlist)

Mo4 <- do.call(Mo4.f, dlist)

ASV.CV <- CVˆ2 * (CVˆ2 - 1/4) + (1 /(4 * Mˆ2 * Sˆ2)) *

Mo4 - (1/ Mˆ3) * Mo3

log.CV <- log(CV)

Var.CV <- ASV.CV/n

Var.log.CV <- (1/CVˆ2) * Var.CV

# CI for CV

CI.log.CV <- log.CV + c(-1,1) * qnorm(0.975) * sqrt(Var.log.CV)

CI.CV <- exp(CI.log.CV)

QOR.ln <- function(p) {

# QOR function for the log-normal

78



q.n.0 <- 1 / dnorm(qnorm(p))

q.n.1 <- qnorm(p) * q.n.0 ˆ 2

q.n.2 <- (1 + 2 * qnorm(p) ˆ 2) * q.n.0 ˆ 3

1 / (q.n.0 ˆ 2 + 3 * q.n.1 + q.n.2 / q.n.0)}

# will estimate 1/f(x_p)

qHat <- function(m, p, QOR.FUN = QOR.ln, lambda = NULL , hn = 0.15,

bw.correct = TRUE , method = "TL", ...){

m.sorted <- sort(m)

n <- length(m)

kernepach <- function(u) 3 / 4 * (1 - u ˆ 2) * (abs(u) <= 1)

qor <- QOR.FUN(p, ...)

band.width <- 15 ˆ (1 / 5) * abs(qor) ˆ (2 / 5) / n ˆ (1 / 5)

if (bw.correct) band.width <- min(band.width , p)

consts <- kernepach((p - (1:n - 1) / n) / band.width)/

band.width - kernepach((p - (1:n) / n) /

band.width) / band.width

sum(consts * m.sorted)}

qu1 <- qHat(x, 0.25)

qu2 <- qHat(x, 0.5)

qu3 <- qHat(x, 0.75)

ASVar.q1 <- 0.25 * (1 - 0.25) * (qu1 ˆ 2)

ASVar.q3 <- 0.75 * (1 - 0.75) * (qu3 ˆ 2)

ASCov.q1q3 <- 0.25 * (1- 0.75) * qu1 * qu3

ASVar.IQR <- ASVar.q1 + ASVar.q3 - 2 * ASCov.q1q3

ASVar.q2 <- 0.5 * (1 - 0.5) * (qu2 ˆ 2)

ASCov.q3q2 <- 0.5 * (1 - 0.75) * qu3 * qu2

ASCov.q1q2 <- 0.25 * (1 - 0.5) * qu1 * qu2

md <- median(x)

IQR <- IQR(x, na.rm = FALSE , type = 8)

RCV.Q <- 0.75 * (IQR / md)

log.RCV.Q <- log(RCV.Q)

Var.RCV.Q <- (1 / n) * (RCV.Q ˆ 2) * (ASVar.IQR / IQR ˆ 2 +
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ASVar.q2 / md ˆ 2 - 2 * (ASCov.q3q2

- ASCov.q1q2)/(IQR*md))

Var.log.RCV.Q <- (1/RCV.Qˆ2) * Var.RCV.Q # Using Delta Method

# CI interval for Rcv

CI.log.RCV.Q <- log.RCV.Q + c(-1,1) * qnorm(0.975) *

sqrt(Var.log.RCV.Q)

CI.RCV.Q <- exp(CI.log.RCV.Q)

mad <- mad(x, center = median(x), constant = 1.4826, na.rm = FALSE ,

low = FALSE , high = FALSE)

RCV.M <- mad/md

log.RCV.M <- log(RCV.M)

ASV <- function(x, method){

lambda <- fit.fkml(x, method = method)$lambda

md <- median(x)

mad <- mad(x)

fFinv1 <- dgl(md - mad, lambda1 = lambda)

fFinv2 <- dgl(md + mad, lambda1 = lambda)

fFinv3 <- dgl(md, lambda1 = lambda)

FFinv1 <- pgl(md - mad, lambda1 = lambda)

FFinv2 <- pgl(md + mad, lambda1 = lambda)

A <- fFinv1 + fFinv2

C <- fFinv1 - fFinv2

B <- Cˆ2 + 4*C*fFinv3*(1 - FFinv2 - FFinv1)

rho1 <- 1/(4*fFinv3ˆ2) # ASV for the median

rho2 <- (1/(4 *Aˆ2))*(1 + B/fFinv3ˆ2) # ASV for the MAD

rho12 <- (1/(4*A*fFinv3))*(1 - 4*FFinv1 + C/fFinv3)

#ASCOV between median and MAD

list(rho1 = rho1, rho2 = rho2, rho12 = rho12)}
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res <- ASV(x, method = "TL")

ASV.md <- res$rho1

ASV.MAD <- res$rho2

ASCov.md.MAD <- res$rho12

Var.RCV.M <- (1/n) * RCV.Mˆ2 * ((ASV.MAD/madˆ2) +

(ASV.md/mdˆ2) - 2 * (ASCov.md.MAD/(mad * md)))

Var.log.RCV.M <- (1/RCV.Mˆ2) * Var.RCV.M

# CI interval for rCV

CI.log.RCV.M <- log.RCV.M + c(-1,1) * qnorm(0.975) *

sqrt(Var.log.RCV.M)

CI.RCV.M <- exp(CI.log.RCV.M)

list(Est1 = CV, Est2 =RCV.Q, Est3 =RCV.M,

conf.int1 = CI.CV , conf.int2 = CI.RCV.Q,

conf.int3 = CI.RCV.M, SE.CV = sqrt(Var.CV),

SE.RCV.Q = sqrt(Var.RCV.Q), SE.RCV.M = sqrt(Var.RCV.M))}

lamda <- 1

x <- rexp(100, rate=lamda)

dlist <- list(d = dexp , lower = 0, upper = Inf, rate=lamda)

CVRcvrCV(x)

A.4.2 Function to calculate true asymptotic variance of CV, RCVQ

and RCVM

moment1 <- function(d, lower = 0, upper = Inf,

subdivisions = 1000L, ...){

e1.f <- function(x, ...){

x*d(x, ...)

}

mom1 <- integrate(e1.f, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value
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}

moment2 <- function(d, lower = 0, upper = Inf,

subdivisions = 1000L, ...){

e2.f <- function(x, ...){

xˆ2*d(x, ...)

}

mom2 <- integrate(e2.f, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value

}

moment3 <- function(d, lower = 0, upper = Inf,

subdivisions = 1000L, ...){

e3.f <- function(x, ...){

xˆ3*d(x, ...)

}

mom3 <- integrate(e3.f, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value

}

moment4 <- function(d, lower = 0, upper = Inf,

subdivisions = 1000L, ...){

e4.f <- function(x, ...){

xˆ4*d(x, ...)

}

mom4 <- integrate(e4.f, lower = lower , upper = upper ,

subdivisions = subdivisions , ...)$value

}

Variance <- function(d, ...){

mu <- moment1(d, ...)

e2 <- moment2(d, ...)

e2 - muˆ2

}

cv.f <- function( d, ...){

mu <- moment1(d, ...)

V <- Variance(d, ...)

sqrt(V)/mu
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}

#Lets take E(x - mu)ˆ3 = E(Xˆ3) - 3* mu * E(Xˆ2) + 2 * muˆ3 = Mo3

Mo3 <- function( d, ...){

mu <- moment1(d, ...)

e2 <- moment2(d, ...)

e3 <- moment3(d, ...)

e3 - 3 * mu * e2 + 2 * muˆ3

}

#Lets take E(x-mu)ˆ4 = E(Xˆ4) - 4* mu * E(xˆ3)

# + 6 * muˆ2 * E(Xˆ2) - 3 * muˆ4 = Mo4

Mo4 <- function( d, ...){

mu <- moment1(d, ...)

e2 <- moment2(d, ...)

e3 <- moment3(d, ...)

e4 <- moment4(d, ...)

e4 - 4 * mu * e3 + 6 * muˆ2 * e2 - 3 * muˆ4

}

# ASV(CV) = CVˆ2 * (CVˆ2 - 1/4) +(1 / (4 * muˆ2 * V))

# * E(x - mu)ˆ4 - (1/muˆ3) * E(x-mu)ˆ3

ASV.CV <- function(d, ...){

cv <- cv.f(d, ...)

mu <- moment1(d, ...)

V <- Variance(d, ...)

M3 <- Mo3(d, ...)

M4 <- Mo4(d, ...)

cvˆ2 * (cvˆ2 - (1/4)) + (1/(4 * muˆ2 * V)) * M4 - (1/muˆ3) * M3

}

ASV.CV(dexp , rate = 1)

ASVQ1.f <- function(d, q, a = 0.25 , ...){

a * (1 - a) / d(q(a, ...), ...)ˆ2

}
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ASVQ3.f <- function(d, q, c = 0.75, ...){

c * (1 - c)/ d(q(c, ...), ...)ˆ2

}

ASCovQ1Q3.f <- function( d, q, a=0.25, c=0.75, ...){

a ˆ 2 / (d(q(a, ...), ...) * d(q(c, ...), ...))

}

ASV.IQR.f <- function(d, q, ...){

ASVQ1 <- ASVQ1.f(d, q, ...)

ASVQ3 <- ASVQ3.f(d, q, ...)

ASCovQ1Q3 <- ASCovQ1Q3.f(d, q, ...)

ASVQ1 + ASVQ3 - 2 * ASCovQ1Q3

}

rcv.f <- function(q, a = 0.25, b = 0.5, c = 0.75, ...){

0.75 * (q(c, ...) - q(a, ...))/q(b, ...)

}

ASVQ2.f <- function(d, q, b = 0.5 , ...){

b * (1 - b) / d(q(b, ...), ...)ˆ2

}

ASCovQ1Q2.f <- function(d, q, a=0.25, b=0.5, ...){

a * (1 - b) / (d(q(a, ...), ...)*d(q(b, ...), ...))

}

ASCovQ3Q2.f <- function(d, q, b=0.5, c=0.75, ...){

b * (1 - c) / (d(q(b, ...), ...) * d(q(c, ...), ...))

}

IQR.f <- function(q, a = 0.25, c = 0.75, ...){

q(c, ...) - q(a, ...)

}

Q2.f <- function(q, b = 0.5, ...){

q(b, ...)

}

ASV.Rcv_Q <- function(d, q, ...){

ASV.IQR <- ASV.IQR.f(d, q, ...)

rcv <- rcv.f(q, ...)

IQR <- IQR.f(q, ...)

Q2 <- Q2.f(q, ...)
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ASVQ2 <- ASVQ2.f(d, q, ...)

ASCovQ3Q2 <- ASCovQ3Q2.f(d, q, ...)

ASCovQ1Q2 <- ASCovQ1Q2.f(d, q, ...)

rcvˆ2 * ((1 / IQRˆ2) * ASV.IQR + (1 / Q2ˆ2) * ASVQ2

- 2 * (ASCovQ3Q2 - ASCovQ1Q2)*(1 / (Q2 * IQR)))

}

ASV.Rcv_Q(dexp , qexp , rate = 1)

mad1 <- function(d, q, param){

m1 <- do.call(q, c(0.5, param))

abs.x.m1 <- function(x, d, param , m1){

do.call(d, c(x = x + m1, param))

+ do.call(d, c(x = - x + m1, param))

}

abs.x.m1.vec <- Vectorize(abs.x.m1, "x")

f <- function(x, d, param , m1){

integrate(abs.x.m1.vec, lower = 0, upper = x, d = d,

param = param , m1 = m1)$value - 0.5

}

upper <- abs(do.call(q, c(0.75, param)) + m1)

uniroot(f, interval = c(0, upper), d = d,

param = param , m1 = m1)$root

}

ASV.Rcv_M <- function(d, q, p, param){

m <- do.call(q, c(p = 0.5, param))

mad <- mad1(d, q, param)

fFinv1 <- do.call(d, c(m - mad, param))

fFinv2 <- do.call(d, c(m + mad, param))

fFinv3 <- do.call(d, c(m, param))

FFinv1 <- do.call(p, c(m - mad, param))

FFinv2 <- do.call(p, c(m + mad, param))

A <- fFinv1 + fFinv2

C <- fFinv1 - fFinv2
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B <- Cˆ2 + 4*C*fFinv3*(1 - FFinv2 - FFinv1)

ASV.m <- 1/(4*fFinv3ˆ2) # ASV for the median

ASV.MAD <- (1/(4 *Aˆ2))*(1 + B/fFinv3ˆ2) # ASV for the MAD

#ASCOV between median and MAD

ASCov.m.MAD <- (1/(4*A*fFinv3))*(1 - 4*FFinv1 + C/fFinv3)

(1.4826*mad/m)ˆ2 * ((ASV.MAD/madˆ2) +

(ASV.m/mˆ2) - 2 * (ASCov.m.MAD/(mad * m)))

}

ASV.Rcv_M(dexp , qexp , pexp , list(rate=1))

A.5 R programs related to paper IV

A.5.1 Function to calculate an estimate, confidence interval and

standard error for γp, λp, and AUC measures

library(gdata)

Skew <- function(x, p, conf.level = 0.95){

n <- length(x)

QOR.ln <- function(p) {

# QOR function for the log-normal

q.n.0 <- 1 / dnorm(qnorm(p))

q.n.1 <- qnorm(p) * q.n.0 ˆ 2

q.n.2 <- (1 + 2 * qnorm(p) ˆ 2) * q.n.0 ˆ 3

1 / (q.n.0 ˆ 2 + 3 * q.n.1 + q.n.2 / q.n.0)

}

# will estimate 1/f(x_p)

qHat <- function(m, p, QOR.FUN = QOR.ln, lambda = NULL ,

hn = 0.15, bw.correct = TRUE , method = "TL", ...){

m.sorted <- sort(m)

n <- length(m)

kernepach <- function(u) 3 / 4 * (1 - u ˆ 2) * (abs(u) <= 1)

qor <- QOR.FUN(p, ...)

band.width <- 15 ˆ (1 / 5) * abs(qor) ˆ (2 / 5) / n ˆ (1 / 5)

if (bw.correct) band.width <- min(band.width , p)
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consts <- kernepach((p - (1:n - 1) / n) / band.width)/

band.width - kernepach((p - (1:n) / n) / band.width) /

band.width

sum(consts * m.sorted)

}

qu1 <- qHat(x, p)

qu2 <- qHat(x, 0.5)

qu3 <- qHat(x, 1-p)

ASVar.q1 <- p * (1 - p) * (qu1 ˆ 2)

ASVar.q2 <- 0.5 * (1 - 0.5) * (qu2 ˆ 2)

ASVar.q3 <- p * (1 - p) * (qu3 ˆ 2)

ASCov.q1q3 <- p ˆ 2 * qu1 * qu3

ASCov.q3q2 <- 0.5 * p * qu3 * qu2

ASCov.q1q2 <- p * (1 - 0.5) * qu1 * qu2

ASVar.iqr1 <- ASVar.q1 + ASVar.q3 - 2 * ASCov.q1q3

ASVar.iqr2 <- ASVar.q1 + ASVar.q2 - 2 * ASCov.q1q2

ASV.a <- ASVar.q3 + ASVar.q1 + 4 * ASVar.q2 + 2 * ASCov.q1q3

- 4 * ASCov.q1q2 - 4 * ASCov.q3q2

ASCov.aiqr1 <- ASVar.q3 - ASVar.q1 - 2 * ASCov.q3q2

+ 2 * ASCov.q1q2

ASCov.aiqr2 <- ASCov.q3q2 - ASCov.q1q3 + 3 * ASCov.q1q2

- ASVar.q1 - 2 * ASVar.q2

q1 <- quantile(x, p, type=8)

q2 <- quantile(x, 0.5, type=8)

q3 <- quantile(x, 1-p, type=8)

iqr1 <- quantile(x, 1-p, type=8) - quantile(x, p, type=8)

iqr2 <- quantile(x, 0.5, type=8) - quantile(x, p, type=8)

a <- q3 + q1 - 2 * q2

gammap <- a / iqr1

log.gammap <- log(gammap)

ASV.gammap <- (gammap) ˆ 2 * ((ASV.a /a ˆ 2 )

+ (ASVar.iqr1 / iqr1 ˆ 2)
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- (2 * ASCov.aiqr1) / (iqr1 * a))

Var.gammap <- ASV.gammap/n

# using Delata Method

Var.log.gammap <- (1 / gammap ˆ 2) * Var.gammap

# CI for Gammap

CI.log.gammap <- log.gammap + c(-1, 1) * qnorm(0.975)

* sqrt(Var.log.gammap)

CI.gammap <- exp(CI.log.gammap)

lamdap <- a / iqr2

log.lamdap <- log(lamdap)

ASV.lamdap <- (lamdap) ˆ 2 * ((ASV.a /a ˆ 2 )

+ (ASVar.iqr2 /iqr2 ˆ 2)

- (2 * ASCov.aiqr2) / (iqr2 * a))

Var.lamdap <- ASV.lamdap/n

# using Delata Method

Var.log.lamdap <- (1 / lamdap ˆ 2) * Var.lamdap

CI.log.lamdap <- log.lamdap + c(-1, 1) * qnorm(0.975)

* sqrt(Var.log.lamdap)

CI.lamdap <- exp(CI.log.lamdap)

J <- 100

us <- (1:J - 0.5)/J

Q3 <- quantile(x, 1-us/2)

Q1 <- quantile(x, us/2)

Q2 <- quantile(x, 0.5)

IQR1 <- Q3 - Q1

IQR2 <- Q2 - Q1

A <- Q3 + Q1 - 2 * Q2

Gammap <- A / IQR1

Int.Gammap <- sum(Gammap)/J

log.Int.Gammap <- log(Int.Gammap)
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Qhat <- function(x, v, bw.correct = TRUE , QOR.FUN = QOR.ln, ...){

v <- c(us/2, 1 - us/2)

qor <- QOR.FUN(v, ...)

bw <- 15ˆ(1/5)*abs(qor)ˆ(2/5)/nˆ(1/5)

if (bw.correct) bw[v <= bw] <- v[v <= bw]

kernepach <- function(v) 3/4*(1 - vˆ2)*(abs(v) <= 1)

m1 <- matrix(v, nrow = 2*J, ncol = n, byrow = FALSE)

m2 <- matrix(1:n, nrow = 2*J, ncol = n, byrow = TRUE)

consts <- kernepach((m1 - (m2 - 1)/n)*(1/bw))*(1/bw) -

kernepach((m1 - m2/n)*(1/bw))*(1/bw)

x.sorted <- sort(x)

q.hat <- c(consts%*%x.sorted)

q.hat.1 <- q.hat[1:(length(q.hat)/2)]

q.hat.2 <- q.hat[-(1:length(q.hat)/2)]

list(q.hat=q.hat, q.hat.1=q.hat.1, q.hat.2=q.hat.2)

}

q2.hat <- qHat(x, 0.5)

res <- Qhat(x)

q.hat <- res$q.hat

q.hat.1 <- res$q.hat.1

q.hat.2 <- res$q.hat.2

B <- ((us/2) %*% t(1-us/2))

lowerTriangle(B) <- upperTriangle(B, byrow=TRUE)

B

Cov.1mp.1mq <- (1/n) * B * (q.hat.2 %*% t(q.hat.2))

Cov.1mp.q <- (1/n) * ((us/2) %*% t(us/2))

* (q.hat.2 %*% t(q.hat.1))

Cov.p.1mq <- (1/n) * ((us/2) %*% t(us/2))
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* (q.hat.1 %*% t(q.hat.2))

Cov.p.q <- (1/n) * B * (q.hat.1 %*% t(q.hat.1))

Cov.1mp <- (1/n) * (us/2) * 0.5 * (q.hat.2 %*%

t(rep(q2.hat, length(us/2))))

Cov.p <- (1/n) * (us/2) * 0.5 * (q.hat.1 %*%

t(rep(q2.hat, length(us/2))))

Cov.1mq <- (1/n) * (rep(0.5, length(us/2)) %*% t(us/2))

* (rep(q2.hat, length(us/2)) %*% t(q.hat.2))

Cov.q <- (1/n) * (rep(0.5, length(us/2)) %*% t(us/2))

* (rep(q2.hat, length(us/2)) %*% t(q.hat.1))

Var <- (1/n) * 0.5ˆ2 * (rep(q2.hat, length(us/2))

%*% t(rep(q2.hat, length(us/2))))

Cov.Ap.Aq <- Cov.1mp.1mq + Cov.1mp.q + Cov.p.1mq + Cov.p.q

- 2 * Cov.1mp - 2 * Cov.p - 2 * Cov.1mq

- 2 * Cov.q + 4 * Var

Cov.Ap.IQR1q <- Cov.1mp.1mq - Cov.1mp.q + Cov.p.1mq

- Cov.p.q - 2 * Cov.1mq + 2 * Cov.q

Cov.IQR1p.Aq <- Cov.1mp.1mq + Cov.1mp.q - Cov.p.1mq

- Cov.p.q - 2 * Cov.1mp + 2 * Cov.p

Cov.IQR1p.IQR1q <- Cov.1mp.1mq - Cov.1mp.q - Cov.p.1mq + Cov.p.q

rc <- matrix(Gammap , ncol = J, nrow = J, byrow = FALSE)

Cov.Gp.Gq <- ((1/IQR1) %*% t(1/IQR1)) * (Cov.Ap.Aq

- Cov.Ap.IQR1q * t(rc) - Cov.IQR1p.Aq * rc

+ (Gammap %*% t(Gammap)) * Cov.IQR1p.IQR1q)

sum(Cov.Gp.Gq)

Var.int.Gammap <- (1/Jˆ2) * sum(Cov.Gp.Gq)

log.Var.int.Gammap <- (1/Int.Gammapˆ2) * Var.int.Gammap

# CI for integrated Gamma_P

CI.log.Int.Gammap <- log.Int.Gammap + c(-1, 1) * qnorm(0.975)

* sqrt(log.Var.int.Gammap)

CI.Int.Gammap <- exp(CI.log.Int.Gammap)
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Lambdap <- A / IQR2

Int.Lambdap <- sum(Lambdap)/J

log.Int.Lambdap <- log(Int.Lambdap)

Cov.Ap.IQR2q <- Cov.1mp - Cov.1mp.q + Cov.p

- Cov.p.q + 2 * Cov.q - 2 * Var

Cov.IQR2p.Aq <- Cov.1mq + Cov.q - Cov.p.1mq - Cov.p.q

+ 2 * Cov.p - 2 * Var

Cov.IQR2p.IQR2q <- Cov.p.q - Cov.p - Cov.q + Var

lc <- matrix(Lambdap , ncol = J, nrow = J, byrow = FALSE)

Cov.Lp.Lq <- ((1/IQR2) %*% t(1/IQR2)) * (Cov.Ap.Aq

- Cov.Ap.IQR2q * t(lc) - Cov.IQR2p.Aq * lc

+ (Lambdap %*% t(Lambdap)) * Cov.IQR2p.IQR2q)

sum(Cov.Lp.Lq)

Var.int.Lambdap <- (1/Jˆ2) * sum(Cov.Lp.Lq)

Var.log.int.Lambdap <- (1/Int.Lambdapˆ2) * Var.int.Lambdap

CI.log.Int.Lambdap <- log.Int.Lambdap + c(-1, 1) *

qnorm(0.975) * sqrt(Var.log.int.Lambdap)

CI.Int.Lambdap <- exp(CI.log.Int.Lambdap)

p.Gammap <- (us/2) * (A / IQR1)

Int.p.Gammap <- sum(p.Gammap)/J

log.Int.p.Gammap <- log(Int.p.Gammap)

Cov.p.Gp.p.Gq <- ((us/2) %*% t(us/2)) * Cov.Gp.Gq

sum(Cov.p.Gp.p.Gq)

Var.int.p.Gammap <- (1/Jˆ2) * sum(Cov.p.Gp.p.Gq)

Var.log.int.p.Gammap <- (1/Int.p.Gammapˆ2) * Var.int.p.Gammap

# CI for integrated Gamma_P
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CI.log.Int.p.Gammap <- log.Int.p.Gammap + c(-1, 1)

* qnorm(0.975) * sqrt(Var.log.int.p.Gammap)

CI.Int.p.Gammap <- exp(CI.log.Int.p.Gammap)

p.Lambdap <- (us/2) * Lambdap

Int.p.Lambdap <- sum(p.Lambdap)/J

log.Int.p.Lambdap <- log(Int.p.Lambdap)

Cov.p.Lp.p.Lq <- ((us/2) %*% t(us/2)) * Cov.Lp.Lq

sum(Cov.p.Lp.p.Lq)

Var.int.p.Lambdap <- (1/Jˆ2) * sum(Cov.p.Lp.p.Lq)

Var.log.int.p.Lambdap <- (1/Int.p.Lambdapˆ2) * Var.int.p.Lambdap

# CI for integrated Gamma_P

CI.log.Int.p.Lambdap <- log.Int.p.Lambdap + c(-1, 1) *

qnorm(0.975) * sqrt(Var.log.int.p.Lambdap)

CI.Int.p.Lambdap <- exp(CI.log.Int.p.Lambdap)

list(Est1 = gammap , Est2 =lamdap , Est3 =Int.Gammap ,

Est4 =Int.Lambdap , Est5 =Int.p.Gammap ,

Est6 =Int.p.Lambdap , conf.int1 = CI.gammap ,

conf.int2 = CI.lamdap , conf.int3 = CI.Int.Gammap ,

conf.int4 = CI.Int.Lambdap , conf.int5 = CI.Int.p.Gammap ,

conf.int6 = CI.Int.p.Lambdap , SE.gammap = sqrt(Var.gammap),

SE.lamdap=sqrt(Var.lamdap),

SE.int.Gammap = sqrt(Var.int.Gammap),

SE.int.Lambdap = sqrt(Var.int.Lambdap),

SE.int.p.Gammap = sqrt(Var.int.p.Gammap),

SE.int.p.Lambdap =sqrt(Var.int.p.Lambdap))

}

lamda <- 1

x <- rexp(100, rate=lamda)

Skew(x, 0.2)
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A.5.2 Function to calculate true asymptotic variance of γp, λp and

AUC measures

ASV.Skew <- function(d, q, p, param){

ASVar.q1 <- p * (1 - p)/do.call(d, c(do.call(q,

c(p, param)), param))ˆ2

ASVar.q2 <- 0.5 * (1 - 0.5) / do.call(d, c(do.call(q,

c(0.5, param)), param))ˆ2

ASVar.q3 <- p * (1 - p) / do.call(d, c(do.call(q,

c(1-p, param)), param))ˆ2

ASCov.q1q3 <- p ˆ 2 / do.call(d, c(do.call(q, c(p, param)),

param))* do.call(d, c(do.call(q, c(p, param)), param))

ASCov.q3q2 <- 0.5 * p / do.call(d, c(do.call(q, c(0.5, param)),

param)) * do.call(d, c(do.call(q, c(p, param)), param))

ASCov.q1q2 <- p * (1 - 0.5) /do.call(d, c(do.call(q, c(p, param)),

param)) * do.call(d, c(do.call(q, c(0.5, param)), param))

ASVar.IQR1 <- ASVar.q1 + ASVar.q3 - 2 * ASCov.q1q3

ASV.A <- ASVar.q3 + ASVar.q1 + 4 * ASVar.q2 + 2 * ASCov.q1q3

- 4 * ASCov.q1q2 - 4 * ASCov.q3q2

ASCov.AIQR1 <- ASVar.q3 - ASVar.q1 - 2 * ASCov.q3q2

+ 2 * ASCov.q1q2

q1 <- do.call(q, c(p, param))

q2 <- do.call(q, c(0.5, param))

q3 <- do.call(q, c(1-p, param))

IQR1 <- q3 - q1

A <- q3 + q1 - 2 * q2

Gammap <- A / IQR1

ASV.Gammap <- (Gammap) ˆ 2 * ((ASV.A / A ˆ 2)

+ (ASVar.IQR1 / IQR1 ˆ 2)

- (2 * ASCov.AIQR1) / (IQR1 * A))

ASVar.IQR2 <- ASVar.q1 + ASVar.q2 - 2 * ASCov.q1q2

ASV.A <- ASVar.q3 + ASVar.q1 + 4 * ASVar.q2 + 2 * ASCov.q1q3

- 4 * ASCov.q1q2 - 4 * ASCov.q3q2
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ASCov.AIQR2 <- ASCov.q3q2 - ASCov.q1q3 + 3 * ASCov.q1q2

- ASVar.q1 - 2 * ASVar.q2

IQR2 <- q2 - q1

Lamdap <- A / IQR2

ASV.Lamdap <- (Lamdap) ˆ 2 * ((ASV.A /A ˆ 2 )

+ (ASVar.IQR2 /IQR2 ˆ 2)

- (2 * ASCov.AIQR2) / (IQR2 * A))

J <- 100

us <- (1:J - 0.5)/J

S <- matrix(0, J, J)

S1 <- matrix(0, J, J)

S2 <- matrix(0, J, J)

S3 <- matrix(0, J, J)

for(j in 1:J){

for(k in 1:J){

if (us[j]/2 < us[k]/2){

A <- (us[j]/2) * (1-us[k]/2)

}

else A <- (1-us[j]/2) * (us[k]/2)

Cov.1mp.1mq <- A / (do.call(d, c(do.call(q, c(1-us[j]/2,

param)), param)) * do.call(d, c(do.call(q,

c(1-us[k]/2, param)), param)))

Cov.1mp.q <- (us[j]/2) * (us[k]/2) / (do.call(d, c(do.call(q,

c(1-us[j]/2, param)), param)) * do.call(d,

c(do.call(q, c(us[k]/2, param)), param)))

Cov.p.1mq <- (us[j]/2) * (us[k]/2) / (do.call(d, c(do.call(q,

c(us[j]/2, param)), param)) * do.call(d,

c(do.call(q, c(1-us[k]/2, param)), param)))

Cov.p.q <- A / (do.call(d, c(do.call(q, c(us[j]/2, param)),

param)) * do.call(d, c(do.call(q,
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c(us[k]/2, param)), param)))

Cov.1mp <- 0.5 * (us[j]/2) / (do.call(d, c(do.call(q,

c(1-us[j]/2, param)), param)) * do.call(d,

c(do.call(q, c(0.5, param)), param)))

Cov.p <- 0.5 * (us[j]/2) / (do.call(d, c(do.call(q,

c(us[j]/2, param)), param)) * do.call(d,

c(do.call(q, c(0.5, param)), param)))

Cov.1mq <- 0.5 * (us[k]/2) / (do.call(d, c(do.call(q,

c(1-us[k]/2, param)), param)) * do.call(d,

c(do.call(q, c(0.5, param)), param)))

Cov.q <- 0.5 * (us[k]/2) / (do.call(d, c(do.call(q,

c(us[k]/2, param)), param)) * do.call(d,

c(do.call(q, c(0.5, param)), param)))

Var <- (0.5)ˆ2 / do.call(d, c(do.call(q,

c(0.5, param)), param))ˆ2

Cov.Ap.Aq <- Cov.1mp.1mq + Cov.1mp.q + Cov.p.1mq + Cov.p.q

- 2 * Cov.1mp - 2 * Cov.p - 2 * Cov.1mq

- 2 * Cov.q + 4 * Var

Cov.Ap.IQR1q <- Cov.1mp.1mq - Cov.1mp.q + Cov.p.1mq - Cov.p.q

- 2 * Cov.1mq + 2 * Cov.q

Cov.IQR1p.Aq <- Cov.1mp.1mq + Cov.1mp.q - Cov.p.1mq - Cov.p.q

- 2 * Cov.1mp + 2 * Cov.p

Cov.IQR1p.IQR1q <- Cov.1mp.1mq - Cov.1mp.q - Cov.p.1mq + Cov.p.q

IQR.p <- do.call(q, c(1-us[j]/2, param))

- do.call(q, c(us[j]/2, param))

IQR.q <- do.call(q, c(1-us[k]/2, param))

- do.call(q, c(us[k]/2, param))

Gamma.p <- (do.call(q, c(1-us[j]/2, param))

+ do.call(q, c(us[j]/2, param))

- 2 * do.call(q, c(0.5, param)))/

(do.call(q, c(1-us[j]/2, param))

- do.call(q, c(us[j]/2, param)))

Gamma.q <- (do.call(q, c(1-us[k]/2, param))
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+ do.call(q, c(us[k]/2, param))

- 2 * do.call(q, c(0.5, param)))/

(do.call(q, c(1-us[k]/2, param))

- do.call(q, c(us[k]/2, param)))

Cov.Ap.IQR2q <- Cov.1mp - Cov.1mp.q + Cov.p

- Cov.p.q + 2 * Cov.q - 2 * Var

Cov.IQR2p.Aq <- Cov.1mq + Cov.q - Cov.p.1mq - Cov.p.q

+ 2 * Cov.p - 2 * Var

Cov.IQR2p.IQR2q <- Cov.p.q - Cov.p - Cov.q + Var

IQR2.p <- do.call(q, c(0.5, param))

- do.call(q, c(us[j]/2, param))

IQR2.q <- do.call(q, c(0.5, param))

- do.call(q, c(us[k]/2, param))

Lamda.p <- (do.call(q, c(1-us[j]/2, param))

+ do.call(q, c(us[j]/2, param))

- 2 * do.call(q, c(0.5, param)))/

(do.call(q, c(0.5, param))

- do.call(q, c(us[j]/2, param)))

Lamda.q <- (do.call(q, c(1-us[k]/2, param))

+ do.call(q, c(us[k]/2, param))

- 2 * do.call(q, c(0.5, param)))/

(do.call(q, c(0.5, param))

- do.call(q, c(us[k]/2, param)))

S[j, k] <- (1/IQR.p) * (1/IQR.q) * (Cov.Ap.Aq

- Gamma.q * Cov.Ap.IQR1q - Gamma.p *

Cov.IQR1p.Aq + Gamma.p * Gamma.q * Cov.IQR1p.IQR1q)

S1[j, k] <- (us[j]/2) * (us[k]/2) * S[j, k]

S2[j, k] <- (1/IQR2.p) * (1/IQR2.q) * (Cov.Ap.Aq

- Lamda.q * Cov.Ap.IQR2q

- Lamda.p * Cov.IQR2p.Aq

+ Lamda.p * Lamda.q * Cov.IQR2p.IQR2q)

S3[j, k] <- (us[j]/2) * (us[k]/2) * S2[j, k]
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}

}

ASVar.int.Gammap <- (1/Jˆ2) * sum(S)

ASVar.int.p.Gammap <- (1/Jˆ2) * sum(S1)

ASVar.int.Lamdap <- (1/Jˆ2) * sum(S2)

ASVar.int.p.Lamdap <- (1/Jˆ2) * sum(S3)

list (ASV.Gp=ASV.Gammap , ASV.Lp=ASV.Lamdap ,

ASV.int.Gp= ASVar.int.Gammap ,

ASV.int.pGp=ASVar.int.p.Gammap ,

ASV.int.Lp=ASVar.int.Lamdap ,

ASV.int.pLp=ASVar.int.p.Lamdap)

}

ASV.Skew(dlnorm , qlnorm , p=0.2, list(meanlog=1, sdlog=1))
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ABSTRACT
Recent research has shown that interval estimators with good cover-
age properties are achievable for some functions of quantiles, even
when sample sizes are not large. Motivated by this, we consider
interval estimators for the ratios of independent quantiles and inter-
quantile ranges that will be useful when comparing location and
scale for two samples. Simulations show that the intervals have
excellent coverage properties for a wide range of distributions,
including those that are heavily skewed. Examples are also consid-
ered that highlight the usefulness of using these approaches to com-
pare location and scale.
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1. Introduction

It is common to use the t-test to compare the means of two independent populations
and under the assumption of normality of those populations. However, when the distri-
butions are skewed, medians may be a more appropriate measure of location. Non-para-
metric alternatives to the t-test, such as tests for the difference, or ratio, of two medians
are available (e.g. Price and Bonett 2002). Similarly, when comparing the spread of two
populations, normality is again often assumed and the standard F-test employed based
on the ratio of two independent sample variances. However, it has long been known
that the F-test can be unreliable when normality is violated (see, e.g. Brown and
Forsythe, 1974). For a recent discussion see Hosken, Buss, and Hodgson (2018) who
advise “do not use F tests to compare variances”. As a non-parametric alternative,
Shoemaker (1999) introduced a test using differences in interquantile ranges. They
found that the test is reliable for many distributions, including those that are heav-
ily skewed.
In this paper, we propose interval estimators for ratios of quantiles and interquantile

ranges, which are scale-free and thus easily interpretable. We begin by detailing some
related existing methods in Sec. 2, which also allows us to introduce notations used
throughout. In Sec. 3, we obtain partial influence functions for ratios of independent
quantile and interquantile range estimators. Partial influence functions, which can be
used to study robustness properties, can also be used to obtain asymptotic variances of

CONTACT Luke A. Prendergast luke.prendergast@latrobe.edu.au Department of Mathematics and Statistics, La
Trobe University, Melbourne, Victoria 3086, Australia.
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estimators. It is the latter which is our main focus and the asymptotic variances are
used to construct interval estimators in Sec. 4. We conduct simulations and then pro-
vide some examples in Sec. 5.

2. Notations and related existing methods

Let F1 denote the distribution function for random variable X and f1 denote the density.
For a p 2 ½0; 1�; let the pth quantile be xp ¼ F�1

1 ðpÞ ¼ inffx : F1ðxÞ � pg: Also, let
g1ðpÞ ¼ 1=f1ðxpÞ denote the quantile density function (Tukey 1965; Parzen 1979) and its
reciprocal, which we denote q1ðpÞ ¼ f1ðxpÞ; is the density quantile function. Similarly, let
F2 denote the distribution function for random variable Y with yp ¼ F�1

2 ðpÞ ¼ inffy :
F2ðyÞ � pg; g2ðpÞ ¼ 1=f2ðypÞ and q2ðpÞ ¼ f2ðypÞ: Also let X1; :::;Xn1 and Y1; :::;Yn2

denote simple random samples of size n1 and n2 from F1 and F2 respectively.

2.1. The price and Bonett method

Price and Bonett (2002) proposed an asymptotic confidence interval for a ratio of
medians, which does not require identically shaped distributions. Let Xð1Þ � Xð2Þ � ::: �
Xðn1Þ and Yð1Þ � Yð2Þ � ::: � Yðn2Þ be the ordered random samples. Let ĝ1 and ĝ2 be the
usual sample medians obtained from each sample which are estimators of g1 and g2. Let
X�
ðiÞ ¼ lnXðiÞ and Y�

ðiÞ ¼ lnYðiÞ; assuming XðiÞ and YðiÞ are both non-negative and let ĝ�1
and ĝ�2 denote the sample medians of these log-transformed samples. An asymptotic
distribution-free ð1�aÞ � 100% confidence interval for g1=g2 is

ĝ1
ĝ2

� �
exp 6z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ĝ�1
� �

þ Var ĝ�2
� �q� �

where z1�a=2 is the ð1�a=2Þ percentile of the standard normal distribution and Varðĝ�j Þ
(j¼ 1, 2) is the variance of ĝ�j : The Price and Bonett (2001) modification of the
McKean-Schrader estimator McKean and Schrader (1984) is used where

Var ĝ�1
� �

¼
X�

n1�c1þ1ð Þ�X�
c1ð Þ

	 

2z1

0
@

1
A

2

where c1 ¼ ðn1 þ 1Þ=2�n1=21 ; rounded to the nearest integer, z1 ¼ U�1ð1�p1=2Þ and
p1 ¼

Pc1�1
i¼0 ½n1!=i!ðn1 � iÞ!�ð0:5Þðn1�iÞ: Varðĝ�2Þ is similarly defined.

2.2. Shoemaker’s test

For p 2 ð0; 0:5Þ; the interquantile range is denoted IQRpðXÞ ¼ x1�p�xp which is the
usual interquartile range when p¼ 0.25. Let x̂p denote the estimator of xp. Shoemaker
(1995) uses the influence function (Hampel 1974) to calculate the asymptotic variance
of the IQRpðXÞ estimators. We will provide more detail on the influence function in the
next section. Using our notations for the density quantile function at the start of this
section, the asymptotic variance for IQRpðXÞ estimator is x2

1 ¼ pfq1ðpÞ þ q1ð1� pÞ �
p½q1ðpÞ þ q1ð1�pÞ�2g=½q21ðpÞq21ð1�pÞ�: Hence, for x2

2 denoting the asymptotic variance
for the estimator of IQRpðYÞ; the Shoemaker (1999) test statistic is

2 C. N. P. G. ARACHCHIGE ET AL.



Z ¼
x̂1�p�x̂p
� �

� ŷ1�p�ŷp
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1=n1 þ x2
2=n2

p : (1)

Z is asymptotically Nð0; 1Þ distributed when IQRpðXÞ ¼ IQRpðYÞ provided that f1 and
f2 are positive and continuous for the quantiles used in the interquantile ranges. As the
estimator of the denominator for q1ðpÞ; and then similarly q1ð1�pÞ; q2ðpÞ and q2ð1�pÞ;
Shoemaker (1999) uses nðx̂p; hnÞ=ð2n1hnÞ where nðx̂p; hnÞ is the number of observations
falling in the interval x̂p6hn with bandwidth hn ¼ 1:3s=n1=51 : Simulation results for a
wide variety of distributions validate the use of this test, and certainly superiority over
the F-test in the presence of skew. It is suggested that one should choose p between 0.1
and 0.25 for improved power.

3. Ratios of quantiles and interquantile ranges

In this section, we introduce the ratio estimators and ultimately derive their asymp-
totic variances.

3.1. The ratio estimators

We continue with the notations already introduced and assume p 2 ð0; 1Þ: We define
the population ratio of quantiles rp and associated estimator to be

rp ¼
xp
yp

� �
and r̂p ¼

x̂p
ŷp

 !
: (2)

Remark 1. As with ratios of means, care should be taken when the numerator and
denominator can be of opposite sign, due to difficulty in interpreting negative ratios, or
when the denominator is small in magnitude comparative to the numerator. In such
case, the ratio can be extremely sensitive to small changes in the quantiles. An example
of where such care should be taken is when X and Y represent changes (e.g. change in
a particular measurement following intervention) which can be either positive or nega-
tive and in such situations a value close to zero may be meaningful, yet the ratio may
not be. For example, if x0:25 ¼ 0:2 and y0:25 ¼ 0:05 where x0:25�y0:25 ¼ 0:15 represents a
negligible, i.e. clinically insignificant, difference. Then the ratio r0:25 ¼ 4 may falsely
imply a large difference between the two that may be mistaken for being clinically sig-
nificant. One can make this ratio arbitrarily large by making only small changes to the
value of y0:25:
Assuming p 2 ð0; 0:5Þ; we define the population squared ratio of IQRps and associ-

ated estimator to be

Rp ¼
IQRp Xð Þ
IQRp Yð Þ

" #2
and R̂p ¼

x̂1�p�x̂p
ŷ1�p � ŷp

 !2

: (3)

We focus on the squared ratio of IQRs since it is analogous to the ratio of variances
although it is simple to obtain estimators for the ratio of IQRs by a square-root
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transformation. A nice property of Rp is that it is equivalent to the ratio of variances for
many distributions, as shown below.

Lemma 1. Let Gðl; rÞ be the distribution function of a location-scale family with location
and scale parameters l and r. If X�Gðl1; r1Þ and Y �Gðl2; r2Þ; Rp ¼ VarðXÞ=VarðYÞ
for any p 2 ð0; 1=2Þ:

Proof. The proof is obvious when noting that for Z1 �Gð0; 1Þ and Z2 �Gð0; 1Þ; we can
write X ¼ r1Z1 þ l1 and Y ¼ r2Z2 þ l2 so that the quantile functions for X and Y may
each be written r1QðpÞ þ l1 and r2QðpÞ þ l2 where Q(p) is the quantile function for
G(0, 1). Hence, Rp ¼ r21=r

2
2: For Z�Gð0; 1Þ;VarðXÞ ¼ r21VarðZÞ and VarðYÞ ¼

r22VarðZÞ so that Rp ¼ VarðXÞ=VarðYÞ: w

From Lemma 1, Rp is equal to the ratio of variances when the distributions are from
the same location-scale family. This means that an estimator of Rp is a direct competitor
to the ratio of variances for such distributions.

Remark 2. For an appropriately chosen value of p, the ratio Rp can be particularly
advantageous when dealing with asymmetric distributions with noticeable skew. For
example, consider the case of the lognormal distribution with X� LN ð0; 1:25Þ and
Y � LN ð0; 1Þ: While a plot of the densities (not shown) reveals a difference between
the two, that difference is not so great as is implied by the large ratio of variances equal
to 3.85. This is due to the variance in the numerator being ‘drawn’ toward a more
extreme right-skew that outweighs the low probability mass in the extreme right tail
when compared to the distribution of Y. However, by choosing p¼ 0.25 so that we are
comparing the range of the middle 50% of the distributions for X and Y, the squared
ratio of IQRs is much smaller at 1.70. For choices p¼ 0.1 and p¼ 0.05, the squared
ratio of IQRs is 2.05 and 2.38 respectively. Still somewhat smaller, these imply that the
ratio of variances is potentially misleading in this example.

3.2. Influence functions and partial influence functions

Let F denote a distribution function and, for � 2 ½0; 1�; define the contamination distri-
bution to be F� ¼ ð1��ÞF þ �Dx0 where Dx0 has all of its mass at the contaminant x0.
Suppose that for F there is a parameter of interest, h, and associated estimator with the
statistical functional T such that TðFÞ ¼ h and TðFnÞ ¼ ĥ: For example, for the mean
parameter l, we have l ¼ TðFÞ ¼

Ð
xdF: The influence function (IF, Hampel 1974) is

then defined to be

IF x0;T; Fð Þ 	 lim
�!0

T F�ð Þ�T Fð Þ
�

¼ @

@�
T F�ð Þ

����
�¼0

which is the rate of change in T, at F, when a small amount of contamination is intro-
duced. Influence functions are therefore useful tools to understand the behavior of esti-
mators in the presence of certain observations types, including outliers.
Let f denote the probability density function of F and let Qp denote the functional

for the pth quantile where QpðFÞ ¼ xp: The influence function of the pth quantile is
well known (e.g., p.59 of Staudte and Sheather 1990) to be

4 C. N. P. G. ARACHCHIGE ET AL.



IF x0;Qp; F
� �

¼ p� I xp � x0ð Þ½ �g pð Þ (4)

where gðpÞ ¼ 1=f ðxpÞ is the quantile density defined earlier.
Influence functions also exhibit useful asymptotic properties including an often convenient

means to derive asymptotic variances such as those computed for the IQR by Shoemaker
(1995). For X� F and Fn denoting the empirical distribution for n iid random variables dis-
tributed as F, under some mild regularity conditions such as differentiability of T(F) and by
the Central Limit Theorem we have (see, e.g., page 63 of Staudte and Sheather 1990),ffiffiffi

n
p

T Fnð Þ � T Fð Þ
� 


�a N 0;ASV Tð Þ
� �

(5)

where �a denotes ‘approximately distributed as’ and ASVðTÞ ¼ E½IFðX;T; FÞ2� is the
asymptotic variance (ASV) of the estimator with functional T.
For the quantile estimator with functional Qp and influence function given in (4), it

can be shown that EF½IFðX;Qp; FÞ� ¼ 0 and

ASV Qpð Þ ¼ EF IF2 X;Qp; F
� �h i

¼ p 1�pð Þg2 pð Þ : (6)

In our context, we have two populations and therefore consider partial influence
functions (PIF, Pires and Branco 2002). We have two PIFs, where contamination is
introduced to each of the populations while the other population remains uncontamin-
ated. The first PIF of the estimator with functional T at (F1; F2) is

PIF1 x0;T; F1; F2ð Þ ¼ lim
�!0

T 1��ð ÞF1 þ �Dx0 ; F2
� 


�T F1; F2ð Þ
�

� �
;

with PIF2ðx0;T; F1; F2Þ defined similarly. Let Fn1 and Fn2 denote empirical distribution
functions for iid samples of size n1 and n2 from F1 and F2 then, from Pires and Branco
(2002), we have that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

p
½TðFn1 ; Fn2Þ � TðF1; F2Þ� is asymptotically normal with

mean zero and asymptotic variance

ASV Tð Þ ¼ 1
w1

EF1 PIF1 X;T; F1; F2ð Þ2
� 


þ 1
w2

EF2 PIF2 X;T; F1; F2ð Þ2
� 


(7)

where wi ¼ ni=ðn1 þ n2Þ (i¼ 1, 2) and EFð:Þ denotes expectation at distribution F.

Partial influence functions for the ratio of quantiles

Let rp be the functional for ratio of quantiles so that

rp F1; F2ð Þ ¼
Qp F1ð Þ
Qp F2ð Þ

" #
¼ rp:

Recall QpðF1Þ ¼ xp and QpðF2Þ ¼ yp to distinguish between the populations.

Theorem 1. For IFðx0;Qp; FÞ as defined in (4), the partial influence functions of rp for
contamination introduced to each of F1 and F2 are

PIF1 x0; rp; F1; F2ð Þ ¼
IF x0;Qp; F1
� �

yp

" #
;PIF2 x0; rp; F1; F2ð Þ ¼ �rp

IF x0;Qp; F2ð Þ
yp

" #
:

The proof of Theorem 1 is in Appendix A.1.
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Partial influence functions for the ratio of variances

Let the mean and variance of the distribution described by F be l and r2: For T denoting
the functional for the mean estimator, we have T ðFÞ ¼

Ð
xdF ¼ l: Let V be the functional

for the variance estimator where VðFÞ ¼
Ð
½x � TðFÞ�2dF ¼ r2: Then T ðF�Þ ¼

Ð
xd½ð1� �Þ

F þ �Dx0 � ¼ ð1��Þlþ �x0 and VðF�Þ ¼ r2 þ �½ðx0�lÞ2 � r2���2ðx0�lÞ2: Consequently,
IFðx0;V; FÞ ¼ ðx0�lÞ2�r2 is the influence function for the variance estimator.
Let T ðFjÞ ¼ lj;VðFjÞ ¼ r2j (j¼ 1, 2). For R denoting the functional for the ratio of

variances, we have RðF1; F2Þ ¼ VðF1Þ=VðF2Þ ¼ r21=r
2
2 ¼ q: Then, for zj ¼ ðx0�ljÞ=rj

(j¼ 1, 2), the PIFs for R are

PIF1 x0;R; F1; F2ð Þ ¼ q z21�1
� �

;PIF2 x0;R; F1; F2ð Þ ¼ �q z22�1
� �

(8)

As expected, the PIFs are unbounded in x0 indicating that outliers can exert unlim-
ited influence.

Partial influence functions for the squared IQR ratio

Let Rp be the functional for the squared ratio of IQRs so that

Rp F1; F2ð Þ ¼
Q1�p F1ð Þ�Qp F1ð Þ
Q1�p F2ð Þ � Qp F2ð Þ

" #2
¼ qp:

Theorem 2. For IFðx0;Qp; FÞ is defined in (4), the partial influence functions of Rp for
contamination introduced to each of F1 and F2 are

PIF1 x0;Rp; F1; F2
� �

¼
2qp

x1�p � xp
IF x0;Q1�p; F1
� �

� IF x0;Qp; F1
� �� 


;

PIF2 x0;Rp; F1; F2
� �

¼ �
2qp

y1�p � yp
IF x0;Q1�p; F2
� �

� IF x0;Qp; F2ð Þ
� 


:

The proof of Theorem 2 is in Appendix A.2.

3.2.1. Asymptotic variances

Recall that li and ri denote the mean and standard deviation of Fi ði ¼ 1; 2Þ and that
q ¼ r21=r

2
2: Then from (7) and (8), it is straight forward to show that the ASV for the

ratio of variances estimator is

ASV R; n1; n2ð Þ ¼ q2
1
w1

EF1 Z4
1

� �
� 1

� 

þ 1
w2

EF2 Z4
2

� �
� 1

� 
� �
(9)

where Zi ¼ ðX�liÞ=ri so that EFiðZ4
i Þ is the scaled fourth central moment of Fi (i¼ 1, 2).

Recall that g1ðpÞ ¼ 1=f1ðxpÞ and g2ðpÞ ¼ 1=f2ðypÞ are the quantile density functions. We
now provide the ASV for the ratio of quantiles.

Theorem 3. The asymptotic variances of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

p
rpðFn1 ; Fn2Þ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

p
RpðFn1 ; Fn2Þ

are

ASV rp; n1; n2ð Þ ¼ p 1�pð Þr2p
g21 pð Þ
w1x2p

þ
g22 pð Þ
w2y2p

( )
:
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and

ASV Rp; n1; n2
� �

¼ 4pq2p

�
g21 pð Þ þ g21 1�pð Þ�p g1 pð Þ þ g1 1� pð Þ

� 
2
w1 x1�p�xpð Þ2

þ
g22 pð Þ þ g22 1�pð Þ�p g2 pð Þ þ g2 1� pð Þ

� 
2
w2 y1�p�ypð Þ2

�
:

The proof of Theorem 3 is in Appendix A.3.

Corollary 1. Suppose that X and Y are both random variables from the same location-
scale family such that the density of X may be written f ðx; l1; r1Þ and the density of Y
f ðy; l2; r2Þ where l1, l2 and r1, r2 are the respective location and scale parameters. Let
q1�p and qp denote the ð1�pÞth and pth quantiles of the distribution with density
f ð
; 0; 1Þ and g0ð1�pÞ ¼ 1=f ðq1�p; 0; 1Þ and g0ðpÞ ¼ 1=f ðqp; 0; 1Þ the respective quantile
densities. Then

ASV Rp; n1; n2
� �

¼ 4p
r41
r42

g20 pð Þ þ g20 1�pð Þ�p g0 pð Þ þ g0 1� pð Þ
� 
2

w1 1� w1ð Þ q1�p�qpð Þ2

( )
:

Proof. Since X and Y are from the same location-scale family, then x1�p�xp ¼
g1ðq1�p�qpÞ; y1�p�yp ¼ g2ðq1�p�qpÞ and

f x;l1; g1ð Þ ¼
1
r1

f
r1x�l1

r1
; 0; 1

� �
; f y; l2; r2ð Þ ¼

1
r2

f
r2y�l2

r2
; 0; 1

� �
:

Using these results g1ðpÞ ¼ g0ðpÞr1 and g2ðpÞ ¼ g0ðpÞr2: The result follows after
some simplification and noting that w2 ¼ 1�w1: w

Remark 3. Since the ASV in Corollary 1 depends on location and scale only through
r41=r

4
2 which is a common factor to all terms, then the choice of p that minimizes the

ASV is independent of the location and scale parameters.
We now explore the choices of p that result in the minimum ASV of the squared

IQR ratio estimator for several distributions. As shown in Table 1, the choice of p that
minimizes the ASV varies for different distributions. The choice of p that minimizes the
ASV for the exponential, uniform and normal distributions does not depend on the
parameters of these distributions (see Remark 3 which is a consequence of Corollary 1).
For distributions considered with the exception of small shape parameter for the Pareto
type II (PAR), choosing a p< 0.25 gives a smaller ASV than if one were to use the ratio

Table 1. Choice of p to minimize ASV for the squared IQR ratio.
Distribution p Distribution p Distribution p

ExpðkÞ 0.128 Beta(0.1,0.1) 0 Gamma(1) 0.128
Unif(a, b) 0 Beta(0.5,0.5) 0 Gamma(2) 0.110
Log Normal(0,1) 0.193 Beta(1) 0 Gamma(10) 0.081
Log Normal(1) 0.193 Beta(10) 0.055 PAR(1) 0.282
Nðl; r2Þ 0.069 Weibull(0.5) 0.181 PAR(2) 0.224
Chi-Squared(1) 0.127 Weibull(1) 0.128 PAR(3) 0.198
Chi-Squared(2) 0.128 Weibull(2) 0.069 PAR(5) 0.173
Chi-Squared(25) 0.079 Weibull(10) 0.081 PAR(7) 0.161
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of interquartile ranges. This agrees with the observations of Shoemaker (1999). Our
interest is mainly in applications to skewed data and we therefore favor p¼ 0.2 which
would give good results for log normal and Pareto-type distributions.

4. Interval estimators

The quantiles are estimated using a weighted average of adjacent order statistics. We
use the type 8 weights recommended by Hyndman and Fan (1996) which is approxi-
mately median-unbiased and is available in the R quantile function. To estimate the
quantile density, g1 and then similarly for g2, we use the kernel density estimator

ĝ 1 p; bð Þ ¼
Xn1
i¼1

X ið Þ kb p� i�1
n1

� �
� kb p� i

n1

� �� �

with kernel function kb, for which we use the Epanechnikov (1969) kernel, and band-
width b. It has recently been shown that excellent confidence interval coverage for esti-
mators of functions of quantiles can be obtained for sample sizes even as low as 30 (see
Prendergast and Staudte 2016b, 2017, 2018). These works use the Quantile Optimality
Ratio (QOR, Prendergast and Staudte 2016a) to choose the optimal b for estimating the
quantile densities. We therefore use the QOR in selecting our b although other choices
of b are also possible.

4.1. Approximate variances of the estimators

Let q̂ ¼ S21=S
2
2 be the estimator of r21=r

2
2 where S2i ¼ VðFniÞ (i¼ 1, 2) are the sample

variance estimators. Let fXign1i¼1 denote the simple random sample for the first sample
with sample mean �X ¼ T ðFn1Þ and fYign2i¼1 denote the simple random sample for the
second with �Y ¼ T ðFn2Þ: From (9),

Var q̂ð Þ� q̂2

n1 þ n2

1
w1

Z4
1 � 1

	 

þ 1
w2

Z4
2 � 1

	 
� �

where

Z4
1 ¼ 1

n1

Xn1
i¼1

Xi��X
S1

� �4

;Z4
2 ¼ 1

n2

Xn2
i¼1

Yi��Y
S2

� �4

:

Let Varðr̂pÞ denote the variance of the ratio of quantiles estimator. Then, from
Theorem 3

Var r̂p
� �

�
p 1�pð Þr̂2p
n1 þ n2

ĝ 21 pð Þ
w1x̂

2
p

þ
ĝ 22 pð Þ
w2ŷ

2
p

( )
;

where ĝ iðpÞ (i¼ 1, 2) is the estimated quantile density using the QOR method.
Similarly, let Varðq̂pÞ denote the variance of the squared ratio of IQRs estimator. Then,
from Theorem 3
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Var q̂p
� �� 4pR̂

2
p

n1 þ n2

(
ĝ 21 pð Þ þ ĝ 21 1�pð Þ�p ĝ 1 pð Þ þ ĝ 1 1� pð Þ

� 
2
w1 x̂1�p�x̂p
� �2

þ
ĝ 22 pð Þ þ ĝ 22 1�pð Þ�p ĝ 2 pð Þ þ ĝ 2 1� pð Þ

� 
2
w2 ŷ1�p�ŷp
� �2

)
:

4.2. Asymptotic confidence intervals

In constructing our interval estimators for the ratios, we use the log transformation and
exponentiate to return to the ratio scale. For a random variable W> 0, using the Delta
method it follows that Var½ln ðWÞ� �VarðWÞ=W2: Hence, approximate ð1�aÞ100% con-
fidence intervals for the ratio of quantiles, ratio of variances and squared ratio of IQRs
are

exp ln r̂p
� �

6z1�a=2
1
r̂p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var r̂p
� �q� �

(10)

Table 2. Simulated coverage probabilities (and widths) for the 95% confidence interval estimators
for the interval based on the Price and Bonnet (rows labeled PB) method and the interval in (10) (rp)
with p ¼ 0:25; 0:5; 0:75: True values of the ratios are included in the top rows.
Sample size X� LN ð0; 1Þ X� EXP ð1Þ X� v25 X� PARð1; 7Þ
(n1,n2) Y� LN ð0; 1Þ Y� EXP ð1Þ Y� v22 Y� PARð1; 3Þ

PB 5 1.00 1.00 3.14 0.40
r0:25 ¼ 1.00 1.00 4.65 0.42
r0:5 ¼ 1.00 1.00 3.14 0.40
r0:75 ¼ 1.00 1.00 2.39 0.37

50,50 PB 0.961(1.12) 0.965(1.31) 0.964(3.29) 0.963(0.57)
r0.25 0.963(1.18) 0.959(1.71) 0.957(6.05) 0.962(0.75)
r0.5 0.972(1.17) 0.967(1.30) 0.966(3.20) 0.973(0.60)
r0.75 0.977(1.38) 0.970(1.16) 0.965(2.24) 0.971(0.55)

100,100 PB 0.960(0.75) 0.962(0.88) 0.962(2.21) 0.958(0.38)
r0.25 0.965(0.82) 0.961(1.19) 0.958(4.31) 0.959(0.51)
r0.5 0.970(0.77) 0.960(0.87) 0.958(2.19) 0.966(0.39)
r0.75 0.972(0.89) 0.962(0.77) 0.965(1.52) 0.969(0.35)

200,200 PB 0.952(0.51) 0.953(0.59) 0.950(1.50) 0.954(0.26)
r0.25 0.967(0.58) 0.957(0.82) 0.957(3.04) 0.962(0.36)
r0.5 0.962(0.53) 0.961(0.60) 0.957(1.52) 0.960(0.26)
r0.75 0.967(0.59) 0.960(0.53) 0.959(1.04) 0.966(0.24)

200,500 PB 0.948(0.42) 0.951(0.49) 0.953(1.11) 0.947(0.21)
r0.25 0.965(0.48) 0.953(0.68) 0.959(2.24) 0.958(0.30)
r0.5 0.961(0.44) 0.958(0.50) 0.960(1.12) 0.961(0.22)
r0.75 0.965(0.49) 0.958(0.43) 0.961(0.78) 0.961(0.19)

500,500 PB 0.952(0.32) 0.947(0.36) 0.950(0.93) 0.949(0.16)
r0.25 0.962(0.35) 0.957(0.51) 0.957(1.90) 0.955(0.22)
r0.5 0.958(0.33) 0.959(0.37) 0.957(0.95) 0.957(0.16)
r0.75 0.963(0.36) 0.954(0.32) 0.955(0.64) 0.960(0.14)

500,1000 PB 0.946(0.27) 0.947(0.31) 0.946(0.73) 0.948(0.13)
r0.25 0.960(0.31) 0.953(0.44) 0.957(1.49) 0.953(0.19)
r0.5 0.960(0.28) 0.953(0.32) 0.955(0.74) 0.959(0.14)
r0.75 0.961(0.31) 0.959(0.28) 0.954(0.51) 0.960(0.12)

1000,1000 PB 0.945(0.22) 0.948(0.25) 0.945(0.65) 0.946(0.11)
r0.25 0.959(0.25) 0.958(0.36) 0.952(1.33) 0.954(0.15)
r0.5 0.955(0.23) 0.952(0.26) 0.957(0.66) 0.954(0.11)
r0.75 0.958(0.25) 0.957(0.23) 0.954(0.45) 0.957(0.10)
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exp ln q̂ð Þ6z1�a=2
1
q̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var q̂ð Þ

p� �
and exp ln q̂p

� �
6z1�a=2

1
q̂p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var q̂p
� �q" #

(11)

where z1�a=2 is the ð1�a=2Þ�100 percentile of the standard normal distribution and
where for the variances we use the approximations from Sec. 4.1.

5. Simulations and examples

5.1. Simulations

A simulation study was conducted to compare the performance among estimators by
considering coverage probability and the average confidence interval width as the

Table 3. Simulated coverage probabilities (and widths) for the 95% confidence interval estimators
for the interval based on the F-test (rows labeled F) and the intervals in (11) for the ratio of varian-
ces (R) and squared ratio of IQRs (Rp) with several choices of p. (�median widths reported due to
excessively large average widths after back exponentiation). True values of the ratios are included in
the top rows.
Sample size X � LN(0,1) X � EXP(1) X� v25 X � PAR(1,7)
(n1,n2) Y � LN(0,1) Y � EXP(1) Y� v22 Y � PAR(1,3)

F ¼ 1.00 1.00 2.50 0.05
R ¼ 1.00 1.00 2.50 0.05

R0:055 1.00 1.00 2.84 0.10
R0:10 5 1.00 1.00 3.01 0.11
R0:205 1.00 1.00 3.18 0.13

50,50 F 0.445(2.01) 0.705(1.39) 0.756(3.47) 0.405(0.14)
R 0.778(6.11) 0.867(2.27) 0.869(4.91) 0.714(0.35)

R0.05 0.975(15.25�) 0.971(7.67) 0.969(18.14) 0.977(0.74�)
R0.10 0.978(20.64) 0.967(4.60) 0.968(11.44) 0.977(2.75)
R0.20 0.978(7.97) 0.971(4.24) 0.971(11.91) 0.974(0.93)

100,100 F 0.389(1.15) 0.689(0.88) 0.741(2.19) 0.341(0.08)
R 0.829(4.14) 0.896(1.59) 0.903(3.38) 0.740(0.23)

R0.05 0.977(9.57) 0.970(2.79) 0.970(6.75) 0.976(1.03)
R0.10 0.975(4.14) 0.970(2.18) 0.965(5.81) 0.975(0.42)
R0.20 0.975(3.14) 0.962(2.17) 0.967(6.21) 0.970(0.38)

200,200 F 0.348(0.70) 0.686(0.58) 0.746(1.47) 0.296(0.04)
R 0.861(2.96) 0.915(1.10) 0.926(2.40) 0.766(0.15)

R0.05 0.978(2.99) 0.968(1.54) 0.965(3.83) 0.975(0.27)
R0.10 0.973(2.07) 0.966(1.30) 0.965(3.50) 0.968(0.22)
R0.20 0.973(1.74) 0.961(1.31) 0.963(3.78) 0.965(0.21)

200,500 F 0.340(0.54) 0.678(0.48) 0.770(1.20) 0.314(0.03)
R 0.872(2.44) 0.930(0.91) 0.937(1.89) 0.831(0.12)

R0.05 0.971(2.12) 0.965(1.18) 0.962(2.74) 0.972(0.17)
R0.10 0.969(1.56) 0.963(1.02) 0.962(2.60) 0.968(0.15)
R0.20 0.963(1.35) 0.960(1.03) 0.961(2.88) 0.963(0.16)

500,500 F 0.324(0.39) 0.679(0.36) 0.741(0.90) 0.257(0.02)
R 0.897(1.87) 0.935(0.70) 0.939(1.53) 0.775(0.10)

R0.05 0.972(1.40) 0.963(0.84) 0.962(2.13) 0.967(0.13)
R0.10 0.965(1.08) 0.962(0.74) 0.960(2.01) 0.964(0.11)
R0.20 0.964(0.96) 0.959(0.76) 0.960(2.20) 0.960(0.12)

500,1000 F 0.307(0.33) 0.681(0.31) 0.765(0.77) 0.272(0.02)
R 0.906(1.63) 0.940(0.60) 0.947(1.26) 0.830(0.08)

R0.05 0.966(1.14) 0.962(0.71) 0.962(1.70) 0.970(0.10)
R0.10 0.963(0.90) 0.956(0.63) 0.962(1.64) 0.964(0.09)
R0.20 0.962(0.81) 0.961(0.64) 0.954(1.81) 0.958(0.10)

1000,1000 F 0.302(0.26) 0.675(0.25) 0.738(0.63) 0.215(0.02)
R 0.918(1.34) 0.940(0.49) 0.941(1.08) 0.793(0.07)

R0.05 0.967(0.89) 0.963(0.57) 0.961(1.43) 0.968(0.08)
R0.10 0.963(0.71) 0.959(0.51) 0.958(1.38) 0.960(0.08)
R0.20 0.959(0.65) 0.955(0.52) 0.956(1.51) 0.961(0.08)
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performance measures. We have selected the lognormal, exponential, chi-square and
Pareto distributions with different parameter choices with the sample sizes n ¼
f50; 100; 200; 500; 1000g and 10,000 simulation trials.
Simulated coverages for the Price and Bonett method and interval estimator in (10)

are provided in Table 2. The Price and Bonett (PB) method for the ratio medians pro-
vides very good coverage compared to the nominal 0.95 and the interval width
decreases with increasing sample sizes. Similar results can be seen for the ratio of quan-
tiles interval estimator when we choose p¼ 0.5 for the ratio of medians. Coverages sug-
gest that the use of r0.5 provides slightly more conservative coverage but with similar
interval width. For ratios of the quartiles (p¼ 0.25 and p¼ 0.75) coverages are again
very good with none reported below the nominal 0.95 and most less than 0.97. The
highest coverages were reported for the smaller sample size setting where n1 ¼ n2 ¼ 50:
Simulated coverages for the F-test and the interval estimators in (11) are provided in

Table 3. The F-test approach refers to the standard method for getting an interval for
the ratio of variances under the assumption that the data has been sampled from nor-
mal distributions. Consequently, the coverages for the intervals based on the F-test
(rows labeled F) are poor due to the violation of underlying normality. The interval for
ratio of variances using the asymptotic interval provides reasonable coverage for some
of the distributions but not when the sample sizes are small to moderate where the
intervals appear to be too narrow. On the other hand, the coverages for the squared
IQR ratio interval is very good for all distributions, including for the smaller sample
sizes. For the distributions we have considered here, the squared ratio of IQRs is pre-
ferred due to superior coverage. We have seen this across a broad range of distributions
distributions and the reader can verify this by using our web application detailed next.

5.1.1. A shiny web application for the performance comparisons of the intervals

For further comparisons, we have developed a Shiny (Chang et al., 2017) web applica-
tion that readers can use to run the simulations with different parameter choices. This
can be found at https://lukeprendergast.shinyapps.io/IQR_ratio/.
The user can change the distribution, parameters, sample size, probability and the

number of trials according to their choices. Once the desired options are selected, the
‘Run Simulation’ button can be pressed and the relevant estimates, coverage probability
(cp) and the average width of the confidence interval (w) will be calculated according to
their input choices.

5.2. Examples

As examples, we have selected two different data sets in different contexts.

5.2.1. Prostate data

The prostate data set, which we obtained from the depthTools package (Lopez-Pintado
and Torrente 2013) in R, is a normalized subset of gene expression data of the 100
most variable genes for 25 randomly selected tumor and 25 randomly selected normal
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prostate samples from Singh et al. (2002). In Remark 1 we cautioned the use of ratios
of quantiles when quantiles may be of different sign such as is the case here. We there-
fore restrict our attention to looking for differences in spread between the tumor and
normal samples.
Since the sample sizes are comparatively small, we have chosen p ¼ 0:1; 0:2; 0:25 to

construct the confidence interval for the ratio of IQRs. We found that there are six
genes, which lead to very different conclusions depending on whether the ratio of var-
iances or ratio of IQRs is used. These genes, including their abbreviations where applic-
able, are Carboxylesterase 1 (C1), Glucose-6-phosphate dehydrogenase (G6pd),
HDKFZp564A072, S100 calcium-binding protein A4 (S100cbpA4), Selenium binding
protein 1 (Sbp1) and Thymosin beta, identified in neuroblastoma cells (Tbiinc).
Box plots of the genes separated according to groups are shown in Figure 1. There is

at least one outlier or extreme value in at least one of the two groups in all genes except
for Tbiinc. Ignoring outliers, the boxplots suggest differences in spread for C1,
HDKFZp564A072 and S100cbpA4.
In Table 4 we provide the estimated asymptotic 95% confidence intervals for the ratio

of variances and squared ratios of IQRs from (11) for the six genes. While the boxplots
indicate a difference in spread for C1, HDKFZp564A072 and S100cbpA4, this is not
convincingly reflected in the ratio of variances intervals most likely due to the presence
of outliers. However, the interval estimators for the squared ratio of IQRs capture the
differences. For the G6pd, Sbpl and Tibiinc genes, the conclusions are reversed where
the ratio of variances suggest significant differences in spread while this is not the case
for those based on the IQRs.

5.2.2. Melbourne house price data

Since house prices are usually highly skewed, the sample mean is often not indicative of
a typical house price. Therefore, the median is the most popular measure used
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Figure 1. Box plots of the gene expression data for tumoral and normal samples of selected
six genes.
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understanding house price markets. Similarly, variances, and ratios of variances, may be
difficult to interpret for skewed data (see, e.g., Remark 2 for a brief example), and IQRs
can be more informative when seeking to understand house price spread. Motivated by
this, we now apply our intervals to Melbourne house clearance data from January 2016
obtained from the website https://www.kaggle.com/anthonypino/melbourne-housing-
market. When describing house prices, it is also common to focus on quartiles (see,
e.g., Taylor and Watling 2011) so in what follows we choose p¼ 0.25 and p¼ 0.75.
This data set contains prices of three types of houses (house, unit, townhouse) within

different suburbs in Melbourne, Australia. Restricting to suburbs with more than 10
houses sold left data for 301 suburbs. Our focus will be on comparing house prices
between suburbs. To get an understanding of how often different findings could result
depending on whether variances or IQRs were used, we obtained the intervals for every
pairing of suburbs which resulted in 45,150 confidence intervals for each ratio.
Table 5 represents the proportions of times that a different conclusion is reached

(assuming conclusions are reached based on whether the ratio intervals include one or
not) when comparing spread using either variances or IQRs. We were surprised that
over 30% of the time there was a difference depending on which interval was used. This
helps to highlight why one should choose which ratio is best suited to their pur-
pose carefully.
To illustrate, Figure 2 depicts the house price distribution of a selected three pairs of

neighboring suburbs. As expected, the house price distributions are positively skewed
and it can be seen that there are at least a few outliers in all suburbs except for
Kingsbury. When considering the middle 50% of house prices, there are noticeable dif-
ferences in variation between each of the neighboring suburbs in all three pairings.
From Table 6, the Price and Bonnet and asymptotic methods for the ratio of medians

are consistent in their findings. A significant difference in median house price is
detected between Beaumaris and Black Rock, and the intervals for the other pairings,
while including the ratio one, also suggest that there may be differences. The ratio of
variance intervals are very wide making it difficult to determine whether there are real
differences in spread, despite two of the estimated ratios being substantially less than
one. However, the interval estimators for the ratio of interquartle ranges to detect differ-
ences in spread and this agrees with other premise that there were notable differences
in the spread for the middle 50% of house prices. Putting this together and thinking

Table 4. Estimates (Est.) and 95% asymptotic confidence intervals (CI) for the ratio of variances (col-
umn labeled R) and squared ratios of IQRs (Rp) with p ¼ 0:1; 0:2; 0:25 for the six selected genes.
Gene R R0:1 R0:2 R0.25
C1 Est. 1.531 2.548 4.520 2.420

CI (0.777, 3.016) (1.206, 5.384) (2.124, 9.618) (1.080, 5.426)
G6pd Est. 6.496 2.269 1.680 1.071

CI (2.085, 20.243) (0.363, 14.163) (0.295, 9.564) (0.140, 8.179)
HDKFZp- Est. 1.930 3.714 2.864 4.870
564A072 CI (0.847, 4.397) (1.533, 8.997) (1.506, 5.448) (2.357, 10.065)
S100- Est. 1.748 1.987 3.338 24.257
cbpA4 CI (0.950, 3.217) (1.260, 3.136) (1.431, 7.786) (3.211, 183.277)
Sbp1 Est. 3.459 1.042 0.674 1.431

CI (1.193, 10.029) (0.190, 5.728) (0.084, 5.387) (0.172, 11.929)
Tbiinc Est. 2.227 1.787 1.177 1.185

CI (1.163, 4.265) (0.868, 3.678) (0.531, 2.611) (0.533, 2.634)
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about what it means for a potential home buyer, as an example we consider the
Beaumaris and Black Rock neighboring suburbs. A typical (median) house in Beaumaris
was significantly cheaper (ratio of medians ¼ 0.858, 95% CI [0.745, 0.989]) and the
spread of prices notably smaller for the middle 50% of houses. This reduced spread is
also reflected in the approximate equivalent price at the 25th percentile (r̂0:25 ¼ 1:003;
95% CI [0.86, 1.17]).

6. Summary and discussion

We have introduced interval estimators for ratios of quantiles and interquantile ranges.
The intervals have very good coverage, even for samples as small as 50 for a wide range

Table 5. Proportion of comparisons giving different conclusions based on ratio of variances/ratio of
IQRs (p¼ 0.25). Here we count the number of times that the intervals differ in terms of whether
they include one.
Type of Conclusion Count Percentage(%)

R does not include one and R0.25 includes one 7914 17.53
R includes one and R0.25 does not include one 5708 12.64
Both intervals include one or do not include one 31528 69.83
Total 45150 100.00
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Figure 2. House price comparisons of selected three pair of neighboring suburbs.

Table 6. 95% confidence intervals (CI) for the Price and Bonnet method (row labeled PB), asymptotic
interval for the ratio of quantiles (r), ratio of variances R and ratio of interquartile ranges R0.25 for
selected three pairs of neighboring suburbs.

Ratio

Bundoora/Kingsbury Beaumaris/Black Rock Oakleigh/Oakleigh East

Estimate CI Estimate CI Estimate CI

PB 0.801 (0.628, 1.020) 0.858 (0.741, 0.994) 0.855 (0.707, 1.035)
r0.25 0.965 (0.797, 1.168) 1.003 (0.858, 1.172) 0.952 (0.809, 1.119)
r0.5 0.801 (0.597, 1.074) 0.858 (0.745, 0.989) 0.855 (0.713, 1.026)
r0.75 0.670 (0.537, 0.911) 0.773 (0.655, 0.913) 0.779 (0.625, 0.971)
R 1.194 (0.555, 1.803) 0.650 (0.424, 2.361) 0.698 (0.436, 2.295)
R0.25 0.272 (0.115, 0.643) 0.325 (0.166, 0.640) 0.377 (0.147, 0.967)
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of distributions. Our examples highlight that very different conclusions can be arrived
at when using ratios of interquantile ranges instead of ratios of variances. Future work
will consider how to best choose p or the creation of a combined interval that does not
require p to be chosen as was done recently by Marozzi (2012) for hypothesis tests of
variation using IQRs.
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A. Appendix

A.1 Proof of Theorem 1
A power series expansion for QpðF�Þ can be written as QpðFÞ þ �IFðx0;Qp; FÞ þ Oð�2Þ: Setting

F� ¼ ð1��ÞF1 þ �Dx0 where QpðF1Þ ¼ xp and for simplicity, write IF1;p ¼ IFðx0;Qp; F1Þ and recall
QpðF2Þ ¼ yp: Then the first PIF is

PIF1 x0; rp; F1; F2ð Þ ¼ lim
�#0

xp þ �IF1;p þ O �2ð Þ�xp
�yp

( )
¼ IF1;p

yp
:

Setting F� ¼ ð1��ÞF2 þ �Dx0 and letting IF2;p ¼ IFðx0;Qp; F2Þ the second PIF is

PIF2 x0; rp; F1; F2ð Þ ¼ lim
�#0

xp= yp þ �IF2;p þ O �2ð Þ
	 


�xp=yp

�

" #

¼ lim
�#0

xp yp� yp þ �IF2;p þ O �2ð Þ
	 
h i

�yp yp þ �IF2;p þ O �2ð Þ
	 


8><
>:

9>=
>;

¼ lim
�#0

�xp �IF2;p þ O �2ð Þ
h 


�

�yp yp þ �IF2;p þ O �2ð Þ
h i

8><
>:

9>=
>;:

The proof concludes after canceling the � terms and taking the limit.

A.2. Proof of Theorem 2
A power series expansion for Q1�pðF�Þ�QpðF�Þ can be written as

Q1�p Fð Þ�Qp Fð Þ þ � IF x0;Q1�p; F
� �

� IF x0;Qp; F
� �� 


þ O �2ð Þ:

Setting F� ¼ ð1��ÞF1 þ �Dx0 where QpðF1Þ ¼ xp; we have ½Q1�pðF�Þ � QpðF�Þ�2 can be written

x1�p�xpð Þ2 þ 2� x1�p�xpð Þ IF x0;Q1�p; F1
� �

� IF x0;Qp; F1
� �� 


þ O �2ð Þ: (12)

For simplicity, write PIF1 ¼ PIF1ðx0;Rp; F1; F2Þ and IF1;p ¼ IFðx0;Qp; F1Þ and recall QpðF2Þ ¼
yp: Since qp ¼ ðx1�p�xpÞ2=ðy1�p�ypÞ2; the first PIF is

PIF1 ¼ lim
�#0

x1�p�xpð Þ2 þ 2� x1�p�xpð Þ IF1;1�p � IF1;p½ � þ O �2ð Þ� x1�p�xpð Þ2

� yp�y1�pð Þ2

( )

¼
2qp

x1�p � xpð Þ
IF1;1�p � IF1;p½ �:

Let IQRpðFÞ ¼ Q1�pðFÞ�QpðFÞ be the functional for the IQR at p and for the second PIF set
F� ¼ ð1��ÞF2 þ �Dx0 : Then

16 C. N. P. G. ARACHCHIGE ET AL.



PIF2 ¼ lim
�#0

x1�p�xpð Þ2 IQR2 F�ð Þ
� 
�1� x1�p�xpð Þ2= y1�p�ypð Þ2

�

( )

¼ lim
�#0

x1�p�xpð Þ2 y1�p�ypð Þ2� x1�p�xpð Þ2IQR2 F�ð Þ
� y1�p�ypð Þ2IQR2 F�ð Þ

( )

¼ lim
�#0

�2� x1�p�xpð Þ2 y1�p�ypð Þ IF2;1�p � IF2;p½ � þ O �2ð Þ
� y1�p�ypð Þ2IQR2 F�ð Þ

( )

when using (12) but evaluated at F2 and letting IF2;p ¼ IFðx0;Qp; F2Þ: The proof concludes after
canceling the � terms and taking the limit.

A.3. Proof of Theorem 3
Note IFðx0;Qp; F1Þ2 ¼ ½p2 þ ð1� 2pÞIðxp � x0Þ�g21ðpÞ: Then, from above and Theorem 1 and

noting that, for example, EF1 ½Iðxp � XÞ� ¼ p; for X� F1;

EF1 PIF1 x0; rp; F1; F2ð Þ2
h i

¼
r2p
x2p

E IF X;Qp; F1
� �2h i

¼
p 1�pð Þr2p

x2p
g21 pð Þ
n o

:

EF2 ½PIF2ðx0; rp; F1; F2Þ
2� is derived similarly and the asymptotic variance follows by apply-

ing (7).
For the ratio of IQRs, first note IFðx0;Q1�p; F1Þ2 ¼ ½ð1�pÞ2 � ð1� 2pÞIðx1�p � x0Þ�g21ð1�pÞ:

IFðx0;Qp; F1ÞIFðx0;Q1�p; F1Þ ¼ p½ð1� pÞ � Iðx1�p � x0Þ þ Iðxp � x0Þ�g1ðpÞg1ð1�pÞ since p<1�p:
For simplicity let IFpðXÞ ¼ IFðX;Qp; F1Þ: Then, from above and Theorem 2 and noting that, for
example, EF1 ½Iðxp � XÞ� ¼ p; for X� F1;

EF1 PIF21
� 


¼
4q2p

x1�p�xpð Þ2
E IF21�p Xð Þ
h i

þ E IF2p Xð Þ
h i

�2E IF1�p Xð ÞIFp Xð Þ
� 
n o

¼
4pq2p

x1�p�xpð Þ2
g21 pð Þ þ g21 1� pð Þ � p g1 pð Þ þ g1 1� pð Þ

� 
2n o
:

EF2 ½PIF22� is derived similarly and the asymptotic variance follows by applying (7).
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Abstract

The median absolute deviation (MAD) is a robust measure of scale that is simple to

implement and easy to interpret. Motivated by this, we introduce interval estimators of

the MAD to make reliable inferences for dispersion for a single population and ratios and

differences of MADs for comparing two populations. Our simulation results show that the

coverage probabilities of the intervals are very close to the nominal coverage for a variety

of distributions. We have used partial influence functions to investigate the robustness

properties of the difference and ratios of independent MADs.

Keywords: asymptotic variance, partial influence functions, robust

1 Introduction

The median absolute deviation is a robust measure of dispersion (MAD, see e.g. Hampel, 1974;

Hampel et al. , 1986). Defined as the median of the absolute residuals from the median, the

MAD is a suitable scale measure to accompany the median. Hampel (1974) referred to the

MAD as the “median deviation” and it had first received attention even as early as Gauss

(1816), and later rediscovered by Hampel (1968). The MAD is the most robust estimator of scale

as measured by robustness measures such as the break-down point and gross error sensitivity

(Hampel, 1974). The breakdown point of an estimator is the proportion of contamination that

the estimator can handle before providing unreliable results and for the MAD this is equal to

1/2 (the maximum). The MAD estimator has what is known as a bounded influence function

so that the amount of influence any observational type can exert on the estimator is limited.

More will be said on the influence function later.

Arachchige et al. (2019a) showed that excellent coverages for interval estimators of ratios

of interquantile ranges can be achieved. This makes these intervals more suitable than those

for ratio of variances when normality cannot be assumed. Then, Arachchige et al. (2019b)
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considered interval estimators for robust versions of the coefficient of variation, one of which uses

the MAD in place of the standard deviation (and the median to replace the mean). Motivated by

these good coverage properties, we consider interval estimators for the MAD and for ratios and

differences of independent MADs as robust alternatives to intervals based on sample variances.

To the best of our knowledge, and not to confuse the MAD with the mean absolute deviation for

which interval estimators with good coverage have been introduced by Bonett & Seier (2003), no

one has introduced these interval estimators for the MAD. The very good coverage properties,

that we will highlight later, ensure inferences about dispersion based on the MAD are possible.

In Section 2 we provide some necessary notations before considering influence functions for

ratios of MADs. In Section 3 we consider confidence intervals for MADs, differences of MADs

and ratios of MADs with coverage properties explored via simulations in Section 4. Examples

are also considered in Section 4 and we conclude in Section 5.

2 Notations and influence functions

Let X denote a random variable and F its distribution function. Then Hampel (1974) defined

the median absolute deviation (MAD) as

MAD(X) = med | X −M | , (2.1)

where ‘med’ denotes the median and M = med(X) = F−1(0.5) is the population median. Let

X1, . . . , Xn denote a random sample of n observations. Then the MAD estimate is simply the

median of the absolute residuals from the sample median. That is, for m denoting the sample

median, M̂AD is the sample median of the |X1−m|, . . . , |Xn−m|. While inference, for a single

MAD may be of interest, it is often the case that comparison of dispersion measures, such as

the MAD, is needed to compare two populations.

Consider two independent random variables X ∼ F1 and Y ∼ F2 and let us consider

MAD(X) and MAD(Y ). Then, the population squared ratio of MADs, which we denote as

RM , and associated estimator can be define as

RM =

[
MAD(X)

MAD(Y )

]2
and R̂M =

[ ̂MAD(X)

̂MAD(Y )

]2
. (2.2)

Here we have suggested the squared ratio of MADs since it is the analogue to the ratio of

variances and, in fact, equal to ratio of variances for some distributions (e.g. normal). However,

the ratio of MADs may also be used. Another possibility is the difference of MADs, DM , where

DM = MAD(X)−MAD(Y ) and D̂M = ̂MAD(X)− ̂MAD(Y ) . (2.3)

2.1 Influence function and partial influence functions

Define the contamination distribution to be Fε = (1−ε)F+ε∆x, where ε ∈ [0, 1] is the proportion

of contamination and ∆x has all of its mass at the contaminant x. Consider an estimator

functional T such that T (F ) = θ and T (Fn) = θ̂ where Fn denotes the empirical distribution
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function for sample of n observations. The relative influence on T (F ) of ε proportion of

contaminated observations at x is given by, [T (Fε)−T (F )]/ε, where T (Fε) = (1−ε)T (F )+ε∆x.

Then, the influence function (IF Hampel, 1974) is defined as,

IF(x; T , F ) = lim
ε↓0
T (Fε)− T (F )

ε
≡ ∂

∂ε
T (Fε)

∣∣∣
ε=0

.

When more than one population exists, the IF is determined by contaminating one population

while the other population remains uncontaminated. Pires & Branco (2002) defines this notion

as ”partial IFs” (PIFs) and in our context with two populations we have two PIFs. The first

PIF of the estimator with functional T at (F1, F2) is

PIF1(x; T , F1, F2) = lim
ε→0

[T [(1− ε)F1 + ε∆x0 , F2]− T (F1, F2)

ε

]
(2.4)

and with PIF2(x; T , F1, F2) defined similarly.

Now, consider the functional for the standardized MAD denoted byMAD so thatMAD(F ) =

MADX . Hampel (1974) gives the influence function for the MAD when F is the normal dis-

tribution and further details can be found on page 107 of Hampel et al. (1986). Let f = F ′

denote the density function then, assuming f(M) and 2[f(M + MADX) + f(M −MADX)] are

nonzero, a general form of the IF for the MAD exists; e.g. see Theorem 1.5.7 (page 22 and 23)

of see page 137 of Huber (1981) or page 16 of Andersen (2008). This is given as

IF(x; MAD, F ) =

[sign(x−M)−MADX ]− f(M + MADX)− f(M −MADX)

f(M)
sign(x−M)

2[f(M + MADX) + f(M −MADX)]
.

(2.5)

2.1.1 Partial influence functions of the difference and squared ratio of MADs

Let DM be the functional for the difference of MADs so that,

DM (F1, F2) =MAD(F1)−MAD(F2)

then the PIFs are PIF1(x;DM , F1, F2) = IF(x;MAD, F1) and PIF2(x;DM , F1, F2) =

−IF(x;MAD, F2). These are trivial and previous studies on robustness of the MAD may

be considered for this context. We therefore do not explore the difference PIFs further.

Let RM be the functional for the squared ratio of MADs so that,

RM (F1, F2) =

[MAD(F1)

MAD(F2)

]2
.

Then the PIFs for the squared ratio of MADs are given below.

Theorem 2.1. For PIF(x;T, F1, F2) as defined in (2.4), the PIFs of RM are

PIF1(x;RM , F1, F2) =
2RM (F1, F2)

MAD(F1)
IF(x;MAD, F1),

PIF2(x;RM , F1, F2) = −2RM (F1, F2)

MAD(F2)
IF(x;MAD, F2).
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The proof of Theorem 2.1 is in Appendix A.2 and we consider some examples of the first PIF

next.

2.1.2 Partial influence functions comparison

0 1 2 3 4
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Figure 1: PIF1 comparisons for (A) two exponential populations both with rates 0.5, 1 and 1.5

and (B) two log-normal populations both with µ=0 and σ=0.5,1,1.5.

Figure 1 depicts the PIFs of the first population for the squared ratio of MADs and the

ratio of variances (see Arachchige et al. , 2019a, for these). In Plot A we consider the ratio of

variances and squared ratio of MADs for two exponential distributions, both with rates equal

to 0.5, or 1 or 1.5. Similarly, in Plot B we do this for two log normal distributions both with

µ=0 and σ = 0.5 or 1 or 1.5. Since the numerator and denominator distributions are the same,

both are estimators of one and therefore the PIFs are comparable. As expected, the PIFs of

the ratio of variances is unbounded indicating that outliers can exert large influence on the

estimator. The PIFs of the squared ratio of MAD is bounded and the influence of any large

outliers is limited, and far less than for the ratio of variances. For the exponential distribution,

the PIFs of ratio of variances do not depend on the rate parameter. However, for the log-normal

distribution the PIF for the ratio of variances increases quickly with increasing σ.

3 Asymptotic confidence intervals

In their discussion of intervals for the mean absolute deviations, Bonett & Seier (2003) provide

suggestions for median absolution deviations from a fixed point, h. They suggest using intervals

for the median and where the data used is the transformed |Xi− h|s. When h is the population

median, i.e. h = M , and this median is known, simulations (not shown) result in good coverage
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that is close to nominal. However, when M is not known and needs to be estimated, this

approach typically results in coverage that is too low (e.g. less than 0.8 for a nominal 0.95). In

this section we therefore provide confidence intervals that have good coverage properties, as

shown by our simulations that follow.

Asymptotic normality and associated variance of the MAD can be found in Falk (1997)

who provide the asymptotic joint normality between the median and MAD estimators. We

again let MADX = MAD(F ) and also let MAD(Fn) = M̂ADX . Then, if F is continuous

near, and differentiable at, the median M , M −MADX and M + MADX with f(M) > 0 and

B1 = f(M −MADX) + f(M + MADX) > 0, we have

√
n
(

M̂ADX −MADX

)
approx.∼ N(0,ASV) ,

where ‘
approx.∼ ’ denotes ‘approximately distributed’. The asymptotic variance of the MAD

estimator is

ASV = ASV(MAD;F ) =
1

4B2
1

[
1 +

B2

[f(M)]2

]
, (3.1)

where B1 is given above and B2 = B2
3 +4B3f(M) [1− F (M + MADX)− F (M −MADX)] with

B3 = f(M −MADX)− f(M + MADX).

We used the ASV in (3.1) and the Delta method (see e.g., chapter 3 of DasGupta,

2006) to derive the asymptotic variance of the ratios of MADs. The asymptotic variance of
√
n1 + n2RM (Fn1 , Fn2) is

ASV(RM ;n1, n2) = 4R2
M (F1, F2)

[
ASV(MAD, F1)

w1MAD2(F1)
+

ASV(MAD, F2)

w2MAD2(F2)

]
(3.2)

where wi = ni/(n1 + n2) for i = 1, 2.

Since the two populations are independent, deriving the asymptotic variance of the difference

of MAD is straightforward.

ASV(DM ;n1, n2) = ASV(MAD, F1) + ASV(MAD, F2). (3.3)

Throughout, let ÂSD(·) =

√
ÂSV(·) denote the estimated asymptotic standard deviation

estimate. Note that the ASV depends on both f and F , the density and distribution functions.

There are several options to estimate these, but we choose to use the very flexible Generalized

Lambda Distribution (GLD) which, for the FKML parameterization (Freimer et al. , 1988), is

defined in terms of its quantile function, Q(p),

Q(p) = λ1 + λ−12

{
λ−13 (pλ3 − 1)− λ−14 [(1− p)λ4 − 1]

}
,

where λ1, λ2, λ3 and λ4 are the location, inverse scale and two shape parameters respectively.

To estimate the GLD parameters we use a recent approach introduced by Dedduwakumara

et al. (2019a) which is computationally efficient making it useful for our simulations that follow.

However, other estimators can also be used. We then use these parameter estimates with the

density and distribution functions for the GLD in R gld package (King et al. , 2016).
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Based on asymptotic normality of the MAD (e.g. Falk, 1997), an asymptotic (1 − α)%

confidence interval for MAD is given as

[L,U ]MAD =

[
M̂ADX ± z1−α/2

ÂSD(MAD, Fn)√
n

]
, (3.4)

where the z1−α/2 is the (1− α/2)×100 percentile of the standard normal distribution.

When constructing the interval estimator for the squared ratio of MADs, we first derive the

confidence interval for the log transformed ratio and then exponentiate to return to the ratio

scale. Let W(F1, F2) = ln[RM (F1, F2)] then, using the Delta method, it is straightforward to

show that ASV(W, F1, F2)
.
= ASV(RM , F1, F2)/[RM (F1, F2)]

2 . Then a (1 − α)% confidence

interval estimator for RM is given as

[L,U ]RM
= exp

[
ln(R̂M )± z1−α/2

ÂSD(RM , Fn1 , Fn2)

R̂M
√
n1 + n2

]
, (3.5)

where R̂M is the squared ratio of MADs estimator and the ASV is in (3.2).

Finally, a (1− α)% confidence interval for the difference in MADs is simply

[L,U ]DM
= D̂M ± z1−α/2

ÂSD(DM , Fn1 , Fn2)√
n1 + n2

, (3.6)

where D̂M is the difference of MADs estimator and the ASV can be found in (3.3).

4 Simulations and Examples

We begin by conducting simulations to assess the coverage properties of the interval estimations

for data generated from several distributions. As pointed out earlier, we have used a new

estimator of the GLD parameters provided by Dedduwakumara et al. (2019b) since it exhibits

very good performance and is very efficient making it useful for our simulations. In Appendix

A.2, we provide R code for the interval estimators using readily available estimators for the

GLD from the gld package (King et al. , 2016). In that code we have opted for Titterington’s

method (Titterington, 1985) since it to has good performance, albeit is more time consuming.

4.1 Simulations

To investigate the performance of the MAD, squared ratio of MADs and difference of MADs

intervals we consider simulated coverage probability and the average confidence interval width

as performance measures. We have selected the log normal (LN), exponential (EXP), chi-square

(χ2
5) and Pareto (PAR) distributions with different sample sizes of n = 50, 100, 200, 500, 1000.

Each simulation consists of 10,000 trials.

Simulated coverages and widths for the interval estimator of MADs, from (3.4), are provided

in Table 1 for several distributions. The coverage probabilities are all close to the nominal

level of 0.95, even for n = 50 where coverages were approximately in the vicinity of 0.93-0.94.
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Table 1: Simulated coverage probabilities (and widths in parentheses) for the 95% confidence

interval for the MAD (* denotes median width reported due to excessively large widths for a

small number of intervals that skew the mean).

Sample size X ∼ LN(0,1) X ∼ EXP(1) X ∼ χ2
5 X ∼ PAR(1,7)

True MAD = 0.599 0.481 1.895 0.075

50 0.938 (1.43) 0.936 (1.93) 0.927 (1.25*) 0.939 (0.34)

100 0.940 (0.37) 0.939 (0.29) 0.938 (0.91) 0.939 (0.05)

200 0.938 (0.26) 0.947 (0.20) 0.942 (0.65) 0.944 (0.03)

500 0.945 (0.16) 0.948 (0.12) 0.947 (0.41) 0.949 (0.02)

1000 0.946 (0.12) 0.951 (0.09) 0.944 (0.29) 0.947 (0.01)

Table 2: Simulated coverage probabilities (and widths in parentheses) for the 95% confidence

interval for the squared ratio of MADs (RM ) and difference of MADs (DM ) (* Median width

reported due to excessively large widths for a small number, between 1% and 2%, of intervals).

Sample sizes X ∼ LN(0,1) X ∼ EXP(1) X ∼ χ2
5 X ∼ PAR(1,7)

(n1,n2) Measure Y ∼ LN(0,1) Y ∼ EXP(1) Y ∼ χ2
2 Y ∼ PAR(1,3)

True RM = 1 1 3.876 0.148

True DM = 0 0 0.932 -0.119

50,50 RM 0.958 (3.71*) 0.971 (4.03*) 0.955 (12.14*) 0.978 (0.91*)

DM 0.967 (2.55) 0.972 (3.49) 0.956 (1.54*) 0.967 (1.17)

100,100 RM 0.949 (2.23) 0.958 (1.87*) 0.954 (6.48*) 0.960 (0.33*)

DM 0.954 (0.52) 0.958 (0.42) 0.952 (1.08) 0.951 (0.16)

200,200 RM 0.953 (1.37) 0.946 (1.28) 0.950 (4.51) 0.952 (0.22)

DM 0.945 (0.37) 0.950 (0.28) 0.950 (0.76) 0.947 (0.10)

200,500 RM 0.946 (1.09) 0.951 (1.02) 0.950 (3.47) 0.952 (0.17)

DM 0.945 (0.31) 0.951 (0.23) 0.946 (0.69) 0.956 (0.07)

500,500 RM 0.946 (0.81) 0.952 (0.75) 0.949 (2.69) 0.950 (0.12)

DM 0.948 (0.23) 0.953 (0.17) 0.950 (0.48) 0.947 (0.06)

500,1000 RM 0.947 (0.69) 0.952 (0.64) 0.948 (2.23) 0.951 (0.10)

DM 0.947 (0.20) 0.949 (0.15) 0.949 (0.45) 0.948 (0.04)

1000,1000 RM 0.947 (0.56) 0.949 (0.52) 0.949 (1.87) 0.950 (0.09)

DM 0.944 (0.16) 0.950 (0.12) 0.952 (0.34) 0.948 (0.04)
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Coverages become closer to the nominal level as the sample size increases and, as expected the

interval widths decrease with increasing sample size.

Simulated coverages for interval estimators of squared ratio of MADs and difference of MADs

are provided in Table 2 for several distributions. Results show excellent coverages compared to

the coverages of F-test (the coverage probabilities for interval estimator of the F -test can be

found in Table 3 of Arachchige et al. , 2019a) which are poor due to the violation of underlying

normality assumptions). Coverages are very close to the nominal 0.95 for both the squared

MAD ratio and difference of MAD for all the selected distributions, including smaller sample

sizes. There are some slightly conservative coverages only for n = 50 and for other sample sizes

the coverages become very close. For smaller sample sizes a very small number of the intervals

were very wide (between 1% and 2%) so we report the median width instead.

4.2 Prostate data example

The prostate data set, which is available in the depthTools package (Lopez-Pintado & Torrente,

2013), is a normalized subset of the Singh et al. (2002) prostate data set. The data consists of

gene expressions for the 100 most variable genes for 25 normal and 25 tumoral samples.
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Figure 2: Box plots of three interesting genes selected from the prostate data set.

We selected three genes that are interesting when comparing intervals for ratios of vari-

ances and those based on the MADs. These three genes are three of the six that were

considered by Arachchige et al. (2019a). The genes and their abbreviations we consider are

Glucose-6-phosphate dehydrogenase (G6pd), HDKFZp564A072 and calcium-binding protein

A4 (S100cbpA4). Box plots of the genes are provided in Figure 2 where we note that, ignoring

extreme outliers, the spread for the bulk of the data looks similar for G6pd and very different

for HDKFZp564A072 and S100cbpA4.

In Table 3 we provide the point estimate and asymptotic 95% confidence intervals for the

ratio of variances (from the F -test assuming underlying normality), the squared ratios of MADs

and difference of MADs for the three selected genes. When ignoring two outliers for G6pd the

spread looks similar, however the interval for the ratio of variances suggests a large difference

in variance between the two. This is not the case for the MAD intervals where the point and
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Table 3: 95% asymptotic confidence intervals (CI) for the ratios of variances resulting from the

F -test (F ), the ratio of MADs (RM ) and difference of MADs (DM ) for the three selected genes.

F RM DM

Gene Est. CI Est. CI Est. CI

G6pd 6.496 (2.863, 14.742) 1.000 (0.268, 3.734) 0.000 (-0.185, 0.185)

HDKFZp564A072 1.930 (0.850, 4.379) 5.013 (1.211, 20.761) 0.213 ( 0.035, 0.391)

S100cbpA4 1.748 (0.770, 3.968) 8.725 (1.440, 52.856) 0.301 ( -0.013, 0.615)

intervals estimates suggest little difference. For HDKFZp564A072 and S100cbpA4 the intervals

tell a different story. The ratio of variance intervals do not find a significant difference, while

the MAD intervals do, or in the case of the difference very close to. We favor the findings from

the MAD due to the obvious difference in spread for the bulk of the data as depicted in the

box plots. This difference in findings is likely due to the group with smaller spread for most

data, have extreme outliers that increases the sample variance so that it is similar to the sample

variance for the other group. The MADs are not affected by these outliers. Arachchige et al.

(2019a) provide similar contrasting results when comparing an asymptotic interval for the ratio

of variances and intervals based on the interquantile range.

5 Summary and discussion

The MAD is a robust estimator of scale exhibiting good robustness properties. We have

considered interval estimators for the MAD, ratios of MADs and differences of MADs. Simulation

results for the interval estimators showed excellent coverages even for small sample sizes such

as n = 50 for all distributions we considered. Our example reveals that different conclusions

can be made by using ratios of MADs and differences of MADs compared to intervals for the

ratio of variances which is influenced by outliers. Future extensions to this work would be to

consider intervals for alternatives to the MAD (e.g. see Rousseeuw & Croux, 1993).

A Appendix

A.1 Proof of Theorem 2.1

Proof. A power series expansion of MAD(Fε) can be written as

MAD(Fε) =MAD(F ) + εIF(x;MAD, F ) +O(ε2) .

Let Fε = (1− ε)F1 + ε∆x, then we have

[MAD(Fε)]
2 =MAD2(F1) + 2εMAD(F1)IF(x;MAD, F1) +O(ε2) .
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Therefore, the first PIF is

PIF1(x;RM , F1, F2) = lim
ε↓0

{
MAD2(F1) + 2εMAD(F1)IF(x;MAD, F1) +O(ε2)−MAD2(F1)

εMAD2(F2)

}

For the second PIF set Fε = (1− ε)F2 + ε∆x. Then

PIF2(x;RM , F1, F2) = lim
ε↓0

{
MAD2(F1)

[
MAD2(Fε)

]−1 −MAD2(F1)/MAD2(F2)

ε

}

= lim
ε↓0

{
MAD2(F1)MAD2(F2)−MAD2(F1)MAD2(Fε)

εMAD2(F2)MAD2(Fε)

}

= lim
ε↓0

{
−2εMAD2(F1)MAD(F2)IF(x;MAD, F2) +O(ε2)

εMAD2(F2)MAD2(Fε)

}

Recall the IF(x;MAD, F ) in (2.5) and evaluated at F1 and F2. Finally, the PIF1 and PIF2

can be obtained by taking the limit by noting that limε↓0[O(ε2)/ε] = 0.

A.2 R code for interval estimators

# This codes uses the gld R package for estimation of the GLD since it is

# readily available in R.

library(gld)

library(stats)

mad <- mad(x, center = median(x), constant = 1, na.rm = FALSE,

low = FALSE, high = FALSE)

asv.mad <- function(x, method = "TM"){

lambda <- fit.fkml(x, method = method)$lambda

m <- median(x)

mad.x <- mad(x)

fFinv <- dgl(c(m - mad.x, m + mad.x, m), lambda1 = lambda)

FFinv <- pgl(c(m - mad.x, m + mad.x), lambda1 = lambda)

A <- fFinv[1] + fFinv[2]

C <- fFinv[1] - fFinv[2]

B <- C^2 + 4*C*fFinv[3]*(1 - FFinv[2] - FFinv[1])

(1/(4 * A^2))*(1 + B/fFinv[3]^2)

}

ci.mad <- function(x, y = NULL, gld.est = "TM",

two.samp.diff = TRUE, conf.level = 0.95){

alpha <- 1 - conf.level
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z <- qnorm(1 - alpha/2)

x <- x[!is.na(x)]

est <- mad.x <- mad(x)

n.x <- length(x)

asv.x <- asv.mad(x, method = gld.est)

if(is.null(y)){

ci <- mad.x + c(-z, z)*sqrt(asv.x/n.x)

} else{

y <- y[!is.na(y)]

mad.y <- mad(y)

n.y <- length(y)

asv.y <- asv.mad(y, method = gld.est)

if(two.samp.diff){

est <- mad.x - mad.y

ci <- est + c(-z, z)*sqrt(asv.x/n.x + asv.y/n.y)

} else{

est <- (mad.x/mad.y)^2

log.est <- log(est)

var.est <- 4 * est * ((1/mad.y^2)*asv.x/n.x + (est/mad.y^2)*asv.y/n.y)

Var.log.est <- (1 / est^2) * var.est

ci <- exp(log.est + c(-z, z) * sqrt(Var.log.est))

}

}

list(Estimate = est, conf.int = ci)

}

x <- rlnorm(100)

y <- rlnorm(200, meanlog = 1.2)

ci.mad(x) # single sample

ci.mad(x, y) # two sample difference

ci.mad(x, y, two.samp.diff = FALSE) # two sample squared ratio
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Abstract

The coefficient of variation (CV) is commonly used to measure relative dispersion. How-

ever, since it is based on the sample mean and standard deviation, outliers can adversely

affect the CV. Additionally, for skewed distributions the mean and standard deviation do

not have natural interpretations and, consequently, neither does the CV. Here we investi-

gate the extent to which quantile-based measures of relative dispersion can provide appro-

priate summary information as an alternative to the CV. In particular, we investigate two

measures, the first being the interquartile range (in lieu of the standard deviation), divided

by the median (in lieu of the mean), and the second being the median absolute deviation

(MAD), divided by the median, as robust estimators of relative dispersion. In addition to

comparing the influence functions of the competing estimators and their asymptotic biases

and variances, we compare interval estimators using simulation studies to assess coverage.

Keywords: influence function, median absolute deviation, quantile density

1 Introduction

The coefficient of variation (CV), defined to be the ratio of the standard deviation to the

mean, is the most commonly used method of measuring relative dispersion. It has applications

in many areas, including engineering, physics, chemistry, medicine, economics and finance, to

name just a few. For example, in analytical chemistry the CV is widely used to express the

precision and repeatability of an assay (Reed et al. , 2002). In finance the coefficient of variation

is often considered useful in measuring relative risk (Miller & Karson, 1977) where a test of the
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equality of the CVs for two stocks can be performed to compare risk. In economics, the CV is a

summary statistic of inequality (e.g. Atkinson, 1970; Chen & Fleisher, 1996). Other examples

use the CV to assess the homogeneity of bone test samples (Hamer et al. , 1995), assessing

strength of ceramics (Gong & Li, 1999) and as a summary statistic to describe the development

of age- and sex-specific cut off points for body-mass indexing in overweight children (Cole et al.

, 2000).

The lack of robustness to outliers of moment-based measures such as the mean and standard

deviation has long been known. Almost a century ago Lovitt & Holtzclaw (1929) proposed a

measure called the “coefficient of variability ”based on the upper and lower quartiles (Q3 and

Q1). Promoted as an alternative to the CV, it was defined to be (Q3−Q1)/(Q3 +Q1). Bonett

(2006) have since called this measure the “coefficient of quartile variation ” and introduced

an interval estimator which exhibited good coverage even for small samples. This measure

was recently re-investigated by Bulent & Hamza (2018) and they have constructed bootstrap

confidence intervals that typically provide conservative coverage. Another alternative measure

is to take the ratio of the mean absolute deviation from the median divided by the median. This

measure has applications in tax assessments (Gastwirth, 1982) and confidence intervals have

been considered by Bonett & Seier (2005). The mean absolute deviation is still non-robust

to outliers, and robustness can be improved (see e.g. Shapiro, 2005; Reimann et al. , 2008;

Varmuza & Filzmoser, 2009) by instead using the interquartile range (IQR) or the median

absolute deviation (MAD).

For decades, interval estimation for the CV has attracted the attention of many researchers.

For example, Gulhar et al. (2012) compared no less than 15 parametric and non-parameic

confidence interval estimators of the population CV. To the best of our knowledge interval

estimators have not been introduced for the coefficient of variation based on the IQR and

MAD. Therefore, given the obvious need for interval estimators that has attracted the interest

for many others, one aim of this paper is to provide reliable interval estimators. We are

motivated to do so by noting the excellent coverage achieved for measures based on ratios of

quantiles, even for small samples (Prendergast & Staudte, 2016b, 2017a,b; Arachchige et al. ,

2019).

2 Notations and some selected methods

Let X1, X2, ......, Xn be an independent and identically distributed sample of size n from a

distribution with distribution function F . Then the sample mean estimator is X = n−1
∑n

i Xi

and sample variance estimator is S2 =
∑n

i (Xi−X)2/(n−1). The sample coefficient of variation

estimator is then ĈV = S/X. Next let F be the class of all right-continuous cdfs on the positive

axis; that is each F ∈ F satisfies F (0) = 0. For a sample denoted x1, . . . , xn, the statistics

x, s, and ĉv = s/x are the observed values of the X, S and ĈV estimators above, and are

therefore estimates of the unknown population parameters µ = EF [X], σ =
√

EF [(X − µ)2]

and CV = σ/µ, assuming the first two moments of F exist.
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For each such F ∈ F define the associated left-continuous quantile function of F by Q(u) ≡
inf{x : F (x) ≥ u}, for 0 < u < 1. When the population F is understood to be fixed but

unknown, we sometimes simply write xu = Q(u) and write the corresponding estimators of

these population quantiles as x̂u. We restrict attention to the quartiles x0.25, x0.5 and x0.75,

the sample estimates of which we denote q1, m and q3 for convenience.

2.1 Selected interval estimators of the CV

We begin by describing the inverse method (Sharma & Krishna, 1994) for obtaining an interval

estimator for the CV since it is perhaps the most naturally arising interval involving only basic

principles. As additional methods for comparison later, we have chosen four of the 15 considered

in Gulhar et al. (2012) that exhibited comparatively good performance in terms of coverage.

While parametric interval estimators for the CV have typically been developed assuming

an underlying normal distribution, such as those that we present below, for large sample sizes,

they can also perform well (Gulhar et al. , 2012) when there are deviations from normality due

to the Central Limit Theorem.

The inverse method

Using the above notation, for suitably large n, x/s is approximately N(0, 1/n) distributed.

An approximate (1 − α/2) × 100% confidence interval for µ/σ is therefore x/s ± z1−α/2/
√
n.

Noting that µ/σ is simply the inverse of the population CV, an approximate 95% confidence

interval for the CV can therefore be obtained by inverting this interval for µ/σ, giving (Sharma

& Krishna, 1994)
{[

1

ĉv
+ z1−α/2

(
1

n1/2

)]−1

,

[
1

ĉv
− z1−α/2

(
1

n1/2

)]−1
}

. (2.1)

Robustness of this interval estimator was recently re-investigated by Groeneveld (2011).

The median-modified Miller interval (Med Mill)

The CV estimator has an approximate asymptotic normal distribution with mean CV and

variance (n−1)−1CV2(0.5+CV2) leading to an asymptotic interval proposed by Miller (1991).

In noting that the mean is a poor summary statistic of central location for skewed distributions,

Gulhar et al. (2012) proposed a median modification where the sample median replaces the

sample mean in s. Let s̃ =
√

1
n−1

∑n
i=1(xi −m)2 and c̃v = s̃/x, the interval estimator is

{
c̃v− z1−α/2

√
(n− 1)−1c̃v2

(
0.5 + c̃v2

)
, c̃v + z1−α/2

√
(n− 1)−1c̃v2

(
0.5 + c̃v2

)}
.

(2.2)

While simulations conducted by Gulhar et al. (2012) using data sampled from a chi-square

and gamma distribution showed typically good results for the Miller (1991) interval, coverage

was often better, if not at least similar, when using the median modification. With our interest

mainly in skewed distributions, we focus on the median modified interval in (2.2).
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Median modification of the modified McKay (Med MMcK)

Gulhar et al. (2012) also introduced a median modification to the modified McKay interval

(McKay, 1932; Vangel, 1996). The median-modified interval is

{
c̃v

√(
χ2
n−1,1−α/2+2

n − 1

)
c̃v2 +

χ2
n−1,1−α/2
n−1 , c̃v

√(
χ2
n−1,α/2

+2

n − 1

)
c̃v2 +

χ2
n−1,α/2

n−1

}
,

(2.3)

where χ2
n−1,α is the 100α-th percentile of a chi-square distribution with (n − 1) degrees of

freedom. We focus on this median modified interval based on the results in Gulhar et al.

(2012).

The Panich method

Panichkitkosolkul (2009) has further modified the Modified McKay (Vangel, 1996) interval by

replacing the sample CV with the maximum likelihood estimator for a normal distribution,

k̃ =
√∑n

i=1(xi − x)2/(
√
nx). The interval is

{
k̃

√(
χ2
n−1,1−α/2+2

n − 1

)
k̃2 +

χ2
n−1,1−α/2
n−1 , k̃

√(
χ2
n−1,α/2

+2

n − 1

)
k̃2 +

χ2
n−1,α/2

n−1

}
.

(2.4)

The Gulhar method

Using the fact that (n− 1)S2/σ2 ∼ χ2
n−1 when data is sampled from the normal distribution,

Gulhar et al. (2012) proposed the interval,



√

(n− 1) ĉv√
χ2
n−1,1−α/2

,

√
(n− 1) ĉv√
χ2
n−1,α/2


 , (2.5)

which compared favorably to the median-modified intervals for larger CV values. We therefore

use this interval as one of the competitors.

2.2 Two robust versions of the CV

We now consider two robust alternatives for the CV that are based on quantiles. The denom-

inator for the measures is the median, a preferred measure of centrality than the mean for

skewed distributions.

2.2.1 A version based on the IQR

An option for the numerator is to use the interquartile range (IQR). Shapiro (2005) gives this

alternative as

RCVQ = 0.75× IQR

m
, (2.6)
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where the multiplicative factor 0.75 makes RCVQ comparable to the CV for a normal distri-

bution. More precisely, anyone can use 0.741 as the factor. To the best of our knowledge there

has been no research into interval estimators of the RCVQ and this will be one of our foci

shortly.

2.2.2 A version based on the median absolute deviation

The median absolute deviation (Hampel, 1974, MAD) is defined to be

MAD = med | xi −m | , (2.7)

where, for ‘med’denoting median and i=1,. . . ,n. Using the MAD for relative dispersion has

been recently proposed (e.g. Reimann et al. , 2008; Varmuza & Filzmoser, 2009) giving

RCVM = 1.4826× MAD

m
. (2.8)

The multiplier 1.4826 = 1/Φ−1(3/4), where Φ−1 denotes the quantile function for the N(0, 1)

distribution, is used to achieve equivalence between 1.4826×MAD/m and the standard devi-

ation at the normal model. 1.4826×MAD/m is commonly called the standardized MAD.

3 Some comparisons between the measures

The question of interest is, can we do just as well (or better) in assessing the relative dispersion

by replacing the population concepts µ and σ by the median m = x0.5 and interquartile range

IQR = q3 − q1 or the MAD?

Table 1: A comparison of the CV, RCVQ and RCVM for several distributions. LN refers

to the log-normal distribution, WEI(λ, α) and PAR(λ, α) to the Weibull and Pareto Type II

distributions with scale parameter λ and shape parameter α.

Distribution CV 0.75* IQR/m 1.4826*MAD/m

Normal(µ,σ2)
σ

µ

3

4

σ

µ

[
Φ−1(0.75)− Φ−1(0.25)

] σ

µ
EXP(λ) 1 1.189 1.030

Uniform(a, b)
1√
3
· (b− a)

(b+ a)

3

4
· (b− a)

(b+ a)

1

Φ−1(3/4)
· (b− a)

(b+ a)

WEI(λ, 1) 1 1.189 1.029

WEI(λ, 2) 0.523 0.578 0.565

WEI(λ, 5) 0.229 0.232 0.229

χ2
2 1 1.189 1.030

χ2
5 0.632 0.681 0.646

χ2
ν→∞ → 0 → 0 → 0

LN(µ, 1) 1.311 1.090 0.888

LN(µ, 2) 7.321 2.695 1.333

PAR(λ, 2.5) 2.236 1.453 1.120

PAR(λ, 5) 1.291 1.313 1.077

In Table 1 we compare the CV, RCVQ and RCVM for several distributions. In most cases,

the results show an approximate equivalence between the three measures when the underlying
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population is normal and closer agreement between the two for many other distributions.

Hereafter our main interest is comparing the concepts CV, RCVQ and RCVM and the natural

estimators of them.

3.1 Properties

An essential property of a measure of relative dispersion is scale invariance. The CV is well-

established, so competing measures should give roughly the same values when the underlying

distribution is uni-modal and skewed to the right, As we have seen by examples, the plug-in

estimator s/x̄ of CV suffers from over-sensitivity to outliers. Table 2 provides a rough summary

of results in this work.

Table 2: Desirable properties of measures of dispersion and their estimators. Here ‘+’, ‘0’ and

‘−’ indicate the property always, sometimes or never holds.

Property CV RCVQ RCVM

P1: Scale invariant + + +

P2: Simple to understand + + 0

P3: Widely accepted and used + 0 0

P4: Defined for all F 01 + +

P5: Bounded influence function − + +

Property ĈV R̂CVQ R̂CVM

P6: Consistency 02 + +

P7: Asymptotic normality 0 + +

P8: Standard error formula available + + +

P9: Unaffected by 1% moderate outliers 0 + +

P10: Unaffected by 1% extreme outliers − + +

P11: Reliable coverage of confidence intervals − + +

In the next section, we briefly describe the methodology required to find standard errors and

confidence intervals for CV, RCVQ and RCVM . We also investigate the robustness properties

of the point estimators using theoretical methods and simulation studies and we illustrate our

methods on a real data set. Finally, a summary and discussion of further possible work is in

Section 6.

3.2 Influence functions

Consider a distribution function F and suppose that a parameter of interest from F is θ. Let T
be a statistical function for estimator of θ such that T (F ) = θ and T (Fn) = θ̂, for Fn denoting

1The CV is only defined if F has a finite variance, but this is usually satisfied for diameter distribution

models.
2Consistency and asymptotic normality require the existence of certain moments for F .
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an empirical distribution function for sample of n observations from F , denotes an estimate of

θ. Now, for 0 ≤ ε ≤ 1, define the ‘contamination’distribution (Fε) to have positive probability

ε on x (the contamination point) and 1− ε on the distribution F such that Fε = (1− ε)F + ε∆x

where ∆x denotes the distribution function that puts all of its mass at the point x. The

influence of the contamination on the estimator with functional T , relative to proportion of

contamination, is [T (Fε)−T (F )]/ε. The influence function (Hampel, 1974) is then defined for

each x as

IF(x; T , F ) = lim
ε↓0
T (Fε)− T (F )

ε
≡ ∂

∂ε
T (Fε)

∣∣∣
ε=0

.

A convenient way to appreciate the usefulness of the influence function in studying estima-

tors is to consider the power series expansion T (Fε) = T (F ) + εIF(x; T , F ) + O(ε2). So that,

ignoring the error term O(ε2) which is negligible for small ε, increasing |IF(x; T , F )| results in

increasing influence of contamination on the estimator. Consequently, the influence function

provides a very useful tool in the study of robustness of estimators.

One can show that (e.g., Hampel et al. , 1986; Staudte & Sheather, 1990) for X ∼ F ,

the mean and variance at F of the random influence function are EF [IF(X; T , F )] = 0 and

VarF [IF(X; T , F )] = EF [IF2(X; T , F )]. A reason for finding this last variance is that it arises

in the asymptotic variance of the functional of T (Fn); that is,

n Var[T (Fn)]→ ASV (T , F ) = EF [IF2(X; T , F )] . (3.1)

3.2.1 Influence function of the CV

Let M and V denote the functional for the usual mean and variance estimators such that, at

F ,M(F ) =
∫
xdF = µ and V(F ) =

∫
[x−M(F )]2 df = σ2. The respective influence functions

are IF(x; M, F ) = x− µ and IF(x; V, F ) = (x− µ)2 − σ2. For convenience in notation, let CV
also denote the functional for the CV. Groeneveld (2011) derives the influence function as

IF(x; CV, F ) = CV

[
IF(x; V, F )

2σ2
− IF(x; M, F )

µ

]
. (3.2)

3.2.2 Influence function of the IQR-based RCV

The influence function of the pth quantile xp = G(F ; p) = F−1(p) is well-known (Staudte &

Sheather, 1990, p.59) to be IF[x; G( ·, p), F ] = {p − I[xp ≥ x]} g(p), where G′(F ; p) = g(p) =

1/f(xp) is the quantile density of G at p. The influence function of the ratio of two quantiles

ρp,q(F ) = xp/xq = G( ·, p)/G( ·, q) is then found to be Prendergast & Staudte (2017a):

IF(x; ρp,q, F ) = ρp,q

{
IF[x; G( ·, p), F ]

xp
− IF[x; G( ·, q), F ]

xq

}
. (3.3)

It then follows that the influence function of RCVQ(F ) = 0.75 IQR/m in terms of (3.3) is

IF(x; RCVQ, F ) = 0.75
[
IF(x; ρ3/4,1/2, F )− IF(x; ρ1/4,1/2, F )

]
. (3.4)

The IFs for the median and IQR are both bounded, but both have very different breakdown

points.
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3.2.3 Influence function of the MAD-based RCV

Let MAD denote the functional for the standardized MAD. The influence function for the

MAD estimator was described by Hampel (1974) and its form for the standardized MAD for

the standard normal distribution is (see, e.g., page 107 of Hampel et al. , 1986)

IF(x; MAD,Φ) =
1

4Φ−1(0.75)φ [Φ−1(0.75)]
sign

[
|x| − Φ−1(0.75)

]
. (3.5)

It is not suitable for us to study the influence function for RCVM at the standard normal

model since the median is equal to zero. However, the influence function for the standardized

MAD for an arbitrary mean, µ, for the normal distribution is simply (3.5) shifted to be centred

at µ and therefore equal to IF(x; MAD,Φµ) = IF(x − µ; MAD,Φ) where we let Φµ denote

the distribution function for the N(µ, 1) distribution.

Let RCVM be the statistical functional for the MAD-based RCV such that RCVM (F ) =

MAD(F )/G(F, 1/2) = RCVM . Hence, using the Product Rule and the Chain Rule, the

influence function for the RCVM estimator is

IF(x;RCVM , F ) =
∂

∂ε
RCVM (F (x)

ε )
∣∣
ε=0

=
IF(x; MAD,Φµ)

m
− RCVM

IF(x; G( ·, 1/2), F )

m
. (3.6)

The general form of the influence for the MAD can be found in, for example, page 137 of

Huber (1981), page 16 of Andersen (2008) and page 37 of Wilcox (2011) and this will be used

to plot the influence functions for the non-Gaussian examples that follow.

3.2.4 Example influence function comparisons

To compute the true value for the MAD for the distributions being considered for influence

function comparisons, and also when required later, we used the R function we have provided

in Section B. Readers can use this code to compute the true MAD for any distributions.

In Plot A of Figure 1 we plot the influence functions for the three measures. The influence

functions for the two robust measures are almost identical. In fact, it is know that the influence

functions for the IQR and MAD are the same for the normal distribution (see page 110 of Ham-

pel et al. , 1986) so that the measures share the same robustness properties for this model. The

differences in Figure 1 are due to the multiplier 0.75 for the IQR based measure chosen to give

approximate equivalence, instead of exact, for the normal. However, this does not generalize

to all distributions. As expected, the influence function for the CV is unbounded, meaning

that outliers are expected to have uncapped influence on the estimator as they move further

from the population mean. On the other hand, the influence functions for the robust measures

are bounded. Extreme outliers are expected to have no more influence on the estimators when

compared to, say, those closer to the 25% and 75% percentiles. However, the discontinuities at

the median and the 25% and 75% percentiles, suggest that the estimators are more sensitive

locally in these areas.
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Figure 1: Influence function comparisons between the three measures: CV (black, solid), RCVM

(blue, dash) and RCVQ (red, dots) for (A) the normal, (B) log-normal and (C) exponential

distributions.
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3.3 Asymptotic variances and standard deviations

In this section, we further compare the estimators by deriving their asymptotic variances. As

discussed in Section 3.2, for an estimator with functional T , the asymptotic standard deviation

can be found by ASD(T , F ) ≡
√

ASV(T , F ) =
√
{EF [IF2(X; T , F )]}. We now derive the

ASVs for the estimators before comparing their relative asymptotic standard deviations.

3.3.1 Asymptotic Variance of the CV estimator

Recall µ =M(F ) is the mean for distribution F and let µk = EF [{X −M(F )}k] denotes the

kth central moment of X ∼ F where µ2 = σ2 = V(F ) denotes the variance. The influence

function for the mean is IF(x;M, F ) = x − µ and E
[
IF(X;M, F )2

]
= σ2 = ASV(M, F ),

the asymptotic variance of the mean estimator. Similarly, IF(x;V, F ) = (x − µ)2 − σ2 and

E
[
IF(X;V, F )2

]
= µ4 − σ4 = ASV(V, F ). Before deriving the ASV for the CV estimator, we

note that E [IF(X;M, F )IF(X;V, F )], which is the asymptotic covariance between the mean

and variance estimators, is equal to µ3 − σ2. Now, from (3.2),

E
[
IF(X; CV, F )2

]
= [CV(F )]2

{
ASV(V, F )

4σ4
+

ASV(M, F )

µ2

− E [IF(X;V, F )IF(X;M, F )]

σ2µ

}

ASV(CV, F ) =CV2

(
µ4 − σ4

4σ4
+
σ2

µ2
− µ3

σ2µ

)
, (3.7)

assuming that the fourth moment exists.

Note that for X ∼ F , µ3 = 0 and µ4 = 3σ4 so that ASV(CV, F ) = CV2
(
1/2 + CV2

)
which

is the asymptotic variance used by Miller (1991) in the construction of the asymptotic interval

for the CV detailed in Section 2.1.

3.3.2 Asymptotic Variance of the RCVQ estimator

The asymptotic variance of the estimator of xp, the p-th quantile, is well known to be (eg.

Ch.2 of David, 1981; DasGupta, 2006, Ch.3) ASV (G, F ; p) = p(1 − p)g2(p) where, as de-

noted earlier, g(p) = 1/f(xp) and f is the density function. This can be verified also using

E
[
IF(X;G(·, p), F )2

]
. Similarly, and as also found in the preceding references, the asymptotic

covariance between the p-th and q-th quantile estimators is, E [IF(X;G(·, p), F )IF(X;G(·, q), F )] =

p(1− q)g(p)g(q), provided 0 < p < q < 1.

Asymptotic variance for RCVQ = 0.75 IQR/m is obtained by a straightforward but lengthy

derivation of E
[
IF(X;RCVQ, F )2

]
with IF(X;RCVQ, F ) defined in (3.4) (or by using the Delta

method). After simplifying, it is
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Theorem 3.1. The asymptotic variance for the estimator of RCVQ is

ASV(RCVQ, F ) =
RCV2

Q

4

{
3
[
g2(3/4) + g2(1/4)

]
− 2 g(3/4)g(1/4)

4× IQR2

+
g2(1/2)

m2
− g(1/2) [g(3/4)− g(1/4)]

m× IQR

}
.

The proof of Theorem 3.1 is in Section A.

3.3.3 Asymptotic Variance of the RCVM estimator

Falk (1997) proves the asymptotic joint normality of the m(Fn) and MAD(Fn) estimators.

Let f = F ′ be the density function associated with F . If F is continuous near and differ-

entiable at F−1(1/2), F−1(1/2) − MAD and F−1(1/2) + MAD with f(F−1(1/2)) > 0 and

C1 = f(F−1(1/2)−MAD) + f(F−1(1/2) + MAD) > 0, then

√
n[m(Fn)− F−1(1/2),MAD(Fn)−MAD(F )]>

approx.∼ N(0,Σ) ,

where ‘
approx.∼ ’denotes ‘approximately distributed as for suitably large n’, 0 is a column vector

zeroes and Σ is a two-dimensional covariance matrix with vec(Σ) = [ρ1, ρ12, ρ12, ρ2]. Hence,

ρ1, ρ2 are the asymptotic variances of the median and MAD estimators respectively and ρ12 is

the asymptotic covariance between the two. They are (e.g. Falk, 1997),

ρ1 =
1

4f2(F−1(1/2))
, ρ2 =

1

4C2
1

[
1 +

C2

[f(F−1(1/2)]2

]

and ρ12 =
1

4C1f(F−1(1/2))

[
1− 4F (F−1(1/2)−MAD) +

C3

f(F−1(1/2))

]

where C3 = f(F−1(1/2)−MAD)− f(F−1(1/2) + MAD) and C2 = C2
3 + 4C3f(F−1(1/2))(1−

F (F−1(1/2) + MAD)− F (F−1(1/2)−MAD)) .

Using the above results and the Delta method (see e.g. DasGupta, 2006), we derived the

asymptotic variance of the RCVM as given below,

ASV(RCVM , F ) = RCV2
M

(
ρ1

m2
+

ρ2

MAD2 −
2ρ12

m×MAD

)
. (3.8)

3.3.4 Relative asymptotic standard deviation comparisons

As an example, the asymptotic standard deviation (ASD) for the RCVM estimator is given as

ASD(RCVM , F ) =
√

ASV(RCVM , F ) and the ASDs for the other estimators are determined

similarly. Later, we will construct approximate confidence intervals for the measures and

therefore it make sense that we use the ASE for comparisons here. Since the CV, RCVQ

and RCVM represent different values we use the relative (to the population parameter) ASD

(RASE) to compare the estimators. For example, for the RCVM estimator this is defined to

be rASD(RCVM , F ) = ASD(RCVM , F )/RCVM (F ).
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Table 3: Relative ASD (rASD) comparisons for the estimators of CV, RCVQ and RCVM for

the N(5, σ2), LN(0, σ), EXP(λ) and PAR(α) distributions.

Distribution rASD for the rASD for the rASD for the

CV estimator RCVQ estimator RCVM estimator

N(5, σ2) σ = 0.50 0.714 1.173 1.173

σ = 1 0.735 1.193 1.193

σ = 1.5 0.768 1.225 1.225

σ = 2 0.812 1.270 1.270

σ = 2.5 0.866 1.324 1.324

σ = 3 0.927 1.388 1.388

LN(0, σ) σ = 0.10 0.721 1.172 1.164

σ = 0.25 0.801 1.199 1.149

σ = 0.5 1.151 1.294 1.098

σ = 0.75 2.075 1.438 1.017

σ = 1 4.674 1.621 0.914

σ = 1.5 49.298 2.062 0.669

EXP(λ) λ 1 1.594 0.950

PAR(α) α = 0.50 Undefined 3.223 0.419

α = 1 Undefined 2.236 0.664

α = 1.5 Undefined 1.976 0.735

α = 2 Undefined 1.862 0.785

α = 2.5 Undefined 1.799 0.816

α = 3 Undefined 1.760 0.837

α = 4 54.482 1.714 0.864

α = 4.5 5.619 1.699 0.873

α = 5 3.724 1.687 0.880

α = 5.5 2.937 1.678 0.887

α = 6 2.500 1.670 0.892

α = 6.5 2.221 1.664 0.897

To compare the rASD for the estimators of CV, RCVQ and RCVM , we have selected

normal and lognormal distributions, both with varying σ, exponential and the Pareto type

II distribution with varying shape. From Table 3, the rASD for RCVQ and RCVM are a

little higher than the rASD of CV for the normal distribution. However, RCVQ and RCVM

estimators compare favorably to the CV for skewed distributions such as the lognormal and

Pareto. The pth central moment of Pareto type II distribution exists only if α > p so that the

rASD for the CV estimator is undefined for α < 4 since it requires the fourth central moment.

When comparing RCVq and RCVM , the RCVM estimator is the better performer with smaller

(or equal to in the case of the normal) rASD.
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4 Inference

We want to compare point and interval estimators of CV = σ/µ , RCVQ = 0.75 IQR/x0.5

and RCVM = 1.4826 MAD/x0.5. First, we introduce asymptotic Wald-type intervals using the

asymptotic standard errors from earlier. With recent results highlighting very good coverage for

estimators based on ratios of quantiles even for small samples (Prendergast & Staudte, 2016b,

2017a,b; Arachchige et al. , 2019), we are confident of similarly good coverage for RCVQ. We

also propose an asymptotic interval for RCVM as well as bootstrap intervals.

We estimate the p th quantile xp = G(p) = F−1(p) by the Hyndman & Fan (1996) quantile

estimator x̂p = Ĝ(p), which is a linear combination of two adjacent order statistics. It is readily

available as the Type 8 quantile estimator on the R software (Development Core Team, 2018).

4.1 Asymptotic confidence intervals

Let zα = Φ−1(α) denote the α quantile of the standard normal distribution. All our 100(1−α)%

confidence intervals for measures of relative spread T (F ) will be of the form:

T (Fn)± z1−α/2 ÂSD(T , Fn)/
√
n , (4.1)

where T (Fn) is the estimator of T (F ) and ÂSD(T , Fn)/
√
n is an estimate of its standard devi-

ation (standard error) based on the sample. The actual coverage probability of this estimator

depends on how quickly the distribution of T (Fn) approaches normality, as well as the rate of

convergence of T (Fn) to T (F ) and ÂSD(T , Fn) to ASD(T , F ).

In constructing the interval estimators for the ratios, due to improved statistical perfor-

mance such as quicker convergence to normality, it is common to first construct the interval

for the log-transformed ratio followed by exponentiation to return to the original ratio scale.

Let W (F ) = ln[T (F )] then, using the Delta Method (e.g. Ch.3 of DasGupta, 2006),

ASV(W,F )
.
=

1

[T (F )]2
ASV(T , F ) . (4.2)

Then ÂSD(W,Fn) = {ÂSV(W,Fn)}1/2, where ÂSV(W,Fn)) is an estimate of the asymptotic

variance, enables one to construct the confidence interval for W (F ), which is based on the

asymptotic normality of W (Fn), before exponentiating to the original scale.

4.1.1 Confidence interval for CV

A (1− α)× 100% confidence interval for the CV, which is based on the asymptotic normality

of ĈV when the first four moments of F exist is

[L,U ]CV ≡ exp

[
ln (ĉv)± z1−α/2

ÂSD(CV, Fn)

ĉv
√
n

]
(4.3)

and later we define this confidence interval method as “Delta CV ”in our simulation study.

The ASV for the CV estimator is given in (3.7) and to obtain our asymptotic standard error

we replace the population CV, σ and µ with ĉv, sample standard deviation s and sample mean

x respectively. To estimate µj (the jth central moment) we use n−1
∑n

i=1(xi − x)j .
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4.1.2 Confidence interval for RCVQ

A large-sample confidence interval for RCVQ = 0.75 IQR/m is in terms of the estimate r̂cvQ =

0.75(x̂0.75 − x̂0.25)/x̂0.5

[L,U ]RCVQ
= exp

[
ln (r̂cvQ)± z1−α/2

ÂSD(RCVQ, Fn)

r̂cvQ
√
n

]
. (4.4)

The ASV(RCVQ, F )) is given in Theorem 3.1 and to obtain ÂSD(RCVQ, Fn) =

√
ÂSV(RCVQ, Fn),

one needs to replace each xp by x̂p and each g(p) by ĝ(p). For ĝ(p), we use a kernel density

estimator with the Epanechnikov (1969) kernel and optimal bandwidth using the quantile op-

timality ratio of Prendergast & Staudte (2016a).

4.1.3 Confidence interval for RCVM

A large-sample confidence interval for RCVM = 1.4826 MAD/m is in terms of r̂cvM =

1.4826 M̂AD/x̂0.5,

[L,U ]RCVM
= exp

[
ln (r̂cvM )± z1−α/2

ÂSD(RCVM , Fn)

r̂cvM
√
n

]
. (4.5)

Estimation of the MAD is trivial, requiring only routine coding if functionality is not already

available (i.e. it is simply the median of the ordered absolute differences of the xis from the

sample median). We also need to estimate ρ1, ρ2 and ρ12 in (3.8) and a simple approach using

readily available software is use the FKML parameterization (Freimer et al. , 1988) of the

Generalized Lambda Distribution (GLD). Defined in terms of its quantile function

Q(p) = λ1 +
1

λ2

(
pλ3 − 1

λ3
− (1− p)λ4 − 1

λ4

)
,

where λi (i = 1, . . . , 4) are location, inverse scale and two shape parameters, the GLD can

approximate a very wide range of probability distributions (e.g. Karian & Dudewicz, 2000;

Dedduwakumara et al. , 2019). To do so we use the method of moments estimators and

density and quantile functions for the GLD in R gld package (King et al. , 2016). It is then

simple to estimate ρ1, ρ2 and ρ12 using the quantile and density functions with the estimated

GLD parameters and the estimated MAD.

Additional to the asymptotic interval above, we also consider two bootstrap confidence

intervals.

Non-parametric bootstrap

A non-parametric bootstrap re-samples n observations with replacement from the sample and

estimates the MAD. This is repeated B times and let M̂AD
i

(i = 1, . . . , B) denote the ith

estimated MAD. The lower and upper bounds for the 95% bootstrap interval is then the 0.025

and 0.975 quantiles of the estimated M̂AD
i
s.
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Parametric bootstrap

The parametric bootstrap interval is obtained in the same way as the non-parametric bootstrap

with the exception that the sampling is done from a nominated, or estimated, density function.

In this case, we use the estimated density from the FKML GLD as described above for the

asymptotic interval. This is called the Generalized Bootstrap by Dudewicz (1992) who also

uses the GLD, albeit with a different parameterization, as one example.

4.2 Confidence intervals for comparing two relative spreads

When data from two independent groups are available, it is straightforward to obtain interval

estimators for the comparison of relative spread for each group. Given that empirical evidence

suggests excellent coverage can be achieved in the single sample case by using a log transforma-

tion, we propose to use the log ratio of two independent relative spread estimators with a back

exponentiation to the ratio scale. For example, an interval estimator for RCVM,1/RCVM,2

where RCVM,1 and RCVM,2 are the relative MAD-based spread for independent populations,

is, where for simplicity r̂ = r̂cvM,1/r̂cvM,2,

exp

[
ln(r̂)± z1−α/2

{
ÂSD (RCVM,1, Fn)

r̂cvM,1
√
n1

+
ÂSD (RCVM,2, Fn)

r̂cvM,2
√
n2

}]
, (4.6)

where n1 and n2 are the sample sizes for simple random samples from the populations and

where the estimates and asymptotic standard errors can be found as above for the single

sample setting.

5 Simulations and Examples

5.1 Simulations

Firstly, a simulation study was conducted to compare the performance of the interval estimator

of RCVQ and asymptotic CV interval given in 4.1 with the methods given in Section 2.1 using

coverage probability and width as performance measures. We have selected normal (N), log

normal (LN), exponential (EXP), chi-square (χ2) and Pareto (PAR) distributions with different

parameter choices and with sample sizes n = {50, 100, 200, 500, 1000}. 10,000 simulation trials

were used.
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Table 5: Simulated Coverage probabilities (and widths) for 95% bootstrap (non-parametric

and parametric) confidence interval estimators for RCVM

Sample
Distribution

Method

size(n) Non-parametric Parametric Asymptotic

50

N(5, 1) 0.9740(0.141) 0.9616(0.131) 0.9525(0.134)

LN(0, 1) 0.9772(0.479) 0.9839(0.441) 0.9665(0.524)

EXP(1) 0.9758(0.565) 0.9893(0.508) 0.9719(0.601)

Chi(5) 0.9763(0.421) 0.9840(0.394) 0.9557(0.413)

PAR(1, 4) 0.9777(0.549) 0.9874(0.493) 0.9751(0.619)

100

N(5, 1) 0.9759(0.099) 0.9795(0.093) 0.9493(0.094)

LN(0, 1) 0.9749(0.337) 0.9859(0.327) 0.9673(0.370)

EXP(1) 0.9762(0.402) 0.9946(0.374) 0.9648(0.411)

Chi(5) 0.9738(0.296) 0.9776(0.284) 0.9588(0.291)

PAR(1, 4) 0.9748(0.389) 0.9933(0.362) 0.9697(0.414)

200

N(5, 1) 0.9725(0.069) 0.9826(0.066) 0.9520(0.066)

LN(0, 1) 0.9724(0.235) 0.9688(0.236) 0.9726(0.265)

EXP(1) 0.9720(0.282) 0.9965(0.270) 0.9591(0.287)

Chi(5) 0.9704(0.207) 0.9848(0.201) 0.9576(0.205)

PAR(1, 4) 0.9729(0.272) 0.9903(0.261) 0.9681(0.283)

500

N(5, 1) 0.9644(0.043) 0.9851(0.042) 0.9505(0.042)

LN(0, 1) 0.9668(0.147) 0.9257(0.150) 0.9757(0.169)

EXP(1) 0.9624(0.177) 0.9962(0.173) 0.9564(0.180)

Chi(5) 0.9678(0.129) 0.9877(0.127) 0.9574(0.129)

PAR(1, 4) 0.9681(0.171) 0.9570(0.167) 0.9635(0.176)

1000

N(5, 1) 0.9582(0.030) 0.9861(0.029) 0.9495(0.030)

LN(0, 1) 0.9616(0.103) 0.8247(0.106) 0.9793(0.120)

EXP(1) 0.9612(0.124) 0.9757(0.123) 0.9569(0.128)

Chi(5) 0.9640(0.091) 0.9834(0.090) 0.9571(0.092)

PAR(1, 4) 0.9606(0.119) 0.8029(0.118) 0.9621(0.124)

In Table 4 we provide the simulation results for the CV and RCVQ intervals. For simplicity,

the RCVM results follow in Table 5 where the bootstrap and asymptotic intervals are com-

pared. From Table 4, the Panich, Med Mill and Gulhar interval estimators for the CV perform

really well for the normal distribution and when the sample size increases coverage reach to the

nominal coverage. However, coverages was typically below nominal for skewed distributions

pointing to unreliable performance of the estimators. The Delta CV interval of (4.1.1) provides

improved coverage and close to nominal when the sample size increases, with the exception for

the PAR(5,1) distribution for which the CV is undefined. The interval estimator for RCVQ was
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conservative being slightly above nominal for these simulations. The asymptotic interval for

RCVM (Table 5) provide excellent coverage, even for n = 50 and all distributions considered.

With notable narrower intervals and very good coverage, the use of RCVM and associated

asymptotic interval estimators using estimated GLD functions are practically enticing. How-

ever, there does not appear to be a benefit for using a bootstrap approach where coverage was

typically more conservative.

5.1.1 A Shiny web application for the performance comparisons of the intervals

For further comparisons, we have developed a Shiny (Chang et al. , 2017) web application

that readers can use to run the simulations with different parameter choices. This can be

found at https://lukeprendergast.shinyapps.io/Robust_CV/. The user can change the

distribution, parameters, sample size, probability and the number of trials according to their

choices. Once the desired options are selected, the ‘Run Simulation ’button can be pressed

and the relevant estimates, coverage probability (cp) and the average width of the confidence

interval (w) will be calculated according to their input choices. In addition to that in the bottom

right hand corner of the web page it will shows the time taken to run the each simulation.

5.2 Examples

We have selected two different data sets, which are named as doctor visits data and Melbourne

house price data to apply our findings to real world data.

5.2.1 Doctor visits data

We selected the doctor visits data set used in Heritier et al. (2009) to apply our findings to a

real world problem. The doctor visits data is a subsample of 3066 individuals of the AHEAD

cohort (born before 1924) for wave 6 (year 2002) from the Health and Retirement Study (HRS)

which surveys more than 22,000 Americans over the age of 50 every 2 years. We grouped this

data in to two groups by taking the gender as the grouping variable. The response variable

that we were interested is the number of doctor visits. Table 6 provides summary statistics of

the response variable for the two gender groups.

From Table 6, the summary statistics suggest that the doctor visits distributions are posi-

tively skewed which is common for count variables. There is also a large outlier in the female

group with a number of doctor visits equal to 750. We removed the outlier form the data set

and again calculated the descriptive statistics for female group as shown in the 3rd column of

the above Table 6. The mean for the female group reduces after the removal of the outlier and

the summary statistics still suggest positive skew.

Our objective was to compare the relative spread of the number of doctor visits between

males and females. We used CV, RCVQ and RCVM to compare the relative spread of the

number of doctor visits between males and females with and without an outlier.

Table 7 provides the confidence interval bounds of the 95 percent confidence intervals for
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Table 6: Summary Statistics of number of doctor visits between Male and Female

Summary Male Female Female

Statistic (without outlier)

Sample Size 987 2079 2078

Minimum 0 0 0

1st Quartile 4 4 4

Median 8 8 8

Mean 12.08 12.8 12.45

3rd Quartile 14 15 15

Maximum 300 750 365

Table 7: 95 % confidence interval lower bounds (LB) and upper bounds (UB) for the number

of doctor visits.

Sample CV RCVQ RCVM

Male (1.283, 2.016) (0.837, 1.050) (0.681, 0.807)

Female (1.298, 2.801) (0.943, 1.128) (0.700, 0.786)

Female, outlier excluded (1.237, 1.746) (0.943, 1.128) (0.699, 0.786)

the three measures. The confidence interval for CV is greatly influenced by whether or not the

outlier in the female data is included. This is not the case for the interval for quantile-based

measures. Additionally, in comparison, the interval CV is wide compared to the intervals for

RCVQ and RCVM .

5.2.2 Melbourne house price data

The median is the most popular summary measure used to describe housing markets. Motivated

by this, we applied our measures to Melbourne house clearance data from January 2016 which

is available at https://www.kaggle.com/anthonypino/melbourne-housing-market. This

data set contains suburb-wise prices for three types of houses (house, unit, townhouse). There

is data for 369 suburbs and we removed the suburbs, which contain less than 10 houses sold

leaving 301 suburbs.

We selected three pairs of suburbs which were considered by (Arachchige et al. , 2019)

to calculate the interval estimators for ratios CV, RCVQ and RCVM to assess differences in

relative spread of house prices.

Figure 2 depicts there are outliers for all suburbs except for Kingsbury. Additionally, there

are differences in spread for the house price distributions between each neighboring suburb.
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Figure 2: House price comparisons of selected three pair of neighboring suburbs

Table 8: 95 % confidence interval lower bounds (LB) and upper bounds (UB) for ratios of CV,

RCVQ and RCVM between neighboring suburbs house prices.

Confidence x =Bundoora x =Black Rock x =Oakleigh

Interval y =Kingsbury y =Beaumaris y =Oakleigh East

Method LB UB LB UB LB UB

CVx/CVy 1.0156 1.6079 0.6525 1.3225 0.7219 1.3519

RCVQx/RCVQy 0.4336 0.9736 0.4844 0.9243 0.4607 1.0914

RCVMx/RCVMy 0.5392 1.0808 0.5751 0.9366 0.5286 1.0218

Ratios of the measure are reported in Table 8 to see whether there is a difference in relative

spread between suburbs. Comparing Bundoora and Kingsbury, the measures provide different

insights. While the box plot suggests greater spread in Kingsbury, the ratio of CVs suggests

otherwise having been highly influence by outliers in Bundoora. The ratios of RCVQ and

RCVM suggest greater relative spread in Kingsbury which is in better agreement with what is

shown in the box plots. For Beaumaris and Black Rock, a significant difference is not found for

the CVs and the interval is wide. However, the other intervals suggest a significant difference.

All three measures suggest there is not a significant difference in relative spread of house price

between Oakleigh and Oakleigh East, although the intervals do tend to suggest that there is for

RCVQ and RCVM . Overall, the intervals are narrower for the quantile-based measures having

not been so greatly influence by outliers.
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6 Summary and discussion

We have proposed interval estimators for alternative robust measures of relative spread to the

coefficient of variation. RCVQ, a scalar multiple of the interquartile range divided by median,

is simple and the associated confidence intervals have very good coverage over a diverse range

of distribution types. Similarly, RCVM where the MAD is used instead of the interquartile

range, interval also have excellent coverage and typically has smaller variability than the es-

timator for RCVQ making it a preferred candidate to be used instead of the CV. While we

also considered bootstrap interval estimators for RCVM , the asymptotic Wald-type interval

based on the approximate variances, and covariance between, the MAD and median achieved

excellent coverage even for sample sizes as small as 50. These robust intervals compare very

favorably to the CV where coverage is typically poor when the data is not sampled from a

normal distribution. Our examples highlighted that they can provide very different insights

into relative spread when compared to the CV, and the use of quantile-based measures is more

easily justified when data is skewed due to difficulty interpreting the mean and variance.

A Proof of Theorem 3.1

Recall IF(x; ρp,q, F ) and IF(x; RCVQ, F ) in (3.3) and (3.4) respectively. For simplicity let

IF(x; ρp,q, F ) = IFρp,q , IF(x; RCVQ, F ) = IFRCVQ , IF[G( ·, p)] = IFG,p and ASV (G, F ; p) =

ASVG,p. Then

E(IF2
RCVQ) = 0.752

[
E
(

IF2
ρ3/4,1/2

)
+ E

(
IF2
ρ1/4,1/2

)
− 2E

(
IFρ3/4,1/2IFρ1/4,1/2

)]
. (A.1)

It can be shown,

E
(

IF2
ρ3/4,1/2

)
= ρ2

3/4,1/2 E

[(
IFG,3/4
x3/4

−
IFG,1/2
x1/2

)]2

=
x2

3/4

x2
1/2




E
(

IF2
G,3/4

)

x2
3/4

+
E
(

IF2
G,1/2

)

x2
1/2

−
2E
(
IFG,3/4IFG,1/2

)

x3/4x1/2




=
1

x2
1/2

[
ASVG,3/4 +

x2
3/4ASVG,1/2

x2
1/2

−
2x3/4E

(
IFG,3/4 IFG,1/2

)

x1/2

]
. (A.2)

Similarly,

E
(

IF2
ρ1/4,1/2

)
=

1

x2
1/2

[
ASVG,1/4 +

x2
1/4ASVG,1/2

x2
1/2

−
2x1/4E

(
IFG,1/4 IFG,1/2

)

x1/2

]
(A.3)
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and

E
(

IFρ3/4,1/2 IFρ1/4,1/2

)
=ρ3/4,1/2 × ρ1/4,1/2 E

[(
IFG,3/4
x3/4

−
IFG,1/2
x1/2

)

×
(

IFG,1/4
x1/4

−
IFG,1/2
x1/2

)]

=
1

x2
1/2

[
E
(
IFG,3/4 IFG,1/4

)
−
x1/4E

(
IFG,3/4 IFG,1/2

)

x1/2

−
x3/4E

(
IFG,1/4 IFG,1/2

)

x1/2
+
x3/4x1/4E

(
IF2
G,1/2

)

x2
1/2

]
. (A.4)

Substituting the above (A.2), (A.3),(A.4) in (A.1) and using ASV (G, F ; p) = p(1 − p)g2(p)

gives

E[IF2
RCVQ ] =

0.752(x3/4 − x1/4)2

x2
1/2

{
ASVG,3/4 + ASVG,1/4 − 2E

(
IFG,3/4 IFG,1/4

)

(x3/4 − x1/4)2

+
ASVG,1/2
x2

1/2

−
2
[
E
(
IFG,3/4 IFG,1/2

)
− E

(
IFG,1/4 IFG,1/2

)]

x1/2(x3/4 − x1/4)

}

=
RCV2

Q

4

{
3
[
g2(3/4) + g2(1/4)

]
− 2 g(1/4)g(3/4)

4× IQR2

+
g2(1/2)

m2
− g(1/2) [g(3/4)− g(1/4)]

m× IQR

}
. (A.5)

B Computing the true MAD

Computing the true value of MAD is not a trivial task. We provide an R function below that

can be uses to compute true value of the MAD for a user-specified distribution. While we have

our own code, that ”” package can also be used.

mad <− f unc t i on ( d i s t , param ){
# Computes the t rue value o f the MAD f o r a s p e c i f i c

# d i s t r i b u t i o n with d e s i r e d parameter c h o i c e s .

#

# Args :

# d i s t : The d i s t r i b u t i o n whose MAD

# i s to be c a l c u l a t e d .

#param : The parameter c h o i c e s o f the s e l e c t e d

# d i s t r i b u t i o n whose MAD i s to be c a l c u l a t e d .

#

# Returns :
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# The true value o f the MAD f o r a s p e c i f i c

# d i s t r i b u t i o n with d e s i r e d parameter c h o i c e s .

q f <− paste0 (” q ” , d i s t )

m <− do . c a l l ( qf , c (p = 0 . 5 , param ) ) # f i n d median

abs . x .m <− f unc t i on (x , d i s t , param , m){
df <− paste0 (”d” , d i s t )

do . c a l l ( df , c ( x = x + m, param ) )

+ do . c a l l ( df , c ( x = − x + m, param ) )

}
abs . x .m. vec <− Vecto r i z e ( abs . x .m, ”x ”)

f <− f unc t i on (x , d i s t , param , m){
i n t e g r a t e ( abs . x .m. vec , lower = 0 , upper = x ,

d i s t = d i s t , param = param , m = m) $value − 0 .5

}
upper <− abs ( do . c a l l ( qf , c (p = 0 .75 , param ) ) + m)

un i root ( f , i n t e r v a l = c (0 , upper ) , d i s t = d i s t ,

param = param , m = m) $root

}
mad(” lnorm ” , l i s t ( meanlog=0, sd log =1))

mad(” exp ” , l i s t ( r a t e =1))
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Abstract

Skewness measures can be used to measure the level of asymmetry of a distribution.
Given the prevalence of statistical methods that assume underlying symmetry, and also
the desire for symmetry in order to make meaningful judgements for common summary
measures (e.g. the sample mean), reliably quantifying asymmetry is an important problem.
There are several measures, among them generalizations of Bowley’s well known skewness
coefficient, that use sample quartiles and other quantile-based measures. The main draw-
backs of many measures is that they are either limited to quartiles and do not take into
account more extreme tail behavior, or that they require one to choose other quantiles
(i.e. choose a value for p different from 0.25) in place of the quartiles. Our objective is
to (i) average the skewness measures over all p and (ii) provide interval estimators for the
new measure with good coverage properties. Our simulation results show that the interval
estimators perform very well for all distributions considered.

Keywords: Bowley’s coefficient of skewness, quantile-based skewness

1 Introduction

Let Q1, Q2 and Q3 denote the quartiles of a population distribution, so that Q2 is the median,
then the well-known Bowley’s coefficient (Yule, 1912; Bowley, 1920) given as B1 = (Q3 +
Q1 − 2Q2)/(Q3 − Q1) is a robust measure of skewness. Note that when the distribution is
symmetric, then B1 = 0 since Q3 − Q2 = Q2 − Q1. The magnitude of B1 grows as the
difference between Q3 − Q2 and Q2 − Q1 increasing implies increasing skewness. A more
general case of the Bowley’s coefficient (David & Johnson, 1956) can venture further into the
tails than when using the first and third quartiles. This measure has been considered further
by Hinkley (1975), Groeneveld & Meeden (1984) and Staudte (2014) who provided distribution
free confidence intervals for the measure. Groeneveld et al. (2009) introduced an improved
version for right skewed distributions for which good point and interval estimators can be
easily obtained. This measure is appropriate only when the direction of the skewness is known,
although in practice simple data visualisations can be used to decide. However, as stated by
Groeneveld et al. (2009), the measure is easier to interpret and typically more sensitive to
skewness.

The generalised Bowley’s and the Groeneveld et al. (2009) measures require one to choose
the extremity of the quantiles used. To overcome this, Groeneveld & Meeden (1984) integrated
both the numerator and denominator of the measure over p. Motivated by this, we introduce

∗18201070@students.latrobe.edu.au
†Corresponding author:luke.prendergast@latrobe.edu.au
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integrated versions of the measures which have simple interpretations and for which interval
estimators with good coverage properties are available.

In Section 2 we introduce notations and existing measures of skewness using quantiles. In
Section 3 we consider integration of the measures over p before comparing with other measures
in Section 4. Point and interval estimators are provided in Section 5 with simulations assessing
coverage and applications to some examples following in Section 6. We then conclude the work
in Section 7.

2 Notations and some selected methods

Let F denote the distribution function for random variableX and f denote the density function.
For a p ∈ [0, 1], let the pth quantile be xp = G(p) = F−1(p) = inf{x : F (x) ≥ p} so that, for
example, x0.5 = Q2 is the population median and x0.25 = Q1 and x0.75 = Q3 the other quartiles.
Let g(p) = 1/f (xp) denote the quantile density function (Tukey, 1965; Parzen, 1979) and its
reciprocal, which we denote q(p) = f (xp), is the density quantile function. Also let X, . . . ,Xn

denote a simple random sample of size n from F . Throughout let x̂p denote the estimator of xp
where we use the Hyndman & Fan (1996) quantile estimator which can be found as the Type
8 quantile estimator in R software (Development Core Team, 2018).

2.1 Generalized skewness coefficients

Using the notations above, the generalized Bowley’s coefficient is defined as

γp =
x1−p + xp − 2x0.5

x1−p − xp
(1)

for p ∈ (0, 0.5) (Hinkley, 1975; Groeneveld & Meeden, 1984). For later use we define the
pth interquantile skewness to be Sp = x1−p + xp − 2x0.5 and the pth interquantile range as
R1,p = x1−p − xp so that γp = Sp/R1,p. We denote the estimator of γp as

gp =
sp
r1,p

where sp = x̂1−p + x̂p − 2x̂0.5 and r1,p = x̂1−p − x̂p.
Groeneveld et al. (2009) introduced a variation of γp that is simple to interpret and often

more sensitive to skewness. For right-skewed distributions, this measure is defined as

λp =
x1−p + xp − 2x0.5

x0.5 − xp
(2)

for p ∈ (0, 0.5). Let R2,p = x0.5 − xp so that λp = Sp/R2,p with estimator

lp =
sp
r2,p

where r2,p = x̂0.5− x̂p. For left-skewed distributions, the measure can be adapted to Sp/(x1−p−
x0.5). For simplicity we will focus on the use of λp as defined in (2) noting that findings will
similarly hold when re-defining for left-skewed distributions.

To overcome the need for choosing a p for γp, Groeneveld & Meeden (1984) integrated both
the numerator and denominator with respect to p finding

b3 =

∫ 0.5
0 Spdp∫ 0.5

0 R1,pdp
=

µ− x0.5
E|X − x0.5|

(3)

where µ is the mean for distribution F .
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3 New skewness measures

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lognormal

p

γ p

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Non−central t

p
γ p

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

80
10

0

Lognormal

p

λ p

0.0 0.1 0.2 0.3 0.4 0.5

−
2

−
1

0
1

2

Non−central t

p

λ p

Figure 1: Examples of the curves of γp (top row) and λp (bottom row) for the lognormal
distribution, LN(0, σ), with varying σ from 0.01 to 2.0 and the non-central t distribution,
tν(ncp) with ν = 5 and non-centrality parameter (ncp) varying from −10 to 10.

Note that γp and λp may be thought of as sensitivity curves over the domain of p ∈ [0, 0.5].
In Figure 1 we plot the curves of γp (top row) and λp (bottom row) for two distributions: the
lognormal distribution, LN(0, σ), with varying σ from 0.01 to 2.0 and also the non-central t
distribution, tν(ncp) with ν = 5 and non-centrality parameter (ncp) varying from −10 to 10.
For the lognormal, the curves are plotted for each choice of σ, where smaller σ are associated
with the curves with smaller skew (lower vertical axis values). For the non-central t, the curves
with negative skewness are for ncp < 0 (left skew), for ncp = 0 the curve is constant at
zero (symmetry) and for ncp> 0 the curves are for positive skew. Skewness increases with
increasing ncp. In all cases skewness is maximised when the most extreme quantiles are used,
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i.e. smallest p, and this is also when the distance between the curves is maximised suggesting
greater sensitivity in detecting skewness for smallest p. In practice, however, such extreme
quantiles are difficult to estimate and so a not-so-small p would be chosen.

3.1 Area under the skewness curve and mean skewness

One way to avoid choosing p is to calculate the Area Under the sensitivity Curve (AUC) by
integrating γp and λp over p ∈ [0, 0.5]. That is, we define

AUCγ =

∫ 0.5

0
γp dp =

∫ 0.5

0

Sp
R1,p

dp and AUCλ =

∫ 0.5

0
λp dp =

∫ 0.5

0

Sp
R2,p

dp. (4)

An interpretation of the AUC above exists in the form of mean skewness. Let U ∼
Uniform(0, 1/2), then

E (γU ) =

∫ 0.5

0

1

2

Su
R1,u

du =
1

2
AUCγ (5)

so that the expected value for a point randomly chosen on the sensitivity curve is equal to one
half of the AUC. This similarly true for the λp measures where E (λU ) = AUCλ/2.

Remark 1. If one wanted the AUC and expected sensitivity above to be equal, then we could
re-define

γ̃u =
x1−u/2 + xu/2 − 2x0.5

x1−u/2 − xu/2
=

Su/2

R1,u/2
(6)

for u ∈ [0, 1] so that γ̃u = γu/2. Then λ̃u could be similarly defined with λ̃u = λu/2. We would

then have that, for U ∼ Uniform(0, 1), E (γ̃U ) = AUCγ̃ and E
(
λ̃U

)
= AUCλ̃.

3.2 Weighting with respect to p

Given that large values of γp and λp can result when p is small, we could give less emphasis to
the extremes by using γ∗p = pγp and λ∗p = pλp.

In Figure 2 we plot the curves for pγp (top row) and pλp (bottom row). Note that less
weighting is now given to the extremes such that greater emphasis is placed on a choice of p
associated with greater density. For pγ , that choice of p is between 0.2 and 0.3 so that the peak
in skew is approximately for when the measure is based on quartiles. For pλp, the choice of p
is between approximately 0.05 and 0.1 depending on the σ chosen. This is in contrast to the
other measures (see Figure 1), where peak skew occurred at the smallest p (i.e. for the most
extreme quantiles). Define the integrated γ∗p , λ∗p to be,

AUCγ∗ =

∫ 0.5

0
γ∗p dp =

∫ 0.5

0
p

(
Sp
R1,p

)
dp and AUCλ∗ =

∫ 0.5

0
λ∗p dp =

∫ 0.5

0
p

(
Sp
R2,p

)
dp (7)

where, as before, these are one half of the mean skew over p.
As example comparisons, all measures are depicted in Figure 3 for the lognormal with

varying σ and the non-central t with varying ncp.

4 Properties and comparisons with other measures

4.1 Properties

Oja (1981) defined four desirable properties which are desirable for skewness measures. Let β
be a skewness measure where, for distribution function F , β(F ) is the measure of skewness for
the distribution F . Further, for X ∼ F denoting a random variable, for convenience we also
let β(X) = β(F ). These four properties are:
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Figure 2: Examples of the curves of pγp (top row) and pλp (bottom row) for the lognormal
distribution, LN(µ, σ), with varying σ from 0.01 to 2.0 and the non-central t distribution,
tν(ncp) with ν = 5 and non-centrality parameter (ncp) varying from −10 to 10.

P1. β(cX + d) = β(X) for constants c > 0 and −∞ < d <∞.

P2. β(F ) = 0 for symmetric F .

P3. β(−F ) = −β(F ).

P4. If F <c G then β(F ) ≤ β(G) .

The notation ‘<c’, used by Groeneveld & Meeden (1984) and Groeneveld et al. (2009),
is read as ‘F c-precedes G’ meaning that distribution F is at least as skewed to the right as
distribution G. Groeneveld & Meeden (1984) has shown that γp satisfies Properties P1 - P4
while Groeneveld et al. (2009) has shown that P1, P2 and P4 hold for λp. In both cases, for

5



0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lognormal

σ

S
ke

w
ne

ss

AUCγ
AUCγ*

AUCλ
AUCλ*

−10 −5 0 5 10

−
0.

3
−

0.
1

0.
0

0.
1

0.
2

0.
3

Non−central t

ncp

S
ke

w
ne

ss
Figure 3: Examples of the AUC measures for the lognormal distribution, LN(µ, σ), with varying
σ from 0.01 to 2.0 and the non-central t distribution, tν(ncp) with ν = 5 and non-centrality
parameter (ncp) varying from −10 to 10.

Table 1: Desirable properties of measures of skewness and their estimators. Here ‘+’ and ‘−’
indicate the property is satisfied and not satisfied respectively for eahc of the measures.

Property γp λp AUCγ AUCλ AUCγ∗ AUCλ∗

P1 + + + + + +
P2 + + + + + +
P3 + − + − + −
P4 + + + + + +

P4 to hold it is required that G−1(F (x)) is convex. Given this, it is straightforward then to
show that they also hold for the AUC measures and the properties are summarised in Table 1.

4.2 Comparisons of skewness for parametric families

We have carried out a comparison of the skewness measures γp, λp with our AUC measures
over a wide range of distributions with different parameter choices.
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Table 2 represents the values for γp, λp for p = {0.05, 0.1, 0.15, 0.2, 0.25} and AUCγ , AUCγ∗ ,
AUCλ and AUCλ∗ for several distributions. Since the quantile function for the exponential
distribution is a multiple of 1/λ where λ is the rate parameter, skewness does not depend on
the rate and so we provide the results for a general λ. Consequently the skewness measures for
the χ2

2 distribution (the exponential distribution with rate 1/2) are also equal to these values.
Other examples include the Pareto Type II distribution (PAR) with varying shape parameter
where skewness decreases with increasing shape and similarly with the Gamma distribution.
Increases and decreases among the skewness measures agree within and among distributions.

5 Estimation and inference

In this section we discuss estimation of the AUCs and provide confidence intervals.

5.1 Estimation

To estimate the pth quantile, xp, we use the Hyndman & Fan (1996) quantile estimator, which
we denote x̂p, and which is a linear combination of two adjacent order statistics. It is readily
available as the Type 8 quantile estimator in the R software package. We let gp, lp, g

∗
p, l
∗
p be

the estimates of the skewness measures γp, γ
∗
p , λp and λ∗p.

For an arbitrary F , closed-form expressions are not available for the AUCs of the skewness
measures. Recent research integrating ratios of functions of quantiles over p (e.g. Prendergast
& Staudte, 2016, 2018), used summation approximations over a finite number of different
ps. Approximate standard errors and subsequent confidence intervals were also found for the
measures considered resulting in good coverage. We therefore consider this approach.

Let pj = 0.5(j − 1/2)/J for j = 1, 2, . . . , J so that we estimate the AUC for γp as

ÂUCγ ≡
1

J

J∑

j=1

γ̂pj . (8)

In the context of their estimators, Prendergast & Staudte (2016, 2018), showed that J = 100
provides an excellent approximation to the integral, including for the standard errors that

follow. We too therefore choose J = 100. We define ÂUCλ, ÂUC
∗
γ and ÂUC

∗
λ similarly. If the

mean skewness measure over the curve is desired, then the AUC estimate simply needs to be
halved.

5.2 Asymptotic variances

In this section we provide estimates of the asymptotic variances for the γp, λp and the AUC
estimators. Staudte (2014) has already derived the asymptotic variance of γp using the Delta
method (e.g. Ch.3 of DasGupta, 2006). It is

σ21p = nVar[gp]
.
= γp

2

{
nVar[sp]

S2
p

+
nVar[r1,p]

R2
1,p

− 2nCov[sp, r1,p]

SpR1,p

}
, (9)

where the estimators sp and r1p and population values Sp and R1,p defined as in Section 2.
We similarly derived the asymptotic variance of estimator for λp finding

σ22p = nVar[lp]
.
= λp

2

{
nVar[sp]

S2
p

+
nVar[r2,p]

R2
2,p

− 2nCov[sp, r2p]

SpR2,p

}
. (10)
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We have also derived asymptotic co-variances needed in the variances for the AUC measures
where

σ1,pq = nCov(gp, gq)
.
=

n

r1,pr1,q

[
Cov(sp, sq)− γqCov(sp, r1,q)− γpCov(r1,p, sq)

+ γpγqCov(r1,p, r1,q)
]
,

σ2,pq ≡ nCov(lp, lq)
.
=

n

r2,pr2,q

[
Cov(sp, sq)− λqCov(sp, r2,q)− λpCov(r2,p, sq)

+ λpλqCov(r2,p, r2,q)
]

where setting p = q gives the asymptotic variances for the estimators of γp and λp. The formulas
for the co-variances in the above are given in Appendix A. Then the asymptotic variance of
our AUC estimators are given as

nVar
(

ÂUCγ

)
.
=

1

J2

J∑

j=1

J∑

k=1

σ1,pjpk , nVar
(

ÂUCλ

)
.
=

1

J2

J∑

j=1

J∑

k=1

σ2,pjpk . (11)

We also let nVar
(

ÂUC
∗
λ

)
and nVar

(
ÂUC

∗
λ

)
denote the asymptotic variances for the AUC

estimators of gp and lp. We do not show them here, since each can be obtained by, for example,
multiplying σ1,pjpk by pjpk in the above asymptotic variance expressions.

5.3 Interval estimators for the AUCs and differences of AUCs

Let V denote the estimate of Var (lp), Vγ denote the estimate of Var
(

ÂUCγ

)
and similarly

Vλ the estimate of Var
(

ÂUCλ

)
. To obtain these, we need estimates of σ1p σ2p, σ1,pq and

σ2,pq. These need estimates of the quantile density functions 1/f(xp) and 1/f(xq) where f
is the density function. To estimate the quantile density functions, we use a kernel density
estimator studied by, e.g. Falk (1986) and Welsh (1988) with bandwidth determined by the
quantile optimality ratio (QOR) of Prendergast & Staudte (2016a). The bandwidth based on
the QOR typically resulted in slightly conservative intervals for quantiles and so are favored
by us for our simulations. Code is available on request, or if desired standard bandwidths
and density estimators for f could be used although our preference is to estimate the quantile
density directly rather than thake the inverse of an estimated f .

Let zα = Φ−1(α) denote the α quantile of the standard normal distribution. All our
100(1− α)% confidence intervals for measures of skewness will be of the form, e.g. for AUCγ ,

ÂUCγ ± z1−α/2 SEγ , (12)

where SEγ =
√
Vγ . If an interval for mean skewness over the interval p ∈ [0, 0.5] was desired

(which is half the AUC), then all that is required is to halve the lower and upper bounds of
the AUC interval.

When there are two independent groups, we can construct interval estimators to compare
the differences in skewness. E.g, an interval estimator for AUCγ,1 −AUCγ,2 is,

ÂUCγ,1 − ÂUCγ,2 ± z1−α/2 SEγ,1,2 . (13)

where SEγ,1,2 =
√
Vγ,1 + Vγ,2 and the Vγ,is are the variances of the respective AUCs.

6 Simulations and Examples

We now consider simulations to assess coverage of the interval estimators before considering
two examples.
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6.1 Simulations

A simulation study was conducted to compare the performance of interval estimator of λp with
our new measures AUCγ , AUCγ∗ , AUCλ and AUCλ∗ by considering coverage probability (cp)
and the average confidence interval width (w) as the performance measures. We have selected
normal, log normal, exponential, chi-square and Pareto distributions with different parameter
choices and the sample sizes n = {50, 100, 200, 500, 1000}. We used 10,000 simulation trials
to our simulation study since the standard error of the estimated coverage probability for the
nominal 0.95 level is less than 0.005 for 10,000 simulation trials (Staudte, 2014).

Table 3: Simulated coverage probabilities (and widths) for 95% confidence interval estimators
for λp.

n Dist. λp=0.05 λp=0.1 λp=0.15 λp=0.2 λp=0.25

50 N(2,1) 0.964(1.35) 0.964(1.43) 0.962(1.54) 0.961(1.69) 0.950(1.92)
LN(0, 1) 0.955(12.91) 0.960(7.35) 0.963(5.66) 0.961(4.82) 0.955(4.47)
EXP(1) 0.959(6.23) 0.960(4.58) 0.958(3.95) 0.955(3.66) 0.952(3.56)
χ2
2 0.960(6.21) 0.950(4.57) 0.955(3.99) 0.952(3.66) 0.953(3.60)

PAR(1, 7) 0.959(9.29) 0.960(5.91) 0.961(4.79) 0.957(4.25) 0.954(4.06)

100 N(2,1) 0.966(0.94) 0.967(0.96) 0.964(1.02) 0.965(1.12) 0.962(1.25)
LN(0, 1) 0.963(7.78) 0.964(4.58) 0.968(3.53) 0.965(3.02) 0.958(2.72)
EXP(1) 0.963(4.02) 0.962(2.98) 0.960(2.54) 0.960(2.33) 0.955(2.24)
χ2
2 0.959(3.98) 0.960(2.95) 0.960(2.54) 0.959(2.34) 0.953(2.24)

PAR(1, 7) 0.960(5.73) 0.962(3.72) 0.962(3.06) 0.961(2.69) 0.954(2.49)

200 N(2,1) 0.971(0.65) 0.969(0.66) 0.967(0.70) 0.968(0.77) 0.965(0.85)
LN(0, 1) 0.961(4.93) 0.967(3.02) 0.965(2.33) 0.963(1.98) 0.965(1.80)
EXP(1) 0.961(2.66) 0.964(1.99) 0.966(1.70) 0.959(1.56) 0.959(1.49)
χ2
2 0.964(2.67) 0.958(1.98) 0.965(1.70) 0.950(1.56) 0.961(1.50)

PAR(1, 7) 0.967(3.74) 0.963(2.49) 0.962(2.02) 0.961(1.78) 0.961(1.65)

500 N(2,1) 0.972(0.41) 0.968(0.41) 0.972(0.43) 0.965(0.46) 0.958(0.50)
LN(0, 1) 0.962(2.89) 0.959(1.80) 0.962(1.40) 0.962(1.19) 0.964(1.08)
EXP(1) 0.961(1.60) 0.960(1.21) 0.956(1.04) 0.957(0.95) 0.960(0.91)
χ2
2 0.959(1.61) 0.958(1.20) 0.957(1.04) 0.959(0.95) 0.955(0.90)

PAR(1, 7) 0.962(2.21) 0.957(1.50) 0.960(1.22) 0.957(1.08) 0.959(1.00)

1000 N(2,1) 0.972(0.28) 0.965(0.28) 0.963(0.29) 0.959(0.32) 0.959(0.35)
LN(0, 1) 0.961(1.98) 0.960(1.24) 0.961(0.96) 0.962(0.82) 0.959(0.75)
EXP(1) 0.956(1.11) 0.957(0.84) 0.957(0.72) 0.956(0.66) 0.956(0.63)
χ2
2 0.958(1.11) 0.957(0.84) 0.958(0.72) 0.955(0.66) 0.956(0.63)

PAR(1, 7) 0.958(1.52) 0.956(1.04) 0.958(0.85) 0.958(0.75) 0.958(0.69)

5000 N(2,1) 0.960(0.12) 0.956(0.12) 0.953(0.13) 0.953(0.14) 0.954(0.15)
LN(0, 1) 0.957(0.85) 0.954(0.54) 0.955(0.42) 0.952(0.36) 0.955(0.32)
EXP(1) 0.957(0.49) 0.952(0.37) 0.953(0.32) 0.952(0.29) 0.953(0.28)
χ2
2 0.957(0.48) 0.955(0.37) 0.954(0.32) 0.950(0.29) 0.953(0.28)

PAR(1, 7) 0.954(0.66) 0.957(0.45) 0.954(0.37) 0.955(0.33) 0.952(0.30)

10000 N(2,1) 0.955(0.08) 0.956(0.08) 0.954(0.09) 0.956(0.10) 0.952(0.11)
LN(0, 1) 0.956(0.59) 0.951(0.38) 0.957(0.29) 0.952(0.25) 0.953(0.23)
EXP(1) 0.953(0.34) 0.954(0.26) 0.954(0.22) 0.952(0.20) 0.955(0.19)
χ2
2 0.951(0.34) 0.954(0.26) 0.951(0.22) 0.950(0.20) 0.957(0.19)

PAR(1, 7) 0.954(0.46) 0.954(0.32) 0.953(0.26) 0.952(0.23) 0.955(0.21)

Before we consider interval estimators for the AUCs, we provide simulated coverage prob-
abilities for an interval estimator of λp using an estimated asymptotic variance from (10). We
considered p = {0.05, 0.1, 0.15, 0.2, 0.25} and the results are provided in Table 3. The interval
provides very good coverage compared to the nominal 0.95 and the interval width decreases
with increasing sample sizes. Groeneveld et al. (2009) recommended to use λp=0.05 since it
does not ignore the tail behaviour of the distribution. Very good coverage probabilities are
achieved for this p.

Simulated coverages based on 10,000 trials for interval estimators of AUCγ , AUCγ∗ , AUCλ

and AUCλ∗ are provided in the Table 4. The interval estimators of AUCγ , AUCγ∗ , AUCλ
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Table 4: Simulated coverage probabilities (and widths) for 95% confidence interval estimators
for AUCγ , AUCλ, AUCγ∗ and AUCλ∗ .

n Dist. AUCγ AUCλ AUCγ∗ AUCλ∗

50 N(2,1) 0.997(1.84) 0.993(6.57) 1.000(0.68) 0.996(2.53)
LN(0, 1) 0.998(2.60) 0.953(11.44) 0.999(0.89) 0.987(3.05)
EXP(1) 0.996(2.42) 0.964(6.94) 0.999(1.50) 0.988(2.63)
χ2
2 0.997(1.65) 0.966(6.55) 0.999(1.80) 0.989(2.17)

PAR(1, 7) 0.996(6.23) 0.954(7.86) 0.998(0.80) 0.988(2.67)

100 N(2,1) 0.992(0.93) 0.988(3.63) 0.995(0.58) 0.992(2.64)
LN(0, 1) 0.994(1.43) 0.953(4.72) 0.997(0.39) 0.984(1.95)
EXP(1) 0.991(1.42) 0.966(3.70) 0.996(0.42) 0.982(1.52)
χ2
2 0.992(0.96) 0.969(3.60) 0.995(0.37) 0.981(2.14)

PAR(1, 7) 0.993(0.91) 0.962(4.00) 0.997(1.17) 0.982(2.01)

200 N(2,1) 0.987(0.73) 0.985(6.05) 0.990(0.32) 0.988(1.26)
LN(0, 1) 0.989(0.77) 0.954(2.96) 0.992(0.35) 0.982(1.01)
EXP(1) 0.986(0.81) 0.971(2.26) 0.991(0.32) 0.982(0.83)
χ2
2 0.989(0.65) 0.971(2.87) 0.992(0.28) 0.983(1.36)

PAR(1, 7) 0.988(0.93) 0.964(3.34) 0.991(0.33) 0.982(0.85)

500 N(2,1) 0.969(0.25) 0.975(0.90) 0.977(0.09) 0.976(0.32)
LN(0, 1) 0.974(0.24) 0.959(1.55) 0.979(0.09) 0.975(0.43)
EXP(1) 0.974(0.24) 0.967(1.24) 0.978(0.09) 0.976(0.39)
χ2
2 0.969(0.25) 0.964(1.29) 0.979(0.09) 0.973(0.40)

PAR(1, 7) 0.972(0.24) 0.959(1.30) 0.978(0.09) 0.974(0.43)

1000 N(2,1) 0.964(0.17) 0.970(0.41) 0.969(0.06) 0.973(0.15)
LN(0, 1) 0.966(0.16) 0.962(0.95) 0.972(0.06) 0.969(0.22)
EXP(1) 0.965(0.17) 0.960(0.69) 0.967(0.06) 0.972(0.19)
χ2
2 0.964(0.17) 0.959(0.70) 0.960(0.06) 0.967(0.19)

PAR(1, 7) 0.966(0.17) 0.960(0.81) 0.967(0.06) 0.965(0.19)

5000 N(2,1) 0.957(0.07) 0.957(0.15) 0.958(0.02) 0.956(0.05)
LN(0, 1) 0.958(0.07) 0.947(0.38) 0.958(0.02) 0.962(0.07)
EXP(1) 0.957(0.07) 0.952(0.28) 0.955(0.02) 0.961(0.07)
χ2
2 0.956(0.07) 0.953(0.27) 0.959(0.02) 0.959(0.07)

PAR(1, 7) 0.957(0.07) 0.950(0.33) 0.958(0.02) 0.957(0.07)

10000 N(2,1) 0.953(0.05) 0.953(0.10) 0.953(0.02) 0.951(0.04)
LN(0, 1) 0.951(0.05) 0.938(0.27) 0.957(0.02) 0.955(0.05)
EXP(1) 0.955(0.05) 0.955(0.20) 0.955(0.02) 0.953(0.05)
χ2
2 0.955(0.05) 0.955(0.20) 0.955(0.02) 0.952(0.05)

PAR(1, 7) 0.951(0.05) 0.944(0.23) 0.955(0.02) 0.954(0.05)

11



and AUCλ∗ provide good coverage compared to the nominal 0.95 for moderate to large n and
the interval width decreases with increasing sample sizes. For smaller n, the coverages are
conservative. Overall, the coverages for the AUC of the λ skewness measure are usually closer
to nominal and approach nominal more quickly with increasing sample size. We have seen this
across a broad range of distributions and the reader can verify this by using our web application
detailed next.

6.1.1 A Shiny web application for the performance comparisons of the intervals

For further comparisons, we have developed a Shiny (Chang et al. , 2017) web application that
readers can use to run the simulations with different parameter choices. This can be found at
https://lukeprendergast.shinyapps.io/meanskew/. The user can change the distribution,
parameters, sample size, probability and the number of trials according to their choices. Once
the desired options are selected the ‘Run Simulation’ button can be pressed and the relevant
estimates, coverage probability (cp) and the average width of the confidence interval (w) will
be calculated according to their input choices.

6.2 Examples

We have selected two datasets as examples.

6.2.1 Computer price data

The “Computers” data set which is available in the “Ecdat” package (Croissant, 2016) in R
consists of prices for 6259 personnel computer which have been obtained from a cross section
from 1993 to 1995 in the United States. Figure 4 depicts the computer price distribution which
is clearly positively skewed.
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Figure 4: Histogram of the price of computers (in US dollars)

Table 5 contains the estimate and 95% confidence intervals for the six skewness measures, γp
and λp for p = {0.05, 0.1, 0.15, 0.2, 0.25} and AUCγ , AUCγ∗ , AUCλ and AUCλ∗ . The confidence
interval for γp was found as given in Staudte (2014). All intervals suggest significant skew.
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Table 5: 95% confidence intervals (CIs) and estimates of the measures of skewness for the
computer price data.

Measure Estmate CI Measure Estmate CI

γp=0.05 0.1801 (0.1531, 0.2072) λp=0.05 0.4395 (0.3589, 0.5200)
γp=0.1 0.1377 (0.1128, 0.1626) λp=0.1 0.3194 ( 0.2523, 0.3865)
γp=0.15 0.1245 (0.0967, 0.1524) λp=0.15 0.2844 (0.2117, 0.3571)
γp=0.2 0.1100 (0.0783, 0.1417) λp=0.2 0.2472 (0.1671, 0.3273)
γp=0.25 0.1261 (0.0906, 0.1616) λp=0.25 0.2886 (0.1957, 0.3814)
AUCγ 0.1294 (0.0726, 0.1861) AUCλ 0.2885 (0.2052, 0.3718)
AUCγ∗ 0.0271 (0.0025, 0.0516) AUCλ∗ 0.0512 (0.0257, 0.0768)

6.2.2 Doctor visits data

The doctor visits data, used as an example in Heritier et al. (2009), is a sub sample of 3066
individuals (987 males and 2079 females) of the AHEAD cohort born before 1924 for wave 6
(year 2002) from the Health and Retirement Study (HRS) (Heritier et al. , 2009). This study
surveys more than 22,000 Americans over the age of 50 every 2 years. The response variable
that we are interested in is the number of doctor visits in the two gender groups. The doctor
visits distributions of male and female are positively skewed, and the truncated histograms
can be found in Staudte (2014). There is one outlier in the female group (750 visits) and the
ranges of visits, ignoring that outlier, for females is 0 to 365 and 0 to 300 for males. A complete
analysis of descriptive statistics for the number of doctor visits in male and female can be found
in Table 6 of Arachchige et al. (2019).

Table 6: Confidence intervals for the measures of skewness of the number of doctor visits of
males, females and difference between males and females.

Male Female Male-Female (with outlier)

Measure Estimate CI Estimate CI Estimate CI

γ0.05 0.5172 (0.4353, 0.5992) 0.5758 (0.5087, 0.6428) -0.0585 (-0.1644, 0.0474)
γ0.10 0.4545 (0.4089, 0.5002) 0.4545 (0.4214, 0.4877) 0.0000 (-0.0564, 0.0564)
γ0.15 0.3333 (0.2654, 0.4013) 0.5238 (0.4932 ,0.5544) -0.1905 (-0.2650, -0.1159)
γ0.20 0.2308 (0.1202, 0.3413) 0.5000 (0.4542, 0.5458) -0.2692 (-0.3889, -0.1496)
γ0.25 0.2000 (0.1035, 0.2968) 0.2727 (0.2044 ,0.3412) -0.0727 (-0.1910, 0.0455)
λ0.05 2.1429 (1.4394, 2.8463) 2.7143 (1.9696, 3.4590) -0.5714 (-1.5959, 0.4530)
λ0.10 1.6667 (1.3600, 1.9733) 1.6667 (1.4440, 1.8893) 0.0000 (-0.3790, 0.3710)
λ0.15 1.0000 (0.6942, 1.3058) 2.2000 (1.9302 ,2.4699) -1.2000 (-1.6079, -0.7921)
λ0.20 0.6000 (0.2264, 0.9736) 2.0000 (1.6333, 2.3667) -1.4000 (-1.9235, -0.8765)
λ0.25 0.5000 (0.1985, 0.8015) 0.7500 ( 0.4915 ,1.0085) -0.2500 (-0.6471, 0.1471)

AUCγ 0.1741 (0.1044, 0.2439) 0.2610 (0.2172, 0.3048) -0.0869 (-0.1692, -0.0045)
AUCγ∗ 1.0676 (0.6717, 1.4634) 0.0296 (0.0169, 0.0424) -0.0265 (-0.0512, -0.0018)

AUCλ 0.0031 (-0.0180, 0.0243) 0.0296 (1.0733, 1.6754) -0.3068 (-0.8041, 0.1905)
AUCλ∗ 0.0554 (0.0120, 0.0987) 0.1139 (0.0786, 0.1493) -0.0586 (-0.1145, -0.0026)

Table 6 provides 95% confidence intervals for γp, λp, AUCγ , AUCγ∗ , AUCλ and AUCλ∗ for
number of doctor visits for males, females and between males and females (with outlier). The
intervals for each measure for males and females indicate skew. However, different conclusions
about differences in skew between males and females can be made based on the different
skewness measures. The intervals for λp and γp are sensitive to the choice of p. However, the
intervals for the AUC measures do indicate skew with the exception of the AUC for λ.
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7 Summary and future work

We have introduced more powerful alternatives to the existing measures of skewness such as γp
and λp which require a choice of p. Here we introduce the integrated versions of the γp, λp, pγp
and pλp as alternatives to measure the skewness. The simulation results show that the interval
estimators perform well for all the selected distributions with moderate to large sample sizes
and are typically conservative for smaller sample sizes.

While we refer to the AUCs as mean skew (i.e. mean of the skew curve over a uniform
p ∈ [0, 1/2]), in truth the AUC itself is twice the mean. It is simple then to obtain point and
interval estimates for the mean from the AUC estimates and vice versa. We favored AUC since
it was more typically in the domain of skew values of γp and λp when p is fixed to some value
between 0 and 0.25 (which would typically be done in practice). The mean skew is typically less
than the skewness at fixed p since it is half the AUC and the AUC is taken over all p ∈ [0, 0.5].
An alternative would also be to consider integrating over p ∈ [0, 0.25] and dividing by 4. This
would result in a mean more like the skew values for fixed p in 0 to 0.25. We favored the AUC
though since it considers the entire distribution, and not just a subset of it.

The influence function (IF Hampel, 1974) can be used to study the robustness properties
and sensitivity of estimators. Groeneveld et al. (2009); Groeneveld (1991) computed the IFs
for the quantiles based measures and in doing so established typically greater sensitivity to
right skew of λp compared to γp. A study of the IFs for the AUC measures may also reveal
some advantage in weighting with respect to p whereby the less weighting is applied to the
extreme quantiles where estimation can be difficult. For examples of the IF, including the IF
for quantiles as background, see e.g. Staudte & Sheather (1990) and Clarke (2018).

A Asymptotic variances and covariances

Asymptotic variance and covariance expressions for quantiles estimators are (e.g. see David,
1981; DasGupta, 2006),

nVar(x̂p)
.
= p(1− p)h2(p) ,

nCov(x̂p, x̂q)
.
=

{
p(1− q)h(p)h(q), 0 < p < q < 1

q(1− p)h(p)h(q), 0 < q < p < 1

where h(p) = 1/f (xp) is known as the quantile density function (Tukey, 1965; Parzen, 1979).
For simplicity, let ξp,q = Cov(x̂p, x̂q) and ξ2p = Var(x̂p). For each of the variances and covari-
ances needed we have

Cov(sp, sq) =Cov (x̂1−p + x̂p − 2x̂0.5, x̂1−q + x̂q − 2x̂0.5) ,

=ξ1−p,1−q + ξ1−p,q + ξp,1−q + ξp,q − 2ξ1−p,0.5 − 2ξp,0.5 − 2ξ0.5,1−q − 2ξ0.5,q + 4ξ20.5

Cov(sp, r1,q) =Cov (x̂1−p + x̂p − 2x̂0.5, x̂1−q − x̂q)
=ξ1−p,1−q − ξ1−p,q + ξp,1−q − ξp,q − 2ξ0.5,1−q + 2ξ0.5,q,

Cov(r1,p, sq) =Cov (x̂1−p − x̂p, x̂1−q + x̂q − 2x̂0.5) ,

=ξ1−p,1−q + ξ1−p,q − 2ξ1−p,0.5 − ξp,1−q − ξp,q + 2ξp,0.5,

Cov(r1,p, r1,q) =Cov (x̂1−p − x̂p, x̂1−q − x̂q) = ξ1−p,1−q − ξ1−p,q − ξp,1−q + ξp,q,
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Cov(sp, r2,q) =Cov (x̂1−p + x̂p − 2x̂0.5, x̂0.5 − x̂q)
=ξ1−p,0.5 − ξ1−p,q + ξp,0.5 − ξp,q + 2ξ0.5,q − 2ξ20.5,

Cov(r2,p, sq) =Cov (x̂0.5 − x̂p, x̂1−q + x̂q − 2x̂0.5)

=ξ0.5,1−q + ξ0.5,q − ξp,1−q − ξp,q + 2ξp,0.5 − 2ξ20.5,

Cov(r2,p, r2,q) =Cov (x̂0.5 − x̂p, x̂0.5 − x̂q) = ξp,q − ξ0.5,q − ξp,0.5 + ξ20.5.
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