
Transcriptomic and Phenomic Insights

into the Epimutant Rogue Locus in Pisum

sativum

James Lancaster
Bachelor of Science

A thesis submitted in total fulfilment of the requirements for the degree of Master of

Science at

La Trobe University, Victoria, Australia in November 2021

School of Life Sciences

College of Science, Health and Engineering



Abstract

The epigenetic drive termed “paramutation” was first discovered in pea (Pisum sativum)

over a century ago, where the abnormally high penetrance of the rogue phenotype consisting

of reduced and elongated stipules and leaflets was documented. Paramutagenic alleles induce

heritable epigenetic changes to susceptible alleles, resulting in the paramutated epiallele be-

ing inherited at greater frequency than Mendelian inheritance would otherwise predict. The

paramutation phenomenon and its mechanisms have been extensively studied in maize and

among other eukaryotic organisms, though the rogue epimutation in P. sativum has yet to be

identified and its mechanism of inheritance remains unknown. With the recent release of a

complete genome and advances in genomic technologies, we can now re-investigate a century-

old mystery. I was able to systematically test rogue phenotype inheritance in hybrid crosses

and begin the development of a machine learning model with the ability to classify individ-

uals into their correct epigenotype, based on leaf morphometrics and phenomic analysis. I

then used a combination of transcriptomic techniques involving RNA-seq, small-RNA-seq

and long-read transcriptome sequencing in an attempt to identify and characterise the rogue

locus. Through long-read sequencing on the Oxford Nanopore platform, I was able to im-

prove on the current transcriptome annotation and increase the sensitivity of my analysis.

I discovered that epimutated rogue peas of multiple cultivars display differential expression

in mRNAs and sRNAs relative to their wild type counterparts. From this, I was able to

develop a candidate list of genes for the elusive rogue locus. Genes involved in key regu-

latory and developmental pathways were differentially expressed, such as ZINC INDUCED

FACILITATOR-LIKE 1 (ZIFL1) for example, were down-regulated in rogues compared to

wild types. In some cases, candidate genes were also found to have nearby clusters of 24-nt

sRNAs, which are well known for their involvement in transcriptional regulation and silenc-

ing pathways, such as the RNA-directed DNA Methylation pathway (RdDM). Integrating

transcriptomic evidence for the rogue locus in P. sativum has enabled construction of the

first candidate list of genes a century after the rogue pea’s discovery, enabling future research

to further elucidate the complex epigenetic interaction known as paramutation.
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Chapter 1

Introduction

Gregor Mendel (1822-1884) made his ground-breaking discoveries on inheritance of mono-

genic traits in Pisum sativum (Pea), where he conducted hybridisation experiments between

varieties with obvious phenotypic differences [1, 2]. The key phenotypic traits Mendel anal-

ysed were seed colour (green or yellow) and coat (wrinkled or smooth) [2]. Through extensive

hybridisation experiments, he discovered that these traits exhibited dominant and recessive

relationships, and segregated in subsequent generations following a 3:1 ratio in F2 gener-

ations [2]. This study allowed Mendel to establish his famous laws of genetic inheritance:

Independent Assortment, Dominance, and Segregation [1]. However, the complex nature of

biology was later demonstrated when exceptions to Mendel’s laws were discovered in other

angiosperms such as incomplete dominance, sex-linked genes or polygenic traits [3–5].

Ironically, it is also in P. sativum that exceptions to Mendel’s laws were revealed in the early

1900’s. A novel pea phenotype termed the ’rogue’ phenotype was found to be inherited in

drastically increased proportions compared to what Mendelian laws would predict [6, 7].

The morphological characteristics of the phenotype consist of smaller, narrow and pointed

leaflets and stipules (Figure 1.1), noted to resemble rabbit ears, whereas wild type peas

generally have large and broad leaves with rounded leaf apices [6]. In some cases, a curved

pod phenotype was also identified in rogue peas. The origin and nature of rogue peas was

first studied by Bateson and Pellew (1915) [6], through extensive crossing studies which

investigated the inheritance properties of the phenotype. Due to slight variations in the

rogue phenotype observed during crossing studies, a basic classification system was used to

measure the severity of ‘rogueness’ [6]. Class 1 described wild type peas displaying what

1
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was considered normal phenotypic properties for peas of the Sutton’s Early Giant and Duke

of Albany cultivars used in the study. Class 2 described plants as mostly wild type, though

with slight curvature of pods. Class 3 described intermediate phenotypes, where initial nodes

of individuals displayed wild type characters, and progressively became more rogue-like in

leaf morphology and pod morphology as individuals developed to mature plants. Class 4

individuals were mostly rogue in phenotype, with slightly larger stipules and leaflets and

curved pods. Finally, Class 5 described complete rogues.

Figure 1.1: The rogue phenotype. Wild type individual from the Daisy
cultivar (A) displays its typical leaf morphology, whereas the rogue variation
of this cultivar (B) displays an altered phenotype where stipules and leaflets
are reduced in size, and have pointed ”rabbit-eared” tips.

The emergence of rogues among populations and their inheritance properties were identified

through crossing rogue and wild type individuals. First, rogue peas emerge spontaneously

in populations of self-fertilized individuals. Rogue individuals can then only produce rogues.

Crosses between rogue and wild type peas produce F1 plants with intermediate phenotypes

(Class 3 individuals), where the lower nodes display wild type leaf morphology and subse-

quent nodes develop rogue-like traits as the individual develops. This could suggest that

the activity of the underlying genetic or epigenetic mechanism occurs during plant growth

rather than at fertilisation. The F2 progeny from hybrid crosses then display a complete

morphological shift to the rogue phenotype, with a penetrance range of 97-99% - vastly
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exceeding expected inheritance ratios in Mendelian genetics [6, 8]. Notably, no segregation

is observed either when rogue-like F1s or F2s are back-crossed to a wild type [6, 7]. There

are occurrences where progeny from back-crosses revert to intermediate phenotypes, though

these individuals then switch back to rogue phenotypes as the plant develops [8]. From his-

torical literature on the rogue phenotype, it is clear Mendelian laws do not apply to rogue

peas, and that other genetic or epigenetic mechanisms are present.

The causal locus of the rogue phenotype, and its inheritance mechanism remain unidentified,

despite a long history of P. sativum research as a model legume species [9]. P. sativum has

been widely utilised as a genetic, biochemical and physiological model organism, owing to

its short generation time, ease of growth and the ability to perform crosses. However, the

advancement of genomic research in pea has been slower than in other model plants and this

has limited progress in defining the mechanism underlying the rogue phenotype [9]. This

is due to the large and complex pea genome (4.5Gb), consisting mainly of repetitive DNA

and transposable elements which made modern genomics approaches challenging [10, 11].

However, with the first publicly available pea genome and transcriptome released in 2019,

’omics techniques can now be more readily used in P. sativum to investigate the genomic

locus and the mechanism of the rogue phenotype [11].

The non-Mendelian inheritance of the rogue phenotype matches the epigenetic phenomena

known as paramutation. Paramutation is an epigenetic drive that alters the way in which

genes are inherited. The paramutated alleles of affected loci are inherited at much greater

frequencies than expected in traditional models of Mendelian Inheritance [7, 12, 13]. Para-

mutation involves an epimutation-inducing allele, termed the “paramutagenic” allele, and

alleles susceptible to paramutation, termed “paramutable”. Alleles which remain unaffected

by epimutation are “neutral”. P. sativum was likely the first example of paramutation in

any species, documented over a century ago, though the definition of the phenomena was

not yet established [6].

Subsequently paramutation has been observed and characterised in other plants such as

maize, petunia, and tomato, as well other eukaryotic organisms like Caenorhabditis elegans,

Drosophila melanogaster and Mus musculus have been investigated at the molecular level

with great advances in elucidating how paramutation operates [13–18]. Our greatest under-

standing of paramutation mechanisms is derived from extensive studies on maize, which has

become a strong model for the epigenetic phenomena [19].
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Mechanistic investigation of paramutation across multiple model eukaryotes is important,

as it can improve molecular techniques and develop our understanding of genetic and epi-

genetic inheritance. Once we understand what is required for paramutation, it could be

intentionally induced to fix valuable crop traits, aiding crop development and research and

potentially increase global food security [9, 20–22]. Maize has served as an excellent or-

ganism to study paramutation, though there are still many gaps in our understanding of

paramutagenic inheritance - particularly surrounding how this phenomena is first established

within populations, and how it operates across multiple paramutant organisms. There are

currently a limited number of paramutant examples, with an over-representation of affected

loci related to pigmentation [23]. Because of this, our understanding of paramutation in

terms of conserved mechanisms and the frequency with which epimutation occurs is lacking.

Incorporating more examples of non-Mendelian inheritance like the rogue paramutation in

P. sativum can increase our understanding of epigenetic inheritance, and identify potential

conserved mechanisms in paramutant eukaryotes. Therefore, using what has been identi-

fied at well characterised paramutant loci such as those in maize set examples of molecular

characters to look for in other paramutant angiosperms like P. sativum.

Our current understanding of the mechanisms of paramutation relies heavily on studies in

maize. Multiple paramutagenic loci were identified through mapping studies: r1 (red1 or

coloured1 ), b1 (booster1 or coloured plant1 ), pl1 (purple plant 1 ), p1 (pericarp colour 1)

and lpa1 (low phytic acid 1 ). All paramutated loci except lpa1 are involved in flavonoid

biosynthesis pathways affecting the pigmentation of various plant organs [23]. Thanks to

forward genetic screens, several genes involved in the paramutation mechanism at these

loci in maize were identified: the Mediator of paramutation (MOP) genes and Required to

Maintain Repression (RMR) genes. Orthologues of MOP and RMR genes in Arabidopsis

thaliana encode proteins associated with small-interfering RNA (siRNA) synthesis and the

RNA-directed DNA Methylation pathway (RdDM) [24–27], leading to the model that the

RdDM pathway is the key driver of paramutation. The orthologue of MOP1 in A. thaliana

encodes RNA-DEPENDENT RNA POLYMERASE 2 (RDR2), which is a key component

of RdDM [24]. Targeted methylation of repetitive regions of the genome like transposons

is carried out by a complex formed by RDR2 and the plant-specific DNA-dependent RNA

polymerase IV [24, 28]. This RdDM complex produces short double-stranded RNAs which

are then cleaved by Dicer-like endonucleases. The resulting 24-nt siRNAs direct Argonaute

proteins to Pol V transcripts and recruit a cytosine methyltransferase to methylate the
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target genomic region, reducing or completely silencing gene expression [14, 29–32]. The

claim that RdDM drives paramutation in maize is strongly supported, as loci affected by

5-methylcytosine patterns and transcriptional repression through orthologous RdDM ma-

chinery imitate the well described regulatory pathway in A. thaliana [19, 29, 33–36]. The

extensive assays and research in maize serve the purpose of elucidating epimutation mech-

anisms, and better inform us of which transcriptomic constituents to investigate in other

examples of paramutant species.

Similar mechanisms to those in maize also appear to be driving paramutant interactions

in other species. Much like in maize, the sulfurea paramutation in tomato correlates with

siRNA production and differential methylation at the promoter region for the SLTAB2

locus. A chlorophyll-deficient phenotype in paramutant individuals is a result of transcrip-

tional repression of SLTAB2 [18, 37]. The commonality in paramutation mechanisms also

extends to C. elegans, D. melanogaster and M. musculus where the involvement of herita-

ble RNA-induced silencing and differential DNA methylation patterns has been observed

[15, 17, 38, 39]. In C. elegans, nuclear RNA-interference (RNAi) and chromatin factors

induce multi-generational inheritance of piwi-interacting RNAs (piRNAs) and environmen-

tal RNAi silencing of transgenes for up to 20 generations [38, 39]. Similar studies in D.

melanogaster were able to induce a strong paramutagenic effect by insertion of transgenes

in distant euchromatic regions from transposable P-element tandem repeats [17]. Mater-

nally inherited sRNAs matching the tandem repeat region induced a paramutated state to

transgenes, which then became paramutagenic themselves in subsequent generations [17].

The RdDM pathway, siRNAs, and repeat-associated mechanisms identified in model organ-

isms prompted us to investigate whether a similar mechanism may be associated with the

non-mendelian epigenetic inheritance of rogue phenotypes in P. sativum, and whether these

hallmarks of paramutation may be used to identify the genomic locus responsible for the

rogue phenotype.

The first study with the aim of investigating the pea rogue locus at the molecular level was

published by Santo et al. (2017) [40]. A genome-wide methylation assay using methylation-

sensitive restriction enzymes (HpaII & MspI) and reverse phase high-performance liquid

chromatography (RP-HPLC) revealed no significant global differences in cytosine methy-

lation between rogue and wild type epigenotypes of the Onward cultivar [40]. They then
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attempted to differentiate epigenotypes by methylome in leaf DNA, using methylation-

sensitive amplified fragment length polymorphism (MS-AFLP) analysis to increase analyti-

cal sensitivity, and identified 22 polymorphic markers between both epigenomes out of 2,238

tested. For 12 of these markers, DNA methylation differences between rogue and wild type

were also conserved in pollen DNA [40]. Of the polymorphic markers identified through

MS-AFLP, 13 of 22 had similarities with expressed sequences in Medicago truncatula and

Cicer arietinum - identified using the Basic Local Alignment Search Tool (BLAST, NCBI).

Santo et al. (2017)[40] then assessed expression of all 22 sequences between epigenotypes by

quantitative real-time RT-PCR, but was not able to detect 8. The remaining 14 sequences

were successfully detected, though no differences in expression were observed regardless of

polymorphic methylation patterns [40]. This study unfortunately suffered from severe limi-

tations. First of all, the authors did not take into account that two lines of peas that have

been grown separately for many generations will accumulate epigenetic differences that are

unrelated to the rogue phenotype. Secondly, the candidate approach based on 2,338 mark-

ers would only cover about 0.01% of the pea genome, assuming an average size of 300 bp,

making it a 1 in a 10,000 chance that the rogue locus is included this set. Thirdly, the differ-

entially methylated sequence hypothetically responsible for the paramutation may be quite

distant from the gene it regulates, as is the case for the maize b1 gene whose differentially

methylated regulatory sequence is located 100 kb upstream, so searching for expressed genes

directly in DNA markers is unlikely to succeed. Overall, this study contributed little to the

search for the rogue locus.

The recent publication of a reference genome for P. sativum enables us to revisit the prob-

lem of identifying the rogue locus by searching genome-wide. While whole-genome DNA

methylation sequencing would be informative, it remains very costly. The search space

and cost may be reduced by searching the mRNA transcriptome and small-RNAome for

common markers of paramutation-silenced alleles and differential sRNA abundances, then

using targeted methylation assays on the candidate loci. Study design must also consider

that genetic and epigenetic drift contribute to variations between rogue and wild type lines,

as they have been kept separate for over 100 years. To counter this, multiple rogue pea

cultivars should be studied and commonly implicated loci identified. However when using

multiple rogue cultivars, one must keep in mind the causal locus of the rogue phenotype may

be cultivar-specific. Many rogue P. sativum cultivars are available through the John Innes
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Center (UK), providing the necessary material for this approach. Recent progress in long-

read transcriptome sequencing enables better annotation and quantification of transcripts,

particularly for complex genomes as in P. satiuvm [41–43]. However, the throughput of

long-read sequencing is limited, and therefore it must be paired with short-reads to achieve

a comprehensive and quantitative coverage of the pea transcriptome.

Detailed parameterization of the phenotype is another gap in characterising the rogue epimu-

tation of P. sativum. Few studies to date have investigated rogue phenotypic properties using

modern phenomics approaches. Brotherton (1923) [8] manually assessed the length-to-width

ratios of wild types, rogues and hybrid crosses of the Gradus cultivar, identifying shifts in

F1 phenotype at the 5th-7th leaflet node. The leaf area and cell size of rogue and wild type

epigenotypes has also been assessed in 3 cultivars (Thomas-laxton, Greengolt and Sutton’s

Early Giant) [44]. Results confirmed a mean leaf area reduction of 35%, and stipule area

reduction of 44%. There were no differences observed in cell size between epigenotypes -

only less cells present in rogues. Current phenomics software packages and machine learn-

ing techniques could be utilised to increase analysis throughput, and to develop phenotypic

standards for paramutant cultivars of P. sativum. A reference for the phenotypic classifi-

cation of epigenotypes would aid the future study of the rogue phenotype, and provide a

quantitative, high-throughput and unbiased scoring system for rogue penetrance.

It is clear further molecular investigation of the rogue locus is required to identify the

epimutated region, the mechanism driving non-mendelian rogue inheritance, and affected

developmental pathways inducing shifts in leaf morphology. The availability of the new pea

reference genome and transcriptome means transcriptomic analysis will increase in accu-

racy, enabling greater confidence and accuracy in identifying differentially expressed genes

which may be involved with the rogue phenotype and paramutation. Today’s sequencing

technologies provide ample cost-effective sequencing, read length and depth to identify the

causal locus. Phenomic analysis packages such as Momocs increase analysis throughput

when utilised in conjunction with machine learning platforms [45]. A combination of the

two can develop classification standards for all paramutated cultivars.

The aims of my study were to:

1. Develop a list of candidate genes for the rogue locus generated through a combination

of long- and short-read mRNA sequencing, as well as small-RNA sequencing, in 4 P.
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sativum cultivars (Thomas Laxton, Black-Eyed Susan, Daisy and Sutton’s Hundred-

fold),

2. Create an improved reference transcriptome annotation through long-read sequencing

to increase the sensitivity of differential gene expression analysis,

3. Confirm the inheritance pattern of the rogue phenotype in selected cultivars is true to

that described in prior literature,

4. Develop an automated phenomics classification method to quantify the rogue pheno-

type for selected cultivars enabling systematic testing for rogue trait inheritance.

Based on similarities in the phenotypic shift from wild type to rogue in multiple P. sativum

cultivars, I hypothesise that a single locus may be responsible for the rogue paramutation

across cultivars. Based on the RdDM model of paramutation, I also hypothesise that the

affected gene is down-regulated in rogue epigenotypes and that the down-regulation cor-

relates with small RNA production at regulatory sequences. I expect the causal locus is

involved in developmental pathways which can affect leaf morphology. I also expect that

F2 generation hybrids from rogue and wild type crosses will display complete transitions to

the rogue phenotype, as described in early literature.

In this study I identified candidate genes for the rogue locus, further developed the reference

transcriptome annotation, and developed a framework for the quantitative characterisation

of the rogue phenotype. I describe my research in the following sections.



Chapter 2

Methods

2.1 Plant growth conditions

Individuals from P. sativum cultivars ‘Thomas Laxton’, ‘Daisy’, ‘Black-Eyed Susan’ and

‘Sutton’s Hundredfold’ (supplied by the Australian Grains Genebank and the John Innes

Centre), along with previously crossed F1 and F2 generation hybrids were grown within a

controlled glasshouse environment at an average ambient temperature of 22◦C and subjected

to long-day light cycles (8 h dark, 16 h light). The soil medium macro/micro nutrients and

other constituents consisted of 0.5 L Vermiculite, 0.5 L Perlite, 35 g Macracote Coloniser

Plus 4-month slow release fertiliser (15N : 3P : 9K), 30 g Nitrogen slow-release fertiliser

(40N : 0P : 0K), 25 g Water holding granules, 15 g Trace elements (6Mg : 6.5FE :5.4S :

1.5Mn : 0.4Zn : 0.14B : 0.07Mo), and 5 g Garden lime per 30 L of soil.

2.2 RNA extraction

Whole stipules were harvested from the third leaflet node of individual seedlings 2 weeks

post-emergence and snap-frozen in liquid nitrogen. Whole stipule tissue samples were then

stored at -80◦C until required for extraction. Each sample was crushed into a fine powder

by pestle and mortar within a laminar flow cabinet and prevented from thawing using liquid

nitrogen. Samples were then weighed on a microgram scale to 1 mg of whole stipule tissue per

extraction. Total RNA was then isolated using Invitrogen TRIzolTM reagent (ThermoFisher

Scientific) using the manufacturer’s protocol (TRIzol reagent user guide, ThermoFisher

9
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Scientific). Minor modifications to the protocol included an extended centrifugation for 15

minutes, as some RNA precipitate was still suspended in solution for some samples. RNA

precipitate pellet was washed twice rather than once, as it was found this removed further

impurities and improved the overall quality of the RNA. Centrifugation between washes

was also extended to 10 minutes, to ensure the RNA pellet was anchored to the bottom of

the Eppendorf tube during wash steps. Total RNA pellets for each sample were then re-

suspended in RNase-free water, and subsequently quality-checked and quantified utilising

the NanoDropTM spectrophotometer.

2.3 mRNA sequencing libraries

Library preparation was carried out utilising the Illumina TruSeq stranded mRNA kit follow-

ing the manufacturer’s protocol. Libraries were quantified utilising the Qubit 4 Fluorometer,

and quality-checked on the Agilent TapeStation, to ensure the expected final product frag-

ment size peaked at 260 bp. Libraries were then normalised to 10 nM per sample and pooled

for sequencing on the Illumina Nextseq 550 platform. Pooled libraries were sequenced using

an Illumina NextSeq 550 instrument (v2.5 75 cycle kit, single end) at a total concentration

of 1.8 pM, along with a PhiX 76 SE + 6 bases index spike-in control.

2.4 Long-read sequencing libraries

Long read libraries for Thomas Laxton and Daisy cultivars were prepared with the Oxford

Nanopore PCR-cDNA Barcoding kit (SQK-PCB109) following the manufacturer’s guide-

lines. Fifty-nanograms total RNA input was used for each of the 12 samples (3 wild types, 3

rogues for each cultivar). Samples were reverse-transcribed into cDNA and PCR amplified

and barcoded for 15 cycles in a thermocycler. Two microlitres of each amplified library

was pooled, for a total of 24 µl as per the protocol. The final sample volume was made

to 150 µl with the addition of 75 µl sequencing buffer and 51 µl of loading beads required

for nanopore sequencing. One micro-litre of the final pool was then carefully loaded onto

a Flongle (Oxford Nanopore Technologies Limited), and quality checked by sequencing the

pool for 300 k reads on a MinION (MK1c, Oxford Nanopore Technologies Limited). It was

important to ensure all barcode identifiers were present and pore occupancy was high, as
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this is indicative of a high-yield of long reads. Once satisfied with quality, the total pool was

then loaded onto a PromethION flow cell and sequenced on the PromethION P24 (Oxford

Nanopore Technologies Limited) over 72 hours.

2.5 Small-RNA sequencing libraries

The same total RNA used for long-read sequencing from pea cultivars Thomas Laxton and

Daisy was also utilised to produce small-RNA libraries, with the addition of the Sutton’s

Hundredfold cultivar. Triplicates of each epigenotype made a total of 18 samples. Ten

micrograms of total RNA per sample was pre-size selected for small-RNAs using a 15%

denaturing polyacrylamide gel (4.2 g Urea, 0.5 ml 10X MOPS, 3.75 ml (w/v) 19:1 acrylamide

bis-acrylamide, 2.5 ml RNase-free H2O, 70 µl 10% (w/v) ammonium persulphate, 3.5 µl

TEMED) along with 5ul denatured NEB miRNA marker as reference. Prior to loading, total

RNA was first vacuum dried and re-suspended in 15 µl of loading solution for the denaturing

gel (2.75 µl Formaldehyde (40%), 7.5 µl de-ionised Formamide, 0.75 µl 10X MOPS, 2 µl 10X

dyes (cylene cyanol FF, bromophenol blue). The gel was pre-run at 100V for 30 mins with

0.5X MOPS as buffer. Samples were then loaded, and the gel was run at 50V until both

dyes had entered the gel, then turned up to 100 V until the bromophenol blue band had

reached the end of the gel (approx. 2.5 hours). The gel was then stained for visualisation

on a UV transilluminator with 2.5 µl SYBR gold, and bands were cut between the 20–30 bp

region (A.3). Excised gel bands were then shredded in a shredder tube and rotated overnight

in 400 µl 0.3M NaCl to extract the small-RNAs from the gel. Extracted small RNAs were

then re-precipitated and re-suspended in 6 µl RNase-free H2O. Three micro litres of RNA

per sample was utilised for library preparations using NEBNext Multiplex Small RNA kit

for the Illumina platform – the manufacturer’s guidelines were followed for all preparations.

Library quality was assessed after PCR amplification using the Agilent TapeStation HS-

D1000 screentape to ascertain average fragment size, concentration and to check for any

primer dimers or other potential quality issues. Libraries were then cleaned-up using a 2.2X

concentration of magnetic beads synthesised in-house [46]. Clean libraries were then pooled

to make up 20 µl at 5 nM concentration, and again quality assessed using the HS-D1000

screentape. A second size selection gel and extraction were conducted on the pool, to remove

remaining primer dimers and produce a final clean pool ready for sequencing. As a final

quality check before a full sequencing run, 3 libraries were spiked into a MiSeq sequencing
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run to ensure libraries sequenced as expected, with correct barcoding, read length and read

quality. Once the quality of the spiked-in libraries was assessed, the Illumina NextSeq 550

system was used to sequence the small-RNA pool using the 75SE High output run kit.

2.6 Short-read RNA-seq analysis

In this study I analysed two short-read transcriptome data sets, denoted mRNA1 and

mRNA2. mRNA1 was the data generated in the lab experiments described above. mRNA2

was an additional data set generated prior to this study using the same workflow as mRNA1,

with some slight differences; rogue and wild types were sourced from different seed banks

(John Innes Centre and Australian Grains Genebank respectively), 2 replicates were used

per epigenotype, sequencing was paired-end, and input tissue was whole leaf tissue rather

than stipules alone (Table 2.1).

The mRNA-seq analysis pipeline used is presented in Figure 2.1. Sequencing data for each

library from data sets mRNA1 and mRNA2 was quality-checked using FastQC [47], v0.11.9.

Once initial quality was confirmed, libraries were then trimmed of their standard Illumina

mRNA adapters using Trim Galore! v0.6.5, to ensure adapter removal for accurate down-

stream analysis [48]. The data was re-quality checked using FastQC to ensure adapters were

successfully removed, and to further confirm the quality of the RNA-seq libraries. The P.

sativum genome [11] v1a release was indexed using Hisat2 [49], v2.1.0, allowing reads to

then be mapped and aligned to the indexed reference genome. The pre-processed data files

were converted from SAM to BAM, to then allow for counting of assigned genomic features

utilising the featureCounts function in the Rsubread package [50], v2.2.2. The resulting

genomic feature counts were then analysed using the edgeR [51], v3.30 DE analysis package

in R, following the software manual, with alterations made to suit the study design.

Lowly expressed genes were removed from the analysis if their expression failed to exceed

0.5 counts per million in at least 2 samples, as statistical power is lost on rare or absent

transcripts. Gene counts were also normalised with the TMM method [52]. I used the general

linear model (GLM) approach in edgeR to estimate common dispersion, trended dispersions

and tagwise dispersions in my data, and then fitted the negative binomial generalised linear

model. I performed the likelihood ratios test (LRT) to test for DE genes within my modelled

count data. DE genes between rogue and wild type samples, as well as the F1 lower and
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Figure 2.1: DE analysis pipeline. Raw read data was first processed
in FastQC to determine initial read quality. Adapter sequences and poor
quality bases were then removed using Trim Galore!, and the remaining good
quality reads were again assessed by FastQC. Trimmed reads were then aligned
to the P. sativum reference transcriptome, and subsequently processed by
the featureCounts function in Rsubread to produce read counts mapping to
reference features (exons). Counts were then analysed to in edgeR to identify
DE genes between rogue and wild type samples. Top DE genes in each cultivar
were then combined into a candidate gene matrix.

upper node, were called at a false discovery rate cut-off of p ≤ 0.1, and a log2-fold change

of 1.5. The same analysis pipeline was also used to analyse the cultivars separately, which

then allowed for a comparison of DE genes across cultivars, to identify any commonality in

down or up-regulated genes.

2.7 Long-read RNA-seq analysis

Raw long read data were basecalled with Guppy v4.4.1 (Oxford Nanopore Technologies Lim-

ited) using the PromethION-specific high-accuracy DNA basecalling model. Read quality

was checked using LongQC - a read quality assessment package tailored for long-read se-

quencing data [53], v.1.20b. Sequencing adapters were trimmed with Guppy. Trimmed long

reads were then aligned to the reference transcriptome using Minimap2, with recommended

options for long-read cDNA sequencing data [54], v2.17. BAM alignments from each sample
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were pooled using SAMtools [55], v1.9 for transcript discovery and quantification with the

bambu R package (0.18129/B9.bioc.bambu, pre-publication release v1.02).

2.8 Small RNA-seq analysis

Raw sRNA reads were first quality assessed using FastQC to ensure expected read lengths

were present, and that read quality criteria such as duplication, GC content, and adapter

content were at acceptable levels. Raw reads were then trimmed using TrimGalore! to

remove adapter sequences and poor quality reads, with settings set specific to the Illumina

platform which ensured correct sRNA adapter sequences were removed. Following a second

quality check with FastQC, reads were filtered using the ’awk’ unix command to only retain

reads within the size parameter of 21–25 nt in length. Filtered and trimmed sRNA reads

were then aligned and clustered onto the reference genome using the ShortStack package

[56], v3.6. ShortStack first indexed the reference, then utilised Bowtie [57], v1.2.1.1 as a

dependency to align sRNA reads to the reference. Aligned reads were sorted into BAM files

using SAMtools then de-novo clustered across the reference genome to identify sRNA cluster

accumulation. ShortStack then proceeded with quantification for each individual read group

(sample) to generate counts of aligned sRNA reads. Major sRNAs at each identified cluster

mapping to a locus were called, based on the most abundant sRNA. ShortStack then made

’DicerCalls’ for each identified sRNA cluster, which called the most dominant sRNA lengths

at each given aligned cluster. RNAs not related to the RNAi process were given a DicerCall

of ’N’, which are often fragmented products of abundant RNAs.

Read counts were analysed using edgeR to detect DE sRNA clusters between rogue and

wild types, using normalisation and statistical tests previously described for DE analysis of

mRNA data. I further analysed sRNA cluster data using the plyranges and the Genomi-

cRanges R packages [58], v1.42 to identify loci with sRNA clusters within 10 kb.

2.9 Whole-genome DNA methylation analysis

I used whole-genome CG methylation data previously generated by one of my supervisors,

Quentin Gouil. Genomic DNA from leaf tissue of one Sutton’s Hundredfold rogue and one
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Caméor wild type was sequenced on one PromethION flow cell per sample. Reads were base-

called with Guppy v4.0.11 and methylation in the CG context was called with Nanopolish

v0.13.2 [59].
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Table 2.1: Summary of transcriptomic and methylation data sets

Target Dataset Data
Wild type
replicates

Rogue
replicates

Cultivars Purpose

mRNA mRNA1 mRNA 75SE sequencing 3 3
Thomas-Laxton,
Black-Eyed Susan, Daisy

Discover DE genes
between epigenotypes

mRNA mRNA2 mRNA 75PE sequencing 2 2
Thomas-Laxton,
Black-Eyed Susan,
Sutton’s Hundredfold

Discover DE genes
between epigenotypes

mRNA Long-read
Long-read PCR
cDNA sequencing

3 3 Thomas-Laxton, Daisy
Improve transcriptome
annotation

sRNA sRNA small-RNA sequencing 3 3
Thomas-Laxton, Daisy,
Sutton’s Hundredfold

Identify sRNA clusters
neighbouring genes

gDNA CpG Methylation
Nanopore direct
DNA sequencing

1 1
Caméor,
Sutton’s Hundredfold

Identify differentially
methylated regions or loci
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2.10 Candidate gene selection criteria

Candidate gene selection for the rogue locus from transcriptomic analysis was mainly deter-

mined by the commonality of DE genes across cultivars, as I hypothesised the rogue locus is

conserved across paramutant pea cultivars. If a given candidate gene was repressed in some

cultivars but not others, additional criteria based on assumptions of the RdDM model were

used: presence and differential accumulation of small RNAs, presence and differential abun-

dance of DNA methylation (Figure 2.2). Other selection criteria included consistency in the

mRNA2 data set, and potential candidate gene function and implicated gene pathway in

other organisms . Gene functions were investigated using the Basic Local Alignment Search

Tool (BLASTn/BLASTx) from the National Center for Biotechnology Information (NCBI),

using the standard nucleotide database (highly similar sequences) and the non-redundant

protein sequences database (default search options).

Candidate genes which translated to functional proteins were then further investigated us-

ing the UniProt protein database to obtain information about the protein function and

associated gene families (Uniprot.org, accessed 02/08/2021). Using my selection criteria, I

then created a candidate ranking matrix to identify the strongest candidates, and to reduce

any bias in candidate gene selection for the rogue locus. Each gene receives a score based

on how many selection criteria conditions the gene has met; e.g. if gene1 is significantly

down-regulated in 3 rogue cultivars, and has sRNA clusters within 10 kb, it receives a score

of 4.
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Figure 2.2: Candidate gene selection. Selection criteria for rogue candi-
dates largely focused on repressed genes identified through DE analysis which
are common across all assessed cultivars, coinciding with my hypothesis that
the rogue locus is conserved across cultivars of P. sativum. Genes which may
not be repressed in all cultivars, but fit other selection criteria such as presence
of sRNA abundances and gene models involved in plant developmental path-
ways are also considered as good candidates. F1N10 = 10th leaflet node of F1
hybrid, F1N3 = 3rd leaflet node of F1 hybrid. TSS = transcription start site.
Solid arrow indicates direct gene candidature, dotted lines indicate further
evidence to be considered if candidate isn’t down-regulated in all cultivars.

2.11 Crossing & phenomics analysis

Mature wild type and rogue peas for each cultivar were crossed by selecting inflorescences

which had dehisced their pollen and applying the pollen to appropriately developed recipi-

ent flowers. Rogue peas were used as donors and wild types as recipients, with 10 replicate
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crosses per cultivar. F1 generation seeds were harvested once pods had dried and were re-

sown under the same growth conditions and soil medium as the previous parent generation.

Controls from parent lines were also re-sown to allow later phenomic comparison of the

F1s, to capture any potential shift in phenotype, which may be indicative of a successful

cross. Once individuals had developed 10 leaf nodes, whole stipules from the first 8 nodes

were carefully excised, and image-scanned straight away for later analysis. Raw image files

of whole stipules for each individual were first processed in GIMP (GNU Image Manipu-

lation Program) in order to manually segment each stipule into a single image file. The

segmented stipule images were then converted to binary images and filled to ensure no gaps

were present in the image after conversion, using a custom ImageJ Fiji script. The stipule

images originating from the left side of the plant were flipped, so the image orientation

matched the stipules from the right side. Manipulated images were then imported into R

and analysed using the Momocs morphometrics package ([45]). I first used the Elliptical

Fourier Transformation (EFT) to decompose the leaf shapes into harmonics, which I then

used to determine and compare the average shape for each epigenotype. I continued by

using Momocs ’coo’ functions to calculate the length (coo length), width (coo width) and

area (coo area) of stipule samples, which I then used to calculate length-to-width ratios for

differentiating between rogue and wild types samples, as well as F1 and F2 hybrids for each

cultivar.

2.12 Automated classification model

Stipule area and length-to-width ratio data generated from the Momocs analysis pipeline was

exported and utilised in the KNIME Analytics Platform as phenotypic descriptor variables

to differentiate between rogues and wild types. The Decision Tree Learner model was used

to characterise stipule samples by randomly selecting 80% of the data set as training data

for the model, and the remaining 20% as the test set. Due to the reduced sample size for

the Black-eyed Susan cultivar, 65% of the data was used as the training set, and 35% as

the test set in this case, though results were uninformative due to the small sample size.

The Gini Index splitting method was used to calculate the most powerful variable which

differentiated between rogues and wild types as the root node, and to subsequently determine

node splits. Reduced error pruning was used to reduce tree complexity and avoid over-

fitting data. Through systematic testing of modeling variables I found the Gini Index and
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reduced error pruning methods best suited my data and produced the most accurate results.

The model ran iterations of the analysis until all stipule samples had been categorised as

rogue or wild type. Classifications were then summarised in a confusion matrix, detailing

correct classifications, mis-classifications, model accuracy, error rate and the Cohen’s kappa

coefficient (k).

A single model to encompass all cultivars was unsuitable due to cultivar-specific phenotypic

properties which impeded the pipeline’s ability to accurately classify individuals into their

correct epigenotype. I tested the classification model using combined phenomics data from

individuals used in both mRNA1 and mRNA2 data sets, though this caused higher mis-

classification rates were present due to variances between each data set. This may be the

result of plant material for each data set originating from different accessions and seed

batches. Therefore, only phenomics data from individuals in the mRNA1 dataset were used

for epigenotype classification of individual cultivars.

I then later used all mRNA1 rogue and wild type parent data for each cultivar to re-train

the classification model, and assessed the inheritance pattern in F1 and F2 hybrids of each

respective cultivar. As most hybrids transitioned from wild type to rogue from the 4th node

on-wards, I used a ’majority rules’ method to classify hybrids as rogue or wild type using

nodes 4-8. This allowed me to classify whole individuals as rogue or wild type-like, rather

than just at the stipule level used in parent classification. As an example, if plant X’s hybrid

nodes 4-7 are classified rogue, I deem the entire individual as rogue.

Gini = 1 -
∑n

i=1(pi)
2

where pi is the probability of an object being classified to a particular class.

k = 2×(TP×TN−FN×FP)
(TP+FP)×(FP+TN)+(TP+FN)×(FN+TN)

where TP are the true positives, FP are the false positives, TN are the true negatives, and

FN are the false negatives.



Chapter 3

Development of phenomics

methods to enable accurate rogue

characterisation and classification

3.1 Summary and Objectives

The first morphometric properties of rogue peas described in the early 1900’s were the reduc-

tion in leaflet and stipule size and their change in shape [6]. These studies were conducted

on the Gradus cultivar, where the unusually high penetrance of the rogue phenotype was

noted through analysing the length-to-width ratio of leaflets and stipules of rogue plants,

wild type plants, and the successive generations of their progeny. Though this key pheno-

typic property was identified, investigation of the epimutant phenotype was limited due to

the use of a single mutant cultivar. To fully characterise and describe the rogue phenotype,

the analysis of multiple cultivars and their associated hybrid crosses is required because it

will more accurately represent the altered rogue morphometric traits.

In my experiments I aimed to establish a quantitative description of the rogue phenotype

across multiple cultivars, and use it to systematically test the inheritance pattern of rogue

leaf morphology in rogue and wild type hybrid crosses in the F2 generation. If crosses were

successful, I would expect to see a shift in the leaf phenotype towards the rogue phenotype

21
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and a deviation from the wild type phenotype, particularly in leaf area and length-to-

width ratio as the F1 hybrid develops. Prior studies on the rogue phenotype describe the

inheritance as highly penetrant in the F2 generation, and in subsequent generations [6, 8].

I would expect the same result for my selected cultivars if they are indeed ’true’ rogues. My

crossing study was therefore used to investigate inheritance of the rogue phenotype and to

characterise rogue stipule morphometric properties.

My crossing studies also served to establish phenomic parameters that can be used as a proxy

for genotyping, or epigenotyping, my plant material. No markers are available to conduct

a standard genotype screening due to the DNA sequence similarity between epigenotypes

within cultivars and the fact that the causal rogue locus has not been identified. This pre-

vents high-throughput genotypic characterisation of offspring in crossing studies. I aimed

to utilise the phenomic descriptor variables of length-to-width ratio and leaf area to begin

developing a high throughput analysis technique for the rogue pea utilising and automated

machine learning method. This approach should enable efficient characterisation of leaf

morphometrics which will then allow for samples to be categorised to their correct epigeno-

type.

3.2 Quantifying leaf morphology in rogues and hybrids

Using phenomic analysis, I investigated if the rogue phenotype inheritance properties de-

scribed in the literature are true in my selected cultivars. From the literature, I expected

rogue peas to display reduced stipule area in comparison to wild types and a larger length-

to-width ratio (l/w), which quantifies the pointed ‘rabbit-eared’ rogue phenotype [6, 8]. I

expected the rogue phenotype would be inherited at high rates in rogue/wild type hybrid

crosses, and an intermediate phenotype would be observed in F1s, while a more drastic

shift to a complete rogue phenotype would be observed in F2s. To test this, I grew rogue

and wild type parent populations of the Thomas Laxton cultivar, along with populations

of rogue and wild type F1 and F2 hybrid crosses, and extracted morphometric data from

image scans of their leaves.

Thomas Laxton rogue and wild type epigenotypes were clearly differentiated by both l/w

ratio and stipule area (Figure 3.1 A, B). Wild type l/w ratios peaked at approximately 1.7

with a mean of 1.71, whereas rogues peaked at 2.35 with a mean of 2.3 (Table A.4). This
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differentiation between parent epigenotypes is also reflected by their stipule area, measured

in pixels (k = thousand, px = pixels). Wild types show large variation in their size spanning

between 50 kpx to 150 kpx with a mean of 111.9 kpx (Table A.4) while rogue samples have

a distinct peak at 50 kpx (Figure 3.1 B) with a mean of 39.5 kpx (Table A.4). Some of the

variation observed in stipule area is derived from the age of individual leaves, as multiple

leaf nodes are plotted together - this is most obvious in the wild type samples (3.1).

Figure 3.1: Thomas Laxton rogue inheritance fits classical defini-
tions. Distribution of stipule length-to-width ratios (A) and areas (px) (B)
of wild type and rogue epigenotypes, as well as F1 and F2 generation hybrid
crosses. Individual data points for each stipule node for both l/w ratio (C) and
area (D) are shown. (Stipules total = 480: Rogue = 48 (3 individuals), wild
type = 48 (3 individuals), F1 = 96 (6 individuals), F2 = 288 (18 individuals)).

F1 and F2 hybrid offspring were more similar to rogues than to wild types in both l/w ratio

and stipule area. F1 samples averaged a 1.99 l/w ratio, and F2 a 2.15 l/w ratio (Table

A.4). Of note, most F1 and a subset of F2 stipules from lower leaflet nodes 1–4 more

closely resembled the wild type stipules and were responsible for the increased number of

observations with a l/w ratio below 2 (Figure 3.1 A, C). Similarities between rogue parent
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and hybrid samples were also observed in stipule area, where density peaks clustered together

at approximately 50 kpx (Figure 3.1 B). Rogues and hybrids split from wild types by stipule

area from as early as the 2nd node (Figure 3.1 D). Overlaying the mean leaf shapes for each

epigenotype and their hybrid offspring confirmed that rogues displayed a much narrower

and smaller stipule relative to its wild type counterpart (Figure 3.2 D). The F1 hybrid mean

shape differed somewhat from the wild type (Figure 3.2 E), while the F2 mean shape shifted

more strongly towards the rogue phenotype (Figure 3.2 C,F).

From these analyses I determined that the inheritance patterns observed in hybrid crosses

for the Thomas Laxton cultivar are consistent with expected patterns of rogue inheritance

and paramutation, and exhibit what we know as the rogue phenotype according to classical

definition.

Figure 3.2: Thomas Laxton mean stipule shape. The average stipule
shape for wild type, rogue, F1 & F2 samples generated using the Momocs
morphometric and shape analysis tool in R. Stipules from all leaflet nodes
were used to generate the mean shape. F1 and F2 mean stipule shapes closely
resemble one another (A). F1s are slightly wider than rogues (B). F2s match
very closely with rogues (C). Rogues and wild types show large variations
from one another (D). The shift in phenotype can be observed comparing
hybrids to wild type mean shapes (E,F). (Stipules total = 480: Rogue = 48(3
individuals), wild type = 48(3 individuals), F1 = 96(6 individuals), F2 =
288(18 individuals)).

I applied the same analytical approach to rogue inheritance patterns and leaf morphology

traits in hybrid offspring of the Daisy cultivar. I found leaf morphology in the Daisy cultivar

fulfilled rogue inheritance and phenotype expectations detailed in the literature. Wild type

samples had a l/w ratio of 1.6, whereas rogue and hybrid cross samples peaked between
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2–2.2 l/w ratio, reflecting a strong differentiation between wild type parents and the hybrid

offspring which displayed rogue morphological traits (Figure 3.3 A). Rogue, F1 and F2 hybrid

density peaks align closely, with similar mean ratios of 2.04, 1.87 and 1.95 respectively (Table

A.3). Samples from nodes 1 and 2 for the F1 hybrid display similar l/w ratios and area before

differentiating to rogue phenotypic properties in subsequent nodes. F2 hybrids primarily

display rogue leaf morphology beyond node 1, though some samples took longer to display

the rogue phenotype (Figure 3.3). This can be observed by the tails in the density curve for

the F1 and F2 hybrids (Figure 3.3 A).

Figure 3.3: Daisy hybrids have rogue phenotypes. Density curve
plots display the phenomic comparison of stipule length-to-width ratio (A)
and area (px) of wild type and rogue epigenotypes (B), as well as F1 and F2
generation hybrid crosses. Individual data points for each stipule node for
both l/w ratio (C) and area (D) are shown (Stipules total = 292: Rogue = 48
(3 individuals), wild type = 30 (2 individuals), F1 = 55 (4 individuals), F2 =
159 (10 individuals).

Similar patterns of leaf morphology differentiation were observed in stipule area (Figure

3.3 B) where wild type samples were larger in size in comparison to rogues and hybrid
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Figure 3.4: Daisy mean stipule shape.The average stipule shape for wild
type, rogue, F1 & F2 samples generated using the Momocs morphometric and
shape analysis tool in R. Stipules for all leaflet nodes were used to generate the
mean shape. Rogues and wild types show large differentiation in leaf shape
(D). Stipule shapes for both F1 and F2 hybrids closely resemble the mean
shape of rogue parents (B, C). F1s and F2s also closely resemble each other
(A). Both hybrid mean shapes are reduced in size relative to wild type parents
(E, F) (Stipules total = 292: Rogue = 48 (3 individuals), wild type = 30 (2
individuals), F1 = 55 (4 individuals), F2 = 159 (10 individuals).

individuals - visualised by the broad density curve for wild types, and detailed by a mean

stipule area of 121 kpx (Table A.3). As seen in Thomas Laxton, Daisy wild types also

show a broad area distribution owing to analysing all leaflet nodes together, with variations

occurring due to leaf age. Rogue and F1 hybrid sample peaks aligned almost perfectly with

mean areas of 54.8 kpx and 59.1 kpx respectively, whereas the F2 offspring displayed greater

reduction in stipule area with a mean stipule area of 43.5 kpx (Table A.3). The mean leaf

shape comparison for Daisy rogue and wild types showed that rogue stipules were more

elongated and reduced in size (Figure 3.4 D). Both F1 and F2 hybrid offspring shared leaf

morphological traits consistent with rogue parent samples, and differed from the wild type

parents (Figure 3.4 B, C, E, F). The Daisy F1 hybrids met expectations of an intermediate

phenotype, as is detailed in the literature where lower leaf nodes first appear wild type-like

and transition to rogues as they develop. The F2 generation closely align with rogue parents

in l/w ratio and area, indicating a near-complete transition to the rogue phenotype in just

2 generations for this cultivar.
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3.3 Automated epigenotype classification

As l/w ratio and area variables differentiate rogues and wild types generally well in both cul-

tivars, they can be utilised as phenomic descriptor variables for the development of a machine

learning classification method. My aims were to utilise the machine learning model to de-

velop a non-arbitrary method of classifying individuals into their hypothesised epigenotype,

based on leaf morphometric properties. An alternative approach based on leaf morphomet-

ric properties associated with each epigenotype was required because there were no known

genetic markers between rogues and wild types within cultivars to conventionally genotype

individuals. I developed a classification model pipeline for each cultivar based upon a de-

cision tree learner using the KNIME analytics environment. With this method, I first to

trained the learner to distinguish between rogues and wild type stipules in parent lines us-

ing phenomic properties of individual stipules. I then later re-trained the learner using all

parent stipule data, in order to classify hybrid crosses into their hypothesised epigenotype

at a whole-plant level using a majority vote approach for stipules from nodes 4 and above.

The l/w ratio and area variables of whole stipules for both Thomas Laxton and Daisy

cultivars were sufficient for the decision tree learner to distinguish between rogues and wild

types. In order to train the tree learner, 80% of parent data was subsetted for model training,

and the remaining 20% used for model testing. The subsetted data for model training was

processed in 2 branches which split by threshold values determined for each phenomics

variable by the decision tree learner under the supervised learning approach (Figure 3.5).

Thomas Laxton splits first by area, with a threshold value > 59.742 kpx which separated

most wild type samples (Figure 3.5 A). The remainder of samples < 59.742 kpx area then

split by l/w ratio, where samples > 1.85 were all rogues, and < 1.85 split the remainder

of the wild type samples. Results of the Daisy decision tree splits were similar to Thomas

Laxton, just with values specific to the cultivar (Figure 3.5 B). Once training was completed

and classification thresholds were established, the remaining 20% of parent data was used

to test the decision tree model.

I first tested classification for the Daisy cultivar, with the aim of achieving a classification

rate of 90% to prove the viability of the decision tree learner method to non-conventionally

assign hypothesised epigenotypes to individual cultivars, and later hybrid progeny. The

model for the Daisy cultivar utilising area and l/w ratio descriptors achieved a classification
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Figure 3.5: Phenomic variables distinguish rogues and wild types
The training subset of phenomics data (80%) for parent lines of Thomas Lax-
ton (A) and Daisy (B) cultivars set thresholds for l/w ratio and area phenomic
variables. These thresholds were then used to classify the remaining stipule
samples used as the test set (20%). (Daisy stipules total = 78: Rogue = 48
(3 individuals), wild type = 30 (2 individuals); Thomas Laxton stipules total
= 96, Rogue = 48 (3 individuals), wild type = 48 (3 individuals))

accuracy of 93.75% (Table 3.1). Out of 16 stipule samples used as the test set, 15 were

correctly classified under the supervised learning approach (Figure 3.6 & Table 3.1, k =

0.86). The Daisy test set results can be observed in figure 3.6 A + B for each pheonomic

variable. The misclassified wild type sample can be observed amongst correctly classified

rogue samples in both area and l/w ratio plots (Figure 3.6 A, B).

The ability of the classification model for the Daisy cultivar to correctly assign the ma-

jority of test samples showed the decision tree learning method is robust enough to detect

differences between epigenotypes, and is suitable for non-conventional genotyping in this

case. Success of the decision tree learner was similar for the Thomas Laxton cultivar. The

model achieved a classification accuracy of 100% with 20/20 stipule samples correctly clas-

sified under the supervised learning model (Figure 3.6 & Table 3.1, cohen’s kappa (k) = 1).
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Figure 3.6: Phenomic variables accurately classify rogues and wild
types. Whole stipule phenomic classification of P. sativum cultivars Daisy
(A, B) and Thomas Laxton (C, D) using the KNIME decision tree machine
learning model (80% of data used for model training, remaining 20% as test
set for both Daisy and Thomas Laxton). (Daisy stipules total = 78: Rogue
= 48 (3 individuals), wild type = 30 (2 individuals); Thomas Laxton stipules
total = 96, Rogue = 48 (3 individuals), wild type = 48 (3 individuals)).

Table 3.1: Phenomic classification results

Cultivar
Correct

Classifications
Misclassified

Model
accuracy

Error
rate

Cohen’s
kappa

Daisy 15 1 93.75% 6.25% 0.86
Thomas Laxton 20 0 100% 0% 1

Overall the models for each cultivar were effective in classifying rogue and wild type peas

by the phenotype of their stipules. This approach provides the means for faster phenomic

classification and provides an objective method for epigenotype classification.

Once I had determined the model could accurately predict rogue and wild type epigenotypes

based on stipule phenomic properties of l/w ratio and area, I trained the model using all

rogue and wild type parent data for each cultivar and classified F1 and F2 hybrid crosses

at the whole-plant level. As previously stated, whole hybrid plants were classified as either
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rogue or wild type based on the classification given to the majority of stipules for said

individual (see methods).

All Thomas Laxton F1 and F2 hybrid individuals were classified as rogue using the re-

trained decision tree learner (Figure 3.7 A, B). Similar to the results observed from phenomic

analysis in Figure 3.1 C & D, the first 3 nodes were classified as wild type in most cases,

though almost all subsequent nodes classified as rogue (Figure 3.7 B). Therefore, the plant-

level classification for all 24 hybrid individuals of Thomas Laxton was rogue, based on the

classification for the majority of stipules belonging to each plant (Figure 3.7 A).

Figure 3.7: Hybrid progeny classify as rogues. F1 and F2 generation
hybrids of Rogue + wild type crosses for cultivars Thomas Laxton (A, B) and
Daisy (C, D) classify as rogues based on stipule l/w ratio and area. Stipule
phenomics data for parent lines of each cultivar were used to train the decision
tree learner (Thomas Laxton; wild type = 3 (48 stipules), Rogue = 3 (48
stipules), F1 = 6 (96 stipules), F2 = 18 (288 stipules), Daisy; wild type =
2 (30 stipules), Rogue = 3 (48 stipules), F1 = 4 (64 stipules), F2 = 10 (160
stipules).
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Similarly, all 14 Daisy F1 and F2 hybrids classified at a whole-plant level as rogues, based on

the classification of the majority of stipule samples beyond node 3 (Figure 3.7 C). Utilising

rogue and wild type parent phenomics data to classify hybrid offspring was largely successful.

Whilst the decision tree learner model is simplistic, it is also proves to be an effective method

of classifying plants based on phenomic descriptor variables.

3.4 Conclusion

F1 hybrid crosses between rogues and wild types of Thomas Laxton and Daisy cultivars

displayed the expected intermediate phenotype described in literature, where initial leaflet

node phenomic parameters are similar to wild type parents, but later leaf nodes differentiate

towards the rogue phenotype. In my assessed cultivars, this shift in stipule phenotype was

primarily observed from node 4 (Figure 3.1 C, D; Figure 3.3 C, D). Interestingly, while mor-

phometric properties of the F2 generation of both cultivars are more rogue-like compared

with the F1 generation, Thomas Laxton F2s display a degree of variation in their transition

to the rogue phenotype. This is based on mean l/w ratios and area, which are somewhere

between a rogue and an F1 hybrid. A probable conclusion may be that the epimutation does

not completely establish in the first two generations of hybrid crosses in Thomas Laxton,

though further molecular investigation is required to confirm this mechanism. This pheno-

type in Thomas Laxton hybrids is consistent with observations from early studies, where

varied levels of ’rogueness’ were recorded in hybrids [6].

The leaf morphometric analysis overall was successful in investigating the inheritance of

the rogue phenotype in hybrid crosses, and in characterising the phenotypic properties for

each individual cultivar. Rogues and wild types can be differentiated by l/w ratio and area,

and these phenomic variables were able to automate accurate and unbiased epigenotype

classification through the decision tree learner method. While this was a good first attempt

at automated classification, there are improvements which could be made in the future to

strengthen the analysis. First, as phenotype shifts are most prevalent from node 3-4, data

could be subsetted to only include nodes beyond this point. This would increase accuracy

and precision of machine learning approaches, and also remove leaf morphology variability

introduced by leaf age. Combining multiple populations of rogue/wild type parents and

hybrids rather than singular populations used in this study would also increase the power of
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analysis. Lastly, including more pheontypic data on other components of rogue phenotypes

will offer further variables to accurately differentiate between rogues and wild types through

automated classification. It was noted by Bateson and Pellew (1915) [6] that rogue epimu-

tants of the Gradus cultivar were found to have a pea pod phenotype, where the shape and

curvature of the pea pods differentiated from wild types. Other rogue phenotypic traits are

likely present in my selected cultivars, but it was not feasible to investigate these due to time

limitations of the project. Future work should involve whole-plant phenotype investigation,

and integrate new-found traits into the modelling for epigenotype characterisation.



Chapter 4

Identification of candidate rogue

loci through short- and long-read

transcriptomics

4.1 Summary and Objectives

There has been little investigation of the causal locus underlying the rogue phenotype at a

genomic and transcriptomic level to-date. As discussed in Chapter 1, the study conducted

by Santo et al. (2017) [40] provided little progress towards identifying the paramutant rogue

locus and its inheritance mechanism. It is therefore necessary to use other well characterised

paramutant examples like maize, as models for paramutation mechanisms in P. sativum.

All current characterised examples of paramutation in eukaryotes involve the heritable and

recurrent transcriptional silencing of a gene via trans-homolog interactions. I therefore

hypothesised the epimutated rogue locus behaves similarly to other eukaryotic examples,

and is transcriptionally silenced or repressed after trans-homolog interactions have taken

place. I also hypothesised that the rogue epimutation is conserved across rogue cultivars

of P. sativum, where the same phenotypic rogue traits affecting leaf morphology have been

observed. Prior research to identify the rogue locus was limited due to the lack of a publicly

available reference genome and transcriptome, though this has recently changed. A new P.

sativum reference published by Kreplak et al. (2019)[11] now enables the use of genome-wide

33
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transcriptomic assays. In my study, I used long and short-read RNA-sequencing to identify

candidates for the rogue locus.

4.2 Enhancing the pea transcriptome annotation with long-

read sequencing

Preliminary analyses of short read RNA-sequencing data generated from whole stipules

of cultivars Thomas Laxton, Daisy and Black-Eyed Susan revealed that transcriptome-wide

analyses might be limited by two factors: an incomplete genome sequence and an incomplete

transcriptome annotation.

The pea reference genome was initially constructed from short Illumina reads using the

Caméor cultivar [11]. The assembly covers 88% (3.92Gb) of the estimated pea genome size

(4̃.45Gb). Kreplak et al. (2019)[11] reported that remaining errors consist of collapsed re-

peat regions, at centromeres and telomeric regions, and comment that long-read sequencing

approaches would provide the coverage necessary to rectify these gaps. I determined how

well my short read RNA-seq data could be aligned to the original pea reference genome, and

found a range of 64–84% of reads were successfully mapped to P. sativum genome reference

v1a. These results were lower than expected, as typical alignment rates for other organisms

such as A. thaliana exceed 90% [60] (Table 4.1). This confirmed that gaps and errors remain

in the v1a genome assembly, which could impact my ability to identify the rogue locus.

Table 4.1: Comparison of alignment rates for A. thaliana vs P. sativum
preliminary analysis

A. thaliana P. sativum (preliminary analysis)

Alignment rate 92.4% - 99.5% 63.82% - 83.98%

RNA-seq read assignment rates, defined by the amount of reads aligning with genes or other

genomic features, were also lower than in A. thaliana. When visualising the mapped reads,

I found that many reads mapped to regions missing annotation, indicating improvement of

the reference transcriptome annotation was required (Figure 4.1). Transcriptomic studies

are largely limited by the availability and quality of the reference, and it is possible the

rogue locus could be missed in my analysis due to gaps in the transcriptome annotation.
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Paramutant loci have previously been found in repeat and centromeric regions. Examples

include the tandem repeat sequences neighbouring the b1 locus in maize and the pericen-

tromeric SLTAB2 locus in tomato [18, 24]. This indicates the importance of having a well

annotated reference.
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Figure 4.1: Reads map to un-annotated regions. An example of multiple short mRNA reads for Thomas Laxton wild
type and rogue replicates mapping to un-annotated regions in the current transcriptome annotation for P. sativum. BAM
files viewed in Integrated Genomics viewer (IGV) software.
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I decided to improve the current transcriptome annotation in order to maximise the sensi-

tivity of my later differential expression analyses. To do so I undertook long-read nanopore

sequencing of the transcriptomes of two P. sativum cultivars, Thomas Laxton and Daisy.

This included 3 replicates both rogue and wild type epigenotypes (Figure 4.2. The sequenc-

ing run produced a total of 23.85 M reads, with 19.85 M reads passing filter (Figure 4.3

A).

Figure 4.2: Long-read transcriptome sequencing pipeline. Pipeline
used to generate long-read data from total RNA of 2 P. sativum cultivars.
Refer to Method section for more detail (Chapter 2).

The distribution of read lengths (with outliers discarded) ranged from 280 bp to 2.5 kb

(Figure 4.3 B), with an estimated N50 of 910 bp, meaning that half of the data is contained in

reads longer than 910 bp. These lengths are typical for nanopore transcriptome sequencing.

After trimming, the mean read length was 784 bp and N50 903 bp (Figure 4.3 C). The

coverage over certain read lengths showed fluctuations (Figure 4.3 D), and per read coverage

distributions showed relatively low coverage values (Figure 4.3 E). Here, coverage is defined

by read overlaps in LongQC. The averaged quality value (QV) score for normal reads is

acceptable - a QV score ranging between 8-10 is considered a sufficient quality value to

proceed with analysis (Figure 4.3 F) [53]. While the read coverage results were not to

a high standard, they were nonetheless adequate to make improvements to the reference

transcriptome annotation.
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Figure 4.3: Long-read transcriptomics quality assessment. Sequenc-
ing run information shows number of reads generated (A) and read length
distribution with outliers discarded (B). After quality trimming long-reads,
LongQC was used to assess mean read length and quality (C), read coverage
and coverage quality (D, E) and overall read quality values (F).

Satisfied with the quality of the long-read transcriptome data, I used Bambu to improve

transcript annotation and quantify expression. Bambu is specifically designed for novel

transcript discovery and quantification using long-read data, and integrates newly discov-

ered transcripts and genes to an improved annotation. Clustering and PCA analysis of

gene and transcript expression through Bambu showed that Thomas Laxton and Daisy

cultivars separated, indicating transcriptomic variation between the two different cultivars
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(Figure 4.4). Within each cultivar, rogue and wild type epigenotypes did not form distinct

clusters, suggesting that transcriptome differences may be subtle. Of note, low per-sample

sequencing depth limits the power of differential expression analyses, so I decided to focus

on transcriptome annotation improvement with the long-read transcriptome data, and to

perform differential expression analysis using short-read RNA-seq.

Figure 4.4: Long-read sample clustering. Cultivars of the same geno-
type cluster together by gene and transcript counts from long-read samples,
but epigenotypes are less uniformly clustered (A). Plotting sample data in a
PCA plot (B) shows similar results, with low amounts of variation in the data
explained by PC1 (15.1%) and PC2 (11%)

I next investigated the extent of improvements made by BAMBU to the transcriptome

annotation by comparing the amount of transcriptomic features and meta-features contained

in the original and improved annotations. This was done using the FeatureCounts function

from the Rsubread package. In this case, features correspond to exon regions while meta-

features refer to entire genes. I found an increase in features (exons) over the previous

annotation by 22.8% (83,856 new features), and an increase in meta-features (genes) by

32.8% (21,868 new meta-features) (Figure 4.5).

The increase in annotated features and meta-features resulted in an increase in read as-

signment rate for all mRNA data (Figure 4.5). Read assignment increased by 11.9% on

average, and in some samples an improvement of >15% assigned reads could be observed

(Table A.1). A visual inspection of the annotation identified several instances of improve-

ment throughout. For example, the annotation for Psat4g069560 was extended by 2 exons,

well-supported by long-read data (Figure 4.6).
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Figure 4.5: Increased features and feature assignment. Long-read
sequencing data and Bambu improved the previous transcriptome annota-
tion for P. sativum through the addition of 83,856 features and 21,868 meta-
features (A). From additions to the annotation, an increase in reads assigning
to features and meta-features for all samples was observed (B).

Figure 4.6: Improved annotation of existing genes. Long read
coverage displayed in IGV supports additional exon and intron regions for
Psat4g069560 - an example of alterations made to the transcriptome anno-
tation. This is depicted by dark blue tracks displaying the gene model for
both previous and improved annotations. The grey track for reads indicates
good quality and accurate mapping for the supporting reads, and tracks with
a white fill indicate secondary alignment, where the given read could align
well to another region.
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There were also regions where entirely new genes were added to the reference annotation

(Figure 4.7), supported by uniquely mapped long reads. These were but two examples

of annotation improvements which have been made across the entire reference annotation.

Having a more complete transcriptome annotation increases the sensitivity of differential

analysis and the probability of identifying strong candidate genes for the rogue locus.

Figure 4.7: Newly annotated genes. Long-read transcriptome data sup-
ports addition of a new, active gene to the annotation depicted by the blue
track in the improved annotation, and the absence of a gene model in the pre-
vious annotation. Coverage of all long read RNA-sequencing samples support
2 exons and an intron in this new gene’s structure. The coverage value of 14
indicates 14 primary aligned long reads map to this region - primary align-
ments are depicted by grey read tracks. The coloured bars in the coverage
track indicate potential SNPs, which are made visible if the given nucleotide
varies from the reference in more than 20% of mapped reads.

The annotation improvements made through long-read sequencing and Bambu were overall

successful, though there are some caveats of the analysis which were later identified. In the

later stages of analysis I found that Bambu did not consistently handle feature annotations

in the new GTF file. As a result, the number of meta-features reported by FeatureCounts

includes all previously annotated transcripts and all the newly annotated genes, but not all

newly annotated transcripts. This means some reads which map to newly discovered

transcripts are not taken into account in subsequent DE analysis of my mRNA data. While

the following DE analysis is less comprehensive than it could be, the validity of results

presented hereafter remain unaffected by this small issue. Future work will involve rectifying
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the handling of the GTF annotation by Bambu to make future analysis as exhaustive and

extensive as possible.
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4.3 Genetic and transcriptomic differences between rogues

and wild types are identified by short-read mRNA se-

quencing

Based on classical models of paramutation involving heritably repressed or silenced genes,

I expected to find repressed genes in epimutant rogue peas relative to wild types. The

repressed rogue locus may be involved in developmental pathways, in this case impacting leaf

morphology and development. To investigate transcriptomic variation between rogues and

wild type peas, and to identify candidate genes for the rogue locus, I conducted short-read

mRNA sequencing on whole stipule tissue from 3 cultivars of P. sativum (Thomas Laxton,

Daisy and Black-Eyed Susan) with 3 replicates for wild types and rogues. I used stipule tissue

as the rogue phenotype is most obvious in this tissue. I also analysed stipules from node 3

and node 10 from an F1 hybrid cross, as the phenotype shift between lower and upper nodes

in hybrids may be accompanied by gene expression shifts at the causal locus. Comparison

of gene expression in these tissues may identify the causal locus of the rogue phenotype. To

identify candidate genes for the locus, I conducted differential expression (DE) analysis of

this short-read sequencing data against the improved transcriptome annotation generated

with long reads.

I first analysed all cultivars together, in an attempt to identify a common down-regulated

gene across all rogue cultivars. Multi-dimensional scaling (MDS) of gene counts showed that

samples first separated by cultivar in dimensions 1 & 2 (Figure 4.8 A, B). The F1 hybrid

samples also separated from other cultivars, likely due to genetic differences as the parent

pair for this cross were Sutton’s Hundredfold wild type and Sutton’s Early Giant rogue.

This pair of parents were selected as they were the only cultivars available at the time -

ideally both parents would originate from the same cultivar. Black-Eyed Susan rogues and

wild types separated completely from dimensions 1-3, indicating substantial transcriptomic

variation may be present (Figure 4.8 A, C). Rogues and wild types from Thomas Laxton

and Daisy were more closely clustered, indicating transcriptomic variation is more subtle.

While F1 hybrid samples didn’t perfectly overlap, the variation observed is more likely due

to random or technical variation rather than transcriptomic variation.

Using the more comprehensive transcript annotation in this analysis did not have a dramatic

effect on sample clustering on the MDS plot in comparison to preliminary analysis with the
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Figure 4.8: Between-cultivar differences dominate transcriptomic
variation. MDS plot of short-read mRNA-seq read count data. (A) tran-
scriptomic variation on the MDS plot is depicted by the distance of one data
point to another. (B) Dimensions 1 & 2 separate cultivars best and explain
50% of the overall variances observed in the data-set (y axis = proportion of
variance explained, x axis = dimensions). (C) MDS plot set with dimensions
2 % 3 displays large transcriptomic variation within the Black-Eyed Susan
cultivar, and genetic differences to other assessed cultivars. (D) Dimension 3
can explain 38% of the overall variation in the data set. DAISY = Daisy, TL
= Thomas Laxton, BES = Black-Eyed Susan, WT = Wild type, N3 = F1
leaflet node 3, N10 = F1 leaflet node 10.

previous annotation (Figure A.1). This suggested that the added features were not the main

drivers of the sample separation.

The gene expression variation between Black-Eyed Susan rogues and wild types was much
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larger than between the rogues and wild types of either Daisy or Thomas Laxton cultivars

(Figure 4.8). I investigated whether genetic differences might contribute to this variation,

in addition to presumed epigenetic differences. I analysed single nucleotide polymorphisms

(SNPs) in my stipule transcriptome data set (referred to as mRNA1 hereafter) and a second

dataset that was generated prior to my study (referred to as mRNA2, whole leaves). All

pea lines in mRNA1 (Daisy, Thomas Laxton, Black-Eyed Susan) were imported from the

John Innes Centre (Norwich, UK) whereas in mRNA2 (Thomas Laxton, Black-Eyed Susan,

Sutton’s Hundredfold) the rogues came from the John Innes Centre and the wild types

from the Australian Grains Genebank. I found Black-Eyed Susan samples in both mRNA1

and mRNA2 formed an outgroup relative to the other cultivars when they were clustered

based upon SNPs found in commonly expressed genes (Figure 4.9). Divergence between

rogues and wild types was greatest in the Black-Eyed Susan cultivar with an individual

dissimilarity (ID) value of 0.4, which might explain the increased separation on the MDS

plot. Importantly, there was clear evidence of genetic drift between the rogue and wild type

lines within each cultivar. This could be expected as rogue and wild type lines have been

kept separate for up to 100 years. Therefore gene expression differences between rogues and

wild types within a cultivar have both genetic and epigenetic contributions.

The SNP analysis also showed that mRNA1 was the better data set to inform my work, due

to the rogue and wild type pea lines in this data set originating from the same accession

(John Innes Centre, Norwich, UK). Using material from the same accession reduces the

potential for genetic or epigenetic noise confounding analysis, which may have occurred in

the material in mRNA2 where rogues and wild types were maintained in different geographic

regions through different suppliers. This was illustrated in Thomas Laxton wild types from

the John Innes Centre which were more closely related to the corresponding rogues from

the same collection (ID of 0.1) than to the Thomas Laxton wild types from the Australian

Grains Genebank (Figure 4.9). This example showed that mRNA2 would have introduced

more noise in analysis, and confirmed that the newer mRNA1 data set was indeed better

controlled.
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Figure 4.9: Genetic variation between cultivars and epigenotypes.
Clustering of cultivars and epigenotypes from each data set determined by
SNPs, and compared through an individual dissimilarity matrix to identify
potential genetic variations. Individual dissimilarity (ID) scores range from
0 (all group members genetically identical) to 1 (group members are all ge-
netically unique). Black-Eyed Susan appears as a strong outlier based on
SNP content relative to other assessed cultivars from both mRNA1 (upper-
case names) and mRNA2 (lowercase names) data sets. R = Rogue, WT =
wild type, TL = Thomas Laxton, BES = Black-Eyed Susan, S = Sutton’s
Hundredfold, F1 = Sutton’s Hundredfold wild type X Sutton’s Early Giant
rogue, N10 = leaflet node 10, N3 = leaflet node 3.

I next analysed genes DE between rogues and wild types, reasoning that one or more of

these genes may be candidates for the locus that defines the rogue phenotype. I identified

221 significantly down-regulated genes and 142 up-regulated genes in rogues relative to wild

types (p ≤ 0.1, logFC=1.5) in a combined analysis of all cultivars in the stipule transcriptome

(mRNA1) data set (Table A.2). By comparison, I identified only 185 down-regulated and

96 up-regulated genes in rogues when using the previous version of the pea transcriptome

annotation. This indicates that the improvements made to the annotation increased the
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amount of identifiable DE genes in combined cultivar analysis. However, combined DE

analysis of all cultivars revealed no obvious candidate gene for the rogue locus. Even among

the top-ranked DE genes, up or down-regulation was not consistent between cultivars. One

explanation for this is that there are multiple rogue loci, differing from cultivar to cultivar.

Figure 4.10: Limited overlaps in rogues vs wild types DE across
cultivars. UpSet plot shows commonality in DE down-regulated (A) and
up-regulated (B) genes in rogue peas. Connected lines indicate a common DE
gene between the given cultivars. Each category is mutually exclusive. TL
= Thomas Laxton, DAISY = Daisy, BES = Black-Eyed Susan, F1 = first
generation hybrid cross.

I performed a new DE analysis with each cultivar taken individually, attempting to identify

cultivar-specific candidates for the rogue locus/loci. Consistent with the level of separation

on the MDS plot and the level of genetic drift between rogues and wild types, the number

of DE genes within a cultivar was highest for Black-Eyed Susan, with 1292 significantly

down-regulated genes and 1130 significantly up-regulated genes in rogues relative to wild

types (Figure 4.10 A, B). Thomas Laxton and Daisy as well as Black-Eyed Susan and

Daisy share the largest amount of commonly down-regulated genes in rogues - 42 and 28

genes respectively. A total of 4 genes were commonly down-regulated in rogues across

3 different cultivars and/or the F1 hybrid samples. These genes are consequently strong

candidates for the rogue locus. Fewer genes were commonly up-regulated in rogues than

were down-regulated, with a total of 48 genes shared between at least 2 cultivars and/or
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F1 hybrid samples (Figure 4.10 B). Complete gene lists from individual DE analysis can

be viewed in Table A.2. While I was more interested in down-regulated genes, as this fits

the paramutation model, it is possible the rogue locus works contrary to expectations and

involves an up-regulated locus. Consequently these genes were also considered as candidates.

I then visualised the read alignments at top DE genes to further validate and visualise

that each gene was indeed DE between rogues and wild types. At tx.2324, a transcript

down-regulated in rogues of both Thomas Laxton and Black-Eyed Susan cultivars that

overlaps with the Psat2g037120 gene from the existing annotation, reads aligned well for

Thomas Laxton though some variations were obvious for Black-Eyed Susan (Figure 4.11

A, B). The read coverage differences between rogues and wild types support the DE call

for both cultivars - reads increase 5-fold in Thomas Laxton wild types relative to rogues,

and increase 3-fold in Black-Eyed Susan wild types (Figure 4.11 A, B). While both of these

examples do not display complete silencing in rogue samples, aligned reads are significantly

reduced in both cultivars at this example of a strongly DE locus. When inspecting other

candidates, similar patterns were observed where some alignments showed variations to the

annotation, mostly owing to genetic variations between cultivars and in Black-Eyed Susan

in particular. For the most part, DE gene alignments were accurate and supported the DE

call for candidate rogue loci.
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Figure 4.11: Aligned reads support top DE gene. Read alignments
positioned at top DE gene (tx.2324) for Thomas Laxton and Black-Eyed Susan
show reduced reads in rogue samples relative to wild type samples, supporting
the DE call in analysis. Comparison made in IGV genome browser.

4.4 Conclusions

This study provides the first description of transcriptome-wide differences between rogue and

wild type peas. The pea genome assembly and transcriptome annotation are still imperfect,

and long-read transcriptome sequencing was able to enrich the annotation with revised gene

structures and the addition of new transcripts. The increase in assignable features and meta-

features improved my ability to call larger numbers of DE genes relative to my preliminary

analysis, and increased the likelihood of identifying the rogue locus.
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My combined analysis of all cultivars together identified 221 significantly down-regulated

genes in rogues relative to wild types, though individual analysis was required to draw

comparisons between cultivars and identify genes involved in important plant developmental

pathways. Within each individual cultivar there was a large number of DE genes between

rogues and wild types, but overlap between cultivars was limited. This is surprising as

the similar phenotypic modifications exhibited in rogues from different cultivar suggested

that a common pathway would be affected across cultivars. However a small number of

common DE genes remains compatible with my hypothesis that the causal locus of the

rogue phenotype is conserved across the pea cultivars.

DE and SNP analysis revealed the genetic distance between Black-Eyed Susan rogues and

wild types was large, and this cultivar was likely impacted the most by genetic drift. The

number of down-regulated DE genes between Black-Eyed Susan rogues and wild types (1292)

was much larger by comparison to other assessed cultivars. This likely effect of genetic drift

makes identification of the causal rogue locus most difficult in Black-Eyed Susan, due to

the resulting genetic background noise. However, some level of drift is expected in all

rogue cultivars as the epigenotypes have been kept separate since their discovery. For all

cultivars, it was clear that varying levels of genetic drift between rogues and wild types had

a confounding effect on gene expression differences, making it more difficult to isolate the

differential expression that is due to rogue-specific epigenetic differences.

Prior to my study, no attempt had been made to identify the rogue locus through tran-

scriptomic means aside from targeted expression analysis by Santo et al. (2017) [40] of a

small number of candidates. I have conducted the first comparative analysis of the entire

rogue transcriptome in multiple cultivars of P. sativum. The DE analysis suggested strong

candidate genes for the rogue locus, but did not provide definitive evidence on its own. It

also brings little information about the mechanisms of rogue paramutation. A feature of

the RdDM model of paramutation is the involvement of small-RNAs, in particular 24-nt

sRNAs. To provide an orthogonal line of evidence in the identification of strong candidate

loci as well as to investigate the mechanisms of paramutation in pea, I next focused on the

small RNAomes of wild type and rogue peas.



Chapter 5

The small-RNA profile of rogue

and wild type peas

5.1 Summary and Objectives

In the preceding chapter I built a solid foundation for analysis of the mechanisms driving

rogue epimutation by determining for the first time the profile of DE genes between rogue and

wild type peas. My next objective was to assess the association of small RNAs (sRNAs) with

rogue paramutation by investigating the sRNA profile comparing rogues and wild types, and

identify sRNA clusters neighbouring DE genes which may be implicated in transcriptional

repression of the nearby locus.

sRNAs are a known constant in the paramutation systems characterised thus far. These are

essential molecules involved in transcriptional regulation pathways like RNA-directed DNA

Methylation (RdDM). If rogue paramutation in P. sativum shares a similar trans-homolog

silencing mechanism with other paramutant examples, a comprehensive comparison of the

sRNA profile in rogues and wild types could be combined with my differential gene expression

analysis to produce a strong case for candidate genes of the rogue locus.

I began my investigation by extracting and sequencing the sRNAs from the stipules of

rogues and wild types of three epimutant cultivars (Thomas Laxton, Daisy, Sutton’s Hun-

dredfold). I then analysed the data to identify regions of differential sRNA abundance

between rogue and wild type peas. From what we understand of paramutation, I expected
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to find differential sRNA abundance within regulatory regions of the rogue locus, possibly at

the promoter, which would let us infer a transcriptionally repressive interaction. However,

it was also possible I would discover differential sRNA abundances at enhancers located

hundreds of kilobases away from the rogue locus.

I found that 24-nt sRNA clusters were highly abundant in P. sativum, and were DE between

rogue epimutants and their wild type counterparts within the cultivars I assessed. I con-

firmed that sRNA clusters were within close proximity to, or overlapped, annotated genes

and that a number of these clusters were commonly up-regulated in rogues relative to wild

types across multiple cultivars.

5.2 Cluster Analysis

I began with combined analysis of all samples in my sRNA-seq data by investigating the

clustering and size distributions of the sRNA reads using ShortStack, to ensure I had cap-

tured a profile typical of Angiosperms. In general 24-nt sRNAs are the most abundant class

of siRNAs, followed by 21-nt and 22-nt sRNAs [61, 62]. I applied ShortStack, which inte-

grated all samples to make a complete map of sRNA clusters throughout the pea genome

then classified the most abundant length of sRNAs observed within each cluster. I was inter-

ested to see the sRNA diversity within my samples, as the known transcriptional regulatory

pathways involved in paramutation require 24-nt or 21-nt sized sRNAs to form and direct

transcriptional regulatory complexes. Clusters within my samples were predominantly com-

posed of 24-nt sRNAs, and therefore most clusters were classified as 24-nt by DicerCall

(Figure 5.1). This presents a general overview of the dominant sRNA sizes within clusters

in my data set, which fit the expected sRNA profile typical of Angiosperms.
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Figure 5.1: Clusters predominantly composed of 24-nt sRNAs are
the most abundant. A module of ShortStack cluster analysis, DicerCall,
summarises the most frequent sRNA length within each analysed cluster. All
sample replicates and epigenotypes are used to define sRNA clusters in pea.

I then determined the distribution of sRNA abundance across all annotated clusters, en-

suring substantial counts for each size category were present, and to further validate that

my libraries were typical of Angiosperms. The distributions of abundance for both 21-nt

and 22-nt clusters were similar (Figure 5.2): a large dynamic range was observed from as

little as 10 sRNA-seq read counts per cluster to over 1 million. By comparison, the read

count distribution for 23-nt clusters was generally lower, although there were again outliers

with very high sRNA counts. A comparatively larger proportion of the 24-nt class clusters

had intermediate read counts (100–1000). These results confirmed libraries contained well

represented sRNAs at each cluster, and were in expected norms for Angiosperms.
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Figure 5.2: sRNA counts per cluster. The log base 10 of read counts
per cluster plotted against DicerCall sRNA size (nt) classifications. Large
dynamic ranges of counts for 21, 22 and 23-nt sRNAs were present, ranging
from 10 counts per cluster to over 1 million in some cases. A larger density
of read counts per cluster for 24-nt sRNAs was observed relative to other size
groups. The category ”N” indicates RNAs which are not related to an RNAi
process, and are most often fragmented products of abundant RNAs. The
counts per cluster of N values is largely reduced relative to sRNAs, where
most counts per cluster are < 10. This means fragmented products weren’t
abundant relative to actual sRNAs in my data set.

Next, I wanted to identify any potential global variation in sRNA populations between

cultivars, and compare rogues and wild types within individual cultivars that might be as-

sociated with the rogue phenotype. Slight variation was observed in the relative proportions

of 21-nt and 24-nt sRNAs between individual samples within each cultivar (Figure 5.3). In

the Daisy cultivar 24-nt sRNAs were most abundant, with proportions ranging from 25-40%

of all reads across all samples (Figure 5.3 A). While there was some variation between rogue

and wild type samples, no meaningful observations can be made to distinguish epigenotypes

here. Reads for 21-nt sRNAs in Daisy are the second most abundant, ranging from 15-20%

for all reads across samples. Daisy wild type samples display slight proportional increases

22-nt sRNAs relative to rogues. The remaining reads were made up of 20, 23 and 25-nt

sRNAs, accounting for less than 30% of total reads in this case. The relative sRNA size

distributions between Sutton’s Hundredfold epigenotypes were different from those of Daisy,
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with higher 21-nt sRNA read counts in rogues relative to wild types, and higher 24-nt read

counts in wild types relative to rogues (Figure 5.3 B). There was no distinction between

epigenotypes of Thomas Laxton (Figure 5.3 C). Overall there was no consistent trend be-

tween rogues and wild types. This absence of a global shift in sRNA profiles is expected if

a single locus, or a small number of loci, is responsible for the rogue phenotype.

Figure 5.3: sRNA size distribution in rogues and wild types of
each cultivar. Read size distribution as a proportion of total number of
sRNA reads per sample, separated by cultivar (A = Daisy, B = Sutton’s
Hundredfold, C = Thomas Laxton) and epigenotype (Rogue = Blue, wild
type = Red). The size distribution was dominated by 24-nt sRNAs within
each cultivar. In most cases the size distribution of rogues did not differ from
wild types, though Sutton’s Hundredfold rogues displayed slightly elevated
levels of 21-nt sRNAs - a siRNA size class involved in post-transcriptional
silencing.

I next investigated the proximity of sRNA clusters to nearby genes, to gain a global view

of associations between sRNAs and genes in P. sativum. Plotting the sRNA cluster density

against the log10 base distance either side of the nearest gene identified many sRNA clusters

close enough to potentially affect gene expression (Figure 5.4). I found that approximately

90% of sRNA clusters were within 100 kb distance of the nearest gene, and 23% actually

overlapped annotated genes. The results coincide with sRNA profiles of other plant species,

where typically 24-nt sRNAs are found in close proximity to expressed genes, usually to



56

regulate transcription depending on type of sRNA and associated gene [63]. High levels

of sRNAs overlapping genes means clusters can be flagged as potential regulators of the

nearby gene, some of which may be candidates for the rogue locus. I also observe a smaller

group of clusters ranging 60-100 kb in distance to their nearest gene, which is somewhat

expected due to the size of the pea genome, and its complex non-coding repeat regions. P.

sativum shares a similarly repeat-rich genome to a close relative, M. truncatula, where repeat

regions are regulated by sRNA-mediated silencing to avoid over-expression and detrimental

autoimmune responses [64]. Similar transcriptional regulation likely occurs in P. sativum,

and can explain the large amounts of sRNA clusters overlapping genes. These results showed

that high levels of global gene regulation are likely driven by regulatory sRNAs in P. sativum.

A finer-scale analysis might reveal that candidate genes for the rogue locus are associated

with DE sRNAs regulating their gene expression.

Figure 5.4: sRNA cluster distance to nearest gene. Distribution
of sRNA cluster distances to their nearest gene (up or downstream). Many
clusters are within 100 kb of the nearest gene. A smaller group of clusters are
observed between 60–100 kb from nearest gene, and most likely are situated
between large non-coding or repeat regions of the pea genome.

Having explored the global sRNA populations within my data set, their abundances and

proximity to annotated genomic regions, the next step forward was to investigate potential

variation in sRNA expression between epigenotypes.



57

5.3 Differentially Expressed sRNA Clusters

Should paramutation in the pea occur through similar mechanisms to other known examples,

detecting variation in sRNA expression between epigenotypes would further support the

identification of strong candidates for the rogue locus. I continued my sRNA analysis by first

plotting combined read counts for all identified clusters, separated by cultivar on an MDS

plot. The purpose was to investigate if variation in sRNA expression was present between

rogues and wild types. I observed that within each cultivar, rogue and wild type samples

separated by sRNA expression, as each epigenotype forms its own unique grouping across

the first dimension (Figure 5.5). Dimension 1 accounted for 30–50% of the overall variance

within each cultivar. As I established in the short-read mRNA-seq and SNP analysis,

both genetic and epigenetic differences likely contribute to the variation in gene expression

between rogues and wild types. Therefore, the variation observed in sRNA expression may

infer transcriptional regulation through sRNAs varies between rogues and wild types.

Figure 5.5: Variation in sRNA expression between rogues and
wild types. MDS plots depict variation in global sRNA expression between
epigenotypes. Each point represents all sRNA read counts from all clusters
in each biologically independent replicate from sRNA-seq analysis (Rogue =
blue, wild type = red). All assessed cultivars (Daisy = A, Sutton’s Hundred-
fold = B, Thomas Laxton = C) display variation in sRNA expression between
rogue and wild type epigenotypes. Variance explained by dimensional planes
1 & 2 collectively exceed 50% of the overall variance within the read data.
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To close in on potential differences in sRNA expression between rogues and wild types

associated with the rogue locus, I continued with DE analysis to identify commonly DE

sRNA clusters in rogues. I suspect a sRNA locus involved in the rogue phenotype is common

across cultivars. I found 1343 up-regulated and 2042 down-regulated sRNA clusters in rogues

relative to wild types (p < 0.1, logFC=1.5) from a total population of 586,209 sRNA clusters

(Table A.2). A much greater number of sRNA clusters were DE between rogues and wild

types in Sutton’s Hundredfold relative to the other cultivars. I searched for up-regulated

DE clusters shared by rogues, as I expect sRNAs affecting gene expression of the rogue

locus are up-regulated in rogues relative to wild types. I plotted the top up-regulated sRNA

clusters in each cultivar on an UpSet plot (Figure 5.6). There were 223 up-regulated clusters

common between at least 2 cultivars, and 2 sRNA clusters common to all three cultivars.

As was observed in DE analysis of mRNA data, sRNA expression overall appears unique to

individual cultivars. However, the short list of shared DE sRNA clusters are candidates for

association with the rogue locus that can be further examined.
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Figure 5.6: Up-regulated sRNA rogue clusters common between
cultivars. UpSet plot displays the commonly up-regulated sRNA clusters
between rogues for each cultivar. Daisy and Sutton’s Hundredfold share the
largest set of up-regulated clusters (141), followed by Thomas Laxton and
Sutton’s Hundredfold (69 common clusters). Thomas Laxton and Daisy share
the least up-regulated sRNA clusters with only 11 identified. Clusters common
to all 3 cultivars are also present (2 common sRNA clusters). In respect of
individual cultivars, Sutton’s Hundredfold has large numbers of unique DE
sRNA clusters, with 7505 up-regulated in rogues.

Finally, I investigated the alignment of some interesting DE sRNA clusters to annotated

genes and transcripts in the improved reference transcriptome. The purpose was to visualise

differential sRNA coverage, and to investigate where clusters are situated in relation to

genes or newly identified transcripts. As an example of the differentiation in sRNA coverage

between rogues and wild types, Figure 5.7 displays the cluster coverage for the Daisy cultivar

in relation to Psat6g175480. The merged reads of Daisy rogue replicates showed an increase

in 24-nt sRNA clustering within the promoter region of this gene, relative to wild types

which displayed reduced levels of sRNAs in this region (Figure 5.7). Similar results on a

larger scale can be observed in Figure 5.8, where all combined reads for each epigenotype

within each assessed cultivar have been plotted against a newly discovered transcript (tx.

23431) in the improved annotation. Coverage of 21-nt and 24-nt sRNAs for the rogue

epigenotype in Thomas Laxton, Sutton’s Hundredfold and Daisy all exceed that of wild
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types for each respective cultivar (Figure 5.8). These two examples display ideal sRNA

cluster profiles in relation to annotated genes and transcripts which may be implicated in

regulating transcription in these regions.

Figure 5.7: sRNA abundances in the promoter region of
Psat6g175480. This 24-nt sRNA cluster maps to the promoter region (de-
noted by blue arrow orientation on the annotation tracks in IGV of the pre-
vious annotation and improved annotation) of candidate gene Psat6g175480.
Rogue replicate clusters display higher levels of coverage in the Daisy cultivar
relative to wild types.
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Figure 5.8: Differential sRNA cluster coverage at transcript
tx.23431. Rogue replicates for all cultivars in this example display increased
coverage for two clusters of sRNAs mapping to tx.23431. The reads in this
case are dominated by 24-nt sRNAs, though 21-nt sRNAs are also present
in smaller counts, indicating a potential site for transcriptional repression
through DNA methylation or post-transcriptional silencing.

5.4 Conclusions

Here I have presented insights into the sRNA profiles of rogue and wild type peas, ob-

tained through sRNA sequencing and data analysis. The global abundances of 24-nt sRNAs

(Figure 5.1 & 5.2) may imply that the pea transcriptome contains a number of loci which

are regulated by sRNAs and associated complexes. Rogues and wild types shared similar

distributions of sRNA size classes, although specific sRNA clusters accumulated different

abundances of sRNAs between epigenotypes. Many clusters were situated in close prox-

imity to, or overlapping, genes. These included examples where sRNA abundances were

much higher in rogues than in wild types (Figure 5.7 & 5.8). Considered with the preceding

chapters, my study confirms that the pea genome and transcriptome contain many of the

constituents required for paramutation; abundant 21-nt and 24-nt sRNAs, DE genes between

epigenotypes, and large repeat regions scattered throughout the P. sativum genome.

Identifying the key constituents required of paramutation individually is an important step

for investigating paramutant-like trans-homolog interactions in pea, though correlation is
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not causation. However, integrating multiple lines of evidence through the -omics approaches

I utilised in this study can narrow down the list of candidates for the rogue loci. I decided

to combine findings from all my sequencing analysis with preliminary data sets, to build

a matrix which ranks candidate genes based on their fulfilment of selection criteria. The

selection process ranks genes which fit my hypothesis surrounding paramutation in the pea,

which are discussed in the next chapter.



Chapter 6

Integrative ’omics analyses to

refine the list of rogue locus

candidate genes

6.1 Summary and Objectives

In the two preceding chapters I described my investigations into how sRNA and mRNA

transcriptomes of rogue and wild type peas differed. My next objective was to integrate

these complementary ’omics data sets to build a robust list of candidate genes for the

rogue locus. Candidate genes were selected based upon being repressed in rogues relative

to wild types. I also included preliminary differential methylation data between a Sutton’s

Hundredfold rogue and Caméor wild type generated previously by my supervisor, as DNA

methylation is an expected feature of paramutation. Candidate genes were then assigned

ranking scores according to several features, including:

1. The number of cultivars in which candidate genes were repressed in rogues relative to

wild types.

2. The presence of sRNA clusters within a 10 kb range to the given gene.

3. The presence of DE sRNA clusters between rogues and wild types.
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4. The presence of differential methylation at candidate loci from the preliminary methy-

lome data set

Through integration of multiple transcriptomic and methylome datasets, I aimed to identify

genes which display conserved epigenetic patterns across rogue epimutants of multiple pea

cultivars.

6.2 Integration of different ’omics datasets highlights candi-

date genes for the rogue locus

As previous models of paramutation systems involve consistent mechanisms, such as sRNAs

and differentially methylated genomic regions, integration of multiple -omics datasets would

improve my ability to identify the rogue locus in P. sativum. I designed a systematic ranking

system to score candidate genes, where candidates are ranked based upon the number of

transcriptomic characteristics they fulfil. The Methods chapter gives a full description of

the ranking metric.

Candidates Psat6g199320 and gene.8374 ranked highest, with scores of 5 and 6 respectively

(Figure 6.1, while another 42 genes received a score ≥ 4 (Table A.2). I selected a score ≥ 4 as

a reasonable cut-off point to merit further investigation into gene function. Most genes with

this ranking were down-regulated in rogues across 2 or more cultivars, and either involved

nearby sRNA clusters or potentially differentially methylated regions from the preliminary

methlyation data set. Of the candidates with rankings 4 or above, 39% were involved in plant

developmental and regulatory pathways, such as auxin transport and cell wall biosynthesis,

which could potentially support a role in altering leaf morphology in rogue peas. The newly

annotated Gene.8374 received the highest ranking, but I do not present further insights

here due to previously mentioned discrepancies in the improved transcriptome annotation

requiring further analysis.



65

Figure 6.1: Candidate gene matrix. Top-ranked candidate genes for the rogue locus in P. sativum. Fulfilment of each
criterion added a value of 1 to the overall score of a candidate gene, which was then used to rank all candidates. Gene
8374 had the highest ranking due to consistent repression of gene expression in rogue epimutants across most cultivars in
both mRNA sequencing data sets, while also having sRNA clusters within 10 kb of the TSS. However, discrepancies in the
improved annotation must be resolved to validate this new gene as a top candidate.
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I selected a subset of top candidate genes to interrogate in greater detail, based on their rank-

ing scores and potential gene function. These were Psat6g199320, Psat5g220240, Psat7g141280

and Psat7g260040. I have hypothesised that the rogue locus is transcriptionally repressed

and this criterion contributed to selection of candidate genes. I next assessed in detail the

extent to which the top candidates were repressed to better understand how they differed

between rogues and wild types. I plotted the log CPM values of candidate genes (Figure

6.2). Expression of these 4 candidates was substantially reduced in rogues relative to wild

types in at least 2 cultivars, or the F1 hybrid. The logFC at each candidate loci averaged

≥ 2 across cultivars with p ≤ 0.1 (Table A.2). While expression was not completely silenced

at these loci, substantial repression was present in most cultivars. Psat5g220240 was the

most consistently repressed, with expression down-regulated in rogues of all cultivars and

F1 hybrid samples for the mRNA1 dataset (Figure 6.2 B).

To further validate the expression profile of the top candidates, I verified that the mRNA1

and 2 short read RNA-seq read alignment at each locus matched the annotated gene struc-

ture and was consistent with the DE results. This was valuable as the reference tran-

scriptome is imperfect and requires multiple points of validation. The following alignment

examples for candidate genes were selected based on cultivars which had the highest DE

between rogues and wild types. Psat6g99320 was strongly repressed in Daisy rogues rel-

ative to wild types. Visualising aligned Daisy reads in the Integrated Genomics Viewer

(IGV), I found a substantially greater number of aligned reads was present for wild type

replicates in relation to rogue replicates (Figure 6.3 A). Read alignment also supported the

alterations made to the structure of this gene in my improved annotation. Psat5g220240

also met expectations, with large reductions in the number of aligned reads for the Daisy

rogue samples relative to wild types (Figure 6.3 B). Results were similar for Psat7g141280 in

Thomas Laxton and Black-Eyed Susan cultivars (Figure 6.3 C, D). While transcription was

not completely absent in each example, the difference in expression between epigenotypes

was notably large and potentially sufficient to have phenotypic impacts depending upon the

gene function of each candidate.
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Figure 6.2: Candidate genes repressed in rogues. Log CPM read val-
ues confirm gene expression differs between epigenotypes for candidate genes
Psat6g199320 (A), Psat5g220240 (B), Psat7g141280 (C), Psat7g260040 (D).
Plots A, B and C show differences in expression between at least 2 cultivars or
the F1 hybrid 10th node and 3rd node. Psat5g220240 (B) is more strongly DE,
being repressed in rogues of all cultivars as well as the F1 hybrid. Coloured
lines on each plot represent mean expression for replicates in each epigenotype.
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Figure 6.3: Read alignments support top candidate rogue loci. Read alignments for the cultivar with the largest
DE for 4 candidate genes (A = Psat6g199320, B = Psat5g220240, C = Psat7g141280, D = Psat7g260040 ) for the rogue locus
using the previous (original) and improved annotation. Grey alignments indicate primary alignment in IGV. Note some read
tracks are compressed to better display the amount of reads aligned to the given locus.
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I next assessed in detail the sRNA clusters neighbouring my 4 top candidate loci. Most

examples of trans-homolog silencing in paramutation involve sRNA clusters proximal to the

paramutant locus, which then cause repression of transcription through DNA methylation

pathways. I had used the presence/absence of sRNA clusters within 10 kb of my top

candidate loci, and their DE status, as a component of my metric to score candidates for

the rogue locus. Here I present sRNA cluster coverage of the top 4 candidates in cultivars

Thomas Laxton and Daisy alone to match mRNA examples, as Black-Eyed Susan sRNAs

were not sequenced. While sRNA clusters aligned within 10 kb either side of my 4 top

candidate loci, sRNA read abundance was increased in wild types relative to rogue samples

in Daisy and Thomas Laxton cultivars (Figure 6.4). The observation of fewer sRNAs at

candidate loci in rogues suggests that short-range effects of sRNAs may not be involved

in the repression of these loci. If any of these are indeed the rogue locus then long-range

epigenetic mechanisms may instead be involved. Such long-range epigenetic mechanisms are

involved in regulation of paramutant maize loci [65].



70

Figure 6.4: sRNA clusters within 10 kb of candidates. Alignments for sRNA reads proximal to candidates
Psat6g199320 (A), Psat5g220240 (B), Psat7g141280 (C), Psat7g260040 (D) show similarities between epigenotypes for
10 kb range up and downstream of the given candidate loci. Note that for Psat7g260040 sRNA reads from Daisy are shown
instead of Black-Eyed Susan, because the sRNA population was not assessed in Black-Eyed Susan.
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Having established the transcriptomic and epigenomic characteristics of my 4 top candidate

loci, I investigated their known or predicted gene functions to gain insight into how they

might potentially be involved in the rogue paramutation phenotype. I identified sequence

similarities to genes in other angiosperms using NCBI’s BLASTn and BLASTx queries.

Three out of four candidate sequences matched translated proteins in relatives of P. sativum,

such as M. truncatula (Table 6.1). The proteins encoded by these matching genes were

involved in plant developmental pathways. Psat7g260040 had sequence similarity with M.

truncatula’s Cinnamoyal-CoA reductase 1, whose orthologue in A. thaliana functions in

the later stages of lignin biosynthesis [66]. The arabidopsis knockdown mutants of this

gene had altered leaf morpohology. Similarly, Psat5g220240 had sequence similarity with

a gene involved in plant development in M. truncatula. This encoded ZINC INDUCED

FACILITATOR-LIKE 1 (ZIFL1), which has a role in transport of the hormone auxin, which

is a regulator of development [67]. Psat7g141280 had high similarity to NODULIN21 in M.

truncatula, which is homologous to walls-are-thin 1 (WAT1) in A. thaliana (Table 6.1).

WAT1 is primarily involved in secondary cell wall synthesis, is expressed in leaves, and is

involved in the auxin-activated signalling pathway [68]. No genes with sequence similarity

were identified for Psat6g199320, so at this stage I cannot infer its function.

Table 6.1: Candidate gene sequence similarity matches known
translated proteins.
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6.3 Conclusions

I have conducted an integrated analysis of the transcriptomic and epigenomic characteris-

tics of rogue P. sativum, and believe no comparable study currently exists. Through this I

have identified strong candidates for the rogue locus. DE mRNAs and sRNA clusters share

commonalities across multiple epimutant cultivars. However, contrary to my initial expec-

tations I was unable to identify a single candidate gene down-regulated across all cultivars.

A possible explanation is that different cultivars have different rogue loci. Alternatively, the

rogue gene may be absent from the current genome assembly or transcriptome annotation,

or variation between experiments may have led to confounding DE of the rogue gene. Nev-

ertheless, I successfully identified candidate genes which are DE in multiple cultivars and

also show signs of known paramutation mechanisms such as the presence of nearby sRNA

clusters and potential differential methylation. Three of four top candidate genes were also

found to have sequence homology with genes involved in developmental pathways in other

plant species, as were many other candidates. This is consistent with my hypothesis that

the locus/loci inducing the rogue phenotype is linked to developmental pathways which can

drive alterations in leaf morphology.

Future work should aim to examine the functions of candidate genes through in vivo assays,

such as targeted genetic knock-down. This may confirm a link between the candidates and

the rogue phenotype. Further research to evaluate the mechanisms of the rogue phenotype

might include targeted bisulfite sequencing, which would read out the DNA methylation

status of the loci. This could confirm differential DNA methylation between rogues and wild

types, which was indicated by the preliminary DNA methylation data I used in candidate

gene rankings. The limitation of the preliminary DNA methylation data was that it consisted

of different cultivars from those in my transcriptomic assays, and only contained 1 biological

replicate for each epigenotype. Confidence in genes involved in rogue epimutation would be

increased by conducting a study of DNA methylation in matched cultivars with increased

replication.

While there is still much work to be done to fully understand paramutation in P. sativum,

my study has identified rogue candidate genes for the first time, through incorporating

multiple -omics techniques on a transcriptome-wide scale.



Chapter 7

Discussion

The main objective of this thesis was to identify candidate genes for the rogue locus. The

recently published P. satium reference genome sequence made a transcriptome-wide scale

analysis possible, whereas prior to its release such approaches were difficult and contributed

to the lack of progress in understanding rogue paramutation for the past century. I integrated

data generated using multiple ’omics techniques in my attempt to identify the causal locus,

as observations of paramutation in other species implicate multiple regulatory components.

My resulting candidate gene list now provides a basis for further research into gene function

and the mechanisms behind paramutation in the rogue pea.

The rate at which phenotypic data can be processed and evaluated is a limiting factor

when studying the genetic basis of crop traits [69]. I developed an automated classification

model that increased the throughput of phenomics analysis in order to tackle this challenge

and assist in characterising the rogue phenotype. The model could accurately and non-

arbitrarily classify individuals into their correct epigenotype based on leaf morphometric

properties. It currently functions at a cultivar-specific level, though further improvements

could potentially enable the model to encompass all cultivars in analysis.

In this chapter, I discuss the implications of my findings about the rogue pea and draw

comparisons with well-studied paramutant phenomena in maize and other species. I explore

the strengths and shortcomings of my automated classification, and draw conclusions of

rogue inheritance in my selected cultivars. Finally, I discuss the implications of my research

in a broader context concerning paramutation and epigenetic inheritance, and its potential

to positively impact the agricultural industry.
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7.1 Rogue trait inheritance and classification through ma-

chine learning

Phenomic analysis confirmed that rogue leaf morphology is inherited in hybrids between

rogue and wild type individuals of cultivars Thomas Laxton and Daisy. Both cultivars

displayed the characteristic intermediate rogue phenotype in F1 individuals, as described

in the early literature on rogue leaf morphology and inheritance [6, 7]. This phenotype

was primarily observed from the 4th node onwards, with lower nodes appearing wild type.

There was a complete shift to the rogue phenotype in the F2 generation of the Daisy cultivar,

whereas leaf morphometric properties of Thomas Laxton F2s were between mean F1 and

rogue values. I also attempted to assess the inheritance of the rogue phenotype in the

cultivar Black-Eyed Susan, but an unknown plant pathogen severely distorted development

of plants in that experiment so the data were uninterpretable and were not included in this

thesis. A repeat experiment on Black-Eyed Susan plants without pathogen infection would

be needed to confirm rogue trait inheritance in this cultivar. Overall, rogue leaf morphology

was found to be inherited in rogue/wild type hybrid crosses of two cultivars, in agreement

with founding studies of rogue peas.

The inheritance of rogue leaf morphology in this study is consistent with examples of paramu-

tant loci in other species [23]. Inheritance of the paramutant loci implicated in anthocyanin

biosynthesis in maize is similar, particularly in F1 hybrids which display intermediate phe-

notypes with incomplete or varied transitions to the full paramutant phenotype observed in

subsequent generations [65, 70]. The variation observed in Thomas Laxton F2s leaf mor-

phology is not completely unexpected, as early studies record similar variances in F2 hybrid

phenotypes and used categories for ’rogueness’ based on the degree to which leaf morphology

traits resembled rogue parents [6].

An explanation for varied hybrid phenotypes I observed is that the rogue locus can exist

in multiple regulatory states, and therefore create variations in rogue leaf morphology as

a direct result. The occurrence of multiple paramutant states has been observed before

in the meta-stable Pl1-Rh locus in maize, conferring variation in anther pigmentation [70].

Complete paramutation reversions have been observed at the Pl1-Rh locus in maize, where

individuals displaying intermediate phenotypes either produce progeny with stronger para-

mutant traits or completely revert to a wild type like state [70]. Similar reversions can occur
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at paramutant-like transgene insertions of the maize b1 locus, which are unstable relative

to endogenous b1 paramutation [65]. My crossing study and phenomics analysis did not

identify the occurrence of any phenotype reversions in the F2 generation. However, I did

not examine subsequent generations nor the potential for rogue alleles to revert back to a

wild type state if rogues were back-crossed to parent lines. A large scale back-crossing study

would be ideal to examine reversion in rogue pea cultivars. Such studies were conducted

during the initial discovery of the rogue pea phenotype, but examined different cultivars.

However, examination of reversion in a broader range of pea cultivars would provide broader,

more generalisable understanding of the phenotype.

Plant phenomics was once a limiting factor for biology, but advances in machine learn-

ing and automated phenomics are now closing the gap between genotype, epigenotype and

phenotype in speed and feasibility of research [71–73]. Developing a quantitative morpho-

metric description of rogue pea cultivars to systematically test the inheritance of the rogue

phenotype in hybrid crosses was important, due to the current lack of genetic markers to dis-

tinguish between epigenotypes. Using a decision tree learner under the supervised learning

model was sufficient to distinguish epigenotypes within my cultivars based on two phenomic

properties of l/w ratio and area. The strengths of my automated analysis were its accuracy

and precision, ease of use and non-biased method to assign epigenotypes based on phenomic

properties. Assessing and characterising the inheritance of rogue phenotype traits across

multiple cultivars at a larger scale can now be conducted more quickly and in a non-biased

manner using the morphometric and automated classification systems that I developed in

this study.

One of the larger limitations I found in my study was the acquisition of phenomic data

which was a bottleneck to analysis. This requires improvement to increase throughput for

any future large-scale assays. Image scanning and manual segmentation of stipule samples,

while accurate, was slow and laborious. Future studies could employ automated 3D imaging

techniques to greatly increase the throughput of data acquisition, through the use of multiple

camera angles and conveyor belt systems to capture large plant populations [74]. While

some of these systems can be costly, the information which can be acquired through 3D

imaging could be beneficial to identify other potential components of the rogue phenotype

simultaneously. The stipule segmentation process could also be improved to a non-intrusive

method through the use of tailored segmentation algorithms which can detect and capture
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the shape of specific plant organs [75, 76]. While most algorithms have been developed using

A. thaliana, they could be adapted for other plant species like P. sativum. Additionally,

throughput could be improved by enabling simultaneous analysis of many cultivars.

My automated analysis could also be enhanced by identifying and using additional phenomic

variables unique to the rogue phenotype. The l/w ratio and area of rogue stipules are the

most obvious phenotypic change, but other features exist. For example, a rogue phenotype

affecting pod morphology was noted in the Gradus cultivar [6]. While it was not feasible

to investigate the presence of further phenotypes in my study, future work could do so and

then use these for in-depth characterisation and improved phenomics approaches. Should

resources permit, a deep-learning approach could be used to identify distinctive phenotypic

properties yet to be discovered. Deep-learning approaches have been used in wheat (Triticum

aestivum L.) to classify individuals based on shoot and root phenomic properties, with

accuracies exceeding 97% [77]. Accurately classifying and confirming inheritance patterns

in rogue peas with increased throughput will aid in the future when examining the link

between the rogue phenotype and epigenotype in P. sativum. Nonetheless, my approaches

were effective in developing the first automated system to accurately classify rogue peas

based on known phenomic properties.

7.2 Rogue candidate genes potentially implicated in devel-

opmental pathways

Here I have reported that global transcriptomic differences exist between pea epigenotypes,

with hundreds of DE genes between rogues and wild types of cultivars Thomas Laxton, Daisy,

Black-Eyed Susan and Sutton’s Hundredfold. I found the sensitivity of DE analysis was

increased by making improvements to the existing transcriptome annotation for P. sativum

through long-read sequencing and novel transcript discovery analysis. Some genes down-

regulated in rogues were shared between cultivars, making a plausible case for a common

locus driving the rogue phenotype, but only 2 genes were commonly down-regulated in

rogues of all 3 assessed cultivars. These are strong candidates for the rogue locus but

require further analysis and functional validation. Overall, the transcriptomic variation

between rogues and wild types was mostly cultivar-specific and could be mainly due to the

effects of genetic and epigenetic drift owing to the separation of lines for over 100-years.
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This increases the difficulty of identifying the rogue locus, which highlights the necessity of

a multi-omics approach to define paramutant characteristics in P. satiuvm.

Integrating data from other ’omics techniques, such as sRNA-seq and preliminary DNA

methylation data, enabled me to identify candidate genes with higher confidence. sRNAs

and DNA methylation are central to paramutation mechanisms across known paramutant

angiosperms and other eukarytoic organisms, making them a strong line of investigation.

Using these data and a score-based approach I identified a collection of candidate rogue

genes belonging to many regulatory pathways involved in plant development. Some of the

candidates have orthologues in other species that function in plant development, whilst

others are yet to be functionally examined. Psat6g199320 and gene.8374 were the top

scoring candidates, having neighbouring sRNA clusters, down-regulation in rogue epigeno-

types across multiple cultivars and, for Psat6g199320, potentially differential methylation.

However, functional annotations could not be inferred for these genes when orthology was

examined.

The three remaining candidates that I examined were well characterised in A. thaliana

and have also been identified in M. truncatula, a close relative of P. sativum. Orthologues

of Psat7g260040 in A. thaliana encode cinnamoyl-CoA reductase 1 which has been found

to play a major role in secondary cell wall synthesis and cell wall lignification [78, 79].

The resulting phenotypes in knock-down mutants of A. thaliana and M. truncatula consist

mainly of stunted growth and in some cases variations in cell structure and xylem collapse

[80, 81]. Preliminary studies by Pyke and Hedley (1984) [44] noted no visually-obvious

variations in size or structure of cells of rogue leaves, rather there were fewer cells. However,

the cell composition and structure of rogue peas is understudied, so other cellular changes

may remain undetected. Another top candidate, Psat7g141280, also likely functions in

secondary cell wall synthesis, as seen in orthologue WAT-1 [68]. Interestingly, knockdown

mutants of this locus induce similar phenotypes as cinnamoyl-CoA reductase 1 - inducing

stunted growth and affecting cell elongation [68]. Consequently, the functions of orthologues

of Psat7g2600240 and Psat7g141280 could be considered consistent with the effects of the

rogue phenotype. Their repression in rogue epimutants could potentially also be linked

with secondary phenotypes less obvious than the reduced stipules and leaflets of the rogue

phenotype. This is an attractive avenue of future study.
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Candidate Psat5g220240 encodes a probable auxin exporter belonging to the Major facili-

tator superfamily. The protein product of its orthologue in A. thaliana, ZIFL1, is primarily

localised in root and leaf cells [67]. Auxin spatial distribution in leaves is known to impact

leaf shape development post-initiation stage, where its distribution is modulated by PIN1, an

auxin efflux facilitator modulated by ZIFL1 [82, 83]. Therefore, if Psat5g220240 shares sim-

ilar functionality to ZIFL1 in P. sativum, it is plausible the inactivation or down-regulation

of this locus could drive the leaf shape exhibited by rogue plants.

Detection of rogue locus candidates was made difficult due to the imperfect genome and

transcriptome references and, as a result, the causal locus may still remain unidentified.

This highlights the need for further improvement of the references through additional deep-

sequencing studies and bioinformatic analysis. Considering the transcriptome annotation

that I performed, I must refine the application of Bambu in the future to ensure all novel

transcripts are included, as previously discussed. Future work might also focus on repeat

regions, which are highly associated with trans-homolog interactions and are known to

impact the degree of paramutagenicity of some loci [17, 65]. The pea genome is repeat-

rich and sequencing repeat regions is challenging [84]. Repeat sequences are also often not

handled well by bioinformatics packages, resulting in their assembly to collapsed contigs

[84]. Long-read and ultra long-read sequencing can rectify many of the issues surrounding

assembly of repeat regions, and progress is being made to improve the handling of repeat

regions in analysis [85].

Another limitation in my study was the lack of whole-methylome analysis specifically of the

cultivars that I used in my other analyses. The preliminary DNA methylation data available

to me used different cultivars and only 1 replicate. This limited the utlility of these data.

I recommend conducting more extensive DNA methylation analyses in future, since DNA

methylation changes are a consistent feature of paramutation.

It is also important to consider that mechanisms driving rogue inheritance in peas may

deviate from other paramutant examples. Whilst it might appear improbable, it is possible

that the locus is an up-regulated gene or does not require the DNA methylation and RNA-

mediated silencing regulatory pathways. In that case sRNA and methylome analysis would

not be informative. It is also possible that the inheritance mechanism is cultivar specific

as I identified few rogue/wild type common DE genes across cultivars, though I consider

the limitations of the reference genome and transcriptome to be more likely causes of this.
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There are consequently many considerations for future studies to build on my insights into

rogue transcriptomics.

Functional validation of candidate genes is the next step in elucidating the location and

mechanism of the rogue locus. Validating rogue candidates with knockdowns or knock-out

assays in pea is somewhat challenging. P. sativum is amenable to agrobacterium-mediated

transformation, though the method is laborious, with very low efficiencies and regeneration

rates than compared to model organisms such as A. thaliana [86–88]. Virus induced gene

silencing (VIGS) is perhaps a more viable option that enables transient knockdown assays;

the pea early browning virus (PEBV) has been used as a vector with some success [89, 90].

However, virus-based assays can cause disease symptoms that mask the resulting phenotype

from gene knockdown. VIGS has been known to affect leaf morphology depending on

the selected virus, which is not ideal for investigating candidate genes for the rogue locus

[91]. Targeted mutagenesis using CRISPR is not a well developed method in pea, but

can be delivered biolistically [92]. Alternatively, future studies might consider orthogonal

approaches making use of model organisms to build evidence for the rogue locus or loci.

7.3 P. sativum and implications of paramutation in a global

context

Identifying the rogue locus and associated inheritance mechanism is important to epige-

nomics, and how we interpret and understand inheritance. Plant hybrids are highly desired

in agriculture, due to their potential to out-perform parental lines in what is referred to as

hybrid vigour [93, 94]. Our current understanding of hybrid vigour is primarily genetic: het-

erozygosity at many loci can compensate for slightly deleterious mutations that each parent

possesses. Loss of hybrid vigour in subsequent generations is attributed to the segregation

of alleles and loss of heterozygosity [93, 94]. However, epigenetic interactions between alle-

les also occur in hybrids, with similarities to paramutation and involving similar epigenetic

mechanisms [22]. It is still not clear to what extent these epiallele interactions contribute to

hybrid vigour or its breakdown. Through studying paramutation in hybrids of epimutant

species like maize, and newly arising examples like P. sativum, we will better understand the

epigenetic component to hybrid vigour. Biotech research could potentially use the fixative
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nature of paramutant epialleles to ‘lock-in’ desirable traits in crops. The fixation of para-

mutant states has been confirmed at the b1 locus, where no observations of reversion for B’

have been recorded [95]. Alternatively, inhibiting paramutation might increase epigenetic

heterozygosity which could benefit hybrid vigour. While manipulation epialelle interactions

is a challenging goal, advances in biotechnology paired with deeper understanding of the

mechanisms involved may make such applications a reality.

Research into paramutation in P. sativum is still in its early days. Modern genomics and

epigenomics techniques can now be applied due to the development of quality reference

genome and transcriptome sequences. My study demonstrates that new information can be

gained about pea traits by application of modern transcriptomics-based approaches. After

100 years of little progress, I have generated the first candidate list of genes for the rogue

locus. I drew evidence from the small-RNAome and methylome, and identified potential

epigenetic components involved at these loci. My findings represent the foundation for

future genetic and epigenetic research in P. sativum and will aid in identifying the rogue

locus through validation studies, and in revealing the epigenetic components driving the

non-Mendelian inheritance of the rogue phenotype.
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Table A.1: Comparison of read assignment rates for previous and
improved transcriptome annotation

Previous transcriptome annotation

Sample Aligned reads Assigned reads
Proportion
Assigned

BESR1 23649351 15092881 63.82
BESR2 26663593 21661867 81.24
BESR3 28078262 23580558 83.98
BESWT1 31820837 24174139 75.97
BESWT2 29000023 23176891 79.92
BESWT3 31018982 24951341 80.44
DAISYR1 23261564 19228780 82.66
DAISYR2 23069807 18143870 78.65
DAISYR3 26771014 20286605 75.78
DAISYWT1 29344032 23670604 80.67
DAISYWT2 33024732 26183320 79.28
DAISYWT3 20453757 13079884 63.95
TLR1 29045810 23932311 82.4
TLR2 30974748 24540103 79.23
TLR3 33423330 27155744 81.25
TLWT1 37541638 30685663 81.74
TLWT2 34812884 28483497 81.82
TLWT3 27985475 22978390 82.11
F1N3 28492889 23535605 82.6
F1N10 26018883 20512372 78.84

Improved transcriptome annotation

Sample Aligned reads Assigned reads
Proportion
Assigned

BESR1 23649351 19775290 83.62
BESR2 26663593 24314777 91.19
BESR3 28078262 26164982 93.19
BESWT1 31820837 28279664 88.87
BESWT2 29000023 26404846 91.05
BESWT3 31018982 28145602 90.74
DAISYR1 23261564 21587207 92.8
DAISYR2 23069807 20954393 90.83
DAISYR3 26771014 23980372 89.58
DAISYWT1 29344032 26927800 91.77
DAISYWT2 33024732 30121204 91.21
DAISYWT3 20453757 17347435 84.81
TLR1 29045810 26852925 92.45
TLR2 30974748 28223096 91.12
TLR3 33423330 30681937 91.8
TLWT1 37541638 34656630 92.32
TLWT2 34812884 32182782 92.45
TLWT3 27985475 25876942 92.47
F1N3 28492889 26376368 92.57
F1N10 26018883 23679003 91.01
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Table A.2: DE analysis data sets and candidate gene list

Data Type URL

Combined analysis DE gene list mRNA, upregulated figshare.com/s/d3d6317cd03ceaf83390
Combined analysis DE gene list mRNA, downregulated figshare.com/s/64c4eae2ebc3cab57db9
Daisy DE gene list mRNA, upregulated figshare.com/s/002752fa2e8e2632bf72
Daisy DE gene list mRNA, downregulated figshare.com/s/996f6c53b209267658b0
Thomas Laxton DE gene list mRNA, upregulated figshare.com/s/68ed5f5169e325662eb9
Thomas Laxton DE gene list mRNA, downregulated figshare.com/s/29f0b5842c974c568a65
Black-Eyed Susan DE gene list mRNA, upregulated figshare.com/s/0028581687c277d48943
Black-Eyed Susan DE gene list mRNA, downregulated figshare.com/s/fcd33c62bcc637faa39a
F1 hybrid DE gene list mRNA, upregulated figshare.com/s/ae4d0e3eddd2211b29bd
F1 hybrid DE gene list mRNA, downregulated figshare.com/s/47fb1d362e9b39225e7d
Combined sRNA cluster DE list sRNA, upregulated figshare.com/s/0e5030b0628e9487825f
Thomas Laxton sRNA DE list sRNA, upregulated figshare.com/s/438f25ca670661006f33
Daisy sRNA DE list sRNA, upregulated figshare.com/s/e02c3524e639c3f1c04b
Sutton’s Hundredfold sRNA DE list sRNA, upregulated figshare.com/s/4c7ec067b190dee0edd0
sRNA distance to nearest gene sRNA, upregulated figshare.com/s/777bcdaa4367ea703932
Candidate genes Combined transcriptomics data figshare.com/s/b6a6d15e28f15489ad27
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Figure A.1: Preliminary DE analysis. MDS plot (A) and Cluster Den-
drogram (B) display separation of clusters, suggesting transcriptomic varia-
tion between epigenotypes of P. sativum cultivars Black-eyed Susan (BES),
Thomas-Laxton (TL), Daisy and F1 hybrid node 3 (N3) and node 10 (N10)
samples. Interestingly, a TL rogue sample is shown to cluster with wild-type
samples

Figure A.2: Common DE genes identified using previous annota-
tion. Relative to the improved annotation, DE genes identified using the
previous annotation are largely reduced. DE genes are still shared between
cultivars, and Black-Eyed Susan displays increased DE genes relative to other
cultivars - there are just less by comparison to analysis using the improved
annotation
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Table A.3: Daisy phenomics summary stats

Table A.4: Thomas-Laxton phenomics summary stats

Figure A.3: sRNA size selection gel. Denaturing polyacrylamide gel
stained with SYBR gold over an UV transilluminator. RNA samples from
Daisy total RNA are pictured. Gel bands were excised between 20-30bp marks
using the NEB miRNA ladder as reference.

.
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