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ABSTRACT

This research explores possible options to reduce 
greenhouse gas (GHG) emissions in the Australian 
dairy industry by (1) including an environmental 
component in the national breeding program and (2) 
estimating the economic and environmental impacts 
of implementation of the subsequent indexes. A total 
of 12 possible selection indexes were considered. These 
indexes were developed to predict changes in gross 
per-animal methane production (using 3 scenarios de-
pending on availability and efficacy of a direct methane 
trait breeding value prediction) with 4 different carbon 
prices, integrating them into an augmentation of the 
current conventional national selection index. Although 
some economic response is lost with inclusion of the 
GHG subindexes in the Balanced Performance Index, 
options do exist where this loss is marginal and, even 
in scenarios where all selection pressure is based on 
the environmental weighting, economic progress is 
still made in all cases. When including environmental 
traits within an index, if a relatively low percentage of 
economic gain or index progression is sacrificed, then 
approximately 40 to 50% of the maximum possible 
reductions in emissions may be achieved. This concur-
rent selection of estimated breeding values that have a 
correlated favorable response in emissions in addition 
to direct selection on a residual methane trait allows 
a high level of methane reduction to be achieved with 
a realized cost to farmers that is far lower than the 
economic value placed on carbon. By implementing a 
GHG subindex in the national breeding program, we 
can achieve up to a 7.9% decrease in residual methane 
and 9 times the reduction in gross emissions in 10 yr, 
compared with the current breeding program, with 

little to no cost to farmers. By 2050, selection based on 
one of the more moderate index scenarios at a carbon 
price of AUD$250/t (AUD$1 = US$0.71), or opportu-
nity cost to farmers of AUD$87.22, will reduce gross 
emissions by 8.23% and emissions intensity by 21.25%, 
therefore offering a mitigation strategy that will be ef-
fective at reducing emissions with little compromise to 
profit.
Key words: sustainability, methane emission, 
environment, economic impact, selection index

INTRODUCTION

In 2016, Australia committed to reduce greenhouse 
gas (GHG) emissions by 26 to 28% of 2005 levels by 
the year 2030 (Paris Agreement, 2016). This target re-
lies largely on a decrease in the 3 major GHG, carbon 
dioxide (CO2), methane, and nitrous oxide, which ac-
count for 81%, 10%, and 7% of the global GHG inven-
tory, respectively (https:​/​/​www​.epa​.gov/​ghgemissions/​
overview​-greenhouse​-gases).

Enteric methane produced as a by-product of feed 
fermentation (Appuhamy et al., 2016) is the primary 
GHG targeted for reduction, as it accounts for 57% of 
the Australian dairy industry’s emissions (UNFCCC, 
2018). Genetic selection for lower enteric methane pro-
duction may provide a permanent and cumulative solu-
tion to reduce GHG emissions, and several strategies 
could be incorporated into breeding programs to target 
a reduction in emissions (Wall et al., 2010; Basarab et 
al., 2013; Pryce and Haile-Mariam, 2020).

National selection indexes are a powerful tool for 
modifying the trajectory and rate of genetic change 
across multiple traits. These indexes are typically 
constructed with a focus on how traits are expected 
to influence the direct profitability or efficiency of 
production. For genetic selection to contribute to en-
vironmental gains, these national indexes will need to 
be expanded and modified to consider how existing and 
novel selection criteria can be optimally weighted to 
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efficiently allocate selection efforts among traits that 
affect only profit, traits that affect only environmental 
outcomes, and traits that affect both (Boichard and 
Brochard 2012; Martin-Collado et al., 2015).

Three of the challenges in accommodating environ-
mental traits are as follows: (1) identifying appropriate 
selection criteria that are available on a large number 
of selection candidates; (2) deriving meaningful weights 
for these selection criteria; and the focus of the current 
paper; and (3) evaluating the consequences of multi-
trait selection directly on the traits in the index and on 
other correlated traits.

Previous studies have investigated possible methane 
trait definitions (Breider et al., 2019; González-Reico 
et al., 2020; Manzanilla-Pech et al., 2021), and some of 
these may be suitable for inclusion in the Australian 
national dairy breeding objective (Richardson et al., 
2021b). Richardson et al. (2021b) defined candidate 
enteric methane traits to reduce environmental impact 
without severely affecting other valuable traits such as 
production, health, and fertility within the context of 
the Australian national dairy breeding program. Un-
der these criteria, a residual methane trait phenotypi-
cally corrected for energy-corrected milk was proposed 
due to its heritability (0.21 ± 0.10) and the potential 
ease of incorporating the trait within future indexes, 
as it is unexpected to have substantial correlations 
with other economically relevant traits. Emissions 
may also be reduced indirectly through correlated 
traits known to have a favorable effect on reducing 
enteric methane. Survival and feed saved (kg of DM/
yr; Pryce et al., 2015) are traits currently included in 
the national selection indexes that have been shown 
to reduce emissions due to their independent effects 
of reducing methane through fewer replacements and 
lower feed requirements, respectively (Richardson et 
al., 2021a).

Two selection indexes are commonly used by Aus-
tralian dairy farmers: the Balanced Performance Index 
(BPI) and the Health Weighted Index (HWI). The 
BPI is an economic-based index aimed at improving 
the overall profit on farm, whereas the HWI places 
additional emphasis on fertility, health, and feed 
efficiency. Byrne et al. (2016) describe the index de-
velopment, which was recently updated with current 
industry parameters and economic inputs (Axford et 
al., 2021). The HWI was developed by incorporating 
the 1000Minds approach (1000Minds Ltd., Dunedin, 
New Zealand), which also gives traits a noneconomic 
value-based farmer preference for improvements, re-
flecting the intrinsic interests of farmers separate from 
economics and profit (Martin-Collado et al., 2015). 
This willingness to sacrifice potential economic gains 

to achieve progress in traits related to management or 
social purposes is useful for deriving alternative index 
weights based not exclusively on economic benefits, 
such as for environmental traits. Although there is 
currently no predetermined economic value for carbon 
within Australia, social pressures to responsibly reduce 
emissions place a new pressure on the industry to adapt 
their farming practices, including modification of their 
genetic selection choices.

The effects of including an environmental component 
in the national selection index needs to be estimated 
before a strategy to reduce GHG through genetic selec-
tion can be efficiently implemented. The aim of this 
research was to explore possible options to reduce GHG 
emissions in the Australian dairy industry, using adapt-
ed versions of the BPI that include GHG subindexes 
developed using a combination of currently evaluated 
traits in addition to a direct residual methane trait, 
while maintaining a profitable dairy animal through (1) 
including an environmental component in the national 
breeding program and (2) estimating the economic and 
environmental impacts of implementation of the subse-
quent indexes.

MATERIALS AND METHODS

In Australia, the current primary national selection 
index is the BPI (Axford et al., 2021); therefore, the 
implementation of possible GHG subindexes within 
the BPI were examined and compared with the most 
recent BPI and HWI indexes, noting that HWI has 
more of a desired-gains approach that is focused on 
improving health and fertility traits. A total of 12 pos-
sible selection indexes were considered. These indexes 
were developed by including 3 variations of a GHG sub-
index: (1) considering current selection criteria alone, 
referred to as the base GHG subindex (GHGindex); (2) 
current criteria plus a novel but low-accuracy direct re-
sidual methane trait (GHG+

index); (3) current criteria 
plus a future higher-accuracy residual methane trait 
(GHGS

index). For all versions, the subindexes were 
weighted according to their effect on gross methane per 
cow per lactation.

The 3 options were then evaluated when integrated 
into the current BPI index, with 4 different carbon 
prices used to maximize genetic progress in a holis-
tic economic-based breeding goal. The environmental 
and economic impacts of the 12 index scenarios were 
estimated and compared with the 2 current national 
indexes. Additionally, selection solely on the GHG 
subindexes was considered, to determine the maximum 
magnitude of enteric residual methane reduction that 
could be achieved.

Richardson et al.: REDUCING GHG EMISSIONS THROUGH GENETIC SELECTION
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GHG Subindex Development

A base GHG subindex, or GHGindex, was previously 
developed as described by Richardson et al. (2021a). 
Briefly, gross emissions coefficients (GV; Table 1) were 
estimated that describe the change in enteric meth-
ane attributed to traits currently under selection in 
Australian dairy cattle (expressed in CO2 equivalents,  
CO2-eq). Because these GV coefficients were estimated 
to be independent, they can be used as weights within 
an index to place noneconomic emphasis on traits with 
environmental impact. The calculated GV coefficients 
were applied to existing EBV shown to have an inde-
pendent effect on enteric methane emissions and used 
to develop GHGindex, which has units of CO2-eq emitted 
per cow per year:

	 GHGindex = ×
=∑ ,
n

i
i iGV EBV

1
	 [2]

where GVi is the gross emissions coefficient (kg of 
CO2-eq/yr) for trait i (milk, fat, protein, survival, and 
feed saved) and EBVi is the EBV for trait i (milk, fat, 
protein, survival, and feed saved).

A preliminary residual methane trait was added to 
the index to determine the effect of including a direct 
methane trait on reducing emissions (i.e., GHG+

index). 
The residual methane trait (kg of methane/yr) was pre-
viously developed by Richardson et al. (2021b) and de-
fined as methane production phenotypically corrected 
for ECM. Thus, GHG+

index is as follows:

	 GHG+
index = GHGindex + GVRMP × EBVRMP,	 [3]

where GVRMP is the gross methane coefficient for re-
sidual methane, and EBVRMP is the EBV for residual 

methane phenotypically corrected for ECM (kg of 
methane/yr).

Residual Methane Genomic EBV

The genomic prediction equation to calculate EB-
VRMP was estimated using a reference population of 464 
Holstein cows from Ellinbank, Australia (Richardson 
et al., 2021b). Measurements for methane production 
were performed using the SF6 tracer method previously 
described by Deighton et al. (2014), which was then 
corrected phenotypically for ECM to produce the re-
sidual methane phenotypes (Richardson et al., 2021b) 
and calculated as follows:

	 RMPpECM = MeP − (bpECM × ECM),	 [4]

where RMPpECM is RMP phenotypically corrected for 
ECM, ECM is energy-corrected milk (kg/d), bpECM is 
the linear regression coefficient of MeP on ECM; and 
MeP is methane production. The effects of 41,276 SNP 
on the Illumina Bovine 50K panel (Illumina Inc.) were 
estimated as ˆ ˆβ µ= + ( )′ ′ −Z ZZ g1

, where Z is the geno-
type matrix (464 individuals × 41,276 SNP), and ĝ is a 
vector of descaled direct genomic value estimated using 
GBLUP (VanRaden, 2008). The vector ĝ was applied 
to the genotypes of 3,412 Holstein bulls to calculate 
EBVRMP. It was assumed that EBVRMP had an accuracy 
of 0.1, as estimated in the independent cross-validation 
described by Richardson et al. (2021b).

All other EBV for the 3,412 registered Holstein bulls 
used in this study were provided by DataGene Ltd. 
(Bundoora, Victoria, Australia). Bulls were born be-
tween 2010 and 2015. The EBV used in this analysis 
included milk volume, milk fat, milk protein, survival, 
fertility, feed saved, mastitis resistance, somatic cell 

Richardson et al.: REDUCING GHG EMISSIONS THROUGH GENETIC SELECTION

Table 1. Gross emissions coefficients (kg of CO2 equivalents, CO2-eq) and subsequent relative emphasis for traits shown to have an independent 
effect of greenhouse gas (GHG) emissions in dairy cattle

Trait

Gross emissions coefficient,1 kg of CO2-eq

 

Relative emphasis, %

GHGindex GHG+
index GHGS

index GHGindex GHG+
index GHGS

index

Protein 1.97 1.97 1.97 9.44 7.31 3.95
Fat 3.19 3.19 3.19 32.33 18.45 10.60
Milk 0.04 0.04 0.04 8.34 6.93 3.74
Survival −10.19 −10.19 −10.19 26.63 20.26 9.99
Feed saved −0.53 −0.53 −0.53 23.26 20.66 14.75
RMP2 0.00 28.00 0.00 0.00 26.38 0.00
RMPS3 0.00 0.00 28.00 0.00 0.00 56.95
1Gross emissions coefficients were previously calculated by Richardson et al. (2021a). GHGindex was developed as described by Richardson et 
al. (2021c) and updated to include a gross emissions value for residual methane (GHG+

index) as well as a simulated residual methane trait with 
higher accuracy (GHGS

index).
2RMP is the residual methane production EBV as defined by Richardson et al. (2021b).
3RMPS is the simulated residual methane production EBV with higher accuracy.
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count, milking speed, milking temperament, overall 
type, mammary system, pin set, and udder depth, and 
were extracted from the April 2020 national genetic 
evaluation. Details of the traits evaluated can be found 
on the DataGene website (www​.datagene​.com​.au).

Converting Residual Methane EBV to BPI Units

Residual methane EBV were estimated in units of 
grams per day, taken as the recorded average daily 
methane emitted per cow after phenotypic adjustment 
for ECM. These EBV were rescaled to the units of the 
BPI and the GHG subindex. Because the BPI and 
HWI are annual measurements (i.e., the aggregate is a 
measure of profit per year), it was necessary to convert 
residual methane EBV from grams of methane per day 
to kilograms of methane per year. A conversion con-
stant (c) was defined as the number of full equivalent 
days of methane production (at the time of research 
data collection) per year and was calculated as

	 c t
DMI
DMI

i

R
= ×∑










,	 [5]

where t is the time period to which the EBV is con-
verted, DMIi is dry matter intake at i days in milk, 
and DMIR is the DMI at the average days in milk when 
methane phenotypes were collected (DIM = 113).

Calculating Emissions Coefficient  
for Residual Methane

The GV for residual methane was calculated as 1 
kg of additional methane produced per 1-unit increase 
in residual methane, multiplied by the global warming 
potential of methane to carbon (1 kg of methane × 28 
CO2-eq/1 kg of methane; Gerber et al., 2013).

Simulating Residual Methane EBV

One of the challenges of implementing a residual 
methane EBV in an index is the small number of phe-
notypes that are available on genotyped individuals, 
resulting in low accuracy of the performed genomic 

evaluation (Goddard et al., 2011). In the future, it is 
anticipated that additional phenotypes for methane 
will become available through various strategies, such 
as expanding data sets, or more extensive use of predic-
tors.

To quantify the effect of future higher genomic pre-
diction accuracies, an additional GHG subindex (i.e., 
GHGS

index) was investigated to determine the influence 
of including a more accurate residual methane trait into 
the GHG subindex and subsequently the BPI. Residual 
methane EBV were simulated, based on the expected 
accuracy of a residual methane trait with a heritability 
of 0.21 (Richardson et al., 2021b) and reference popula-
tion sizes of 1,000, 3,000, 5,000, 10,000, 50,000, and 
100,000 animals, using methods described by Goddard 
et al. (2011).

Using the formula proposed by Goddard et al. (2011), 
it was assumed that the predicted accuracy can be es-

timated as r
r h

=
+ −

θ

θ1 2 2
 with θ =

Th
Me

2

, where T is 

the size of the reference population, h2 the trait herita-
bility, and Me the effective number of independent 
chromosome segments (Table 2). Me can be estimated 
using the effective population size and chromosome seg-
ment length. We assumed an effective population size 
of 100 and a chromosome length of 30 (Zimin et al., 
2009). Residual methane EBV were simulated using the 
rnorm_pre() function in R (R Core Team, 2021) by 
multiplying the predicted accuracy for a reference 
population size of 3,000 animals with the standard de-
viation of the previously estimated residual methane 
EBV and assuming a correlation of 0.4 between residu-
al methane and liveweight (Breider et al., 2019). The 
simulated residual methane trait was then added to the 
base GHG index using the estimated GV for residual 
methane to develop the simulated GHG subindex, 
GHGS

index, and defined as

	 GHGS
index = GHGindex + GVRMP × EBVS.RMP,	 [6]

where GVRMP is the gross methane coefficient for re-
sidual methane, and EBVS.RMP is the simulated residual 
methane EBV with a higher accuracy through the in-
creased reference population size (3,000 animals).

Richardson et al.: REDUCING GHG EMISSIONS THROUGH GENETIC SELECTION

Table 2. Parameters used to estimate prediction accuracy, using methods described by Goddard et al. (2011)

Constant Value   Reference

Heritability, residual methane 0.21 Richardson et al., 2021b
Chromosome segment length (LN. Chr) 30 Zimin et al., 2009
Effective population size (Ne) 100 Zimin et al., 2009
Effective number of independent chromosome segments (Me) 1,132.43  
Prediction accuracy of cross-validation 0.1 Richardson et al., 2021b

www.datagene.com.au
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Inclusion in National Selection Index

The 3 GHG subindexes were included in the BPI 
with 4 different carbon prices driving the economic 
weighting applied to methane. The 3 scenarios repre-
sent the scenarios when no or insufficient records for 
residual methane are available (BPI.1), using the data 
currently available for residual methane (BPI.2), and 
a scenario with an increased accuracy of residual meth-
ane EBV (BPI.3). The investigated index scenarios 
were as follows:

	 BPI.1 = BPI + (EVC × GHGindex);	 [7]

	 BPI.2 = BPI + (EVC × GHG+
index);	 [8]

	 BPI.3 = BPI + (EVC × GHGS
index),	 [9]

where the component indexes are as previously de-
scribed, and EVC is the carbon price at AUD$150, 
AUD$250, AUD$500, and AUD$1,000/t (AUD$1 = 
US$0.71). Considerable variation currently exists in 
the price of carbon and future predictions of that price; 
for example, AUD$55/t has been used as the price in 
Canada (Government of Canada, 2021), whereas stud-
ies of the true long-term cost of carbon have produced 
much higher values, up to AUD$550 depending on the 
country, year, and sector of implementation (Stern and 
Stiglitz, 2021; World Bank, 2021). The effect of using 
the GHG subindexes as independent selection tools 
separate from the BPI was also explored.

GHG Subindex Included in National Indexes

The weights applied to traits included within BPI.1, 
BPI.2, and BPI.3 are presented in 2 ways. First, as the 
relative weight that the GHG subindex receives within 
the BPI (Table 3), and, second, as the total weight 
that each trait will receive when a GHG subindex is 
included in the BPI by combining both the economic 
and environmental weights (Table 4). For example, 
the final weight of protein within BPI.1 is equal to 

the economic value of protein (AUD$6.76), which is 
the current weight protein receives in BPI, plus ad-
ditional emphasis provided by converting the GV into 
an economic value using the respective carbon price. 
For example, in the scenario where the carbon price 
is AUD$150/t, it was calculated as 1.97 kg CO2-eq/kg 
protein × −0.15/kg CO2-eq.

Relative Emphasis

The relative emphasis of each trait and subindexes 
for every variant of the BPI was calculated using the 
approach of Zhang et al. (2021), which accounts for 
the accuracy of the EBV as well as the (favorable or 
antagonistic) relationships between traits in contrast to 
traditional approaches that are often a simple multipli-
cation of the relative contribution of each trait’s eco-
nomic value (converted to absolute value) by its genetic 
standard deviation (SD). Here, we applied the method 
of Zhang et al. (2021) using correlations between the 
EBV. The resulting trait emphasis values more ac-
curately present the true selection pressure each trait 
receives within the given index.

Environmental and Economic Response to Selection

Current and future rates of genetic progress in novel 
GHG traits and subindexes were modeled using EBV 
for Australian dairy cattle. A regression analysis was 
used to compare selection on the BPI options that inte-
grate GHG subindexes with the response expected from 
selection on BPI alone. Scott et al. (2021) reported that 
the annual rate of genetic gain in BPI since 2013 ranged 
between 0.11 and 0.22 genetic SD per year for Holstein 
cows and bulls, respectively. Consequently, we assumed 
that a 1-SD improvement (AUD$84.06; Axford et al., 
2021) in BPI would be achieved over around 10 yr of 
selection. The responses in BPI units achieved by selec-
tion on each of the considered indexes, as well as the 
total CO2-eq reduction achieved by selection for each 
index, are presented.

Richardson et al.: REDUCING GHG EMISSIONS THROUGH GENETIC SELECTION

Table 3. Weight and relative emphasis of the greenhouse gas (GHG) index when included within the Balanced Performance Index (BPI) at 
carbon price of AUD$150/t, AUD$250/t, AUD$500/t, and AUD$1,000/t

Scenario1

Index weight

 

Relative emphasis

$150/t $250/t $500/t $1,000/t $150/t $250/t $500/t $1,000/t

BPI.1 −0.15 −0.25 −0.50 −1.00 3.77 5.25 10.56 20.01
BPI.2 −0.15 −0.25 −0.50 −1.00 4.41 6.39 13.39 23.56
BPI.3 −0.15 −0.25 −0.50 −1.00 8.20 11.43 23.67 41.40
1BPI.1, BPI.2 and BPI.3 describe scenarios where GHGindex, GHG+

index, and GHGS
index have been included in the BPI, respectively. GHGindex was 

developed as described by Richardson et al. (2021c) and updated to include a gross emissions value for residual methane (GHG+
index) as well as 

a simulated residual methane trait with higher accuracy (GHGS
index).
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The opportunity costs of carbon emissions reductions, 
or costs to farmers, achieved through breeding for each 
index with emphasis on emissions were derived by tak-
ing the ratio of the reduction in BPI units achieved in 
AUD$ per cow per year relative to the emissions reduc-
tion in CO2-eq per cow per year when compared with 
the same index without any emphasis on emissions, as 
follows:

OpportunityCost
IndexGain

EmissionsReductioni
$

=
( )∆

∆
××1 000, kg/t,

� [10]

where ΔIndexGain is the difference in the economic 
response to selection (AUD$/SD BPI) between the 
primary index (BPI) and the ith selection index and 
ΔEmissionsReduction is the difference in emissions 
response to selection (kg of CO2-eq/SD BPI) between 
the primary index (BPI) and the proposed ith selection 
indexes. The selection indices evaluated as i were HWI, 
GHGindex, GHG+

index, GHGS
index, as well as BPI.1, BPI.2, 

and BPI.3 at carbon prices of AUD$150/t, AUD$250/t, 
AUD$500/t, and AUD$1,000/t.

RESULTS

Relative Percent Emphasis of GHG Subindexes

By constructing subindexes that include traits 
weighted based on their independent effects on emis-
sions, we calculated the relative emphasis of each trait 
within the GHG subindexes (Table 1). Here we tested 
(1) milk, fat, protein, survival, and feed saved EBV 
as GHGindex, (2) added an estimated residual methane 
trait as GHG+

index, and (3) included a simulated residual 
methane trait as GHGS

index, resulting in the following:

	 (1)	 In GHGindex, fat yield had the largest relative 
emphasis at 32%, with survival and feed saved 
contributing 27% and 23%, respectively. Protein 
(10%) and milk (8%) were more moderately 
weighted within the GHGindex.

	 (2)	 When an estimated residual methane trait was 
added to the GHG+

index, the relative weights 
shifted to residual methane having the largest 
emphasis (26%), with survival (20%), feed saved 
(21%), and fat (19%) having the next largest 
relative emphasis within the subindex. Milk and 
protein remained moderately weighted at 7%.

	 (3)	 The inclusion of a simulated residual methane 
trait with a higher accuracy further increased 
the relative emphasis of residual methane to 

57% within GHGS
index. Feed saved had the next 

largest emphasis at 15%, with survival and fat 
having a moderate emphasis of 10%. Milk and 
protein had small emphasis at 4%.

Relative Emphasis of GHG Subindexes  
and Component Traits Within BPI

The next step was to augment the BPI to include 
the 3 subindexes described in the previous section; the 
economic weights in each of GHG subindex included 
in the BPI at varying carbon prices are presented in 
Table 3. At an economic value of AUD$150/t of carbon 
the GHGindex, GHG+

index, and GHGS
index received 3.77%, 

4.40%, and 8.2% of the total selection emphasis within 
BPI, respectively. These relative weights increased pro-
portional to the economic values placed on carbon of 
AUD$500/t and AUD$1,000/t in the GHGindex (10.57% 
and 20.01%, respectively), GHG+

index (13.39% and 
23.56%), and GHGS

index (23.67% and 41.40%).
The GHG subindexes are composed of EBV routinely 

evaluated in Australia, as well as a residual methane 
trait. The economic weights and subsequent relative 
emphasis of each trait within the BPI as a result of 
including the GHG subindexes are presented in Tables 
4 and 5, respectively. Briefly, as the price of carbon 
increased, additional emphasis shifted onto fertility, 
survival, mastitis resistance (and SCC), and feed saved, 
whereas relative emphasis was lowered for production 
and type traits.

Predicted Accuracy

The predicted accuracies of a residual methane trait 
with various reference population sizes are presented in 
Figure 1. The predicted accuracy of the residual meth-
ane trait ranged from 0.36 (n = 1,000) to 0.88 (n = 
100,000). For a reference population of 3,000 animals, 
which was used to simulate the residual methane trait 
used as part of GHGS

index, the predicted accuracy was 
0.54.

Economic Response

The economic responses to selection on each index 
for a 1-SD improvement in BPI, or approximately 10 
yr of selection, equivalent to AUD$84.06 BPI units 
($AUD per cow per year), are presented in Figure 
2. When the equivalent selection pressure of 1 SD of 
BPI was applied to HWI, the economic response (in 
BPI units) was AUD$76.57. Minimal change in eco-
nomic response was observed when the GHGindex 
(AUD$83.34), GHG+

index (AUD$83.08), and GHGS
index 

Richardson et al.: REDUCING GHG EMISSIONS THROUGH GENETIC SELECTION
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(AUD$80.37) were included in the BPI at a carbon 
price of AUD$150/t of carbon, and when GHGindex 
and GHG+

index were included in BPI at a carbon price 
of AUD$250/t (AUD$82.18 and AUD$81.50, respec-
tively). An economic response similar to the HWI was 
observed when GHGS

index (AUD$75.53) was included in 
the BPI at a carbon price of AUD $250/t and when 
GHGindex and GHG+

index were included at a carbon 
price of AUD$500/t (AUD$77.84 and AUD$75.72). A 
lower economic response was observed when GHGS

index 
(AUD$63.03) was included in the BPI at a carbon price 
of AUD$500/t and for the GHGindex and GHG+

index 
at a carbon price of AUD$1,000/t (AUD$67.62 and 
AUD$62.96).

The lowest economic response (AUD$47.11) was ob-
served when GHGS

index was included in the BPI at a 
carbon price of AUD$1,000/t. Interestingly, economic 
responses of AUD$20.73, AUD$15.37, and AUD$18.08 
were estimated for selection solely on the GHGindex, 
GHG+

index, and GHGS
index, respectively. For these in-

dexes, significant genetic progress is achieved in fertil-
ity and survival, but at the expense of genetic progress 
in milk production traits (Table 5). Although economic 
response is lost with inclusion of the GHG subindexes 
in the BPI, options do exist where this loss is marginal, 
and, even in scenarios where all selection pressure is 
based on the environmental weighting, economic prog-
ress is still made in all cases.

Environmental Response

The expected reduction in emissions due to selection 
on each index with a selection intensity equivalent to 
1 SD of BPI are presented in Figure 3, in kilograms 
of CO2-eq. The environmental reduction estimated for 
selection on BPI and HWI was 19.45 kg of CO2-eq and 
42.80 kg of CO2-eq per cow per BPI SD, respectively. 
The reductions as a result of selection for PBI.1 and 
BPI.2 were similar, with carbon prices of AUD$150/t 
(29.28 kg of CO2-eq and 29.93 kg of CO2-eq, respec-
tively), AUD$250/t (35.08 kg of CO2-eq and 37.82 kg 
of CO2-eq), AUD$500/t (46.86 kg of CO2-eq and 37.82 
kg of CO2-eq), and AUD$1,000/t (61.06 kg of CO2-
eq and 71.38 kg of CO2-eq). The emissions reduction 
due to selection for BPI.3 was considerably higher at 
92.69 kg of CO2-eq, 117.25 kg of CO2-eq, 152.20 kg 
of CO2-eq, and 175.19 kg of CO2-eq when the carbon 
price was AUD$150/t, AUD$250/t, AUD$500/t, and 
AUD$1,000/t, respectively. Selection solely on GHGindex, 
GHG+

index, and GHGS
index resulted in emissions reduc-

tions per cow per BPI SD of 78.88 kg of CO2-eq, 90.54 
kg of CO2-eq, and 188.51 kg of CO2-eq, respectively.

The change in residual methane follows the same 
pattern, as presented in Figure 4, with selection on BPI 
resulting in the lowest reduction in a direct methane 
trait (0.75 kg of CO2-eq) and selection for BPI.3 at an 
economic value of AUD$1,000/t resulting in the largest 
reduction in residual methane (4.57 kg of CO2-eq). For 
all carbon prices, the simulated residual methane trait 
with higher accuracy resulted in significantly larger 
reductions in methane emissions, whereas the reduc-
tion of direct methane via selection for the currently 
estimated residual methane trait was marginal.

Opportunity Cost of Carbon to Farmers

For all scenarios investigated, the opportunity cost 
of carbon to farmers was far below the actual carbon 
price (Figure 5). The costs of carbon experienced 
by farmers were AUD$73.25 and AUD$120.28 for 
BPI.1, AUD$93.51 and AUD$139.36 for BPI.2, and 
AUD$50.38 and AUD$87.22 for BPI.3 at carbon prices 
of AUD$150/t and AUD$250/t, respectively. The ratio 
of the cost to the farmer relative to the carbon price 
became substantially smaller as the carbon price in-
creased and when a higher-accuracy residual methane 
trait was included in the national index scenarios, such 
as BPI.3. At a carbon price of AUD$500/t, the costs of 
carbon to the farmer were AUD$226.92, AUD$244.50, 
and $58.42 for BPI.1, BPI.2, and BPI.3, respectively. 
When the carbon price was AUD$1,000/t, the costs 
of carbon to the farmer were AUD$395.10 for BPI.1 

Richardson et al.: REDUCING GHG EMISSIONS THROUGH GENETIC SELECTION

Figure 1. Prediction accuracy of a simulated residual methane 
trait phenotypically corrected for ECM. Accuracy was predicted using 
methods described by Goddard et al. (2011), assuming a heritability 
of 0.21, chromosome segment length of 30, and effective population 
size of 100.
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and AUD$406.32 for BPI.2. The scenario that resulted 
in the most advantageous carbon cost for farmers was 
selection on BPI.3 at a carbon price of AUD$1,000/t, 
where the opportunity cost of carbon to farmers was 
only 24% of the dictated carbon price at AUD$237.25. 
Contrastingly, the cost of carbon for farmers when 
selecting for HWI was AUD$320.77, meaning that 
the level of reduction achieved through selection on 
HWI is the equivalent of applying a carbon price of 
AUD$320.77.

DISCUSSION

The national index scenarios presented in this study 
represent viable possible options for current and future 
strategies to reduce gross emissions in Australian dairy 
cattle. The results indicate that incorporating an envi-
ronmental index into the BPI would lead to a reduction 
in GHG emissions without a major reduction in profit, 
especially when an accurate residual methane trait is 
available.

There are currently 1.4 million dairy cows in Austra-
lia (Newton et al., 2020), and, at a national level, the 
inclusion of a GHG subindex into BPI would represent 
a substantial reduction in CO2-eq. The average dairy 
cow in Australia produces roughly 4,298 kg of CO2-eq 
and 58.06 kg of residual methane per year, based on 
the average residual methane produced per day (0.183 
g of methane; Richardson et al. 2021b) and the c con-
stant estimated in this study (c = 317d). Although the 

per-animal reduction in emissions appears small for the 
options tested that are available to implement imme-
diately (29.28–71.38 kg of CO2-eq and 0.88–1.22 kg of 
residual methane; Figures 3 and 4), the reduction has 
a substantial effect for the industry in terms of meet-
ing reduction plans at the national herd level. A much 
larger per-animal reduction in emissions (92.69–175.19 
kg of CO2-eq and 2.19–4.57 kg of residual methane) 
may be achieved in the near future through selection on 
BPI.3, when a more accurate methane EBV becomes 
available. By implementing a GHG subindex in the na-
tional breeding program, we can achieve up to a 7.9% 
decrease in residual methane (Figure 5) and 9 times the 
reduction in gross emissions compared with the current 
breeding program, with little to no cost to farmers.

Assuming a per-cow current emissions output of 
4,297.86 kg of CO2-eq, an average production level of 
339.29 kg of protein equivalents, a national herd size of 
1.4 million cows, and current trait genetic trends (Rich-
ardson et al., 2021c), the reduction in gross emissions 
and emissions intensity that may be achieved through 
genetic selection was estimated for 10, 30, and 50 yr 
of genetic selection (Table 6). Using these parameters, 
gross emissions may be decreased by 2.78%, 8.23%, and 
13.68% after 10, 30, and 50 yr of genetic selection for 
BPI.3 at a carbon price of AUD$250/t; however, this 
translates to a cost to the farmer of AUD$87.22/t. In-
terestingly, emissions intensity (EI) may be decreased 
by 7.84%, 21.25%, and 32.34% after 10, 30, and 50 yr 
of genetic selection for BPI.3 at the same carbon price, 
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Figure 2. Economic responses to selection on each index for a 1-SD improvement in the Balanced Performance Index (BPI) or approximately 
10 yr of selection, equivalent to AUD$84.06, as BPI units are $AUD per cow per year, at carbon prices of $150/t (gray), $250/t (yellow), $500/t 
(light blue), and $1,000/t (green). HWI = Health Weighted Index. The GHGindex was developed as described by Richardson et al. (2021c) and 
updated to include a gross emissions value for residual methane (GHG+

index) as well as a simulated residual methane trait with higher accuracy 
(GHGS

index). BPI.1, BPI.2, and BPI.3 describe scenarios where the GHGindex, GHG+
index, and GHGS

index have been included in the BPI, respec-
tively.
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which is consistent with the 24% reduction in EI by 
2050 reported by de Haas et al. (2021).

Reduction in GHG

The largest reduction in emissions was observed when 
selection was based solely on ranking animals by the 
GHG subindexes and disregarding the current national 
breeding objective (Figure 3). However, a similar reduc-
tion in emissions was achieved when residual methane 
with an accuracy reasonable for implementation (0.54) 
was included in the index. For the versions of BPI 
tested, BPI.3, which included the GHGS

index, shows the 
largest reduction in kilograms of CO2-eq. This reduc-
tion was largely due to (1) the GV applied to residual 
methane and (2) including a higher-accuracy methane 
trait, causing residual methane to receive a considerable 
amount of relative emphasis within the GHG subindex. 
Residual methane has a global warming potential of 
28, so whereas protein, for example, has a GV of 1.97, 
residual methane has a GV of 28. This causes a residual 
methane trait to be the largest driving force within the 
GHGS

index. Additionally, the higher accuracy allows for 
greater selection intensity to be applied, resulting in a 
greater response to selection in residual methane and 
subsequently in the GHGS

index.

Short-Term Index Implementation to Reduce GHG

To the best of our knowledge, no residual methane 
EBV for livestock with an accuracy appropriate for 
industry implementation is available anywhere in the 

world. Therefore, for the sake of a practical outcome, 
we will focus on considering the differences in envi-
ronmental and economic changes between BPI.1 and 
BPI.2 for consideration as viable options for short-term 
implementation. The least computationally complex 
index is BPI.1, which includes the GHG subindex, 
composed entirely of currently estimated EBV. This 
index transitions relative emphasis from production 
and conformation traits onto traits related to survival, 
health, and efficiency by converting environmental 
coefficients into economic values. For implementation, 
this method takes advantage of the current genetic 
evaluation system and requires no additional EBV to 
be estimated. However, this method does not consider 
or fully capture the variation that exists in methane 
emissions between animals. As shown by our results, 
the current residual methane trait does not have much 
advantage in reducing emissions when compared with 
BPI.1, primarily due to its low reliability. A much larger 
reference population is required to reach the accuracy 
for implementation, particularly when such novel traits 
are developed using a female-driven reference popula-
tion (Gonzalez-Recio et al., 2014). Although selecting 
for BPI.2 may not be substantially advantageous in 
terms of economic and environmental benefit, it does 
offer additional social benefits, such as maintaining 
the industry’s social license to operate, by including 
the current residual methane trait at a lower accuracy. 
Therefore, until a sufficient amount of methane data is 
collected, BPI.1 is the most practical option in terms 
of economic and environmental benefit of the scenarios 
investigated to reduce emissions.
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Figure 3. Environmental response in kg of CO2 equivalents (CO2-eq) per cow per year, based on selection on each index for a 1-SD im-
provement in the Balanced Performance Index (BPI) or approximately 10 yr of selection, equivalent to AUD$84.06, as BPI units are $AUD 
per cow per year, at carbon prices of $150/t (gray), $250/t (yellow), $500/t (light blue), and $1,000/t (green). HWI = Health Weighted Index. 
The GHGindex was developed as described by Richardson et al. (2021c) and updated to include a gross emissions value for residual methane 
(GHG+

index) as well as a simulated residual methane trait with higher accuracy (GHGS
index). BPI.1, BPI.2, and BPI.3 describe scenarios where 

the GHGindex, GHG+
index, and GHGS

index have been included in the BPI, respectively.
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Prediction Accuracy and Reference Population Size

The goal of including a simulated trait within the 
GHG subindex was to demonstrate the level of emis-
sions reduction that may be achieved by a trait with a 
reasonable accuracy for implementation in Australia, 
using a reference population size that may be reached 
in the near future. For estimating the accuracy of a 
methane trait in the future, we assumed that a refer-
ence population of 3,000 animals was reasonable; our 
assumption was based on comparable international col-
laborations used, for example, for genetic evaluations 
of feed saved (Bolormaa et al., 2021). Although pooling 
of international databases has proved to be more chal-
lenging due to the various trait definitions and appa-
ratuses used for collecting raw data (de Haas et al., 
2017), recent efforts have been successful in using an 
international multitrait genomic prediction for various 
definitions of methane (Manzanilla-Pech et al., 2021).

The challenge in implementing a GHG subindex that 
includes a novel trait, such as residual methane, is the 
building and maintenance of a reference population 
that is representative of the national population and 
sufficient to estimate accurate EBV. The feed saved 
and residual methane EBV are reliant to some extent 
on international data sharing (Pryce et al., 2015; Rich-
ardson et al., 2021b). Data-sharing risks and genotype 
× environment interactions might mean it is prudent 
to focus data collection within country, although this is 

expensive unless easy-to-measure selection criteria can 
be found.

The method used in Australia to measure methane 
phenotypes (SF6; Deighton et al., 2014) is expensive, 
labor-intensive, and nearly impossible to implement on 
commercial farms. Another option is to include addi-
tional selection criteria, such as mid-infrared spectros-
copy (Vanlierde et al., 2018), the heritable part of the 
microbiome (Zhang et al., 2020), feed efficiency, and 
phenotypically through volatile fatty acids (Williams 
et al., 2019) and rumen pH (Moate et al., 2020). If the 
required reference population size becomes available 
through proxy traits or international collaboration, it is 
likely that more records will be required to achieve the 
same level of accuracy, proportional to the genetic cor-
relation, as often genetic correlations between countries 
(van den Berg et al., 2016; Haile-Mariam et al., 2020), 
measurement techniques and with proxy traits are less 
than one (Ismael et al., 2015).

There are several ways to calculate the prediction 
accuracy of larger reference populations. The assump-
tions behind these methods vary, which can result in 
considerable discrepancies between accuracies obtained 
(Brard and Ricard, 2015). Therefore, we also tested 
an approach applied by van den Berg et al. (2019), 
which uses the accuracy of cross-validation in a small 
data set to estimate θ and apply the estimated θ to a 
larger reference population size. This method indicated 
that approximately 15,000 animals may be needed to 
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Figure 4. Environmental response per cow per year based on selection on each index for a 1-SD improvement in the Balanced Performance 
Index (BPI) or approximately 10 yr of selection, equivalent to AUD$84.06, as BPI units are $AUD per cow per year, at carbon prices of $150/t 
(gray), $250/t (yellow), $500/t (light blue), and $1,000/t (green). Environmental response is presented for the residual methane trait (either 
currently available or simulated) for when each index is implemented. HWI = Health Weighted Index. The GHGindex was developed as described 
by Richardson et al. (2021c) and updated to include a gross emissions value for residual methane (GHG+

index) as well as a simulated residual 
methane trait with higher accuracy (GHGS

index). BPI.1, BPI.2, and BPI.3 describe scenarios where the GHGindex, GHG+
index, and GHGS

index have 
been included in the BPI, respectively.
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achieve the desired accuracy of 0.5. Hence, a risk exists 
that that targeted reference population sizes may not 
deliver expected genomic prediction accuracies in the 
future, due to the uncertainty in predicting accuracies 
that may be obtained with future reference populations.

Sacrifice in BPI

Overall, we observed that using the proposed indices 
(BPI.1., BPI.2, and BPI.3) would lead to a sizable re-
duction in GHG emissions without much compromise 
in genetic gain for BPI. This reduction in rate of genetic 
gain in BPI is driven primarily by a general decrease 
in selection responses for production and conformation 
traits, whereas greater gains are realized in feed effi-

ciency, fertility, health, and survival traits, as well as a 
large predicted responses in methane traits, especially 
when they are included in the subindex. The level of 
sacrifice in BPI progress is dependent on the economic 
value placed on carbon. In the scenario where carbon 
is given the economic value of AUD$250/t, only 2 to 
10% of BPI gains are to achieve 35 to 117 kg of CO2-eq 
reduction, depending on the GHG subindex included in 
BPI. However, given an economic value of AUD$1,000/t 
of carbon, progress in BPI is still made, but at 70% of 
the progress compared with selection on BPI directly 
over a 10-yr period (Figure 2). The progress in BPI 
observed through selection on BPI.1, BPI.2, and BPI.3 
at extreme values of carbon shows the contribution of 
survival, health, and efficiency traits within the BPI, 
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Figure 5. Opportunity costs of carbon emissions gains achieved through breeding for each index with emphasis on emissions were derived 
by taking the ratio of the reduction in Balanced Performance Index (BPI) units achieved in AUD$ per cow per year relative to the reduction 
in CO2 equivalents (CO2-eq) per cow per year when compared with the same index without any emphasis on emissions. In all scenarios, the 
opportunity cost of carbon to farmers was substantially lower than the applied carbon prices of $150/t, $250/t, $500/t, and $1,000/t. HWI = 
Health Weighted Index. The GHGindex was developed as described by Richardson et al. (2021c) and updated to include a gross emissions value for 
residual methane (GHG+

index) as well as a simulated residual methane trait with higher accuracy (GHGS
index). BPI.1, BPI.2, and BPI.3 describe 

scenarios where the GHGindex, GHG+
index, and GHGS

index have been included in the BPI, respectively.

Table 6. Expected reduction in gross greenhouse gas (GHG) emissions and emissions intensity after 10, 30, 
and 50 yr of genetic selection on BPI.31 at a carbon price of AUD$250/t or opportunity cost to farmers of 
AUD$87.22/t

Period of genetic 
selection, yr2,3

Gross 
emissions4

Reduction in 
gross emissions, %

Emissions 
intensity1

Reduction in emissions 
intensity, %

10 5.85 2.78 11.68 7.84%
30 5.52 8.23 9.98 21.25%
50 5.20 13.68 8.57 32.34%
1BPI.3 describes a scenario in which the GHGS

index has been included in the Balanced Performance Index 
(BPI). The GHGindex was developed as described by Richardson et al. (2021c) and updated to include a gross 
emissions value for residual methane (GHG+

index) or a simulated residual methane trait with higher accuracy 
(GHGS

index).
2Assuming a per-cow current emissions output of 4,297.86 kg of CO2 equivalents (CO2-eq), an average produc-
tion level of 339.29 kg of protein equivalents (protein-eq), a national herd size of 1.4 million cows, and current 
trait genetic trends (Richardson et al., 2021c).
3Protein-eq were estimated as described in Richardson et al. (2021c).
4Where gross emission is measured in million tonnes ofCO2-eq and emission intensity is measured in kg of 
CO2-eq/kg of protein-eq.
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as, in these scenarios, production and conformation 
traits receive negative weights. Interestingly, on aver-
age 18.06 units of BPI gain occur over 10 yr through 
selecting only on the GHG subindexes, which is 21% of 
the 10-yr gain in BPI if emissions were ignored.

Comparing to HWI

When considering options to reduce emissions at the 
national level, the influence of current national indexes 
was also considered. In all scenarios, the reduction 
achieved by implementing a GHG subindex was greater 
than selection on BPI alone. However, at lower carbon 
prices, selection using the HWI resulted in a larger re-
duction in emissions compared with the indexes that did 
not include a reliable residual methane trait. In fact, the 
magnitude of the reduction in emissions from selection 
on HWI is comparable to BPI.1 at a carbon price of 
AUD$500/t. However, by selecting on BPI.1, we reduce 
emissions by an additional ~4 kg of CO2-eq per cow per 
BPI SD while also achieving an additional 1.5 points of 
progress in BPI, compared with HWI. Therefore, the 
actual cost of carbon for farmers is only AUD$226.92/t 
when selecting for BPI.1, whereas the cost of carbon for 
farmers is much higher at AUD$320.77/t when select-
ing for HWI. This is due to the difference in relative 
emphasis for each trait within the respective indexes. 
Relative emphasis of traits within BPI.1 is more evenly 
distributed than HWI, with more weight on survival 
(16%), fertility (16%), and efficiency traits (11%). The 
HWI is dominated by fertility (29% relative emphasis), 
which leads to an expected comparable reduction in 
emissions as BPI.1. The BPI.1 at a carbon price of 
AUD$500/t still maintains a reasonably high focus on 
production traits, with a total relative emphasis of 30%, 
compared with HWI where the relative emphasis drops 
to 23%. This comparison highlights the differences in 
the indexes that have similar reductions in emissions. 
The BPI.1 may be more appealing to farmers, as it 
still maintains a strong focus on economics, resulting 
in a similar emissions reduction with more emphasis 
on traits of high economic value. However, when the 
simulated residual methane trait is included, all of the 
current national indexes are substantially below the 
reduction achieved in emissions by selecting for BPI.3 
at any economic value.

Applied and Realized Economic Values  
of Environmental Traits

The reductions in methane are expressed in CO2-eq 
to allow for a more meaningful representation of the 
enteric methane reduction dealt with in this paper—

meaningful insofar as it allows for fair comparison to 
be made between sectors and gases. Additionally, it 
prepares the industry for the possible introduction of 
a carbon market, at which point a live economic value 
would need to be placed on methane.

Currently, there is no economic incentive for farm-
ers to select for methane reduction. Unlike other traits 
included in the national breeding objective, no price 
signal currently exists to influence selection choices. 
However, it is expected that in the near future a carbon 
market will be implemented in Australia and could be 
introduced in agriculture sectors globally.

The price per tonne of carbon varies greatly by coun-
try and carbon market design. In Canada, this value 
is set to be approximately AUD$180 (Government of 
Canada, 2021) in 2030, and in the United States and 
the EU the carbon price is currently set as AUD$68 
and AUD$88/t, respectively (Stern and Stiglitz, 2021). 
These values are significantly lower than some of the 
economic values of carbon tested in the current study. 
The difference between the global economic values of 
carbon and the ones tested in this study reflects that (1) 
the carbon price is expected to increase substantially as 
national carbon markets continue to develop (Stern and 
Stiglitz, 2021); (2) some additional weight may be given 
to GHG subindexes to coincide with farmers’ desires 
and achieve a level of emissions reduction deemed ac-
ceptable to maintain the industry’s social license to op-
erate (Martin-Collado et al., 2015); and (3) the realized 
cost to farmers is far lower than the weight placed on 
carbon due to simultaneous response in economically 
valuable traits.

The reduction in emissions achieved by including any 
of the GHG subindexes in the BPI is largely dependent 
on the economic value placed on carbon and the result-
ing percent emphasis the GHG subindex receives in the 
BPI. As the economic value of GHG increases, a point 
is reached where the national index would be selecting 
against protein, milk, and fat, as shown in the scenario 
where the carbon price is AUD$1,000/t (i.e., the most 
valuable trait economically is methane). However, at a 
carbon price of $1,000/t, the realized opportunity cost 
to farmers of including a GHG subindex in the BPI is 
substantially less than the carbon price (Figure 5). For 
example, at $1,000/t carbon in BPI.1, the reduction in 
economic gain is $16.44 (or 20% when GHG is not in-
cluded in BPI). However, the benefit of this is an ad-
ditional reduction of 41.61 kg of CO2-eq, resulting in a 
realized cost of carbon to producers of only $395.09/t 
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case at a carbon price of $150/t, where the realized cost 
of carbon is $73.24/t when selecting on BPI.1, and be-

Richardson et al.: REDUCING GHG EMISSIONS THROUGH GENETIC SELECTION



Journal of Dairy Science Vol. 105 No. 5, 2022

4286

comes even lower when selection is based on BPI.3 
($50.38/t). When including environmental traits within 
an index, if a relatively low percentage of economic gain 
or index progression is sacrificed, then approximately 
40 to 50% of the maximum possible reductions in emis-
sions may be achieved. This principle is a major benefit 
of including a methane trait within the national index, 
as opposed to independent selection, as more progress 
is made by including all traits of environmental interest 
simultaneously, rather than selecting for the traits 
separately. This concurrent selection of EBV that have 
a correlated favorable response in emissions (BPI.1) in 
addition to direct selection on a residual methane trait 
(BPI.2 and BPI.3) allows a high level of methane re-
duction to be achieved with a realized cost to farmers 
that is far lower than the price of carbon.

Comparing Breeding Objectives for Gross 
Emissions and Emissions Intensity

Previous studies have indicated 3 main opportunities 
to reduce emissions: (1) selection for a direct methane 
trait, (2) changes in herd structure, especially reduc-
ing replacements and therefore total emissions, and (3) 
increased production as means of diluting emissions per 
liter (Wall et al., 2010). Targeting options 1 and 2 is the 
focus of this paper, as they contribute to reducing gross 
emissions, which is consistent with the current national 
GHG reduction goals of Australia. The third option 
targets a reduction in EI through a dilution effect of 
generating more product per unit of emissions output.

This research focuses on reducing gross emissions, 
as this is the most likely breeding objective for the 
Australian dairy industry in the future. However, we 
do recognize that other breeding objectives that tar-
get a reduction in EI may be more favorable for some 
systems, especially in the agricultural sector. Although 
the current study only applied gross coefficients, meth-
ods exist that calculate coefficients based on intensity 
(Zhang et al., 2019) and have been estimated for the 
Australian industry (Richardson et al. 2021c).

The resulting difference when applying these inten-
sity weights in the index is that increases in production 
traits are not penalized due to the dilution effect. An 
emission intensity reduction strategy is most effective 
in reducing a national industry inventory where pro-
duction levels remain constant, as gross methane will 
also be reduced due to having fewer animals to produce 
the same level of output. However, reducing EI is not 
necessarily environmentally friendly if animal numbers 
remain the same or increase. In practice, at a policy 
level it is very hard to constrain the national level of 
output. The gross emissions approach used here is like-
ly to be much more amenable to reducing Australia’s 

national inventory, but the global benefit of this would 
be diminished if loss of future increases in milk produc-
tion from the Australian dairy industry result in higher 
future milk production from countries with a much less 
favorable EI than Australia (Ledgard et al., 2020).

Other Applications for GHG Subindex Values

The implementation of each of the GHG subindexes 
will result in a reduction in emissions and increase in 
farm efficiency. This is done not only by selecting for 
a direct methane trait but also by quantifying the ef-
fects that other traits have on the level of methane 
produced. This is consistent with other studies, which 
have identified improvement in longevity as a major 
factor to reduce on-farm emissions when production 
or farm size are stationary (Lahart et al., 2021). The 
implementation of these indexes may help the industry 
reach state or national targets for emission reductions 
and international goals set for 2030 to maintain the 
1.5°C warming rate.

The GHG indexes may also be used to quantify, on a 
large scale, individual animal GHG from a management 
perspective. As a management tool, the GHG subindex 
may be used to rank farms or individual cows and iden-
tify those animals or farms that are the lowest GHG 
emitters (Zhang et al., 2021). In terms of quantifying 
emissions inventories for individual farms or animals, 
base breed averages can be applied to translate genetic 
improvements back to the phenotypic scale as a way for 
farmers to document carbon release from cows. Finally, 
implementation demonstrates to the consumer that the 
dairy industry is dedicated to maintaining its industry 
social license to operate by reducing its emissions and 
maintaining its sustainable structure.

CONCLUSIONS

The results presented in the current study indicate 
that, in the short term, a GHG subindex tool that farm-
ers can use for industry application will be effective in 
reducing emissions while maintaining profits. Although 
the current estimated residual methane EBV is not ac-
curate enough for implementation, GV coefficients may 
be applied to traits currently included in the national 
breeding objective to reduce emissions. Subsequently, 
when accurate residual methane EBV become available 
in the near future, a substantial increase in the reduc-
tion of emissions may be achieved, as shown through 
the simulated residual methane trait. The GHG sub-
indexes in this study demonstrate the environmental 
benefit, with minimal economic sacrifice, of including 
a direct methane trait, as well as placing additional 
emphasis on traits known to affect emissions, in the 
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national selection index. By implementing a GHG sub-
index in the national breeding program, we can achieve 
up to a 7.9% decrease in residual methane and 9 times 
the reduction in gross emissions in 10 yr compared with 
the current breeding program, with little to no cost to 
farmers. By 2050, selection based on the BPI.3 at car-
bon price of AUD$250/t, or opportunity cost to farmers 
of $87.22, will reduce gross emissions by 8.23% and EI 
by 21.25%.
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