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SUMMARY 
Agricultural management practices impact the biodiversity and functionality of soil 

microbial communities [2]. Microbes in soil are imperative for soil health. Therefore, it is 

essential to evaluate the impact of agricultural management practices on the soil microbial 

biodiversity and functionality. Soil health is hard to define and measure, especially in 

agricultural landscapes where the land is being constantly manipulated by the landholders. 

Aspects of the chemical or physical properties of the soil are common indicators of soil 

health; however, the use of microbes to assess soil health has become prevalent in the last 

decade [3-5]. Microbial communities living within soils make up the soil microbiota. This 

living component of the soil contributes significantly to nutrient cycling and other 

processes that can have both negative and positive effects on the soil health [6]. A meta-

analysis of the ability of four existing soil microbial community parameters (Microbial 

Biomass Carbon (MBC), microbial activity, taxonomic diversity and functional diversity) 

to behave as bioindicators were assessed for their ability to respond repeatably to 

agricultural management practices. Studies conducted prior to 2010 have suggested that 

using MBC was an appropriate bioindicator of soil health however, newer methods that use 

microbial DNA to identify the microbial communities and their functions have arisen [7-

10]. The findings of the present meta-analysis partially support the hypothesis that the four 

microbial community parameters could be used as bioindicators, as they appear to respond 

repeatedly to the different management practices.  

 

This study also investigated the effect that tilling the soil and burning of crop residues have 

on the soil microbiota. Soil cores were collected from tilled and untilled pasture paddocks, 

and burned and unburnt cropping paddocks in Victoria, Australia. The analysis of bacterial 

16S rRNA and fungal ITS regions produced taxonomic diversity data, and the PICRUSt 

program produced predicted bacterial functional pathways. It was hypothesised that the two 

management practices would both have effects on the soil microbial communities. This was 

hypothesised because both tilling and burning of crop residues are shown to have negative 

effects on the soil microbiota [11-15]. The results revealed that the microbial communities 

between the tilling treatments were taxonomically and functionally changing. The burning 

treatments caused taxonomic changes, but no functional changes. The data obtained from 

this research will provide a greater understanding of the bacterial and fungal communities 

within an agricultural landscape. This research will assist the Australian agricultural sector 

in identifying microbial bioindicators associated with soil health. 
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1.0 INTRODUCTION 

 

1.1 Microbial communities play an important role in soil health   

Land used for agricultural purposes exists as a unique environment due to it being primarily 

maintained and manipulated by the landholders, often referred to as an ‘agroecosystem’ 

[16]. Agroecosystems account for 50 percent of Australian land use as Australia is a large 

producer and exporter of wheat, barley, oats and canola [17]. The Australian agroecological 

weather consists of heavy seasonal rainfall and extended periods of drought, contributing 

to the soils’ unique environment [18]. Banu, Singh and Copeland [19], have described 

Australian soils to be highly weathered, with a low pH, low organic carbon (C) content, 

and a high content of iron oxides. In addition to its chemical components, the soil consists 

of a living component which includes an abundance of microorganisms such as bacteria 

and fungi as well as archaea and small invertebrates. The definition of soil health varies 

however, it can be considered in this thesis as having the capacity to provide or a fitness 

for purpose [20]. Microorganisms contribute to a healthy soil, and in agroecosystems, a 

healthy soil is one that produces high yielding crops [20].  

 

Microbial communities (also referred to as the microbiota) and their related activities assist 

soil health through a variety of mechanisms, such as: improved soil structure, carbon 

sequestration and nutrient cycling. These are important processes which are essential for 

agricultural production [19, 21]. In addition, microorganisms that live in the plant 

rhizosphere, defined as the soil directly influenced by root secretions, include many plant 

growth-promoting rhizobacteria (PGPR) which can stimulate plant growth [22]. In 

particular, PGPR assist in the mobilisation of phosphorus (P) as well as other nutrients such 

as nitrogen (N), among other processes highlighted in Table 1.1 [23].  
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Table 1.1.  Examples of molecular mechanisms of bacterial and fungal species that assist 

with soil health and plant growth.  

Process Molecular mechanism Example of microbial 

species involved 

Reference 

Improved soil 

structure and water 

infiltration/retention 

by aggregate 

formation  

 

Production of mycorrhizal 

hyphae, mucilages, 

extracellular compounds, 

polysaccharides and soil 

proteins (hydrophobins and 

glomalin) 

 

Production of hyphae and 

polysaccharides  

 

Rhizophagus irregularis 

Paraglomus occultum  

 

 

 

Actinomycetes (class) 

[24, 25] 

 

 

 

 

[26] 

Increased nitrogen 

supply to the plant 

through nitrogen 

fixation  

Symbiotic bacteria form 

plant root nodules  
Rhizobium spp. 

(Rhizobium 

leguminosarum) 

 

Majority of the species in 

the family 

Rhodospirillaceae 

 

[27] 

 

 

 

[28] 

Production of 

nitrates through 

nitrification for plant 

uptake 

Oxidation of ammonium to 

nitrite and then to nitrate 

Nitrosomonas spp. 

(Nitrosospira multiformis, 

Nitrosospira briensis) 

 

[29] 

Reduction of 

nitrogen in soil by 

denitrification* 

Microbes oxidise nitrogen 

compounds in the absence 

of oxygen  

Micrococcus denitrificans 

 

Thiobacillus denitrificans 

[30] 

 

[31] 

Increased 

phosphorus (P) 

solubilisation by 

Phosphate 

Solubilising 

Microorganisms 

(PSMs)  

for plants 

Transform insoluble 

phosphorus to soluble forms 

 

Pseudomonas aeruginosa 

BS8 

Pseudomonas alcaligenes 

 

Glomus mosseae  

[32] 

 

[33] 

 

[34] 

C sequestration 

increases C in soil  

Certain microbial 

communities assist with the 

storage of C 

 

Community level attribute  [35] 

*a buildup of nitrogen in the soil has detrimental effects for plant growth [36]. 
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In Australia, agricultural production is the primary motivator for land clearing [37]. The 

conversion of naturally occurring ecosystems to agricultural land reduces essential 

nutrients and impacts microorganisms in the soil [38]. Land clearing destroys ecosystems 

and is devastating to biodiversity and as a result, sustainable management practices need to 

be incorporated to avoid further destruction [39, 40]. With increasing land exploitation, it 

is important to understand the exact microbial mechanisms that facilitate healthy soils, and 

the roles the microbiota play in promoting resilient, functioning, sustainable agricultural 

systems. The soil microbial community influences the biogeochemical cycles with 

synergistic interactions occurring between the PGPRs and therefore, the maintenance of 

soil health through the microbial communities is critical in supporting the Australian 

agricultural industry. 
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1.2 Microbial communities have potential as bioindicators for assessing soil health 

in agricultural landscapes 

There is growing interest in the use of soil microbes as biological indicators, also called 

bioindicators, of soil health [41]. The criteria used to identify an indicator of soil health 

includes; responsiveness to management practices, easy to measure and interpret, 

associated with major ecological soil processes and able to reflect field conditions under a 

given management [20]. Indicators of soil health have traditionally included soil chemical 

or physical properties, or the presence of invertebrates like nematodes as biological 

indicators. The soil microbiota inhabit specific niches that are susceptible to environmental 

changes and therefore, changes in microbial activities or their abundances may be used to 

determine the effect of different management practices on soil health [13]. When exposed 

to aspects of their environment some bacteria and fungi are fragile, while others are able to 

withstand environmental factors such as drought and severe heat [42]. Since microbes are 

susceptible to environmental conditions, they are highly influenced by the management 

practices they are exposed to [13]. There have been numerous attempts to identify an 

appropriate microbial bioindicator for the measurement of soil health in agricultural 

landscapes [3, 43-47]. However, to date, there is no clear consensus in the literature as to 

whether soil microbes can be used as accurate bioindicators of soil health.  

 

Biological tests that seek to utilise soil communities as bioindicators for soil health typically 

target one of four community properties: Microbial Biomass Carbon (MBC), microbial 

activity, taxonomic diversity, or functional diversity (see Table 1.2 for advantages and 

disadvantages). One of the most common measurements used as a parameter of soil health 

is MBC. This is the measurement of C contained within the living component of the soil 

organic matter [7]. Microbial activity can be measured through substrate consumption on 

Biolog Ecoplates or by the activity of certain enzymes such as dehydrogenase, β-

glucosidase, phosphatase, urease and arylsulphatase [4]. Biolog Ecoplates provide 

important community analysis information and provide a reliable and sensitive index of 

environmental change through analysing microbial substrate consumption [10, 48]. 

Specific enzyme activities in the soil are associated with microbial C and P cycling and the 

breakdown of nutrients therefore, can be an indicator of microbial activity [4, 49]. The 

potential bioindicator of taxonomic diversity is most frequently assessed via sequencing of 

the 16S rRNA gene. Although more advanced techniques are available that target the soil 

metagenome, RNA or metabolites, due to their associated costs, 16S rRNA profiling is the 
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most widely used method for taxonomic profiling of agricultural soils [9]. The functional 

diversity of soil can be measured as metabolic diversity via Biolog Ecoplates. As Biolog 

plates contain 31 different carbon substrates, the diversity of substrates a community can 

utilise can be used as a measure of community functional diversity. Importantly, this 

technique only measures the functional activity of the culturable proportion of the soil 

community, which has been estimated to be less then 1 % of the total diversity [50]. 

Functional profiling can also be achieved via molecular techniques. Metagenomic and 

transcriptomics can directly measure functional gene content and gene expression profiles, 

respectively. Taxonomic profiling, via 16S rRNA sequencing, can also be leveraged to 

generate functional profiles using programs such as PICRUSt and other emerging 

techniques which predict functional content from the community taxonomic profiles [7, 9, 

51, 52]. While all four approaches are available to soil researchers, all have advantages and 

disadvantages (Table 1.2). An identified gap in the literature is that few studies have 

explored the functional diversity of the soil microbiota and how it can be used as a 

bioindicator of soil health in agricultural landscapes.  
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Table 1.2. The advantages and disadvantages of the four categorised microbial 

community properties utilised in bioindicator analyses.  

Name of bioindicator Advantages Disadvantages  References 

Microbial biomass carbon 

(MBC) 

Indicates the 

presence of 

microbes  

Known indicator of 

soil quality 

Low cost 

Low complexity of 

data 

Does not identify 

individual taxa  

Does not assess 

community function 

 

[13, 53] 

Microbial 

activity  

Biolog 

Ecoplate 

Sensitive and rapid 

method  

Assesses microbial 

metabolic potential 

Low cost 

Culture-based – bias 

against slow 

growing species 

Does not identify 

individual taxa 

Sensitive to 

contamination  

[10, 48, 54] 

Enzyme 

activity  

Indication of 

specific microbial 

processes 

Various enzymes  

Relatively low cost  

Answers specific 

questions about 

microbial processes 

[49, 55] 

Taxonomic diversity 

(Using DNA based 

molecular techniques) 

Identifies 

individual taxa  

Culture-

independent  

Detects rare taxa 

Requires relatively 

small amounts of 

data  

 

May need available 

reference genomes  

Limited ability for 

functional data 

High cost  

Cannot differentiate 

between alive/dead 

microbes 

Moderate-high cost 

[54, 56] 

Functional 

diversity  

Functional 

profile 

predicted from 

DNA 

metabarcoding   

Identifies 

community 

functional potential 

Culture 

independent  

 

Lack of reference 

data 

Standard procedure 

not developed  

Emerging technique  

High cost  

Does not identify 

the active microbial 

functions  

[7, 9, 51, 

52, 54, 56] 

Biolog 

Ecoplate 

Identifies 

community 

functional potential 

(As per microbial 

activity) 
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1.3 Management practices that affect soil microbiota  

As mentioned above, agricultural management practices influence the taxonomic structure 

and functional diversity of the soil microbiota [21, 57]. The microbial communities present 

within soil contribute to important processes and their abundances are constantly changing 

in response to management practices. This includes tilling of the soil, which disrupts the 

soil structure and microbial community, has been shown to facilitate the proliferation of 

plant pathogens which could be used as potential indicators of poor microbial soil health 

[41]. Management practices, such as crop rotation, have been shown to enhance the activity 

and diversity of the microbial communities [49, 58]. As such, increased soil community 

diversity is often considered indicative of a good soil management practice. Some 

management practices, such as the burning of crop residues or the application of fertiliser, 

have few studies investigating the functional diversity, making it difficult to determine how 

these practices impact the soil microbial communities. 

 

Crop rotation and tilling of the soil have opposing effects on the soil, where crop rotation 

must be incorporated to avoid depletion of soil nutrients, tilling is typically considered to 

have degradative effects [21, 59] (Table 1.3). Tilling of the soil is the mechanised ploughing 

and inversion of soil, incorporated to disrupt the growth of weeds, reincorporate the organic 

matter back into soil and allow seedlings to germinate in soft soil [14, 60]. Tilling changes 

a soil’s microenvironment by incorporating oxygen and breaking up essential soil 

aggregates that create a habitat for microorganisms [59]. Tilling has been shown to cause a 

loss of organic matter, and a decrease in MBC and microbial activity [55, 61, 62]. 

Incorporating the practice of no-till, where no tillage occurs is recommended as a good, 

regenerative management practice [35, 60, 63]. Crop rotation can be defined as growing 

different crops in succession on the same land, to avoid depleting specific nutrients 

available in the soil, and to control for pests, diseases and weeds [64].  Crop rotation 

supports a higher diversity of soil microorganisms, and hence, their input of nutrients into 

the soil contributes to improving plant growth [21]. Crop rotations help enhance the nutrient 

and organic material cycling strategies that microbes perform in soils [21]. To help 

rehabilitate and rebuild a cropping paddock’s lost carbon, these paddocks are often turned 

into pasture, where plants are grown with the intent of animal grazing [65]. Although tilling 

the soil and crop rotations have clear effects on the soil microbiota, other management 

practices have varying effects.  
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Table 1.3.  Positive and negative effects of each management practice on the soil 

microbiota.  

Management 

practice 

Positive effects on the 

soil microbiota 

Negative effects on the 

soil microbiota 

Reference 

Burning of crop 

residues** 

Reduces weeds 

Increase bacterial 

diversity  

 

Lower microbial 

biomass 

Removal of organic 

matter   

[11, 12] 

Fertiliser *** 

 

Increases microbial 

biomass C 

 

Temporarily inhibit 

microorganism growth 

Alters microbial 

community composition 

[10, 66] 

Crop rotation  Increases MBC and 

microbial activity  

Higher in taxonomic 

and functional diversity  

(No known negative 

effects) 

[21, 43, 49, 

57] 

Tilling of soil Reduces weeds 

Releases soil nutrients  

Extreme erosion  

Lower level of organic 

matter  

Lower microbial 

biomass C 

Disruption of soil 

aggregates   

[13, 14, 60] 

**there is no consensus in the literature on whether burning of crop residues has positive 

or negative effects [61, 67].  

***short term versus long term effects of fertiliser use vary [66]. 

 

The literature has opposing views on whether burning crop residues and the application of 

fertiliser have positive or negative effects on the soil microbiota [11, 66] (Table 1.3). 

Agricultural burning is where the crop residues remaining from the previous harvest are 

burnt [61]. From the growers’ perspective, removing remaining crop residues through 

burning assists the upcoming plant growth, as well as controlling common pest populations 

e.g. slugs and snails [61]. Shen [12] reported that burning increased bacterial diversity and 

abundance in Eucalyptus ecosystems however, this has not been studied extensively in 

agroecosystems. Fertiliser has been incorporated in agricultural soils routinely since the 

1950s due to its remarkable increases in crop yield [68]. The most common fertiliser used 

in agroecosystems is NPK (Nitrogen, Phosphorus and Potassium) and is most often applied 

yearly, at the time of seeding [10]. Zhong et al., [10] found that the presence of fungi was 

higher under NPK treated soils. Furthermore, Geisseler et al., [66] looked at the wider 
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literature and confirmed that fertiliser altered MBC in the short term, whereas microbial 

community composition was affected in both the short and long term.   
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1.4 Aims and hypothesis  

This thesis aimed to investigate the utility of soil microbial communities in evaluating soil 

health in an agricultural landscape. Firstly, the current usage of microbial soil bioindicators 

in the wider literature was investigated. To address current knowledge gaps regarding the 

accuracy of microbial bioindicators in measuring soil health, a meta-analysis was 

performed. Specifically, the aim of this meta-analysis was to appropriately sample the 

literature to determine whether the four microbial community parameters (MBC, microbial 

activity, taxonomic diversity and functional diversity) had the ability to behave as 

bioindicators. The hypothesis of this meta-analysis was that the four microbial community 

parameters would respond in a repeatable way to the four agricultural management 

practices: tilling of soil, burning of crop residues, application of fertiliser and crop rotation.  

 

This thesis also aimed to determine the effect of tilling the soil and burning of crop residues 

on the soil microbiota on properties in regional Victoria, Australia. This was investigated 

through analysis of bacterial 16S rRNA and fungal ITS regions for taxonomic diversity, 

and the PICRUSt program where bacterial functional pathways were examined. It was 

hypothesised that tilling of pasture paddocks and burning of crop residues would influence 

the bacterial and fungal taxonomic diversity, and bacterial functional diversity.  
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2.0 MATERIALS AND METHODS  

2.1. Meta-analysis examining use of bioindicators in agricultural landscapes  

The aim of this meta-analysis was to appropriately sample the literature to determine 

whether the four soil community parameters (MBC, microbial activity, taxonomic diversity 

and functional diversity) were accurate bioindicators of soil health.  

 

2.1.1. Literature compiling 

Literature was compiled for this meta-analysis using the database SCOPUS (Elsevier). 

Initial search terms were “Biological indicator” (subsequently refined to “Bioindicator”), 

“Management practices” and “Soil”. This initial search resulted in 5587 articles, from 

which only those that included agricultural/cultivated soils, and reported the effects of 

tillage, stubble management (through burning of crop residues), fertiliser or crop rotation 

on Microbial Biomass Carbon (MBC), microbial activity, taxonomic diversity, functional 

diversity or a combination of these variables were selected. The initial search was expanded 

by checking reference lists and citations of the studies that met the initial search criteria. 

The studies were not limited to a specific country. The final list of studies included in this 

meta-analysis comprises of 44 research articles ranging in publication dates from 1980 to 

2020 (see Table 6.7, Appendix III for each reference used in the meta-analysis). The 

methodology for this meta-analysis is as presented in Figure 2.1.  
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Figure 2.1. The flowchart of methodology for the present meta-analysis.  
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2.1.2. Data collection 

Data was taken from both tables and figures in the publications that met our search criteria. 

The response variables used in this meta-analysis are MBC, microbial activity, taxonomic 

diversity and functional diversity. MBC is a direct measurement of the carbon contained 

from the living component of the soil via the fumigation and extraction method, first 

described by Jenkinson et al., [69]. Microbial activity measurements included data obtained 

from Biolog Ecoplates or direct assays of the activity of different extracellular enzymes 

(such as dehydrogenase, β-glucosidase, phosphatase, urease and arylsulphatase). Biolog 

Ecoplates use a 96-well plate format to assay carbon substrate utilisation of 31 different 

carbon sources via a colorimetric reaction. Microbial activity was specifically measured as 

the rate of colour change [70]. Taxonomic diversity was consistently measured through 

DNA sequencing of the 16S rRNA gene to assess the microbial community structure. 

Functional diversity was measured either via Biolog Ecoplates, where richness of well 

response was taken for a proxy for functional diversity, or via predictive functional 

profiling whereby DNA sequencing of the 16S rRNA gene is used to predict the functional 

profile based on taxonomic relationships using programs like PICRUSt [9, 70]. 

 

When studies were conducted across a variable number of years, only the final timepoint 

of the data was taken. Where a study examined a range of sampling depths, only 

measurements from the top layer of soil were considered (usually 0 to 10 cm of the soil 

surface). Some studies used multiple variables or management practices.  

 

2.1.3. Data Analysis 

For each study, the impact of a given management practice on the four potential soil health 

indicators was recorded as ‘increased’, ‘decreased’ or ‘no significance difference’. To 

determine whether bioindicators exhibited repeatable responses to management practices 

across the literature, Chi-square tests were used to compare the observed outcomes to the 

null hypothesis of expected no trend in outcomes (Appendix III).  
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2.2. Effect of agricultural management practices on microbial communities  

This field study was conducted in collaboration with the Goulburn Broken Catchment 

Management Authority (GBCMA). This study aimed to examine the impact of two 

common agricultural management practices on soil bacterial and fungal community 

structure and function. Two different management practices were examined: mechanical 

soil tilling and burning of crop residues. Tilling is described as the mechanised breaking up 

of the soil. In agriculture, specialised equipment attached to a tractor is used to break up 

the soil and reincorporate organic matter, approximately 20 cm deep. Agricultural burning 

of crop residues occurs when the previous harvests’ crop residues are burnt. A drip torch is 

used, so flaming fuel can be slowly deposited for controlled burning of the paddock. 

Controlled burning of crop residues results in some patches of the paddock left unburnt due 

to the large scale that it occurs.  

 

2.2.1. Soil sampling location in rural Victoria 

This study conducted sampling across four different private properties in northern regional 

Victoria (Figure 2.2). Soil sampling was conducted in mid-April of 2020. The annual 

precipitation for this area is approximately 400 to 600 mm [71]. The average temperature 

during the month of April ranges from 8°C to 22°C [71].  

 

The land is used primarily for agricultural purposes. Sampling was conducted 

approximately two to three weeks post-tilling to capture the effects of tillage on soil 

communities. All cropping paddocks had comparable NPKS fertiliser applications during 

seeding, pasture paddocks had no application of fertiliser. 

 

All samples for tilled experiments were obtained from pasture paddocks, an area of land 

covered in grass and other ground cover plants for grazing animals. Each paddock was in 

pasture for more than five years with livestock grazing by sheep for the duration it was in 

pasture. Pasture crops on paddocks 2A, 3B and 4B was predominantly grass (Phalaris sp.), 

paddock 2B had a mixed pasture of rye (Secale cereale) and clover (Trifolium sp.). The 

reason for tilling 2A was not added because it was not discussed, but it can be assumed it 

was to reincorporate organic matter back into the soil.  

 

The crop residue existing on the burnt treatments was wheat (Triticum aestivum). Burnt 

paddocks were sampled between post-harvest and pre-sowing where there were no active 
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crops. Sampling took place approximately one-week post burn. In previous years, there had 

been a yearly crop rotation procedure on the paddocks, where other crops such as oat 

(Avena sativa), barley (Hordeum vulgare) and canola (Brassica napus) had been planted.  

  

 

 
Figure 2.2. Satellite images showing A) State of Victoria with the region of sampling 

circled in red and B) Goulburn region and the location of the four collection sites in northern 

regional Victoria. Colour is indicative of location: site 1, site 2, site 3 and site 4. Coordinates 

of sites in Appendix I, Table 6.1.  
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2.2.2. Experimental design of tilled treatments  

The effect of tillage on the bacterial and fungal communities was investigated by sampling 

four different paddocks across three different sites (Table 2.1).  One tilled and three untilled 

paddocks were sampled. One of the tilled treatments were paired, where a tilled and un-

tilled paddock were sampled from the same site (site two). An additional planned sampling 

site did not proceed due to farmer management choice.  

 

Table 2.1. The different property sites and management practice for each tilled 

treatment.Unique property and paddock identifiers in brackets. 

 Tilled paddock (A) Un-tilled pasture paddock 

(B) 

Site 1 (1)   

Site 2 (2) ✓ ✓ 

Site 3 (3)  ✓ 

Site 4 (4)  ✓ 

 

2.2.3. Experimental design of burnt treatments  

Five paddocks across four sites were sampled to investigate the effect that burning crop 

residues has on bacterial and fungal communities. Both the burnt and unburnt patches 

across two burnt paddocks were sampled (Table 2.2). Two paddocks on two separate sites 

were used as no-burn controls. Due to the 2020 COVID19 Victorian lockdown restrictions, 

the task of soil sampling was completed by the property owners. Therefore, replication and 

randomisation did not represent the original experimental design of this project. 

 

Table 2.2. The different property sites and management practice for each burnt 

treatment.Unique property and paddock identifiers in brackets. 

 Burnt paddock  

  

Unburnt crop-residue 

attached paddock (E) 

 Unburnt patch 

(C) 

Burnt patch (D)  

Site 1 ✓ ✓ ✓ 

Site 2    

Site 3   ✓ 

Site 4 (paddock_i) ✓  ✓   

Site 4_(paddock_ii) ✓  ✓   
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2.2.4. Soil core collection  

For each paddock sampled, a total of five replicates were collected.  For tilled paddocks, 

un-tilled pasture paddocks and un-burnt paddocks, five representative soil cores were 

collected from across the entire paddock (Figure 2.3A). For burnt paddocks, five replicate 

soil cores were collected from burnt areas and a second set of five replicate cores were 

collected from unburnt patches within the burnt paddock (Figure 2.3B). The average size 

of a paddock was between 40 to 60 ha.  

 

 

 

Figure 2.3. The experimental design for sampling the treatments: A) where tilled paddocks, 

un-tilled pasture paddocks, and paddocks with crop residues attached had 5 representative 

samples taken and B) burnt paddocks had 5 samples from the surrounding paddock, and 5 

samples from unburnt patches (brown circle).  
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Cores were collected approximately 10 m away from the fence line to avoid soil conditions 

different to the rest of the paddock. Loose, organic matter was removed prior to where the 

soil sample was taken. The top layer of soil (approximately 10 cm) was collected as a core 

using 50 ml falcon tubes to avoid handling and disturbance (Figure 2.4). This resulted in a 

2.5 cm in diametre soil core sample. A total of 60 falcon tubes were collected of soil, with 

nine paddocks sampled from four different properties. Once the soil samples were 

collected, they were stored in a freezer at approximately -20°C until they were posted via 

Express Australia Post and kept in a deep freezer at -30°C at La Trobe University until 

analysis.  

 

 

Figure 2.4. Falcon tube method of surface soil sampling.Resultant soil core depth is 10 cm, 

core diameter is 2.5 cm.  Falcon tube was placed on the surface of soil prior to being pushed 

into the ground.  

 

2.2.5. Community DNA extraction from soil samples  

DNA was extracted from 0.40 g of soil utilising the Qiagen DNeasy Powersoil® kit as per 

the manufacturer’s protocol. The final yield of DNA concentrations for each sample was 

measured using the QUBIT® 3.0 Fluorometre broad-range and high-sensitivity assays. 

Once the concentration of DNA was determined, DNA samples were normalised to 5 ng/μL 

in 10 mM Tris-buffer 8.5 pH. Normalised DNA solutions were stored at 4°C prior to 

Illumina amplicon sequencing. 
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2.2.6. Bacterial 16S rRNA and fungal ITS amplicon sequencing  

Soil bacterial and fungal communities were sequenced via 16S ribosomal RNA (rRNA) 

and Internal Transcribed Spacer (ITS) region metabarcoding on an Illumina MiSeq 

platform. All 60 DNA soil samples representing the tilled and burnt treatments were utilised 

in the procedure. 

 

Amplicon libraries were prepared following the Illumina metagenomic sequencing 

protocol with modifications to the PCR conditions due to the protocol targeting the bacterial 

16S rRNA V3 and V4 region [72]. Utilising the Nextera XT Index Kit, dual indices and 

Illumina sequencing adapters were attached following the Illumina protocol [72]. The 

bacterial metabarcoding primers 515F (5’-GTGYCAGCMGCCGCGGTAA -3’) and 806R 

(5’-GGACTACNVGGGTWTCTAAT -3’) which target the V4 hypervariable region of the 

16S rRNA gene using primers were used [73].  PCR conditions involving an initial 

denaturation step at 94°C for 3 min, followed by 30 cycles of denaturation at 95°C for 30 

s, annealing at 50°C for 30 s, and extension at 72°C for 30 s, with a final extension at 72°C 

for 5 min.  

 

The fungal ITS metabarcoding primers fITS7 (5’-AGGTGARTCATCGAATCTTTG -3’) 

and ITS4 (5’- TCCTCCGCTTATTGATATGC -3’) which target the ITS4 region, were 

used as per Egidi et al., [67] protocol. PCR conditions involved an initial denaturation step 

at 94°C for 5 min, followed by 30 cycles of denaturation at 94°C for 30 s, annealing at 55°C 

for 30 s, and extension at 72°C for 45 s, with a final extension at 72°C for 10 min.  

 

The QUBIT® 3.0 Fluorometre broad-range assay was used to quantify indexed amplicons. 

Prior to being pooled into a single microcentrifuge tube, all indexed samples were 

normalised to 4 nM/μL using 10 mM Tris-buffer 8.5 pH. The indexed amplicon library was 

denatured using freshly prepared 0.2 M NaOH and diluted to 20 pM with HT1 buffer. A 

PhiX control was also denatured with 20 pM diluted with 0.2 M NaOH and spiked into the 

sequencing run to act as a positive control. The pooled PhiX and amplicon library was 

diluted to 7 pM and 600 μL of pooled library was loaded into the MiSeq Reagent Kit V3 

and run for 600 cycles. 
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2.2.7. Bioinformatic analysis of bacterial 16S rRNA and fungal ITS 

sequencing output  

Bacterial 16S rRNA and fungal ITS FASTQ sequences were downloaded from the Illumina 

Basespace Sequence Hub (https://basespace.illumina.com). QIIME2 (2020.8) software was 

utilised for all bioinformatic analysis [74]. Both the forward and reverse primers were 

trimmed from the paired sequences utilising the Cutadapt plugin [75]. Denoising occurred 

as the bacterial paired sequences were truncated from 200 bp in forward reads and 180 bp 

in reverse reads prior to joining. The fungal paired sequences were truncated from 220 bp 

in forward reads and 200 bp in reverse reads prior to joining. The DADA2 plugin was 

utilised to produce Amplicon Sequence Variants (ASVs), by implementing joining, quality 

filtering and chimera detection [76]. 

 

Following denoising, sequences were screened against a classifier to assign the Silva 

taxonomic classifier (version 138) trained against the V4 region for bacteria and the UNITE 

fungal classifier (version 8) trained against the ITS4 region [77, 78].  

 

Separate bacterial and fungal ASV tables were produced utilising Excel to be imported into 

R for statistical analysis [79]. A total of 3,284,105 sequence reads were identified from 

17,577 unique bacterial ASVs, with an average of 54,735 sequences per sample. A total of 

2,978,783 sequence reads were identified from 5,631 unique fungal ASVs, with an average 

of 49,646 per sample. 

 

One bacterial sample, soil sample DB7, was removed from downstream analysis due to an 

insufficient number of sequence reads (< 3000 sequences).  
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2.2.8. Statistical analysis of the bacterial 16S rRNA and fungal ITS 

sequencing data  

Community structure analysis of the bacterial 16S rRNA and fungal ITS sequencing data 

was completed using R (version 3.6.3) using the packages phyloseq, ggplot2, microbiome, 

vegan [79-83]. From the bacterial and fungal data, mitochondria and chloroplasts were 

removed using the package magrittr [84]. 

 

For all statistical procedures, a p-value of less than 0.05 was considered statistically 

significant. 

 

2.2.8.1. Redundancy Analysis (RDA) ordination  

Redundancy Analysis (RDA) ordinations were produced to investigate the effect of pH, 

Soil Moisture (SM) and location on the soil microbial communities. The Z-score 

standardisation method was used to compare between the pH, SM and location data.  

Variance Inflation Factors (VIFs) measured how much the variance of a variable correlated 

with another. The VIF for pH, SM and location measured how easily they are predicted 

from a linear regression using each other. An ANOVA-like permutational test for the RDAs 

was ran to determine whether there was a significant influence of the three constraints on 

the bacterial and fungal communities [85]. Supplementary analyses within Appendix IV.  

 

2.2.8.2. Taxonomic NMDS β-diversity ordinations  

Prior to β-diversity analyses, Total-Sum Scaling (TSS) normalisation of the data via the 

package metagMisc was performed [86]. β-diversity data was visualised using non-metric 

multidimensional scaling (NMDS) ordinations. The NMDS ordinations describe the 

similarity between the microbial communities: the ordinates that share the smallest distance 

between them are most alike in community structure. β-diversity is a measure of the 

similarity between pairs of communities. β-diversity was calculated using abundance-

weighted and unweighted (binary-transformed) Unifrac metrics which downweigh the 

importance of dominant ASVs [87].  

 

For tilled experiments, due to the effect of location on the data, only site two (where a direct 

comparison between a no-till and tilled paddock exists) was statistically analysed. Analysis 

of Similarity (ANOSIM) was used to examine the strength of grouping between tilled 

treatments [88]. For burn treatments, due to influence of site on the microbial communities, 
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only the burnt paddocks and the unburnt patches within the same paddock were statistically 

reported. Permutational multivariate analysis of variance (PERMANOVA) was used to 

determine if the soil management practices caused significant changes to total community 

structure. Ellipses with a 95 % confidence interval were used to show the smallest area 

where the samples overlap [89]. Supplementary PERMANOVA analyses are presented 

within Appendix V & VI.  

 

2.2.9. Bioinformatic analysis of predicted bacterial functional pathways using 

PICRUSt 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICRUSt) produced predicted bacterial functional pathways based on the previous 16S 

rRNA sequencing [90]. PICRUSt uses the manually curated Metacyc database to assign 

predicted pathways. Singletons, sequences that are observed < 2 times, were removed. A 

low depth sample (DB7) was removed after rarefying to 35,000. PICRUSt pathway tables 

were produced in Excel. A total of 425 different Metacyc functional pathways were 

identified.  

 

2.2.10. Statistical analysis of the PICRUSt predicted bacterial functional 

pathways  

 

2.2.10.1. Functional pathways NMDS β-diversity ordination  

β-diversity was calculated using abundance-weighted and unweighted Bray-Curtis metrics, 

where the unweighted data was binary-transformed which downweigh the importance of 

dominant ASVs [91]. β-diversity statistics followed the same methods as per the taxonomic 

data. Supplementary PERMANOVA analyses are presented within Appendix VII.  

 

2.2.10.2. Differential abundance tests for functional pathways  

Using the package DESeq2, a differential abundance analysis was performed on the 

PICRUSt predicted bacterial functional pathways to determine whether the tilled and burnt 

treatments were altering the functionality of the communities [92]. The differential 

abundance analysis detects differences in abundance of functional pathways using negative 

binomial distribution. The p-value was adjusted by the Benjamini-Hochberg (BH) method, 

to account for familywise error. Only pathways with a baseMean > 250 were reported, these 
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were pathways with a higher prevalence in the community (supplementary abundance 

testing information are presented within Appendix VIII).  

 

2.2.11. Cumulative ASV curves  

Cumulative ASV curve graphs were produced in Excel (v16.54) using the bacteria and 

fungi ASV tables. The curves were produced by treatment (i.e., tilled paddock and no-till 

paddock), where each new sample added the number of species not present in the previous 

samples.  

 

2.2.12. Sampling pH and soil moisture content  

Soil pH affects the chemical, physical and, most importantly, the biological properties. The 

pH was sampled as per Rayment [93] protocol where 5 g of soil from each treatment and 

25 ml of 0.01 M CaCl2 was added to 50 ml falcon tubes. This suspension was mechanically 

shaken for 1 hr and then centrifuged at 2000 rpm for 5 mins. For the most accurate pH 

measurements, the pH electrode was held vertically and gently agitated in the suspension. 

After calibration, pH measurements were read using a HANNA Instruments Ltd H1 2211 

pH meter and recorded to two decimal places (see Table 6.2 Appendix II).  

 

Soil moisture was measured from 10 g of soil in metal soil moisture content tins and the 

weight of the wet soil in the tin was recorded prior to being placed in a 105°C oven for 24 

hrs. The weight of the dry soil in the tin was then recorded and used to calculate the percent 

(%) of soil moisture in each sample (see Table 6.2, Appendix II). 
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3.0 RESULTS  

3.1. Meta-analysis: Microbial indicator techniques  

In the literature, there are four soil community parameters commonly studied and used for 

interpreting soil health through microbes in agricultural systems. These parameters are 

microbial biomass carbon (MBC), microbial activity (as measured through the activity of 

certain enzymes or Biolog Ecoplates), taxonomic diversity, and functional diversity. Each 

of these microbial community properties uses different analytical techniques for 

measurement. 

 

3.1.1. Usage of microbial techniques in literature  

A meta-analysis was performed with a focus on the strategies for assessing soil health, in 

which analytical techniques were grouped into four categories based on which aspect of the 

microbial community they use to interpret soil health in agricultural-based studies. Figure 

3.1A represents the frequency of the analytical techniques used in microbial soil health 

studies. Upon grouping the analytical techniques into four different categories of microbial 

community properties of soil health it was observed that MBC, microbial activity, 

taxonomic diversity, and functional diversity were all used in almost equal proportions 

(Figure 3.1B). The data also revealed that only 9.09 % of studies used all four of the 

microbial community parameters whereas, 38.63 % of studies used only one (Figure 3.1C). 

 

Figure 3.1. The usage of microbial techniques in literature.A) Frequency of different 

analytical techniques used to measure microbial community parameters of soil health in 44 

studies. B) Relative percentage of soil community parameters used to investigate soil 

health. C) Representation of the number of techniques (from B) used in each study for the 

characterisation of soil health.   
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3.1.2. Examining the prevalence of the four microbial community parameters 

over time 

This graph shows the relative prevalence of each of soil community parameters in the field 

over time. This figure represents 44 individual studies, where some may have used more 

than one microbial community property to assess soil health. The four different microbial 

community parameters used as bioindicators of soil health have varied over time (Figure 

3.2). Microbial biomass carbon (MBC) was prominently used between 2006 to 2010 

however, there is a notable increase in the use of taxonomic diversity and functional 

diversity of the microbial communities from 2015. The rise in these techniques corresponds 

to a decline in the use of MBC.  

 

 

Figure 3.2. The number of studies using the four different microbial community parameters 

from 1980 to 2020. Time intervals in groups of five years. Data collated from total of 44 

research articles.  
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3.1.3. Outcome of studies for the four microbial community parameters and 

management practices 

To determine if the microbial community properties (MBC, microbial activity, taxonomic 

diversity and functional diversity) had the ability to behave as bioindicators of soil health, 

the results of the literature were assessed for repeatability. The percentage of studies that 

recorded either an increase, decrease or no significant change in soil microbial community 

parameters due to four different management practices was collated and a Chi-squared (2) 

test was run to test how likely the distribution of the outcomes was due to chance (Figure 

3.3). Chosen management practices included no-tilling, stubble retained, application of 

fertiliser and crop rotation.  

 

In general, the four soil community parameters tended to increase under each of the four 

management practices. The main exception being that the response of MBC to fertiliser 

application and tilling was highly variable despite >8 studies for each comparison. 

Significantly repeatable outcomes were detected for each community parameter for 2 out 

of 4 management practices.  

 

For MBC, there were significantly more studies reporting that stubble retention (2 
(2, N = 7) 

= 8.857, p < 0.05) and crop rotation (2 
(2, N = 5) = 5.2, p < 0.05) increased due to management 

(Fig 3.3A). For both microbial activity and taxonomic diversity, there were significantly 

more studies reporting that no-till (2 
(2, N = 16) = 12.5, p < 0.05; 2 

(2, N = 8) = 10.75, p < 0.05) 

and crop rotation (2 
(2, N = 5) = 10, p < 0.05; 2 

(2, N = 3) = 6, p < 0.05) increased community 

parameters (Fig 3.3B & 3.3D). For taxonomic diversity, significantly more studies reported 

that no-till (2 
(2, N = 9) = 12.666, p < 0.05) and fertiliser application (2 

(2, N = 7) = 14, p < 

0.05) increased diversity (Fig 3.3C). See Appendix III for full chi-square results. 
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Figure 3.3. The percentage of studies that reported an increase, decrease, or no significant 

change in A) Microbial biomass carbon (MBC) B) Microbial activity (measured through 

Biolog or activity of certain enzymes), C) taxonomic diversity and D) functional diversity 

with the application of different agricultural management practices. The number of studies 

for each comparison are denoted in parenthesis below each bar. Where ‘*’ denotes 

significance (p < 0.05).   
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3.2. Effect of agricultural management practices on the soil microbial 

communities  

To further investigate how agricultural management practices affect soil health and whether 

the microbial parameter of functional diversity is an appropriate bioindicator of soil health 

due to the lack of studies investigating it, analysis of the two management practices (tilling 

the soil and burning of crop residues) on the bacterial and fungal communities was 

investigated.  

 

3.2.1. RDA showing the effect of pH, soil moisture content and location on the 

soil microbial communities  

A Redundancy Analysis (RDA) was used to elucidate the role played by two different 

environmental variables (pH and soil moisture) and location effects in modulating the 

structure of microbial communities. No factors were removed from analysis from either 

ordination due to all Variation Inflation Factors (VIFs) being < 10 (Appendix IV, Table 

6.8). An ANOVA-like permutation test was used to assess the significance of the three 

constraints: SM, pH and site. There was a significant influence of the three constraints for 

bacterial data (F5,54 = 1.691, p < 0.05, Appendix IV, Table 6.9, Figure 3.4A). There was 

also a significant influence of the three constraints for fungal data (F5,54 = 1.610, p < 0.05, 

Appendix IV, Table 6.10, Figure 3.4B). Both the bacterial and fungal RDA ordination had 

a significant influence of pH and site (Table 6.11 & Table 6.12). 
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Figure 3.4. Redundancy analysis (RDA) using the Z-score transformed proportions of pH 

and soil moisture (SM) for A) bacteria and B) fungi. Symbols represent the individual sites, 

and their proximity to each other indicates compositional similarity. The colour of symbols 

represent the treatment of samples.  
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3.2.2. Cumulative ASV curves  

Cumulative Amplicon Sequence Variant (ASV) curves were produced to determine 

whether sampling was sufficient to capture the diversity of the bacterial and fungal 

communities in each treatment (Figure 3.5 & Figure 3.6). ASVs are the unique DNA 

sequences that can be used to identify specific species, and a read is any given individual 

sequence. In the case of the data analysed, ASV’s refer to different fungi or bacteria present.  

 

3.2.2.1. Tilled treatments had continuous ASV accumulation  

All treatments, including both tilled and no-till paddocks, did not plateau with further 

sampling indicating that the treatments were not sampled broadly enough, and that more 

replicates are needed (Figure 3.5).  
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Figure 3.5. ASV accumulation curves for tilled treatments showing ASVs accumulating 

per sample for A) bacteria and B) fungi. Colour indicative of sampling location: tilled and 

no-till.  
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3.2.2.2. All burn treatments continuously accumulated ASVs  

All treatments, including the burnt and unburnt patches in a paddock and no-burn paddocks, 

did not plateau with further sampling indicating that the treatments were not sampled 

broadly enough, and that more replicates are needed (Figure 3.6). Interestingly, unburnt 

patches tended to accumulate more ASVs than unburnt and no-burn treatments.  

 

 

 

 

Figure 3.6. ASV accumulation curves for burn treatments showing ASVs accumulating per 

sample for A) bacteria and B) fungi. Colour indicative of sampling location: unburnt patch, 

burnt patch and no-burn paddock.  
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3.2.3. COMMUNITY ANALYSIS: Tilled treatments β-diversity ordination 

To examine the effect of tillage on the bacterial and fungal communities, NMDS 

ordinations were produced. Due to influence of site on the microbial communities, only site 

two (where a direct comparison between a no-till and tilled paddock exists) was statistically 

analysed (see Appendix V, Figure 6.1 & Figure 6.2 for ordinations with all sites). 

 

3.2.3.1. Tilling altered the bacterial communities 

To investigate the similarities in bacterial community structure between tilled and no-tilled 

treatments, community −diversity was analysed using Permutational Multivariate 

Analysis of Variance (PERMANOVA) on Unifrac distance matrices. Non-metric 

multidimensional scaling (NMDS) ordinations were used to visualise community 

relationships. The tilled treatments NMDS ordinations had stress values of 0.029 (Figure 

3.7A) and 0.055 (Figure 3.7B) and thus, can be considered an accurate representation of 

community relationships. Analysis of Similarity (ANOSIM) was used to examine the 

strength of grouping between treatments and there was significant low-level grouping 

between treatments for weighted bacterial community data (R = 0.03, p < 0.05). Grouping 

due to treatment increased (R = 0.7, p < 0.05) when data was binary transformed, suggesting 

treatment differences are due to a turnover in the suites of ASVs as well as changes in the 

dominant species present.  

 

PERMANOVAs on abundance-weighted data (Figure 3.7A) compares community 

similarity in the context of shared ASVs and the similarity of their respective abundances. 

PERMANOVAs on unweighted data (Figure 3.7B), in which ASV abundances were binary 

transformed (i.e., were recorded as either present or absent) compares community similarity 

in the context of shared ASVs only. There were significant differences between tilled and 

no-tilled communities for abundance weighted data (pseudo-F (1, 9) = 2.258, p < 0.05), where 

the R2 value explained 22 % of the variation. The strength of this grouping increased when 

data was presence-absence transformed (pseudo-F (1, 9) = 1.773, p < 0.05), where the R2 

value explained 18 % of this variation. The abundance-weighted data (Figure 3.7A) and 

presence-absence transformed data (Figure 3.7B) both indicated that the tilled soil was 

distinct from the no-till soil (see Appendix V, Table 6.13 & Table 6.14).  
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Figure 3.7. Non-metric multidimensional scaling (NMDS) ordinations of bacterial 

communities using the Unifrac dissimilarity metric under tilled treatments.Ordinations are 

of A) abundance-weighted community data and B) presence-absence transformed 

community data. 2-dimensional stress 0.029 (A) and 0.055 (B) (< 0.2). Ellipses with a 95% 

confidence interval.  

  

A B 



35 

 

3.2.3.2. Tilling altered the fungal communities   

To investigate the similarities in fungal community structure between the tilled and no-

tilled treatments, community −diversity was analysed using PERMANOVA on Unifrac 

distance matrices. The tilled treatments NMDS ordinations had stress values of 0.105 

(Figure 3.8A) and 0.042 (Figure 3.8B) and thus, can be considered an accurate 

representation of community relationships. Using ANOSIM showed a significant level of 

grouping between the treatments for weighted fungal community data (R = 0.64, p < 0.05). 

When the data was binary transformed, the grouping due to treatment increased (R = 0.72, 

p < 0.05), indicating dissimilarity of fungal ASVs between the treatments.  

 

The differences of community structure between the two treatments were statistically tested 

via PERMANOVA. There was significant grouping between the habitats for abundance 

weighted data (pseudo-F (1, 9) = 2.861, p < 0.05), where the R2 value (0.263) explained 26 

% of the variation. The strength of this grouping decreased when data was presence-

absence transformed (pseudo-F (1,9) = 2.006, p < 0.01), where the R2 value (0.20) explained 

20 % of this variation. The abundance-weighted data (Figure 3.8A) and presence-absence 

transformed data (Figure 3.8B) both indicated that the tilled soil was distinct from the no-

till soil (see Appendix V, Table 6.15 & Table 6.16). 

 

 

Figure 3.8. Non-metric multidimensional scaling (NMDS) ordinations of fungal 

communities using the Unifrac dissimilarity metric under tilled treatments.Ordinations are 

of A) abundance-weighted community data and B) presence-absence transformed 

community data. 2-dimensional stress 0.105 (A) and 0.042 (B) (< 0.2). Ellipses with a 95% 

confidence interval.  

A B 
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3.2.4. COMMUNITY ANALYSIS: Burning treatments β-diversity 

ordination 

To examine the effect of burning of crop residues on the bacterial and fungal communities, 

−diversity ordinations were produced. Due to influence of site on the microbial 

communities, only the burnt paddocks and the unburnt patches within the same paddock 

were statistically reported. This means the completely no-burn paddocks were excluded 

from analysis (see Appendix VII, Figure 6.3 & Figure 6.4 for ordinations with all sites). 

 

3.2.4.1. Burning altered the bacterial communities   

The similarity in bacterial community structure between the burn treatments was 

investigated through −diversity using PERMANOVA tests on NMDS ordinations. Stress 

values of 0.1 (Figure 3.9A) and 0.14 (Figure 3.9B) are considered a fair representation.  

 

The differences of community structure between the two treatments were statistically tested 

via PERMANOVA. There was a significant effect of site and treatment on the community 

composition between the treatments for abundance weighted data (pseudo-F (1, 29) = 3.1, p 

< 0.05). Location remained a strong significant factor influence on community structure 

when data was binary transformed. However, the amount a variance explained, and the 

significance of burning effect on bacterial communities, was reduced when data was 

presence-absence transformed (pseudo-F (1,29) = 1.35, p < 0.05). This data highlights the 

major impact of location on bacterial community composition and indicates that burning 

had an impact on both the abundances of ASVs and the suites of ASVs present (see 

Appendix VI, Table 6.17 & Table 6.18). 
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Figure 3.9. Non-metric multidimensional scaling (NMDS) ordinations of bacterial 

communities using the Unifrac dissimilarity metric under burn treatments.Ordinations are 

of A) abundance-weighted community data and B) presence-absence transformed 

community data. 2-dimensional stress 0.1(A) and 0.14(B) (< 0.2). Ellipses with a 95% 

confidence interval. 

  

A B 
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3.2.4.2. Burning did not alter the fungal communities   

The similarity in fungal community structure between the burn treatments was investigated 

through -diversity using PERMANOVA tests on non-metric multidimensional scaling 

(NMDS) ordinations. Stress values of 0.167 (Figure 3.10A) and 0.155 (Figure 3.10B) are 

considered a fair representation. The differences of community structure between the two 

treatments were statistically tested via PERMANOVA. In contrast to bacterial 

communities, PERMANOVA reveal no significant impact of burning on fungal community 

structure. However, as with bacterial communities’, location was a significant main effect 

for both weighted and unweighted community data (see Appendix VI, Table 6.19 & Table 

6.20).   

 

 

Figure 3.10. Non-metric multidimensional scaling (NMDS) ordinations of fungal 

communities using the Unifrac dissimilarity metric under burn treatments.Ordinations are 

of A) abundance-weighted community data and B) presence-absence transformed 

community data. 2-dimensional stress 0.167 (A) and 0.155 (B) (< 0.2). Ellipses with a 95% 

confidence interval. 

 

  

A B 
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3.2.5. BACTERIAL FUNCTIONAL ANALYSES: Predicted bacterial 

functional pathways β-diversity ordination  

To investigate the similarities in predicted bacterial functional pathways between the 

treatments, -diversity analysis was carried out using PERMANOVA tests on Bray Curtis 

distance matrices. PERMANOVA on abundance-weighted data compares community 

similarity in the context of shared pathways and the similarity of their respective 

abundances. PERMANOVA on unweighted data, in which pathway abundances were 

binary transformed (i.e., were either recorded present or absent) compares community 

similarity in the context of shared pathways only. 

 

3.2.5.1.  Tilling altered the functional profiles of bacterial communities 

The tilled treatments NMDS ordinations had stress values of 0.021 (Figure 3.11A) and 

0.063 (Figure 3.11B) and thus, can be considered an accurate representation of functional 

relationships between bacterial communities. The ordination indicated that there was a 

clear separation due to treatment and this was supported by the ANOSIM, where there was 

a significant level of grouping between the treatments for weighted pathways data (R = 

0.684, p < 0.05). When the data was binary transformed, the grouping due to treatment 

increased (R = 0.742, p < 0.05), indicating dissimilarity of bacterial functional pathways 

between the treatments.  

 

The differences of functional relationships between the two treatments were statistically 

tested via PERMANOVA. There was significant grouping between the habitats for 

abundance weighted data (pseudo-F (1, 9) = 6.147, p < 0.05), where the R2 value (0.435) 

explained 44 % of the variation. The strength of this grouping increased when data was 

presence-absence transformed (pseudo-F (1,9) = 8.107, p < 0.05), where the R2 value (0.503) 

explained 50 % of this variation. The abundance-weighted data (Figure 3.11A) and 

presence-absence transformed data (Figure 3.11B) both indicated that the tilled soil had 

distinct predicted functional pathways from the no-till soil (see Appendix VII, Table 6.21 

& Table 6.22).  
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Figure 3.11. Non-metric multidimensional scaling (NMDS) ordinations of predicted 

functional potential of bacterial communities under tilled treatments using the Bray Curtis 

metric. Ordinations are of A) abundance-weighted pathways and B) presence-absence 

transformed pathways data. 2-dimensional stress 0.021 (A) and 0.063 (B) (< 0.2).    

A B 
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3.2.5.2. Burning did not alter the functional profiles of bacterial 

communities  

Only Figure 3.12A can be considered an accurate representation of functional relationships 

between bacterial communities for burn treatments as the NMDS ordination had a stress 

value of 0.128. Whereas Figure 3.12B had a stress value of 0.2 and therefore, cannot be 

considered an accurate representation. The differences of community structure between the 

two treatments were statistically tested via PERMANOVA. The PERMANOVA revealed 

no significant impact of burning on the bacterial functional pathways however, location 

was a significant main effect for both weighted and unweighted data (see Appendix VII, 

Table 6.23 & Table 6.24). There is a separation due to site on the x-axis, and there is 

separation due to treatment on the y-axis however, as the PERMANOVA indicated, while 

the site effect was significant the impact of burning was not. 

 

 

Figure 3.12. Non-metric multidimensional scaling (NMDS) ordinations of predicted 

functional potential of bacterial communities under burn treatments using the Bray Curtis 

metric. Ordinations are of A) abundance-weighted community pathways and B) presence-

absence transformed pathways data. 2-dimensional stress 0.128 (A) and 0.2 (B) (< 0.2). 

 

  

  

A B 
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3.2.6. DIFFERENTIAL ABUNDANCE TEST: Bacterial functional pathways  

A differential abundance test was performed on bacterial functional pathways data to 

compare two different treatments. Where one treatment is the control, then the other is 

being compared to this control. As per previous analysis, only site two (where a direct 

comparison between a no-till and tilled paddock exists) was statistically analysed for tilled 

data. Additionally, only the burnt paddocks and the unburnt patches within the same 

paddock were statistically reported. This means the completely no-burn paddocks were 

excluded from analysis. 

 

3.2.6.1. Bacterial functional pathways significantly changed from tillage 

The bacterial functional pathways with a significant level of change between the no-tilled 

and tilled paddocks were graphically represented in Figure 3.13. There were 25 different 

pathways that have a significantly (adj p < 0.05) increased (blue) or decreased (red) 

abundance when comparing the completely untilled paddock to a tilled paddock (see 

Appendix VIII, Table 6.25).  

 

 

Figure 3.13. Log2foldchange for site two: no-till and tilled paddock for bacterial functional 

pathways data.Only pathways with a significant (p < 0.05) change shown. Blue= increased 

with tillage. Red= decreased in tillage. Pathways with a baseMean < 250 removed.  
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3.2.6.2. No bacterial functional pathways were significantly changed 

from burning  

There were no bacterial functional pathways that significantly changed in abundance from 

the unburnt patches to the burnt patches.  
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4.0 DISCUSSION  

Fungi and bacteria play many important roles for soil health, including organic matter 

deposition and enhancing soil structure [13, 94]. Due to an increasing number of microbial 

focused studies in the last decade, it is understood that an imbalance in the microbial soil 

community results in detrimental effects on plant growth, especially for growers using the 

land for agricultural purposes. 

 

Whilst the use of soil microbiota as bioindicators of soil health has been widely discussed, 

there is no consensus in the literature as to which microbial parameter is best, or how 

management practices affect soil health as measured by microbial parameters. In this study, 

the ability of four parameters of the microbial community (microbial biomass carbon 

(MBC), microbial activity, taxonomic and functional diversity) to behave as bioindicators 

were assessed. A successful bioindicator was considered one that exhibited a repeatable 

and predictable response to agricultural management practices. As will be discussed, the 

findings of the present meta-analysis partially support the hypothesis that the four microbial 

community parameters would respond in a repeatable way to four agricultural management 

practices (tilling of soil, burning of crop residues, application of fertiliser and crop rotation). 

It is suggested that more research needs to be conducted on agricultural management 

practices and how they affect the four soil community parameters used as potential 

bioindicators of soil health. 

 

Tilling the soil and burning of crop residues both have conflicting views in the literature as 

to whether they are beneficial for soil health. Moreover, there is a fundamental lack of 

research regarding the effect of these two management practices on the functional diversity 

of the soil microbial community. To investigate this, we examined whether tilling of pasture 

paddocks and burning of wheat stubble had an effect on soil community function using a 

predictive functional profiling approach. It was hypothesised that both tilling the soil and 

burning of crop residues would influence the bacterial and fungal taxonomic diversity, and 

bacterial functional diversity (an assessment of fungal diversity was beyond the scope of 

this study). This revealed changes in the microbial communities between the tilling and 

burning treatments.  

 

Studying the functional and taxonomic diversity allowed the assessment of what functions 

the microbial communities are providing. For example, microbes with the ability to fix 
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nitrogen are important for plant life, it can be assumed that changes in the abundances of 

these microbes would affect the environment in which they are located. As highlighted in 

Table 1.1, the microbial communities, and specific microbes, play very important roles in 

the processes that underlie soil health. Due to functional redundancy, i.e., many taxa being 

able to carry out similar functions, a change in the microbial communities’ taxonomic 

structure may or may not result in changes to the community functions performed [33, 95]. 
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4.1. The implementation of bioindicators in assessing soil health (a meta-analysis) 

A meta-analysis was performed to determine whether different soil microbial community 

parameters were accurate bioindicators of soil health. This meta-analysis examined the 

results of 44 individual studies and aimed to determine whether the four microbial 

community parameters had the ability to be an accurate bioindicator, by responding in a 

repeatable way to different agricultural management practices. A variety of analytical tools 

were used across the studies (Figure 3.1A), which were categorised into one of the four soil 

microbial community parameters: MBC, microbial activity, taxonomic diversity or 

functional diversity (Figure 3.1B). It is important to note that many of these studies used 

only one of these parameters (Figure 3.1C). For future studies, it would be recommended 

to use more than one parameter, to be able to accurately determine which of the four soil 

microbial parameters is best under the same experimental conditions, which is a limitation 

of this meta-analysis. 

 

4.1.1. The potential bioindicators of soil health generally respond in a 

repeatable way to management 

The results of whether a soil microbial parameter responded in a repeatable way to the four 

management practices (no-tillage, stubble retainment, application of fertiliser, and crop 

rotation) was assessed. These four management practices are typically known to increase 

soil health. In general, where a significant trend could be detected, bioindicators of soil 

health were increasing in response to management practices (Figure 3.3). It is possible that 

the four microbial parameters investigated do not make a suitable bioindicator however, in 

many cases there was not enough studies (statistical power) to determine significance.  

 

Despite most indicators responding in a repeatable way, the study of MBC highlighted 

instances where statistical power was present but no trend in response to management could 

be detected (Figure 3.3). This was unexpected, as the general conclusion in the literature is 

that tillage causes a reduction in MBC. Interestingly, the response of MBC to tilling and 

fertiliser application was highly variable [46, 65, 96-99]. However, significantly (p < 0.05) 

more studies reported that no-tillage increased microbial activity, taxonomic diversity and 

functional diversity (Figure 3.3). These findings support the theory that tilling will 

negatively impact the soil community. The variable response of MBC to tilling may reflect 

differences in the soil type, or the microbial community’s response to tilling. For example, 

in a community adapted to a temperate environment, such as a pasture paddock, the change 
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in nutrients from tilling could stimulate the community. It is also known that the turnover 

of soil from tilling breaks up aggregates and changes the microenvironments from 

anaerobic to aerobic. Strict anaerobic organisms consequently die, which is likely why 

MBC decreases. Due to tillage being the most disruptive management practice, 

incorporating no-till is important to enhance the soil health, as investigated through the four 

potential bioindicators.  

 

Burning of crop residues does have opposing results in the literature where many studies 

reported it increased MBC, while another reported that it has no significant effect on MBC 

(Figure 3.3A). The meta-analysis found that, with the respect to the retention of crop 

residues (i.e., no burning), three of the microbial community parameters, microbial activity, 

taxonomic diversity or functional diversity, had no repeatable trends across the literature. 

Interestingly, studies either reported that stubble retention increased, or had no significance 

for each of the microbial community parameters, suggesting that this management practice 

does not have a negative effect on the soil health. Although these results highlight that there 

is no consensus in the literature on whether burning of crop residues affects the microbial 

communities, this result may be due to a low replication of studies, where three of the 

parameters did not have enough power for significance. This signifies stubble retention 

may increase the bioindicators, but more studies were needed. Retaining crop residues 

enhances the chemical and physical properties of the soil, such as soil basal respiration and 

water stability [11, 100]. Furthermore, a forest fire can cause a significant decrease and 

changes to the composition of microbial communities [101]. Hence, it is noteworthy, that 

no study investigated reported a decrease in any of the microbial parameters. However, 

forest fires have greater heat transfer to the soil than controlled grassland fires and thus, the 

heat from the fire may not contribute as much to altering the communities [101].  

 

The application of fertiliser has been described as critical for plant growth and reproduction 

in agricultural landscapes [102]. However, previous studies have reported that fertiliser can 

temporarily inhibit microbial growth, subsequently altering the microbial community 

composition [66]. This can be seen in the results illustrated in Figure 3.3A, which shows 

80 % of the studies reported either a decrease or no significant effect, indicating an 

inhibition of microbial growth. Figure 3.3C shows that all seven studies reported that 

fertiliser increased the taxonomic diversity, which mean the microbial community 

composition was altered. Allison et al., [103] found that the composition of a microbial 
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community is directly influenced by chemical fertilisers (e.g. NPKS) and hence, the 

application of fertiliser is possibly altering the taxonomy of the microbes and their 

associated C sequestering functions [104]. Implementing management practices that 

improve MBC has been suggested previously because an increase in this microbial 

community parameter implies an increase in microorganisms and hence, an increase in soil 

health [105]. The different microbes within an existing microbial community will be 

affected differently by fertiliser application. It is clear that fertiliser enhances the taxonomic 

diversity of microbes (Figure 3.3C) however, many taxa perform the same functions, and 

this could explain the lack of significant increases in functional diversity (Figure 3.3D). 

More research needs to be conducted as to whether fertiliser is a sustainable management 

practice. 

 

The scientific literature describes crop rotation as one of the best management practices as 

it consistently increases the different soil community parameters by suppling a diversity of 

nutrient and carbon sources to the soil [21, 43, 49, 57]. This was supported in this meta-

analysis where significantly more studies reported that MBC, microbial activity and 

functional diversity increased due to crop rotation (Figure 3.3). In contrast to the 

hypothesised beneficial effect of crop rotation documented in the literature (Table 1.3), this 

meta-analysis found that 20 % of studies reporting that there was a decreased or no 

significant effect of crop rotation on taxonomic diversity. It is likely that the choice of crop 

species being rotated influences the effect that crop rotation has on taxonomic diversity 

[106]. Crucially, whether this change in the abundance of microbes’ present is good or bad 

for soil health is yet to be determined and is a key area for future work.  

 

An oversight to this study was that it was only considered that an increase in the soil 

microbial parameters improved soil health. Reese et al., [107] reported that diversity of 

communities is not an inherit feature of microbial communities, implying that an increase 

in diversity is not always better. It needs to be considered that an increase in taxonomic and 

functional diversity cannot be inferred as an increase in soil health. 
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4.1.2. The lack of a healthy soil benchmark impedes the use of bioindicators 

soil of health 

The discussion surrounding how soil health should be measured is complex. An identified 

gap in the literature is that although the soil microbial community parameters have been 

investigated, it is difficult to obtain a benchmark result of ‘what is healthy?’ from the four 

microbial community parameters used as bioindicators of soil health. Furthermore, there 

are many advantages and disadvantages of the four categorised microbial community 

properties utilised in bioindicator analyses, as illustrated in Table 1.2. As interpreted from 

Figure 3.2, the use of functional diversity as a parameter of soil health has increased in 

recent years. Functional diversity has been previously described to be a great potential 

bioindicator however, there are no benchmarks identified for a study to compare their 

results [108-110]. Due to the lack of a benchmark for ‘healthy soils’ many studies stated 

what their results were but could provide little explanation as to the outcomes for soil health 

and very few studies were confident enough to state whether the soil assessed was “healthy” 

[43, 47].  

 

As functional diversity has increased in use, MBC is decreasing (Figure 3.2). This decline 

may be because the technique of MBC does not answer the question of the identity of the 

individual microbes (Table 1.2). The lack of detailed information and sensitivity that is 

offered by MBC and microbial activity could be contributing to this decline. Further studies 

are required as different soil types and the time of year sampling occurred are known 

variables to affect results [44, 111, 112]. In addition, these published studies were 

conducted at varying times after a management practice was performed, which would have 

affected the outcome. For instance, the management practice of tilling the soil, where the 

soil surface is initially completely disturbed, has different effects at different weeks post-

tillage [113].  

 

The results of the present meta-analysis led to the conclusion that further studies are 

required to confirm these findings, due to the limited number of studies available for 

taxonomic and functional diversity. Further studies need to be conducted to determine 

whether these four microbial community parameters are accurate bioindicators of soil 

health. More studies have used MBC as a potential bioindicator for soil health compared to 

taxonomic or functional diversity. Although many studies use MBC, both no-tillage and 



50 

 

application of fertiliser did not have repeatability in the literature, hence, may imply that 

MBC cannot be used as an accurate bioindicator.   
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4.2. The influence of agricultural management practices on soil microbial 

communities (a field study)  

Analysis of bacterial and fungal community structure through 16S rRNA and ITS amplicon 

sequencing was performed to determine whether the two agricultural management 

practices, tilling the soil and burning of crop residues, had an effect on the soil microbial 

community. As well as this, PICRUSt was incorporated to analyse the predicted bacterial 

functional pathways. The overall question of the study was whether there was a functional 

diversity effect of the management practices, as well as a taxonomic influence.  

 

4.2.1. Environment and location affect the soil microbial community 

structure  

There are many ways to assess soil chemistry, such as using pH or oxygen availability [114, 

115]. There was a significant influence of pH on the soil microbial communities and 

therefore, it is likely that the soil chemistry also had an effect on the results of the meta-

analysis. Soil chemistry and substrate availability are known to affect the spatial variation 

of microbial communities [116, 117]. Microbial activity can be significantly affected by 

the availability of some substrates, particularly C [117].  

 

The RDAs produced show the effect of pH, soil moisture (SM) content and location on the 

soil microbial communities. Both the bacterial (Figure 3.4A) and fungal (Figure 3.4B) 

communities were significantly influenced by the pH and site. The effect of location on 

microbial communities has been reported substantially in the literature. The reason being 

is that there are multiple environmental variables, including pH and SM, that change 

between different locations. pH has been reported to be the primary driver in modulating 

bacterial communities however, exhibiting little effects on fungal communities and hence, 

pH was expected to have a significant effect [118, 119]. Furthermore, the Goulburn region 

sampled from for this field study is classified as a medium rainfall area (400 to 600 mm per 

year), where dry and wet seasons occur. Because differences in SM can impact the 

microbial community, it is suggested that future studies consider this and samples are taken 

at more than one time point and various times of year [71]. For future research into the 

impact of stubble burning, samples should be taken from the same paddocks prior to and 

post burning to minimise the impact of location on microbial analyses. This would have 

allowed a direct comparison between the burn treatments. In this study, due to the observed 
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impact of different environmental conditions at locations, statistical analysis that only 

including treatments from the same site was justified. 

 

4.2.2. The effect of tilling the soil on the soil microbial communities  

Tillage has been reported to change the microbial community structure, but their associated 

functions have not been examined. More importantly, if certain species are changing, it is 

possible they are being replaced by microbes with similar functions [33, 95]. The 

differences in the composition of the soil microbial communities due to the effect of tillage 

was investigated through -diversity. This revealed that the tilled paddock had different 

bacterial and fungal communities to the no-till pasture paddock. The significant differences 

observed for abundance weighted data highlights that the bacterial communities did not 

have shared dominant ASVs between the tilled treatments, and this trend can also be seen 

for the fungal data (Figure 3.7A & Figure 3.8A). This is likely a result of the physical 

destruction of soil from tilling by altering the microenvironments and subsequently the 

dominate ASVs within a community. The significant grouping for both treatments for the 

bacterial and fungal communities (Figure 3.7B & Figure 3.8B respectively) indicates that 

the genetic pool and taxonomies of microbes was different, possibly implying differences 

in functional potentials between the treatments. To elaborate on this, the PICRUSt data, 

which uses the 16S rRNA bacterial data, did in fact show the same significance, where the 

no-till and tilled paddock had distinct pathways (Figure 3.11). This implies that the 

functional potentials of the microbes between the tilled and no-till paddock was different. 

To understand the implications for soil health, we further investigated which functions were 

altered.   

To further investigate the functional differences between the tilled treatments, differential 

abundance tests were performed. The effect of tillage resulted in an increased abundance 

of 11 different pathways (Figure 3.13). The top three pathways that increased due to tillage 

were related to the production of methane. This form of microbial metabolism was possibly 

increased due to the incorporation of manure into the soil [120]. Methanogens live within 

the gut of livestock and therefore, it is possible that the fecal matter deposited contained 

DNA from methanogens that was consequently detected [120]. Interestingly, many of the 

pathways that decreased due to tillage were in relation to the production of energy. The 

disruptive management practice of tilling, where the physical turnover of soil occurs, has 

potentially impeded the ability of the bacterial community to carry out essential functions 
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[6]. Smith et al., [6] found that no-till soils had a higher microbial activity with distinct 

microbial communities. This study however, did not analyse the specific pathways 

associated with functional diversity, highlighting that a deeper understanding of the 

functions changing between microbial communities is needed.  

Microbial communities not only have altered taxa between environments, but their 

functions also change. This suggests that specific functions are selected by the 

environment, and in relation to this study by management practice [121]. These analyses 

indicate that the microbial communities and their associated functions are changing with 

tillage.  

4.2.3. The effect of burning of crop residues on the soil microbial communities  

Burning of crop residues only had significance in the previous meta-analysis with 

decreasing MBC, outlining that there is no determined effect on microbial communities. In 

relation to functional diversity, only two studies had been reported (Figure 3.3D). The 

differences in the composition of the soil microbial communities due to the effect of 

burning crop residues was firstly investigated through β-diversity. The significance for 

Figure 3.9A highlights that the bacterial communities do not have shared dominant ASVs 

between the burnt paddock and unburnt patches within. Similar to the tilled data, the burn 

treatments bacterial communities (Figure 3.9B) indicate differences in the functional 

potentials. Neither of these trends are continued for the fungal data, where there was no 

significance due to treatment (Figure 3.10). Interestingly, there was no significance in the 

bacterial functional pathways changing between the burn treatments (Figure 3.12). To 

further investigate the functional differences between the burn treatments, differential 

abundance tests were performed. The effect of burning resulted in no bacterial functional 

pathways significantly changing in abundance. This is an important finding, known as 

functional redundancy, where the bacterial community has a taxonomic change but no 

functional change.  

The significance for location as a main effect on burning data for both bacteria and fungi 

was expected, as suggested by the RDA ordination (Figure 3.4). The lack of a treatment 

effect could also be caused by the field design, where unburnt patches were taken from a 

burnt paddock. The dripping torch used to deposit the flaming fuel for burning would have 

been applied to the whole paddock evenly and hence, could have affected both the burnt 



54 

 

and unburnt patches. As well as this, the heat from the surrounding fire, despite being “low-

burn”, could have affected the unburnt patches.  

4.3. Implications for agricultural management and research  

The results of this meta-analysis highlighted the lack of studies investigating the impact of 

agricultural management practices on the microbial community. Majority of the studies that 

investigated no-tillage, reported that it significantly increased taxonomic and functional 

diversity (Figure 3.3). However, the studies that investigated the retention of stubble (i.e., 

no burning), reported non-significant results for both taxonomic and functional diversity. 

Further study on the effect of stubble retention would be suggested, as there were only three 

studies investigating taxonomic diversity and two studies investigating functional diversity 

to date. The lack of clarity surrounding the assessment of soil health in agricultural 

landscapes could lead to poorly interpreted data, with the limited studies available for 

reference.  

 

Both taxonomic and functional diversity had a significant number of studies reporting 

increases in the measurements, as reported by the meta-analysis. The field-study concluded 

that both measurements responded to tilling however, this change in functional diversity 

resulted in a possible loss of some key soil functions. This further demonstrates that these 

measurements cannot be used and reported as “increases” or “decreases” of soil health. Due 

to the diversity of microbes, key functions within a microbial community, and not the 

overall community themselves, should be used as future measurements.   
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4.4. Conclusions and future perspectives  

The cumulative ASV curves showed that for both the tilled and burn treatments (Figure 3.5 

&  Figure 3.6 respectively) sampling was not sufficient in capturing the diversity, and each 

treatment was a continuous community; meaning there was a gradual increase in diversity. 

These curves, if paddocks were sampled adequately, would have plateaued between each 

new paddock added (known as a discrete community). To improve the current field study, 

a larger sample size is suggested. The original sample design, as described by Biomes of 

Australian Soil Environments (BASE), included 25 samples per paddock [122]. This 

sample design would have allowed a larger replication and would have captured the 

diversity of the paddocks better. Furthermore, soil type, plant species and livestock were 

all fluctuating between the paddocks, and these would have been confounding variables. It 

can be suggested, that combining future field studies, with potted glasshouse trials could 

aid in fixing this issue.   

 

Other aspects of soil chemistry, on top of pH and soil moisture, should have also been 

considered in the field study. Soil chemistry is suggested to be incorporated into all future 

research of the potential bioindicators to know whether it is affecting the results, as some 

studies were investigating it, and others were not.   

 

Further investigation into whether an increase in taxonomic or functional diversity a sign 

for good soil health is suggested. Functional diversity needs to be considered with 

taxonomic diversity, as simply looking at what is in the soil is not adequate to say a microbe 

is important for soil health. A benchmark for soil health is difficult to achieve. The 

chemical, physical and biological aspects of soil health all need to be considered. Microbes 

occupy specific niches and therefore, are able to provide a sensitive measure of soil health. 

The emerging technique of functional diversity through techniques such as shotgun 

sequencing often comes with a high cost that makes it inaccessible for some studies.  

 

More robust testing needs to be implemented. Instead of using amplicon sequencing and 

PICRUSt, a database that relies on predicting functional pathways from the 16S rRNA 

gene, a technique such as whole genome shotgun sequencing is recommended [90]. Whole 

genome shotgun sequencing allows all genes from all organisms to be comprehensively 

sampled however, it is more expensive [123]. Fungi have a prominent role in 

decomposition, as well as large roles in nitrogen fixation, see Table 1.1 for more 
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information. In this study, the functional diversity of fungi was not studied. Using shotgun 

sequencing to identify fungal functions has rarely been done and is a suggested area for 

future research [124]. For the current field study, it is suggested to incorporate FUNGuild, 

a tool that takes the taxonomic data and places them into functional guilds [125]. This 

database does not use metabolic pathways like PICRUSt, instead it is manually curated into 

trophic guilds. However, FUNGuild allows the assessment of fungi functions, with 

accuracy unattainable with the current bioinformatics pipeline [125]. Despite both 

resources being available, they do not allow the functional evaluation of the whole 

microbial community. It is possible for enzyme assays to assess the functional aspects of 

both bacterial and fungal communities at the same time and hence, is an area suggested for 

research. German et al., [126] concluded that despite enzymes being used for many years, 

most researchers were not properly assessing the potential enzyme activity due to failing to 

optimise the protocol for their study site.  

 

The findings of the meta-analysis led to the suggestion that more research needs to be 

conducted on the four soil community parameters (MBC, microbial activity, taxonomic 

diversity, and functional diversity). This will allow the knowledge of whether they have the 

ability to behave as bioindicators of soil health in agricultural landscapes. The data obtained 

from this research will provide a greater understanding of the bacterial and fungal 

communities within an agricultural landscape. This research will assist the Australian 

agricultural sector in identifying microbes associated with soil health. 
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6.0 APPENDIX 

APPENDIX I – Coordinates of locations  

Table 6.1. Coordinates of the four different locations  

Site  Coordinate  

1 -36.61795498601183 S, 145.28756430307274 E 

2 -36.64167901596458 S, 145.44937921070922 E 

3 -36.612294223836834 S, 145.30373222312392 E 

4 -36.707872188054935 S, 145.23377242639054 E 

 

APPENDIX II – pH & Soil Moisture (SM) raw data  

The raw measurements of the pH and soil moisture (SM) are as shown in Table 6.2.  

 

Table 6.2. Raw pH & SM (%) measurements. W= wheat, P= pasture, BB= burnt patch, 

BU= unburnt patch, NB= non-burn, T= till and NT= no-till.  

Sample ID Sample code pH SM (%) Sample ID Sample code pH SM (%) 

DB1 W-NB 5.92 9.573 MR11 W-BU-1B 4.40 5.963 

DB2 W-NB 4.60 6.932 MR12 W-BU-2B 5.38 7.763 

DB3 W-NB 4.42 5.840 MR13 W-BU-3B 6.50 4.541 

DB4 W-NB 4.63 6.588 MR14 W-BU-4B 5.20 7.162 

DB5 W-NB 4.15 4.104 MR15 W-BU-5B 5.06 6.167 

DB6 P-NT 5.32 5.673 MR16 W-BB-1B 4.40 7.087 

DB7 P-NT 4.90 5.832 MR17 W-BB-2B 5.22 5.655 

DB8 P-NT 4.35 3.946 MR18 W-BB-3B 4.99 6.849 

DB9 P-NT 4.68 7.756 MR19 W-BB-4B 4.92 3.922 

DB10 P-NT 5.91 6.175 MR20 W-BB-5B 5.29 6.193 

PB1 P-T 6.28 3.276 MR21 P-NT 4.60 6.095 

PB2 P-T 7.01 4.509 MR22 P-NT 4.21 7.209 

PB3 P-T 5.94 4.555 MR23 P-NT 4.79 6.697 

PB4 P-T 6.09 3.212 MR24 P-NT 4.73 7.326 

PB5 P-T 6.28 3.664 MR25 P-NT 4.47 6.089 

PB6 P-NT 4.80 3.446 RB1 W-BU 4.71 6.041 

PB7 P-NT 4.85 5.077 RB2 W-BU 4.69 3.249 

PB8 P-NT 4.69 2.738 RB3 W-BU 4.83 5.842 

PB9 P-NT 5.15 3.200 RB4 W-BU 4.26 3.543 

PB10 P-NT 4.72 3.841 RB5 W-BU 5.00 5.636 

MR1 W-BU-1A 5.98 4.872 RB6 W-BB 4.07 3.700 

MR2 W-BU-2A 4.86 7.369 RB7 W-BB 4.30 4.600 

MR3 W-BU-3A 4.88 7.477 RB8 W-BB 4.21 5.148 

MR4 W-BU-4A 5.55 7.850 RB9 W-BB 4.66 3.721 

MR5 W-BU-5A 4.61 5.937 RB10 W-BB 4.34 7.346 
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MR6 W-BB-1A 5.23 7.776 RB11 W-NB 4.47 5.748 

MR7 W-BB-2A 5.18 5.498 RB12 W-NB 4.47 4.793 

MR8 W-BB-3A 4.46 7.188 RB13 W-NB 4.40 4.258 

MR9 W-BB-4A 5.76 7.081 RB14 W-NB 4.57 6.673 

MR10 W-BB-5A 5.03 7.756 RB15 W-NB 5.04 7.156 
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APPENDIX III – Meta-analysis  

Statement of null hypothesis and alternative hypothesis  

Null hypothesis (Ho)  

There will be no significance difference between the management practice increasing, 

decreasing or no significant effect for the microbial bioindicator technique.  

Alternative hypothesis (H1)  

There will be a significance difference between the management practice increasing, 

decreasing or no significant effect for the microbial bioindicator technique.  

 

Raw data and calculation of chi-squared to compare the effect of the management practices 

on the four different microbial indicator techniques.  

 

Table 6.3. Raw data. Observed and expected for microbial biomass carbon and chi 

squared.   

No-till Stubble retained 

 Observed Expected   Observed Expected 

Increased 7 4.333 Increased 6 2.333 

Decreased 1 4.333 Decreased 0 2.333 

No 

significant 

effect  

5 4.333 No 

significant 

effect 

1 2.333 

N= 13 N= 7 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(7 − 4.333)2

4.333
+

(1 − 4.333)2

4.333

+
(5 − 4.333)2

4.333
 

= 4.308 

 

Therefore p>0.05. Accept HO. 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(6 − 2.333)2

2.333
+

(0 − 2.333)2

2.333

+
(1 − 2.333)2

2.333
 

= 8.857 

 

Therefore p<0.05. Reject HO. 

Fertiliser application Crop rotation 

 Observed Expected   Observed Expected 

Increased 2 2.666 Increased 4 1.666 

Decreased 3 2.666 Decreased  0 1.666 

No 

significant 

effect  

3 2.666 No 

significant 

effect 

1 1.666 

N= 8 N= 5 
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Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(2 − 2.666)2

2.666
+

(3 − 2.666)2

2.666

+
(3 − 2.666)2

2.666
 

= 0.25 

 

Therefore p>0.05. Accept HO. 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(4 − 1.666)2

1.666
+

(0 − 1.666)2

1.666

+
(1 − 1.666)2

1.666
 

= 5.2 

 

Therefore p<0.05. Reject HO. 

 

Table 6.4. Raw data. Observed and expected for microbial activity and chi squared.   

No-till Stubble retained 

 Observed Expected   Observed Expected 

Increased 12 5.333 Increased 3 1.666 

Decreased 2 5.333 Decreased 0 1.666 

No 

significant 

effect  

2 5.333 No 

significant 

effect 

2 1.666 

N= 16 N= 5 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(12 − 5.333)2

5.333
+

(2 − 5.333)2

5.333

+
(2 − 5.333)2

5.333
 

= 12.5 

 

Therefore p<0.05. Reject HO. 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(3 − 1.666)2

1.666
+

(0 − 1.666)2

1.666

+
(2 − 1.666)2

1.666
 

=  2.8 

 

Therefore p>0.05. Accept HO. 

Fertiliser application Crop rotation 

 Observed Expected   Observed Expected 

Increased 4 2 Increased 5 1.666 

Decreased 0 2 Decreased  0 1.666 

No 

significant 

effect  

2 2 No 

significant 

effect 

0 1.666 

N= 6 N= 5 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
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=
(4 − 2)2

2
+

(0 − 2)2

2
+

(2 − 2)2

2
 

= 4 

 

 

 

Therefore p>0.05. Accept HO. 

=
(5 − 1.666)2

1.666
+

(0 − 1.666)2

1.666

+
(0 − 1.666)2

1.666
 

= 10 

 

Therefore p<0.05. Reject HO. 

 

Table 6.5. Raw data. Observed and expected for taxonomic diversity and chi squared.   

No-till Stubble retained 

 Observed Expected   Observed Expected 

Increased 8 3 Increased 2 1 

Decreased 0 3 Decreased 0 1 

No 

significant 

effect  

1 3 No 

significant 

effect 

1 1 

N= 9 N= 3 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(8 − 3)2

3
+

(0 − 3)2

3
+

(1 − 3)2

3
 

=  12.66 

 

Therefore p<0.05. Reject HO. 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(2 − 1)2

1
+

(0 − 1)2

1
+

(1 − 1)2

1
 

= 2 

 

Therefore p>0.05. Accept HO. 

Fertiliser application Crop rotation 

 Observed Expected   Observed Expected 

Increased 7 2.333 Increased 5 2.333 

Decreased 0 2.333 Decreased  1 2.333 

No 

significant 

effect  

0 2.333 No 

significant 

effect 

1 2.333 

N= 7 N= 7 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(7 − 2.333)2

2.333
+

(0 − 2.333)2

2.333

+
(0 − 2.333)2

2.333
 

= 14 

 

Therefore p<0.05. Reject HO. 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(5 − 2.333)2

2.333
+

(1 − 2.333)2

2.333

+
(1 − 2.333)2

2.333
 

= 4.57 

 

Therefore p>0.05. Accept HO. 
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Table 6.6. Raw data. Observed and expected for functional diversity and chi squared.   

No-till Stubble retained 

 Observed Expected   Observed Expected 

Increased 7 2.666 Increased 1 0.666 

Decreased 0 2.666 Decreased 0 0.666 

No 

significant 

effect  

1 2.666 No 

significant 

effect 

1 0.666 

N= 8 N= 2 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(7 − 2.666)2

2.666
+

(0 − 2.666)2

2.666

+
(1 − 2.666)2

2.666
 

= 10.75 

 

Therefore p<0.05. Reject HO. 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(1 − 0.666)2

0.666
+

(0 − 0.666)2

0.666

+
(1 − 0.666)2

0.666
 

= 1 

 

Therefore p>0.05. Accept HO. 

Fertiliser application Crop rotation 

 Observed Expected   Observed Expected 

Increased 2 1 Increased 3 1 

Decreased 0 1 Decreased  0 1 

No 

significant 

effect  

1 1 No 

significant 

effect 

0 1 

N= 3 N= 3 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(2 − 1)2

1
+

(0 − 1)2

1
+

(1 − 1)2

1
 

= 2  
 

Therefore p>0.05. Accept HO. 

Chi-squared 

=
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

=
(3 − 1)2

1
+

(0 − 1)2

1
+

(0 − 1)2

1
 

=  6 

 

Therefore p<0.05. Reject HO. 
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Table of references for meta-analysis  

 

A total of 44 references were used in the meta-analysis (Table 6.7). 

 

Table 6.7. The 44 references included in meta-analysis and the associated bioindicators 

used.  

 

Article title 

Year 

of 

study 

Bioindicator Used Ref. 

no. MBC Microbial 

activity 

Taxonomic 

diversity 

Functional 

diversity 

Soil microbial and biochemical changes 

associated with reduced tillage 

1980 0 1 1 0 [127] 

Microbial and biochemical changes 

induced by rotation and tillage in a soil 

under barley production 

1993 1 1 0 0 [62] 

Evaluation of soil biological properties as 

potential bioindicators of soil health 

1995 1 1 0 0 [43] 

Microbial biomass and activity in silt and 

sand loams after long-term shallow tillage 

in central Germany  

1998 1 1 0 1 [128] 

New quality of assessment of microbial 

diversity in Arable Soils using molecular 

and biochemical methods 

1998 0 0 1 0 [129] 

Soil microbial diversity and community 

structure under wheat as influenced by 

tillage and crop rotation 

1998 0 0 1 1 [21] 

Changes in enzyme activities and 

microbial biomass of tallgrass prairie soil 

as related to burning and nitrogen 

fertilization 

1999 1 1 0 0 [112] 

Performance of Soil Condition Indicators 

Across Taxonomic Groups and Land Uses 

2000 1 1 0 0 [130] 

Soil Enzymatic Factors Expressing the 

Influence of Land Use, Tillage System 

and Texture on Soil Biochemical Quality 

2000 0 1 0 0 [47] 

The structure of microbial communities in 

soil and the lasting impact of cultivation  

2001 0 0 1 0 [131] 

Variation of Microbial Communities in 

Soil, Rhizosphere, and Rhizoplane in 

Response to Crop Species, Soil Type, and 

Crop Development 

2001 0 0 1 0 [132] 

Effect of tillage and stubble management 

on chemical and microbiological 

properties and the development of 

suppression towards cereal root disease in 

soils from two sites in NSW, Australia  

2002 1 0 1 0 [133] 

 

Soil Type Is the Primary Determinant of 

the Composition of the Total and Active 

Bacterial Communities in Arable Soils 

2003 0 1 1 1 [134] 

DGGE-fingerprinting of arable soils 

shows differences in microbial 

2004 0 0 1 0 [135] 
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community structure of conventional and 

organic farming systems 

Soil Microbial Community Response to 

Land Use Change in an Agricultural 

Landscape of Western Kenya. 

2005 1 1 1 1 [136] 

Crop productivity and soil fertility in a 

tropical dryland agroecosystem: impact of 

residue and tillage management 

2005 1 0 0 0 [137] 

Soil quality changes in land degradation 

as indicated by soil chemical, biochemical 

and microbiological properties in a karst 

area of southwest Guizhou, China.  

2006 1 1 1 0 [138] 

Seasonal changes in microbial function 

and diversity associated with stubble 

retention versus burning 

2006 1 1 1 1 [139] 

Impacts of management on soil biota in 

Vertosols supporting the broadacre grains 

industry in northern Australia 

2006 1 1 0 0 [98] 

The effects of stubble retention and 

nitrogen application on soil microbial 

community structure and functional gene 

abundance under irrigated maize 

2007 1 0 1 1 [51] 

Dryland plant biomass and soil carbon 

and nitrogen fractions on transient land as 

influenced by tillage and crop rotation 

2007 1 0 0 0 [65] 

Microbial communities and enzyme 

activities in soils under alternative crop 

rotations compared to wheat–fallow for 

the Central Great Plains.  

2007 1 1 1 0 [49] 

Soil microbial biomass, functional 

diversity and enzyme activity in 

glyphosate-resistant wheat–canola 

rotations under low-disturbance direct 

seeding and conventional tillage 

2007 1 1 1 1 [99] 

Microbial Indices Related to Soil Carbon 

as Affected by Management Practices in 

Arid Forest and Agricultural Ecosystems 

2010 1 0 0 0 [140] 

Members of soil bacterial communities 

sensitive to tillage and crop rotation 

2010 0 0 1 0 [141] 

The effects of mineral fertilizer and 

organic manure on soil microbial 
community and diversity 

2010 1 0 1 1 [10] 

Rhizosphere effects on soil nutrient 

dynamics and microbial activity in an 
Australian tropical lowland rainforest 

2011 1 0 0 0 [142] 

Tillage and manure effect on soil 

microbial biomass and respiration, and on 

enzyme activities 

2012 1 1 0 0 [96] 

Microbial indicators related to yield and 

disease and changes in soil microbial 

community structure with ginger farm 

management practices 

2013 0 0 0 1 [45] 

Interactive effect of nitrogen fertilizer and 

hydrocarbon pollution on soil biological 

indicators 

2014 1 1 0 0 [143] 
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Characterisation of the soil microbial 

community of cultivated and uncultivated 

vertisol in Australia under several 

management regimes 

2015 0 0 1 1 [144] 

Impact of ecological and conventional 

farming systems on chemical and 

biological soil quality indices in a cold 

mountain climate in Slovakia 

2015 1 1 0 0 [57] 

Long term tillage, cover crop, and 

fertilization effects on microbial 

community structure, activity: 

implications for soil quality. 

2015 1 1 1 0 [97] 

Soil physicochemical and microbiological 

indicators of short, medium and long term 

post-fire recovery in semi-arid ecosystem 

2016 0 0 1 0 [44] 

Strategic tillage increased the relative 

abundance of Acidobacteria but did not 

impact on overall soil microbial properties 

of a 19-year no-till Solonetz 

2016 1 1 1 0 [46] 

Microbial community responses to soil 

tillage and crop rotation in a corn/soybean 

agroecosystem 

2016 0 0 0 1 [6] 

Effects of long-term tillage practices on 

the quality of soil under winter wheat 

2017 0 1 0 0 [145] 

Microbial biodiversity in arable soils is 

affected by agricultural practices 

2017 0 0 1 0 [146] 

Microbial community diversity and the 

interaction of soil under maize growth in 

different cultivation techniques 

2017 1 1 1 1 [147] 

Microbial community structure is affected 

by cropping sequences and poultry litter 

under long-term no-tillage 

2017 0 0 1 0 [111] 

Variations in Soil Bacterial Community 

Diversity and Structures Among Different 

Revegetation Types in the Baishilazi 

Nature Reserve 

2018 0 0 1 0 [148] 

Fungal Genetics and Functional Diversity 

of Microbial Communities in the Soil 

under Long-Term Monoculture of Maize 

Using Different Cultivation Techniques 

2018 0 0 1 1 [95] 

Effects of different soil management 
practices on soil properties and microbial 

diversity 

2018 0 1 0 1 [149] 

Microbial biomass, metabolic functional 
diversity, and activity are affected 

differently by tillage disturbance and 

maize planting in a typical karst 

calcareous soil 

2019 1 0 0 1 [7] 
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APPENDIX IV – Redundancy Analysis (RDA) Ordination  

The VIFs for both bacteria and fungi RDA ordinations (Table 6.8). If a VIF is high (i.e., 

>10) for 1 predictor, it indicates that that predictor is highly correlated with the other 

predictors.  

 

Table 6.8. Variation Inflation Factors (VIFs) for both bacterial and fungal ordinations.  
 

SM pH Site 2  Site 3 Site 4 

Bacteria 1.805 1.402 2.205 1.547 2.034 

Fungi 1.805 1.402 2.205 1.547 2.034 

 

Permutational test results for bacteria and fungi (Table 6.9 & Table 6.10 respectively).  

 

Table 6.9. Permutation test of RDA model: Bacteria ~ site  pH  SM  
 

Df Variance F Pr(>F) 
 

Model 5 2379.2 1.691 0.001 *** 

Residual 54 15197.8 
   

 

Table 6.10. Permutation test of RDA model: Fungi ~ site  pH  SM 
 

Df Inertia F Pr(>F) 
 

Model 5 730.6 1.610 0.01 ** 

Residual 54 4900.4 
   

 

A test similar to an ANOVA was performed to test the constraining variables for both 

bacteria and fungi (Table 6.11 & Table 6.12 respectively). 

 

Table 6.11. Test of constraining variables for bacterial RDA 
 

Df Variance F Pr(>F) 
 

SM 1 325.1 1.155 0.069 . 

pH 1 571.5 2.030 0.001 *** 

Site 3 1399.3 1.657 0.001 *** 

Residual 54 15197.8 
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Table 6.12. Test of constraining variables for fungal RDA  
 

Df Variance F Pr(>F) 
 

SM 1 85.4 0.941 0.705 
 

pH 1 124.7 1.373 0.006 ** 

Site 3 416.5 1.53 0.001 *** 

Residual 54 4900.4 
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APPENDIX V – Tilled treatments bacterial and fungal PERMANOVAs, 

including ordinations for all sites  

 

Bacterial NMDS PERMANOVA tilled treatments site 2 only  

The weighted and unweighted (Table 6.13 & Table 6.14 respectively) Unifrac 

PERMANOVAs for bacterial β-diversity for site two only.  

 

Table 6.13. PERMANOVA for bacterial tilled treatments (only site 2) showing weighted 

Unifrac.Abundance-weighted community data. The p-value was adjusted by the 

Benjamini-Hochberg (BH) method.
 

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 
 

Group1(Treatment) 1 0.0002 2.08E-04 2.258 0.220 0.012 * 

Residuals 8 0.0007 9.21E-05 0.779 
   

Total 9 0.0009 1 
    

 

Table 6.14. PERMANOVA for bacterial tilled treatments (only site 2) showing unweighted 

Unifrac.Presence-absence community data. The p-value was adjusted by the Benjamini-

Hochberg (BH) method. 
 

Df SumsOfSqs MeanSq

s 

F.Model R2 Pr(>F) 
 

Group1(Treatment) 1 0.518 0.518 1.773 0.181 0.012 * 

Residuals 8 2.339 0.292 0.818 
   

Total 9 2.857 1 
    

 

 

 

Fungal NMDS PERMANOVA tilled treatments site 2 only  

The weighted and unweighted (Table 6.15 & Table 6.16 respectively) Unifrac 

PERMANOVAs for fungal β-diversity for site two only.  

 

Table 6.15. PERMANOVA for fungal tilled treatments (only site 2) showing weighted 

Unifrac.Abundance-weighted community data. The p-value was adjusted by the 

Benjamini-Hochberg (BH) method. 
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Df SumsOfSqs MeanSqs F.Model R2 Pr(>F

) 

 

Group1 (Treatment) 1 0.001 9.65E-04 2.861 0.263 0.013 * 

Residuals 8 0.002 3.37E-04 0.736 
   

Total 9 0.004 1 
    

 

Table 6.16. PERMANOVA for fungal tilled treatments (only site 2) showing unweighted 

Unifrac.Presence-absence community data. The p-value was adjusted by the Benjamini-

Hochberg (BH) method. 
 

Df SumsOfSqs MeanSq

s 

F.Model R2 Pr(>F) 
 

Group1 (Treatment) 1 0.584 0.584 2.006 0.201 0.01 ** 

Residuals 8 2.330 0.291 0.799 
   

Total 9 2.914 1 
    

 

 

NMDS tilled treatments all sites ordination for both bacteria and fungi  

The below ordinations show all sites associated with tilled treatments.  

 

The bacterial tilled treatments NMDS ordinations had stress values of 0.029 (Figure 6.1A) 

and 0.055 (Figure 6.1B) and thus, can be considered an accurate representation of 

community relationships. There was no significance with either weighted (R = 0.041, p = 

0.304) or unweighted (R = 0.218, p = 0.06) ANOSIMs. There was significant grouping 

between the treatments for abundance weighted data (pseudo-F (1, 17) = 2.58, p < 0.05), 

where the R2 value (0.04) explained 4% of the variation. The strength of this grouping 

increased when data was presence-absence transformed (pseudo-F (1,17) = 2.02, p < 0.01), 

where the R2 value (0.21) explained more of this variation. 
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Figure 6.1. Non-metric multidimensional scaling (NMDS) ordinations of bacterial 

communities using the Unifrac dissimilarity metric under tilled treatments (all sites). 

Ordinations are of A) abundance-weighted community data and B) presence-absence 

transformed community data. 2-dimensional stress 0.029 (A) and 0.055(B) (< 0.2). 

 

The fungi tilled treatments NMDS ordinations had stress values of 0.139 (Figure 6.2A) and 

0.115 (Figure 6.2B) and thus, can be considered an accurate representation of community 

relationships. There was significance with both the weighted (R = 0.352, p = 0.009) and 

unweighted (R = 0.247, p = 0.003) ANOSIMs. There was significant grouping between the 

habitats for abundance weighted data (pseudo-F (1, 17) = 3.739, p < 0.05), where the R2 value 

(0.35) explained 35% of the variation. The strength of this grouping decreased when data 

was presence-absence transformed (pseudo-F (1,17) = 2.18, p < 0.01), where the R2 value 

(0.24) explained of this variation. 

  

A B 
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Figure 6.2. Non-metric multidimensional scaling (NMDS) ordinations of fungal 

communities using the Unifrac dissimilarity metric under tilled treatments (all sites). 

Ordinations are of A) abundance-weighted community data and B) presence-absence 

transformed community data. 2-dimensional stress 0.139 (A) and 0.115(B) (< 0.2). 

 

  

A B 
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APPENDIX VI - Burned treatment bacterial and fungal NMDS, including 

all sites  

 

Bacterial NMDS PERMANOVA burn treatments, excluding no-burn 

The weighted and unweighted (Table 6.17 & Table 6.18 respectively) Unifrac 

PERMANOVAs for bacterial β-diversity for burnt paddocks and unburnt patches within.   

 

Table 6.17. PERMANOVA for bacterial burn treatments (excluding no-burn paddocks) 

showing weighted Unifrac.Abundance-weighted community data. The p-value was 

adjusted by the Benjamini-Hochberg (BH) method. 
 

Df SumsOfSqs MeanSq

s 

F.Model R2 Pr(>F) 
 

Group1 (Treatment) 1 0.0004 0.0004 3.101 0.09 0.002 ** 

Group2 (Site) 1 0.0005 0.0005 4.182 0.122 0.001 **

* 

Group1:Group2 1 0.0001 0.0001 0.949 0.028 0.432 
 

Residuals 26 0.003 0.0001 0.76 
   

Total 29 0.004 1 
    

 

Table 6.18. PERMANOVA for bacterial burn treatments (excluding no-burn paddocks) 

showing unweighted Unifrac.Presence-absence community data. The p-value was adjusted 

by the Benjamini-Hochberg (BH) method. 
 

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 
 

Group1 (Treatment) 1 0.434 0.434 1.348 0.043 0.023 * 

Group2 (Site) 1 0.992 0.992 3.083 0.097 0.001 *** 

Group1:Group2 1 0.392 0.392 1.218 0.038 0.094 . 

Residuals 26 8.369 0.322 0.821 
   

Total 29 10.187 1 
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Fungal NMDS PERMANOVA burn treatments, excluding no-burn 

The weighted and unweighted (Table 6.19 & Table 6.20 respectively) Unifrac 

PERMANOVAs for fungal β-diversity for burnt paddocks and unburnt patches within.   

 

Table 6.19. PERMANOVA for fungal burn treatments (excluding no-burn paddocks) 

showing weighted Unifrac.Abundance-weighted community data. The p-value was 

adjusted by the Benjamini-Hochberg (BH) method.  
 

Df SumsOfSqs MeanSq

s 

F.Model R2 Pr(>F) 
 

Group1 (Treatment) 1 0.0006 0.0006 1.464 0.043 0.072 . 

Group2 (Site) 1 0.002 0.002 5.098 0.15 0.001 *** 

Group1:Group2 1 0.0006 0.0006 1.434 0.042 0.114 
 

Residuals 26 0.012 0.0004 0.765 
   

Total 29 0.016 1 
    

 

Table 6.20. PERMANOVA for fungal burn samples (excluding no-burn paddocks) 

showing unweighted Unifrac. Presence-absence community data. The p-value was adjusted 

by the Benjamini-Hochberg (BH) method. 
 

Df SumsOfSqs MeanSq

s 

F.Model R2 Pr(>F

) 

 

Group1 (Treatment) 1 0.371 0.371 1.196 0.037 0.113 
 

Group2 (Site) 1 1.173 1.173 3.780 0.117 0.001 *** 

Group1:Group2 1 0.374 0.373 1.204 0.037 0.084 . 

Residuals 26 8.067 0.310 0.808 
   

Total 29 9.984 1 
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NMDS burn treatments all sites ordination for both bacteria and fungi  

The below ordinations show all sites associated with burn treatments.  

 

Stress values of 0.126 (Figure 6.3A) and 0.149 (Figure 6.3B) are considered a fair 

representation. The differences of community structure between the three treatments were 

statistically tested via PERMANOVA. There was significant grouping between the habitats 

for abundance weighted data (pseudo-F (2, 38) = 2.68, p < 0.001), where the R2 value (0.123) 

explained 12% of the variation. The strength of this grouping increased when data was 

presence-absence transformed (pseudo-F (2,38) = 1.73, p < 0.001), where the R2 value (0.177) 

explained more of this variation.  

 

 

 

Figure 6.3. Non-metric multidimensional scaling (NMDS) ordinations of bacterial 

communities using the Unifrac dissimilarity metric under burn treatments (all 

sites).Ordinations are of A) abundance-weighted community data and B) presence-absence 

transformed community data. 2-dimensional stress 0.126 (A) and 0.149 (B) (< 0.2).  

Stress values of 0.161 (Figure 6.4A) and 0.189 (Figure 6.4B) are considered a fair 

representation. The differences of community structure between the five sampling locations 

were statistically tested via pairwise PERMANOVAs. There was significant grouping 

between the habitats for abundance weighted (pseudo-F (2, 38) = 1.95, p < 0.01), where the 

R2 value (0.172) explained 17% of the variation. The strength of this grouping increases 

when data was presence-absence transformed (pseudo-F (2,38) = 1.52, p < 0.001), where the 

R2 value (0.196) explained more of this variation. These analyses suggest a turnover in the 

suites of ASVs as well as dominant species present. 

A B 
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Figure 6.4. Non-metric multidimensional scaling (NMDS) ordinations of fungal 

communities using the Unifrac dissimilarity metric under burn treatments (all 

sites).Ordinations are of A) abundance-weighted community data and B) presence-absence 

transformed community data. 2-dimensional stress 0.161 (A) and 0.189 (B) (< 0.2).  

  

A B 
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APPENDIX VII - Predicted functional pathways β-diversity  

 

Functional NMDS PERMANOVA tilled treatments site 2 only  

The weighted and unweighted (Table 6.21 & Table 6.22 respectively) Bray Curtis 

PERMANOVAs for bacterial functional pathways β-diversity for tilled paddocks (site 2 

only). 

 

Table 6.21. PERMANOVA for functional pathways tilled treatments showing weighted 

Bray Curtis.Abundance-weighted community data. The p-value was adjusted by the 

Benjamini-Hochberg (BH) method. (Site 2 only).  
 

Df SumsOfSqs MeanSq

s 

F.Model R2 Pr(>F) 
 

Group1 (Treatment) 1 0.001 0.001 6.147 0.435 0.024 * 

Residuals 8 0.002 0.0002 0.565 
   

Total 9 0.003 1 
    

 

Table 6.22. PERMANOVA for functional pathways tilled treatments showing unweighted 

Bray Curtis.Presence-absence transformed community data. The p-value was adjusted by 

the Benjamini-Hochberg (BH) method. (Site 2 only).  
 

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 
 

Group1 (Treatment) 1 0.002 0.002 8.107 0.503 0.02 * 

Residuals 8 0.002 0.0002 0.497 
   

Total 9 0.004 1 
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Functional NMDS PERMANOVA burn treatments (excluding no-burn) 

The weighted and unweighted (Table 6.23 & Table 6.24 respectively) Bray Curtis 

PERMANOVAs for bacterial functional pathways β-diversity for burnt paddocks and 

unburnt patches within.   

 

Table 6.23. PERMANOVA for functional pathway burn treatments showing weighted Bray 

Curtis.Abundance-weighted community data. The p-value was adjusted by the Benjamini-

Hochberg (BH) method. (No-burn removed) 
 

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 
 

Group1 (Treatment) 1 0.0006 0.0006 1.464 0.040 0.159 
 

Group2 (Site) 1 0.004 0.004 8.023 0.220 0.001 *** 

Group1:Group2 1 0.0004 0.0004 0.942 0.026 0.434 
 

Residuals 26 0.011 0.0004 0.714 
   

Total 29 0.016 1 
    

 

Table 6.24. PERMANOVA for functional pathway burn treatments showing unweighted 

Bray Curtis.Presence-absence transformed community data. The p-value was adjusted by 

the Benjamini-Hochberg (BH) method. (No-burn removed) 
 

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 
 

Group1 (Treatment) 1 0.0005 0.0005 1.362 0.037 0.253 
 

Group2 (Site)  1 0.003 0.003 7.636 0.210 0.001 *** 

Group1:Group2 1 0.0005 0.0005 1.397 0.038 0.207 
 

Residuals 26 0.009 0.0003 0.714 
   

Total 29 0.012 1 
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APPENNDIX VIII - Tilled differential abundance tests 

 

Table 6.25. Bacterial functional pathways differential abundance test comparing no-till 

paddock to tilled paddock.Only significant pathways shown and pathways with no 

baseMean cutoff.  

baseMean log2FoldChange lfcSE stat pvalue padj Pathway 

114.25 -10.26 1.45 -7.08 1.41E-

12 

5.87E-10 benzoyl-CoA 

degradation I (aerobic) 

3318.88 -2.16 0.39 -5.55 2.88E-

08 

5.97E-06 superpathway of 

pyridoxal 5'-phosphate 

biosynthesis and 

salvage 

447.06 2.20 0.41 5.40 6.75E-

08 

9.34E-06 coenzyme B 

biosynthesis 

27769.54 0.32 0.06 5.31 1.09E-

07 

1.13E-05 pyrimidine 

deoxyribonucleotides 

de novo biosynthesis III 

219.50 -11.20 2.20 -5.10 3.33E-

07 

2.76E-05 sucrose degradation II 

(sucrose synthase) 

2468.10 -2.91 0.66 -4.43 9.42E-

06 

6.52E-04 pyridoxal 5'-phosphate 

biosynthesis I 

175.17 -5.44 1.24 -4.38 1.21E-

05 

7.20E-04 polymyxin resistance 

6666.97 0.37 0.09 4.28 1.85E-

05 

9.59E-04 mycothiol biosynthesis 

18775.90 0.26 0.06 4.21 2.54E-

05 

1.17E-03 protocatechuate 

degradation II (ortho-

cleavage pathway) 

46.47 -6.99 1.67 -4.19 2.83E-

05 

1.18E-03 vitamin E biosynthesis 

(tocopherols) 

1132.78 1.52 0.38 4.04 5.34E-

05 

2.02E-03 coenzyme M 

biosynthesis I 

1312.02 -0.95 0.25 -3.85 1.21E-

04 

4.17E-03 glycine betaine 

degradation I 

18840.79 0.18 0.05 3.72 1.96E-

04 

6.26E-03 4-aminobutanoate 

degradation V 

2092.80 -1.25 0.34 -3.70 2.17E-

04 

6.43E-03 CMP-legionaminate 

biosynthesis I 

4814.69 -0.61 0.18 -3.41 6.51E-

04 

1.72E-02 ppGpp biosynthesis 

82025.75 0.08 0.02 3.40 6.63E-

04 

1.72E-02 pyruvate fermentation 

to isobutanol 

(engineered) 

12.00 -5.81 1.80 -3.24 1.21E-

03 

2.79E-02 vitamin B6 degradation 

26567.76 -0.18 0.06 -3.25 1.15E-

03 

2.79E-02 Kdo transfer to lipid 

IVA III (Chlamydia) 

13178.25 -0.64 0.20 -3.21 1.33E-

03 

2.91E-02 thiazole biosynthesis I 

(E. coli) 

22547.97 -0.27 0.08 -3.18 1.45E-

03 

2.92E-02 mixed acid fermentation 
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7708.83 -0.60 0.19 -3.18 1.48E-

03 

2.92E-02 superpathway of 

hexuronide and 

hexuronate degradation 

16008.99 -0.47 0.15 -3.16 1.57E-

03 

2.97E-02 biotin biosynthesis I 

14591.14 -0.52 0.17 -3.13 1.76E-

03 

3.18E-02 8-amino-7-

oxononanoate 

biosynthesis I 

4314.82 0.33 0.11 3.09 1.99E-

03 

3.44E-02 catechol degradation I 

(meta-cleavage 

pathway) 

3647.65 0.35 0.11 3.03 2.41E-

03 

3.74E-02 p-cymene degradation 

3647.65 0.35 0.11 3.03 2.41E-

03 

3.74E-02 p-cumate degradation 

30350.80 -0.32 0.11 -3.03 2.43E-

03 

3.74E-02 superpathway of 

thiamin diphosphate 

biosynthesis I 

664.63 0.73 0.24 3.01 2.57E-

03 

3.82E-02 methanogenesis from 

H2 and CO2 

4751.54 -0.85 0.28 -2.99 2.83E-

03 

4.04E-02 NAD biosynthesis II 

(from tryptophan) 

3154.61 -0.91 0.31 -2.93 3.39E-

03 

4.69E-02 L-tryptophan 

degradation to 2-amino-

3-carboxymuconate 

semialdehyde 
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