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Abstract

Background

Predicting reduced health-related quality of life (HRQoL) after resection of a benign or low-

grade brain tumour provides the opportunity for early intervention, and targeted expenditure

of scarce supportive care resources. We aimed to develop, and evaluate the performance

of, machine learning (ML) algorithms to predict HRQoL outcomes in this patient group.

Methods

Using a large prospective dataset of HRQoL outcomes in patients surgically treated for low

grade glioma, acoustic neuroma and meningioma, we investigated the capability of ML to

predict a) HRQoL-impacting symptoms persisting between 12 and 60 months from tumour

resection and b) a decline in global HRQoL by more than the minimum clinically important

difference below a normative population mean within 12 and 60 months after resection.

Ten-fold cross-validation was used to measure the area under the receiver operating char-

acteristic curve (AUC), area under the precision-recall curve (PR-AUC), sensitivity, and

specificity of models. Six ML algorithms were explored per outcome: Random Forest Classi-

fier, Decision Tree Classifier, Logistic Regression, K Neighbours Classifier, Support Vector

Machine, and Gradient Boosting Machine.

Results

The final cohort included 262 patients. Outcome measures for which AUC>0.9 were Appe-

tite loss, Constipation, Nausea and vomiting, Diarrhoea, Dyspnoea and Fatigue. AUC was

between 0.8 and 0.9 for global HRQoL and Financial difficulty. Pain and Insomnia achieved

AUCs below 0.8. PR-AUCs were similar overall to the AUC of each respective classifier.
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Conclusions

ML algorithms based on routine demographic and perioperative data show promise in their

ability to predict HRQoL outcomes in patients with low grade and benign brain tumours

between 12 and 60 months after surgery.

Introduction

Advances in surgical techniques and adjuncts, and increasing adjuvant therapy options, have

led to dramatic improvements in the care of brain tumour patients over the past two decades.

Consequently, with extended survival and reduction of gross neurological morbidity, measures

of treatment success have appropriately shifted to more patient-centred metrics, including

health-related quality of life (HRQoL) [1, 2]. HRQoL is a complex, self-assessed, multidimen-

sional concept that encompasses the physical, emotional, role, social and cognitive compo-

nents of quality of life (QoL) associated with illness and its treatment. Whilst by its nature,

HRQoL data is subjective and thus intuitively assessed by qualitative measures, the introduc-

tion of structured, validated questionnaires has ensured an excellent level of consistency in its

determination. Widely validated instruments such as the European Organization for Research

and Treatment of Cancer (EORTC) [3] QLQ-C30 questionnaires are an example of disease

and/or demographic-specific questionnaires that have internationally standardised the assess-

ment of HRQoL.

The utility of the QLQ-C30 and other instruments lies not only in their wide validation but

in the instrument-specific normative reference data that is available. For the QLQ-C30, a large

pooled European normal population database (N = 16,151) [4] provides global and domain-

specific averages to which oncology patient data can be compared. Using normative reference

data for a standardised questionnaire, one can derive ‘minimally clinically important differ-

ences’ (MCIDs), typically taken as a proportion of the standard deviation (SD) of the baseline

HRQoL score for the population [5]. These are an indication of what degree of change in

HRQoL, such as may occur post-intervention or through disease trajectory, should be deemed

‘significant’ and therefore warrant clinical attention. Importantly, there is debate as to what

proportion of the standard deviation is suitable to use. With regards to the QLQ-C30 global

score, Maringwa et al. [6] suggested that 0.5SD is an appropriate figure to use in a clinical con-

text, and this is widely accepted. Evidence is less comprehensive for the determination of

MCIDs for symptom scores of the QLQ-C30, however [7].

Depending on the tumour location, patients with meningioma (MN), low grade glioma

(LGG), or acoustic neuroma (AN) may experience a range of specific physical, cognitive and

psychiatric symptoms, including neurological deficit and epilepsy [8–10]. Moreover, these

patients may suffer a range of nonspecific symptoms, including headaches, fatigue, anxiety,

and sleep disturbance [11, 12]. The majority of these patients are treated with surgical resec-

tion, and a smaller proportion with radiotherapy and chemotherapy therapy as alternatives or

adjuncts, depending on histopathology. All these modalities can have long-lasting effects on

function and HRQoL. Therefore, both the tumour and its treatment may affect HRQoL. Even

in those patients with stable tumours and without significant or discernible physical or cogni-

tive deficits, reduction in HRQoL is now recognized [13, 14].

The rationale for predicting HRQoL outcomes lies primarily in improving the efficiency of

clinical interventions and secondarily in patient education. As Foster et al. [15] made clear in

their paper examining the HRQoL trajectory subsequent to colorectal cancer surgery, there is
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tangible benefit in “identifying who is most in need of intensive support from the point of sur-

gery so resources can be directed accordingly.” Risk stratification, and appropriate medical

and allied health resource allocation (such as early interventions) to patients at high risk of

poor HRQoL is the most intuitive application of predictive tools, as is managing patient expec-

tations. In the context of post-procedural HRQoL improvement, it is often allied health exper-

tise and psychosocial supports that constitute the bulk of impactful interventions, which

commonly have limited availability. For cancer patients, prognostic information that incorpo-

rates expected HRQoL outcomes in addition to treatment morbidity and survival time, can

empower them to make informed decisions regarding their care; characterising our health

professional role as ‘patient-centric’ and not purely survival focussed.

Machine learning (ML) is an application of artificial intelligence (AI) that provides systems

the ability to automatically learn and improve from experience without being explicitly pro-

grammed. The primary aim is to allow computers to learn automatically without human inter-

vention or assistance and adjust actions accordingly [16]. Ultimately, ML is a modelling

strategy to let the data speak for themselves, which makes it an attractive option for character-

izing and predicting complex biological phenomena that do not have a priori models. The ben-

efits of ML also arise from its use of a large number of tuning parameters or weights, which

control the algorithm’s complexity and are estimated from the data using numerical optimiza-

tion [17].

In our literature review conducted 07/07/2021, Yang et al. [18], Tsai et al. [19], Shi et al.

[20], and Kumar et al. [21] are the only reports of ML models to predict HRQoL outcomes in

cancer patients, however none of these algorithms are specific to brain tumours. Thus, the use

of ML to predict LGG, MN, and AN HRQoL outcomes is yet unexplored. Central nervous sys-

tem tumours present unique physiological and psychosocial challenges to patients unseen in

other cancer types, warranting predictive modelling specific to this demographic. Currently,

no decision tool exists capable of flagging patients in this demographic who are at risk of

short-medium term decline in their HRQoL. Using a large and unique database, in addition to

a systematic and extensive exploration of ML approaches, we aimed to develop, and evaluate

the performance of ML algorithms to predict HRQoL outcomes in this patient group. We out-

line the performance metrics, and model development process of 10 binary classifiers predict-

ing either the presence/absence of symptoms, or a ‘significant’ decline in global HRQoL

relative to a normative population mean [4], within 12 and 60 months after tumour resection.

The nature of the unique database upon which these models were trained is also discussed,

informing their potential for broader applications.

Methods

Study population

Neuro-oncology health-related quality of life database. The deidentified HRQoL data-

base is part of a longitudinal and ongoing study of HRQoL in post-operative patients with

LGG, MN and AN at the Royal Melbourne Hospital Neuro-Oncology and Neurosurgery Out-

patient and Private clinics which commenced in February 2014 and is approved by the Mel-

bourne Health Human Research Ethics Committee (study number 2013.246). It comprises

demographic, clinical, and radiological patient features collected at routine follow-up appoint-

ments as well as HRQoL measures. It is the largest database of its kind worldwide. Whilst data

collection is ongoing, the algorithms reported here were trained and evaluated on a static data-

frame downloaded on 30/07/2019. There is no predetermined periodicity to data collection for

our patient cohort; collection is incidental and based on individual follow-up frequency. Data
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collected includes: EORQTC QLQ-C30 and the brain tumour specific module, QLQ-BN20, as

well as demographic, tumour and clinical details.

Inclusion criteria for predictive models. All patients were 18 years or older, and had

undergone surgical resection of a LGG, MN, or AN. As the original aim of the database was to

determine longitudinal, long-term HRQoL outcomes in brain tumour patients, these tumour

types were chosen as each have extended post-operative survival and confer risk of seizures

and temporary or persistent neurological deficit, with significant HRQoL concerns. The use of

more than one tumour type increased our sample size. Despite the heterogeneity of tumour

types our approach has been validated by the remarkable similarity in HRQoL outcomes in

our published MN [22] and LGG [23] cohorts. This is also true for AN patients in our cohort

(manuscript in preparation). These results encouraged us to combine all patients for this man-

uscript to provide a dataset of a size conducive to meaningful modelling. Patients with other

brain or spine lesions and those with neurofibromatosis type 1 or 2 were excluded. Patients

needed the ability to complete the questionnaires independently in English. Patients were

approached opportunistically for participation while in the clinic waiting room, and written

informed consent was obtained. Participants completed the study questionnaires before or

after their scheduled appointment. In a subset of consenting patients, follow-up questionnaires

are completed by mail to obtain longitudinal assessment. Patients entered the study at any

point post-operative and then completed the questionnaires at every post-operative visit.

Outcome definitions

The QLQ-C30 [24] is a 30-item questionnaire that assesses global HRQoL as well as its physi-

cal, role, emotional, social and cognitive domains. It also assesses cancer symptoms and is

designed for all cancer patients. The responses are provided on either four- (1—not at all, 2—a

little, 3—quite a bit, 4—very much) or seven-point (1—poor, 7—excellent) Likert scales.

Symptom algorithms. From the QLQ-C30 questionnaire, scaled symptom scores can be

derived [25]. If the scaled symptom score for the patient equalled zero, this resulted in a label

“0”, and if strictly greater than zero, the label “1” was derived. The symptom algorithms are

therefore sensitive to cases that should be flagged as developing long term symptoms. This pro-

cess was carried out for all nine possible symptom scores produced from the QLQ-C30 ques-

tionnaire, namely: Fatigue, Insomnia, Pain, Constipation, Diarrhoea, Financial difficulty,

Appetite loss, Dyspnoea and Nausea and vomiting.

Global HRQoL algorithm. A ‘global HRQoL’ score is produced from the QLQ-C30 ques-

tionnaire. Our binary target variable in this case was a based on whether the global HRQoL

score had fallen�1 MCID below the normative population mean of 75 [4]. In such cases,

patients would receive a label “1”. The algorithm is therefore sensitive to patients predicted to

have HRQoL lower than the normative population over time. Those patients whose global

HRQoL remained above the threshold were labelled “0”. The MCID used was 10 points, in

keeping with previous reports [6, 26, 27], resulting in a score of 65 for the ‘threshold’.

Variable selection

All preoperative, intra-operative, and early post-operative variables were analysed for inclusion

in the predictive modelling. Initial exploration of the data involved univariate analysis of vari-

ables, using Pearson’s Chi-Squared test for categorical variables, and Welch two-sample t-tests

for continuous variables. All relevant variables were included in ML models regardless of uni-

variate significance. The final variables included are listed in Table 1 and were consistent

across all nine symptom algorithms and the global HRQoL algorithm. Correlation coefficients

can be found in Appendices 1 and 2 of the S1 File.
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Data filtration and processing

The original dataset consisted of 1196 patients. Of these patients, those who had received only

one surgery and whose first survey had been conducted within 12–60 months of tumour resec-

tion totalled 262. If multiple surveys were completed in this time, only the first was utilised.

The dataset was limited to patients who had only one surgery due to the confounding effect on

HRQoL of multiple surgeries, therefore impacting predictability. The timeframe of 12–60

Table 1. Variables included in the ML models.

Variable Variable Type Factor Levels

Age Continuous N/A

Study site Discrete Public

Private

Mailout

Sex Discrete Male

Female

Relationship status Discrete Married

De Facto

Other relationship

Single

Divorced

Widowed

Tumour lateralisation Discrete Left

Right

Midline/Bilateral

Histological diagnosis Discrete Acoustic neuroma

Meningioma

Astrocytoma

Oligodendroglioma

Oligoastrocytoma

Ependymoma

Mixed glioma

Histological Grade ‘v2’ Discrete 2007 four-stage WHO grading system [37] for CNS tumours. From 2016 the updated

system [38] was used.

WHO Grade I

WHO Grade II

Maximum radiological tumour diameter (abbrev. ‘Max

Diameter’).

Continuous This was the greater value of the ‘AP’ and ‘Lateral’ radiological tumour diameters listed for

each patient.

Extent of resection Discrete Biopsy

Partial resection

Subtotal resection

Gross macroscopic resection

History of radiotherapy Discrete Yes

No

History of chemotherapy Discrete Yes

No

Seizure history Discrete Yes

No

WHO: World Health Organization, AP: Anteroposterior.

https://doi.org/10.1371/journal.pone.0267931.t001
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months was chosen taking both clinical utility and data availability into consideration. Predict-

ing poor HRQoL at least 12 months postoperatively, as opposed to a shorter time-frame, pro-

vides time for those patients who will return to a normal HRQoL to do so and allows ample

time for patients predicted to have impaired HRQoL to be directed into available, contextually

appropriate rehabilitation or support services. Furthermore, predicting symptoms or global

HRQoL beyond 5 years is unlikely to be relevant, given the opportunity for confounders (such

as other illnesses or life events) over this time, as well as the increased chance of loss to follow

up or death. With regards to data pre-processing, information stored in ‘date’ format was uti-

lised to calculate the duration of time intervals in months. All information specifying identity,

such as subject and survey IDs, were removed in the pre-processing stage. For any missing val-

ues in the final dataframe, kNN (k-nearest neighbours) imputation was performed using R sta-

tistical software (version 3.5.3), with k = 5.

Machine learning model development and performance evaluation

Model types. Six ML algorithms were explored: Random Forest Classifier (RF), Decision

Tree Classifier (DT), Logistic Regression (LR), K Neighbours Classifier (KNN), Support Vec-

tor Machine (SVM), and Gradient Boosting Machine (GBM). LR is a generalised linear

method of classification, that models the response variable via a logistic transformation of an

affine. Tree-based algorithms split the feature space into sets, fitting a model in each one [28].

RF and GBM are ensemble methods that combine the output of a collection of weaker decision

tree classifiers to make a strong classifier [28]. KNNs find the ‘k’ nearest training samples in

multidimensional space and classify based on the majority class of these samples. Finally,

SVMs learn a decision boundary (called a hyperplane) through a high dimensional space to

classify samples [28].

To address the training imbalance between the relevant binarized variables in each of the

ten outcome measures, synthetic minority oversampling technique (“SMOTE") was used to

optimise model training. In SMOTE, the minority class is over-sampled by taking each minor-

ity class sample and introducing synthetic examples along the line segments joining any of the

k minority class nearest neighbours [29]. Our implementation utilised a k value = 5. This

method has been established as appropriate to ML applications in clinical contexts [30].

Hyperparameter optimisation was achieved with grid search. Models were supplied the same

input variables and area under the curve (AUC) was the main optimisation metric. Final

hyper-parameter values, and training metrics are available in Appendix 3 of the S1 File.

Machine learning models were constructed using open-source software libraries (Python ver-

sion 3.6, scikit-learn version 0.23).

Training and evaluation. In order to train and test the algorithms, 10-fold cross-valida-

tion repeated once was used to assess performance. Metrics measuring performance were the

AUC, sensitivity, and specificity. Additionally, area under the precision-recall curve

(PR-AUC) was included as a performance metric, given the imbalanced nature of the dataset

[31].

Results

Patient characteristics

The final patient cohort on which modelling was performed included 262 patients. The

median time to survey was 29 months (range 12–60). The mean age was 51.7 years (SD 14.6),

with 65.6% female participants. The distribution of tumour lateralisation was

46.5%,43.4%,10.2% for left, right and midline/bilateral respectively. The majority of patients

had MN (51.0%), accounting for the female predominance, with the remainder evenly spread
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between AN (25.3%) and LGG (23.8%). Most participants had gross macroscopic resections

(66.4%), whilst the proportion of patients who received subtotal resections, partial resections,

and biopsies were 22.7%, 3.9% and 7.0% respectively. In addition to their surgical manage-

ment, 11.5% of patients received radiotherapy, 3.43% received chemotherapy, and 2.67% of

received both chemotherapy and radiotherapy. The median ‘maximum radiological tumour

diameter’ was 2.9 cm (Range 0.4–10). Table 2 shows the binarization distribution (1 vs 0 split)

for each of the 10 outcome variables present in the final dataset.

Machine learning model performance

The best performing ML model in every outcome measure was SVM, apart from Pain and

Diarrhoea, for which RF was the best performing algorithm. This suggests that differentiation

by hyperplane in multidimensional space played an influential role in predictive performance

across the suite of predicted target variables. RF was only optimal in two circumstances (Pain

and Diarrhoea), indicating that these outcomes were more inclined to differentiation by deci-

sion-tree based systems.

Broadly speaking, the predictive capability (as measured by AUC) of the best performing

algorithms for each target variable belonged to one of three main categories: >0.9, 0.8–0.9 or

<0.8. The outcome measures for which AUC>0.9 were Appetite loss, Constipation, Nausea

and vomiting, Diarrhoea, Dyspnoea and Fatigue. Secondly, AUC was between 0.8 and 0.9 for

Global HRQoL and Financial difficulty. Finally, Pain and Insomnia achieved comparatively

poorer performance, with AUC consistently below 0.8. PR-AUCs were similar overall to the

AUC of each respective classifier. Except in the case of Pain and Diarrhoea, PR-AUCs obtained

higher standard deviation values over cross-validation in comparison to their AUC counter-

part for a given model.

A complete outline of the optimal ML algorithm type, AUC, PR-AUC, sensitivity and speci-

ficity for each of the outcome measures can be seen in Table 3, with head-to-head comparisons

illustrated in Fig 1. Overall, the highest AUC achieved in the dataset was by SVM in relation to

the Constipation target variable (0.96+/-0.03), and the lowest by RF for the Pain target variable

(0.63+/-0.10). By a slight majority, ML algorithm sensitivity was generally greater or equal to

specificity, as was seen in the Global HRQoL, Appetite loss, Constipation, Pain, Dyspnoea, and

Fatigue models. The remaining models had a higher specificity than sensitivity. Receiver oper-

ating characteristic (ROC) and precision-recall (PR) curves for the best performing algorithm

in the five most prevalent target variables (as per Table 2) can be seen in Figs 2 and 3

Table 2. Distribution of binarization for each of the 10 target outcomes in the dataset.

Variable Total ’1’ Total ’0’ Proportion of ’1’ (Total/262) Proportion of ’0’ (Total/262)

Global HRQoL 75 187 0.29 0.71

Appetite Loss 52 210 0.20 0.80

Constipation 37 225 0.14 0.86

Financial difficulty 82 180 0.31 0.69

Nausea and vomiting 63 199 0.24 0.76

Pain 120 142 0.46 0.54

Diarrhoea 27 235 0.10 0.90

Dyspnoea 73 189 0.28 0.72

Fatigue 191 71 0.73 0.27

Insomnia 142 120 0.54 0.46

HRQoL: Health-related quality of life.

https://doi.org/10.1371/journal.pone.0267931.t002
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respectively. Remaining ROC and PR curves are illustrated in Appendices 4 and 5 of the

S1 File, respectively.

Discussion

To the best of our knowledge, this is the first study to show that ML algorithms may predict

HRQoL outcomes in postoperative primary brain tumour patients, specifically LGG, MN, and

AN.

Model performance and limitations

Given that the ML models in this report are the first for HRQoL determination in the three

aforementioned brain tumour types, no tumour-specific baseline exists to which the perfor-

mance of our models can be compared. Global HRQoL algorithms have been developed to

predict HRQoL in breast cancer patients with a reported AUC of 0.90 [20] and in cervical

Table 3. Optimal model performance and algorithm type for each of the ten outcome variables.

AUC PR-AUC Sensitivity Specificity Optimal ML Algorithm

Global HRQoL 0.85+/-0.06 0.79 +/- 0.09 0.87+/-0.10 0.81+/-0.07 SVM

Appetite loss 0.94+/-0.04 0.91 +/- 0.08 0.94+/-0.06 0.93+/-0.04 SVM

Constipation 0.96+/-0.03 0.92 +/- 0.07 0.95+/-0.03 0.94+/-0.05 SVM

Financial difficulty 0.86+/-0.09 0.78 +/- 0.11 0.82+/-0.08 0.89+/-0.11 SVM

Nausea and vomiting 0.92+/-0.04 0.88 +/- 0.07 0.91+/-0.06 0.92+/-0.05 SVM

Pain 0.63+/-0.10 0.62 +/- 0.07 0.69+/-0.15 0.69+/-0.19 RF

Diarrhoea 0.98+/-0.02 0.98 +/- 0.01 0.94+/-0.05 0.98+/-0.05 RF

Dyspnoea 0.93+/-0.03 0.88 +/- 0.05 0.92+/-0.08 0.89+/-0.06 SVM

Fatigue 0.91+/-0.05 0.88 +/- 0.07 0.90+/-0.04 0.86+/-0.06 SVM

Insomnia 0.69+/-0.09 0.62 +/- 0.10 0.75+/-0.18 0.68+/-0.16 SVM

HRQoL: Health-related quality of life, AUC: Area under the receiver operating characteristic (ROC) curve, PR-AUC: Area under the precision-recall (PR) curve, ML:

machine learning, SVM: Support Vector Machine, RF: Random Forest Classifier.

https://doi.org/10.1371/journal.pone.0267931.t003

Fig 1. Optimal model performance metrics across the different outcome measures.

https://doi.org/10.1371/journal.pone.0267931.g001
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cancer patients, with an AUC of 0.84 [21]. This is comparable to the best performing ML

model for global HRQoL in this investigation, which achieved an AUC of 0.85 +/- 0.06.

Although our dataset is the largest of its kind in the world, the tumours in question are rare,

which influenced our decision to analyse both benign tumours and low-grade gliomas collec-

tively (maximising the sample available for model training). Each of these tumours have

extended post-operative survival but with risk of seizures and temporary or persistent neuro-

logical deficit, with significant HRQoL concerns. Our approach has been validated by the

remarkable similarity in HRQoL outcomes in our research group’s meningioma [22] and low

grade glioma [23] cohorts, with fatigue, sleep disturbance and perceived cognitive deficit top-

ping the list of concerns for both tumour types. Nevertheless, there is still some heterogeneity

of symptom burden experienced by patients with different tumour types (26), especially for

symptoms such as fatigue and insomnia. We hypothesize that stratification by tumour type is

likely to boost performance in future modelling, and will prove more practical with ongoing

data collection.

The majority of models described in this study are accurate, generalizable, and ready to be

deployed for the purposes of stratifying patients at risk of HRQoL decline to enable hospital

resource rationalisation. That being said, it is recognised that as the number of potential risk

Fig 2. Receiver operating characteristic of the best performing algorithm for the five most prevalent outcome

measures in the dataset.

https://doi.org/10.1371/journal.pone.0267931.g002
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factors increases, the complexity of ML models can cause over-fitting [32]. Although our

investigation attempted to address the issues of overfitting via active and appropriate choice of

pre-training and hyper-parameter selection [33], ML models for global HRQoL, Pain, Insom-

nia, Financial difficulty and Fatigue outcome measures suffered from overfitting as indicated

by performance discrepancies in the training and test sets during cross-validation (see Appen-

dix 3 of the S1 File). This may suggest that the algorithms for these outcomes are less likely to

translate well in external validation, and that they will benefit in particular from ongoing data

collection and additional model training.

Clinical implications

From a health-economics standpoint, low-cost interventions such as online tools have shown

mixed results for improvement of HRQoL trajectories [34], meaning that there is a continued

reliance on more expensive support services such as those provided by allied health practition-

ers in hospitals, including comprehensive multidisciplinary rehabilitation programs catering

Fig 3. Precision-recall curve of the best performing algorithm for the five most prevalent outcome measures in

the dataset.

https://doi.org/10.1371/journal.pone.0267931.g003
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to fatigue management, cognitive rehabilitation and psychological support [35, 36]. Thus,

there is an imperative to ensure that these resources are being used as efficiently as possible.

The real-world application of these ML algorithms lies in their ability to predict, in the

immediate post-operative period, whether a patient is likely to have poor global HRQoL or

high symptom burden between 12 and 60 months of tumour resection, and by extension,

those whose symptoms will have resolved within 12 months and whose HRQoL has returned

to normal. Those who are identified at risk, can be streamlined early into appropriate rehabili-

tation and supportive care services in a cost-effective and patient-centric way. Fig 4 illustrates

the process by which our SVM algorithm would make a prediction on an example patient.

An important barrier to the uptake of ML models, however, is the nature of the input vari-

ables that drive them. If inputs are resource-intensive to ascertain (for example, some imaging

modalities), this restricts the implementation of the predictive systems in low resource or time

poor settings. There is value in ‘future-proofing’ the ML predictive systems developed in the

current health-policy climate by tailoring the inputs used. Future investigations may focus on

‘low-resource’ algorithms that do not require specialist expertise to acquire input variables.

Our final models utilise input variables that are mostly not resource restricted, and therefore

likely to be validated in both tertiary and non-tertiary clinical contexts in the future. The only

exception is ‘maximum radiological tumour diameter’ which requires a radiologist to ensure

accurate delineation of the tumour boundaries.

Limitations conferred by the dataset

As well as the degree of overfitting, clinical utility of deployable ML algorithms is additionally

defined by the generalisability of the derivation cohort on which the models are built. We

accept that this is a single centre study, and that recruitment of additional intra- and inter-

state centres is required to aid wide model applicability. That being said, The Royal Melbourne

Hospital Neurosurgery Outpatients is a tertiary/quaternary referral service, and includes both

public (government insurance) and private (insured) patients from rural, urban and remote

populations, and the only major exclusions are terminal or functionally impaired patients who

cannot attend clinic visits. The patient population is managed by more than 16 different neu-

rosurgeons and a large multidisciplinary team across three partner hospitals. Thus, there is not

likely to be significant selection bias in the population that is approached for data collection or

in the HRQoL database derived.

The nature and timing of the questionnaires employed cannot account for post-traumatic

growth, a poorly acknowledged factor contributing to improved HRQoL over time. This phe-

nomenon refers to psychological mechanisms that enable patients to cope with trauma and

that lead to positive mental change to accept the “new normal” [37, 38]. The ML models devel-

oped in this study are trained exclusively on questionnaire-derived data as the target variable,

therefore the HRQoL predictions made are limited by this phenomenon.

Patients were allowed to enter the study at any time point postoperatively as they presented

for follow-up. This introduces a significant spread of initial responses and potential data het-

erogeneity. However, it also allows inclusion of all patients followed in the service for a large

“real-world” cohort. As data collection continues, this heterogeneity will be progressively

eroded.

Although patients who undergo biopsies may experience different long-term trends in

HRQoL relative to more involved procedures, they were still included in the dataset for model-

ling. The rationale for this was procedure type is only one of a very large number of inputs that

can affect long term HRQoL in brain tumours, amongst a whole host of demographic, psycho-

social and clinical factors, including the effect of the tumour itself; resected or unresected.
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Fig 4. Worked example of ML model for global HRQoL. Twelve demographic and perioperative data inputs are used

by the Support Vector Machine to predict whether global HRQoL will decline below the normative population mean

(4) within 12–60 months of tumour resection.

https://doi.org/10.1371/journal.pone.0267931.g004
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Crucially, the algorithms in this investigation use “extent of resection” as an input (covariate),

so are therefore trained to profile the risk of HRQoL decline for biopsies vs resections differ-

ently (and accurately). Recent expert reviews [39] in this space support the inclusion of proce-

dure type (biopsy vs resection) in the prognostication of post-surgical outcomes in glioma.

Given this rationale, and the goal to implement a practical tool in a real-world neurosurgical

outpatient setting, biopsy patients were not modelled separately.

Finally, there are no preoperative baseline data. These would, of course, be interesting data

but were not included for a number of reasons. The primary reason was that the original study

from which this database is derived did not aim to assess the effect of treatment on HRQoL,

but rather to determine factors influencing HRQoL in a large group of postoperative patients,

to identify interventions for improvement, given that treatment could not be avoided [22]. In

addition, the difficulty of interpreting HRQoL measures in preoperative patients recently con-

fronted with the diagnosis of a brain tumour brings its own complexities. The assertion that

pre-operative measurements of HRQoL is a true baseline in the context of a patient who has

just received a diagnosis of a brain tumour is tenuous given the influence of the diagnosis on

psychosocial and physical context, particularly if the patient presents with seizures or neuro-

logical deficits. The required true baseline would, in fact, be “pre-diagnosis” testing, which is

not feasible. Additionally, changes after surgical treatment may not be related to the effects of

treatment alone, but include a feeling of relief at “successful” treatment [22]. This investigation

addressed the need for baseline data by using the normative population mean and established

MCID [4, 6] as an external reference point for global HRQoL. Admittedly, a large pooled

European database was used given the absence of Australian data. The applicability of future

algorithms will benefit from demographic-specific baseline data. For the symptom score algo-

rithms, an arbitrary 0 vs non-0 binarization threshold was utilised in lieu of a lack of concrete

evidence surrounding symptom-specific MCID [7]. Predicting the presence or absence of

symptoms may be of greater clinical utility with respect to streamlining of patients into appro-

priate rehabilitation streams, compared to predicting symptom score variation of a particular

magnitude. Future investigations may alter these binarization criteria as a means to optimize

ML algorithm predictive performance.

Conclusion

ML algorithms based on routine demographic and perioperative data show promise in their

ability to predict HRQoL outcomes in patients with low grade and benign brain tumours

between 12 and 60 months after surgery. This includes both global HRQoL, as defined by the

EORTC QLQ-C30, as well as symptom-specific metrics derived from the questionnaire. These

models have the potential to predict patients likely to suffer poor HRQoL trajectories, and

therefore inform effective allocation of sparse, resource intensive rehabilitation and supportive

care services. These models, however, are limited by the small sample, single centre dataset

upon which they are derived. Further data collection, ideally at a multi-centre scale, is required

to ensure improved generalisability of the algorithms, as well as enabling development on

tumour-stratified data to account for symptom heterogeneity between tumour types.
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