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Despite the detrimental impact that excess moisture can have on soybean (Glycine max
[L.] Merr) yields, most of today's crop models do not capture soybean's dynamic
responses to waterlogged conditions. In light of this, we synthesized literature data and
used the APSIM software to enhance the modeling capacity to simulate plant growth,
development, and N fixation response to flooding. Literature data included greenhouse
and field experiments from across the U.S. that investigated the impact of flood timing and
duration on soybean. Five datasets were used for model parameterization of new
functions and three datasets were used for testing. Improvements in prediction
accuracy were quantified by comparing model performance before and after the
implementation of new stage-dependent excess water functions for phenology,
photosynthesis and N-fixation. The relative root mean square error (RRMSE) for yield
predictions improved by 26% and the RRMSE predictions of biomass improved by 40%.
Extensive model testing found that the improved model accurately simulates plant
responses to flooding including how these responses change with flood timing and
duration. When used to project soybean response to future climate scenarios, the model
showed that intense rain events had a greater negative effect on yield than a 25% increase
in rainfall distributed over 1 or 3 month(s). These developments advance our ability to
understand, predict and, thereby, mitigate yield loss as increases in climatic volatility lead
to more frequent and intense flooding events in the future.
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INTRODUCTION

It is crucial to enhance models' ability to estimate the impact of soil waterlogging on plant processes.
Globally, 27% of cultivated land is impacted by flooding, resulting in over $371 billion of economic
losses to crop production (Dilley et al., 2005; Zhou, 2010; Ward et al., 2013; Dold et al., 2017; Kaur
et al., 2017a). With the onset of climate change, escalations in the frequency of intense rainfall events
are expected to increase the prevalence of waterlogged soils and, thus, potential economic and
environmental losses (Villarini and Strong, 2014; Mallakpour and Villarini, 2015; Pathak et al.,
2016). Today's crop production models used for climate change assessment do not accurately
account for excessive moisture (Shaw et al., 2013; Lobell and Asseng, 2017; Ebrahimi-Mollabashi
et al., 2019). As a result, these models do not capture the potential impact climate change induced-
flooding events or excess water may have on future yields (Li et al., 2019).
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The extent of the plant response to and/or resulting yield loss
from excessive moisture is dependent on the timing and duration
of the flooding event as well as cultivar susceptibility. Soybeans
have been generally found to be most susceptible to flood damage
during early reproductive stages [around R2; (Fehr and Caviness,
1977; Scott et al., 1989; Rhine et al., 2010)]. Increases in the
length of flooding escalate the intensity of these plant responses
(Kaur et al., 2017a). The primary plant response to flooding is a
reduction in nitrogen (N) uptake: directly caused by hypoxia
reducing plant N fixation and indirectly by excess water
increasing NO3 leaching and denitrification (Bacanamwo and
Purcell, 1999a).

Simulation models are increasingly used to simulate the
intricacies of complex systems, integrating the partial findings
of multiple studies into a single platform to improve our
understanding of the system as a whole (Shaw et al., 2013).
Currently, cropping system models, however, have limited or no
ability to accurately simulate a plant's response to excessive soil
moisture (Shaw et al., 2013; Li et al., 2019). A model with an
improved capacity to simulate waterlogging stress can be used to
investigate the risk posed by flooding to crop production in
climate change projections. Such an investigatory tool has the
potential to significantly improve current climate change
projections, as they have been found to underestimate or
overlook entirely the impact of flooding on crop production
(Lobell and Asseng, 2017).

The Agricultural Systems Production Systems sIMulator
(APSIM) is a modular framework that allows for individual
models to interact on a common interface (Holzworth et al.,
2014). Like other cropping system models, however, APSIM is
limited when it comes to simulating crop response to excess
water. Recently, Ebrahimi-Mollabashi et al. (2019) improved the
simulation of maximum root depth under excessive moisture
conditions (root mean square error from 46 cm decreased to 9
cm) by adding a new function into the model. They also
highlighted other areas for potential improvements (vertical
root distribution, photosynthesis, phenology, leaf N
concentration, N fixation, and senescence) towards developing
models that better represent reality. In this paper, we address
three of the identified issues: photosynthesis, phenology,
and fixation.

The aim of this study was to improve the overall model's
performance in waterlogged environments. More specifically, the
objectives were to synthesize literature data on excessive
moisture, develop new algorithms for the model, test the
improved model, and quantify prediction accuracy of the
improved model compared to that of the default model. A
secondary objective was to apply the improved model for risk
analysis related to excess moisture, wherein the question asked is
whether more total precipitation or isolated extreme rain events
cause larger yield loss and how this yield loss is affected across
different soils and weather years. While such information is
critical to understand impacts of the projected precipitation
variability towards developing future resilient and profitable
cropping systems, to our knowledge, such analysis is missing
from the literature.
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MATERIALS AND METHODS

Model Description
The APSIM Model
The APSIMmodel is an open source field-scale cropping systems
modeling platform that can simulate short and long-term soil-
crop-atmospheric interactions across different environmental
conditions and management structures (Holzworth et al., 2014;
www.apsim.info). The software contains several crop models,
together with soil water, soil temperature, and soil carbon and N
models. In this project, we used the soybean crop model
(Robertson et al., 2002), the SWIM model for water dynamics
(Huth et al., 2012), the soiltemperature2 model, and the coupled
carbon and N model (Probert et al., 1998). The APSIM model is
largely used to address aspects of cropping systems around the
world and continue to evolve with science (e.g. Ebrahimi-
Mollabashi et al., 2019) and software improvements
(Holzworth et al., 2015). The crop model simulates potential
water-limited and water/N limited production situations. Water
and N stress modifiers are used to decrease potential production
to attainable levels. Here, we focus on the water stress functions
used in the soybean model, which is part of the APSIM Plant
modeling framework as that of many other crop models (Wang
and Smith, 2004). In this project, we used APSIM version 7.9.

Description of Water Stress Functions Used in
APSIM-Soybean
The APSIM model has a series of drought stress functions that
can potentially affect photosynthesis, leaf elongation and
senescence, phenology, root growth, and N fixation (Figure
1A). The water stress functions are based on 0–1 multipliers in
the form of “x/y pairs” (Holzworth and Huth, 2009), where x is
the independent variable (e.g. soil moisture) and y, the response
variable (e.g. photosynthesis). The independent variable, x, is
calculated in different ways: for photosynthesis and leaf
expansion, a water supply/demand function is used to calculate
stress; whereas for N fixation, water supply relative to soil water
field capacity is used to calculate stress. Water supply is calculated
by summing plant-available soil water content through the
effective root-zone (Wang and Smith, 2004). Water demand is
calculated by converting potential crop growth rate into water
demand by using a transpiration efficiency coefficient normalized
for vapor pressure deficit. Should the soil water supply to demand
ratio fall below 1, there is drought stress.

In addition to drought stresses, APSIM soybean currently has
excessive moisture modifiers for root growth and photosynthesis
(radiation use efficiency, RUE; Figure 1B). Recently, Ebrahimi-
Mollabashi et al., 2019 showed that a 3% air fill pore space value
is sufficient to simulate the inhibitory role of excess moisture on
root growth. For RUE, there is no detailed calibration, but
typically users set the stress function to be activated when 80%
of the roots are under water. None of the above stress modifiers
account for the effect of crop stage. Further the APSIM SWIM
model cease resource (water and nitrogen) uptake from soil
layers saturated with water. Resource uptake is allowed only from
the unsaturated soil layers.
February 2020 | Volume 11 | Article 62
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Enhancing Excess Moisture
Representation in the Model
We sourced data from five greenhouse and field experiments
spanning diverse environments across the US to develop a
database to support model enhancement. The selected studies
had time series data and yield response to flooding events
(varying in event duration and timing, see Table 1), including
control plots with no stress. We first set up APSIM to simulate
the control plots by utilizing public data sources to create soil and
weather files (see below). We then reviewed literature on excess
moisture impacts to conceptualize new functions and finally,
implemented and tested the new functions in APSIM using the
dataset listed in Table 1. Model improvement quantified by
Frontiers in Plant Science | www.frontiersin.org 3
comparing the default APSIM 7.9 version with the new version
developed here.

New Algorithm Development
Various studies have found that excessive soil water limits water
and N plant uptake and dry matter allocation to leaves (Sallam
and Scott, 1987; Oosterhuis et al., 1990; Scott et al., 1990;
Bacanamwo and Purcell, 1999a; Rhine et al., 2010) as well as
root growth (Ebrahimi-Mollabashi et al., 2019), leaf size
(Bacanamwo and Purcell, 1999b), and N fixation (Thomas and
Sodek, 2005; Santachiara et al., 2019). Not all of these processes,
however, are currently captured in APSIM. To enhance APSIM
to simulate additional excessive moisture impacts we developed
FIGURE 1 | Moisture stress factors in the APSIM soybean model. (A) drought stress factors already present in APSIM. (B) Excessive moisture stress factors for
photosynthesis, phenology, and fixation added and tested in this study with the exception of root growth which was already part of APSIM 7.9.
TABLE 1 | Overview of the published studies used in this modeling study.

Experiment/
Test Number

References Year Location Latitude
(°N)

Soil Type MG Flooding Treatment Experiment Type Data Used for
Calibration/Testing

Calibration Database

1 Scott et al., 1989 1987 Keiser,
AR

35.7 Sharkey
Clay

4 Flooding for 2, 4, 7, and
14 days at V4 and R2

Field/Duration Biomass, yield

2 1987 Stuttgart,
AR

34.5 Crowley
Silt Loam

4

3 Scott et al., 1990 1989 Keiser,
AR

35.7 Sharkey
Clay

4 Flooding for 7 days at V1,
V4, and R2

Field/Timing Plant nitrogen,
biomass, yield

4 Board, 2008 1999–
2000

Baton
Rouge,
LA

30.4 Mhoon
Silt Loam

5 Flooding for 7 days at V4,
R1, R3, and R5

Open-ended
outdoor
greenhouse
/Timing

Yield

5 Rhine et al., 2010 2003–
2004

Hayward,
MO

36.4 Sharkey
Clay

4 Flooding for 8 days at V5,
R2, and R5

Field/Timing Yield

Testing Database
1 Unpublished Data from

Archontoulis et al., 2020
2018 Ames, IA 42.0 Upshur

Silty Clay
3 Periodic waterlogged

conditions
Field Plant nitrogen,

biomass, yield, LAI
2 Oosterhuis et al., 1990 1986 Stuttgart,

AR
34.5 Crowley

Silt Loam
5 Flooding for 4 days at V4

and R2
Field Biomass, Yield

3 5.5
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three algorithms to adjust photosynthesis, phenology, and N
fixation rates when soil water exceeds field capacity (the new
functions are termed oxdef_photo, oxdef_pheno, oxdef_fix,
respectively, where “oxdef” stands for “oxygen deficit”; Figure
1B). The algorithms expand upon the limits of the drought
algorithms wherein x = 0 when the soil is at field capacity (no
stress) and x = 1 when the soil is saturated (full stress).

Excess Moisture Stress on Radiation Use Efficiency
(Photosynthesis)
Flooding results in the inhibition of photosynthetic processes in
the mesophyll, photoassimilate transport in the phloem, and of
gas conductance and, thus, in a reduced photosynthetic rate
(Oosterhuis et al., 1990; Mutava et al., 2015). Modeling the
photosynthetic processes at such detailed level is beyond the
scope of this study; we followed a more general approach to
represent the phenomenon at a higher scale (canopy
photosynthesis). On a canopy level, Oosterhuis et al. (1990)
found a 16%–33% reduction in net photosynthesis after 48 h of
flooding at V4 stage (4th leaf) and a 22%–32% reduction at R2
stage (early reproductive stage). Mutava et al. (2015) found a
28%–39% reduction after 15 days offlooding initiated around V6
(6th leaf).

The culmination of our literature review resulted in the
development of the oxdef_photo function response curve
similar to that illustrated in Figure 1B. The stress response to
excess soil moisture was expected to be minor until 80% of the
root systems is under water.

Excess Moisture Stress on Crop Phenology
The parameterization of the phenology stress function required
stage-specific data regarding flood-induced delays in crop
development (Figure 1B). The oxdef_pheno parameter
response function was calculated using staging and harvesting
date information sourced from experiments 1, 2, 4, and 5. In
general, it follows the principles used in the oxdef_photo function.

Excess Moisture Stress on N Fixation
Previous studies have found that N fixation and, thus, plant N
uptake are severely reduced under flooded conditions
(Bacanamwo and Purcell, 1999a; Bertolde et al., 2012;
Martínez-Arcántara et al., 2012). Bacanamwo and Purcell
(1999a) found that N fixation is significantly more sensitive to
flooding than biomass accumulation (and thus photosynthesis).
Seven days of flooding reduced stem N uptake in N-fixing plants
by 46%–67% when initiated 28 days after sowing (Bacanamwo
et al., 1997). Córdova et al., 2019 found that N fixation in
soybeans in Iowa, US accounts for 47% (ranging from 35 to
70%) of total aboveground N accumulation.

Data sourced from experiment 2 on plant N uptake during and
after flooding treatments were used to calibrate the oxdef_fix
parameter response function (Figure 1B). Bacanamwo et al.
(1997) found that N fixation was reduced by 30% when the soil
oxygen level was reduced by half and so, in our parameterization, we
expected the effect of soil waterlogging on N fixation to be minor
until x = 0.5.
Frontiers in Plant Science | www.frontiersin.org 4
Waterlogging reduces root respiration and soil N
transformations (Ponnamperuma, 1984). The majority of active
nodules are in the top 0.4 m of soil profile (Grubinger et al., 1982).
In light of this, the oxdef_fix function is only activated when soil
water conditions exceed field capacity in the top 0.45 m of the soil
profile. During algorithm calibration, we confirmed that a depth
of 0.45 m captured the N fixation activity well.

We also tested two different excess water stress functions for
N-fixation: (1) percent root submergence similar to
photosynthesis and phenology and (2) fraction of 0–45 cm
moisture between field capacity and saturation. The second
approach provided the best results and thus adopted. In the
oxdef_photo, and oxdef_pheno parameters, the extent of soil
waterlogging stress is relative to how the extent to which plant
roots are submerged in water. Meanwhile, the oxdef_fix stress is
calculated in response to soil water filled pore spaces in the top
0.45 m of soil. The depth, however, was programmed to be user
defined to enable further research on the topic.

Stage Dynamics
The review of literature revealed that excess water impact plant
processes differently depending on when the stress occurred.
Thus, a stage factor was included in our oxdef functions.
Flooding during the vegetative stages can result in a 17%–43%
reduction in yield in contrast to 50%–56% reduction when
flooding stress applied during the pod filling stages (R2–R4)
(Oosterhuis et al., 1990). While the photosynthetic rate and N
fixation decrease under flooded conditions at all stages, the plant
can fully recover by pod filling stages if the stress is applied
during the vegetative stages (Jung et al., 2008). Soybeans
subjected to flooding during pod filling stages are unable to
fully recover their preflooding photosynthetic and fixation rates
following a flooding event before reaching maturity (Scott et al.,
1989; Rhine et al., 2010). Moreover, N fixation peaks during pod
filling period (between R3 and R5) (Zapata et al., 1987; Martínez-
Arcántara et al., 2012; Córdova et al., 2019). Therefore, the
photosynthesis, phenology, and N fixation algorithms needed
to be more sensitive during the reproductive stages. In light of
this, we applied a stage dependency on the functions such that
the plant's response to waterlogging stress is more extreme
during the reproductive stages (Figure 1B). The stage
dependency component also provided the model with more
flexibility with which to fit experimental observations and
perform scenario analysis regarding the susceptibility of cultivars
to excess water stress. The crop stage at which the plant is more
sensitive to excess water is a user defined parameter.

Model Calibration
Calibration Databases, Soil Data, and Weather Data
Grain yield, biomass, and plant N data from five published
controlled flooding experiments (details listed in Table 1) were
used to calibrate the new developed algorithms and quantify
improvements in model accuracy. Information about the
management strategies and cultivars were drawn from the
published text and tables (see references in Table 1).
Georeferenced daily weather data (minimum and maximum
February 2020 | Volume 11 | Article 62
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temperature, precipitation, and average radiation) was sourced from
NASAPOWER (https://power.larc.nasa.gov/) (Supplementary Table
1). Soil data was sourced from the SSURGO database (Soil Survey
Staff, 2019) and converted to APSIM format using the approach
followed by Archontoulis et al. (2014). The lack of specific (local) soil
and weather data from each experiment probably caused some error
in the simulation process and reduction in prediction accuracy. The
soil profiles used are provided in Supplementary Table 2. When
more soil data were available in the studies listed in Table 1, we used
them to further test APSIM processes, e.g., simulation of soil water
dynamics, to ensure that the model reflect reality well. We simulated
flooding by adding excessive amounts of rainfall until the water table
reached the surface during the flooding treatment periods detailed in
the studies. In-season soil water pressure measurements from
experiment 3 were used to confirm APSIM's ability to accurately
simulate fluctuations in soil water levels (Supplementary Figure 1).
Details of cultivar parameters used to model each of the calibrating
experiments are listed in Supplementary Table 3. Photosynthesis and
fixation algorithms had to be customized for each of the calibration
experiments with the exception of experiments 1 and 2
(Supplementary Figure 2). The parameters used for the five
calibration experiments were then averaged to generate “default”
algorithms that were then used in the model evaluation and
sensitivity analysis.

Model Evaluation
Testing Databases
Three independent datasets were used to test the model accuracy.
The first testing dataset was comprised of unpublished grain
yield and time series biomass, leaf area index (LAI), and plant N
data from three plots in one of Iowa State University Forecast
and Assessment of Cropping sysTemS field experiments that
were flooded periodically throughout the growing season in 2018
(Archontoulis et al., 2020); the second and third datasets were
comprised of grain yield and time-series biomass data from 2
published controlled flooding studies (Oosterhuis et al., 1990).
Details of these studies are listed in Table 1.

Statistical Metrics
To calibrate the parameters and test the model's accuracy in
capturing grain yield and above-ground biomass, we compared
the simulated data with the observed data. The statistical analysis of
the improved model's performance was conducted using R software
(RStudio Team, 2015). Goodness of fit analysis was measured by
calculating relative root mean square error (RRMSE) and modelling
efficiency (ME) (see Archontoulis and Miguez, 2015 for equations).
A lower RRMSE value and a higher ME value correspond to greater
accuracy in the simulations. In the calibration process, these metrics
were calculated for yield and biomass data using measured and
simulated normalized values relative to the controls in each
experiment. Normalizing the data allowed us to compare crop
response to flooding across multiple environments by minimizing
the effect of any covariates.

A robust model must be able to respond appropriately to
variation in weather, soil, and management. In order to test the
robustness of the improved APSIM soybean model, we expanded
the scope and conditions of the five simulated experiments
Frontiers in Plant Science | www.frontiersin.org 5
beyond their studied timescale and climate. First, we ran the
experiments with their designated flooding treatments for 30
years (1988–2018), resetting the soil organic matter and N levels
on January 1 of each year with the oxdef algorithms inactivated
and then with them activated. We then tested the differences
between the original and new model in yield and biomass results
using a boxplot analysis.

Sensitivity Analysis
To quantify the impact of each new function in the simulation
process and how sensitive each parameter is, we performed a
sensitivity analysis. In this analysis, we used weather, soil, and
management data from Experiments 1 and 2 (Table 1). We ran the
model for 20 years (1991-2011) with an annual reset of soil and
surface organic matter and initial water/nitrogen conditions on
January 1 of each year. In each simulation, we changed the
parameters of one oxdef algorithm ± 1 and ± 2 standard
deviations from the default values (see Figure 1). For oxdef_fix,
the y value at x = 1 (where the soil is saturated) was not adjusted for
this analysis in accordance with existing literature which has
consistently found that N fixation stops (y = 0) when soils are
fully saturated. The variable outputs were averaged over all
flooding treatments within each experiment, but analyzed for
each experiment separately because soil type played a significant
role in determining the sensitivity of some variables to variation in
the parameters (P < 0.05).

Risk Analysis
To explore the potential impact of excess water in climate change
research, we ran the control simulations of the 5 calibration
experiments for 30 years (1988–2018 with the soil organic matter
and N levels reset on January 1 of each year), altering the rainfall
patterns. Climate change scenarios were generated in three different
ways: (1) increasing rainfall by 25% for June, July, or August
separately; (2) increasing rainfall by 25% for June, July, and
August together; and (3) adding extreme daily rain events of 50
mm at varying frequencies throughout the season (one, two, three,
and four times in June, July, and August with the timing evenly
distributed throughout each month). In total, these eight climate
scenarios were meant to quantify estimate risks associated with
extreme rain events (amount and timing during crop growth) on
soybean yields and also demonstrate how the improved model can
be used to inform agronomists about the impact of future climate
change-induced alterations to our weather pattern.
RESULTS

Model Calibration
The addition of the oxdef algorithms improved APSIM's
accuracy in simulating yield and biomass response to flooding
events (Figure 2). When the dataset was divided into those
looking at flood duration (experiments 1 and 2) vs. flood timing
(experiments 3, 4, and 5), RRMSE and ME improved in all cases,
however, the improvements were more pronounced for the
flooding duration (Figure 2). The model accuracy (measured
as r2) increased by 0.45 overall, 0.77 in duration studies, and 0.38
in timing studies for yield (see Figure 2).
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Figure 3 demonstrates that the enhanced model simulated
how flooding events reduce biomass accumulation during the
season for experiments 1, 2, and 3. The model effectively slowed
photosynthesis and stalled phenological development during
flooding events as evidenced by the temporary reduction in the
rate of biomass accumulation (Figure 3). The improved model
was able to capture the at-harvest yield and biomass response to
different flooding treatments better than the original model
across multiple soil types and climates (Figure 4). The
improved model also captured the flood-induced depression of
N fixation and root growth found in the literature
(Supplementary Figure 3). In general, yield results from this
improved soybean model were significantly different from the
original model (P < 0.001) (Supplementary Figure 4).

In the improved model, lengthening the flooding duration from
2 to 14 days at the V4 stage (4th leaf) only decreased the yield by 2%
in contrast to more than 50% at R2 (early reproductive stage). In the
30-year simulation, the improved model simulated 2% to 16%
Frontiers in Plant Science | www.frontiersin.org 6
greater yield loss each year from flooding during the vegetative
stages than the original model (Supplementary Figure 4). Flooding
events during the reproductive stages reduced yield, on average, up
to 61% more in the improved model relative to the default.
Improved Model Evaluation Against
Independent Dataset
When tested on three independent datasets, the model was able
to simulate yield and biomass accumulation accurately (Figure
5). The r2 values consistently exceeded 0.9, and the RRSME
values were low (< 10; Figure 5). The model was able to capture
delays in biomass accumulation during the flooding events as
well as the final yield and biomass response to flooding events in
different locations/at different stages. Similarly, time series plant
N uptake and LAI data reported in the Test 1 dataset showed that
the improved model was also able to capture those responses to
flooding relatively well (Supplementary Figure 5).
FIGURE 2 | Model evaluation for yield (A, B) and biomass (C, D) data in both flooding duration (solid blue line) and timing (dashed blue line) studies relative to a 1:1
reference line (dotted black line). Relative root mean square error (RRMSE), modeling efficiency (ME) and R2 for each dataset are included in the panel.
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https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Pasley et al. Modeling Flood-Induced Stress in Soybeans
Sensitivity Analysis
Sensitivity analysis (Figure 6) of the newly developed functions
showed that all tested output variables (e.g. biomass) were sensitive
to changes in the oxdef_photo parameters: yield varied as much as
6% from the default value on silt loam soil and 4% on clay soil. The
total amount of N fixed varied up to 6% and 4.5% on the silt loam
and clay soils, respectively and total N uptake, 5% and 3%,
respectively. Maximum rooting depth varied less than 1%
irrespective of the soil texture. There was negligible variable
response to changes in oxdef_pheno parameters and only a slight
response found in the amount of N fixed and taken up by the plant
(< 1%) to variation in the oxdef_fix parameters (data not shown).
Frontiers in Plant Science | www.frontiersin.org 7
Risk Analysis
In the eight climate change scenarios, the improved model
demonstrated that intense rainfall events (one to four times a
month) had a greater effect on yield than a 25% increase in
rainfall during any or all month(s) (Figure 7). On average,
relative to the control, when 25% extra rainfall was applied
during June, there was no negative impact on grain yield. In
July and August, 25% extra rainfall depressed yields by around
1%. When 25% extra rainfall was applied for 3 months, yields
decreased about 2%. Intense rain events applied 1, 2, 3, and 4
times a month resulted in yield penalties averaging 6%, 12%,
27%, and 36%, respectively. These penalties more than tripled in
FIGURE 4 | Simulated grain yield and biomass with the improved and original APSIM model (lines) versus experimental data (filled cycles) from flooding duration (left
panels) and flooding timing (right panel) studies. The flooding events for the duration studies (A–D) were initiated at V4 (4th leaf) and R2 (early reproductive stage).
The flooding events for the timing studies (E–H) were initiated at V4 (4th leaf), R1 (Beginning of reproductive phase), R3 (beginning of pod filling period), and R5 (end
of pod filling period).
FIGURE 3 | In-season simulation of biomass accumulation under different flooding treatments in experiments 1 (A), 2 (B), and 3 (C) (all located in Arkansas,
experiments 1 and 3 on Sharkey Clay soil and experiment 2 on Crowley Silt Loam soil; see Table 1 for more details). Lines represent APSIM model simulations, and
points, the measured data from the experiments.
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experiments 3, 4, and 5 when event frequency increased from 2
to 3 times a month (9%–10% to 30%–45%).
DISCUSSION

Simulating Flooding Stress
We focused on modeling the impact excess water stress has on
yield and biomass because the existing literature has
demonstrated that crop models fail to simulate the decline in
yields under excessive precipitation (Li et al., 2019). Crop models
being able to simulate the full range of water stress (from too
Frontiers in Plant Science | www.frontiersin.org 8
little water to too much water) is important for accurately
predicting and explaining how climate change will impact crop
production as climate change is expected to increase the intensity
and frequency of extreme rainfall events and thus, the prevalence
of flooding.

In this study, we developed and tested new algorithms within
the APSIM software for excess water stress impacts on
phenology, photosynthesis, and N-fixation. While the model
was able to simulate root depth response to water table
fluctuations (Ebrahimi-Mollabashi et al., 2019), prior to our
additions, it was unable to simulate above-ground biomass,
crop staging, and N fixation responses to soil waterlogging. The
FIGURE 5 | Testing of the improved model (lines) against two independent datasets (points). Left panels show model evaluation for yield (A, C, E) and right panels
model evaluation for in-season biomass accumulation (B, D, F). See Table 1 for experimental details.
February 2020 | Volume 11 | Article 62

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Pasley et al. Modeling Flood-Induced Stress in Soybeans
additions enhanced APSIM's capacity to accurately simulate
waterlogging stress across a wide range of environments as
illustrated in Figures 2-4. The impact of these improvements
span far beyond the soybean model as they can be easily
implemented to all crop models included in the APSIM Plant
framework (about 80% of crop models).

Furthermore, the simplicity of these new stress functions
makes them easily adoptable for other modeling groups or
other crop models within APSIM after appropriately calibration.
Frontiers in Plant Science | www.frontiersin.org 9
The integration of detailed soil profile data in APSIM
captured the significant role of soil texture in dictating stress
levels in experiments 1 and 2 (Figures 2–4; Schipanski et al.,
2010). The total N fixed and yield response variables were more
sensitive to changes in the oxdef_photo function with a silt loam
than with a clay soil while the total N fixed variable was more
sensitive to changes in the oxdef_fix function on a clay than a silt
loam soil. Sensitivity in total N fixed does not necessarily
correspond to sensitivity in plant N uptake: in APSIM, the
FIGURE 7 | APSIM soybean simulations of soybean % yield penalty in different soils panel (A), 30-year weather (1988-2018) plus 25% increased precipitation
amount on soybean yields panel (B), and 30-year weather plus extreme rain evens on soybean yields panel (C). Soil texture for each experiment is provided in panel
C, further details are provided in Table 1.
FIGURE 6 | Sensitivity analysis of oxdef_photo parameters on a silt loam soil (A) and clay soil (B). The output variables (y-axis) shown in each graph are biomass
(kg ha-1), N uptake (kg ha-1), N fixation (kg ha-1), maximum root depth (cm), and end of season grain yield (kg ha-1). In the legends, the numbers in parentheses in
the output variables refer to the default values.
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plant takes up N from the soil prior to fixing N. While the
oxdef_fix function does not directly impact soil N mineralization
or NO3 levels, it does impact these levels indirectly through
reducing biomass growth and thereby increasing soil water. In
general, the N mineralization process is less sensitive to excess
moisture than nitrification or N-fixation (Linn and Doran,
1984). So if there is enough soil nitrogen, the N uptake will be
impacted less than N-fixation. This model behavior agrees with
literature studies showing that application of rescue N fertilizers
mitigates flooding stress (Kaur et al., 2017b).

The models SWAGMAN Destiny (Meyer et al., 1996) and
DRAINMOD (Skaggs et al., 2012) have been found to simulate
waterlogging stress with the same level of accuracy as APSIM did
prior to our additions, but fall short of incorporating the stage and
nutrient dynamics of waterlogging-induced stress (Shaw et al., 2013;
Shaw and Meyer, 2015). Currently, SWAGMAN Destiny (Meyer
et al., 1996) uses the gas-filled soil pore volume to define the degree
to which the soil is waterlogged (on a scale of 0-1 aeration), wherein
dry matter accumulation is reduced after soil aeration remains at
zero for 3 consecutive days. In this model, dry matter accumulation
influences potential yield, root growth, and senescence (Shaw et al.,
2013). Meanwhile, DRAINMOD (Skaggs et al., 2012), simulates
excessive soil water stress using the stress day index when the water
table is above 0.3 m. In DRAINMOD, waterlogging stress can delay
planting date and, with the guidance of the user, limit root depth. As
such, while these other models can capture some aspects of crop
response to waterlogging stress, their approaches oversimplify the
dynamics driving flood-induced yield penalties and thus limit their
usefulness in risk scenario analysis. Should these models adopt the
additions proposed in this paper, we would expect their
performance accuracy to improve just as that of APSIM did.

Implications for Climate Change
Cropping system models have long been seen as valuable tools
for anticipating the impact of climate change on crop
production, but the vast majority of this application has
focused on how heat, elevated levels of CO2, and drought will
impact agriculture on a global scale (Asseng et al., 2013; Ewert
et al., 2015). Asseng et al. (2018) found, however, that changes in
temperature and rainfall will have a much greater impact on
yield than changes in CO2 levels. Jia et al. (Forthcoming) cites
that increased temperatures under climate change will not
necessarily lead to more overall rainfall, but rather to more
frequent and extreme excess rainfall events. However, when
models have investigated at the impact of projected increases
in excess rainfall, they have primarily investigated the effect of
increases in mean or total precipitation, not that of increases in
the intensity of rainfall events (Ewert et al., 2015; Ray et al., 2015;
Lobell and Asseng, 2017). Under this approach, these models
found what we found in our risk analysis: well-distributed excess
rainfall has a small impact on yield (Ray et al., 2015). Lobell and
Asseng (2017) found that models that only look at seasonal
changes in rainfall tend to overestimate the benefits of excessive
rainfall and, thereby, underestimate the potential waterlogging-
induced yield penalties. Also, there is a lack of agreement among
models on how extreme rain events will impact yields at the
Frontiers in Plant Science | www.frontiersin.org 10
regional scale (Orlowsky and Seneviratne, 2012). Models
operating on a global scale and cannot achieve the resolution
needed for a consensus to be reached as yield response to
flooding is dependent on factors that vary significantly across a
small landscape (e.g. soil type and initial moisture) (Kang et al.,
2006; Tebaldi et al., 2006; Kharin et al., 2007; Orlowsky and
Seneviratne, 2012; Rosenzweig et al., 2014; Ray et al., 2015; Lobell
and Asseng, 2017). Moreover, Rosenzweig et al., 2014 noted that
corn and soybean yield responses to excessive water are more
sensitive to variability in soil conditions than other crops and so,
need to be examine on a field rather than global scales.

As a field-scale model, our simulated scenarios found that an
increase in the frequency of extreme rain events from two to
three events in a month triples the yield penalty irrespective of
soil conditions. Field-scaled models can also provide
opportunities for agronomists and plant breeders to test how
different management strategies and/or cultivars can mitigate
flood-induced yield losses.

Our risk analysis also found that concurrent environmental
conditions (soil type, initial soil water content, etc.) did play a role
if howmuch extreme rainfall events depressed yields (Figure 6). We
did not use a forecasted weather data to drive our risk analysis as the
selection of climate model would bias our results (Corbeels et al.,
2018): there are many climate models to choose from, each
influencing the crop model in different ways, leading to high
levels of uncertainty. Here, we set up simple climate change
scenarios in order to look at the potential of the model to capture
yield responses to extreme rain events and the legacy effects of these
events happening at higher frequencies to demonstrate the
improved model's usefulness to climate change scientists.
Limitations to the Model
Some limitations of the improved model arose from the fact our
model parametrization was based on profiles and weather data
from public not local sources. This probably has caused some
loss in prediction accuracy and, perhaps, over/underestimation
of the parameters developed for the stress functions. However,
this is of less concern, as our main objective was to enhance the
model by adding new generic mechanisms that can be further
refined in future model applications.

Our aim in developing the algorithms was to model the
phenomena, not the mechanisms. We took this approach because
we did not have access to detailed experimental data and wanted to
keep the improvements as simple as possible. Moreover, excessive
rainfall and, therefore, flooding events often coincide with hail and/
or excessive wind and the resulting wet environment often coincides
with plant disease. Modeling excess water is complicated; the default
parameter values at times need to be slightly adjusted to better fit
different environments, as we found with our calibration dataset
(Supplementary Figure 2). Still, when we tested the default
algorithms (Figure 1) on three independent datasets, we found
the fit to still be strong (Figure 5). Still, this potential need for
customization demonstrates the limitations of these algorithms in
capturing all of the plant's dynamic responses to soil waterlogging-
induced stress.
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Recommendations for Future Work
An area that requires future improvement is the simulation of N
partitioning/redistribution within the plant. Parameterization of
the N dynamics within the plant would require detailed data on
changes in the aboveground tissue and leaf N during a flooding
event.While experiments 4 and 5 provided some tissue and/or leaf
N concentration data following 7–8 days of flooding at different
development stages, it was not enough to understand and model
N remobilization under excess moisture. More detailed data is
needed on how plant N is redistributed during and immediately
following flooding events varying in timing and duration.
CONCLUSION

Our additions to the APSIM soybean model improved the model
and have laid the groundwork for other models to follow. We
captured a significant portion of the plant's dynamic response to
waterlogging and demonstrated how the model can improve
climate change projections. Future work should focus on
mapping out more of the N dynamic responses to flooding.
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