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Abstract 

 Heat stress from rising global temperatures is an issue of growing concern worldwide, 

posing serious harmful consequences to humans and compromising production and 

reproduction in livestock, resulting in multi-billion-dollar economic losses. High-producing 

dairy cattle are particularly prone to thermal stress because they generate heat from the 

fermentation of additional dry matter during lactation; therefore, they are good model species 

for studying heat tolerance. While animal responses to increasing temperatures are known to 

vary substantially within and between species, the genetic control of resilience to heat is still 

not well characterised in animals. Therefore, the purpose of this thesis was to investigate if 

Australian dairy cattle exhibit significant genetic variation in response to changes in 

temperature and humidity – that is genotype × environment interaction (G × E) and dissect the 

genetic basis underlying thermal stress with a view to improve the genomic prediction of this 

economically important trait.  

 A large dataset of test-day milk production records (test-day milk, fat, and protein 

yields) of over 40,000 animals (Holsteins, Jersey, and Holstein-Jersey crossbreds) with 

imputed-whole genome sequences (~15 million SNPs) was used in the studies described. Since 

milk production in dairy cows often decreases under thermal stress, heat-tolerance phenotypes 

were defined as the rate of milk yield decline with an increase in the temperature-humidity 

index (THI), where THI is a value that combines temperature and humidity values obtained 

from weather stations near dairy herds in Australia. Statistical analyses using multi-trait and 

reaction norm models identified some re-ranking among the bulls for heat tolerance milk 

production traits (slopes traits) at the upper extreme of THI trajectory (warmer environments). 

However, the extent of re-ranking was not considered to be large enough (i.e., genetic 

correlations were higher than 0.80) to justify forming separate breeding programmes for colder 

and warmer environments. However, the genetic differences in environmental response to heat 

among Australian dairy animals allow farmers to select animals that are best suited to their 

production environment. A large genome-wide association (GWAS) (using ~ 30,000 Holstein 

cows) revealed promising candidate variants and genes underlying the response to thermal 

stress in dairy cattle, including 61 potential functional variants at genomic sites highly 

conserved across 100 vertebrate species. Intriguingly, the candidate genes underlying variation 

in thermotolerance in animals are enriched in the nervous system (ITPR1, ITPR2, and GRIA4) 

and neuroactive ligand-receptor interaction functions (NPFFR2, CALCR, and GHR). A suite 

of top candidate sequence variants from GWAS (ranging between ~2,000 and 9,000) were pre-
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selected to confirm their relevance in thermotolerance and then tested in genomic evaluations 

of this trait. It was found that the accuracy of genomic prediction for heat tolerance improved 

when the pre-selected set of sequence variants were added to the industry-standard 50k SNP 

panel and analysed using non-linear Bayesian models (BayesR and BayesRC methods) with 

an average increase in accuracy of around 5% units and values ranging from 0.1% to 10% units 

depending on the prediction scenario. However, prediction accuracy decreased in some cases 

(particularly in Jerseys) when a set of sequence variants discovered from Holsteins were 

analysed alongside 50k SNPs compared to using only the 50k array. 

 Overall, the results of this thesis provide new discoveries about the genetic basis and 

biology of thermal stress. The mechanisms by which animals use to minimise the effects of 

heat are useful to understand given the effect of increasing global temperatures on performance, 

reproduction, and ultimately the welfare of farm animals. The genetic variants discovered in 

this thesis provide functional information and can be imputed into the industry SNP panels, or 

used to develop custom SNP arrays or similar sequence-based approaches that can help to drive 

the genetic improvement for heat tolerance. 
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Preface 

This thesis consists of 6 chapters. Chapter 1 introduces the research topic (heat tolerance), 

discusses its relevance, highlights the specific objectives, and provides a brief description of 

each thesis chapter. Chapter 2 covers published literature on the research topic, while Chapter 

3 to 5 presents the original PhD research work. These research chapters (i.e., Chapter 3 to 5) 

have been published in peer-reviewed journals. The formatting style of the research chapters 

follows the respective journal specifications. For each of the research chapters, I (the student) 

did the main role of designing the study, cleaning, and analysing the phenotype and genotype 

data, interpreting the results, and writing the first draft of each manuscript. My supervisors and 

co-authors provided advice on the design, analysis, interpretation of the results, and contributed 

to the writing of manuscripts. Chapter 6 is my own thinking where I discuss the key findings 

from the three research chapters and how they are thematically linked in a broader context 

relevant to the dairy industry. Also, in Chapter 6, I discuss the limitations of this thesis work 

and suggest future research directions. Finally, the three peer-reviewed conference materials, 

which resulted from this thesis, are provided in Appendix 1 to 3. Formatting styles of the 

conference materials follow the guidelines from the respective conference proceedings.





 
 

 

 

Chapter 1: General introduction 

1.1. Background 

 Heat stress from rising global temperatures is an issue of growing concern worldwide, 

affecting humans, wildlife, and livestock. Recent reports (e.g., Li et al., 2020a) show that many 

people are now affected by heat, and this has risen by more than two-fold when compared to 

the pre-industrial climates (i.e., 95 versus 275 million people), with future predictions showing 

that over 1 billion people will experience an even greater impact of  heat within the next 50 

years (Xu et al., 2020). In the dairy industry, potential heat stress calculated from temperature 

and humidity data above specific comfort zones has been increasing worldwide (Silanikove 

and Koluman, 2015, Polsky and von Keyserlingk, 2017) making this a growing issue that could 

compromise production (reduced growth, milk, etc.) and reproduction, and sometimes death in 

extreme cases. Dairy cattle are especially prone to environmental heat stress because they 

generate high metabolic heat loads from the fermentation of additional dry matter during 

lactation. A substantial annual economic loss due to heat stress alone in the dairy industry  was 

estimated to be up to USD 897 million in the USA (St-Pierre et al., 2003), up to AUD 300 

million in Australia’s 1.4 million cow population (DairyBio, 2018), and up to £33 million in 

the South-West region of the UK (Fodor et al., 2018) – home to around 0.5 million dairy cattle 

(Defra, 2021). 

 While heat stress is an issue to many dairy industries all around the world, Australia 

faces two main unique challenges: 1) Australian dairy system is highly heterogeneous, with 

diverse climatic conditions ranging from the warmer northeast regions to the cooler southeast 

regions of the country. As such, dairy cows experience varying magnitudes of heat stress (both 

temporal and seasonal), with some dairying regions, including Queensland, New South Wales, 

and Western and South Australia, under relatively high heat loads extending up to half of the 

year, while temperatures are moderate in Victoria and lowest in Tasmania, the southernmost 

part of the country (Nguyen et al., 2016); and 2) Australian dairy farms mostly graze cows 

outdoors on pasture, with limited management measures to combat heat stress, in contrast to 

many European countries, the USA, and Canada, where cows are generally housed indoors and 

fed total mixed rations (TMR). Under these conditions, genotype × environment interaction (G 

× E) or the re-ranking of genotypes due to heat stress across different production environments 

may be an issue for dairy farmers in Australia.  
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 G × E due to heat stress could exacerbate over the coming decades because more 

climate perturbations characterised by increased temperatures and extreme hot days are 

expected to continue across Australia (BOM, 2020; Figure 2-2). Also, BOM and CSIRO (2015) 

projects that even more temperate dairying regions, such as Gippsland, a major contributor of 

national milk production, will see a rise in the annual average temperature of up to 2.6 oC by 

2070, meaning that dairy animals in those regions will experience more severe hot days and 

longer warm spells. Nguyen et al. (2017) found that the ability of dairy cattle in Australia to 

tolerate heat has been declining over the past years at a rate of 0.3%/yr, in part, due to continued 

selection for milk production traits. This mirrors more recent data for heat tolerance from 

DataGene – the organisation responsible for routine genetic evaluation in Australia (DataGene, 

2021), with a steeper genetic decline of heat tolerance following the introduction of genomic 

selection in 2010 (Figure 1-1). Regardless, the dairy industry will still have to deal with the 

double challenge of increasing production, even more, to feed a growing population while 

coping with the effects of heat stress and ever-changing production environments. 

 

Figure 1-1 Genetic trend of Australian average balanced performance index (BPI) and heat tolerance 

breeding values (ABVg) over the past years for Holstein cows (Date source; DataGene, 

https://datagene.com.au/; accessed September, 2021). 

 With predominantly pasture-based dairy systems in Australia, the implementation of 

short-term management solutions to combat heat stress (e.g., shades, sprinklers, and fans) can 

be challenging and cost-prohibitive for most dairy farms. Therefore, as global temperatures 
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continue to rise, long-term solutions such as genetic selection of animals that can maintain 

performance under heat stress is advantageous since it is permanent and cumulative and can be 

used alongside management strategies. To date, most research studies to combat heat stress 

have focused on the aforementioned non-genetic interventions, including shade, sprinklers, and 

feed modifications (e.g., Cool Cows initiative; https://coolcows.dairyaustralia.com.au/ and 

Feeding Cool Cows project; https://dairyfeedbase.com.au/feeding-cool-cows/, both of which 

are being implemented in Australia). It is possible to select for heat tolerance since the ability 

to tolerate heat varies between individuals, with heritabilities of this complex trait being large 

enough for genetic selection to be effective (Ravagnolo and Misztal, 2000, Nguyen et al., 

2016). However, there is still a big gap in our understanding on the genetic aspects that confer 

thermotolerance to animals and is now an active area of research in many countries worldwide, 

of which Australia is at the forefront of genomic evaluations following the development and 

release of the first breeding values for heat tolerance in 2017 (Nguyen et al., 2016, Nguyen et 

al., 2017). The overall goal of this thesis work is to expand our knowledge on the genetic 

features that contribute to thermotolerance, considering the harmful effects of rising 

temperatures on humans and animal production and welfare. 

1.2. Objectives of the study 

 This thesis focuses on three broad aspects of heat tolerance with the following specific 

objectives aligning to the research chapters: 

1) To investigate the magnitude and relevance of G × E due to heat stress for milk 

production traits (milk, fat, protein yield) in the Australian dairy cattle. 

2) Perform a genome-wide association study (GWAS) to identify genetic markers and 

elucidate biological mechanisms underlying thermotolerance in animals. 

3) Test the added benefits of using pre-selected whole-genome sequence variants from 

GWAS for the genomic prediction of heat tolerance. 

1.3. Thesis outline 

 Heat tolerance is no doubt an area of great relevance worldwide, considering the 

harmful effects of warming climates on different species, including humans, livestock, and 

plants. This thesis research was motivated by the fact that there is still a huge gap in our 

knowledge regarding the genetic features that confer thermotolerance in animals. Chapter 1 of 

this thesis introduces the research topic and its relevance within the global and local (i.e., 

Australian industry) context, focusing on the dairy industry and finally concludes by 
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highlighting specific objectives of the study. Chapter 2 covers the review of published 

4

literature 

on heat tolerance, including the non-genetic and genetic aspects for combating thermal stress 

in livestock. In Chapter 3, the magnitude and relevance of G × E due to heat stress for 

production traits (milk, fat, and proteins) in the Australian dairy cattle is investigated. This was 

crucial aimed at addressing the growing concern about the possibility of significant re-ranking 

of dairy sires in terms of their performance in colder and hotter environments (in part because 

of climate change and continued selection of high-yielding dairy animals). Motivated by the 

fact that a substantial genetic variation for heat tolerance exists in the Australian dairy cattle 

(discussed in Chapter 3),  GWAS analyses were conducted (in Chapter 4) to pinpoint specific 

genetic markers and biological features controlling this trait. Compared to earlier GWAS 

studies on heat tolerance, this thesis work benefited from a large sample size and high-

resolution genotypes (~15 million SNPs), meaning that the candidate causal mutations for heat 

tolerance were mapped with reasonably high confidence. It was then a logical next step to 

conduct genomic prediction analyses, as described in Chapter 5, to validate and demonstrate 

the added benefit of pre-selected sequence variants from GWAS for improving prediction 

accuracy of heat tolerance, which is critical for driving the genetic improvement for this trait. 

Finally, in Chapter 6, I provide a general perspective of the findings with respect to breeding 

for thermotolerance in cattle and how the research chapters are thematically linked while 

highlighting some limitations of the study and concluded by suggesting future research 

directions. An overview of this thesis is shown in Figure 1-2. 



 
 

 

 

 

Figure 1-2 Thesis outline with published research chapters shown in grey boxes and other chapters in 

blue boxes. 

 

 

 

 

 

 

 

 

5





 
 

 

 

Chapter 2: Literature review 

2.1. Introduction  

 Over 6 billion people around the world (i.e., > 80% of the global population) consume 

nutrient-rich milk and milk products on regular basis, with the demand expected to increase in 

the coming decades in line with the growing per capita income and human population – 7.6 

billion people now versus 9.8 billion people in 2050 (FAO, 2019). The need to increase milk 

production to satisfy the demand has largely shaped the breeding objectives of the global dairy 

industry over the past years. As such, remarkable progress has been achieved in increasing milk 

production per cow, in part, through genetic selection [approximately 30%, Cole and 

VanRaden (2018); Figure 2-1] and the estimated world milk production per cow per lactation 

has more than doubled over the past few decades (Oltenacu and Broom, 2010). In Australia, 

the annual milk yield per cow per lactation has grown over the last four decades from 

approximately 3,500 litres per cow per year in the 1980s to around 7,000 litres in 2015/16 

(DataGene, 2021; https://datagene.com.au/, Figure 2-1). Globally, it is projected that milk 

production needs to double by mid-century to meet the demands of the growing population 

(Britt et al., 2018). However, rising temperatures from global warming is now threatening the 

progress of dairy production, which requires proactive and multi-pronged measures to prevent 

current and future economic losses and contribute to feeding the burgeoning population. 

 This review covers the genetic aspects of heat tolerance in relation to milk production 

traits (milk, fat, and proteins) in dairy cattle. First, the problem of climate change and heat 

stress in the dairy industry is discussed, focusing on the Australian dairy perspective. Next, 

methods for quantifying heat stress (thermal indices) in the livestock; the impacts of heat stress 

in dairy cattle, and the physiological mechanisms causing milk decline in heat-stressed cows 

are reviewed. This is followed by management (shade, sprinklers, feed, etc.) and genetic 

approaches used to combat heat stress: using adapted breeds, crossbreeding, or genetic 

selection. Furthermore, published GWAS studies for heat tolerance traits are reviewed. Finally, 

G × E due to heat stress in the Australian dairy system are discussed followed by a summary 

and research questions. 

7
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Figure 2-1 The annual increase in milk yield (in litres) per cow per lactation attributed to management 

(blue) and genetic (orange) improvement in Australian Holstein and Jerseys herd-recordings between 

1990 and 2020 [Data source: DataGene Ltd, Melbourne, Australia (https://datagene.com.au/); accessed, 

October 2021]. 

2.2. The problem of climate change and heat stress 

Concern about the impacts of warming climates on livestock production used to be an 

issue mainly in the tropics; but it is now being felt in temperate zones, affecting countries 

including Australia, Canada, the northern United States, and parts of Europe (Renaudeau et al., 

2012, Silanikove and Koluman, 2015, Polsky and von Keyserlingk, 2017) . Globally, the 

weather patterns have changed relative to the pre-industrial climates characterised by an 

increase in extreme heatwaves, heavy precipitation, and droughts in some regions of the world 

(IPCC, 2014). Across Australia, the number of hot days per year [defined as the temperature 

exceeding 39 oC by the Bureau of Meteorology (BOM)] has been increasing over the years, 

with very high monthly maximum temperatures occurring in the recent decade (2005 – 2019; 

Figure 2-2) (BOM, 2020). 
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Dairy farmers in Australia are already feeling the impacts of climate changes, with dairy 

cows experiencing heat stress that varies widely across dairy regions ranging from around 300 

per year (Queensland) to about 60 days (Tasmania) (Nguyen et al., 2016). The impact of heat 

stress is expected to increase as the production environments continue to warm across Australia 

(Dairy Australia, 2020), which calls for proactive measures to minimise both current and future 

long-term risks to the dairy industry. 

 

Figure 2-2 Number of days each year where the Australian area-averaged daily mean temperature for 

each month is extreme (BOM, 2020). 

 Dairy cattle and other homeotherms maintain stable body temperature within a specific 

range called thermoneutral zone (TNZ) (Figure 2-3), defined as the optimum thermal 

environment in which health and productivity thrive (Ames, 1980). It is also defined as the 

zone of minimal heat production at normal temperature (Kadzere et al., 2002). The TNZ in 

dairy animals varies widely depending on many factors (e.g., age, breed, feed intake, 

temperature acclimation, level of production, coat insulation, etc. (Yousef, 1985)), usually 

ranging from 5 to around 25 oC (Kadzere et al., 2002). Heat stress begins when the ambient 

temperature rises above the upper critical temperatures of an animal, which triggers 

physiological and behavioural responses to maintain homeothermy. 
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Figure 2-3 Schematic of thermoneutral zone (TNZ), lower critical temperature (LCT), and upper 

critical temperature (UCT) of a dairy cow [adapted from Kadzere et al. (2002)]. 

2.3. Measuring heat stress and environmental heat load in dairy cattle 

 Many indices have also been developed to account for the thermal flow mechanisms 

(ambient temperature, relative humidity, solar radiation, wind speed, precipitation) on the 

animal and then used to define thresholds beyond which heat stress begins. Due to limited 

publicly available data on solar radiation and wind speed, most studies have focused on ambient 

temperature and relative humidity to quantify environmental heat load. The most frequently 

used environmental heat load index in dairy cattle is the temperature-humidity index (THI), 

originally developed to measure discomfort in humans (Thom, 1959). THI is a single value that 

combines ambient temperature and relative humidity. Several THI models (Table 1) have been 

proposed based on the relative weights given to the individual components : 1) dry bulb 

temperature (Tdb) (i.e., air temperature) 2) dew point temperature (Tdp) or relative humidity 

(RH), which measures the amount of moisture in the air at a given temperature. The Tdp is often 

preferred to RH as a better reflection of air saturation (Wood, 1970), calculated as follows: 

Dew point (T) = (237.3 x B)/ (1.0 + B) where, B = (ln(RH/100) + ((17.27 x Tdb)/ (237.3 + 

Tdb)))/17.27 and RH = relative humidity. 
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Table 2.1 THI models proposed for calculations of thermal comfort in cattle. 

 Model Reference 

1.  THI = [0.4 × (Tdb + Twb)] × 1.8 + 32 + 15 (Thom, 1959) 

2.  THI = Tdp + (0.36 x Tdp) + 41.2 (Yousef, 1985) 

3.  THI = (0.35 × Tdb + 0.65 × Twb) × 1.8 + 32 (Bianca, 1962) 

4.  THI = (0.55 × Tdb + 0.2 × Tdp) × 1.8 + 32 + 17.5 (NRC, 1971) 

5.  THI = (Tdb + Twb) × 0.72 + 40.6  (NRC, 1971) 

6.  THI = (1.8 × Tdp + 32 – (0.55 – 0.0055 RH) × (1.8 × 

Tdp - 26) 

(NRC, 1971) 

7.  THI = 1.8 × Tdp – (1 – RH) (Tdp – 14.3) + 32 (Kibler, 1964) 

THI – Temperature-humidity index; Ta – dry bulb temperature or air temperature; Tdp – dew point temperature; 

Twb – wet bulb temperature; RH – relative humidity. 

 

 Since climate factors (ambient temperature, relative humidity, solar radiation, etc.) vary 

widely across regions and countries, some studies have tested the ability of different THI 

models to estimate milk production losses due to heat stress. For example, in the USA, 

Bohmanova et al. (2007) compared the suitability of seven THI models to estimate milk losses 

in some regions in the USA (Athens, Georgia, and Phoenix, Arizona) and concluded that 

models which give more emphasis to humidity (e.g., Model 3) are best for humid environments, 

while models giving greater weights to temperature should be appropriate for drier climates 

(e.g., Model 6). Wang et al. (2018) reviewed 16 thermal indices for dairy cattle including THI 

models on the suitability to capture thermal stress in cows and concluded that they vary 

significantly given different climate variables used to construct them; thus, they should be 

chosen carefully for different production context. 

 Various approaches have been used to calculate THI in dairy cattle. Some studies 

compute based on average daily air temperature and humidity (Bouraoui et al., 2002) whereas 

others use daily maximum and minimum humidity (Ravagnolo and Misztal, 2002, Vitali et al., 

2009, Lambertz et al., 2014). Other studies use hourly air temperature and humidity to obtain 

hourly THI then average them to get overall daily THI value (e.g., Nguyen et al., 2016) while 
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some calculate separate average daily THI and maximum THI then combine to get composite 

THI (e.g., Bohmanova et al., 2007, Lambertz et al., 2014).  

 Studies usually average the mean of THI for several days before test day to capture the 

effects of cumulated heat loads on performance. According to West (2003), THI values 2 days 

before test day have significant effect on milk yield. Hayes et al. (2003) found that THI for 3 

days preceding the test day has significant effect on herd-test day milk yield for Australian 

dairy cows. Numerous studies have used 3-day THI values in their analyses (e.g., Bohmanova 

et al., 2007, Brügemann et al., 2011). Lambertz et al. (2014) showed that 3 -day THI is 

associated with the increase in the somatic cell count. Cumulative THI 4 to 5 days before the 

day of insemination was reported to have significant negative affect on non-return rate in Italian 

Holstein cows (Biffani et al., 2016). Hill and Wall (2015) found that the cumulative heat loads 

up to a week before the test day better captures the variations for milk yield and fat content.  

 THI is generally considered the best index for measuring heat loads (Dikmen and 

Hansen, 2009). However, the main limitation of THI is that it fails to account for other 

important weather elements that contribute to heat stress in animals, such as the wind speed 

and solar radiation. Consequently, THI has been extended to incorporate wind speed and solar 

radiation (Mader and Davis, 2002, Mader et al., 2006, Gaughan et al., 2008). Gaughan et al. 

(2008) formulated a heat load index (HLI) which combines the effect of relative humid ity, 

black globe temperature (BG > 25) and wind speed (WS): HLIBG>25 = 8.62 + (0.38 × RH) + 

(1.55 × BG) − (0.5 × WS) + e(2.4−WS), and HLIBG<25 = 10.66 + (0.28 × RH) + (1.3 × BG) – WS, 

where e = base of natural logarithm. 

 Mader et al. (2006) developed a THI adjusted for WS and solar radiation (RAD): THIadj 

= [4.51 + THI − (1.992 × WS) + (0.0068 × RAD)], where THI = [0.8 × Tdp] + [(RH/100) × (Tdp 

− 14.4)] + 46.4. In their study, Hammami et al. (2013) showed that using a measure of THI that 

accounts for WS and RAD are best suited for temperate climates. More recently, (Lees et al., 

2018) developed a dairy heat load index (DHLI) for lactating dairy cows which incorporates 

BG temperature and relative humidity; where BG is a single value that includes the combined 

effects of ambient temperature, relative humidity, solar radiation, and wind speed. Overall, 

despite the development of new indices, THI variants are still widely used, perhaps due to the 

lack or limited availability of other climatic parameters (wind speed, solar radiation, etc.).  

 Figure 2-4 shows equivalent temperature and humidity values representing different 

THI values computed based on. THI of 60, for example, is equivalent to ~20oC and 30% 
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humidity based on the model. Much higher THI values are expected when calculations are 

based on a model which gives more weight to relative humidity (e.g., Model 1 above; Thom, 

1959). Notably, THI values have been used over the years as a valuable indicator for guiding 

farm management decisions during hot and humid weather conditions. For example, weather 

safety indices (LCI, 1970) are classified as [Normal ≤ 74; Alert 75 – 78; Danger 79 – 83; 

Emergency ≥ 84] based on THI values from (Thom, 1959), as shown in Figure 2-4. De Rensis 

et al. (2015) defined THI of < 68 (normal or comfortable), 68 ≤ THI ≤ 74 (mild heat stress at 

which production begins to decline), and ≥ 75 (severe heat stress resulting in drastic production 

decline). Similarly, Armstrong (1994) defined THI < 71, 72 ≤ THI ≤ 79, 80 ≤ THI ≤ 90, and 

THI > 90 as thermoneutral, mild, moderate, and severe heat stress, respectively. Given the 

significance of these THI groups in livestock management, it is paramount to have the most 

accurate THI values (calculated based on suitable THI model). 

 A number of studies around the world (e.g., Hayes et al., 2003, Boonkum et al., 2011, 

Brügemann et al., 2012) around the world have reported different THI thresholds at which milk 

production starts to decline in dairy cattle, in part, because of several factors: 1) differences in 

the model used to calculate THI; 2) differences in breeds; 3) the level of production among 

study dairy animals 4) differences in regional climatic conditions, and 5) “acclimatisation” or 

adjustment to the climate – a process which does not involve genetic changes (Carabaño et al., 

2019). Moreover, it could be due to the heat abatement practices and acclimation [defined as 

coordinated phenotypic response to the environment (Carabaño et al., 2019)], which can 

influence the onset of stress (Zimbelman et al., 2009) and, thus, the estimated THI threshold. 

For example, Freitas et al. (2006) in their study reported a relatively higher THI threshold for 

cows in some regions in the USA which had more efficient heat abatement strategies.  Overall, 

the heterogeneity in the calculation of THI values is an issue of concern to estimating heat 

tolerance parameters. This calls for a unified calculation approach to allow comparability of 

results across studies. However, this is not trivial considering that specific models may not be 

applicable to wide range of environmental conditions and farming systems. THI values based 

on model 2 [Table 2; i.e., (Yousef, 1985)] were used in all analyses in this thesis, which is 

comparable to previous studies for heat tolerance in Australia (Nguyen et al., 2016). 

Nevertheless, given the drawback of the THI model used in these studies (i.e., does not account 

for airspeed and solar radiation), it is paramount to re-evaluate a suitable model (s) for the 

Australian context since dairy herds are predominantly kept on pasture, meaning that solar 

radiation contributes to heat stress. 
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Figure 2-4 Temperature-humidity index (THI) chart based on (Yousef, 1985). Heat stress risk 

categories are defined as [Normal ≤ 74; Alert 75 – 78; Danger 79 – 83; Emergency ≥ 84], as described 

by Hahn et al. (2009). 

2.4. Impacts of heat stress 

 Heat stress in animals has complex and multifaceted consequences. Elevated 

temperatures above the TNZ of the dairy cow triggers physiological changes leading to 

increased core body temperature, respiratory rate, panting heart rate, and sweating, as well as 

hormonal changes (Kadzere et al., 2002, Das et al., 2016). Consequently, these can lead to 

suppressed feed intake, altered rumen function, and udder health often resulting in decreased 

quantity and quality, reproduction, and general deterioration of cow welfare and death in some 

extreme cases (Das et al., 2016, Polsky and von Keyserlingk, 2017, Pragna et al., 2017). 

Specifically, heat stress alters mammary gland function and integrity leading to reduced milk 
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yield (Tao et al., 2018). In addition, an elevated temperature predisposes the cow’s udder to 

infection by bacteria such as streptococci which subsequently leads to decreased milk quality 

and composition (Pragna et al., 2017). 

 The rate of milk yield decline after THI exceeds the comfort threshold (i.e., under heat 

stress) has been quantified by several studies in livestock. In dairy cattle, Sánchez et al. (2009a), 

Bernabucci et al. (2010), and Bohmanova et al. (2007) found milk decay of up to -0.15 kg, -

0.27 kg, and -0.6 kg per THI unit above the comfort threshold, respectively. Similarly, a milk 

decay estimate of -0.2 kg/unit THI was reported for dairy cattle in the Georgia-USA 

(Ravagnolo and Misztal, 2000). In New Zealand, Bryant et al. (2007b) reported a milk solids 

reduction of more than -10 g/day per unit increase of THI above the threshold of 68, 69, and 

75 in Holsteins, Jersey, and H × F crossbreds. Fat and protein yield decline of up 8.6 g/unit 

THI above the threshold was reported in dairy sheep (Finocchiaro et al., 2005). While it has 

been widely documented that heat-stress lowers milk production differently within and 

between breeds, there is a lack of information on genetic aspects of the recovery period of 

production to baseline after heat stress and is worth exploring to identify resilient animals. 

 Apart from milk production, heat stress can adversely affect reproductive performance 

in dairy animals. For example, elevated heat stress can compromise female fertility due to 

reduced duration and intensity of oestrous, altered follicular development, and impairment of 

embryonic development (Jordan, 2003). In males, heat stress can negatively affect the quality 

and integrity of semen, resulting in reduced fertility and overall reproductive performance (Das 

et al., 2016, Schüller et al., 2016). Several have reported seasonal variability in the reproductive 

performance of dairy cattle. In Australia, Talukder et al. (2015) found that dairy cows calving 

in autumn are 43% more likely to conceive than cows calving in summer (under heat stress). 

Similarly, in the southern USA, De Vries and Risco (2005) found a 15.8% pregnancy rate in 

winter compared to 5.6% in summer. 

2.5. Physiological mechanisms for milk production decline 

 Understanding how heat stress alters the physiology of dairy cows to impact 

productivity is critical in developing mitigation strategies (genetic and management) to prevent 

losses and improve the health and well-being of animals. Lactating dairy cows are sensitive to 

changes in the environment which can lower their milk yield by up to 40% under heat stress 

conditions (West, 2003). Multiple mechanisms have been proposed for this decline. Rhoads et 

al. (2010) found that depressed feed intake that often occurs during heat stress explains around 
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35% to 50% of milk yield decline while the cause of the remaining portion of milk drop is still 

not well understood, but inconclusive evidence suggest that it is related, in part, to post-

absorptive nutrient utilizations. The depressed feed intake in heat-stressed dairy cows and other 

ruminants is a survival strategy to reduce the metabolic heat load generated during milk 

production. Beside the reduced feed intake, heat-stressed cow alters eating behaviour 

characterised by smaller meals and more lying time, which predisposes them to rumen acidosis 

(Bernabucci et al., 2010) when compared to cows in thermoneutral conditions.  

 Like other mammals, heat-stressed dairy cows use energy to maintain homeostasis 

during heat stress, predominantly by evaporative heat loss via panting and sweating (Fuquay, 

1981). As such, it has been hypothesised that the nutrients required for production are diverted 

to maintain homeostasis contributing, in part, to the milk decline in heat-stressed animals 

(Baumgard et al., 2011, Baumgard and Rhoads Jr, 2013). Controlled studies (e.g., Garner et 

al., 2016) show that heat-tolerant animals have superior thermoregulation ability than heat-

susceptible animals suggesting less energy expenditure for homeostasis and thereby less 

reduction in their milk yield. These authors found that heat-tolerant cows are more efficient at 

dissipating heat via vasodilation (measured by skin surface temperature); therefore, they were 

able to maintain relatively lower core body temperature compared to the heat-susceptible cows. 

Similar findings were reported in the USA for slick (more tolerant) versus non-slick (less heat-

tolerant) crossbred Holstein cows in which the latter cows exhibited lower body temperature 

and less milk yield decline contributed, in part, by superior heat dissipation via sweating 

(Dikmen et al., 2014). Overall, these studies suggest that animals that spend less energy on 

their thermoregulation have less reduction in milk yield and would be more suited for future 

warming climates.  

 Depressed feed intake coupled with increased energy needed for homeostasis 

predisposes dairy animals to the negative energy balance (NEBAL), typical to what often occur 

in early lactation cows (Bernabucci et al., 2010). The effects of heat stress on plasma non-

esterified fatty acid (NEFA) associated with depressed feed intake are conflicting among 

studies with some reporting increased NEFA (e.g., Garner et al., 2020), while others indicate a 

decrease or no change in NEFA (e.g., O’brien et al., 2010, Wheelock et al., 2010). Unaltered 

NEFA is partly related to the inability of heat-stressed cows to employ ‘glucose sparing’ 

mechanisms, such that adipose tissue is not mobilised to generate NEFA (Rhoads et al., 2010, 

Baumgard and Rhoads Jr, 2013). Another physiological adjustment arising from NEBAL 
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during heat stress is related to the altered carbohydrate metabolism that is mediated, in part, by 

accentuated glucose uptake driven by elevated hepatic insulin activity (Wheelock et al., 2010, 

Baumgard and Rhoads Jr, 2013). The lipid composition profile of milk is also altered under 

acute heat stress in cows leading to reduced abundance of short- and medium-chain fatty acids 

and the relative increased abundance of long-chain fatty acids (Liu et al., 2017). 

 Milk production in dairy cattle and other mammals depends largely on the number and 

efficacy of the synthetic capacity of the mammary gland epithelial cells. Exposure of dairy 

cows to heat stress before and during lactation negatively affects mammary gland epithelial 

cell development, physiology, and integrity impacting milk production [reviewed by (Tao et 

al., 2018)]. Dado-Senn et al. (2018) conducted RNA-Seq analysis and identified over 3,000 

candidate genes and pathways involved in mammary gland development under heat stress, 

including upregulation of cell death, cytoskeleton degradation, and immune response. Recent 

evidence shows that heat stress in dry and pregnant cows has negative carry-over effects on the 

lifetime performance of their progeny (Laporta et al., 2020), implying severe economic cost to 

the dairy industry. Moreover, heat stress alters hormonal (insulin, prolactin, glucocorticoids, 

etc.) functions and reduces the rate of blood flow across the mammary gland leading to the 

decreased supply of pre-cursor nutrients (amino acids, lipids, glucose, etc.) to the mammary 

gland needed for milk synthesis (Bernabucci et al., 2010). 

 The nervous system in mammals connects the internal and external environment and 

thereby plays a crucial role in regulating core body temperature (Nakamura and Morrison, 

2008). This process is initiated by the activation of transient receptor located in the nerve 

endings of the thermosensory organs in the dermis and epidermis of the peripheral organs. This 

signal then travels (afferent pathways) to the pre-optic area of the hypothalamus and finally to 

the anterior part of the hypothalamus (Collier and Gebremedhin, 2015). This region of contains 

thermosensitive neurons that act as the control centre (or the thermostat) of the brain (Collier 

and Gebremedhin, 2015). This thermosensory signal is interpreted and an appropriate message 

is sent (efferent pathways) to trigger various behavioural responses such as shivering, painting, 

peripheral vasodilation, and hormonal production (Boulant, 2000, Collier and Gebremedhin, 

2015).  

 The mechanism by which the nervous system is coordinated in heat-stressed dairy cows 

has not been widely studied.  It is hypothesised that the nervous system is employed during 

chronic heat stress to coordinate a cascade of metabolic and hormonal processes associated 
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with responses including affecting milk production, such as growth factors, insulin, serotonin, 

thyroid, prolactin, and mineralocorticoids associated with milk synthesis (Bernabucci et al., 

2010). The acute or short-term response to heat stress in animals is mediated by nervous 

thermoregulatory systems, which trigger the release of hormones (e.g., catecholamines and 

glucocorticoids) while the chronic phase of heat stress (long-term or recurrent exposure to heat) 

is driven by homeorhetic regulators of the endocrine system (resulting in acclimation or new 

physiological state) both of which alters metabolism and energy balance; thus, contributing to 

milk decline (Collier et al., 2017). Some transcriptomic studies (e.g., Kim et al., 2017) have 

found evidence of genes and pathways related to the nervous system (neuroactive ligand-

receptor interaction) in avian species under heat stress conditions. Pegolo et al. (2018) found 

that genes associated with milk proteins in dairy cattle are involved with neuronal and 

hormonal signalling. More studies are needed to understand the genetic basis and biological 

pathways underpinning the neuronal system in dairy cattle under heat stress conditions, which 

may encourage new interventions to minimise production losses. 

2.6. Management solutions to combat heat stress 

 Various short-term heat stress mitigation strategies have been implemented with some 

degree of success, including environmental modifications to prevent or limit heat exposure 

(e.g., the use of shades, sprinklers, and fans) and nutritional interventions aimed at increasing 

feed intake and decreasing metabolic heat production (Renaudeau et al., 2012; Fournel et al., 

2017).  

 In Australia, the Cool Cows program (https://coolcows.dairyaustralia.com.au/) 

provides dairy farmers with practical solutions to effectively deal with heat stress, particularly 

using shades, sprinklers, and fans. The cost-benefit analyses of various heat abatement 

strategies are also provided in the tool. In Australia, Nidumolu et al. (2010) demonstrated that 

shade is more effective as a cooling strategy for ameliorating heat than sprinklers. These 

authors found that the mean THI for shade and spray treatment over the 182 days were 70.1 

and 73.4, respectively, suggesting that using spray likely adds more relative humidity. The 

study also found that animals left in the open without any adaptation exhibited the greatest milk 

loss; thus, emphasizing the importance of adopting mitigation strategies. While such adaptation 

strategies are generally effective in combating heat stress, the additional production costs 

associated with implementation will eventually have implications on the net marginal income 

in the dairy farms. It is estimated that the energy expenditure associated with cooling cows 
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costs an additional USD 0.86 per weight of milk in the warmest regions of the USA (Key et 

al., 2014). Apart from the costs, the large volume of water required for cooling further casts 

doubt on the future sustainability of cooling strategies, especially in regions where water 

availability is limited or restricted (Polsky and von Keyserlingk, 2017). Since dairying in 

Australia is predominantly seasonal pasture-based, the implementation of such interventions 

can be challenging and cost-prohibitive for farmers with limited budgets. However, with no 

alternative option, some farmers are currently implementing such cooling strategies in many 

countries, including some dairy regions in Australia such as New South Wales and Queensland. 

To facilitate management decisions, intelligent tools that provides heat alerts 

(https://dairy.katestone.com.au/) have been developed for use by Australian dairy farmers. 

 Various nutritional strategies to cope with heat stress include ration modification, 

restricted feeding, and shifting feeding time (West, 2003, Wheelock et al., 2010). The general 

goal of these strategies is to maintain homeostasis and prevent nutrient deficiencies (Mader, 

2003, Das et al., 2016). Since heat stress reduces feed intake, a common strategy in ration 

formulation is to reduce fibre content and increase concentrates while taking care not to induce 

rumen acidosis (Baumgard et al., 2014). The most common and critical well-known strategy 

in managing heat-stressed cows is to provide adequate, cold, and clean water. 

 While heat abatement solutions have been quite successful, it is expected that 

production will continue to be negatively affected by chronic heat (Renaudeau et al., 2012). 

Furthermore, as water scarcity continues to become a challenge and the cost of cooling 

increases, long-term selective breeding for heat tolerance will be inevitable. In the following 

sections genetic solutions to improve heat tolerance are reviewed. 

2.7. Genetics of heat tolerance to combat heat stress 

 Heat tolerance is the ability of an animal to maintain thermal stability at high 

temperatures and humidity (Carabaño et al., 2019), largely governed by the relationship 

between heat dissipation capacity and metabolic heat production. The main biological 

determinants of heat tolerance in animals include the relative body surface area (Berman, 

2003), sweating rate (determined by the morphology, density, and water transfer capacity of 

sweat glands) (Bru et al., 1987), coat characteristics (length, thickness, colour, weight per unit 

surface, etc.) (Olson et al., 2003, Dikmen et al., 2008, Collier and Collier, 2011) as well as the 

rate of metabolic heat production and dissipation (e.g., lactating versus non-lactating cows) 

(Bernabucci et al., 1999, Farooq et al., 2010). The genetic variants underpinning these 

19

https://dairy.katestone.com.au/


 
 

 

 

biological and morphological aspects in animals are still poorly understood. As the climate gets 

warmer, the selection of animals with superior genetic traits for heat tolerance is gaining 

increasing interest globally using several approaches, which I will now discuss. 

2.7.1. Use of adapted breeds, crossbreeding or gene editing 

 Considerable genetic variation exists for heat tolerance between and within individuals 

of a breed (Ravagnolo and Misztal, 2002, McManus et al., 2009, Renaudeau et al., 2012, 

Gantner et al., 2017). The literature is rich, showing that the adapted tropical cattle have the 

inherent ability to resist environmental stressors (heat, disease, parasites, poor nutrition, etc.), 

which can be exploited to improve resilience in temperate breeds. For example, the tropical 

local Bos indicus breeds (Figure 2-5) have superior heat tolerance ability than temperate Bos 

taurus breeds (Hansen, 2004). Besides the morphological adaptations (sweating capacity, hair 

coat characteristics, tissue insulation), the heat tolerance ability of tropical Bos indicus is 

associated with small body size and low production level compared to Bos taurus (Figure 2-5) 

breeds (Berman, 2011, Collier and Collier, 2011). The low productivity of these indicus breeds 

is considered unsuitable for high production in temperate climates; but can be very important 

for successful breeding in harsh and hot climatic conditions (Renaudeau et al., 2012). It is 

believed that Bos indicus breeds acquired thermotolerance genes after sustained exposure to 

hot and harsh environments following domestication (Hansen, 2004, Collier and Collier, 2011). 

Thus, the adaptive genes for heat tolerance can be identified and introduced to crossbreds, or 

in high-producing heat susceptible breeds (Mcmanus et al., 2014) either using crossbreeding 

strategies or genome editing. 
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Figure 2-5 Bos taurus (Jersey and Holstein), Bos indicus (Boran), and composite breed (Senepol). 

Photo credit: Holstein and Jersey – https://domesticanimalbreeds.com; Senepol – 

https://learnnaturalfarming.com/senepol-cattle-breed/; Boran – https://www.boran.org.za. 

 Unlike Bos indicus breeds, Bos taurus breeds are well known for high milk production 

but generally more susceptible to heat stress, thus less adapted to harsh and hotter climatic 

conditions. Variations in heat tolerance also exist between Bos taurus cattle breeds. For 

example, greater heat tolerance in Jerseys than in Holsteins has been documented, although 

Holsteins generally produce more milk (Bryant et al., 2007b). These researchers also found 

that the New Zealand Holsteins appear to exhibit higher reductions in milk yield in hotter 

climates than Jerseys or crossbreds, indicating lower heat adaptation for Holsteins. 

 Crossbreeding can be exploited to introgress genes from breeds adapted to heat stress 

to high producing yet heat susceptible animals. Crossbreeding exploits breed complementarity 

and heterosis, and is beneficial for low to moderately heritable traits, such as heat tolerance 

(Bourdon, 2000). Recently, Buckley et al. (2014) presented a comprehensive review of past 

crossbreeding practices in dairy cattle. The authors noted favourable animal performance in 

crossbreds for fertility and survival traits. It has been shown that crosses of Bos indicus breeds 

with Bos taurus are more heat tolerant compared to pure Bos taurus breeds (Gaughan et al., 

1999, Mcmanus et al., 2014). Among Bos taurus breeds, several studies have reported greater 

heat tolerance for Holstein x Jersey crosses than pure Holstein breeds (Bru et al., 1987, Muller 

and Botha, 1993, Bryant et al., 2007b, Vermunt and Tranter, 2011, Smith et al., 2013). While 

these crossbreeding studies have generally demonstrated superior performance for crossbreds 
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compared to adapted breeds, the adaptive potential to heat stress often reduces in crossbreds 

(Mcmanus et al., 2014). The percentage of adapted breed genetic background required to 

benefit from heterosis advantage for heat tolerance in crossbreds while optimising productivity 

remains unknown. Regarding production traits, a study by Hickson et al. (2014) reported 

heavier birth weight for calves born from Angus crossbred cows compared to purebred Angus 

cows suggesting, in part, the effect of heterosis in crossbred cows. 

 Perhaps a well-known successful application of crossbreeding to improve 

thermotolerance in Holsteins was carried out in the USA by crossing Holsteins with the 

Senepol cattle (Dikmen et al., 2014). The Senepol breed (Figure 2-5) is predominantly Bos 

taurus ancestry and originates from the island of St Croix in the Caribbean (Padda, 1999). The 

individuals of this breed have short sleek hair coat that is known to be a major determinant for 

their inherent thermotolerance. The pioneering work of Olson et al. (2003) identified a major 

gene responsible for the sleek coat in the Senepol cattle, referred to as the SLICK gene. The 

causal mutation for the SLICK gene has been mapped to the prolactin receptor gene (PRLR) 

on chromosome 20 (Littlejohn et al., 2014). These authors described SLICK phenotype to be 

associated with frameshift mutation of single base deletion in exon 10 of PRLR gene which 

causes premature stop codon and loss of carboxyl-terminus of the amino acid from the long 

isoform of the receptor (Figure 2-6). Crossbreeding work of Dikmen et al. (2014) focused on 

introducing the thermotolerance slick PRLR variant of the Senepol cattle into Holsteins. The 

inheritance of SLICK haplotype in crosses was confirmed by an association study with the 

Senepol population (Dikmen et al., 2014). These authors reported lower rectal temperature in 

heat-stressed slick-haired crossbred cows that inherited the SLICK haplotype compared to non-

slick cows. In addition, the slick-haired crossbred cows showed a relatively high sweating rate 

and less reduction in milk yield during heat stress, indicating superior thermotolerance ability 

compared to non-slick cows (Dikmen et al., 2014). Similar work is currently underway in New 

Zealand and Puerto Rico to introduce the SLICK gene to Holstein dairy cattle (Davis et al., 

2017, Hansen, 2020). Overall, the above studies demonstrate the potential to improve heat 

tolerance using either between-breed selection or crossbreeding. However, as to which 

approach is more suitable for fast-tracking the genetic gains for heat tolerance in livestock is 

debatable. Perhaps, combining various approaches is more effective. 
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Figure 2-6 Left picture: SLICK (a) cow and non-SLICK (b) Senepol cows showing causal mutation at 

PRLR gene in chromosome 20 (Littlejohn et al., 2014). Right plot: wild-type (black and wild calf) and 

PMEL mutant Holstein calf (light skin pigmentation) from gene-editing involving three bp deletion in 

chromosome 5 at 57 Mb (Laible et al., 2020). 

 Besides crossbreeding, gene editing is another way to modify or introduce 

thermotolerance genes into heat-susceptible animals. Gene editing tool has been successfully 

used to improve growth, diseased resistance, and welfare (e.g., hornless cattle) in farmed 

animals (see comprehensive review by Tait-Burkard et al., 2018). The utility of this method to 

thermotolerance traits in animals is currently at the early stages in the dairy industry and is 

attractive because it could potentially facilitate a more rapid and targeted transfer of the 

desirable genes instead of wholescale gene transfer via crossbreeding (Hansen, 2020). 

Therefore, it may be more suitable for modifying traits controlled by few alleles with large 

effects. Recent work in New Zealand (Laible et al., 2020) has attempted to lighten the coat 

color of Holsteins (Figure 2-6) through gene editing of the pre-melanosomal protein 17 gene 

(PMEL) aimed to reduce absorption of solar radiation under hot weather conditions. Although 

this study was successful in producing PMEL-mutant calves (Figure 2-6) they, unfortunately, 

died within four weeks of birth, meaning that the benefits of this gene-editing with respect to 

performance and heat tolerance could not be assessed.  

 Since heat tolerance is antagonistically correlated with the level of milk production 

(Ravagnolo and Misztal, 2000), it may be more strategic to use gene editing to improve heat 
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tolerance while safeguarding milk yield. However, since heat tolerance is a highly polygenic 

trait (i.e., controlled by many genes or alleles), it may be cumbersome to simultaneously edit 

multiple alleles. Therefore, genome editing needs to be incorporated with other genetic 

solutions such as genomic selection. Notably, genetic targets associated with heat tolerance for 

editing are still largely unknown in cattle and other animals. 

2.7.2. Selection of heat tolerance within breeds and measurable phenotypes 

 There is a strong desire to improve heat tolerance within breeds for two main reasons. 

First, milk production is the main driver of dairy profitability worldwide. Therefore, improving 

heat tolerance in high-producing breeds such as Holsteins helps to maintain milk production. 

Second, breeding in the dairy industry is mostly based on the within-breed selection principle 

mainly on sire-pathway. Notably, the genetic variation that exists within breeds provides an 

excellent opportunity to improve heat tolerance while maintaining milk volume. This was 

demonstrated by the work of Nguyen et al. (2016) who identified heat-tolerant individuals 

within Holstein cows that were confirmed in a later controlled study to exhibit better 

thermoregulation abilities and lower reduction of their milk yield under heat stress compared 

to the heat susceptible cows (Garner et al., 2016). While it is widely known that inherent genetic 

differences (coat color, body size, sweating capacity, hair coat characteristics, tissue insulation, 

production level, etc.) confer thermotolerance between breeds (e.g., Bos indicus versus Bos 

taurus breeds), the genetic mechanisms that allow individuals within a breed to differ in 

thermotolerance are still poorly understood. 

 It is necessary to define a measurable trait for heat tolerance to identify and select heat-

tolerant animals. Measures of body temperature (rectal, vaginal, rumen temperature, etc.) (e.g., 

Dikmen et al., 2008, Otto et al., 2019), performance (production, reproduction, health) (e.g., 

Ravagnolo and Misztal, 2000, Nguyen et al., 2016) and physiological (respiratory rate, 

sweating rate) (e.g., Dikmen et al., 2015) traits under heat stress conditions have been used to 

describe heat tolerance in dairy cattle and other livestock species. Previous studies, e.g., 

(Dikmen et al., 2008, Garner et al., 2016) have consistently demonstrated that heat tolerance 

animals can maintain lower core body temperature during heat stress due to their superior 

thermoregulatory abilities (Figure 2-7). This trait is often considered as a ‘gold standard’ 

measure of heat tolerance in cattle (Carabaño et al., 2019). 
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Figure 2-7 Intra-vaginal temperature for heat tolerant versus heat susceptible cows measured at 

different time points under experimental conditions with heat chambers in Australia [Source; Garner et 

al. (2016)]. 

 The decline of milk, fat, and protein yield as a function of the environmental heat load 

is the most frequently used proxy of heat tolerance (e.g., Ravagnolo et al., 2000, Bohmanova 

et al., 2007, Aguilar et al., 2009, Sánchez et al., 2009a, Boonkum et al., 2011, Brügemann et 

al., 2011) as illustrated in Figure 2-8. The smaller rate of decline in performance with increasing 

heat loads is a characteristic of greater heat tolerance (Ravagnolo and Misztal, 2000, Ravagnolo 

et al., 2000). Also, the higher the THI threshold at which the performance begins to decline 

indicates greater heat tolerance (Sánchez et al., 2009b). Notably, the rate of milk decline for 

each animal (Figure 2-8) was used throughout this thesis to describe heat tolerance. 
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Figure 2-8 Describing heat tolerance. Cow A and B produce comparable quantity of milk at 

thermoneutral conditions (i.e., at low THI). As the temperature and humidity increases, the milk yield 

at first remains unaffected up to a given point called a threshold at which the milk begins to decline for 

both cows, but the rate of decline (indicated by slopes) is larger for Cow B than Cow A. Therefore, Cow 

A is considered more tolerant to heat than cow B. This thesis used the slope traits for milk, fat, and 

protein yield to define heat tolerance (image credit: Dr Thuy Nguyen; DataGene Ltd, Melbourne, 

Australia). 

 Modelling heat stress based on the decline in production traits has allowed the use of 

large datasets available from milk recordings that are combined with climate data from public 

weather stations (e.g., Ravagnolo and Misztal, 2000, Nguyen et al., 2016). However, such 

phenotypes do not fully capture heat tolerance, particularly when milk reduction due to heat 

stress is estimated from less frequently recorded test day milk production. Furthermore, test 

day variation in the physiological status of the animals and possible differences in acclimation, 

if not accounted for can result in biased estimates of the responses to heat stress among the 

animals. The heritability estimates of heat tolerance measured based on the rate of milk decline 

under heat stress in dairy cattle is low (~0.1) to moderate (~0.30) (Ravagnolo and Misztal, 

2000, Brügemann et al., 2011, Carabaño et al., 2014, Nguyen et al., 2016), while that of rectal 

temperature under heat stress conditions is 0.17 (Dikmen et al., 2012). 
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 Heat stress triggers various physiological conditions resulting in up- or down-regulation 

of metabolites in plasma and milk that can be used as biomarkers of heat stress. Several plasma 

biomarkers have been identified, including urea, insulin, and glucose (Wheelock et al., 2010), 

HSP70 (Gaughan et al., 2013), NEFA (O’brien et al., 2010) as well as cortisol (Pereira et al., 

2008). While these candidate biomarkers are generally associated with heat stress, it is not yet 

conclusive as to which set of biomarkers are most suitable for identifying thermotolerant 

animals. Furthermore, anecdotal reports are available on whether these plasma biomarkers are 

better indicators of heat stress compared to conventional measures of milk decline.  

 Apart from plasma, milk biomarkers are considered as most promising indicators of 

heat stress since they are non-invasive to the animals and large-scale on-farm data can be 

obtained. Hammami et al. (2015) and Liu et al. (2017) found that among the lipids, C18:1 cis-

9 fatty acids and Lysophosphatidylcholine polar lipids are the most sensitive to heat stress and 

can be used as potential biomarkers for heat tolerance. In the metabolomic work of Tian et al. 

(2016), 10 potential heat stress milk biomarkers were reported, including the C18:1 cis-9 fatty 

acids. 

 With the recent advancement in sensor technology, exciting opportunities are emerging 

to both scale up measurable data and to capture novel traits for heat tolerance and other complex 

traits in real-time. Novel wearable sensor devices are now available that can measure heat stress 

based on body temperature (e.g., Kou et al., 2017) and breathing dynamics (Bar et al., 2019) 

on an almost continuous basis. Some studies have reported a good agreement between the data 

from wearable devices and those from vaginal or rectal measurements [see review by Koltes et 

al. (2018)]. However, since animals differ in how they respond to heat, it is important to 

rigorously validate wearable measuring devices to minimise risks (Pryce et al; unpublished). 

Ultimately, the availability of large-scale data from sensor devices in the foreseeable future 

may facilitate a comprehensive assessment and a more accurate selection of heat-tolerant 

animals. 

2.8. Genomic selection 

 Genomic selection (GS) is a revolutionary tool that uses genomic markers to estimate 

breeding values of animals, first described by Meuwissen et al. (2001). GS is based on the basic 

principle that the existence of linkage disequilibrium (LD) between one or several markers 

(e.g., SNPs) and the quantitative trait loci (QTL) can be used to explain variations in 

quantitative traits. In practice, GS involves deriving prediction equation from a reference 
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population with both phenotypic (e.g., milk production, fertility, conformation traits, etc.) and 

genotypic information (e.g., the standard 50k array) (Figure 2-9). This prediction equation is 

generated from the reference population and used to estimate breeding values for each animal 

by combining marker genotypes (often coded as 0, 1, and 2 based on the minor allele dosage) 

and their effects. This prediction equation can be used to compute breeding values from another 

set of genotyped animals with no phenotypic records. These animals are then ranked based on 

their genomic breeding values (GEBVs) to select the best animals for breeding.  

 The use of GS has been a breakthrough of the recent decade, particularly in overcoming 

the limitations of conventional breeding techniques. Specifically, GS is advantageous for 

several reasons: 1) it allows selection of animals early in life, thereby reducing generational 

interval; thus, greater genetic gain (García-Ruiz et al., 2016), 2) it is not limited to sex 3) it is 

advantageous for a hard-to-measure or expensive-to-measure traits (Eggen, 2012) and 4) it 

provides more accurate breeding values and reduces the cost of proving bulls (Schaeffer, 2006, 

VanRaden et al., 2009). The generation interval (the average age of the parents at birth of their 

progeny) in dairy cattle (as described in the following genetic response model) has been 

dramatically reduced by more than half after the introduction of GS: [(∆𝐺 =  𝑟 ∗ 𝜎𝑔 ∗ 𝑖 𝐿⁄ ), 

where G = annual change of trait’s genetic merit, r = accuracy of selection (correlation between 

breeding values and estimated breeding values), 𝜎𝑔 = amount of genetic variation, i = selection 

intensity, L = generation interval]. This has allowed rapid genetic improvement, especially for 

complex traits. 
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Figure 2-9 Genomic selection involves deriving prediction equation from a reference population with 

both phenotypic and genotypic information. This prediction equation can be used to compute breeding 

values from another set of genotyped animals with no phenotypic records. These animals are then 

ranked based on their genomic breeding values (GEBVs) to select the best animals for breeding.  

 Fertility and feed conversion efficiency are among the traits that are difficult or 

expensive to measure, which have benefited considerably from GS. In Australia, promising 

estimates of the accuracy of genomic prediction of feed efficiency have been achieved and are 

now incorporated in the national selection indices (Pryce et al., 2012, Pryce et al., 2018). Also, 

favourable accuracies of GEBV for fertility traits have been reported in dairy cattle (Wiggans 

et al., 2011, Zhang et al., 2014). Besides fertility and feed efficiency traits, genomic selection 

for heat tolerance in the livestock industry has received growing attention in recent years, 

driven by the desire to cope with the effects of global warming. 

 Recently, the potential of genomic selection for heat tolerance in Australian dairy cattle 

was demonstrated by (Nguyen et al., 2016, 2017). In that work, heat tolerance was estimated 

by using test-day records for milk, fat, and protein yield that were matched with meteorological 

data from public weather stations near dairy herds. Heat tolerance was described as the rate of 
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decline in milk yield (also defined as heat tolerance slope traits) with increasing variability of 

heat stress using reaction norm models. With the slope traits (milk, fat, and protein), GEBV 

were calculated using a prediction equation that was derived from the medium-density (50k) 

SNP markers. Then, GEBV for three slope traits (milk, fat, and protein) were combined to 

obtain Australian Heat tolerance breeding value (HT GEBV) for use by farmers (Nguyen et al., 

2017). These breeding values were standardised to have a mean of 100, such that if, for 

example, a bull has a value of 105, then its daughters are expected to be 5% more tolerant to 

heat than daughters of the average bull and vis versa for the bull with HT GEBV value of 95. 

The study reported promising accuracies ranging from around 40% to 60% in Holsteins and 

Jerseys (Nguyen et al., 2016). GEBVs for heat tolerance are now available to Australian dairy 

farmers to choose animals that can withstand heat stress (Nguyen et al., 2017, Pryce et al., 

2018). Australian national selection index (Balanced Performance Index, BPI) favours 

production and does not currently include heat tolerance traits. However, it is worth considering 

this trait in the selection index to improve resilience. 

 While the accuracies of GEBVs reported by (Nguyen et al., 2016) are encouraging and 

adequate, higher values are desirable such as those for production traits with estimates as high 

as 0.80 (e.g., recent data from DataGene; https://datagene.com.au/; accessed October 2021). 

Even a small increase in prediction accuracy is a bonus to the dairy industry since genetic 

improvement is linearly correlated with the selection accuracy component of the mathematical 

formula for determining genetic change (described earlier). One way to boost the prediction 

accuracy of heat tolerance is to enlarge the size of the reference population used for estimating 

SNP effects and then develop a prediction equation for calculating GEBVs. Initiatives are now 

being undertaken in Australia to increase the size of the female reference population through 

the Genomic Information Nucleus (Ginfo) project (Pryce et al., 2018). Another way to increase 

the accuracy of prediction is to leverage the availability of dense molecular makers. This option 

is strongly influenced by research, thanks to the availability of tens of thousands of genetic 

variants following recent advancements in genotyping technologies. To maximise benefits 

from the genetic variants, thousands of animals with phenotypes must be genotyped at 

reasonable depth so that the variants are in strong or perfect LD with the causal mutations for 

a trait. It is still quite expensive to sequence thousands of animals to the whole-genome 

sequence level. However, the 1000 Bull Genome project (Hayes and Daetwyler, 2019) is 

currently an excellent resource to impute animals with phenotypes that were genotyped with 
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lower density SNP chip to a whole-genome sequence level. To facilitate imputation, the Run7 

of the 1000 Bull Genome project currently hosts a collection of reference datasets for over 

3,000 cattle from multiple collaborators around the world (Hayes and Daetwyler, 2019). 

 Several studies have tested the utility of imputed whole-genome sequence in improving 

the accuracy of prediction for various traits in cattle (Calus et al., 2016), sheep (Moghaddar et 

al., 2019), and avian species (Heidaritabar et al., 2016). However, these studies have found 

little or no appreciate gains in accuracy when lower-density SNP arrays (50k or HD panels) 

were replaced with the full set of imputed whole-genome sequence variants (WGS). Besides, 

using a full set of WGS data for genomic predictions come with a huge computational cost and 

may not be feasible in some cases. An alternative approach in which a substantial increase in 

the prediction estimates has been reported in both simulation and real studies is by carefully 

selecting causal or predictive sequence variants and then adding them to the lower density SNP 

panels (50k or HD panels) (Brøndum et al., 2015, van den Berg et al., 2016, Al Kalaldeh et al., 

2019, Moghaddar et al., 2019). For example, an increase in prediction accuracies of up 25% 

has been reported for some complex traits such as parasite resistance in sheep based on this 

approach (Al Kalaldeh et al., 2019). A critical first step in this approach is to perform an 

association or fine-mapping study to identify and prioritise genetic variants for a trait (s). The 

following sections review previous genome-wide association studies (GWAS) to identify 

genetic variants associated with heat tolerance in dairy cattle. 

2.9. Genome-wide association studies (GWAS) for heat tolerance traits 

 GWAS exploits linkage disequilibrium (LD) to identify genetic markers that tag causal 

mutations for a trait. While numerous GWAS have been conducted for various traits in 

livestock, specific studies aimed at searching for genes that contribute to heat tolerance in 

animals are very scarce, implying that the genetic architecture of this trait is still not well 

characterised. 

 Hayes et al. (2009) performed GWAS to identify QTL associated with milk yield 

response to heat stress in Australian Holstein-Friesian bulls (n = 781). The study estimated 

slope traits based on sires’ daughter yield deviation (n = 62,343) as a function of THI.  The 

study reported 42 significant SNPs associated with response to heat stress (THI slope), of which 

one SNP (BFGL-NGS-30169) on chromosome 29 at 48329079 was independently validated in 

Holstein and Jersey breeds. Moreover, these authors reported three significant SNPs that were 

validated only in Holstein cattle: BFGL-NGS-139 (BTA 8), BFGL-NGS-89500 (BTA 10), and 
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BFGL-BAC-38208 (BTA 25). The candidate region at BTA 29 harbours the FGF4 gene 

associated with thermotolerance (Hayes et al., 2009). In a later study in Australia, Wang et al. 

(2017) found at least 14 candidate genes associated with milk production (milk, fat, and 

protein) decline under heat stress, including YBEY, SERPINE2, HSF1, STIP1, and CACNA1D 

genes. 

 Dikmen et al. (2013) performed GWAS using rectal temperature (RT) for 1,440 

Holstein cows in the USA and THI. Analysis was performed based on the SNP windows 

ranging from 2 to 10 adjacent SNPs. The largest proportion of SNP variance (0.07% - 0.44%) 

explained by markers was located between 28,877,547 and 28,907,154 bp on BTA 24 (Dikmen 

et al., 2013). This region harbours the U1 spliceosomal RNA (U1) and NCAD cadherin-2 genes. 

Other top-ranking SNPs associated with RT based on 5-SNP window analysis reported by these 

authors include SNPs on BTA 5 at position 89512928; BTA 26 at position 20259486; BTA 16 

at 35230105 and BTA 4 at 64386271. 

 In a follow-up study, Dikmen et al. (2015) investigated whether they could replicate 

candidate thermotolerant SNPs identified in the previous GWAS studies (Hayes et al., 2009, 

Dikmen et al., 2013). Also, several well-known candidate thermotolerant SNP genes (ATPA1A, 

HSP70A, HSP90AB, PPARA) were investigated. They used three heat tolerance traits: rectal 

temperature, respiratory rate, and sweating rate. The study confirmed six candidate SNPs from 

previous GWAS and identified new putative markers (n = 20) associated with heat tolerance 

traits. For example, the BFGL-NGS-30169 SNP validated by Hayes et al. (2009) in Jerseys and 

Holsteins was found to be significantly associated with sweating rate. The small number of 

heat tolerance SNPs replicated in this study was attributed to the low reliability of the current 

GWAS studies, small sample sizes used in the earlier GWAS, and low heritability of heat 

tolerance traits. 

 Howard et al. (2014) performed a GWAS in crossbred steers and heifers to identify 

genomic regions associated with heat and cold stress. Heat tolerance trait was defined as 

averages of hourly tympanic and vaginal temperature recordings during summer and winter. 

Comprehensive Climate Index (CCI) as a measure of heat load was derived based on the 

recording of ambient temperature, relative humidity, wind speed, and solar radiation. The study 

identified several genes and functional pathways associated with heat and cold stress, including 

apoptosis (RIPK1), pentose phosphate pathway (FBP1 and FBP2), ion regulation (PRKCB and 

CACNG3), body weight and feed intake (NBEA), heat shock protein response (HSPH1), 
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generation of precursor metabolites and energy (COX7C), (Howard et al., 2014). Notably, these 

authors found that different sets of genetic markers appear to control the extremes of 

temperatures (cold versus heat), indicating the possibility of breeding for robustness against 

heat stress. 

 Macciotta et al. (2017) followed a similar approach as Hayes et al. (2009) to identify 

SNP associated with heat tolerance. Heat tolerant traits were derived from daughter trait 

deviations (DTD) of 423 bulls based on the principal component analysis of milk yield traits. 

The first principal component (PC) was interpreted as the intercept and the second component 

was the slope as in Hayes et al. (2009) (i.e., the rate of milk decline with increasing variability 

in heat stress). The authors reported 8 significant SNPs, of which 2 (ARS-BFGL-NGS-29678 

and Hapmap32110-BTA-153952) in BTA 6 and 26 were associated with the response of milk 

yield to heat stress. One SNP (ARS-BFGL-NGS-19275) associated with the response of protein 

content to heat stress was mapped to BTA 6. None of the significant SNPs identified in previous 

studies were replicated in this study. 

 Recently, Otto et al. (2019) conducted a GWAS in Gir × Holstein crossbred cattle in 

Brazil using measures of rectal temperature to describe heat tolerance and the 50k SNP panel. 

These authors reported several genes for heat tolerance, including LIF (Leukemia inhibitory 

factor), OSM (oncostatin M), DGCR8 (DGCR8 microprocessor complex subunit), and 

TXNRD2 (thioredoxin reductase 2) genes. Some of these genes are involved in the regulation 

of heat shock proteins (HSP) genes and oxidative stress in animals. In another study in the 

Florida-US, Sigdel et al. (2019) used the rate of milk decay as a function of THI to describe 

heat tolerance as in (Hayes et al., 2009) and the 50k SNP panel in their GWAS and found at 

least three candidate genes including MAPK8IP1, HSF1, and CDKN1B in BTA 5, 14, 15, 

respectively. HSF1 gene has been repeatedly linked with thermal stress in various studies in 

cattle (Li et al., 2011, Wang et al., 2017, Rong et al., 2019, Garner et al., 2020). Also, Sigdel 

and colleagues conducted a GWAS on reproductive performance (conception rates) in US dairy 

cows and found several candidate genes involved with fertility functions under heat stress, 

including BRWD1, EXD2, ADAM20, EPAS1, TAOK3, and NOS1 (Sigdel et al., 2020). More 

recently, Luo et al. (2021) did a GWAS for morning and afternoon rectal temperature in 

Chinese Holstein cattle and found 10 significant SNPs mapping on chromosomes 3, 4, 8, 13, 

14, and 29. Two candidate genes mapping to some of these SNPs (FAM107B and PHRF1) 
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were subsequently validated in an mRNA expression analysis of peripheral blood mononuclear 

cells. 

 Besides GWAS above, several genome-wide scan of signatures of selection (SS) have 

been conducted to find genes for thermotolerance in cattle (Taye et al., 2017, Li et al., 2020b, 

Freitas et al., 2021). Taye et al. (2017) did SS in African indigenous breeds that are adapted to 

hot tropical climates and identified over 200 significant genes associated with heat tolerance. 

Some of the genes were reported to be involved in functions such as oxidative stress response, 

heat shock response, and sweat gland development. Similarly, Li et al. (2020b) performed SS 

in zebu breed (Dehong humped cattle) that is adapted to hot tropical conditions of southwestern 

China and detected several genes and pathways that contribute to heat tolerance: heat shock 

(HSF1) and oxidative stress response (PLCB1, PLCB4), coat color (RAB31), feed intake 

(ATP8A1, SHC3) and reproduction (TP63, MAP3K13, PTPN4, PPP3CC, ADAMTSL1, 

SS18L1, OSBPL2, TOX, RREB1, GRK2). Recently, Freitas et al. (2021) conducted SS in the 

various cattle breeds including Chinese local breeds and found multiple genes and pathways 

related to heat tolerance such as heat-shock proteins, oxygen transport, anatomical traits, 

mitochondrial DNA maintenance, metabolic activity, feed intake, carcass conformation, 

fertility, and reproduction. Overall, the large number of genes and diverse biological pathways 

identified in the above studies suggest complexity and polygenic nature of heat tolerance trait. 

 The SLICK locus, responsible for sleek hair coat in the Senepol cattle, has been strongly 

associated with thermotolerance (Olson et al., 2003, Dikmen et al., 2008, Dikmen et al., 2014). 

Previous association analysis revealed strong causal single mutations in prolactin (PLR) at the 

10th exon of the prolactin receptor (PRLR) genes (Littlejohn et al., 2014). In a recent GWAS of 

the Limonero cattle, additional truncation mutations in the 11 th exon of the PRLR was identified 

as responsible for the slick coat (Porto-Neto et al., 2018). The authors noted that these 

mutations could not explain all the variations in the slick coats of the study individuals 

suggesting the possibility more causal mutations. Apart from the SLICK gene polymorphisms, 

there are currently no other genetic variants that have been described to have clear and 

beneficial effects on heat tolerance in dairy cattle. 

 In summary, several key points emerge from the reviewed GWAS studies. Firstly, it is 

obvious there are limited GWAS studies for heat tolerance traits, most of which have been 

performed on Holstein breeds. Secondly, GWAS for heat tolerance seems to be underpowered 

as evidenced by the lack of repeatability of the results in the studies reviewed. Among the over 
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500 candidate variants for heat tolerance reported in various, very few could be confirmed in 

some later studies. Poor replication of these GWAS studies for heat tolerance could be related 

to several factors: 1) variation in sample sizes and genetic difference across populations used 

(e.g., the LD level); 2) multiple correction tests which limit the number of significant 

detections; 3) failure of the markers to capture genetic variation in the trait. For heat tolerance, 

a common problem that can likely contribute to poor repeatability is the heterogeneity of the 

methods as well as definitions of the traits used in GWAS studies. Variations in the calculations 

of environmental heat load (reviewed in section 2.3) can also have impact on the outcome of 

the GWAS for heat tolerance. The differences in the choice of the heat tolerance trait is also an 

issue in GWAS studies (Carabaño et al., 2017). For example, Hayes et al. (2009) and Macciotta 

et al. (2017) evaluated heat stress based on the decay of milk production whereas other GWAS 

studies have often used direct measurements of body temperature (e.g., Howard et al., 2014, 

Dikmen et al., 2015). Nevertheless, using a large sample size and high-resolution sequence 

variants has a potential to find important genetic variants or SNPs for heat tolerance. As sample 

size increases, the loci significantly associated with complex traits are expected to increase 

(Wood et al., 2014). In addition, the increased availability of high-resolution whole genome 

sequencing data in dairy cattle is likely to improve power and precision of understanding the 

genetic architecture of heat tolerance, as demonstrated for complex traits in humans such as 

Parkinson disease (Maraganore et al., 2005). 

2.10. G × E in the context of heat tolerance  

 Genotype by environment interactions (G × E) exists when a trait value or the 

performance of genotypes varies across different environments (Falconer and MacKay, 1996). 

In this case, heat tolerance can present challenges in optimizing breeding across different 

climatic conditions or heat stress levels. For example, to optimise production across different 

production environments, the warmer subtropical regions of Australia may require a different 

set of heat-tolerant genotypes compared to cooler regions, such as Tasmania. 

 G × E for heat tolerance is of great importance both at regional and global dairy 

industries owing, in part, to the current extensive use of very few elite sires across diverse 

farming systems and climatic conditions within and between countries, facilitated mainly by 

Artificial insemination (AI). In Australia, (one of the largest countries in the world), dairying 

is distributed across a wide range of environments characterised by different factors, including 

production systems (e.g., pasture-based, and intensive), feeding level, herd (composition and 
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size), and climatic variables (e.g., regional differences in ambient temperature and relative 

humidity). Dairy farming is mostly located in temperate coastal areas predominantly around 

Victoria. Most dairy herds (~70 – 75%) are reared on pasture, with varying level of 

supplementation (Dairy Australia, 2017). The dairy herd of around 1.74 million cows is mainly 

composed of a wide array of breeds (Dairy Australia, 2017). The cow populations are 

composed of the Holsteins (~ 60%), Jersey (~ 11%), and their crosses (~ 5%) (DataGene, 2016, 

Dairy Australia, 2017). The national herd recorded cows is concentrated in Victoria’s dairying 

region (63%), especially along coastal regions (Figure 2-10), while the rest come from New 

South Wales (14%), Queensland (7%), South Australia (7%), Tasmania (5%) and Western 

Australia (4%) (DataGene, 2016). There is considerable variation in the climatic conditions 

among the dairying regions in Australia (i.e., subtropical versus temperate regions), with dairy 

cows experiencing a varying level of heat stress in all regions (Figure 2-10). Generally, the 

average ambient temperature is the highest in Queensland and lowest in Tasmania. Seasonal 

variations in weather conditions are characterised by hot summers and moderate winters, 

meaning that animals are exposed to different environments during the year (Figure 2-10). 

Daily average temperature and humidity can vary substantially within and between dairy 

regions with temperatures in Northern Victoria, for example, ranging from –5 to 38 oC (Nguyen 

et al., 2016). Considering these factors shaping then Australian dairy landscape, G × E due to 

heat stress may be relevant and needs to be investigated and accounted for in breeding 

programmes. 

 

Figure 2-10 Average number of days per year with different range of temperature-humidity index 

(THI): THI < 60, 60 ˂ THI ≤ 65, 65 ˂ THI ≤ 70, and THI ≥ 65 (Nguyen et al., 2016) across different 
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dairying regions in Australian (Dairy Australia, 2020). The percentage values represent the proportion 

of herds in major dairy regions based on data from DataGene (DataGene, 2016). 

 The genotypes (G) compared in previous G × E studies for heat tolerance in dairy cattle 

included breeds and individuals within breeds (Hayes et al., 2003, Bryant et al., 2007a, 

Bohmanova et al., 2008, Haile-Mariam et al., 2008, Carabaño et al., 2014, Hammami et al., 

2015, Santana Jr et al., 2017) and SNP genotypes (Hayes et al., 2009). The commonly used 

environmental descriptor (E) in G × E studies for heat tolerance is the THI. 

 The magnitude of G × E is often quantified by genetic correlations of a trait (s) between 

environments, with values ranging from zero to unity. The higher the genetic correlations, the 

lower the G × E and vis versa. Typically, production traits have a higher genetic correlation 

(i.e., smaller G × E) than functional traits such as fertility (Mulder et al., 2006). G × E can take 

2 major forms (Figure 2-11): a) rank-change G × E, where genotypes are ranked differently in 

different environments b) scaling G × E, where the genotypic performance varies across 

different environments, but no rank change occurs (Falconer and MacKay, 1996). The presence 

of rank-change G × E is challenging in animal breeding if the objective is to optimise genetic 

improvement across diverse production environments. As a guiding principle, if the genetic 

correlation between two environments is lower than 0.80 then it may be necessary to have 

separate breeding programmes for each environment (Mulder et al., 2006). In the case of heat 

stress, for example, one environment could be Tasmania (with relatively lower heat loads) and 

another environment could be Queensland (with relatively higher heat loads). 
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Figure 2-11 Schematic representation of scaling and re-ranking G × E for two sires across three 

different temperature-humidity index (THI) environments. 

 G × E resulting from heat stress for various traits has been previously investigated in 

Australia. Hayes et al. (2003) found minimal G × E, with the genetic correlation of 0.90 for 

protein yield at the 5th and 95th percentiles of THI in Australian Holstein-Friesian cows (these 

percentiles represent low and high heat environments). Similarly, Haile-Mariam et al. (2008) 

reported considerable G × E for fertility traits, with genetic correlations of 0.79 between the 5th 

and 95th percentile of THI. These studies indicate a lack of significant re-ranking of Australian 

sires resulting from heat stress for the traits investigated. However, larger eff ects of G × E in 

dairy cattle have been reported in other countries. For example, studies in Spain and Belgium 

observed significantly large G × E causing rank-change of sires for fat yield, protein yield, and 

somatic cell count (SCC), with genetic correlations < 0.70 between hot and cold temperatures 

(Carabaño et al., 2014, Hammami et al., 2015). 

 The Australian dairy industry, through the dairy genetic evaluation unit of DataGene, 

was the first country in the world to release the genomic breeding values for heat tolerance in 

dairy cattle following the work of Nguyen et al. (2016) and Garner et al. (2016) (discussed 

earlier). The question now remains whether these genotypes will perform optimally across 
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different production environments, given the diverse climatic conditions in Australia. If 

significant G × E exists, then the genetic gain that will be achieved will be lower-than-expected 

when selection is largely based on an environment where heat stress is less challenging. 

 While some G × E studies on heat tolerance have been carried out in Australia (Hayes 

et al., 2003, Haile-Mariam et al., 2008), there are several other compelling reasons to warrant 

additional studies. Firstly, the previous G × E work on heat tolerance in Australia and other 

countries have focused on Holsteins and to a very limited exten t on Jersey and other cattle 

breeds, presumably due to insufficient data. Secondly, although the effects of heat stress on 

fertility traits are well documented (reviewed by Das et al., 2016), the differences in the 

response to the environments among different genotypes remains poorly understood. Thirdly, 

besides the availability of GEBV for heat tolerance, it is possible that more genotypes (sires) 

and data per sires across different environments have now grown to facilitate better and more 

accurate estimates of G × E with greater reliability. The greater the sample size, the greater the 

likelihood of including unusual reaction norms, hence larger G × E. It is also likely that a larger 

magnitude of G × E has occurred following continued selection for production traits. Fourth, 

the availability of novel phenotypes, such as mid-infrared predicted milk biomarkers (Liu et 

al., 2017), may provide an opportunity to scale up measurements of heat stress, thus better 

estimates of G × E for heat tolerance. Moreover, the increasing trend of warming environments 

from climate change suggest that G × E for heat tolerance may have grown over the last decade 

in Australia. 

2.11. Statistical models used to quantify heat tolerance and G × E 

 The models used for describing heat tolerance are the multi-trait model and the reaction 

norm model. The choice of the two models is often dictated by the environment descriptors. 

The review of each model follows. 

2.11.1. Multi-trait model to estimate G × E 

 Multi-trait models describe the genotype as a function of a discrete environmental 

descriptor. In this model, traits in different environments are considered different but correlated 

traits (Falconer, 1952). A typical example of multi-trait model analysis is the Interbull concept 

of expressing many traits evaluated in different countries as separate but genetically correlated 

traits (De Jong and Bijma, 2002). Several studies have used multi-trait models for investigating 

heat tolerance where the environmental descriptors are based on THI as follows: THI at the 5th 

and 95th percentile (Hayes et al., 2003) or based on THI groups (no HS (THI < 72) and moderate 
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HS (THI ≥ 79) (Hagiya et al., 2017)). Also, the environmental descriptor can be grouped into 

geographic regions defined by different climatic conditions. 

 A simple multi-trait mixed model for two environments (two traits) can be represented 

as an equation as follows: 𝑦𝑖 =  𝑋𝑏𝑖  + 𝑍𝑢𝑖 + 𝑒𝑖 , and in matrix notation:  

[
𝑦1

𝑦2
] =  [

𝑋1 0
0 𝑋2

] [
𝑏1

𝑏2
] +  [

𝑍1 0
0 𝑍2

] [
𝑢1

𝑢2
] +  [

𝑒1

𝑒2
], 

where y1 and y2 are traits records in environment 1 and 2, respectively; b1 and b1 are vectors 

for fixed effects; u1 and u2 are vectors for random effects in environment 1 and 2, respectively; 

X1, X2, Z1, and Z2 are incidence matrices; e1 and e2 are vectors for random residuals. The 

drawback to the model is that it groups an arbitrary number of environments which must be 

limited to meet computational demands required for estimating (co)variance components and 

the convergence of the parameters. 

2.11.2. Reaction norm models for quantifying heat tolerance and G × E 

 The reaction norm model, or the norm of reaction, is the most common and widely used 

model for investigating heat tolerance and G × E in dairy cattle and other livestock species. In 

these models, the pattern of the phenotypic expression of a genotype (e.g., milk production 

traits across different environments) is regressed as a function of the environmental heat load 

(e.g., THI) (Ravagnolo and Misztal, 2000, Ravagnolo et al., 2000). Due to its simplicity, THI 

is used in most studies as an indicator of environmental heat load. 

 Dairy animals often reduce their production performance when THI increases. As such, 

studies have proposed various reaction norm models to quantify heat tolerance by combining 

milk phenotypes and THI. The commonly used model defines the THI threshold at which 

production begins to decline and the rate of linear decline (Ravagnolo and Misztal, 2000), 

referred to as the broken line model (BL) (Figure 2-12). For this model, and in the case of heat 

tolerance, the intercept solutions traits represent the level of milk production while the slopes 

(are the rate of milk decline) are the heat tolerance values for the animals.  This model is 

appealing due to its direct biological interpretation of heat tolerance; that is, the heat-tolerant 

animal will have a higher threshold and the smaller the rate of decline of milk traits (slopes). 

Most studies using BL often assume a common threshold for all individuals and quantifies heat 

tolerance based on the slope parameter. However, there is a concern of possible variation in 

thresholds among individuals, which can bias the estimates when the common threshold is 
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assumed (Sánchez et al., 2009a). Moreover, the BL model assumption of the linearity of the 

production decline after the threshold is unrealistic in some cases (Bernabucci et al., 2014). 

Sánchez et al. (2009b) proposed a hierarchical model which accounts for variation in individual 

thresholds and the slope. The authors found that the individual THI slope and threshold are 

strongly and positively correlated (> 0.95) in terms of environmental and genetic aspects, 

implying that selection based on them will lead to change in the counterpart in the same 

direction (i.e., the higher the threshold leads to greater sensitivity (slope)) (Sánchez et al., 

2009a). The drawback to this model is its complexity resulting in slow mixing and convergence 

rates (Sánchez et al., 2009a). The authors found that constraining the threshold to a common 

estimated value is still required to obtain reasonable estimates for genetic variation for heat 

tolerance.  

 The Legendre polynomials functions in random regression models have also been 

applied to describe the trajectory pattern of heat tolerance traits to increasing heat load (Figure 

2-12). Brügemann et al. (2012) used a third-order Legendre polynomial to describe the effect 

of heat load on protein yield in dairy cows. Similarly, Carabaño et al. (2014) used cubic 

Legendre polynomial to describe heat stress for production traits and somatic cell count. Unlike 

BL models, parameters for Legendre polynomial reaction norms lack direct biological 

interpretation, except for the intercept. In addition, the drawback to Legendre polynomials is 

the lack of asymptotes which can lead to an unrealistic fitting at the extremes of the x-axis, 

especially when the data is sparse at the extremes of the distribution as reported in the work of 

Brügemann et al. (2013). Unexpected trajectories at the extremes of the environmental 

descriptor due to few data points is also an issue when using BL models (e.g., Misztal et al., 

2000). 
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Figure 2-12 Schematic of broken line model (dashed line) and higher order Legendre Polynomial (solid 

line) reaction norm models for individual genetic response to heat stress (adapted from Carabaño et al., 

2017). 

 In addition to quantifying heat tolerance (defined as the slope of the decay in production 

under thermal heat load), reaction norm models have been used to describe G × E for heat 

tolerance across environments. If the reaction norm of an individual is horizontal, then the 

performance does not vary across environments and is said to have low sensitivity to the 

environment examined (Rauw and Gomez-Raya, 2015, Friggens et al., 2017). Conversely, if 

the slope of the reaction norm is not constant, then it implies that the performance of the 

genotypes changes according to the environmental conditions; the steeper slope for an 

individual is indicative of greater environmental sensitivity or G × E. Daughters of sires with 

steep slope are likely to produce less under heat stress conditions and therefore can be used in 

regions with the consistently low heat load. 
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2.12. Summary 

 Heat stress is an issue of growing concern for livestock industries worldwide. Heat in 

dairy cows negatively impacts productivity, and welfare, causing huge losses running into 

millions of dollars in the livestock industries (St-Pierre et al., 2003). Climate changes 

characterised by severe heat events are predicted to continue in the coming decades (BOM, 

2020), meaning that even more economic losses are likely to occur in the future if proactive 

and long-term solutions are not sought to minimize the impacts of the warming climates. 

 Australia’s unique dairy landscape characterised by diverse climate conditions and 

highly heterogeneous farming systems suggests that G × E due to heat stress may be an issue 

of concern. G × E occurs when the performance of animal differs in different environments 

and presents a challenge when the breeding goal is to optimise genetic gain across 

environments. In addition, Australian dairy herds are predominantly reared on pasture, 

meaning that management strategies such as shades and sprinklers may be cumbersome and 

costly to implement for some farmers. Therefore, genetic selection for heat-tolerant animals 

offers a promising and long-term solution in addition to management strategies. Australia is 

currently at the forefront globally regarding estimating the genetic merit of heat tolerance 

aimed at helping farmers to cope with the warming climates while maintaining productivity  

(Nguyen et al., 2016). However, more work is still needed to improve the current genomic 

evaluations for heat tolerance in dairy cattle. One way to do this is to identify specific genetic 

variants that confer thermotolerance to animals and include them in the genetic evaluation SNP 

panels or introduce them to heat-susceptible animals through approaches such as gene editing. 

Except for the mutations in the SLICK locus in the Senepol cattle (Olson et al., 2003, Dikmen 

et al., 2014, Littlejohn et al., 2014), other variants with clear effects on heat tolerance in other 

dairy breeds, e.g., Holsteins and Jersey have not been well characterised and tested in genomic 

predictions. 

 Therefore, the following three general hypotheses were formulated to investigate the 

above research questions:  

1) “that G × E due to heat stress for production traits in Australian dairy cattle is not 

substantial to warrant forming separate genetic evaluations for colder and warmer 

environments.”  
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2) “that the large phenotype datasets and extensive genomic information available for 

Australian dairy cattle provide sufficient power to pinpoint specific candidate causal 

variants and biological mechanisms that confer thermotolerance to animals.”  

3) “that the candidate genetic variants identified in ‘hypothesis 2’ above are beneficial for 

improving genomic prediction for heat tolerance in dairy cattle”. 
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ABSTRACT tively, whereas the corresponding estimates from MT 
were 0.86 ± 0.02, 0.84 ± 0.03, and 0.87 ± 0.03. We 
observed lower genetic correlations between the 5th and 
95th percentiles of THI for milk tests from recent years 
(i.e., 2009 and 2017) compared with earlier years (i.e., 
2003 and 2008), which suggests that the level of G × 
E is increasing in the studied population and should be 
monitored especially in anticipation of future expected 
increase in daily average temperature and frequency of 
heat events. Overall, our results indicate presence of G 
× E at the upper extreme of the trajectory of THI, but 
the current extent of sire re-ranking may not justify 
providing separate genetic evaluations for different lev-
els of heat stress. However, variations observed in the 
sire sensitivity to heat stress suggest that dairy herds in 
high heat load conditions could benefit more from using 
heat-tolerant or resilient sires.
Key words: genotype by environment, heat tolerance, 
reaction norm, multi-trait model, dairy cattle

INTRODUCTION

Concern about effects of heat stress on livestock pro-
duction largely used to be an issue mainly in the trop-
ics, but it has now expanded to temperate zones, affect-
ing countries including Australia, Canada, the northern 
United States, and parts of Europe (Renaudeau et al., 
2012; Polsky and von Keyserlingk, 2017). The global 
livestock industry has to face the double challenge of 
increasing production to feed a growing population, 
while dealing with the challenges of changing produc-
tion environments (Gerber et al., 2013; Polsky and von 
Keyserlingk, 2017). Heat stress affects livestock produc-
tion and reproduction, leading to substantial economic 
losses (West, 2003). Therefore, identifying appropriate 
genotypes to cope with changing environments is of 
vital importance, especially in the current scenario of 
global warming.

Several studies have explored the genetic basis for 
heat tolerance in dairy cattle and other livestock spe-
cies [reviewed by Carabaño et al. (2017)]. Ravagnolo 
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Dairying in Australia is practiced in highly diverse 
climatic conditions and production systems, which 
means that re-ranking of genotypes could occur across 
environments that vary in temperature and humidity—
that is, genotype-by-environment interactions (G × E) 
may exist. The objective of this study was to inves-
tigate G × E  due  to  heat stress with respect to milk 
production traits in Australian Holsteins. A total of 6.7 
million test-day milk yield records for first, second, and 
third lactations from 491,562 cows and 6,410 sires that 
had progeny in different climatic environments were 
included in the analysis. The environmental gradient 
used was the temperature-humidity index (THI) cal-
culated from climate data from 163 Australian public 
weather stations between 2003 and 2017. Data were 
analyzed using univariate reaction norm (RM) sire 
model, and the results were compared with multi-
trait model (MT). The MT analysis treated test-day 
yields at 5th percentile (THI = 61; i.e., thermoneutral 
conditions), 50th percentile (THI = 67; i.e., moderate 
heat stress conditions), and 95th percentile (THI = 
73; i.e., high heat stress conditions) of the trajectory 
of THI as correlated traits. A THI series of 61, 67, 
and 73, for example, is equivalent to average tempera-
ture and relative humidity of approximately 20°C and 
45%, 25°C and 45%, and 31°C and 50%, respectively. 
We observed some degree of heterogeneity of additive 
(AG) and permanent environmental (PE) variance over 
the trajectory THI from RM analysis, with estimates 
decreasing at higher THI values more steeply for PE 
than for AG variance. The genetic correlations of the 
tests between the 5th and 95th percentiles of THI for 
milk, protein, and fat yield from RM were 0.88 ± 0.01 
(standard error), 0.79 ± 0.01, and 0.86 ± 0.01, respec-
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—that is, the performance of different genotypes 
across environments—such as the THI, could be useful 
for selection to improve thermotolerance.

Australian weather conditions vary considerably 
among dairying regions. Nguyen et al. (2016) provided 
an overview of heat stress effects in these regions. 
Queensland (the northeast region of the country) and 

Tasmania (the southernmost region of the country) 
are the regions with the highest and the lowest heat 
load among dairying regions, with approximately 300 
and approximately 100 d per year having THI values 
beyond the comfort level for dairy cattle, respectively 
(Nguyen et al., 2016). Also, temporal climatic profiles 
vary considerably, with average daily temperature in 
Northern Victoria, for example, ranging from −5 to 
38°C (Nguyen et al., 2016). Climate perturbations in 
the form of increased temperature and frequency of 
heat events are expected to worsen over the next de-
cades because of global warming (CSIRO and BoM, 
2018), implying that genotype-by-climate interactions 
could become more relevant.

The aim of this study was to investigate the mag-
nitude of G × E across heat stress environments (as 
measured by THI) and to characterize ES in Australian 
Holstein cows using test-day milk yield records in com-
bination with temperature-humidity data from public 
weather stations from 2003 to 2017. A secondary objec-
tive of the study was to investigate changes in G × E 
over time by comparing estimates of the genetic cor-
relations for test-day records from different timescales. 
We applied RM to the data and compared the results 
with a multi-trait (MT) model, wherein test-day yields 
measured at different THI values were treated as cor-
related traits.

Cheruiyot et al.: GENOTYPE BY TEMPERATURE-HUMIDITY INTERACTION

In Australia, Nguyen et al. (2016) applied the RM 
approach in Holsteins and Jersey dairy cattle, which 
culminated in the development and release of genomic 
estimated breeding values for heat tolerance to the 
dairy industry in 2017 (Nguyen et al., 2017; Pryce et al., 
2018). The fact that dairying in Australia is practiced 
in a wide range of climatic conditions and production 
systems means that the importance of genotype-by-
environment interaction (G × E) due to heat stress 
requires routine monitoring, particularly because of 
increased global warming. The G × E refers to the 
change in performance or change in re-ranking of ani-
mals in different environments (Falconer and MacKay 
Longman, 1996). If G × E exists, then animals are 
expected to re-rank in different environments, which 
may warrant adapting genetic evaluations for heat tol-
erance. Information on the extent of G × E due to heat 
stress

et al. (2000) introduced the use of climate data from 
weather stations in combination with test-day produc-
tion data to explore the genetic components of heat 
stress. This approach has been preferred in many 
dairy studies because of the availability of large-scale 
climate data from public weather stations and routine 
milk recordings. The widely used variable for quantify-
ing the external heat load of animals is temperature-
humidity index (THI), which is a metric combining 
ambient temperature and relative humidity. Ravagnolo 
and Misztal (2000) developed a reaction norm (RM) 
model, which assumes a range of heat load index de-
limited by a threshold value, beyond which production 
begins to decrease linearly with increasing THI. The 
RM approach is appealing because it allows environ-
mental sensitivity (ES) of animals to be characterized 
based on the slope coefficient of the reaction norms (de 
Jong and Bijma, 2002), such that if the slope value of 
the RM is zero or close to zero, or if the trend of the 
RM is consistent across the environmental gradient, 
an animal is considered to be resilient; otherwise it is 
labeled “plastic” or sensitive to environmental changes 
(de Jong and Bijma, 2002; Berghof et al., 2019). These 
RM models have been widely used to evaluate genetic 
components of heat tolerance in dairy cattle in various 
countries, including the United States (Bohmanova et 
al., 2005; Aguilar et al., 2009), Spain (Carabaño et al., 
2014), Italy (Bernabucci et al., 2014), and Germany 
(Hammami et al., 2015).

The previous study in Australia using test-day milk 
records from 1998 to 2001 has revealed evidence of G × 
E for production traits due to heat stress in Holsteins 
(Hayes et al., 2003). In a later study, Haile-Mariam et 
al. (2008) also noted evidence of G × E for fertility 
and production traits in Australian dairy cattle. The 
work of Hayes et al. (2003) and Haile-Mariam et al. 
(2008) considered only first-lactation test-day or whole-
lactation records. Greater G × E might be expected in 
later lactations due to relatively greater milk yield in 
multiparous cows (Bernabucci et al., 2014), especially 
when considering a larger data set. In addition, the 
genetic merit for heat tolerance in Australian Holstein 
and Jersey cattle has been declining over the years due 
to selection for production traits (Nguyen et al., 2016; 
Nguyen et al., 2017). This implies that the extent of 
re-ranking across heat stress environments in these 
cattle populations may have increased. Furthermore, 
Australian dairying is predominantly pasture-based, 
with limited heat stress adaptation measures, unlike 
those, for example, in the United States, where exten-
sive managerial and environmental strategies are used 
to reduce the effects of heat stress. Therefore, the Aus-
tralian dairy population provides a different perspec-
tive in investigating the importance of G × E due to 
heat stress.
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MATERIALS AND METHODS

Climate Data

The climate data included hourly dry bulb and dew 
point temperatures and relative humidity obtained 
from the Bureau of Meteorology (Melbourne, Austra-
lia) for 163 weather stations in Australia from 2003 to 
2017. The locations of the weather stations and dairy 
herds from which the study data were obtained have 
been presented previously in Nguyen et al. (2016). The 
pairwise distances between herds and weather stations 
were calculated from geographical coordinates, as de-
tailed in Nguyen et al. (2016). The 5th, 50th, and 95th 
percentiles of distances between weather stations were 
4, 23, and 60 km, respectively (Nguyen et al., 2016). 
Test-day milk records were assigned to the nearest 
weather station. Hourly THI for each weather station 
was calculated using the following formula (Yousef, 
1985) and averaged for 24 h to obtain the daily THI:

	 THI = Tdb + (0.36Tdp) + 41.2,	

where Tdp is dew point temperature (°C) and Tdp = 
(237.3b)/(1.0 − b), where b = [log (RH/100.0) + 
(17.27Tdb)/(237.3 + Tdb)]/17.27, and RH = relative 
humidity, Tdb = dry bulb temperature (°C). The daily 
THI on the test day and d 1, 2, 3, and 4 before test 
day were then averaged and assigned to the respective 
test-day records.

Test-Day Data

Milk, protein, and fat yield data were obtained from 
DataGene (DataGene Ltd., Melbourne, Australia). 
These data sets consisted of 6.6, 4.7, and 3.0 million re-
cords for first, second, and third lactations, respectively, 
for Holstein cows calving between 2003 and 2017. Data 
editing for the first lactation was as follows: (1) tests 
<5 or >305 DIM and test-day records with less than 

10 cows were removed; (2) sires with daughters in fewer 
than 2 herds and herds using fewer than 2 sires were 
excluded; (3) only cows with at least 4 herd-test records 
within the first lactation were retained for analyses. 
Tests for the second and third lactations were then 
selected if the cows were present in the first lactation. 
The remaining data set included 11.2 million records 
for 823,055 cows and 6,615 sires from 3,732 herds. Due 
to computational limitations, roughly 60% of the data 
could be used for analysis. Therefore, a random sample 
of 2,200 herds was selected for analysis. The final data 
set comprised 6.7 million records for 491,562 cows and 
6,410 sires (Table 1). The pedigree for this data in-
cluded parents up to 15 generations.

Reaction Norm Analysis

In this study, we used RM models because they are 
better suited to continuous environmental descriptors 
(in this case, THI) and also facilitate distinguishing 
between individuals that are less or more affected by 
environmental changes. Due to computational limita-
tions, univariate sire models were used instead of ani-
mal models. The combined data for first, second, and 
third lactation was fitted as follows:

	
y HTD YS PAR A X PAR D Z

P T S
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+ +
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0

1

0

1
,

where yijklm is yield of milk in liters, fat or protein in kg 
from the ith herd test day, jth year season of calving, 
lth sire, and mth cow in kth parity; μ is the intercept; 
HTDi is the effect of the ith herd test day; YSj is the ef-
fect of the jth year season of calving; PARk is the effect 
of kth parity; Xn is the nth-order Legendre polynomi-
als corresponding to age on day of test; An is a fixed 
regression coefficient of traits on age at test; Zn is the 
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Table 1. Overall characteristics of first-, second-, and third-parity data used in the study (SD in parentheses)

Item Parity 1 Parity 2 Parity 3

Number of herds 2,200 2,090 1,867
Number of herd test dates 99,246 101,492 87,587
Number of records 3,118,223 2,195,283 1,408,885
Number of cows 491,562 368,953 243,278
Number of sires 6,410 6,118 5,622
Average number of cows per herd test date 31.42 21.63 16.08
Average number of daughters per sire 76.69 60.31 43.27
Mean test-day milk yield (L) 22.32 (6.69) 26.42 (8.73) 28.12 (9.25)
Mean test-day fat yield (kg) 0.84 (0.25) 1.00 (0.30) 1.07 (0.33)
Mean test-day protein yield (kg) 0.72 (0.22) 0.86 (0.27) 0.92 (0.28)
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nth-order Legendre polynomials corresponding to DIM 
at test; Dn is a fixed regression coefficient of traits on 
DIM nested within parity; Pn is the nth-order Legendre 
polynomial corresponding to THI; Tn is a fixed regres-
sion coefficient of traits on THI; Sln is an RM coefficient 
on THI for the lth sire; Cmn is the RM coefficient on 
THI for the mth cow to account for repeated records 
of cows; Qn and Wn are either the intercept (n = 0) or 
slope solution (n = 1) for THI for sires and cows, re-
spectively; and eijkm is the vector of residual effects. To 
compare our results with a previous study in Australia 
(Hayes et al., 2003), we also fitted the same model to 
first-lactation data separately, excluding the effect of 
parity.

Before analysis, a small proportion (0.004%) of tests 
with THI values of above 75 were arbitrarily given a 
value of 75. This was done to avoid possible artifacts 
of variance estimation using RM models, which might 
lead to unexpected trajectories at the extremes of the 
environmental descriptor due to few data points (Misz-
tal et al., 2000). Milk yield traits in Australia begin 
to decline at THI > 60 (Hayes et al., 2003; Nguyen et 
al., 2016). Therefore, the THI threshold was set at 60 
in this study (i.e., if THI < 60, then THI = 60). The 
variance or covariance structure for additive sire effects 
was the following:

	 Var S
S
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S S S
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where A is the relationship matrix among sires con-
structed from pedigree data; S0 and S1 are the intercept 
and slope for sires; and σ σ σ σS S S S S S0 0 1 0 1 0

2 2, , , and  are (co)
variance for sire effects on environmental descriptor. 
The (co)variance structure for the PE effect was as fol-
lows:
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where I is the identity matrix for each test-day record; 
C0 and C1 are the intercept and slope for cows; and 
σ σ σ σC C C C C C0 0 1 0 1 1

2 2,  ,  ,   are (co)variance for cow effects on 
environmental descriptor (i.e., THI).

Heterogeneous error variance was modeled for 10 
DIM intervals over a lactation (DIM = 5 to 30, 31 to 
60, 61 to 90, 91 to 120, 121 to 150, 151 to 180, 181 to 
210, 211 to 240, 241 to 270, and 271 to 305), assuming 
the following variance structure:
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where σ σ σe e e1 2 30

2 2 2, , ,…  represent error variances (30 × 30 
error matrix for first, second, and third lactations). All 
analyses were performed using ASREML version 4.2 
(Gilmour et al., 2015).

Calculation of Genetic Parameters

Additive genetic 16 × 16 (co)variance G� matrixes for 
sires along the THI trajectory (i.e., 60 ≤ THI ≤ 75) 
were calculated as follows:

	 G S� �= × ( )4 Φ Φvar ,′ 	

where Φ is the 16 × 2 matrix of Legendre polynomial 
function for THI and S� is a 2 × 2 sire (co)variance 
matrix. Similarly, the PE (co)variances matrix PE� were 
calculated from (2 × 2) C�  cow (co)variance matrix. The 
residual (co)variance matrix R�  was a 16 × 16 identity 
matrix; the diagonal elements were an average of 10 
estimates of variances for first parity (estimated from 
10 DIM intervals over the lactation), or 30 estimates of 
variances for 3 parity analyses. The phenotypic (co)
variance matrix P� was obtained by linearly summing 
additive, permanent, and residual variances 
P G PE R� � � �= + +( ).

The genetic correlations were calculated as 
rg g g gi j i j i i j j, , , . ,= ×  where i and j are the genetic (co)
variances for yield at THI = 60 and THI ≥ 60, respec-
tively, and their corresponding approximate standard 
errors are computed as proposed by Fischer et al. (2004) 
and expounded in Su et al. (2007), as follows:
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where gi,i, gj,j, and gi,j are the elements of (16 × 16) ×  

(16 × 16) G� matrix with their (co)variances VG� ap- 
proximated from the observed inverse of the average 
information matrix.

Cheruiyot et al.: GENOTYPE BY TEMPERATURE-HUMIDITY INTERACTION

67



Journal of Dairy Science Vol. 103 No. 3, 2020

2464

The heritability at the ith THI was calculated as 
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,
h

g
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×

 with their corresponding approximate 

standard errors computed as
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where gi,i, pi,i, var(gi,i), and var(pi,i) are the diagonal 
elements of G P VG VP� � � �, , , and  matrices with (16 × 16) 
× (16 × 16) dimensions, respectively; 
VP VG VPE VR� � � �= + + . The diagonal elements of VR� 
were an average of 10 estimates of variances from R�  
matrix.

The EBV along the THI trajectory for the ith sire 
was calculated as EBV aøi ij= ×� ′, where ai� ′ is the vec-
tor of estimated RM coefficients for the slope and inter-
cept for sire i, and øj is the vector of Legendre polyno-
mials evaluated at THI j. To examine changes in per-
formance, the EBV for sires with more than 100 
daughters with yield records (n = 617) were estimated 
and represented along the THI trajectory. Environmen-
tal sensitivity of sires was characterized according to 
Mattar et al. (2011), based on the absolute values of 
the slope of the RM: Si s< σ , resilient sires; 
σ σs i sS≤ ≤ 2 , sensitive sires; and Si s≥ 2σ , extremely 
sensitive sires.

Multi-Trait Analysis

To compare the results of RM, we performed an MT 
analysis for 3 parity data by considering tests at 5th 
(60 < THI ≤ 61), 50th (66 < THI ≤ 67), and 95th (72 
< THI ≤ 74) percentiles of THI distribution as differ-
ent but correlated traits. Hereafter, yields at 5th, 50th, 
and 95th percentiles are indicated as THI = 61, 67, 
and 73, respectively. The proportion of tests at the 5th, 
50th, and 95th percentile THI points were 59% (n = 
373,564), 31% (n = 192,571), and 10% (n = 61,548), re-
spectively. A small proportion of cows (0.007%, 0.008%, 
and 0.005%) had repeated records in at least 1 of the 
3 THI percentiles for parity 1, 2, or 3, respectively. An 
initial model considering PE effects, aimed at account-
ing for the repeated records, failed to converge, most 
likely due to a few repeated data. Therefore, only 1 
record was randomly selected at each THI point for 
all the cows with repeated records and included in the 
final analysis.

The following MT model was fitted to the data:
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where ytijkl is the nth observation for the tth trait (i.e., 
yields at 5th, 50th, and 95th THI percentiles); μt is the 
overall mean for the tth trait. Fixed effects were the 
same as described in the RM model, except that the 
fixed regression of the environment descriptor (THI) 
was excluded; and Stl is the random effect of the lth sire 
for the tth trait. The (co)variance structure for the 3 
traits was as follows:
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where S1, S2, and S3 are the genetic sire effects for the 
cows with records in the 5th, 50th, and 95th percentiles 
of THI distribution, respectively; A is the relationship 
matrix for sires constructed from pedigree; 
σ σ σ σ σ σ σ σS S S S S S S S S S S S S1 2 3 1 2 1 3 2 1 2 3 3 1

2 2 2, , , , , , , and  are the 
sire genetic (co)variances for the milk records at the 3 
THI percentiles; and σ σ σe e e1 2 3

2 2 2, , and  are the residual 
variances for the 3 traits.

Changes in Genetic Correlations over Time

To see whether G × E has changed over time, we 
divided data from first-parity test-day yields into 2 
groups: (1) tests from 2003 to 2008 and (2) tests from 
2009 to 2017. We then compared the sizes of genetic 
correlations in these subsets. The 2 timescales were 
arbitrarily chosen to ensure that the number of records 
in each subset was similar. Unlike the RM above, all 
the first-parity data that remained after editing were 
included, to ensure sufficient records in each subset. 
Only first-lactation data were used to minimize pos-
sible bias of selection and to be comparable to previous 
work in Australia (Hayes et al., 2003). Subset 1 (2003 
to 2008) comprised 2.8 million records of 444,818 cows 
and 4,225 sires, whereas subset 2 (2009 to 2017) com-
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prised 2.7 million records of 427,800 cows and 4,668 
sires. The same RM, as described earlier, was applied 
to each subset separately, excluding the effect of parity.

RESULTS

Climate Data and Phenotypes

The distribution of THI is presented in Figure 1. 
Approximately 45% of the milk records in this study 
had a THI of greater than 60, which is the threshold 
determined as being indicative of heat stress (Hayes et 
al., 2003; Nguyen et al., 2016). The average test-day 
yields increased from the first to the third lactation 
for all milk traits (Table 1). The average yields for 
multi-parity data used in the MT analysis are relatively 
greater at the 95th percentile of THI (Table 2), but 
with larger standard deviations.

Additive Genetic and Permanent  
Environmental Variances

Sire parameter estimates resulting from the RM 
model are given in Table 3. As expected, the correla-
tions between the intercept and the slope of the reaction 
norms were negative for all traits: milk (−0.10), protein 

(−0.05), and fat (−0.26). Additive genetic (AG) vari-
ance along the trajectory of THI for milk, protein, and 
fat yields from RM and MT are presented in Figure 
2. The estimates for AG variance were higher for the 
MT than for the RM analysis for all the milk traits, 
particularly at higher THI values (i.e., 95th percentile; 
Figure 2). The estimates and trends for the AG variance 
across the THI are similar for both analyses. In RM, 
the AG variance for milk and protein yield decreased 
with increasing THI values up to approximately THI = 
70, beyond which it increases slightly. For fat yield, the 
AG variance increased marginally at THI > 72. The 
estimates for AG variance ranged from 3.06 to 3.65 
(L2), 0.002 to 0.003 (kg2), and 0.003 to 0.004 (kg2) for 
milk, protein, and fat, respectively. In MT, estimates 
decreased from the 5th (THI = 61) to the 50th per-
centile (THI = 67) and appear to markedly increase at 
the 95th percentile, with conspicuously larger standard 
errors at the 95th compared with those for the 5th and 
50th percentiles. The estimates of AG variance from 
MT models are given in Table 2.

The patterns of permanent environmental (PE) vari-
ances for milk traits from RM (Figure 2) are similar to 
the pattern of AG variance, with estimates decreasing 
with increasing THI, up to around THI = 70, beyond 
which it increases. The PE component was consider-

Cheruiyot et al.: GENOTYPE BY TEMPERATURE-HUMIDITY INTERACTION

Figure 1. Distribution of temperature-humidity index (THI) values in the data used in this study: THI < 60, 55%; 60 ≤ THI ≤ 65, 26%; 
65 < THI ≤ 70, 14%; and THI > 70, 5%.
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ably higher than the AG variance component, with es-
timates that were more than 2-fold higher, particularly 
at lower THI values. For example, at the 5th percentile 
(THI = 61), the estimated PE variance for milk yield 
was 8.38 (L2), whereas the AG variance was 3.59 (L2). 
The changes in estimated PE variance along the THI 
trajectory were greatest for protein (34%), followed by 
fat (25%) and milk yield (23%), relative to estimates 
from RM analysis between THI = 61 and THI = 70 
(i.e., the interval between which estimates decrease). 
The PE estimates ranged from 6.60 to 8.58 (L2), 0.005 
to 0.007 (kg2), and 0.008 to 0.011 (kg2) for milk, protein, 
and fat yield, respectively; note that the PE variance 
was not fitted in MT analysis.

Heritabilities

Heritability estimates along the THI trajectory from 
RM and MT analyses are presented in Figure 3. For 
both analyses, heritability estimates are highest for 
milk followed by protein and fat yields, respectively. 
In RM, heritability estimates decrease with increasing 
THI across the entire trajectory of fat, but it increases 
at THI > 70 for milk and protein yield, with a more 
pronounced increase for protein relative to milk yield. 
The steeper line curve for fat yield indicates larger de-
creasing estimates. The heritability estimates for milk, 
protein, and fat yield over THI trajectory (i.e., 60 ≤ 
THI ≥ 75) ranged from 0.13 ± 0.01 to 0.14 ± 0.009, 
0.10 ± 0.007 to 0.11 ± 0.01, and 0.07 ± 0.007 to 0.09 
± 0.006, respectively. The standard errors for these 
estimates (Figure 3) are consistent across the THI tra-
jectory, with a slight increase at the extremes. When 
considering only first-parity data in RM analysis, heri-
tability estimates increased marginally for milk (0.14 
± 0.01 to 0.16 ± 0.01), protein (0.10 ± 0.01 to 0.12 ± 
0.01), and fat (0.08 ± 0.01 to 0.11 ± 0.01).

In contrast, heritability estimates from MT were 
greater than those from RM, with values at 5th and 
95th percentiles of 0.18 ± 0.007 and 0.21 ± 0.01, 0.14 
± 0.006 and 0.16 ± 0.01, and 0.11 ± 0.01 and 0.12 
± 0.006 for milk, protein, and fat yields, respectively 
(Table 2). Unlike RM, the estimates for all the milk 
traits from MT at higher THI (i.e., 95th) are associated 
with large standard errors (Figure 3).

Genetic Correlations

The genetic correlation estimates for milk produc-
tion traits between THI = 60 and those beyond THI 
= 60 are similar for both RM and MT analyses, with 
slightly larger estimates for protein and fat yields from 
MT at higher THI values (Figure 4). The genetic cor-
relations between tests at THI = 60 versus THI > 
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70 were lowest for protein, followed by milk and fat 
yields, respectively. The correlation estimates for tests 
between the 5th and the 95th percentiles of THI from 
RM were 0.88 ± 0.01, 0.79 ± 0.02, and 0.86 ± 0.02 for 

milk, protein, and fat yield. These were in good general 
agreement with estimates from MT, which were 0.86 ± 
0.02, 0.84 ± 0.03, and 0.87 ± 0.03, respectively (Table 
2 and Figure 4).

Cheruiyot et al.: GENOTYPE BY TEMPERATURE-HUMIDITY INTERACTION

Table 3. Sire variance estimates of intercept σS0
2( ) and slope σS1

2( ), covariance between slope and intercept σs s0 1( ), correlation between slope and 

intercept rs s0 1( ), residual variance σe
2( ), and heritability of intercept hS0

2( ) and slope hS1
2( ) from reaction norm analysis for multi-parity data for 

milk, protein, and fat yields (SE in parentheses)

Trait σS0
2 σS1

2 σs s0 1
rs s0 1

σe
2 hS0

2 hS1
2

Milk (L) 1.555 0.057 −0.031 −0.103 15.86 0.21 0.014 
(0.05) (0.005) (0.01) (0.01) (0.061) (0.01) (0.001)

Protein (kg) 0.001 0.00007 −0.00001 −0.049 0.032 0.15 0.017 
(0.00003) (0.00001) (0.00001) (0.071) (0.001) (0.01) (0.001)

Fat (kg) 0.0015 0.00007 −0.00009 −0.263 0.016 0.12 0.009
(0.0001) (0.00001) (0.00001) (0.015) (0.0001) (0.005) (0.001)

Figure 2. Additive genetic (▲) and permanent environmental (□) variance along the trajectory of the temperature-humidity index (THI) 
for milk (A), protein (B), and fat (C) yields from reaction norm analysis. Dot points (●) represent additive genetic variances and respective SE 
(vertical dashed lines) at 5th (THI = 61), 50th (THI = 67), and 95th (THI = 73) THI percentiles from the multi-trait analysis.
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Changes in Correlations over Time

The genetic correlations from RM for the data split 
into 2 subsets are shown in Figure 5. Subset 1 were 
test-day records from 2003 to 2008, and subset 2 were 
test-day records from 2009 to 2017. The correlation 
estimates are comparatively lower for more recent data 
(subset 2) than for older data (subset 1) at extreme 
THI values for all the milk traits, with the largest dif-
ferences observed for protein, followed by fat and milk 
yields (Figure 5). The correlation estimates for milk, 
protein, and fat yields between the 5th and 95th THI 
points for subset 1 (2003 to 2008) were 0.89 ± 0.01, 
0.84 ± 0.02, and 0.86 ± 0.02; whereas those for subset 
2 (2009 to 2017) were 0.87 ± 0.01, 0.79 ± 0.02, and 0.81 
± 0.02, respectively.

Quantifying Resilience to Heat Stress

Figure 6 shows the EBV (i.e., the slope of the reaction 
norms) over the trajectory of THI for a random sample 
of 10 sires with more than 100 daughters with records. 
The reaction norms are very similar for all milk traits. 
Two groups of sires can be identified based on the mag-
nitude of their EBV at thermoneutral conditions (THI 
= 60) versus heat stress conditions (THI = 75). The 
first group (shown in gray) are sires with above-average 
EBV at THI = 60 and smaller EBV at THI = 75. The 
second group (black) are sires with above-average EBV 
at THI = 60 and stable EBV (i.e., their EBV do not 
substantially change at THI = 60 and THI = 75).

The correlation between EBV for slope and intercept 
of the reaction norms for milk, protein, and fat yield 
were −0.20, −0.39, and −0.25, respectively. The slope 
of the reaction norms (i.e., ES) for sires with at least 
100 daughters with records in multi-parity ranged from 
−11.69 to 5.84 (SD = 2.08), −3.19 to 1.96 (SD = 0.82), 
and −2.92 to 2.29 (SD = 0.75) for milk, protein, and fat 
yields, respectively. Of these, the percentage of resilient 
sires (i.e., sires with EBV with consistent slope) were 
65%, 57%, and 64%, respectively (Figure 7). Greater 
proportions of sensitive sires were found for more recent 
milk tests (2009 to 2017) than for earlier tests (2003 to 
2008) particularly for milk (30 vs. 23%) and protein 
yield (29 vs. 26%) (Figure 8).

DISCUSSION

environments (i.e., heat stress conditions). Australia is 
a large country, with dairy herds dispersed throughout 
the country and in 8 distinct dairying regions (Dairy 
Australia, 2016). Quantifying the extent of re-ranking 
due to heat stress in Australian dairy cows is important 
for 2 main reasons. First, Australia’s dairy herds are 
kept in highly diverse climatic conditions, ranging from 
the warmer northeast regions to the cooler southeast 
regions of the country. As such, dairy cows experi-
ence varying magnitudes of heat stress (both temporal 
and seasonal), with some dairying regions, including 
Queensland, New South Wales, and Western and South 
Australia, under relatively high heat loads extending up 
to half of the year, whereas temperatures are moderate 
in Victoria and lowest in Tasmania, the southernmost 
part of the country (Nguyen et al., 2016). Second, Aus-
tralian dairy farms are mostly kept outdoors and fol-
low pasture-based systems, with limited management 
measures to alleviate heat stress, in contrast to many 
European countries, the United States, and Canada, 
where cows are generally housed indoors and fed TMR. 
Thus, Australia is likely to be a good case study for 
examining G × E due to heat stress in dairy cows.

Variance Components

AG Variance. In our analyses, we used RM in ad-
dition to the MT model for comparison purposes. We 
found similar estimates for AG variance from both ap-
proaches at lower THI values, but differences between 
estimates increased at higher levels of THI (i.e., 95th 
percentile). The contradictory results at extreme tra-
jectories were expected because of the sparsity of data, 
which perhaps led to poor fitting in both analyses. The 
general trend of AG variance was similar in both analy-
ses and consistent with other studies that reported a 
typical U-shaped variance pattern for production traits 
due to heat stress (Ravagnolo et al., 2000; Aguilar et 
al., 2009; Brügemann et al., 2011). The AG variance for 
all the milk traits from RM was relatively stable across 
the THI trajectory (Figure 2), suggesting that a similar 
response to selection is expected regardless of the THI 
environment.

PE Variance. As with the AG variance, we also ob-
served a declining trend for PE variance for all the milk 
traits across THI environment, which is in line with 
those reported for protein yields in German Holsteins 
(Brügemann et al., 2011) and milk yields in Iranian 
Holstein cattle (Santana Jr. et al., 2015). The higher 
PE estimates than AG variance from RM is consistent 
with other studies (Aguilar et al., 2009; Brügemann et 
al., 2011), indicating a greater effect of heat stress on 
production traits.

Cheruiyot et al.: GENOTYPE BY TEMPERATURE-HUMIDITY INTERACTION

In this study we used test-day milk production 
records from across Australia to estimate G × E due 
to heat stress—that is, the changes in the relative 
performance of different genotypes (sires) across THI 
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We used the first-order polynomial function to model 
changes in PE as well as AG variance across THI tra-
jectory in RM analysis. Applying higher-order regres-
sion, such as quadratic regression, might have allowed 
a better fit to the data (Strabel et al., 2005), but this 
was computationally impractical due to the large data 
size used in this study. Nonetheless, similar studies in 
Australia (Hayes et al., 2003; Nguyen et al., 2016) have 
successfully applied first-order polynomial functions to 
evaluate heat tolerance for production traits in Hol-
steins and Jersey dairy cattle.

Heritabilities. We used the average value of het-
erogeneous variances over the DIM to estimate herita-
bility in RM, whereas separate residual variances for 
the 3 “traits” (i.e., yields at 5th, 50th, and 75th THI 
percentiles) were used in MT. We found contradicting 

trends for heritability estimates across the THI trajec-
tory from the 2 analyses, which may be attributable, at 
least in part, to the way the heritability estimates were 
calculated. An alternative to RM, which perhaps could 
have allowed more comparable results, would have been 
to model (co)variance components for the interactions 
between DIM and THI, as in Bohlouli et al. (2019), 
and then estimate residual variances and heritabilities 
within DIM × THI combinations, but unfortunately 
this was not computationally feasible in our study.

Our heritability estimates from RM for both first-
parity and multi-parity data were almost 2-fold lower 
than those reported in a previous study in Australia 
(Hayes et al., 2003). In that work, the authors applied 
the same RM as in our study and found estimates for 
first-parity milk, protein, and fat yields at 5th and 95th 

Cheruiyot et al.: GENOTYPE BY TEMPERATURE-HUMIDITY INTERACTION

Figure 3. Heritabilities for milk (A), protein (B), and fat (C) yields across the temperature-humidity index (THI) obtained from the reaction 
norm (RM) and multi-trait (MT) analyses. Lines represent estimates obtained from RM and their approximate SE (shaded area). Dot points 
(●) are estimates and their SE (dashed vertical lines) at 5th (THI = 61), 50th (THI = 67), and 95th (THI = 73) percentiles from the MT.
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THI percentiles of 0.26 and 0.24, 0.21 and 0.19, and 
0.19 and 0.16, respectively. Although our estimates 
from MT were greater than those from RM, they are 
still much lower than those found by Hayes et al. (2003). 
Moreover, our estimates are lower than the heritability 
estimates for heat tolerance for first-lactation Austra-
lian Holsteins reported by Nguyen et al. (2016) for milk 
(0.19), protein (0.17), and fat (0.17) yields, which used 
a genomic relationship matrix to derive heritabilities. A 
relatively wide range of heritability estimates from 0.10 
to 0.35 (Carabaño et al., 2014), 0.14 to 0.31 (Bohlouli 
et al., 2013), and 0.10 to 0.24 (Aguilar et al., 2009) 
contrasts with the narrow range for all the milk traits 
observed here, which can be attributed in part to the 
narrow range of the available THI scale (i.e., THI = 60 
to THI = 75) as well as to the small change in genetic 
variance observed across the trajectory of THI.

Genetic Correlations and Changes over Time

The correlation estimates of yield traits at 5th versus 
95th THI percentiles from both RM and MT analyses 
were 0.80 or more but are lower than those reported by 
Hayes et al. (2003), which considered only first-parity 
data. The correlations between the 5th and the 95th 
percentiles reported by Hayes et al. (2003) for milk, 
protein, and fat yield were 0.94, 0.92, and 0.90, respec-
tively. Our results confirm previous work in Australia 
(Hayes et al., 2003; Haile-Mariam et al., 2008), which 
found that G × E exists at extreme THI values (i.e., 
THI > 70) for milk traits, but we observed greater G 
× E in the study population. In addition, we observed 
the greatest G × E for protein yield, whereas Hayes 
et al. (2003) found that fat yield had the greatest G 
× E. When considering only first-parity data in our 

Cheruiyot et al.: GENOTYPE BY TEMPERATURE-HUMIDITY INTERACTION

Figure 4. Genetic correlations from multi-trait (MT) and reaction norm (RM) analysis for milk (A), protein (B), and fat (C) yields from 
analysis of whole data set. Dot points (●) represent genetic correlations and their SE (vertical lines) for yields between 5th [temperature-humid-
ity index (THI) = 61] and 50th (THI = 67), 5th and 95th (THI = 73), and 50th and 95th percentiles of the THI from the MT. Lines represent 
genetic correlations for yields between THI at 60 and all THI values ≥60 from RM. Shaded areas are SE from RM.
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RM analysis, as in Hayes et al. (2003), the correlations 
changed slightly with estimates for the 5th versus the 
95th percentile of 0.89 (milk), 0.84 (protein), and 0.85 
(fat), which further confirms greater G × E in the data 
used in our study. Later-parity cows appear to be more 
susceptible to heat stress than first-parity cows (Agui-
lar et al., 2009; Bernabucci et al., 2014), and greater 
G × E was expected when analyzing data sets that 
include multiple lactations in our study.

Despite large variability in climatic differences in 
Australia, most dairying is concentrated in the state 
of Victoria, which typically experiences moderate heat 
loads; around two-thirds of the Australian national 
dairy herd data comes from this state (DataGene, 2016; 
Nguyen et al., 2016). For example, of the total national 
herd statistics for 2015 to 2016, the number of herds in 
Victoria were 1,756 (approx. 65% of the national herd 

data records for 2015 to 2016), as opposed to 183 (ap-
prox. 7%) from Queensland (DataGene, 2016). This is 
reflected in our study, in which the milk tests obtained 
under high heat loads (i.e., THI > 70) accounted for 
approximately 10% of the total records, which means 
that the effect of the upper extreme of the THI trajec-
tory in proportion to the total data is small.

However, our results demonstrate that G × E due to 
heat stress in Australia dairy cows is becoming more 
important. This is evidenced by the decrease in the 
genetic correlations among milk traits over time, with 
greater decreases for protein (0.84 ± 0.016 vs. 0.79 ± 
0.02) and fat (0.86 ± 0.02 vs. 0.81 ± 0.02) than for milk 
yield (0.89 ± 0.01 vs. 0.87 ± 0.01). The increasing G 
× E in this study could be associated, at least in part, 
to the greater sensitivity to heat stress in the study 
population. Nguyen et al. (2017) noted that the genetic 

Cheruiyot et al.: GENOTYPE BY TEMPERATURE-HUMIDITY INTERACTION

Figure 5. Genetic correlations from reaction norm analysis for milk (A), protein (B), and fat (C) yields from 2003 to 2008 (□) and from 
2009 to 2017 (▲). Lines represent genetic correlations for milk traits between temperature-humidity index (THI) at 60 and all THI ≥60. Shaded 
areas are approximate SE.
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merit for heat tolerance has been declining over the 
years at a rate of 0.3%/yr in Australian Holstein and 
Jersey cattle due to continued selection for production 
traits. Therefore, routine monitoring of G × E is highly 
recommended, given that climatic perturbations in 
Australia in terms of increased intensity and frequency 
of heat events are anticipated to worsen in the next 
decades (CSIRO and BoM, 2018).

Quantifying Resilience to Heat Stress

Resilient animals are minimally affected by environ-
mental disturbances (Colditz and Hine, 2016; Berghof 
et al., 2019), and their performances are expected to 
be comparatively consistent under different heat stress 
conditions. Our results suggest that the proportion of 
resilient sires has decreased in recent years (Figure 8), 

confirming the increasing relevance of G × E in the 
study population. For example, the proportion of re-
silient sires in milk yield tests from 2003 to 2008 was 
69%, versus 63% for tests between 2009 and 2017. As 
noted previously, the increasing G × E could be partly 
associated with the decline in genetic merit for heat 
tolerance over the years, resulting from more emphasis 
on production traits in the breeding goals (Nguyen et 
al., 2016, 2017). In contrast to resilient sires, the per-
formance of the daughters of sensitive sires fluctuates, 
and they are likely to produce less under heat stress 
conditions and may be best suited for milk production 
in regions with consistently low heat loads. If they are 
to perform optimally and consistently under high heat 
load conditions, then a more controlled environment 
is necessary, such as the provision of shade and diets 
designed to lower core body temperature.

Cheruiyot et al.: GENOTYPE BY TEMPERATURE-HUMIDITY INTERACTION

Figure 6. Estimated breeding values (i.e., the slope of reaction norms) for milk (A), protein (B), and fat (C) yields over the temperature-
humidity index (THI) for a sample of 10 sires with over 100 daughters with yield records. Gray lines (▲) represent sires with above-average EBV 
at thermoneutral conditions (THI = 60) and smaller EBV at heat stress conditions (THI = 75), whereas black lines (●) are sires with above-
average and stable EBV (i.e., their EBV do not substantially change at THI = 60 and THI = 75).
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Implications

Genomic estimated breeding values for heat toler-
ance were released to the Australian dairy industry in 
2017 for selection of animals that are more tolerant to 
heat stress (Nguyen et al., 2017; Pryce et al., 2018). 
Our results (genetic correlations ≥0.80) indicate that 
optimal genetic gain for heat tolerance can be achieved 
with the current genetic evaluations. Although these 
results do not justify separate breeding programs, re-
ranking can still occur among some sires because of 
the heterogeneity of genetic variance and heritabilities 
observed across heat loads (Figures 2 and 3). Moreover, 
the differences in the patterns of reaction norms (i.e., 
the slope of EBV) for some sires (Figure 6) suggest that 
some farmers should be aware that re-ranking may oc-
cur, especially in regions such as Northern Victoria and 
Queensland, which experience broad ranges of weather 
conditions, with average daily temperature up to 38°C 
(Nguyen et al., 2016). It may be more beneficial to 
use resilient sires in such regions. Several approaches 
are available to incorporate G × E into the genetic 
evaluation provided to the dairy industry. For example, 

Kolmodin et al. (2002) proposed a unique ranking of 
sires according to the environment in which they will 
perform, so that farmers can choose bulls that best fit 
their production environments. Similarly, Bryant et 
al. (2006) suggested the development of customized 
EBV for specific environments, and (Nguyen et al., 
2017) proposed a selection tool that could balance the 
profit index and heat tolerance. More recently, some 
authors have demonstrated opportunities for including 
resilience in breeding goals (Mulder, 2016; Friggens et 
al., 2017; Berghof et al., 2019). Berghof et al. (2019) 
proposed using the slope of the reaction norms as an 
indicator trait for resilience to heat stress and calculat-
ing economic values for selection index based on the 
reduced labor costs associated with the management of 
heat-stressed animals. Our study shows the existence of 
genetic variation in sire sensitivity to heat stress, which 
could be exploited in the selection of resilient animals 
or to optimize breeding programs for different environ-
ments. Currently, economic drivers in the Australian 
national selection index (Balanced Performance Index; 
BPI) favors production traits, which account for about 
50% of the selection pressure, and does not include 

Cheruiyot et al.: GENOTYPE BY TEMPERATURE-HUMIDITY INTERACTION

Figure 7. Proportion of resilient, heat sensitive, and extremely (ext.) sensitive sires for milk, protein, and fat yields, grouped based on the 
absolute values of the slope (S) of the reaction norms, from analysis of whole data set: Si S< σ , resilient sires; σ σS i SS≤ < 2 , sensitive sires; and 
Si S≥ 2σ , extremely sensitive sires. Values on the tops of the bars are actual percentages.
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heat tolerance (Byrne et al., 2016). However, it is worth 
considering whether heat tolerance should be included 
in the breeding goal to minimize G × E and thereby 
improve resilience.

In this study, we considered only the magnitude of 
re-ranking of genotypes across climate covariate (THI) 
with respect to production traits. It is also important 
to consider other traits, because sire selection indices 
in Australia are designed to include different aspects 
of farm profitability, including production, fertility, 
health, functional, and type as well as efficiency traits 
(Byrne et al., 2016). Selecting for resilience would be 
advantageous if the desire is to simultaneously achieve 
an optimal level of ES for multiple traits. Therefore, it 
would also be useful to quantify ES in other traits, such 
as fertility, health, functional, and efficiency traits. In 
this regard, G × E for fertility traits in relation to heat 

stress merits investigation and will be a subject of a 
subsequent study.

CONCLUSIONS

Our results demonstrate that G × E exists at ex-
treme heat stress conditions (genetic correlations for all 
the milk traits were ≥0.80) but currently, the extent of 
re-ranking for most of the sires may not justify separate 
genetic evaluations for high heat stress environments. 
In addition, we observed lower correlation estimates for 
first-parity milk tests from recent years (i.e., 2009 and 
2017) than for milk tests from earlier years (i.e., 2003 
and 2008), which suggests that the level of G × E is 
increasing in the study population and should be regu-
larly monitored, especially considering the anticipated 
increase in climate changes. The reaction norms for sire 

Cheruiyot et al.: GENOTYPE BY TEMPERATURE-HUMIDITY INTERACTION

Figure 8. Proportion of resilient, heat sensitive, and extremely (ext.) sensitive sires for milk (A), protein (B), and fat yields (C) of first-
parity milk tests from 2003 to 2008 and 2009 to 2017. Sires are grouped based on absolute values of the slope (S) of the reaction norms: Si S< σ , 
resilient sires; σ σS i SS≤ < 2 , sensitive sires, and Si S≥ 2σ , extremely sensitive sires. Values on the tops of the bars are actual percentages.
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EBV along the trajectory of THI indicates that genetic 
variations exist, which can be used to select animals 
that perform optimally in different environments.
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New loci and neuronal pathways 
for resilience to heat stress in cattle
Evans K. Cheruiyot1,2, Mekonnen Haile‑Mariam2*, Benjamin G. Cocks1,2, Iona M. MacLeod2, 
Ruidong Xiang2,3 & Jennie E. Pryce1,2

While understanding the genetic basis of heat tolerance is crucial in the context of global warming’s 
effect on humans, livestock, and wildlife, the specific genetic variants and biological features that 
confer thermotolerance in animals are still not well characterized. We used dairy cows as a model to 
study heat tolerance because they are lactating, and therefore often prone to thermal stress. The data 
comprised almost 0.5 million milk records (milk, fat, and proteins) of 29,107 Australian Holsteins, each 
having around 15 million imputed sequence variants. Dairy animals often reduce their milk production 
when temperature and humidity rise; thus, the phenotypes used to measure an individual’s heat 
tolerance were defined as the rate of milk production decline (slope traits) with a rising temperature–
humidity index. With these slope traits, we performed a genome-wide association study (GWAS) using 
different approaches, including conditional analyses, to correct for the relationship between heat 
tolerance and level of milk production. The results revealed multiple novel loci for heat tolerance, 
including 61 potential functional variants at sites highly conserved across 100 vertebrate species. 
Moreover, it was interesting that specific candidate variants and genes are related to the neuronal 
system (ITPR1, ITPR2, and GRIA4) and neuroactive ligand–receptor interaction functions for heat 
tolerance (NPFFR2, CALCR, and GHR), providing a novel insight that can help to develop genetic and 
management approaches to combat heat stress.

Heat stress from rising global temperatures is an issue of growing importance across tropical and temperate zones 
affecting humans, livestock, wildlife, and plants. A recent study1 indicates that many people are now exposed 
to harmful heat, and this has risen by more than twofold when compared to the pre-industrial climates (i.e., 
95 vs. 275 million people), with future projections showing that over 1 billion people will experience an even 
greater impact of heat within the next 50 years2. In livestock, the annual temperature–humidity values that rise 
above thresholds considered to be comfortable have been increasing in many regions including Australia, the 
USA, Canada, and parts of Europe3,4, making heat stress a multimillion-dollar issue in the livestock industry 
that compromises production (reduced growth, milk, eggs, etc.) and reproduction leading to economic losses5.

The thermoregulatory capacities of mammals and plants to cope with extreme heat have been studied for 
decades. Genetic variation of thermoregulation during heat stress exists within species, including cattle breeds, 
with the literature indicating that tropical breeds, such as Zebu (Bos indicus), have a better tolerance to tem-
perature and humidity than cattle from temperate zones (e.g., Holsteins), in part, due to the lower productivity 
of Zebu cattle6. Temperate breeds also show genetic variation in heat tolerance; for example, New Zealand Hol-
steins appear to exhibit higher reductions in milk yield in hotter climates than Jerseys or crossbreds7. While it 
is not fully understood why animals differ in their thermotolerance, it is hypothesised to be due to a myriad of 
biological mechanisms; including cellular, morphological (coat color, coat length, etc.), behavioural (e.g., feed 
and water intake, standing and lying time), as well as neuro-endocrine systems. See comprehensive review by8 
for more information. Notably, the molecular basis for differences in these adaptive responses within various 
mammalian species is still largely unknown.

Dairy cattle particularly Holsteins are excellent and convenient model for enhancing our knowledge on the 
molecular aspects of heat tolerance in mammals for two main reasons: (1) large phenotype datasets needed 
to study heat tolerance, as well as extensive genomic information, are available; (2) they have been genetically 
selected mainly for high milk production over many years, offering an opportunity to understand the genetic 
basis for coping with both environmental and elevated metabolic-heat stress associated with increased milk 
production.
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The development of methods to describe heat tolerance in cattle has been an active research area for many 
years. Measuring changes in core body temperature (e.g., rectal, vaginal, rumen temperature, etc.), thermal 
indices (e.g., temperature–humidity index (THI)) are some of the ways to assess thermal adaptations and perfor-
mance in animals. Ravagnolo et al.9 pioneered using daily milk yield and temperature–humidity data to measure 
variability in the rate of decline in milk yield associated with variability in response to heat stress. This method 
has been widely adopted due to the availability of large datasets from routine recording in dairy farms, e.g.,3. 
Heat tolerance in dairy cattle measured using rectal temperatures or the rate of milk yield decline is partly under 
genetic control, having a low (0.1) to moderate heritability (0.30)3,9, 10, which makes it amenable to selection. As 
such, considerable research has been undertaken to provide breeding solutions for heat stress, which is already 
a feature of dairy cattle breeding programmes in some parts of the world, e.g., Australia3. Identifying specific 
genetic variants that increase tolerance to heat may help to improve dairy breeding programmes in addition 
to improving our knowledge of the thermal biology in other mammals. However, except for mutations in the 
SLICK locus11, the identification of the specific genetic variants for heat tolerance in cattle and other species has, 
in most cases, remained elusive, in part due to many reasons, including the sample size used in past studies12–15.

Having a large sample size is particularly important for identifying rare causal variants with medium-sized 
effects and common variants with small effects. As sample size increases, the loci significantly associated with 
complex traits are expected to increase, as demonstrated for the human height16. Several selection signature work 
e.g.,17,18 and genome-wide association studies (GWAS) using Single nucleotide polymorphisms (SNPs) have been 
conducted over the last decade to identify candidate causal genes for various heat tolerance traits (rectal tem-
perature, heart rate, sweating rate, rate of milk yield decline, etc.) in dairy cattle12–15 and pigs19. However, these 
GWAS were underpowered, with the largest sample size to d te of around 5000 animals12,13. These studies have 
also used standard industry SNP panels of random genome-wide markers, either 50 k or 600 k SNPs, leading to 
inconsistencies and poor replication of the results. Although these studies have identified multiple significant 
variants associated with heat stress in animals, none were established to be causal mutations.

Here, we performed a GWAS using milk production records of 29,107 Holstein cows, each having over 15 
million sequence variants that were imputed from various lower density SNP chips to whole-genome sequence 
using a reference dataset of sequences from the Run7 of 1000 Bull Genome Project20. The specific aims of the 
current study were to: (1) perform single-trait GWAS to identify genomic variants associated with sensitivity 
of milk traits (milk, protein, and fat) to heat stress; (2) combine single-trait GWAS results in a multi-trait meta-
analysis to boost the power and identify pleiotropic variants associated with all the milk traits; and (3) conduct 
post-GWAS pathway analysis using the list of candidate genes identified in single-trait GWAS and meta-analysis 
to elucidate biological mechanisms underlying heat tolerance.

Results
Descriptive statistics and genomic heritability of the study phenotypes.  The average yield and 
their corresponding standard deviation (in brackets) of milk (in liters), fat (kg), and proteins (kg) used in our 
study was 25.85 (8.19), 0.98 (0.30), and 0.85 (0.26), respectively. The heat tolerance proxy-phenotypes (i.e., slope 
traits) and intercepts (representing level of milk production) that were derived from the milk traits are in Table 1. 
The slope traits derived from the milk, fat, and protein yield using reaction norm models on a function of the 
temperature–humidity index (THI) were defined as follows: heat tolerance milk (HTMYslope), fat (HTFYs-
lope), and protein (HTPYslope) yield slope traits, respectively. On the other hand, the intercept solutions from 
the reaction norm models – representing the level of milk production were defined as milk (MYint), fat (FYint), 
and protein (PYint) yield intercept traits.  The values for slopes (no units) for HTMYslope, HTFYslope, and 
HTPYslope ranged between [− 36.80 to 27.17], [− 11.39 to 9.0] and [− 8.91 to 9.31], with values at 25% and 
75% quartiles of [− 0.98 and 0.90], [− 2.76 and 2.66], and [− 1.03 and 0.95], respectively. Note that the values 
for milk, fat, and protein yield have been scaled by a factor of 10, 100 and 100, respectively (see “Methods”). 
The genomic heritability estimates for the intercept traits were high [0.36 ± 0.01 (MYint), 0.30 ± 0.01 (FYint), 
0.24 ± 0.01 (PYint)] compared to slope traits [0.23 ± 0.01 (HTMYslope), 0.21 ± 0.01 (HTFYslope), 0.20 ± 0.01 
(HTPYslope)] (Table 1). The phenotypic correlations between the intercept and slope traits were high, with val-
ues of -0.71 (MYint versus HTMYslope), -0.77 (FYint versus HTFYslope), and -0.83 (PYint versus HTPYslope), 
suggesting that lower producing cows have a smaller reduction in their yield as the THI increases. The Pearson 
correlations of slope solutions from the reaction norm model were 0.90 (HTMYslope versus HTPYslope), 0.56 
(HTMYslope versus HTFYslope) and 0.62 (HTPYslope versus HTFYslope).

Table 1.   Additive genetic variance (AG) and genomic heritability ( h2 ) for milk intercept and heat tolerance 
slope traits estimated for 29,107 cows based on 50 k SNP panel. SE Standard errors. a Represtents the level of 
milk production of cows. b Heat tolerance proxy-phenotypes.

Trait

Milk intercept traitsa Heat tolerance milk slope traitsb

AG ± SE h
2 ± SE AG ± SE h

2 ± SE

Milk yield (liters) 381.0 (14.36) 0.36 (0.01) 4.80 (0.20) 0.23 (0.01)

Fat yield (kg) 38.78 (1.64) 0.30 (0.01) 0.56 (0.02) 0.21 (0.01)

Protein yield (kg) 18.60 (0.89) 0.24 (0.01) 0.47 (0.02) 0.20 (0.01)
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Single‑trait GWAS for intercept and slope traits.  The number of significant SNPs was generally higher 
for intercept than slope traits at the p value thresholds tested (Table 2). At a stringent p value of < 1E–05, the false 
discovery rate (FDR) varied between 0.02 and 0.03 for intercept and 0.02 and 0.05 for slope traits. The number of 
significant independent QTL (based on the number of 5 Mb non-overlapping windows across the chromosome 
with at least one significant SNP) ranged from 28 to 72 for intercept traits and from 21 to 37 for slope traits. At 
a relaxed cut-off threshold, where the FDR was < 0.10, the number of significant QTLs from single-trait GWAS 
ranged from 78 to 188 (intercept traits) and from 51 to 109 (slope traits).

The number of significant (p < 1E–05) QTLs (i.e., 5 Mb windows) varied across the three slope traits with 
greater overlap between HTMYslope and HTPYslope (13 QTLs; 20.6%) compared to HTMYslope and HTFYs-
lope (3 QTLs; 4.8%) (Supplementary Fig. S3). The overlaps were based on whether the lead SNPs (most sig-
nificant) within QTLs between traits were close (within 1 Mb). Surprisingly, none of the candidate QTLs over-
lapped between HTFYslope and HTPYslope. The effects of the lead SNPs within QTLs that overlapped between 
HTMYslope and HTPYslope were generally in the same direction.

Multi‑trait meta‑analysis of GWAS to detect variants with pleiotropic effects.  Meta-analysis of 
GWAS results could increase the power of detecting informative variants21, 22. Compared to single-trait GWAS, 
the number of significant independent QTLs (based on 5 Mb windows with at least one significant SNP) was 
much higher for a multi-trait meta-analysis (Fig. 1; Table 2). At FDR < 0.10, the number of significant independ-
ent QTLs from multi-trait meta-analysis was 347 and 293 for intercept and slope traits, respectively (Table 2). 
At p < 1E–05, the number of significant QTLs was 100 (meta-analysis of intercept traits) and 65 (meta-analysis 
of slope traits). Of the significant QTLs (p < 1E–05; N = 65) for meta-analysis of slope traits, 35% (N = 23) over-
lapped with the candidate QTLs for single-trait GWAS analysis based on whether the lead SNP (most signifi-
cant) within overlapping QTLs were close (within 1 Mb).

Lead SNPs detected using single‑trait GWAS and meta‑analysis of slope traits.  The lead SNPs 
were defined as the most significant SNPs within an independent QTL (i.e., the most significant SNP chosen 
within 5 Mb windows across the chromosome). Detailed annotation of all the lead SNPs for single slope traits 
and the meta-analysis (N = 118) detected at the most stringent p value cut-off (p < 1E–05) are in the Supplemen-
tary Table S2.

About half the lead SNPs (51%) for slopes were in relatively low LD (r2 < 0.5) with nearby (within 1 Mb region) 
lead SNPs for intercepts, indicating that they are not strongly associated with the level of milk production. Some 
lead SNPs mapped within or close to several candidate genes, which have been linked to environmental stress or 
heat tolerance in animals in previous studies, including REG3A23, NPFFR224, and CLSTN225. Several other lead 
SNPs mapped close to novel candidate genes that, to our knowledge, have not been described for thermotoler-
ance in previous studies.

However, the remaining lead SNPs (49%) for slopes were in medium to strong LD 

r2 > 0.8) associated with the level of milk production (intercept traits) mapped 
close to or are within genomic loci previously reported to have pleiotropic effects on bovine milk production 
traits, including the DGAT126,27, MGST128, and GHR gene29.

Conditional GWAS for slope traits on either the lead SNPs or the intercept traits.  We per-
formed two conditional GWAS for slope traits to confirm whether the top hits (lead SNPs) detected in the first-
round of GWAS for the slope traits were in fact discoveries of heat tolerance rather than indicators of milk yield 
(as the intercept and slope traits are genetically correlated). Of interest was the conditional GWAS analysis on 
chromosome 14, since the highly significant QTL around 0.5 Mb harbours the DGAT1 gene and the HSF1 (heat 
shock factor 1) gene, for which the latter has been linked to thermotolerance in Holstein cattle in different coun-

Table 2.   Number of SNPs identified at a p value of < 1E–05 (significant), and false discovery rate (FDR < 0.10) 
for QTL discovery cows (N = 29,107) based on 15 million imputed-whole genome sequence variants. MYint, 
Milk yield intercept; FYint, Fat yield intercept; PYint, protein yield intercept; HTMYslope, heat tolerance milk 
yield slope; HTFYslope, heat tolerance fat yield slope; HTPYslope, heat tolerance protein yield slope. a Multi-
trait meta-analysis of single-trait GWAS was performed for intercept and slope traits following21. Values in 
square brackets are the number of lead SNPs defined as the top significant SNP within 5 Mb non-overlapping 
windows across the chromosome. The FDR was calculated following the method described by21, where the p 
value in the brackets represents the cut-off threshold equivalent to FDR < 0.10 for each trait.

Single-trait GWAS for intercept traits Single-trait GWAS for slope traits Multi-trait meta-analysisa

MYint FYint PYint HTMYslope HTFYslope HTPYslope Meta intercept Meta slope

Significant 
(p < 1E–05) 9344 [72] 7844 [28] 4195 [49] 6061 [37] 8684 [21] 2998 [30] 51,568 [100] 40,220 [65]

FDR < 0.10 16,469 [188] 
(p = 1E–04)

11,469 [98] 
(p = 7E–05)

5285 [78] 
(p = 3E–05)

9172 [109] 
(p = 6E–05)

12,619 [98] 
(p = 8E–05)

3310 [51] 
(p = 2E–05)

108,934 [347] 
(p = 7E–04)

77,499 [293] 
(p = 5E–04)

(r2 > 0.50) with nearby 
(within 1 Mb) lead SNPs identified for intercept traits (Supplementary Fig. S4), suggesting that they affect both 
traits, which was expected due  to  the negative phenotypic correlation between heat tolerance and milk pro-
duction, with estimates in this study of around -0.80. The most significant lead SNPs for heat tolerance (slope 
traits) that were strongly (LD;  
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tries, including Australia13, and the USA14. Notably, the lead SNPs from the first-round of GWAS for HTMYs-
lope and HTFYslope (Chr14:581,569) and HTPYslope (Chr14:555,701) traits were upstream to SLC52A2 and a 
synonymous variant in the CPSF1 genes, respectively.

Figure 2 shows conditional GWAS results for chromosome 14 (around the region which showed the strong-
est signal in the first-round of GWAS for the slope traits—here, the conditional analyses were for slope traits on 
either the lead SNP or the intercept trait. In both approaches, we found that most of the SNPs were no longer 
significant after conditional analysis. This was the case for HTMYslope and HTPYslope slope traits, suggesting 
that these SNPs were possibly tagging the lead SNPs for slope traits. The lead SNP was in strong LD (r2 > 0.8) 
with several other variants around this QTL spanning over 10 genes (Fig. 2), including variants in the HSF1 
(heat shock factor 1) gene, which implies that any variant (s) around this region are possible causal mutations 
for heat tolerance. Nonetheless, the complex LD within this QTL region makes it difficult to pinpoint a putative 
causal variant (s) for heat tolerance.

Notably, even after fitting the lead SNP in a conditional GWAS analysis, there were still other somewhat sig-
nificant (p < 1E–05) SNPs remaining for the HTFYslope trait (though not very strong signals; Fig. 2), suggesting 
that they could be other QTLs for heat tolerance, which were not captured by the lead SNPs identified in the study.

Although the two conditional GWAS strategies (i.e., conditioning slopes on either lead SNP or intercept traits) 
were generally comparable regarding the strength of the GWAS signals (Fig. 2), we observed a significant (Stu-
dent’s t test; p < 0.001) difference in the distribution of the GWAS p values across slope traits. This is, in part, due 
to the difference in the two conditional GWAS approaches regarding the covariate fitted in the linear model. We 
also observed similar findings for the conditional GWAS analysis on chromosome 20 (Supplementary Fig. S5).

By conducting a conditional analysis of slope traits on the intercepts, we detected multiple additional QTL 
signals (lead SNPs) across the genome at p < 1E–05 (Supplementary Fig. S6). However, most of these lead SNPs 
were associated with a large FDR > 0.10—FDR for each SNP computed following Storey and Tibshirani30. Of the 
few candidate variants (all of which were detected from HTFYslope traits) with FDR < 0.10, the strongest GWAS 
signal was in BTA 14–1.7 Mb, of which the lead SNP (Chr14:1,726,184) mapped to the downstream region of 
JRK (Jrk helix-turn-helix protein). Notably, this gene was found to regulate behavioural rhythms in Drosophila 
flies, which is crucial for adaptive response to environmental changes such as temperature variations31.

When combining conditional GWAS results for slope traits (conditioning on the intercept traits) in the 
meta-analysis approach, we detected 40 lead SNPs (p < 1E–05), all of which associated with low FDR < 0.10 
(Supplementary Fig. S7 and Table S3). The mean LD between these 40 lead SNPs and the lead SNPs detected for 
intercept traits was very low (r2 < 0.20), confirming that the conditional analysis was successful in identifying 
additional candidate variants for heat tolerance (besides the QTL detected from the first-round of GWAS) that 
are not strongly associated with the level of milk production. The most significant lead SNP (Chr14:531,267; 
p = 9.04E–12) mapped to the upstream region of the SLC39A4 gene, a member of the solute carrier family, 
required for intestinal zinc uptake.

Figure 1.   Manhattan plot of p values obtained from combining single-trait GWAS results for milk yield slope 
traits.
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Candidate causal variants for heat tolerance across all analyses.  The candidate causal variants 
for heat tolerance were defined as the lead SNP (most significant SNP within 5 Mb QTL window) plus other 
significant SNPs in strong LD (r2 > 0.8) with the lead SNP, 500 kb up or downstream of the chromosome. We 
identified a total of 3010 candidate causal variants for heat tolerance (slope traits) across all the analyses: single-
trait GWAS; a meta-analysis of single-trait GWAS results; and meta-analysis of conditional GWAS results for 
slope traits, most of which were intergenic (N = 1545; 51%) followed by intronic (N = 947; 32%) and upstream 
(N = 277, 9%) variants (Fig. 3 and Table S1). At least 25 candidate SNPs were missense variants, most (N = 13) of 
which were in chromosome 14, including two variants (Chr14:615,597 and Chr14:616,087) mapping to HSF1 
(heat shock factor 1) gene.

The candidate causal variants for heat tolerance are highly enriched (p = 8.54E–25) in the upstream gene 
regions (Fig. 4), which agrees with GWAS for quantitative traits in humans32, suggesting that they perhaps play 

Figure 2.   QTL discovery on chromosome 14 at 0 to 1 Mb for heat tolerance milk (HTMYslope; A), fat 
(HTFYslope; B), and protein (HTPYslope; C) yield slope traits. The three panels represent the GWAS p values 
before conditional analysis (right panel), after conditioning slope traits on the lead SNP (highlighted in blue) 
defined as the most significant SNP (middle panel), and after conditioning slope traits on the intercept traits (left 
panel), respectively. The red horizontal dashed line is the GWAS cut-off of p < 1E–05. The strength of LD (r2) 
between the lead SNP (blue color) and all the other SNPs are color-coded accordingly.
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a functional role in regulating gene expression. As expected, most candidate variants have modifier SnpEff33 
predicted impact (Table S5). Two candidate causal mutations detected from the meta-analysis of slope traits have 
a high SnpEff predicted impact: (a) a stop-gain mutation (Chr5:31,184,185) causing a premature stop codon in the 
LALBA (lactalbumin alpha) gene and (b) a frameshift mutation (Chr29:41,139,622) in STX5 (syntaxin-5) gene. 
The two candidate mutations appear to have a stronger effect on milk production compared to heat tolerance. This 

Figure 3.   Proportion of candidate causal variants for heat tolerance within different functional classes identified 
from (a) single-trait GWAS, (b) meta-analysis, and (c) meta-analysis of conditional GWAS results for slope 
traits. Values in brackets are the proportions of all variants used in the study (~ 15 million SNPs). Functional 
classes without values in brackets were represented by a small (< 1%) proportion of SNPs in the study dataset.

Figure 4.   Enrichment of the candidate causal variants for heat tolerance across functional classes. The values 
in brackets are the number of variants within each class. The class “Other” includes variants with very small 
proportions of candidate variants (frameshift, stop-codon, splice variants, etc.).
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is evidenced by a smaller (p = 1.39E–19) p value for the stop-gain mutation (Chr5:31,184,185) observed in the 
meta-analysis of intercept traits compared to the meta-analysis of slope traits (p = 4.08–12). Similarly, the p value 
for the frameshift mutation (Chr29:41,139,622) in the STX5 gene was smaller (p = 2.06E–16) for the meta-analysis 
of intercept traits than the meta-analysis of slope traits (p = 5.06E–06). None of these two candidate stop-gain 
mutations were significant (p < 0.05) following conditional GWAS for slope traits on intercept traits (Table S5).

Using data from34, which documented over 300 k sequence variants in cattle at highly evolutionarily conserved 
genome regions across 100 vertebrates (conservation/PhastCon scores > 0.9; see “Methods”), we identified 61 
potential functional variants for heat tolerance at these conserved sites in our study (Table S4). However, the 
candidate causal mutations for heat tolerance are not enriched (p = 1.0) in the conserved regions of the genome.

Table 3 provides a short list of putative causal variants (upstream and missense) for heat tolerance that 
overlap at genomic sites highly conserved across vertebrates. Some of the candidate genes flanking these vari-
ants have been reported to be involved with cell survival under stress in animals, e.g., SCD35, KIAA132436, and 
TONSL14. The SCD (stearoyl-CoA desaturase) gene encode fatty acid metabolic enzyme and perhaps is required 
for metabolic homeostasis during heat stress in mammals. Other putative candidate genes for heat tolerance 
include KIFC2, VPS13B, and USP3. For example, Fang et al.37 demonstrated that the USP3 gene, a member of 
the ubiquitin-specific proteases (USPs) family, is required for eliminating misfolded proteins under heat stress 
conditions in Yeast.

Pathway enrichment analysis.  We generated a list of candidate genes mapping within or near lead SNPs 
detected at FDR < 0.10 for each trait for the pathway enrichment analyses. We found that the candidate gene-list 
for slope traits were highly enriched for the KEGG pathways related to the neuronal system (neuroactive ligand–
receptor interaction and glutamatergic synapse) and metabolism system (citrate cycle) (Fig. 5). Interestingly, 
the heat tolerance candidate gene-list (N =  ~ 400 genes) identified from various analyses (single-trait GWAS, 
meta-analysis, and conditional analysis) were consistently significantly enriched for a neuroactive ligand–recep-
tor interaction pathway comprising of 15 genes (CALCR, PTGER2, THRB, GRIK2, NPY2R, F2RL1, GRIN2A, 
NR3C1, CHRM3, GRM8, GRM7, GRID2, NPFFR2, MC4R, GHR). A total of 8 genes were enriched (p = 4.0E–
03) in the glutamatergic synapse pathway (GRIN2A, GRM7, GRM8, ITPR1, ITPR2, SLC17A6, GRIK2, GRIA4). 
The citrate cycle pathway was also enriched (p = 1.87E–03), comprising of 5 candidate genes for heat tolerance 
(ACLY, PDHA2, MDH1, SUCLG2, PCK1).

We also analysed a smaller set of genes (N =  ~ 230) with the strongest (p < 1E–05) evidence of association for 
heat tolerance, separately (that is, the gene-list underlying the candidate causal variants defined as the lead SNP 
(most significant) within an independent QTL plus other significant SNPs in strong LD (r2 > 0.80) with the lead 
SNP, 500 kb up or downstream), to see enriched biological pathways. Interestingly, we observed enrichment 
(p = 0.02) of the genes in the neuroactive ligand–receptor interaction pathway, which provides strong support 
that this neuronal pathway is relevant for heat tolerance comprising of 8 genes (GHR, NPFFR2, P2RY8, GRIN2A, 
CHRM1, THRB, CALCR, F2RL1).

When examining the candidate gene-list from single-trait GWAS analyses for slope traits separately, the 
neuroactive ligand–receptor interaction pathway was overrepresented for candidate gene-list for HTMYslope 
(p = 3.19E–04) and HTPYslope (p = 7.79E–03) traits (Fig. 6). On the other hand, gene-list for HTFYslope were 
enriched (p = 1.55E–02) for the axon guidance pathway comprising four genes (ABLIM2, ABLIM3, NTN1, 
ROBO1) and metabolic (p = 0.06) pathways.

To further test whether the neuronal pathways are real and not an artifact of our analyses for heat tolerance 
traits (slopes), we performed enrichment analyses for the significant candidate gene-list for intercepts traits (level 
of milk production traits). In the candidate gene-list for intercept traits, we found no evidence for enrichment 
(p < 0.05) in any neuronal pathways; thus, providing further favourable support that neuronal pathways are 
relevant for heat tolerance in mammals.

Figure 5.   Enriched Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways obtained from candidate 
gene-list for slope traits detected at false discovery rate (FDR < 0.10). SS-slope genes–gene-list from single-trait 
GWAS; Meta-slope genes–gene-list from multi-trait meta-analysis of slope traits; All-slope genes–combined 
gene-list from single-trait and meta-analysis. Cells are color-coded according to the strength of the significance 
for each pathway. Values in brackets are the number of genes within each pathway.
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Discussion
In this study, we performed a GWAS using a large sample size of Australian dairy cows (N = 29,107) with milk 
production records and imputed sequence data (~ 15 million SNPs) to identify candidate causal variants and 
functional genes and pathways associated with heat tolerance. Australia’s dairy cattle are uniquely placed for 
studying heat tolerance in mammals for two main reasons: (1) they are subjected to a wide range of seasonal 
climatic variations across diverse dairying regions spanning one of the geographically largest countries in the 
world, and (2) Australia’s dairying is predominantly pasture-based with limited heat stress mitigation measures 
in contrast with those, for example, in North America, where extensive managerial strategies are used more to 
reduce thermal stress. Overall, we have identified novel candidate causal variants in the neuronal pathways that 
contribute significantly to heat tolerance in animals.

We leveraged two statistical approaches to identify genetic loci and pathways for heat tolerance: single-trait 
GWAS linear models and multi-trait meta-analysis. Single-trait GWAS is based on regressing phenotypes on each 
SNP one at a time. On the other hand, a meta-analysis that combines results of the single-trait GWAS allowed 

Table 3.   Upstream and missense candidate causal variants for heat tolerance (slope) traits at genomic sites 
that are highly conserved (conservation score > 0.9) across 100 vertebrate species*. *Conservation scores 
(PhastCon score) of variants at conserved genomic sites were computed by34 based on the LiftOver (https://​
genome.​ucsc.​edu/​cgi-​bin/​hgLif​tOver) human sites calculated across 100 vertebrate species; single-trait GWAS 
for heat tolerance milk (HTMYslope), fat (HTFYslope), and protein (HTPYslope) yield slope traits. a Meta-
analysis combining single-trait GWAS results for slope traits. b Meta-analysis combining single-trait conditional 
GWAS results for slope traits. c For each analysis that identified this variant as significant.

SNP Chr BP Annotation VEP_impact Gene HTMYslope HTFYslope HTPYslope
Meta-
analysisa

Conditional 
analysisb p valuec

rs209684414 3 34,215,670 Upstream MODIFIER KIAA1324 ✓ 5.98E–07

rs207668220 3 34,273,899 Upstream MODIFIER C3H1orf194 ✓ 6.5E–07

rs210324395 10 46,503,113 Upstream MODIFIER USP3 ✓ 8.66E–09

rs210468775 10 46,505,212 Upstream MODIFIER USP3 ✓ 1.89E–09

rs207681599 14 432,274 Upstream MODIFIER LRRC14 ✓ ✓ ✓ ✓ ✓
1.46E–52|1.13E–
63|1.13E–28|8.8E–
243|7.92E–08

rs136474298 14 471,951 Missense MODERATE KIFC2 ✓ ✓ ✓ ✓ ✓
6.11E–53|4.83E–
63|5.59E–29|2.5E–
242|7.77E–08

rs207886320 14 479,761 Upstream MODIFIER KIFC2 ✓ ✓ ✓ ✓ ✓
6.18E–52|4.17E–
64|4.55E–28|3.9E–
242|7.85E–08

rs137472016 14 494,621 Upstream MODIFIER TONSL ✓ ✓ ✓ ✓ ✓
6.28E–53|8.39E–
63|5.94E–29|9.1E–
242|7.87E–08

rs445616049 14 64,454,721 Missense MODERATE VPS13B ✓ ✓ 4.18E–08|1.75E–32

rs41946451 20 37,085,370 Missense MODERATE CPLANE1 ✓ 1.14E–07

rs41255693 26 21,272,422 Missense&splice MODERATE SCD ✓ ✓ 4.11E–07|1.85E–08

Figure 6.   Enriched Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways obtained from our gene-list 
for single-trait GWAS analysis of slope traits. HTMYslope (heat tolerance milk yield slope); HTFYslope (heat 
tolerance fat yield slope); and HTPYslope (heat tolerance protein yield slope). Cells are color-coded according 
to the strength of the significance for each pathway. Values in brackets are the number of genes within each 
pathway.
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us to discern putative pleiotropic genetic variants for heat tolerance. Consequently, we identified multiple novel 
loci for heat tolerance, including 61 potential functional variants at genomic sites highly conserved across 100 
vertebrates (Table 3 and Table S4), which could be valuable for fine-mapping and genomic prediction. Studies 
in humans38 and cattle34 have demonstrated that the conserved genomic sites have strong enrichment of trait 
heritability. Moreover, the results revealed specific candidate causal variants and genes related to neuronal func-
tions for heat tolerance in animals, which we now discuss in more detail.

Heat stress responses are complex adaptations in animals involving many biological pathways, includ-
ing the nervous system, which connects the internal and external environment to maintain stable core body 
temperature39. Among the candidate gene-list that contribute significantly to heat tolerance in the study animals 
(Holstein cows), the neuroactive ligand–receptor interaction and glutamatergic synapse pathways (Fig. 5), as 
components of the nervous system, were highly enriched (p < 1E–03) biological features.

At least two candidate variants in the intronic region of ITPR2 (Chr5:83,330,185; p = 1.3E–05) and GRIA4 
(Chr15:2,461,074; p = 5.8E–05) genes in the glutamatergic synapse pathway could be potential targets for resil-
ience to environmental stress in animals. ITPR2 gene was associated with heat stress in the US Holsteins14 or 

Figure 7.   QTL discovery for heat tolerance milk (HTMYslope) and protein (HTPYslope) yield slope traits 
around the NPFFR2 gene in bovine chromosome 6.
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sweating rate in humans and mice40, while the GRIA4 gene has been linked to thermoregulation in the Siberian 
cattle41. Another candidate variant (Chr22:21,783,956) detected for heat tolerance milk (p = 3.87E–05) and protein 
(7.15E–05) yield slope traits mapped to the intronic region of ITPR1—a gene associated with environmental 
adaptation in the domestic yak42. These three lead SNPs for slope traits overlapped with those for intercept traits, 
with opposing effect direction, suggesting that selecting for these variants may negatively impact milk production.

Previous studies show that the neuroactive ligand–receptor interaction is involved in maintaining energy 
homeostasis during heat stress in ducks43. As protein production is the most valuable output from dairy farms, 
the focus of breeding programs has been traits associated with yield, with the average milk volume per cow/
year almost doubling within the past three decades in Australia44. The environmental heat stress, coupled with 
the elevated metabolic-induced thermogenesis, means that the genetic and cellular reprogramming of pathways 
such as the nervous system may be necessary to regulate a cascade of hormonal processes such as growth factors, 
insulin, serotonin, thyroid, prolactin, and mineralocorticoids associated with milk synthesis45. We identified 
15 genes (FDR < 0.10) associated with the neuroactive ligand–receptor interaction, which could be relevant 
for metabolic homeostasis in cattle during thermal stress, of which three candidate genes (GHR, NPFFR2, and 
CALCR) showed the strongest evidence (p < 1E–05).

Here we discuss the evidence for each of these three candidate genes:

(1)	 Zhang et al.24 demonstrated that the NPFFR2 (neuropeptide FF receptor-2) gene, which is mainly expressed 
by neurons in the brain, plays a crucial role in regulating diet-induced thermogenesis and bone homeostasis 
in mice. In this study, two lead SNPs (Chr6:87,070,486 and Chr6:87,249,592), detected from single-trait 
GWAS for HTMYslope and HTPYslope (p < 1E–05) mapped to the intergenic and intronic regions of 
NPFFR2 gene in BTA 6, respectively. Physiological studies suggest that NPFF family genes regulate feeding 
behaviour and energy expenditure in mammals reviewed in46. During heat events, dairy cattle typically 
reduce their dry matter intake by up to 30%, perhaps as part of an adaptive mechanism to depress meta-
bolic heat production47. Other studies, e.g.,48 show that inhibition of NPFF receptors induces hypothermia 
in mice. A recent review by Nguyen et al.49 indicates that NPFF and its receptors have many promising 
therapeutic applications including pain, cardiovascular, and feeding regulations in mammals. By examining 
the genomic region around the NPFFR2 gene (Fig. 7), it is more likely that the two lead SNPs within this 
QTL represent separate candidate causal mutations since they are not in strong LD. Interestingly, although 
the lead SNP (Chr6:87,070,486) for slope trait overlapped with the lead SNP detected for the milk yield 
intercept (MYint), we observed stronger evidence for the slope (HTMYslope; p = 3.05E–13) than the inter-
cept (MYint; p = 4.19E–10), suggesting that this SNP is a good candidate for heat tolerance. Besides, this 
lead SNP (Chr6:87,070,486) remained significant (p = 6.36E–06) following single-trait conditional GWAS 
analysis for HTMYslope trait (conditioning slopes on the intercept traits) as well as in the meta-analysis 
of single-trait conditional GWAS results for slope traits (p = 3.74E–06).

(2)	 Calcitonin receptors regulate daily body temperature rhythm in mammals and insects and are essential 
for maintaining homeostasis50. In this study, the lead SNP (Chr4:10,815,768) was intronic in the CALCR 
(calcitonin receptor) gene, perhaps indicating that it could be relevant for animals experiencing recurrent 
or chronic stress, such as in Australian seasonal summers. The strong GWAS signal around this QTL (Sup-
plementary Fig. S8) suggests that the CALCR gene likely harbours causal mutations affecting heat tolerance. 
Dairy cattle employ various adaptive behavioural strategies during heat stress such as reduced feed intake, 
increased volume, and frequency of water intake, increased standing time, shade seeking, and grazing at 
cooler day time. We think that CALCR is likely involved with some of these heat-stress adaptive behaviours 
in dairy cattle. Future studies are needed to confirm this, particularly by combining production traits with 
other relevant behavioural phenotypes such as panting scores from high-throughput recording devices, 
e.g., activity-based collars.

(3)	 The expression of the GHR (growth hormone receptor) gene is down-regulated during heat stress in live-
stock, including dairy cows51 and avian species43. The adaptive physiological significance of this down-
regulation is not well understood, and it is partly independent of the nutritional level of the animal51. In 
this study, the lead SNP (Chr20:32,103,408; p = 2.01E–08) identified only in one slope trait (HTMYslope) 
based on significant cut-off of p < 1E–05 mapped to intronic region of GHR gene (Supplementary Fig. S9). 
However, we found a stronger signal after combining the GWAS results for all the slope traits in a meta-
analysis with the lead SNP (Chr20:32,201,287; p = 1.7E–47) mapping to the intergenic (~ 22 kb) region of 
the GHR gene, which confirms the pleiotropic effect of this QTL22. Also, we observed no significant SNP 
(p < 1E–05) around this QTL following single-trait conditional analyses, but a somewhat strong signal 
emerged when we combined single-trait conditional GWAS results in the meta-analysis, for which the 
lead SNP (Chr20:32,226,298; p = 5.35E–07) mapped to the intergenic region (~ 47 kb) of GHR. This further 
supports a possible second QTL that is independent of the level of milk production and shows pleiotropy 
for the heat tolerance traits. Other published GWAS have also reported an association of the GHR gene 
with milk production in heat-stressed cows14 and respiratory rates in pigs during heat stress19. Several 
studies have also implicated the GHR polymorphisms to milk production in cattle, e.g., Chr20:31,888,449 
phenylalanine-to-tyrosine missense mutation29. This mutation was not in strong LD (r2 > 0.8) with the lead 
SNP detected for slope traits in our study. Taken together, polymorphisms around the GHR gene could be 
candidate targets for improving thermotolerance in livestock, although with possible antagonistic effect 
on milk production considering, for example, the opposing effect direction observed for the lead SNP 
(Chr20:32,103,408) within this QTL on the slope (HTMYslope) and intercept (MYint) traits.
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There is general agreement that heat stress decreases milk yield (milk, proteins, fat, etc.) in dairy cattle. 
However, the genetic and biological basis for this reduction is still unclear. Evidence suggests that the reduced 
feed intake in heat-stressed dairy cows partially explains (35–50%) reduced milk yield and composition47. The 
molecular control and pathways for individual milk traits during heat stress are scarce and inconclusive. In this 
study, the QTLs detected for the heat tolerance traits varied across the three milk traits (HTMYslope, HTFYslope, 
HTPYslope), suggesting that they are, in part, regulated by different genes in heat-stressed cows. The greater over-
lap of candidate genes observed for HTMYslope and HTPYslope traits was expected due to their relatively high 
correlation (0.90) compared to HTMYslope and HTFYslope (0.56) or HTPYslope and HTFYslope (0.62). These 
correlations appear to mirror the proportions of SNPs with the same or inconsistent effect direction observed 
for significant SNPs between slope traits. Considering that heat stress alters carbohydrate, lipid, and amino acid 
metabolism52, the large proportion of SNPs with inconsistent effect direction, particularly between HTPYslope 
and HTFYslope, suggest that these traits are somewhat differently regulated in heat-stressed dairy cows.

Several pair-fed studies suggest that pathways related to the mammary gland protein synthesis govern 
protein production under heat stress in dairy cows, in part, via reduced amino acid supply to the mammary 
gland, e.g.,53,54. We found that the candidate genes for HTMYslope and HTPYslope traits were overrepresented 
(p < 0.005) in the neuroactive ligand–receptor interaction pathway. This agrees with Pegolo et al.55 that genes 
associated with milk proteins are involved in neuronal signaling pathways in dairy cattle. However, it remains 
unclear how this pathway is regulated during heat stress conditions in dairy cows to impact protein production.

On the other hand, the molecular pathways for fat production under heat stress conditions have not been 
widely studied. Some studies e.g.,56 suggest that the reduced activation of PPAR (peroxisome proliferator-acti-
vated receptor) signaling pathways leads to decreased expression of genes associated with fat metabolism. Can-
didate genes for HTFYslope identified in this study are associated with the KEGG term “metabolic pathways” 
(Fig. 6). Five candidate genes (DMGDH, PDHA2, UGP2, MDH1, PRDX6, NDUFA13) within this pathway may 
be involved with alleviating oxidative stress in heat-stressed cows. In line with these findings, we found that the 
candidate genes for heat tolerance (Fig. 5) are overrepresented in the citrate cycle/TCA pathway, which is central 
to mitochondrion energetics, and might serve to reduce substrate oxidation and reactive oxygen species (ROS) 
production, thus preventing cellular damage during heat stress.

Notably, our pathway results are perhaps not directly comparable to most previous work in which the study 
cows were subjected to short-term acute heat stress under experimental conditions e.g.,56 whereas the current 
work mimics recurrent or chronic stress that dairy cows experience during summer seasons in Australia. The 
effects of heat stress in livestock depend on its duration and severity, with the most recent work in Arabian cam-
els somatic cells showing that acute heat stress elevates the expression of heat shock proteins and DNA repair 
enzymes while chronic heat leads to changes in cell integrity and reduction of total protein levels, metabolic 
enzymes, and cytoskeletal proteins57. Our candidate QTLs are particularly important since it provides novel 
insights into the molecular aspect of chronic stress considering that the study animals are predominantly reared 
under outdoor conditions with limited heat stress mitigations. Future studies are required to confirm if these 
QTLs are involved with recurrent chronic stress in other animal species.

Australia13,58 were comparable to those used in our study, we could not confirm most candidate 
genes (except HSF1 gene). This is likely due to the reduced power in earlier GWAS studies (they used smaller 
sample size and 50 k or 600 k SNP data). Third, differences in the patterns of LD among study populations 
used and imputation quality may have implications on GWAS, particularly in the detection of putative causal 
mutations59. Here we explored QTLs for heat tolerance in purebred Holstein cows, while some other studies, 
e.g.,15 have used crossbred cattle. Collectively, these factors likely impacted the replication of previous GWAS 
candidate genes for heat tolerance.

Although we detected multiple candidate causal variants for heat tolerance in this study, it appears that larger 
sample size (we used N = 29,107) would be beneficial considering the polygenic architecture of this trait. Larger 
sample size is required to detect causal variants with very small effects and the effects of rare causal variants16. For 
example, many of the lead SNPs (most significant) for heat tolerance were tagged by none or very few significant 
SNPs (Table S1), which may be false-positive variants passing the GWAS cut-off (p < 1E–05).

With the increasing availability of high-throughput data from automatic sensor devices such as activity-based 
collars or tags, it is now feasible to obtain large-scale data for thousands of animals; if genotyped, it would allow 
a comprehensive genetic evaluation of heat tolerance from a wide array of phenotypes e.g., mid-infrared (MIR) 
predicted traits from milk recording data60. Furthermore, we used conditional analyses of slope traits in a bid to 
separate production and heat tolerance genes. It may be useful to consider alternative heat tolerance traits in the 
future GWAS (besides milk decays) that are independent of production, such as those derived from milk yield 
based on the principal components (PC)61 or eigen-functions62. Overall our results support the highly polygenic 
nature of heat tolerance characterised by multiple small-effect variants, suggesting that this trait is more amenable 
to genomic selection tools such as those currently implemented in the Australian dairy industry3, 63 rather than 
approaches that exploit few QTLs with large effects. The significant variants detected in this study will be tested 
in a follow-up study to assess their benefits in the genomic prediction of heat tolerance in dairy cattle.

We could not replicate most of the candidate genes with published GWAS results for heat tolerance in cattle, 
likely for several reasons. First, all comparable earlier studies were much smaller (< 5,000 animals) and therefore 
were under-powered, and the marker density used was typically 50 k or 600 k SNP array e.g.,13,14,58. As expected, 
we observed that our sequence variants showed markedly higher significance levels than the 50 k SNP array and 
increased the number of significant peaks across the genome (Supplementary Fig. S1). Second, the trait used to 
define heat tolerance in this study (i.e., the rate of milk yield decline under heat stress) differs from many other 
studies e.g.,12, which used measures of core body temperature in their GWAS. Given that heat tolerance is a 
complex trait involving a wide array of adaptative responses (behavioural, physiological, cellular, etc.), different 
QTLs may be captured by different traits used in GWAS. Notably, although heat tolerance traits (slopes) used in 
earlier studies in  
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In conclusion, we performed GWAS for heat tolerance using large sample size and genotype dataset for 
dairy cattle. The increased sample size and high-resolution SNP data in our study compared to previous reports 
allowed us unprecedented power and precision of the GWAS to pinpoint multiple putative causal mutations, 
including 61 potential functional variants at genomic sites highly conserved across 100 vertebrate species. Also, 
results indicate that different genes and pathways, in part, regulate different milk production traits (milk, fat, 
and proteins) in heat-stressed dairy cows with a substantial overlap of genes for heat tolerance milk and protein 
yield. Overall, the results revealed the importance of variation in genes related to the neuronal functions for heat 
tolerance in mammals, which is of interest for future research towards understanding and managing heat stress 
for warm climates and particularly in view of the anticipated rising global temperatures.

Materials and methods
Animals and phenotypes.  No live animals were used in this study. Phenotypes used for GWAS were 
part of our previous study64 obtained from DataGene (DataGene Ltd., Melbourne, Australia; https://​datag​ene.​
com.​au/)—the organisation responsible for genetic evaluation of dairy animals in Australia. The phenotypes 
were test-day milk, fat, and protein yield for Holstein dairy cows collected from dairy herds that were matched 
with climate data (daily temperature and humidity) obtained from weather stations across Australia’s dairying 
regions. The distribution of dairy herds and weather stations; and the calculation of environmental covariate 
(i.e., temperature–humidity index (THI)) used here were described in our earlier studies3,64.

Calculation of heat tolerance phenotypes for cows.  The dataset used to calculate heat tolerance phe-
notypes for cows was similar to that used by64, comprising a total of 424,846 test-day milk records for first, sec-
ond and third lactations from 312 herds and 15,906 herd-test days (HTD) collected over 15 years (2003–2017). 
A summary of the final dataset is given in Table 1. The rate of decline (slope) in milk, fat, and protein yield due 
to heat stress events was estimated using a reaction norm models64. In these models, data on milk, fat, or protein 
yield were adjusted for the fixed effects, including herd test day, year season of calving, parity, Legendre poly-
nomials (order 3) on the cow age on the day of test, and the Legendre polynomials (order 8) on the interaction 
between parity and DIM. Random effects fitted in the model included a random regression on a linear orthogo-
nal polynomial of THI, where the intercept represents the level of mean milk yield and the linear component 
represents the change in milk yield (slope) due to heat stress for each cow and a residual term. In the model, 
the threshold of THI was set to 60 following65. The analyses to derive trait deviation (TD) which represents a 
phenotype adjusted for all fixed effects (i.e., the mean/intercept and slope for each cow) were conducted using 
ASReml v4.266. To facilitate convergence, milk, fat and protein yield traits were scaled by a factor of 10, 100, and 
100, respectively. The description of heat tolerance traits (i.e., slopes) used in this study are comparable to those 
used in previous GWAS in Australia13,58.

We refer to milk intercept traits as [MYint (i.e., milk yield intercept), FYint (i.e., fat yield intercept), and PYint 
(i.e., protein yield intercept)] and the slopes traits as [HTMYslope (i.e., heat tolerance milk yield slope), HTFYs-
lope (i.e., heat tolerance fat yield slope), and HTPYslope (i.e., heat tolerance protein yield slope)], respectively.

Genotypes.  Two genotype datasets were analysed for 29,107 Holstein cows with the above phenotypes: 
50 k SNP chip and 15,098,486 imputed whole-genome sequence variants (WGS). Most of the cows were orig-
inally genotyped with a custom low-density 10  k SNP panel or a standard medium density 50  k SNP array 
(BovineSNP50k BeadChip: Illumina Inc). The low-density genotypes were imputed to the 50 k array using a 
reference set of approximately 14,000 animals with real 50 k genotypes, with approximately 7,000 SNPs of the 
low-density SNP panel overlapping the 50 k SNP array. The 50 k genotypes were then imputed to the high-
density Bovine SNP array (HD: BovineHD BeadChip, Illumina Inc) using a reference set of 2,700 animals with 
real HD genotypes. All SNP BeadChip genotypes were first converted to the ARS-UDC1.2 reference genome 
(https://​www.​ncbi.​nlm.​nih.​gov/​assem​bly/​GCF_​00226​3795.​1/)67 positions from reference genome UMD3.1 and 
imputed using Fimpute368. The WGS was imputed from the HD genotypes using a reference set of 3,090 Bos 
taurus sequences in the Run7 of the 1000 Bull Genome Project (http://​1000b​ullge​nomes.​com/)20 aligned to the 
ARS-UCD1.2 reference genome. Only bi-allelic sequence variants with a minor allele count (≥ 4) and GATK69 
quality tranche 99.0 or better were retained for imputation. Pre-imputation, we also removed sequence variants 
from the imputation reference that had a higher than expected proportion of heterozygous calls (> 0.5) if these 
variants fell in a 500 kb window enriched for variants showing excessive heterozygosity (as a proxy to indicate 
regions where WGS mapping/alignment may be poor). A total of 31,994,954 sequence variants remained for 
imputation. Minimac370 was used for WGS imputation, having first pre-phased both the HD genotypes and 
the WGS reference using Eagle v271. For the analysis, we retained only the variants with Minimac3 imputation 
accuracy, R2 > 0.4 and MAF > 0.005 (N = 15,098,486 sequence variants).

Single‑trait GWAS and multi‑trait meta‑analysis.  A genome-wide association analysis (GWAS) 
using a mixed linear model was used to test associations between individual SNP and cows’ slope [HTMYslope, 
HTPYslope and HTFYslope] and intercept [MYint, FYint, PYint] traits using GCTA software72. Because phe-
notypes were TD already adjusted for nongenetic effects, for each autosomal SNP i with minor allele frequency 
(MAF) > 0.005, the fitted model per trait was,

where y was the vector of TD (intercept or slope traits) for cows (n = 29,107), β was the allele substitution effect 
of SNP i, x was the vector of genotype dosages (0, 1, or 2) for SNP i, g was the vector of polygenic effect 

y = mean+ xβ+ g+ ε,
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with g ∼ N(0, GRMσ 2
g ) and ε was a vector of the residual effect with e ∼ N(0, Iσ 2

e ), where I was an n × n identity 
matrix. The variance of y was var

(

y
)

= GRMσ
2

g
+ Iσ 2

e where GRM is the genomic relationship matrix between 
cows, and σ2

g and σ2
e were the genetic and residual variances. For animal j and k relationship was calculated using 

GCTA​72 as follows:

where Ajk are the off-diagonal elements of GRM for animal j and k; N = total number of SNPs from 50 k SNP 
array data (MAF > 0.005; 45,504 SNPs); xij and xik are the number of copies for reference allele for the ith SNP; 
and pi is the allele frequency for ith SNP.

Genomic heritability was calculated for each trait using variance component estimates from –reml option of 
GCTA for 50 k SNP array (45,504 SNPs) data of cows (N = 29,107): h2 = σ 2

g /(σ
2
g + σ 2

e ).
To increase the power of GWAS and identify pleiotropic variants, we next combined single-trait GWAS 

results obtained above in a multi-trait meta-analysis following21. The multi-trait chi-squared ( χ2 ) statistics for 
ith SNP was calculated separately for intercept [MYint, FYint, PYint] and slope [HTMYslope, HTFYslope, and 
HTPYslope] traits as follows:

where ti is the vector of 3 × 1 vector of signed t-values (i.e., b/se) of ith SNP for either intercept or slope traits; and 
V−1 is the inverse of 3 × 3 correlation matrix of the signed t-values calculated based on all pairs for the intercept 
or slope traits. The significance of χ2 value for ith SNP was calculated based on chi-squared distribution with 3 
degrees of freedom—that is number of traits for either intercept or slope traits.

Conditional GWAS analysis.  Next, we performed two conditional GWAS strategies of slope traits using 
GCTA software72 to test somewhat different hypotheses:

Conditional analysis of slope traits on lead SNP (i.e., most significant SNP within a chromosome from first-
round GWAS)—aimed at identifying additional or secondary putative causal variants beside those detected 
from first-round GWAS. We performed a conditional analysis strategy on two chromosomes (BTA 14 and 
BTA 20), which showed the strongest GWAS signal for slope traits in the first-round GWAS (Supplementary 
Figs. S1 and S2) and are known to harbour QTLs with major effects on milk production (i.e., BTA14 ~ DGAT1 
and BTA20 ~ GHR gene).
Conditional analysis of slope traits on intercept traits—aimed at identifying QTLs for heat tolerance that are 
independent, or not also strongly associated with the level of milk production. We fitted the intercept traits of 
MYint, FYint, and PYint, as a covariate in the linear model when analysing the HTMYslope, HTFYslope, or 
HTPYslope, respectively. To increase the power of GWAS, we then combined conditional GWAS results for 
the three slope traits [HTMYslope, HTFYslope, and HTPYslope] in a multi-trait meta-analysis following21 
as described earlier.

Identifying candidate causal variants.  We used the following criteria to select candidate variants 
(p < 1.0E–05) from the three analytical approaches (single-trait GWAS, meta-analysis, conditional analysis).

1.	 For each trait, select all SNPs with p  < 1E–05 (FDR < 0.10).
2.	 Split each chromosome (N = 1…29) into 5 Mb non-overlapping windows from the start to the distal end of 

the chromosome.
3.	 Within the ith 5 Mb window, select the most significant SNP (i.e., the SNP with the smallest p value below 

the threshold of p  < 1E–05) defined as the ‘lead SNP’. We chose this arbitrary 5 Mb window size to obtain a 
small set of significant lead SNPs representing independent QTL (that is, not in linkage disequilibrium) for 
further detailed examination.

4.	 Calculate the LD between each lead SNP and all the other SNPs within 500 kb up and downstream of the 
lead SNP using Plink v1.973.

5.	 For each lead SNP, extract all the significant SNPs (p < 1E–05) in strong LD (r2 > 0.80) with the lead SNP 
within 500 kb up or down downstream – to account for the fact that the lead SNP (most significant) is not 
necessarily the causal variant.

Annotation of sequence variants and enrichment analysis.  Annotation of all variants (~ 15 mil-
lion SNPs) was performed using SnpEff33 tool. Using the annotation, we grouped the candidate causal vari-
ants for heat tolerance (slopes) into 9 classes (intergenic, intronic, missense, upstream, downstream, 3_prime_
UTR, synonymous, 5_prime_UTR, and Other) and performed enrichment analysis using phyper in R v3.6174. 
The class “Other” comprised variants including 5_prime_UTR_premature/_start_codon_gain, frameshift, 
missense&splice, splice&intron, stop_gained, etc. Supplementary Table S1 provides the number of candidate 
causal variants for heat tolerance within the 9 classes.

Candidate variants at conserved genomic sites.  We identified candidate causal variants for heat toler-
ance at highly conserved genomic sites using data from34. Briefly, these authors documented over 300 k sequence 
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N
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variants at conserved sites in cattle based on the LiftOver (https://​genome.​ucsc.​edu/​cgi-​bin/​hgLif​tOver) human 
sites with conservation scores (PhastCon score) > 0.9 calculated across 100 vertebrate species (see https://​www.​
pnas.​org/​conte​nt/​pnas/​suppl/​2019/​09/​07/​19041​59116.​DCSup​pleme​ntal/​pnas.​19041​59116.​sapp.​pdf for more 
details).

Pathway enrichment analysis.  We generated candidate gene-list mapping near or underlying lead SNPs 
(most significant SNPs within 5 Mb QTL windows) identified at FDR < 0.10 cut-off threshold from both single-
trait and multi-trait analyses of intercept or slope traits. For intergenic lead SNPs, we selected the closest gene on 
either side of the SNP. We chose this cut-off (FDR < 0.10) instead of a more stringent p < 1E–05 to include genes 
associated with smaller effects while guarding against false positives. We then performed the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analysis using DAVID75.

We also performed enrichment test separately for the gene-list associated with potential major effects on 
heat tolerance identified across all analyses (i.e., gene-list with the strongest (p < 1E–05) evidence of association 
defined as the candidate causal variants (i.e., lead SNP + other significant SNPs in strong LD (r2 > 0.80) with 
the lead SNP within 500 kb up or downstream passing the cut-off p value of 1 < 1E–05). For all the analyses, we 
considered functional pathways with Fisher’s p < 0.05 as significantly enriched.

Data availability
Positions and annotations for all the lead SNPs (most significant SNPs) with p < 1E–5 are in Tables S1–S3. Data-
Gene (DataGene Ltd., Melbourne, Australia; https://​datag​ene.​com.​au/) are the custodians of the raw phenotype 
and genotype data of Australian farm animals. Research related requests for access to the data may be accom-
modated on a case-by-case basis.
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Functionally prioritised whole‑genome 
sequence variants improve the accuracy 
of genomic prediction for heat tolerance
Evans K. Cheruiyot1,2, Mekonnen Haile‑Mariam2*  , Benjamin G. Cocks1,2, Iona M. MacLeod2, 
Raphael Mrode3,4 and Jennie E. Pryce1,2 

Abstract 

Background:  Heat tolerance is a trait of economic importance in the context of warm climates and the effects of 
global warming on livestock production, reproduction, health, and well-being. This study investigated the improve‑
ment in prediction accuracy for heat tolerance when selected sets of sequence variants from a large genome-wide 
association study (GWAS) were combined with a standard 50k single nucleotide polymorphism (SNP) panel used by 
the dairy industry.

Methods:  Over 40,000 dairy cattle with genotype and phenotype data were analysed. The phenotypes used to 
measure an individual’s heat tolerance were defined as the rate of decline in milk production traits with rising tem‑
perature and humidity. We used Holstein and Jersey cows to select sequence variants linked to heat tolerance. The 
prioritised sequence variants were the most significant SNPs passing a GWAS p-value threshold selected based on 
sliding 100-kb windows along each chromosome. We used a bull reference set to develop the genomic prediction 
equations, which were then validated in an independent set of Holstein, Jersey, and crossbred cows. Prediction analy‑
ses were performed using the BayesR, BayesRC, and GBLUP methods.

Results:  The accuracy of genomic prediction for heat tolerance improved by up to 0.07, 0.05, and 0.10 units in 
Holstein, Jersey, and crossbred cows, respectively, when sets of selected sequence markers from Holstein cows were 
added to the 50k SNP panel. However, in some scenarios, the prediction accuracy decreased unexpectedly with the 
largest drop of − 0.10 units for the heat tolerance fat yield trait observed in Jersey cows when 50k plus pre-selected 
SNPs from Holstein cows were used. Using pre-selected SNPs discovered on a combined set of Holstein and Jersey 
cows generally improved the accuracy, especially in the Jersey validation. In addition, combining Holstein and Jersey 
bulls in the reference set generally improved prediction accuracy in most scenarios compared to using only Holstein 
bulls as the reference set.

Conclusions:  Informative sequence markers can be prioritised to improve the genomic prediction of heat tolerance 
in different breeds. In addition to providing biological insight, these variants could also have a direct application for 
developing customized SNP arrays or can be used via imputation in current industry SNP panels.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Heat tolerance is the ability of an animal to maintain its 
production and reproduction levels under hot and humid 
conditions. With increasing global warming effects on 
animal production, there is worldwide growing desire to 
breed for resilience to heat, in part, to meet the demand 
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of the increasing human population while coping with 
the challenges of hot and ever-changing production envi-
ronments [1]. Dairy cows are often prone to heat stress 
due to the elevated metabolic heat of lactation. Temper-
ature and humidity levels exceeding the thresholds that 
are considered as comfortable for the dairy cows and 
other farm animals can compromise production (reduced 
milk, growth, etc.), reproduction (e.g., reduced concep-
tion rates), and welfare (increased thirst and hunger), 
leading to substantial economic losses [2].

Considerable research has been conducted in many 
countries to assess heat tolerance and performance in 
farm livestock, including measuring changes in core body 
temperatures (e.g., rectal, vaginal, rumen, etc.) and ther-
mal indices [e.g., temperature–humidity index (THI)] [3]. 
To study the effect of THI on milk production of dairy 
cows, Ravagnolo et al. [4] introduced a method in which 
daily milk records are merged with temperature-humid-
ity data to measure the rate of milk decline associated 
with changes in heat stress. This method has been widely 
adopted in many countries [5–7] due to the availability 
of extensive test-day milk records from dairy farms and 
climate data from weather stations.

In Australia, Nguyen et  al. [7] used test-day milk 
records (milk, fat, and protein yield) and climate data col-
lected from across Australia’s dairying regions to evalu-
ate heat tolerance in dairy cattle, which culminated in 
the release to the dairy industry [through DataGene Ltd; 
(https://​datag​ene.​com.​au/)] of the first genomic breeding 
values for this trait in 2017, with an average reliability of 
38%. While current prediction estimates are promising, 
even a smaller lift in reliability is economically impor-
tant to the wider industry since the genetic improvement 
is linearly related to the selection intensity, accuracy of 
estimated breeding values (EBV), genetic variation and 
is inversely proportional to the generation interval [8, 9]. 
The accuracy of prediction is the only component that is 
influenced by research in different ways to drive genetic 
improvement for a given trait whereas the other compo-
nents (selection intensity, genetic variation, and genera-
tion cycle) are largely controlled by breeding companies 
and farmers.

Besides increasing the size of the reference population, 
one way to boost the accuracy of prediction is to increase 
the density of markers used in genomic predictions. 
However, replacing single nucleotide polymorphism 
(SNP) panels by the full set of whole-genome sequence 
variants has, in most cases, yielded limited, or no appre-
ciable increase in the accuracy of prediction for various 
traits in cattle [10], sheep [11], and avian species [12]. 
Alternatively, a substantial increase in accuracy of pre-
diction has been realized by augmenting standard indus-
try SNP panels (e.g., a 50k SNP array) with a small set of 

informative or causal mutations for a trait [11, 13–15]. 
To fully maximize predictions, this approach requires a 
careful selection of informative markers. Thanks to the 
1000 Bull Genomes project [16], it is now possible to 
use this sequence database to impute genotypes to the 
whole-genome sequence. This may facilitate a more accu-
rate selection of highly informative variants for genomic 
predictions, especially for complex traits such as heat tol-
erance. Specifically, having a large sample size and high-
resolution genotypes can help to identify many putative 
causal variants with medium- and small-sized effects.

In addition to sample size, the composition of the 
population used for discovering informative variants can 
have an impact on the genomic predictions of a trait. 
Several studies e.g., [17–19] have reported that the map-
ping precision of the causal variants underlying traits 
is improved in multi-breed compared to single-breed 
genome-wide association studies (GWAS), especially for 
quantitative trait loci (QTL) that segregate across breeds 
[19]. In a simulated study, van den Berg et al. [14] dem-
onstrated that using variants that are close to the causal 
mutations can improve genomic predictions. With real 
data, Raymond et al. [20] found that the accuracy of pre-
diction for stature increased when candidate variants that 
were discovered from a meta-GWAS of 17 cattle popula-
tions were used. In sheep, Moghaddar et al. [11] reported 
an enhanced accuracy of prediction for various produc-
tion traits when they used pre-selected variants from the 
QTL discovery set that comprised multiple breed com-
positions. Besides these studies and several others that 
used single-breed sets to discover variants for traits, e.g., 
[15, 21], there is still a dearth of information on the value 
of variants that are discovered from multi-breed popu-
lations in genomic predictions. Notably, it is critical to 
ensure that the population(s) used to discover informa-
tive sequence variants for a trait is (are) independent of 
that used to train subsequent genomic predictions to 
avoid bias, as demonstrated by [22].

The main objective of this study was to quantify the 
accuracy of prediction of heat tolerance in Holsteins 
when sets of selected sequence markers from a GWAS 
based on a large sample of Holstein cows were added 
to the standard-industry 50k SNP panel that is rou-
tinely used for genomic evaluations in Australia. The 
selected variants are likely linked to causal mutations 
that underpin the genetic basis for heat tolerance [23] 
and, therefore, could enable more accurate and sustained 
genomic selection for heat tolerance. In addition, we 
investigated the accuracy of prediction when informa-
tive sequence markers discovered in Holstein cows are 
used in the genomic predictions of numerically smaller 
breeds, including Jersey and crossbred cattle. Moreover, 
we investigated the gain in accuracy of prediction when 
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using informative markers discovered in a combined set 
of Holstein and Jersey cows (i.e., a multi-breed QTL dis-
covery set). Finally, we compared the gain in accuracy 
when single-breed (Holstein bulls) versus multi-breed 
(Holstein + Jersey bulls) reference sets are used in the 
genomic predictions.

Methods
Phenotypes
The phenotypes were obtained from DataGene (Data-
Gene Ltd., Melbourne, Australia; https://​datag​ene.​com.​
au/), and included test-day milk, fat, and protein yield 
for Holstein, Jersey, and Holstein–Jersey crossbred cows 
collected from dairy herds between 2003 and 2017 that 
were combined with climate data (daily temperature and 
humidity) obtained from weather stations across Aus-
tralia’s dairying regions. The distribution of dairy herds 
and weather stations, data filtering, and the calculation 
of environmental covariate [i.e., temperature–humidity 
index (THI)] used in this work were described previously 
[23, 24].

The rate of decline (slope) in milk, fat, and protein 
yields due to heat stress events was estimated using reac-
tion norm models described by [24]. Briefly, data on milk, 
fat, or protein yields were adjusted for the fixed effects, 
including herd-test-day, year-season of calving, parity, 
Legendre polynomials (order 3) on the cow age on the 
day of the test, and the Legendre polynomials (order 8) 
on the interaction between parity and DIM. The num-
ber of records (tests) per Holstein bull (N = 3323) ranged 
from 4 to 263,067 and that per Jersey bull (N = 852) 
ranged from 5 to 54,242. The number of daughters per 
Holstein bull ranged from 1 to 18,613 with an average of 
149, and that per Jersey bull ranged from 1 to 3169 with 
an average of 88.8. The random non-genetic effect fitted 
in the model included a random regression on a linear 
orthogonal polynomial of THI, where the intercept rep-
resents the level of mean milk yield, and the linear com-
ponent represents the change in milk yield (slope) due to 
heat stress for each cow, and a residual term. The reaction 
norm models [4] were used in the analyses with the THI 
threshold set at 60 (i.e., if THI < 60, then THI = 60) based 
on previous work in Australia [7, 25] showing that milk 
yield traits begin to decline at this THI threshold. The 
analyses to derive trait deviations (TD), which represent 
phenotypes adjusted for all fixed effects (i.e., the slope 
for each cow) were conducted using ASReml v4.2 [26]. 
Slope solutions (i.e., TD) for each bull’s daughters were 
averaged to obtain heat tolerance slope traits for bulls 
and were equivalent to daughter trait deviations (DTD). 
As in [27], the DTD in this study should be treated as 
approximations equivalent to the averages of daughter 
phenotypes since the models did not include pedigree 

data. Notably, the derivation of intercept and slope traits 
in this initial step was necessary because of the computa-
tional resources required to fit complex models and the 
large sample size in our study. From here on, the slope 
traits derived from milk, fat, and protein yield records 
are referred to as heat tolerance milk (HTMYslope), fat 
(HTFYslope), and protein (HTPYslope).

Genotypes
Two genotype datasets were prepared for the above cows 
and bulls with heat tolerance phenotypes: the standard 50k 
SNP chip (i.e., Illumina 50k Bovine Bead Chip used in pre-
vious work in Australia  [7] and 15,098,486 imputed whole-
genome sequence variants (WGS). The WGS was imputed 
[28] using the genomic sequence data from Run7 of the 1000 
Bull Genome Project based on the ARS-UCD1.2 reference 
genome (http://​1000b​ullge​nomes.​com/), and variants were 
filtered on the estimated imputation accuracy (R2 > 0.4) and 
minor allele frequency (MAF > 0.005). The detailed imputa-
tion procedure is described in [23].

Study design: discovery, reference, and validation datasets
The animals with genotypes and heat tolerance pheno-
types included Holsteins (29,107 ♀/3323 ♂), Jerseys (6338 
♀/1364 ♂), and Holstein–Jersey crossbreds (790 ♀/0 ♂). 
These animals were split into three independent groups 
to achieve the specific objectives: (i) a QTL discovery set 
that was used to discover informative sequence mark-
ers for heat tolerance, (ii) a reference set that was used 
to develop genomic prediction equations, and (iii) inde-
pendent validation sets that were used to assess genomic 
prediction accuracy. The validation sets included three 
breed subsets: Holstein, Jersey, and crossbred cows. 
Across all the prediction scenarios, we ensured that the 
QTL discovery set used in the GWAS was independent 
of the reference set used in genomic predictions to mini-
mise bias in the predictions [22]. The different sets of 
animals used for each group (QTL discovery, reference, 
and validation) are described schematically in Fig. 1, with 
a more detailed description in the following paragraphs.

Scenario 1
Scenario 1 aimed at testing the value of pre-selected 
sequence variants from Holstein cows in the genomic 
prediction of the same breed as well as in the prediction 
of other numerically smaller breeds, including Jersey and 
crossbred cows: (i) a QTL discovery set that included 
20,623 Holstein cows born in 2012 or earlier; (ii) a refer-
ence set that included 3323 Holstein bulls with none of 
these bulls siring the cows in the discovery set to ensure 
the independence of the phenotypes between the two 
datasets; and (iii) three validation sets, i.e. (a) that was 
comprised of 1223 younger Holstein cows (born in 2013 
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or later), which were not daughters of the Holstein bulls 
used in the reference set, (b) that included 6338 Jersey 
cows, and (c) that included 790 crossbred cows. Each 
of the three validation sets was randomly split into two 
subsets of approximately equal size (see Additional file 1: 
Table S1) to facilitate the calculation of standard errors of 
prediction.

Scenario 2
Scenario 2 aimed at testing whether pre-selected inform-
ative markers from a multi-breed population improves 
the accuracy of predictions compared to pre-selected 
markers from the single-breed QTL discovery set: (i) 
a QTL discovery set that included older cows i.e. Hol-
stein (N = 20,623 ♀; born in 2012 or earlier) and Jer-
sey (N = 5143 ♀; calved for the first time in 2014 or 
earlier); (ii) a reference set that comprised Holstein bulls 
(N = 3323); (iii) three validation sets, i.e. (a) Holstein 
cows (N = 1223 ♀; as described for “Scenario 1”), (b) Jer-
sey cows (N = 1195; younger cows that calved for the first 
time in 2014 or later); and (c) crossbred cows (N = 790; 
as for “Scenario 1”). Each validation set was randomly 
split into two subsets (see Additional file 1: Table S1), and 
these were the same subsets used in “Scenario 1” for Hol-
steins and crossbreds.

Scenario 3
Scenario 3 aimed at testing the accuracy of prediction 
when using a multi-breed reference set as follows: (i) a 
QTL discovery set of Holstein cows (N = 20,623; born in 
2012 or earlier as described for “Scenario 1”, i.e., the sin-
gle-breed discovery set); (ii) a reference set that consisted 
of a multi-breed set of Holstein bulls (N = 3323 ♂; as for 
“Scenario 1”) and Jersey bulls (N = 852 ♂); and (iii) three 
validation sets, i.e. (a) Holstein cows (N = 1223; as for 
“Scenarios 1 and 2”), (b) Jersey cows (N = 431) that were 
not daughters of the bulls used in the multi-breed refer-
ence set; and (c) crossbred cows (N = 790; as for “Scenar-
ios 1 and 2”). Validation sets were split into two subsets, 
and for Holstein and crossbred validation they were the 
same subsets as in “Scenarios 1 and 2”.

QTL discovery and selection of informative markers (‘top 
SNPs’)
To identify informative sequence variants for heat toler-
ance traits (using the “discovery” sets described above), 
we performed a GWAS using mixed linear models to test 
associations between individual SNPs and cow’s slope 
traits using the GCTA software [29]. The details of the 
GWAS for the Holstein discovery set are described in 
[23]. Briefly, a linear model was fitted to cow’s (N = 20,623 

Fig. 1  Overview of the analyses with the three study scenarios. ‘Scenario 1’: the QTL discovery set was comprised of a subset of 20,623 older 
Holstein cows (born in 2012 or earlier); the reference set included only Holstein bulls (N = 3323) that were not sires of cows in the discovery set; 
validation sets included Holsteins, Jersey, and crossbred cows. ‘Scenario 2’: the QTL discovery set was comprised of a combined set of Holsteins 
(N = 20,623) and Jersey cows (N = 5143); the reference set included only Holstein bulls (N = 3323; as described for “Scenario 1”) that were not sires 
of the Holstein cows in the discovery set; validation sets included Holstein (N = 1223), Jersey (N = 6338) and crossbred (N = 790) cows. ‘Scenario 3’: 
the QTL discovery set included only Holstein cows (N = 20,623; as described for “Scenario 1”); the reference set included a combined set of Holsteins 
(N = 3323) and Jersey (N = 852) bulls); validation sets included Holstein (N = 1223), Jersey (N = 431) and crossbred (N = 790) cows
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Holsteins) slopes for production trait (HTMYslope, 
HTFYslope, and HTPYslope that were pre-adjusted for 
the nongenetic effects described by [24]), for each auto-
somal SNP (~ 15  million SNPs). The model included a 
genomic relationship matrix (GRM) constructed based 
on the 50k SNP genotype data of the cows. The same 
model was used when performing GWAS for the multi-
breed (Holstein and Jersey cows; N = 25,766) QTL dis-
covery set except that an additional binary covariate was 
fitted to account for breed effect.

To increase the power of GWAS to identify pleiotropic 
variants for heat tolerance from the three slope traits, 
we combined the above single-trait GWAS results in a 
multi-trait meta-GWAS (following methods described in 
[30]), and described for the Holstein data set in [23].

Using either the single-trait or multi-trait GWAS 
results, we selected informative variants defined as ‘top 
SNPs’ for each slope trait as follows:

1.	 Moving along each chromosome in 100-kb sliding 
windows, we chose the single most significant SNP 
from within the 100-kb window and then moved 
50 kb along the chromosome to the next 100-kb win-
dow. This was repeated starting from the proximal to 
the distal end of each chromosome, as in [11]. To be 
selected, the SNP had to pass a GWAS threshold of 
−log10(p value) ≥  3. In addition, we tested a more 
relaxed GWAS threshold of −log10(p value) ≥  2 to 
determine if it could help the capture of variants with 
much smaller effect sizes for heat tolerance in addi-
tion to those with large effects [23].

2.	 Among each set of selected ‘top SNPs’, we removed 
one SNP of any pair in strong linkage disequilibrium 
(LD) (r2 > 0.95) using the PLINK software [31], with 
the [−  indep-pairwise 50 5 0.95] option, where LD is 
calculated within 50-SNP sliding windows, each time 
sliding five SNPs along the chromosome.

Genomic prediction using BayesR and BayesRC methods
We used BayesR [17, 32] to calculate genomic breed-
ing values (GBV) for each cow in the validation set 
based on the standard-industry 50k SNP data. BayesR 
assumes one class of SNPs that are modelled as a mix-
ture of four normal distributions corresponding to 
zero-, small-, medium- and large-sized effects [17, 32]. 
Currently, the Australian dairy industry uses the stand-
ard 50k SNP panel for routine genomic evaluations; 
thus, it served as the benchmark to test the added value 
of selected sequence variants (i.e., ‘top SNPs’). Further-
more, the standard-industry 50k SNP panel includes a 
set of variants that were not selected intentionally for 
heat tolerance, which was ideal for our study.

The BayesR model fitted 42,572 variants (SNPs with 
a MAF > 0.005) from the 50k SNP panel using bulls 
(N = 3323) as reference set:

where y is a vector of heat tolerance slope phenotypes 
(HTMYslope, HTFYslope, and HTPYslope) or inter-
cept (i.e., mean yield) traits (MYint, FYint, and PYint); 
X is a design matrix; β is a vector of fixed effect solu-
tions; W is a centred design matrix of SNP genotypes; 
v is a vector of SNP effects, modelled to have four 
possible normal distributions: v ∼ N (0, Iσ 2

i
) , where 

σ 2
i
=

{

0.0, 0.0001 ∗ σ 2
v , 0.001 ∗ σ

2
v , 0.01 ∗ σ

2
v

}

, corresponding to 
zero-, small-, medium- and large-sized effects, respec-
tively with σ 2

v  the additive genetic variance; e is a vector 
of residual errors N (0,Eσ 2

e ) , with E a diagonal matrix cal-
culated as diag(1/wi ), with wi being a weighting factor for 
bull i calculated based on the available number records 
following [33]:

where h2 is the heritability; c is the proportion of the 
genetic variance that is not accounted by the SNPs 
( c = 0.2); and p is the number of daughters for each bull.

The same model (Eq. 1) was used when analysing the 
multi-breed reference population (Holstein and Jersey; 
N = 4175), except that a binary covariate was fitted to 
account for the breed effect. To account for polygenic 
effects, we tested models with or without pedigree rela-
tionships, which yielded correlation estimates of SNP 
effects close to 1.0. Therefore, based on these prelimi-
nary analyses, we decided not to include pedigree data 
in the subsequent models.

To calculate GBV using a combined set of 50k SNPs 
and the pre-selected SNPs from GWAS (i.e., 50k + ‘top 
SNPs’) for the validation cows, we used the BayesRC 
method [34]. BayesRC is an extension of BayesR in 
which two or more classes of SNP effects are modelled: 
the SNPs within each class are fitted as a mixture of 
four normal distributions as in BayesR so that the mix-
ture distribution can differ for each SNP class. In our 
study, the SNPs from the standard 50k array (42,572 
SNPs) were allocated to class I and the pre-selected 
‘top SNPs’ from GWAS to a separate class II. Class I 
variants are considered as a random set from the 50k 
array (as indicated earlier), while Class II variants (‘top 
SNPs’) may be enriched with causal and/or highly pre-
dictive mutations for heat tolerance.

For both BayesR and BayesRC models, we performed 
five Markov chain Monte Carlo (MCMC) replicate 
chains, each with 40,000 iterations, of which 20,000 

(1)y = Xβ+Wv + e,

(2)wbulli =
1− h2

ch2 + (4−h2)
p

,
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were discarded as burn-in for all the traits. These itera-
tions gave stable convergence across the five replicates. 
The results from these replicates were averaged to get 
the final estimate. To facilitate the calculation of standard 
errors, we randomly split the validation cows into two 
subsets of approximately equal size (see Additional file 1: 
Table  S2) and then performed analyses (i.e., the BayesR 
and BayesRC) for each subset, separately.

For each analysis (described above), the accuracy of 
prediction was calculated as described in [11]: 
Accuracy =

rGBV ,phen
√

h2
 , where rGBV ,phen is the correlation of 

GBV with TD phenotypes (slope or intercept traits); (h2 is 
the genomic heritability of the trait computed from 50k 
SNP data based on 29,107 Holstein cows). These herita-
bility estimates used to calculate prediction accuracies 
are in Additional file  1: Tables S2 and S3. The corre-
sponding standard errors of the accuracies were esti-
mated as: SE = SD/

√

N  , where N  is the number of 
random validation subsets ( N  = 2); SD is the standard 
deviation of the accuracies of prediction calculated from 
the two validation sets per breed (i.e., Holstein, Jersey, 
and crossbred cows). The dispersion bias of the accuracy 
of prediction for different traits was assessed as the 
regression coefficient of the TD phenotypes on the GBV 
in the validation set and their corresponding standard 
errors calculated as described for the SE of the accuracies 
of prediction above. The regression coefficient = 1.0 indi-
cates no dispersion bias, whereas values > 1.0 or < 1.0 
indicate that the GBV are subject to deflation or inflation, 
respectively.

Results
Genomic heritability
Genomic heritability estimates based on 29,107 Hol-
stein cows using the 50k SNP array were similar for all 
the slope (heat tolerance) traits (see Additional file  1: 
Table  S2). The genomic heritability estimates based on 
Jersey cows (N = 6338) were comparable to those based 
on Holstein cows with values of 0.26 ± 0.02, 0.23 ± 0.02, 
and 0.25 ± 0.02 for the HTMYslope, HTFYslope and 
HTPYslope traits, respectively (see Additional file  1: 
Table  S2). However, the values for crossbred cows 
(N = 790) were estimated with large standard errors 
[0.58 ± 0.10 (HTMYslope); 0.34 ± 0.11 (HTFYslope); 
0.51 ± 0.10 (HTPYslope)], which is most likely due to 
the small sample size used. In contrast, the genomic 
heritability estimates for intercept traits were relatively 
larger than those for heat tolerance traits (see Additional 
file 1: Tables S2 and S3). In this study, we computed the 
accuracy of genomic predictions across all validation 
sets using the heritability estimates from Holstein cows 
(N = 29,107) that were estimated with the smallest stand-
ard errors.

Pre‑selection of heat tolerance SNPs (i.e., top SNPs)
Single‑breed (Holstein cows) QTL discovery set
Table  1 includes the number of selected informative 
sequence variants for heat tolerance defined as ‘top SNPs’ 
from single-trait GWAS and multi-trait meta-analyses of 
the Holstein cow discovery set (i.e., the single-breed dis-
covery set; see “Methods” section—“Scenario 1”). Using 
a more stringent GWAS cut-off threshold of − log10(p-
value) ≥ 3 resulted in about a fivefold smaller number of 
selected ‘top SNPs’ than a comparatively relaxed GWAS 
cut-off of − log10(p-value) ≥ 2. The numbers of selected 
‘top SNPs’ at a − log10(p-value) ≥ 2 from single-trait 
GWAS (after pruning pairs of markers in strong LD, 
r2 > 0.95) were equal to 9207 (HTMYslope), 9352 (HTFYs-
lope), and 9633 (HTPYslope), and the numbers of those 
selected at a − log10(p-value) ≥ 3 were equal to 1654 
(HTMYslope), 1708 (HTFYslope) and 1624 (HTPYslope) 
(Table 1). The largest number of ‘top SNPs’ was obtained 
for HTPYslope, followed by HTFYslope and HTMYs-
lope (Table  1). Although the number of variants that 
passed the GWAS cut-off was largest for HTPYslope, the 
strength of the GWAS signal (peak) across the genome 
(see Additional file 2: Figs. S1 and S2) was relatively weak 
for this trait compared to the other traits (i.e., HTMYs-
lope and HTFYslope).

A large proportion (> 50%) of the selected ‘top SNPs’ 
had a lower MAF compared to the SNPs in the 50k panel 
(see Additional file  2: Fig. S3). Compared to single-trait 
GWAS, and as expected, fewer ‘top SNPs’ were selected 
from the multi-trait meta-analyses of slope traits at a 
more stringent [− log10(p-value) ≥ 3; N = 2365 SNPs] 
than at a relaxed GWAS cut-off [− log10(p-value) ≥ 2; 
N = 9090 SNPs] (Table 1). Comparatively, a slightly larger 
number of ‘top SNPs’ was selected across intercept traits 
than across heat tolerance traits (see Additional file  1: 
Table S4).

Table 1  Number of informative markers for heat tolerance 
defined as ‘top SNPs’ selected from single-trait GWAS and multi-
trait meta-analyses of heat tolerance slope traits of Holstein 
discovery cow set (N = 20,623)

Markers were selected based on the GWAS cut-off thresholds of − log10(p-
value) ≥ 2 and − log10(p-value) ≥ 3. The values in brackets are the final number 
of SNPs after adding selected ‘top SNPs’ to the 50k SNP data used in the BayesRC 
analyses (i.e., 42,572 SNPs + top SNPs). Traits are defined as heat tolerance milk 
(HTMYslope), fat (HTFYslope) and protein (HTPYslope) yield slope traits

Trait ‘Top SNPs’ (− log10(p-
value) ≥ 2)

‘Top SNPs’ 
(− log10(p-
value) ≥ 3)

HTMYslope 9207 (51,750) 1654 (44,219)

HTFYslope 9352 (51,894) 1708 (44,277)

HTPYslope 9633 (52,168) 1624 (44,190)

Meta-GWAS 9090 (51,636) 2365 (44,929)

106



Page 7 of 18Cheruiyot et al. Genetics Selection Evolution           (2022) 54:17 	

The proportion of phenotypic variance accounted 
for by the ‘top SNPs’ at a GWAS p-value cut-off of 
(− log10(p-value) ≥ 2; Table  1) varied across traits and 
populations. In general, the ‘top SNPs’ for HTMYslope 
explained a relatively larger variance compared to the ‘top 
SNPs’ for HTFYslope and HTPYslope across the studied 
scenarios. In the Holstein validation set, variance esti-
mates for HTMYslope, HTFYslope and HTPYslope were 
0.24 ± 0.05, 0.22 ± 0.05, and 0.21 ± 0.05, respectively. In 
the Jersey validation set, variance estimates explained by 
the ‘top SNPs’ for HTMYslope, HTFYslope and HTPYs-
lope were 0.23 ± 0.02, 0.18 ± 0.02 and 0.22 ± 0.02, respec-
tively. The variance estimates in the crossbred validation 
set were 0.55 ± 0.10, 0.24 ± 0.10, 0.37 ± 0.10, for HTMYs-
lope, HTFYslope and HTPYslope, respectively. The large 
standard error for the variance estimates in crossbreds is 
likely due to their small sample size (N = 790).

Multi‑breed (Holstein + Jersey cows) QTL discovery set
When Holstein cows (N = 20,623) were combined with 
Jersey cows (N = 5143) in the QTL discovery set (i.e., the 
multi-breed QTL discovery set, see “Methods” section—
“Scenario 2”), we found a smaller number of selected 
‘top SNPs’ (after pruning pairs of markers in strong 
LD, r2 > 0.95) from the single-trait GWAS at − log10(p-
value) ≥ 2 [HTMYslope = 6132; HTFYslope = 6286; 
HTPYslope = 6422] compared to those from the sin-
gle-breed QTL discovery set at the same significance 
cut-off (described above). However, when compared to 
the single-breed GWAS (only Holstein cows), using a 
multi-breed QTL discovery set (Holsteins + Jersey cows) 
increased the strength of the GWAS signals in some 
genomic regions (e.g., on Bos taurus chromosome (BTA) 
14 near the DGAT1 gene) (see Additional file 2: Figs. S4 
and S5).

Genomic prediction using selected SNPs 
from the single‑breed discovery set (‘Scenario 1’)
Figure  2 shows the accuracy of predictions when the 
selected ‘top SNPs’ from a single-breed (Holstein cows; 
N = 20,623) QTL discovery set were added to the stand-
ard 50k SNP array and analysed using the BayesRC 
model. For this comparison, the reference set included 
only Holstein bulls (N = 3323) and the validation set 
included Holstein (N = 1223), Jersey (N = 6338) and 
crossbred (N = 790) cows. The gain in accuracy for the 
different traits and models varied across the three vali-
dation sets. The increase in the accuracy of prediction 
was generally consistent for HTMYslope across most of 
the different scenarios (50k + ‘top SNPs’) tested, but not 
for HTFYslope and HTPYslope, particularly in the Jer-
sey validation set. In general, the increase in accuracy 
of prediction ranged from 0.001 to 0.09, with the largest 

increase (0.09) observed for HTMYslope in the crossbred 
validation set. In the Holstein validation set, the accu-
racy of prediction across all scenarios hardly changed for 
HTMYslope ranging from − 0.01 to 0.008 units, whereas 
the changes for HTFYslope and HTPYslope ranged from 
0.03 to 0.05 and from 0.04 to 0.06, respectively (Fig.  2). 
For the intercept traits in the Holstein validation set, 
fitting 50k + ‘top SNPs’ (in the BayesRC model) gener-
ally increased the accuracy of prediction compared to 
BayesR (using only 50k SNPs) by up to 0.04, 0.03 and 0.05 
for FYint, PYint and MYint, respectively (see Additional 
file 2: Fig. S6).

For the crossbred validation set, the change in the 
accuracy of prediction from BayesRC (50k + ‘top SNPs’) 
over BayesR (fitting only 50k SNPs) ranged from − 0.004 
to 0.09, from − 0.06 to 0.02, and from − 0.04 to 0.009 for 
HTMYslope, HTFYslope, and HTPYslope, respectively 
(Fig.  2). Similarly, compared to BayesR (using only 50k 
SNPs), the accuracy of prediction for the intercept traits 
in crossbreds hardly changed across most prediction 
scenarios when fitting 50k + ‘top SNPs’ (BayesRC), with 
changes ranging from − 0.01 to 0.01, from − 0.02 to 0.02, 
and from − 0.04 to − 0.02 for MYint, FYint, and PYint, 
respectively (see Additional file 2: Fig. S6).

In the Jersey validation set (using 50k + ‘top SNPs’ in 
the BayesRC), we observed that the accuracy for HTMYs-
lope increased compared to that of BayesR (using only 
50k SNPs) across all prediction scenarios, with changes 
ranging from 0.01 to 0.05 units. However, the accuracy 
of prediction decreased considerably for HTFYslope 
(− 0.10) and HTPYslope (− 0.09) when the ‘top SNPs’ 
from Holstein cows were used in Jerseys with a slightly 
larger decrease in accuracy of prediction when using ‘top 
SNPs’ from the single-trait GWAS than those from the 
multi-trait meta-analysis (Fig.  2). Similarly, compared 
to BayesR using only 50k SNPs, the accuracy of predic-
tion dropped for intercept traits when fitting the ‘top 
SNPs’ from the Holstein cow discovery set in Jerseys with 
changes ranging from − 0.10 to − 0.03 (FYint) and from 
− 0.09 to − 0.04; (PYint), while the accuracy of predic-
tion for MYint from BayesRC increased from 0.02 to 0.06 
compared to BayesR (see Additional file 2: Fig. S6).

Across all prediction scenarios (Fig. 2), using ‘top SNPs’ 
from the relaxed GWAS cut-off value of [− log10(p-
value) ≥ 2 (~ 9000 SNPs) in the BayesRC model did not 
yield a substantial difference in accuracy of predic-
tion compared to those based on the ‘top SNPs’ from a 
more stringent GWAS threshold [− log10(p-value) ≥ 3 
(~ 2000  SNPs). The change in accuracy of prediction 
across all validation sets and traits ranged from − 0.07 
to 0.09 units and from − 0.10 to 0.06 units when the ‘top 
SNPs’ from relaxed and more stringent GWAS cut-off 
p-values were added to the 50k SNP panel (BayesRC) 
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compared to the results from BayesR (using only 50k) 
(Fig. 2). In general, using ‘top SNPs’ from the more strin-
gent GWAS cut-off in the BayesRC model yielded a larger 
dispersion bias than the ‘top SNPs’ from the relaxed 
GWAS cut-off threshold for heat tolerance slope traits 
(see Additional file  2: Fig. S7). However, for intercept 
traits, the BayesRC model using 50k + top SNPs showed 
little or no increase in the dispersion bias (see Additional 
file 2: Fig. S8).

Moreover, there was no substantial difference in accu-
racy from BayesRC when using the ‘top SNPs’ from sin-
gle-trait GWAS versus the ‘top SNPs’ from multi-trait 
meta-GWAS of slope traits across different prediction 
scenarios (Fig.  2). The change in accuracy based on the 
selected ‘top SNPs’ from the single-trait GWAS ranged 
from 0.002 (HTMYslope) to 0.06 (HTPYslope), from 
− 0.05 (HTFYslope) to 0.02 (HTMYslope), and from 
− 0.06 (HTFYslope) to 0.07 (HTMYslope) in Holsteins, 
Jerseys, and crossbred validation sets, respectively. These 

Fig. 2  Accuracy of genomic predictions (Holstein only reference) using either 50k SNP data (colored grey) or 50k + a range of ‘top SNPs’ sets 
(selected from the Holstein QTL discovery set). The ‘top SNPs’ were selected from single-trait GWAS (colored blue) and multi-trait meta-analysis 
(colored orange) at a less stringent cut-off threshold of − log10(p-value) ≥ 2 [~ 9000 SNPs] and at a more stringent p-value of − log10(p-value) ≥ 3 
[~ 2000 SNPs]. Accuracy of predictions are provided for three cow validation sets: a Holsteins, N = 1223), b Jersey, N = 6338), and c Holstein–Jersey 
crossbreds, N = 790). The traits analysed are heat tolerance milk (HTMYslope), fat (HTFYslope), and protein (HTPYslope) yield slopes. The genomic 
predictions were generated using either BayesR (50k SNP set) or BayesRC (50k + top SNPs). Vertical lines represent the standard errors calculated 
from two random validation subsets
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changes are comparable to those obtained using ‘top 
SNPs’ from the meta-analysis of slope traits with changes 
ranging from − 0.01 (HTMYslope) to 0.06 (HTPYslope), 
from − 0.10 (HTFYslope) to 0.05 (HTMYslope), and from 
− 0.006 (HTPYslope) to 0.09 (HTMYslope) in Holsteins, 
Jersey, and crossbred validation sets, respectively. Since 
the results were comparable when using ‘top SNPs’ from 
either relaxed or stringent GWAS cut-off values, we here-
after, only report the results based on the ‘top SNPs’ from 
the single-trait GWAS at the relaxed cut-off threshold 
(i.e., − log10(p-value) ≥ 2).

The dispersion bias across heat tolerance traits in the 
Holstein validation set (’Scenario 1’) showed that the 
GBV were deflated (see Additional file 2: Fig. S7). In con-
trast, the predictions were less biased (i.e., regression 
coefficient values closer to 1.0) for the intercept traits, 
particularly for MYint and PYint in the Holstein valida-
tion set (see Additional file 2: Fig. S8). In the Jersey vali-
dation set, the dispersion bias for HTFYslope showed 
that the GBV were inflated (see Additional file 2: Fig. S7). 
Also, the GBV were inflated in the Jersey validation set 
for HTPYslope when the ‘top SNPs’ were added to the 
50k SNP array and analysed using BayesRC [i.e., 1.11 in 
the BayesR model versus 0.79 in the BayesRC model; (see 
Additional file 2: Fig. S7)]. The dispersion bias for the Jer-
sey validation set was inflated across intercept traits (see 
Additional file 2: Fig. S8). The predictions were extremely 
deflated in the crossbreds, particularly for HTMYslope 
(bias > 1.7), which is likely due to the small sample size 
and population used. The dispersion bias for heat toler-
ance traits was even more pronounced when the selected 
‘top SNPs’ were added to the 50k SNP data using the 
BayesRC model compared to the estimates using the 
BayesR model and only the 50k SNP data (see Additional 
file 2: Fig. S7).

Genomic prediction using selected SNPs from multi‑breed 
discovery set (‘Scenario 2’)
Figure  3 shows the change in accuracy of prediction 
(based on the BayesRC) when the selected ‘top SNPs’ 
(GWAS cut-off of − log10(p-value) ≥ 2) from the multi-
breed (Holstein + Jersey cows) QTL discovery set were 
added to the 50k SNP array for which the reference set 
consisted only of Holstein bulls. In general, the change 
in accuracy of prediction across all traits and validation 
sets ranged from − 0.05 (HTPYslope) in Jersey to 0.11 
(HTMYslope) in crossbred cows. In the Holstein valida-
tion set (N = 1223), the accuracy of prediction increased 
across all traits with the greatest increase for HTPYslope 
(0.03) followed by HTFYslope (0.02) and HTMYslope 
(0.005), respectively. In this validation set, the disper-
sion bias was higher than 1.0 across all traits, indicating 
deflated GBV. The bias decreased slightly for HTMYslope 

but increased for HTPYslope and HTFYslope when the 
‘top SNPs’ were fitted in the BayesRC model (Fig. 3).

In the Jersey validation set (N = 1195), the change in 
accuracy of prediction (based on the BayesRC model) 
was not consistent across traits (Fig. 3). When using the 
selected ‘top SNPs’ from the multi-breed QTL discovery 
set, the accuracy of prediction increased for HTMYslope 
(0.03) and HTFYslope (0.02) but decreased for HTPYs-
lope (− 0.05). These values contrast with those obtained 
using selected ‘top SNPs’ from the single-breed QTL 
discovery set (only Holsteins; see “Methods”, “Scenario 
1”), where we found a change in accuracy of 0.09, 0.04, 
and 0.01 for HTMYslope, HTFYslope, and HTPYslope, 
respectively, when using a smaller subset of Jersey cows 
(i.e., N = 1195) instead of 6338 cows (as in “Scenario 1”). 
Unlike in “Scenario 1” where we found that GBV were 
inflated across heat tolerance traits (see Additional file 2: 
Figure S7) in Jerseys, the predictions were generally close 
to 1.0 in “Scenario 2”, particularly for HTMYslope (Fig. 3).

In the crossbreds (N = 790), using ‘top SNPs’ discov-
ered in the multi-breed (Holsteins + Jersey cows) set 
(based on the BayesRC models) yielded a larger (0.11 
units) change in accuracy of prediction than with BayesR 
(using only 50k SNPs) for HTMYslope compared to a 
drop in accuracy from BayesRC over BayesR of − 0.005, 
and − 0.03 units for HTFYslope and HTPYslope, respec-
tively (Fig.  3). Comparatively, using the ‘top SNPs’ from 
the single-breed (only Holsteins) QTL discovery set in 
crossbreds (‘Scenario 1’) yielded a change in accuracy 
from BayesRC over BayesR of 0.09, 0.02, and − 0.006 for 
HTMYslope, HTFYslope, and HTPYslope, respectively. 
As in “Scenario 1”, the dispersion bias in crossbreds for 
HTMYslope was extreme (> 1.7) compared to the other 
traits. In this crossbred validation set (‘Scenario 2’), the 
bias increased more for HTMYslope but decreased for 
HTFYslope and HTPYslope when fitting the selected ‘top 
SNPs’ in BayesRC (Fig. 3).

Genomic prediction using multi‑breed reference set 
(‘Scenario 3’)
When we used a multi-breed (Holstein + Jersey bulls) 
reference set in which the ‘top SNPs’ were only from the 
Holstein cow QTL discovery set (see “Methods” section, 
“Scenario 3”), we found a consistent increase in the accu-
racy of prediction in most cases (Fig.  4). The accuracy 
of prediction decreased only for HTMYslope (−  0.06) 
and HTPYslope (−  0.002) in the Jersey validation set 
for this scenario. The change in accuracy of prediction 
from BayesRC over BayesR for HTMYslope, HTFYs-
lope, and HTPYslope were: [−  0.01, 0.05, and 0.05], 
[− 0.06, − 0.002, and 0.01], and [0.10, 0.03, and 0.04] in 
the Holstein (N = 1223), Jersey (N = 431) and crossbred 
(N = 790) cow validation sets, respectively (Fig. 4). These 
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changes in accuracy of prediction are slightly larger com-
pared to those found when using a single-breed refer-
ence set (Fig. 2; “Scenario 1”) from BayesRC over BayesR, 
with values for HTMYslope, HTFYslope and HTPYs-
lope of [0.001, 0.04, and 0.06], [0.05, − 0.06 and − 0.07], 
[0.09, 0.02, and − 0.006] in the Holstein (N = 1223), Jer-
sey (N = 6338), and crossbred (N = 790) validation sets, 
respectively. To be more comparable, when considering 
only a subset of Jersey cows (N = 431) in the validation 
set where the reference set consisted of a single breed 
(only Holstein bulls; “Scenario 1’), we found a change 
in accuracy from BayesRC over BayesR of −  0.02, 0.03, 

and −  0.06 for HTMYslope, HTFYslope, and HTPYs-
lope, respectively. Compared to estimates from the “Sce-
nario 1” and “Scenario 2” analyses above, we observed 
the smallest bias (i.e., values around 1.0) when using the 
multi-breed reference set in the Holstein validation set. 
However, in the Jersey validation set, we found extreme 
bias (> 2.0) for HTPYslope, whereas the bias was smaller 
for HTFYslope. In the crossbreds, the bias was large 
for HTMYslope (> 1.5) and HTFYslope (> 1.3), whereas 
we observed a small bias (values closer to 1.0) for the 
HTPYslope trait.

Fig. 3  Accuracy and dispersion bias in Holstein (N = 1223), Jersey (N = 1195) and crossbred (N = 790) cows when using 50k + ‘top SNPs’ selected 
from the multi-breed (Holstein + Jersey) QTL discovery set. Holstein bulls (N = 3323) were used as the reference set for genomic predictions. The 
‘top SNPs’ were selected based on a single-trait GWAS cut-off of [− log10(p-value) ≥ 2]. The traits analysed are heat tolerance milk (HTMYslope), fat 
(HTFYslope), and protein (HTPYslope) yield. Vertical lines represent the standard errors calculated from two random validation subsets
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BayesR versus BayesRC methods
To test whether allocating selected informative markers 
to a separate SNP class (see “Methods”) in BayesRC can 
show added benefit in our study, we combined 50k + ‘top 
SNPs’ from a single-breed (Holsteins) QTL discovery set 
and re-calculated GBV using BayesR where all SNPs were 
allocated to a single class. The total number of 50k + ‘top 
SNPs’ used in BayesR and BayesRC was 51,750, 51,894, 
and 52,168, for HTMYslope, HTFYslope, and HTPYs-
lope traits, respectively (Table 1). The accuracy of predic-
tion (± SE) was slightly higher for two of the three traits 
from BayesRC [0.49 ± 0.01 (HTMYslope); 0.53 ± 0.02 

(HTFYslope); 0.45 ± 0.007 (HTPYslope)] compared to 
BayesR [0.51 ± 0.01 (HTMYslope); 0.51 ± 0.02 (HTFYs-
lope); 0.44 ± 0.01 (HTPYslope)]. These results suggest 
that allocating SNPs to different classes in BayesRC, 
yields marginal benefit in the prediction of heat toler-
ance traits over BayesR. Moreover, there was little dif-
ference in the regression coefficient of predictions 
(± SE) between BayesRC [1.42 ± 0.002 (HTMYslope); 
1.31 ± 0.08 (HTFYslope); 1.21 ± 0.02 (HTPYslope)] and 
BayesR [1.33 ± 0.005 (HTMYslope); 1.32 ± 0.17 (HTFYs-
lope); 1.21 ± 0.02 (HTPYslope)].

Fig. 4  Accuracy and bias of genomic predictions in Holstein (N = 1223), Jersey (N = 431) and crossbred (N = 790) cows when using the 
multi-breed reference set (Holstein and Jersey bulls; N = 4175). The selected ‘top SNPs’ used in the BayesRC were from the Holstein cow discovery 
set (N = 20,623) based on the single-trait GWAS cut-off of [− log10(p-value) ≥ 2]. The traits analysed are heat tolerance milk (HTMYslope), fat 
(HTFYslope), and protein (HTPYslope) yield slopes. Vertical lines represent the standard errors calculated from two random validation subsets
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Discussion
In this paper, we present a genomic prediction analysis 
of heat tolerance traits using a large sample size of over 
40,000 cattle, comprising Holstein, Jersey, and cross-
bred individuals. The primary objective was to inves-
tigate if selected sequence variants from a GWAS in 
Holstein cattle benefits genomic prediction of heat tol-
erance phenotypes in the same breed (i.e., within-breed 
prediction). The hypothesis is that the selected variants 
are linked to causal mutations that underpin the genetic 
basis of heat tolerance, and thus could enable more accu-
rate and sustained genomic selection for this trait. In 
addition, we also tested the value of pre-selected vari-
ants from Holstein cattle for the genomic prediction of 
breeds with numerically smaller sample sizes, such as 
Jersey and crossbreds. Furthermore, we investigated the 
benefits of using informative markers from a multi-breed 
(Holstein + Jersey cows) QTL discovery set for genomic 
prediction of heat tolerance. Overall, our results show 
that we can increase the accuracy of prediction of heat 
tolerance by up to 0.10 unit in some scenarios when pre-
selected sequence variants are added to the standard-
industry 50k SNP panel. However, the change in the 
accuracy of prediction when using pre-selected sequence 
variants in BayesRC (i.e., 50k + top SNPs) varied consid-
erably across traits and prediction scenarios.

We used the BayesR and BayesRC methods to test dif-
ferent prediction scenarios. For BayesR, when only 50k 
SNP data were used, we found a high accuracy of predic-
tion in Holsteins and crossbreds compared to Jerseys. We 
expected a lower accuracy in Jerseys because we used 
Holstein bulls as a reference set for genomic predictions 
(see “Methods”, “Scenario 1”). These breeds are geneti-
cally divergent and may differ regarding the linkage dis-
equilibrium of variants with causal mutations, they may 
not share all the same causal variants, or some variant 
effects may differ between these breeds [35]. As such, 
when we combined Holstein and Jersey bulls in the refer-
ence set (multi-breed reference set; see “Methods”, “Sce-
nario 3”) and performed analysis using BayesR (without 
pre-selected ‘top SNPs’), we found a substantial improve-
ment in the accuracy of prediction across all traits for 
Jerseys which is consistent with the multi-breed genomic 
predictions reported in previous studies e.g., [17, 35].

For the BayesRC model, where 50k + selected ‘top 
SNPs’ were fitted in the analysis, we found a consistent 
increase in the accuracy of prediction across traits when 
using the ‘top SNPs’ that were selected from the Holstein 
discovery set for the prediction of the Holstein valida-
tion cows (i.e., within-breed QTL discovery and valida-
tion set; see “Methods”, “Scenario 1”). Similarly, the use 
of ‘top SNPs’ from the Holstein discovery set in crossbred 
cattle based on BayesRC performed reasonably well, as 

expected since our crossbred cows share a similar genetic 
background with Holsteins (i.e., there were mostly F1 and 
backcrosses to Holstein). The gain in accuracy of predic-
tion for Holsteins and crossbreds likely benefited, in part, 
from a powerful GWAS QTL discovery set (we used a 
sample size of 20,623 Holstein cows, each having around 
15 million imputed sequence variants) and the method-
ology used for genomic prediction. To date, comparable 
GWAS have used a sample size of at most 5000 individu-
als e.g., [5] to search for variants linked to heat tolerance 
in dairy cattle. We expect an even greater increase in 
accuracy of prediction in the future with larger sample 
sizes for GWAS to increase the power of QTL discovery.

However, the genomic predictions in Jerseys performed 
rather poorly, particularly for HTFYslope and HTPYs-
lope, with accuracies decreasing when the selected ‘top 
SNPs’ from the Holstein discovery set were added to 
the 50k SNP set and used in BayesRC. Given that Hol-
stein and Jersey are genetically divergent breeds, using 
informative QTL from Holstein in a Jersey validation 
may have introduced noise in the genomic predictions 
since the common QTL may not be tracked across these 
breeds. Also, the drop in accuracy could be due to the 
non-additive genetic effects (i.e., dominance and epista-
sis) between Holstein and Jersey. Simulation studies e.g., 
[36] found that the additive genetic correlations between 
divergent populations can drop to values as low as 0.45 
if reasonably large epistatic interactions exist among 
loci, which can impact genomic predictions across 
populations.

However, it is rather unclear why the accuracy of pre-
diction increased for HTMYslope in Jerseys but not for 
HTFYslope and HTPYslope when using selected ‘top 
SNPs’ from Holsteins. One reason could be due to a dif-
ference in genetic architecture of these traits. One way to 
explain this result is to examine the direction of effect for 
the SNPs between populations. For example, by impos-
ing the GWAS cut-off p-value of 0.001 in both Holstein 
bulls and Jersey cows, we found that 72% (N = 774) and 
71% (N = 524) of the effects for the significant SNPs for 
HTMYslope and HTFYslope, respectively, were in the 
same direction. Comparatively, we found a larger pro-
portion of significant SNPs (GWAS p-value < 0.001) hav-
ing the same direction of effects for HTMYslope (85%; 
N = 420) and HTFYslope (95%; N = 1240) between Hol-
stein bulls versus Holstein cows (i.e., within-breed com-
parison) (see Additional file  1: Table  S5). Besides the 
direction of effects for the SNPs between populations, a 
smaller number of ‘top SNPs’ for HTMYslope was dis-
covered from the GWAS in Holstein cattle at the relaxed 
cut off (p < 0.01) (Table  1) compared to HTPYslope and 
HTFYslope, suggesting that HTMYslope is controlled 
by relatively few QTLs with large effects compared to 
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the other traits. This is supported by the strength [based 
on the magnitude of − log10(p-value)] and the number 
of significant GWAS signals across the genome based 
on the Manhattan plot (see Additional file 2: Figure S1). 
For HTMYslope, we observed four strong peaks on four 
chromosomes (i.e., BTA5, 6, 14, and 20). This contrasts 
with the HTFYslope trait for which we observed multiple 
clear GWAS signals across the genome (see Additional 
file  2: Figure S1). Moreover, these results are consistent 
with the evidence that the ‘top SNPs’ for the HTMYslope 
trait explained a relatively larger proportion of pheno-
typic variance compared to the ‘top SNPs’ for other traits 
across prediction scenarios.

By comparing the GWAS in Holsteins (N = 20,623) 
and Jersey (N = 6338) cows, we found the greatest over-
lap of top significant SNPs (i.e., top SNPs that were at 
least within 1-Mb regions in both breeds) for HTMYs-
lope mapping to the genomic regions showing strong 
signals on BTA5, 14, 20, and 25. This overlap explains, 
in part, the greater consistency of the increase in accu-
racy of prediction for HTMYslope than for HTFYslope 
and HTPYslope. In this context, our findings are in line 
with those of [32], who reported that only a fraction of 
the QTL for milk yield segregate across Holstein and Jer-
sey cattle. Overall, these results suggest that breed × SNP 
interactions exist, meaning that the informative markers 
obtained from Holstein are of little or no value for the 
prediction in Jersey. These findings have implications in 
the genomic prediction of complex traits such as heat tol-
erance since it is not unusual for one country to incorpo-
rate genetic variants discovered in an independent study 
from another country in their genomic evaluations, e.g., 
a meta-analysis of SNP effects from multiple countries 
using SNP-multiple across country evaluation (MACE) 
[37]. In addition, the results in this study seem to indi-
cate that HTMYslope could be a more reliable indicator 
trait of heat tolerance and could be given greater weight 
in the selection index that incorporates heat tolerance, 
although further work is needed to confirm this. Cur-
rently, the Australian dairy industry gives more economic 
weight to HTPYslope (6.92) than to HTMYslope (− 0.10) 
or HTFYslope (1.79) in the calculation of heat tolerance 
genomic breeding values based on weights for milk pro-
duction traits [38, 39].

Previous research studies in cattle e.g., [18, 19] have 
reported that the mapping of putative causal mutations 
is more precise when using multi-breed populations in 
GWAS and have proposed pathways that underpin heat 
tolerance [23]. In this study, we found some improve-
ment in the predictions, especially in Jersey, when using 
‘top SNPs’ from a discovery set of combined Holstein and 
Jersey cows (i.e., the multi-breed QTL discovery set). For 
example, the accuracy of prediction increased by 0.03 

for HTFYslope when using ‘top SNPs’ selected from the 
multi-breed discovery set in Jersey compared to a drop 
of 0.06 when the ‘top SNPs’ from the Holstein QTL dis-
covery set (single breed) was used in BayesRC (Fig. 3). In 
principle, combining divergent breeds in the QTL discov-
ery set may help to break long-range LD, such that the 
selected ‘top SNPs’ are closer to the causal mutations 
[17] than when a single-breed QTL discovery set is used. 
For example, the top significant SNP on BTA14 mapped 
to the upstream region of the SLC52A2 gene and in an 
intron of the HSF1 gene when using the single-breed and 
multi-breed QTL discovery sets, respectively (see Addi-
tional file 2: Figure S9). The HSF1 gene is associated with 
thermotolerance in dairy cattle [5, 6, 23]. The smaller 
number of ‘top SNPs’ detected in our study with the 
multi-breed than with the within-breed QTL discovery 
set is consistent with the work of [19] and is attributed, in 
part, to the causal variants not all segregating across the 
Holstein and Jersey breeds.

However, we could still see a decrease in accuracy 
of prediction (− 0.05) for HTPYslope when using the 
‘top SNPs’ from a multi-breed discovery set in Jersey, 
although not as high as that (− 0.08 units) found when 
using the ‘top SNPs’ from the single-breed (Holsteins) 
discovery set. As discussed earlier, one reason for the 
observed poor prediction for these traits in Jerseys could 
be partly due to the breed × SNP interactions or non-
additive epistatic interactions among loci across breeds. 
Notably, our multi-breed QTL discovery set was highly 
dominated by Holstein individuals which explains, in 
part, the limited gain in accuracy when the selected ‘top 
SNPs’ from the multi-breed discovery set were used in 
the Jerseys. Besides, we used Holstein bulls as a reference 
set in genomic predictions in Jerseys. Since these breeds 
are divergent, a better approach to improve predictions 
in Jerseys would have been to use ‘top SNPs’ from a 
multi-breed or within-breed (Jersey) QTL discovery set 
and a reference set of the same breed (Jersey) or multi-
breed set. However, compared to Holstein, the smaller 
number of Jersey individuals in our study means that it 
was not possible to split the Jersey dataset to obtain inde-
pendent subsets with sufficient power for use in the QTL 
discovery and reference set for genomic predictions. This 
implies that there may be more room for improvement 
in accuracy of prediction for Jerseys when more animals 
with phenotype and genotype data are available in the 
future.

We compared the added value of informative markers 
(i.e., ‘top SNPs’) from single-trait GWAS versus multi-
trait meta-GWAS in the genomic predictions. The aim 
of the meta-analysis of slopes was to increase the power 
of GWAS and obtain a set of ‘top SNPs’ with putative 
pleiotropic effects for heat tolerance phenotypes. There 
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is a recent trend towards developing custom SNP arrays 
that include variants with pleiotropic effects across mul-
tiple traits [40, 41]. In this study, we found a comparable 
increase in accuracy of prediction when we used ‘top 
SNPs’ from single-trait GWAS or from the meta-analy-
sis, although the accuracy of prediction varied consider-
ably across traits and validation sets used (Fig.  2). Our 
recent work [23] suggests that heat tolerance traits (milk, 
fat, and protein slopes) are regulated differently in heat-
stressed dairy cows. As such, we think that the relatively 
lower accuracy realized from using selected ‘top SNPs’ 
from the meta-GWAS of slope traits in some scenarios 
(e.g., HTMYslope across the three validation sets; Fig. 2) 
could be due to the possible inclusion of non-causal ‘top 
SNPs’ in genomic prediction, which arose from combin-
ing SNP effects for different heat tolerance phenotypes. 
However, we observed a smaller drop in accuracy of 
prediction when using ‘top SNPs’ from the meta-GWAS 
compared to ‘top SNPs’ from the single-trait GWAS in 
Jerseys from the BayesRC over BayesR (Fig. 2).

In general, we demonstrated an increase in the accu-
racy of prediction of heat tolerance when informative 
sequence markers were added to the 50k SNP panel by 
up to 0.07, 0.05, and 0.10 units in Holstein, Jersey, and 
crossbred cows in some cases, respectively. Our findings 
are within the range of those reported for complex traits 
in cattle e.g., [42] and sheep e.g., [11, 13]. For example, 
Al Kalaldeh et  al. [13] reported an increase in accuracy 
of prediction by 0.09 units for parasitic resistance in 
Australian sheep, while de Las Heras-Saldana et al. [42] 
found an increase of up to 0.06 units for carcass traits 
in cattle. These results indicate that informative mark-
ers can be prioritised, especially for the development of 
customized SNP arrays [41]. Adding informative variants 
for heat tolerance to the custom SNP panels as in [41] 
ensures that higher accuracies of prediction are achieved, 
which will help to drive genetic gain for this trait. More-
over, we expect that the genetic prediction of this trait 
would be sustained over generations when informa-
tive variants that are closer to the causal mutations are 
included in the custom SNP panels, as demonstrated by 
Khansefid et al. [43]. These authors found that using the 
custom XT_50k SNP panel, which contains prioritised 
sequence markers, gave a consistent and superior accu-
racy of prediction (compared to standard SNP panels) 
in crossbred cows (crossbreds represents “more distant 
relationships or many generations”). However, caution is 
needed when using pre-selected sequence variants from 
Holsteins in the prediction of Jerseys, considering that we 
found a decrease in accuracy, in most cases, when using 
the ‘top SNPs’ from the Holstein discovery set in Jerseys 
(Fig. 2). This agrees with the simulation work by [14] who 

reported that the decrease in accuracy of predictions 
across-breeds depended on the distance between causal 
mutations and the markers.

Some studies, e.g., [11, 13], using genomic best linear 
unbiased prediction (GBLUP), have reported increased 
accuracy of prediction when fitting pre-selected sequence 
variants from GWAS together with standard 50k SNPs 
compared to fitting only standard 50k SNPs, especially 
when modelling separate GRM for 50k SNPs and pre-
selected SNPs. To compare our results (from the BayesR 
and BayesRC analyses), we used GBLUP on the Holstein 
validation set (as in “Scenario 1”; see “Methods”) to fit 
pre-selected heat tolerance SNPs (‘top SNPs’) either as 
one GRM (i.e., combined set of 50k + top SNPs) or sepa-
rate GRM (i.e., 2 GRM) for 50k and ‘top SNPs’. Although 
the accuracy of prediction increased when fitting two 
GRM compared to fitting only one GRM in the GBLUP 
model, BayesR and BayesRC outperformed GBLUP for 
the prediction of HTMYslope and HTFYslope but not 
for that of HTPYslope (see Additional file  1: Table  S6) 
and see Fig. 2. This is comparable to the work of [44] who 
reported better predictions for milk yield and fat yield 
traits from Bayesian models than GBLUP models in Dan-
ish cattle.

In this study, a sizable proportion of the selected ‘top 
SNPs’ for heat tolerance (slopes) overlapped with the 
selected ‘top SNPs’ for the intercept traits: 11% (HTMYs-
lope), 17% (HTFYslope) and 21% (HTPYslope) (see Addi-
tional file  1: Table  S7). Notably, when assuming QTL 
windows of 1  Mb, more than 90% of the selected ‘top 
SNPs’ for heat tolerance traits fell within the same win-
dows with those for intercept traits, which is consistent 
with the high (−  0.80) phenotypic correlations between 
these traits. In our recent work [23], we demonstrated, 
through conditional GWAS analyses, that the top GWAS 
hits/signal for heat tolerance are also important for milk 
production traits (i.e., intercept). Therefore, a key ques-
tion is whether using the selected sequence variants for 
heat tolerance in genomic evaluations can impact milk 
production. We investigated this assuming (1) selec-
tion is for milk production traits (or Australian Selec-
tion Index (ASI), i.e., traits are weighted according to the 
way Australian farmers are paid for milk, fat, and pro-
tein) and (2) selection is for the balanced performance 
index (BPI) which includes production and functional 
traits [39]. To see the impact of using pre-selected SNPs 
in genomic evaluations of Holsteins, the correlation 
between EBV for heat tolerance (estimated with only 50k 
SNPs or 50k + selected sequence variant from GWAS—
‘top SNPs’) and ASI or BPI values were used. The corre-
lation estimates (see Additional file 1: Table S8) suggest 
that adding the pre-selected SNPs for heat tolerance 

114



Page 15 of 18Cheruiyot et al. Genetics Selection Evolution           (2022) 54:17 	

(including those that overlapped with intercept traits) to 
the standard-industry 50k array has little to no impact 
on the ASI and BPI. However, we observed a favourable 
correlation between heat tolerance and BPI when pre-
selected ‘top SNPs’ from HTMYslope are added into the 
50k array (i.e., 0.06 (50k) versus 0.10 (50k + meta-GWAS 
top SNPs; see Additional file  1: Table  S8). These results 
are comparable to those of [7], who found that the cur-
rent selection practices in Australia based on BPI will 
lead to a negligible decrease in heat tolerance (measured 
as the rate of decline in yield).

Most of our dispersion bias of prediction for heat tol-
erance traits from BayesR and BayesRC were deflated. 
However, we also observed inflated predictions, in some 
cases, especially in Jerseys. In all our Bayesian analyses, 
we used only bulls in the reference population and only 
cows in the validation of genomic predictions. As such, 
the smaller variance of bull phenotypes resulting from 
averaging daughter slope solutions (see “Methods”) 
explains, in part, the observed bias, especially in the Hol-
stein cow validation set. To test this, we split Holstein 
cows into reference (older cows) and independent valida-
tion (young cows) sets. Consequently, we found that the 
GBV were inflated, which supports our hypothesis. Nev-
ertheless, the magnitude of bias observed in this study 
may not be a big issue in the genomic evaluations of heat 
tolerance, where breeding values are calculated jointly 
based on bull and cow phenotypes using different weight-
ings according to the amount of information [7, 38].

By comparing the Bayesian (BayesR and BayesRC) 
versus the GBLUP models (fitting either 1 or 2 GRM 
as described earlier), we found slightly less biased pre-
dictions from the former than the latter models (see 
Additional file  1: Table  S6). This was expected since 
the Bayesian models simultaneously account for all the 
markers in the analysis and assume different distribu-
tions of SNP effects. However, recent studies in sheep 
[11] and cattle [43] have reported no difference in dis-
persion bias between the BayesR or emBayesR versus 
GBLUP models. We also assessed the dispersion bias 
of prediction for heat tolerance traits from the GBLUP 

and BayesR models using the linear regression (LR) 
method described by Legarra and Reverter [45]. We 
did this by first estimating SNP effects from: (1) the 
full (N = 3323 ♂) Holstein reference set, and (2) a ran-
domly selected reduced (N = 1662 ♂; 50%) reference 
set. We found no dispersion bias when regressing the 
GBV in the Holstein validation cows (N = 1223) gener-
ated from the full reference bull set on the GBV from 
the reduced reference bull set (see Additional file  1: 
Table  S9). This suggests that the SNP effects from 
these reference sets are robust in terms of genomic 
predictions.

The fact that the dispersion bias of prediction, in most 
cases, was more pronounced when the selected ‘top 
SNPs’ were added to the 50k SNP array and analysed 
with BayesRC is consistent with some previous studies 
[20, 21], which is likely due to a phenomenon called the 
“Beavis effect” [46] that originates from the overestima-
tion of the effect size of the pre-selected variants. The 
lower bias found when fitting the selected ‘top SNPs’ 
from the stringent GWAS cut-off than from the relaxed 
GWAS cut-off does not agree with the results of 
Veerkamp et  al. [21], who reported a larger bias when 
markers were strongly pre-selected. Here, we used the 
Bayesian approach (BayesRC), while Veerkamp et  al. 
[21] applied GBLUP. In our study, fitting separate GRM 
for the 50k and the selected ‘top SNPs’ (i.e., two GRM) 
in the GBLUP models reduced the dispersion bias com-
pared to fitting only one GRM for the 50k + top SNPs 
(see Additional file 1: Table S6).

In this study, we investigated the utility of pre-
selected sequence variants in the genomic prediction of 
heat tolerance for milk production traits (milk, fat, and 
protein yield). It is also worthwhile to investigate the 
added value of prioritised sequence variants for heat 
tolerance on other traits that are affected by heat stress 
(e.g., fertility) because there are likely to be benefits 
from achieving higher systemic heat tolerance across 
multiple traits. This added value could be significant 
since the economic selection indices, e.g. for the Aus-
tralian dairy industry, are formulated to capture differ-
ent aspects of farm profitability, including production, 
fertility, health, functional, and type as well as feed effi-
ciency traits [39]. Selecting for thermotolerance would 
be advantageous if the goal is to simultaneously achieve 
an optimal level of heat tolerance for multiple traits 
[24]. Therefore, further studies are needed to investi-
gate the benefits of sequence variants in improving heat 
tolerance with respect to other traits that are likely to 
be affected by heat and humidity, such as fertility and 
health traits.
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In addition, some reports e.g., [3, 4] have raised concerns 
that selection for heat tolerance may negatively impact the 
progress  for  milk  production  due  to  a  strong  phenotypic 
correlation of about − 0.80 between these traits [23]. Nota-
bly, the effects of all the overlapping SNPs for HTMYslope 
(see Additional file 1: Table S7) were in the same direction 
with those for MYint, whereas the effects of the overlapping 
SNPs for HTFYslope and HTPYslope were in opposite direc-
tions with their corresponding intercept traits (i.e., FYint 
and PYint). However, the overlap of top SNPs for MYint and 
HTMYslope is only 11% (see Additional file 1: Table S7).
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Conclusions
Our results show that the accuracy of genomic predic-
tion for heat-tolerance milk yield traits (milk, fat, and 
protein) can be improved when the selected sequence 
variants linked to heat tolerance are added to the stand-
ard 50k SNP panel, with values ranging from 0.01 to 
0.10 units depending on the prediction scenario. How-
ever, when predicting across breeds, adding informative 
sequence markers from the Holstein cow discovery set 
to the standard 50k SNP array (i.e., 50k + top SNPs from 
GWAS) decreased the accuracy of prediction in Jerseys 
compared to using only 50k SNP set, especially for the 
heat tolerance fat and protein yield traits. We observed 
improved predictions, particularly in the Jersey valida-
tion when using pre-selected markers from the multi-
breed (Holstein + Jersey cows) SNP discovery set, where 
the reference population used included Holstein and 
Jersey bulls (i.e., the multi-breed reference set). Priori-
tised sequence markers from single-trait GWAS yielded 
greater accuracy than those from the multi-trait meta-
analysis of slope traits. Overall, the results show that 
sequence variants can be prioritised to improve the accu-
racy of heat tolerance and has a direct application in the 
development of custom SNP arrays.
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Table S4. Number of informative markers defined as ‘top SNPs’ selected 
from single-trait GWAS and multi-trait meta-analyses of intercept traits in 
the Holstein discovery cow set (N = 20,623). Table S5. Number of SNPs 
with the same effect direction at different GWAS p-value cut-off and 
their corresponding false discovery rate (FDR) between Holstein bulls 
(N = 3323) versus Holstein cows (N = 1223) and Holstein bulls (N = 3323) 
versus Jersey cows (N = 6338). The false discovery rate effect direc‑
tion (FDR ED) was computed following [39] and the conventional false 
discovery rate (FDR) was calculated following [47]. Table S6. Accuracy and 
the dispersion bias of predictions (in brackets) from non-linear Bayesian 
methods (BayesR and BayesRC) versus GBLUP models. Table S7. Number 
of overlapping selected ‘top SNPs’ between intercept and slope traits 
and the proportion of SNPs with the sample effect direction detected 
from the Holstein cow discovery set at a GWAS p-value cut-off of 0.001. 
Table S8. Correlation between estimated breeding values for heat toler‑
ance (based on BayesR and BayesRC) versus Australian selection index 
and balanced performance index values for the Holstein validation cows 
(N = 1122) used in this study. Table S9. Correlation of GBV between whole 
( GBVsW ) versus “partial” data ( GBVsP ), and the dispersion bias of predictions 
( bw,p ) in the Holstein validation cows (N = 1223) using a linear regression 
method [45] based on GBLUP and BayesR models.

Additional file 2: Figure S1. Manhattan plot of p values from single-trait 
GWAS results of heat tolerance milk (A), fat (B), protein (C) yield slope 
traits for the Holstein cow discovery set (N = 20,623). The dashed line 
represents p-value cut-off = 0.001. Figure S2. QQ-plot for heat tolerance 
milk (HTMYslope), fat (HTFYslope), and protein (HTPYslope) from GWAS of 
the Holstein cow discovery set (N = 20,623). Figure S3. Manhattan plot 
of p values from single-trait GWAS results of heat tolerance milk (A), fat 
(B), protein (C) yield slope traits for combined set of Holstein and Jersey 
cow discovery set (N = 25,766). The dashed line represents p-value cut-
off = 0.001. Figure S4. QQ-plot for heat tolerance milk (HTMYslope), fat 
(HTFYslope), and protein (HTPYslope) from GWAS using a combined set 
of Holsteins + Jersey cows (N = 25,766). Figure S5. Minor allele frequency 
(MAF) distribution of the 50k SNP data and the selected ‘top SNPs’ (most 
significant) from the imputed-whole genome sequence variants. Figure 
S6. Accuracy of genomic predictions in Holsteins (A; N = 1223), Jersey (B; 
N = 6338), and Holstein–Jersey crossbreds (C; N = 790) validation cows 
for milk (MYint), fat (FYint) and protein (PYint) yield intercept traits from 
different SNP sets based on the BayesR and BayesRC methods: (a) stand‑
ard 50k SNP array (50k; colored grey) (b) 50k + top SNPs selected from 
single-trait GWAS (colored blue) and multi-trait meta-analysis (colored 
orange) at a less stringent cut-off threshold of [− log10(p-value) ≥ 2] and 
a more stringent p-value of [− log10(p-value) ≥ 3]. The top SNPs were 
selected from GWAS of Holstein cows (N = 20,623). Vertical lines represent 
standard errors calculated from three (Holsteins) and two (Jersey) random 
validation subsets. Figure S7. Bias of genomic predictions in Holsteins 
(A; N = 1223), Jersey (B; N = 6338), and Holstein–Jersey crossbreds (C; 
N = 790) validation cows for milk (MYint), fat (FYint), and protein (PYint) 
yield intercept traits from different SNP sets based on the BayesR and 
BayesRC methods. Figure S8. Bias of genomic predictions in Holsteins (A; 
N = 1223), Jersey (B; N = 6338), and Holstein-Jersey crossbreds (C; N = 790) 
validation cows for heat tolerance milk (HTMYslope), fat (HTFYslope), and 
protein (HTPYslope) yield slope traits from different SNP sets based on the 
BayesR and BayesRC methods. Figure S9. QTL discovery using the single-
breed (Holstein cows; left) and the across-breed (Holsteins + Jersey cows; 
right) discovery set.
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Chapter 6: General discussion 

6.1. Introduction 

 Breeding for heat tolerance will continue to be an issue of economic importance over 

the coming decades because of the effects of rising global temperatures on  livestock 

production, reproduction, health, and wealth-being. In this thesis, several analyses were 

conducted to enhance our understanding of the genetic aspects of heat tolerance in animals. 

Ultimately, the new information can be used to minimise the effect of heat stress on livestock 

performance and welfare, considering the escalating warming climate worldwide. 

 The research was important for several reasons: 1) the dataset size is much larger than 

those used in earlier comparable studies in dairy cattle. The dataset used in Chapter 3 (i.e., 

analysis of G × E) comprised of ~0.5 million cows and ~7 million test-day milk records (milk, 

fat, and protein yield) while > 30,000 and > 40,000 cattle with 15 million SNPs were used in 

Chapter 4 (i.e., GWAS) and Chapter 5 (i.e., genomic predictions), respectively. This dataset is 

about 10-fold larger than those used so far to study heat tolerance with around 5,000 cattle and 

less than 1 million SNPs, e.g., the most recent similar study in Australia by Wang et al. (2017); 

2) high-producing dairy cattle (e.g., Holstein used in this thesis) are excellent and convenient 

model to find genes associated with heat tolerance because they are prone to heat stress from 

the additional metabolic heat of milk production; 3) the study animals (i.e., more specifically, 

Australian dairy cattle) are suited for understanding the genetic basis for which mammals cope 

with heat stress because they are predominantly kept on pasture with limited management 

strategies to alleviate heat stress, in contrast to other countries (e.g., the USA, Canada, and 

Israel), where dairy cattle are kept indoors and fed total mixed rations (TMR); and 4) the study 

used powerful statistical tools to discover genetic variants and perform genomic predictions for 

heat tolerance.  

The key findings presented in this thesis are as follows:  

• The re-ranking (i.e., G × E; Chapter 3) of sires for production traits (milk, fat, protein) 

between the extreme temperature-humidity index (THI) environments was not 

substantial since the genetic correlations were > 0.80. Therefore, designing separate 

breeding programs for colder and warmer climates due to G × E is not recommended 
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at this stage based on the general guideline by Robertson (1959) that the genetic 

correlation higher than 0.80 is not an issue in animal breeding.  

• The Australian dairy cattle exhibit substantial genetic variation in heat tolerance. 

Consequently, dairy sires considered to be resilient to heat stress based on the reaction 

norm of their estimated breeding value (EBV) across THI environments (Chapter 3) 

were identified, which can allow farmers to make informed breeding decisions best 

suited for their production environments.  

• In the GWAS analysis (Chapter 4), several new candidate causal variants and genes 

(HSF1, REG3A, CLSTN2, ITPR2, GRIA4, NPFFR2, CALCR, GHR) that contribute to 

heat tolerance in animals were documented, which expands our knowledge on the 

genetic control of this trait. 

• Specific candidate causal variants and genes related to the neuronal system and 

neuroactive ligand-receptor interaction functions (Chapter 4) were discovered, which 

provides new opportunities for understanding and improving thermotolerance in 

animals. 

• In the genomic prediction analyses (Chapter 5), it was found that prioritising functional 

sequence variants from GWAS can increase the genomic prediction accuracy of heat 

tolerance by up to 10% units in some scenarios, which can be leveraged to drive genetic 

gain for heat tolerance.  

• Overall, the findings in this thesis contribute to our understanding of the biology of heat 

tolerance and identifies specific genetic variants that can be used to minimise the effects 

of rising global temperatures on animal production, reproduction, and welfare in 

animals. 

 In the following discussion, I will cover the above points and provide a general 

perspective regarding breeding for thermotolerance in cattle. I will also highlight some 

limitations of the study and suggest further research considerations towards breeding heat-

resilient animals (i.e., animals which can maintain productivity under hot weather). 
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6.2. G × E due to heat stress and improving heat tolerance in dairy cattle 

 G × E exists when the relative performance of different genotypes changes across 

different environments. G × E that results in re-ranking of genotypes is a growing issue 

worldwide as the production environments continue to become increasingly variable (seasonal 

and temporal), driven mainly by climate changes. For example, Xiong et al. (2020) found that 

the magnitude of re-ranking in wheat breeding has grown by up to 500% because of climate 

change and selective breeding for high-yielding lines. In addition, in dairy cattle, a few elite 

sires are heavily used across a wide range of environments both locally (within countries) and 

internationally (between countries), mainly facilitated by artificial insemination (AI), meaning 

G × E could be an issue in the dairy industry.  

 In the Australian context, G × E due to heat stress is relevant because dairy herds are 

reared under diverse production environments (spanning an entire continent and being the 6th 

largest country in the world), which are predominantly pasture-based, meaning that animals 

are under direct exposure to weather elements (temperature, humidity, solar radiation, etc.). 

Dairy herds are located mainly in the coastal areas of the country with a large proportion of 

herds concentrated in the Victoria region in the South-East part of the country (Figure 6-1). 

Given this dairy landscape, an important question is understanding how big is G × E due to 

heat stress in Australia? And what are the implications to the industry? 

 Therefore, in Chapter 3, the magnitude of G × E due to heat stress for production traits 

in the Australian Holsteins was investigated and breeding implications suggested to the 

industry. The idea and scope of Chapter 3 are not new, as similar studies have been performed 

in Australia in earlier years for production and fitness traits (fertility and survival) (Hayes et 

al., 2003, Haile-Mariam et al., 2008). However, this thesis has benefited from a much larger 

dataset that has grown over the years, providing better insights into G × E and intriguingly how 

it has potentially changed over time. For example, the earlier G × E work in Australia (Hayes 

et al., 2003) used ~870k test-day milk records from ~110k cows, while this thesis used about 

7 million records from around 0.5 million cows. The key finding of this thesis is that the genetic 

correlations for milk records between extreme environments (measured by THI) were high (> 

0.80), suggesting that the degree of re-ranking is not substantial to necessitate designing 

separate breeding programs for hotter environments. However, the extent of G × E appears to 

be increasing in recent years, which I will discuss in the following section. 
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 While the results from this thesis allay worries regarding the re-ranking of sires at this 

stage, there are several reasons to consider in further work. As discussed in Chapter 3 of this 

thesis, most of the data used to estimate G × E comes from the Victoria region, where dairy 

cows typically experience moderate heat loads (Nguyen et al., 2016), whereas a small 

proportion of milk records (approximately 10%) were obtained under high heat load (THI > 

70) environments such as Queensland. As such, I expect greater G × E when larger datasets 

from hotter climates are available. If indeed substantial G × E exists, then we will expect 
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Figure 6-1 Locations of dairy herds (red points) used in this thesis. 



 
 

 
 

 

 

 

significant re-ranking among the sires, such that it may be necessary to form separate breeding 

schemes for different production environments, say for colder (e.g., Tasmania) and hotter (e.g., 

Queensland) climates. Alternatively, G × E could be included in the routine calculation of 

breeding values, e.g., in Nguyen et al. (2017b), where heat tolerance GEBVs were scaled by 

dairy regions, given that cows in these regions (8 major dairy regions in Australia) experience 

varying magnitude of heat stress per year (Nguyen et al., 2016). 

6.2.1. G × E for heat tolerance is increasing in Australia. Should we change the 

environment to fit the animals or change the animals to fit the changing environments? 

 A key finding discussed in Chapter 3 of this thesis is related to the trend of G × E or the 

re-ranking of sires. Results showed that G × E due to heat stress for production traits has 

increased over the recent decades, which agrees with earlier reports (Nguyen et al., 2017a). For 

example, when considering milk yield records, the proportion of sires labelled as heat-sensitive 

has increased by 7% in recent (2009 – 2017) compared to earlier (2003 – 2008) years. This is 

a worrying trend showing that dairy cattle are becoming less adapted to the environments, 

which can be attributed to two main reasons: a) increase in climate changes characterised by 

frequent and extreme weather, and b) selection emphasize on production traits over the years, 

considering that heat tolerance is unfavourably associated with milk yield, with correlations of 

around -0.80 in this thesis. This implies that Australian dairy animals are becoming more 

specialists, which require more homogeneous and stable environments to maximize 

performance.  

 If this increasing G × E trend continues (i.e., dairy animals are becoming less adapted 

to the environment), then it would be necessary to continuously modify production 

environments to fit or optimise productivity for animals. For example, several adaptation 

measures are being sought into pig production systems in many countries worldwide to 

minimise the effect of heat stress, including designing special housing with good ventilation, 

reducing stocking density, and modifying or shifting feeding regiments (Schauberger et al., 

2019). Similar adaptation measures are being implemented in dairy industries across the world, 

including Australia, e.g., the Cool Cows program (www.coolcows.com.au), where farmers are 

provided with the best on-farm practical solutions using shades, sprinklers, or fans to offset 

heat stress on their farm animals as well as ensuring adequate ventilation for the housed or 

feedlot cattle, e.g., in North America. A study in New Zealand (Bryant et al., 2006) found that 

124

http://www.coolcows.com.au/


 
 

 
 

 

 

 

the performance of Holstein-Friesian genotypes from North America are more sensitive to the 

level of feeding (i.e., they are specialists) compared to the New Zealand Holsteins or Jerseys 

(i.e., they are generalist), in part, because cattle populations in these countries are managed 

differently, as noted above (Bryant et al., 2006). Zwald et al. (2003) investigated G × E based 

on milk records from 17 countries, including Australia, and found the heritability of 0.26 and 

0.39 for colder and hotter climates, respectively, implying that milk productions in these 

climates are different traits. 

 Innovative studies are currently ongoing in some countries aimed at designing special 

diets for heat-stressed cows that lower core body temperature and allow them to continue 

feeding under heat stress conditions, e.g., Feeding Cool Cows program in Australia  

(https://dairyfeedbase.com.au/feeding-cool-cows/). Moreover, complementary permanent 

genetic solutions have been recommended to better cope with changing environments, such as 

the genomic selection of heat tolerance in Australia (Nguyen et al., 2017a) or genome editing 

(Hansen, 2020). Overall, the candidate causal variants discovered in this thesis (discussed in 

Chapters 4 and 5) can help to breed dairy animals that fit well to warmer climates. 

6.2.2. Should we consider resilient indicators for heat stress? And how are these traits 

defined? 

 Resilience is defined as the ability of an animal to recover quickly following exposure 

to a perturbation (s) or the ability to be minimally affected by a disturbance (Colditz and Hine, 

2016), as illustrated in Figure 6-2. Since G × E due to heat stress is becoming a growing issue 

in the agricultural sector worldwide, it is relevant to consider resilience indicators in the 

breeding goals to help accelerate the genetic improvement for this trait and other functional 

traits (e.g., health and fertility). This is a growing area of research, particularly in developing 

indicator traits for resilience that encompasses different aspects of animal wellbeing (weather,  

pathogens, diseases, social perturbations, etc.) (e.g., Berghof et al., 2019). This is becoming 

increasingly possible with the availability of big data sets facilitated by the advancement in 

phenotyping technologies. Research in Australia showed that milk yield in heat-tolerant cows 

returned to the baseline level after six days following heat challenge in climate chambers 

compared to 9 days in heat-susceptible cows (Garner et al., 2016).  
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 Depending on the trait, resilient animals are expected to have smaller values on the 

following components compared to the average population: variance (i.e., closer to zero), 

autocorrelation (i.e., an indicator of the recovery period as illustrated in Figure 6-2), skewness 

of deviations, and slopes (Scheffer et al., 2018, Berghof et al., 2019). Poppe et al. (2020) 

reported low to moderate genetic correlations among three resilience indicators (variance, 

autocorrelation, skewness) that describe deviations of milk yield from a lactation curve, with 

heritabilities ranging from 0.01 (skew) to 0.24 (variance). These authors also found a 

favourable genetic correlation of variance trait with health, longevity, and fertility traits and 

concluded that it is the best indicator trait to breed for resilience. More recently, Tsartsianidou 

et al. (2021) developed three resilience phenotypes to account for seasonal changes (autumn, 

winter, and spring) in milk yield traits for sheep, with heritability ranging from 0.03 to 0.17.  

Unlike the work of Tsartsianidou et al. (2021) in which modelling spanned low (<10 oC) and 

high (>25 oC) heat environments, this thesis focused on resilience to heat stress (THI > 60, 

equivalent to the ambient temperature of 22 oC and relative humidity of 15%; see Figure 2-3). 

Future work in Australia should also aim at investigating resilience to cold weather conditions, 

given that a sizable proportion of milk records (16%) in this thesis were collected at low 

ambient temperatures (< 5 oC). However, given that the optimum temperature needed to 

maximise health and productivity in dairy cattle ranges from 5 to around 25 oC (Kadzere et al., 

2002), cold stress is currently not considered as an issue in Australia, unlike other countries 

such as Siberia (Igoshin et al., 2019). 

 

126



 
 

 
 

 

 

 

 

Figure 6-2 Illustration of heat stress and recovery period between two cows: Cow A is more resilient 

to heat than Cow B because its milk yield returns to the baseline more quickly after exposure to heat 

stress or other environmental stressors (e.g., disease and parasites). 

6.2.3. Should we consider other traits beside milk production in the study of heat 

tolerance? 

 In Chapter 3, I focused the G × E analysis on milk production (milk, fat, and protein) 

traits for Holsteins dairy cattle using THI as the environmental descriptor for heat stress. I 

underline the importance of considering other traits given that the profit indices in Australia 

incorporate many traits of economic importance to farmers such as production, fitness, health 

as well as efficiency traits (Byrne et al., 2016). I expect greater G × E for reproduction and 

fertility traits compared to the estimates for heat tolerance in relation to production traits in this 

study, in part, due to the genetic architecture of fertility or trait definition. Previous evidence, 

e.g., Haile-Mariam et al. (2008) found low genetic correlations (< 0.50) between extreme THI 

environments for fertility traits in Australian dairy cattle. Studies show that fertility  traits are 

sensitive to heat stress. For example, in Australia, Talukder et al. (2015) found that dairy cows 

calving in summer (under heat stress) are about 43% less likely to conceive than cows calving 

in autumn (colder season). Also, work at the University of Georgia (Ravagnolo and Misztal, 
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2002) and in Australia (Morton et al., 2007, Haile-Mariam et al., 2008) have found that the 

non-return rate (NRR) and conception rate linearly decrease with increasing THI. These traits 

(conception rates and non-return rate) can be used to investigate the effect of heat stress on 

reproduction in dairy cattle. Some studies in the USA (e.g., Sigdel et al., 2020) have already 

tried to uncover the genetic basis underlying cow conception under thermal stress.  

6.2.4. Why should we consider more suitable heat-stress model (s) for the industry? 

 As in previous work in Australia (Hayes et al., 2003, Nguyen et al., 2016), the THI (a 

single value that combines ambient temperature and relative humidity) was used to quantify 

environmental heat load to the dairy cows throughout this PhD work. Since this index misses 

relevant pieces of information which contribute to heat stress in animals, such as wind speed 

and solar radiation, it is possible that the heat-load on animals may have been underestimated 

in this study and in previous work which used THI in Australia. This is important as dairy cattle 

in Australia are mostly kept outdoors on pasture; thus, direct solar radiation is likely a key risk 

factor for these dairy cows. In the G × E analysis (Chapter 3), I defined a value of THI = 60 as 

the threshold beyond which milk yield in the study animals begins to decline due to heat stress 

following the work of (Hayes et al., 2003). I expect this threshold value to change if a more 

suitable THI model (s) for the Australian dairy system is defined in the future.  

 While THI variants (including those that incorporate solar radiation and wind speed) 

have been tested to work well for housed dairy cattle in subtropical environments (Dikmen and 

Hansen, 2009), information is lacking for cattle kept on pasture. However, the development of 

heat load indices that are better suited for various production conditions is an ongoing area of 

research. Lees et al. (2018) developed a dairy heat load index (DHLI) that incorporates panting 

scores, ambient temperature, relative humidity, solar radiation, and wind speed. These authors 

transformed the DHLI to have units ranging from 0 to 100; where DHLI = 0 and DHLI = 100, 

indicates no panting (i.e., no heat stress) and a maximum panting (i.e., high heat stress) within 

a herd, respectively. However, these researchers found that this index account for about 50% 

of the panting score variation observed within a herd. In another study, Wang et al. (2018) used 

data from two sets of experimental cows [one in housed climate chambers at the University of 

Arizona-USA and the other under outdoor conditions at the University of California-Davis-

USA] and developed an index called Equivalent Temperature Index for Cattle (ETIC) which 

combines the effects ambient temperature, relative humidity, wind speed, and solar radiation 
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and their interactions. These authors found that the ETIC model outperforms previous THI 

models in quantifying heat load on dairy animals under outdoor conditions. There are currently 

no empirical studies to compare the suitability of THI models versus other models that 

incorporate solar radiation for assessing heat stress from an Australian dairy perspective. This 

is necessary to recommend suitable heat stress predictive model (s) for the industry, 

considering that THI values have been and will continue to be relevant for guiding farm 

management decisions during hot weather and being crucial for research purposes. Besides, it 

is critical to define a suitable measure of heat stress, which I will discuss in more detail in the 

subsequent sections. 

6.2.5. Why should we consider heat tolerance in the profit index? And what are the 

potential challenges? 

 The Australian dairy industry currently provides two economic selection indices: 

(Balanced Performance Index (BPI) and Health Weighted Index (HWI) in line with farmer 

preferences for trait improvements (Byrne et al., 2016), neither includes heat tolerance EBVs. 

The results in this thesis (Chapter 3) show that the dairy cattle in Australia are becoming less 

fit to the environment, with the proportion of sires labelled as heat-sensitive increasing by 7% 

in recent (2009 – 2017) compared to earlier (2003 – 2008) years, which supports previous work 

in Australia that the genetic merit of heat tolerance for Holsteins and Jersey cattle has been 

declining over the years at a rate of 0.3%/yr (Nguyen et al., 2017a). Also, the warming 

environment is gradually sweeping across all dairying regions in Australia, with projections 

showing that heat stress will become a big issue in the coming decades (BOM, 2020). For 

example, the annual average temperature in the Gippsland dairying region (colder dairy region) 

is projected to rise by 2.6 oC in 2070, meaning dairy animals will experience more severe hot 

days and long warmer dry spells (BOM and CSIRO, 2015). Therefore, it is urgent to act now 

to mitigate the negative consequences of heat stress in the future on productivity, reproduction, 

and welfare by selecting for heat tolerance alongside other traits instead of stand-alone HT-

ABVs, which are currently available in the Australian industry (Nguyen et al., 2017a), or those 

called ‘Augmented BPI’ where HT-ABVs are added to the main profit index, separately (i.e., 

BPI + HT-ABV) (Nguyen et al., 2017b). 

 However, like other complex traits, e.g., temperament, possible challenges of 

considering thermoregulation parameters in the profit indices exists. First, it is still a non-trivial 
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task to define economic weights for use in the selection indices. However, it is possible to 

derive economic values for resilience to heat by considering the cost associated with lack of 

heat tolerance, such as production losses and labour costs of managing and treating non-

resilient animals (Berghof et al., 2019). The fact that selecting for heat tolerance can contribute 

positively to animal welfare (Brito et al., 2020) is another motivation to consider this trait in 

the profit index. Even though it is obvious that resilience has economic merit, the fact that 

management costs of heat-stressed animals currently vary disproportionately among different 

regions, say in Gippsland (colder climate) versus Queensland (warmer climate), makes it 

difficult to standardize economic weights across regions. This has been one of the major issues 

impeding motivation of incorporating heat tolerance in the Australian main profit index (i.e., 

BPI). However, the fact that climate warming is projected to become a big issue across 

Australia (as noted above) and many regions of the world (including the USA) provides a 

compelling reason to prepare now since multi-trait genetic selection is cumulative and takes an 

extended number of years to build a heat-tolerant animal population. 

 DataGene (an organization responsible for genomic evaluation in Australia; 

https://datagene.com.au/) provides farmers with the Good Bulls Guide tool to filter the best 

bulls that match their breeding goals. To improve heat tolerance and other traits, farmers use a 

two-step approach to first filter bulls based on BPI and then on heat tolerance. For example, a 

farmer can look for a bull with a high BPI value, say 350 (meaning this bull is expected to be 

$350 more profitable than an average bull) and HT-ABV of 105 (meaning this bull is 5% more 

tolerant to hot/humid conditions than the Australian average score of 100; see Figure 6-4). 

Recent data from DataGene shows an encouraging upward trend for heat tolerance following 

the release of HT-ABVs in 2017 (see Figure 2-1). However, the uptake of HT-ABV is perhaps 

low since this trait is not included in the main Australian index (i.e., BPI), meaning we expect 

relatively lower genetic progress than if heat tolerance is selected simultaneously with other 

traits in the BPI. Notably, whether the upward genetic trend of heat tolerance seen in Figure 2-

1 is related to the release of breeding HT-ABV in 2017 is early to say at this stage but is 

nonetheless encouraging to the industry. 

 For example, using recently published BPI and HT-ABVs data from the DataGene 

(https://datagene.com.au/; released in August 2021), the correlated response of heat tolerance 

to selection on the BPI is -0.144 unit decrease of heat tolerance, calculated following formula 
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described by Nguyen et al. (2016): 𝑅𝐻𝑇,𝐵𝑃𝐼 =  𝑟𝐻𝑇 ,𝐵𝑃𝐼 ∗ (𝜎𝐻𝑇 𝜎𝐵𝑃𝐼⁄ ) ∗ 10, where 𝑅𝐻𝑇,𝐵𝑃𝐼 = 

response to selection; 𝑟𝐻𝑇,𝐵𝑃𝐼  = correlation between HT-ABV and BPI; (𝜎𝐻𝑇 𝜎𝐵𝑃𝐼⁄ ) = the ratio 

of genetic standard deviations; the formula is scaled by 10, equivalent to approximately 1 year 

of genetic improvement (Nguyen et al., 2016). We can expect larger value (i.e., > -0.144 unit) 

if HT-ABV is included in the BPI. If selection is on the Australian Selection Index [i.e., an 

index used to rank animals based on the most profitable combination of milk production EBVs 

according to the way Australian farmers are paid for milk, fat, and protein yield], then the 

decline is higher at -0.441 units compared to selection based on BPI at -0.144 units (as indicated 

above). This was expected, in part, because of two possible reasons: a) the correlation between 

[HT-ABV versus ASI] is stronger (-0.72) than [HT-ABV versus BPI; -0.50], and b) BPI 

includes fertility and health traits that are positively correlated with HT-ABV (Nguyen et al. 

2016). 

6.2.6. Can we define a more suitable trait for heat tolerance? And can we use this trait as 

the breeding objective? 

 The milk decline traits (i.e., slopes) used in this thesis and other previous work (Nguyen 

et al., 2016) as proxy for heat tolerance has been criticised for several main reasons: 1) it does 

not fully capture the effect of heat stress in cattle and 2) it is unfavourably correlated with milk 

volume with estimates in this thesis of around -0.80, and 3) milk production traits have been 

already included in the Australian economic indices (Byrne et al., 2016), implying that heat 

tolerance may have been partly captured in these indices. While this trait (milk decay under 

heat stress) definition is economically more understandable to farmers and somewhat 

straightforward to factor in the profit indices, e.g., as described by Nguyen et al. (2017a), it is 

perhaps not the most suitable choice as breeding objective for heat tolerance, considering the 

above reasons.  

 Alternatively, several other indicators of thermoregulation in animals could be used as 

the breeding objective, such as those related to core body temperature (e.g., rectal, ruminal, or 

vaginal temperature), heat production (e.g., feed consumption and fermentation), or 

latent/sensible heat loss (e.g., skin, or cutaneous temperature, sweating rate, respira tory rate, 

etc.). Among these heat stress indicators, measures of core body temperature, e.g., rectal 

temperature, are often considered as ‘gold standard for heat tolerance with the heritability 

estimate of 0.17 ± 0.13 (Dikmen et al., 2012) in Holstein cattle. Although this trait could be 
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considered as a breeding objective for heat tolerance, it is questionable by the fact that it is 

ambiguous as to what it means, for example, to breed for lower rectal temperature (RT) given 

that the core body temperature in livestock and other mammals are typically tightly controlled 

within a very narrow range (Finch, 1986, Gourdine et al., 2017). In addition, the genetic 

correlations between RT and milk production traits are positive (Dikmen et al., 2012, Luo et 

al., 2021), meaning that selection for lower RT could undesirably impact milk yield. By taking 

these factors into account, perhaps a more attractive alternative is to consider traits that capture 

heat dissipation efficiency, such that high-ranked heat-tolerant animals are defined as those 

with the superior genetic ability to remove metabolic heat from the core body into the 

environment. In addition, this will allow continued genetic progress of milk production since 

high-producing animals can efficiently dispel heat from their core bodies that could have 

otherwise accumulated due to increased rumen fermentation. This idea is not new and was 

proposed recently by Brito et al. (2020) as one way to breed for heat tolerance and welfare in 

livestock.  

 There is evidence that between-breed differences in heat dissipation exist, e.g., Finch 

(1986), who observed that Bos taurus beef cattle are more superior at dissipating heat than Bos 

indicus beef cattle. Also, within-breed difference in heat transfer exists, e.g., Garner et al. 

(2016), who found that the mean skin temperatures of heat-tolerant Holstein cows are 

significantly higher than those for heat-susceptible Holstein cows. Srikanth et al. (2017) 

subjected 10 Holstein calves to heat stress in the experimental chambers and monitored their 

rectal and skin temperature during the day (Figure 6-3). These authors found that the rectal 

temperature for animal ID33 (i.e., one of the study calves) increased rapidly to 41.3 oC with 

relatively lower skin temperature, suggesting that it has poor heat dissipation ability compared 

to other calves (Figure 6-3). Given that calves were investigated in this study, I expect greater 

genetic variation in thermoregulation for lactating cows due to the higher metabolic heat 

associated with lactation. In other studies, Dikmen et al. (2008) found that slick-haired cattle 

can control their core body temperature via superior thermoregulatory mechanisms compared 

to non-slick Holsteins with a relatively lower drop in their milk yield. Given that even a 

marginal rise in body temperature has serious negative consequences on cell integrity and 

metabolic functions, selecting animals that can tightly constrain their body temperature through 

superior heat dissipation ability can yield the greatest advantage on productivity (Finch, 1986). 
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Figure 6-3 Skin and rectal temperature measures for 10 Holstein calves and correlation (R=0.44) after 

heat stress (19:02 hours); adapted from Srikanth et al. (2017). 

 Thermal circulation index (TCI) described by Curtis (1983) quantifies the transfer of 

heat from the core of the body to the skin surface and then to the environment under steady-

state thermal conditions computed as follows: TCI = (Ts – Ta)/(RT – Ts), where Ts is the average 

skin temperature; RT is the core or rectal temperature, and Ta is the ambient temperature. This 

TCI trait could be used as a proxy for heat dissipation efficiency through the skin, which 

accounts for up to 85% of total heat loss (Maia and Loureiro, 2005). Besides Ta (ambient 

temperature), it may be more suitable to calculate TCI based on ETI (Wang et al., 2018), which 

(as discussed earlier) combines key weather elements, including ambient temperature, relative 

humidity, solar radiation, and wind speed and is, perhaps, a better predictor (compared to THI) 

of the environmental heat load on the animals, especially for the pasture-based system in 

Australia. Looking at Figure 6-3, calf ID33 and ID36 are expected to have large TCI values 
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because of the relatively high RT and lower Ts, meaning that they are more susceptible to heat 

stress and may not be an ideal candidate for hotter environments. Using the TCI trait as the 

selection target for heat tolerance and welfare could be attractive to farmers because it is likely 

to drive genetic improvement for this trait, with a possible small impact on production traits, 

although future rigorous studies are needed to support this hypothesis.  

 As it is, the TCI trait seems to describe the biology of  heat tolerance (i.e., heat 

dissipation efficiency) which, according to the producer perspective, may not be an 

economically appealing target. However, given producers seeks to maintain production and 

reproduction under heat stress, the economic value for this trait (TCI) can be defined as the 

loss of milk production associated with the unit increase in core body temperature of the animal, 

such that animals with large TCI values are expected to experience greater decline in milk 

production or fertility under heat stress conditions. This implies that future work is needed to 

estimate the rate of milk decline or fertility associated with an increase in core body 

temperature or TCI values related to failure in efficient thermoregulation. Nevertheless, I still 

expect lingering doubts on the suitability of TCI as the target breeding objective for heat 

tolerance over, say milk decays (i.e., milk slopes used in this thesis), in part, because of the 

high cost of obtaining RT and Ts measurements at this stage. However, as high-throughput 

sensor technologies continue to improve (Koltes et al., 2018), which can facilitate collection of 

large thermotolerance phenotypes at potentially lower cost, I expect the TCI trait to be a 

relevant target for heat tolerance in the future because it is likely to best describe heat-tolerance 

and can allow genetic progress to be made in productivity (Finch, 1986). 

6.2.7. How can we select for heat tolerance – selection criteria? 

 The accuracy of the genomic prediction relies on several factors including a) the 

heritability of a trait, b) effective population size, c) size of the reference population, d) marker 

density, and e) the architecture of the trait (Daetwyler et al., 2008, Meuwissen, 2009, Hayes et 

al., 2010, Gonzalez-Recio et al., 2014). With low heritability estimates for thermoregulation 

traits, e.g., the rectal temperature (h2 = 0.17 in Holsteins; Dikmen et al. (2012)) – a component 

needed to calculate TCI (described above) – over 20,000 animals of a female reference set 

would be required to achieve moderate genomic reliabilities of ~0.40 (Gonzalez-Recio et al., 

2014). While we have seen a rapid evolution in high-throughput sensor technologies in recent 

years (Koltes et al., 2018), it is still costly and logistically challenging to build a sufficient 
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reference population with phenotypic measurements (i.e., rectal and skin temperature) needed 

to compute animal TCI (i.e., breeding of objective trait as proposed above) values for genomic 

evaluations.  

 However, as phenotyping technologies continue to improve and are validated for 

commercial use (Koltes et al., 2018), an alternative approach at this stage is to have a dedicated 

genomic reference population with high-quality phenotypes (i.e., RT and Ts). Then, other 

predictor traits which can be collected cost-effectively in large quantities are used as the 

selection criteria for heat tolerance. For example, clinical mastitis is a hard-to-measure trait 

where somatic cell count (SCC) and other traits (e.g., udder depth) have been used as indicator 

traits for the selection of this economically important trait since large datasets for SCC can be 

obtained from routine milk recordings (Martin et al., 2018). Considering that TCI is a novel 

trait proposed in this thesis as the breeding objective for heat tolerance, a lot of future work is 

required, such as understanding the trait, collection of enough data, calculating genetic 

parameters (e.g., heritability) for this trait, and correlations with other economic traits, 

(production, fertility, and health trait, etc.). 

 In this regard, opportunities are emerging to obtain potentially inexpensive large 

phenotypic measures from Mid-infrared (MIR) predicted milk biomarkers as the proxy for heat 

tolerance. Hammami et al. (2015) found that the MIR-predicted traits (e.g., C18:1 cis-9) decline 

with increasing THI in heat-stressed cows. van den Berg et al. (2021) found high genetic 

correlations (values close to 1.0) between measured serum urea and milk MIR-predicted serum 

urea. This high genetic correlation means that MIR predicted urea can be used to improve the 

accuracy of genomic prediction of serum urea. Heat stress increases milk urea in dairy cows, 

possibly due to elevated deamination of amino acids, increased metabolism of muscle tissues, 

or reduced feed intake that often occurs under hot weather (Cowley et al., 2015, Gao et al., 

2017). Therefore, using phenotypes such as MIR-predicted C18:1 cis-9 [which was found to 

be most sensitive to heat stress by Hammami et al. (2015)] could be used as alternative and 

inexpensive selection criteria for heat tolerance or used directly to quantify heat tolerance. 

Moreover, MIR profiles can be used as suitable management biomarkers for predicting animals 

that are likely to suffer most from heat stress under hot conditions (Hammami et al., 2015). For 

example, recent work in Australia by Ho and Pryce (2020) found substantial improvement in 
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predicting cows that are likely to conceive following first insemination when including MIR 

data in the prediction models. 

 Also, milk yield decline (proxy for heat tolerance trait used in this thesis) can be used 

as selection criteria trait for heat tolerance once the breeding objective (i.e., TCI proposed 

above) has been measured. Results in this thesis (Chapter 4) suggest that heat tolerance milk 

traits (i.e., milk, fat, and protein yield slopes) are regulated somewhat differently in heat-

stressed cows. Comparatively, the decline (per day) in milk, fat, and protein yield (± standard 

errors) for Holstein cows was -0.01 ± 0.0003 Kg, -0.0007 ± 0.01 Kg, and -0.0013 ± 0.008 Kg 

per unit increase in THI above 60, respectively. These estimates are similar to those reported 

by Bryant et al. (2007) for Holstein cows in New Zealand, with milk solids (fat and protein 

yield) reduction (per day) greater than 0.001 Kg/unit increase in THI (averaged for 3 days) 

exceeding 68. If we assume an increase of THI by 15 units per day in Australia (i.e., THI = 60 

to THI = 75), then we expect a yield reduction (per day) of 0.58% (milk), 1.07% (fat), and 

2.29% (protein), considering that the corresponding estimates for daily average milk, fat, and 

protein in this thesis were 25.85 (8.19) Kg, 0.98 (0.30) Kg, and 0.85 (0.26), respectively (values 

in brackets are the standard deviations for each trait). These percentage estimates suggest that 

protein yield is more sensitive to heat than milk or fat yield likely, most likely due to heavy 

selection pressure on this trait over the years. 

 Currently, the heat-tolerance breeding value (HT-ABV; released to the industry in 

2017, Nguyen et al. (2017a)) combines milk, fat and, protein yield slope traits using economic 

weights of -0.10, 1.79, and 6.92, respectively – equivalent to the weights for milk production 

traits used in the Australian selection indices (Byrne et al., 2016, Nguyen et al., 2017a).  The 

economic weights should be revised to facilitate more genetic gains to be realised in both heat 

tolerance and production traits. Future work could focus on estimating the correlation between 

milk yield slope traits versus other “gold standard” heat tolerance traits, e.g., core body 

temperature. So that milk yield slope traits (milk, fat, and protein) that correlate strongly with 

thermoregulation traits can be given more weight in the heat tolerance selection index (i.e., 

HT-ABV). Furthermore, studies could explore the correlation between milk decay traits versus 

MIR biomarkers (e.g., C18:1 cis-9) that are potentially better predictors of heat stress 

(Hammami et al., 2015) to inform the appropriate weightings for HT-ABV currently used in 

the Australian industry. 
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6.3. Leveraging whole-genome sequence data to understand the biology of thermal stress 

and testing the benefits of using prioritised variants to improve heat tolerance 

 Characterising causal variants and pathways underpinning the genetic basis for heat 

tolerance in cattle is at the infancy stage, but it is gaining increased attention due to global 

warming, as demonstrated by a recent surge in published studies (Hayes et al., 2009, Dikmen 

et al., 2013, Macciotta et al., 2017, Sigdel et al., 2019) (reviewed in Chapter 2; section 2.9). In 

addition, big genomic datasets are increasingly becoming available thanks to the international 

consortiums, such as the 1000 Bull Genome Project, which currently hosts whole-genome 

sequence data for cattle from over 40 collaborators around world (Hayes and Daetwyler, 2019). 

Results in Chapter 3 (i.e., G × E interaction; discussed above) clearly showed a substantial 

genetic variation for heat tolerance in the Australian dairy cattle, which motivated an 

association study (GWAS) using imputed whole-genome sequence data aimed at 

understanding genetic variants that make dairy animals vary in thermotolerance. Consequently, 

I covered the key findings from the association analyses in Chapter 4 of this thesis.  

 The heat-tolerance phenotypes used in the GWAS (discussed in Chapter 4) were 

derived from milk records (milk, fat, and proteins), defined as the rate of decline in milk yield 

traits (i.e., slopes) with increase in THI. Other studies in the USA (e.g., Sigdel et al., 2019) 

have also used similar traits in searching for heat tolerance variants in cattle. However, using 

slope traits from milk records presents a challenging task in disentangling genes for heat 

tolerance and milk production because these traits are highly correlated (estimates of about -

0.80), implying that they are largely regulated by the same genes. Indeed, I found that the strong 

signals (i.e., QTLs) for heat tolerance overlap with well-known genes for milk production, e.g., 

DGAT1, with candidate variants showing opposing effect direction. This means that selecting 

for heat tolerance genes could negatively impact milk production. I did a follow-up post-

GWAS conditional analyses (described in Chapter 4), which confirmed that the overlapping 

QTLs are important for both heat tolerance and milk production. These findings have 

implications for breeding, considering that farmers desire to improve thermotolerance while at 

the same time trying to increase milk production – a key driver for dairy profitability. 

 Nonetheless, genomic selection tools offer promising avenues to improve both heat 

tolerance and milk production. This is evidenced by fertility traits, which deteriorated 

considerably over the past decades, in part, because of the selection for high milk production, 
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especially from the second half of the 20th century (Lucy, 2001). However, we have seen a 

dramatic positive change in both production and fertility traits in dairy cattle within a short 

period following the introduction of genomic selection tools around 2009 with, for example, 

sire generation interval dropping from 7 to 2.5 years and the rate of genetic gain for yield traits 

almost doubling (García-Ruiz et al., 2016). 

6.3.1. Can we use the genes identified in this thesis to select for heat tolerance without 

significantly impacting the genetic progress in milk production? 

 The published literature is replete showing that selection for heat tolerance could 

inevitably impact genetic progress in milk production (e.g., Carabaño et al., 2019). The results 

in Chapter 4 provide several biological insights of thermal stress that can be leveraged to 

minimise heat stress while maintaining productivity in high-yielding dairy cattle. For example, 

metabolic adaptations are key biological mechanisms for heat tolerance. In high-yielding dairy 

cattle, e.g., Holsteins breeds, elevated metabolic-heat is a major proteotoxic stress that impacts 

milk production with reductions of up to 40% (Kadzere et al., 2002, West, 2003). As such, 

understanding the genetic basis underlying metabolic adaptations could allow breeding for heat 

tolerance while maintaining high productivity. Several promising candidate genes for heat 

tolerance identified in Chapter 4 (ACLY, PDHA2, MDH1, SUCLG2, PCK1) are associated with 

the citrate (Krebs) cycle, which is a crucial metabolic hub in the oxidation of carbohydrates 

and fatty acids (Belhadj Slimen et al., 2016). Heat stress disturbs the metabolism of 

carbohydrates – a major source of energy for maintenance and production in animals, for two 

main reasons: 1) reduced dry matter intake b) altered post-absorptive metabolism (Wheelock 

et al., 2010). Although studies are still conflicting, some reports show that fatty acids are not 

mobilized under heat stress, as evidenced by unaltered basal NEFA (associated with negative 

energy balance) in heat-stressed cows (Rhoads et al., 2010, Wheelock et al., 2010). This is 

partly related to the inability of heat-stressed cows to employ the ‘glucose sparing’ effect, such 

that the adipose tissue is not mobilized to generate NEFA which, in part, explains drastic milk 

decline (Rhoads et al., 2010, Baumgard and Rhoads Jr, 2013). In contrast, the ‘glucose sparing’ 

effect is often enlisted in early lactation (i.e., a stage of high energy demand resulting in 

negative energy balance) to maintain milk production in dairy cows (Baumgard and Rhoads Jr, 

2013).  
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 A fundamental question is whether selecting for the above candidate genes (linked with 

metabolism) would contribute to heat tolerance without substantially reducing milk production. 

This remains an open question because it is not clearly understood how these genes are 

regulated under acute and chronic heat stress conditions to impact animal productivity. 

Compared to acute stress, the genetic aspects of chronic heat stress are still poorly understood. 

Recent research in camel somatic cells suggests that acute and chronic heat stress are somewhat 

controlled differently with the former associated with the increased heat shock proteins and 

DNA repair enzymes, while the latter heat-response mechanism is linked to altered cell 

architecture, proteomics, and cytoskeletal proteins (Saadeldin et al., 2020). Therefore, I think 

that the candidate genes and pathways in this thesis provide interesting insights into the genetic 

basis for chronic (long time heat exposure) or recurrent heat stress – a characteristic of 

Australian seasonal summers. Future work is needed to confirm this. Notably, the candidate 

causal genes in this thesis (Chapter 4) did not overlap with those reported in comparable work 

in Australia (Hayes et al., 2009, Wang et al., 2017) and in the USA (Sigdel et al., 2019), most 

likely because they used smaller datasets (typically < 5,000 animals while around 30,000 was 

used in this thesis) and low-resolution SNP sets (50k or 600 SNP set versus 15 million SNPs 

used in this thesis). Importantly, the candidate causal variants discovered in this thesis were 

confirmed to be relevant for heat tolerance in an independent validation set and via genomic 

prediction (as discussed in Chapter 5). Moreover, the conditional analyses in this thesis 

(Chapter 4) confirmed that the top GWAS hits/signals are in fact associated with the biology 

of thermal stress in dairy cattle. 

 Under hot conditions, heat-stressed dairy cows employ various behavioural strategies 

to regulate internal metabolic heat-production such as lowering feed intake, spending less time 

grazing and more time standing, resting in shade, and drinking more water (Kadzere et al., 

2002). While these behavioural and physiological adjustments implies that milk decline in heat-

stressed dairy cows is inevitable, the genetic tools provide opportunities to minimise such 

losses to the lowest possible level. For example, finding alternative ways, e.g., those that help 

dairy cows minimize the accumulation of toxic reactive oxygen species (ROS) and the onset 

of metabolic heat, especially in warmer months, and in an energy-efficient way is critical to 

breeding heat-tolerant yet high-yielding animals. Heat stress causes overproduction of ROS, 

which can cause oxidative stress and subsequent apoptosis or cell death (Belhadj Slimen et al., 
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2016). There is evidence that efficient scavenging of toxic ROS from cellular metabolism 

during various environmental stresses is a signature of increased adaptation in plants (Sharma 

et al., 2012). In this regard, exploring the appropriate nutrition (e.g., Feeding Cool Cows 

program in Australia; covered earlier) to suppress core body temperature or those that favour 

lower heat increment during hot weather is gaining increased attention. However, genetic 

aspects to achieve these goals (lower ROS, core body temperature, or heat increment) in heat-

stressed animals remains largely unexplored. A recent study (Atta et al., 2020) suggests that 

supplementing heat-stressed rats with Pycnogenol (generic French pine bark extract) stimulates 

genes related to antioxidant activity allowing them to reverse heat-induced ROS damage in 

testicular and brain tissues. It will be illuminating to understand the role of metabolic -related 

genes identified in this study to breed more productive and heat-tolerant animals. Moreover, it 

may help in devising novel ways for improving the nutritional management of heat-stressed 

dairy cows. 

6.3.2.  Can we identify other genes that are not strongly linked to milk yield to breed for 

heat tolerance? 

 It is also worthwhile exploring other genetic features that allow dairy cows to better 

regulate or dissipate heat efficiently under hot weather, such as those related to morphology 

(coat colour, coat length, hair thickness, etc.), physiological (e.g., cardiovascular, and 

respiration system), and cellular (cell repair, fluidity, stability, etc.) functions. For example, 

research has shown that Holstein cows with SLICK hair coats are more efficient at regulating 

core body temperature with the lower decline in milk yield than wild-type cows under heat 

stress conditions (Dikmen et al., 2008). Causal mutations for the SLICK phenotype have been 

mapped to PRLR (prolactin receptor) gene in chromosome 20 at ~39 Mb in the Senepol cattle 

(Olson et al., 2003, Littlejohn et al., 2014). As expected, I did not detect any sign ificant SNP 

(p < 1E-05) within the PRLR gene across all GWAS analyses because the study population 

(Holsteins) lacks the causal mutation for the SLICK hair phenotype. However, future efforts 

should aim at introgressing the causal mutation for this gene to the study population to better 

cope with heat stress, such as those implemented for Holstein cattle in Puerto Rico, and the 

USA (Hansen, 2020).  

 So far, Holstein cows that are primarily heterozygous for SLICK genotype have been 

confirmed to possess superior thermotolerance ability over wild-type cows (Dikmen et al., 
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2008, Dikmen et al., 2014). However, a crossbreeding program was initiated in the New 

Zealand to build homozygous SLICK bulls with up to 75% New Zealand dairy genetic  

background (Davis et al., 2017). On top of these efforts, it would be interesting to see if 

additional benefits could be achieved when breeding for homozygous SLICK bulls + high HT-

ABV (i.e., HT-ABV + SLICK genotype). Notably, the heat tolerance capacity of Australian 

dairy cattle is ranked based on genomic estimated breeding values (HT-ABV), such that 

animals ranked high for HT-ABV are considered more tolerant to heat than the average 

population (Nguyen et al., 2017b; Figure 6-4). Top ranking cows for HT-ABV were found to 

maintain lower core body temperature and experience less milk yield decline under heat stress, 

which is thought to be related to their efficient heat dissipation mechanisms and energy 

metabolism (Garner et al., 2016). Overall, we can except more benefits from a breeding 

program that aims to build dairy bulls with high HT-ABV values and carry homozygous 

SLICK genotype. However, extensive performance data is needed to confirm this hypothesis. 

 

Figure 6-4 Representation of heat tolerance breeding values (HT GEBVs) that were released to the 

Australian dairy industry in 2017 (Nguyen et al., 2017a). The daughters of a bull with HT GEBV above 
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average (positive) are expected to be more tolerant to heat than the daughters of an average bull and vis 

versa for bulls with below average HT GEBVs. 

6.3.3. Genes related to nervous system are important for heat tolerance. How can we 

leverage these findings to benefit farmers? 

 Another highlight in this thesis covered in Chapter 4 is identifying candidate causal 

mutations underlying heat tolerance that implicate nervous system mechanisms (the 

neuroactive ligand-receptor interaction and glutamatergic synapse gene categories were 

overrepresented). The fact that the genes related to the nervous system were strongly implicated 

for determining heat tolerance in this thesis is new, and consistent with this pathway playing 

the most critical function of controlling body temperature by connecting the in ternal and 

external environment of animals (Nakamura and Morrison, 2008). Interestingly, the most 

promising genes in the neuronal pathways could be relevant for feeding and metabolic 

homeostasis in cattle during thermal stress, which are novel findings that may help manage and 

breed heat-tolerant animals. The genes identified are linked to neuroendocrine functions, 

involved in a cascade of hormonal responses such as secretion of growth hormone, insulin, 

serotonin, prolactin, adrenaline, renin and thyroxine, and corticosteroids associated with milk 

synthesis (Bernabucci et al., 2010, Rhoads et al., 2010). Altering the activity of these hormones 

has consequences on feed intake and metabolism, which consequently impacts milk yield 

(Rhoads et al., 2010).  

 Since depressed feed intake is a major contributor to milk decline in heat-stressed cows, 

it would be interesting to see if manipulating candidate genes identified in the neuronal 

pathways (e.g., NPFFR2 gene) induces hypothermia and stimulates feed intake. For example, 

a recent work by Laible et al. (2020) attempted to lighten the skin color for Holstein through 

gene-editing in a bid to minimise absorption of solar radiation during heat stress (see Figure 2-

6). Also, research in mice by Zhang et al. (2018) suggests that the deletion of the NPFFR2 gene 

results in impaired diet-induced thermogenesis and energy metabolism. Future in-depth 

interrogations of these genes, such as transcriptomic and biochemical profiles under different 

environmental conditions, are warranted. Ultimately, this may provoke innovative ways for 

managing thermal stress, such as designing specific agonist or antagonist compounds that can 

be used as feed supplements for dairy animals during heat stress conditions. For example, 

Ractopamine and Zilpaterol β-agonists used to enhance weight gain and feed efficiency in 
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livestock, have been developed and approved for commercial use as feed additives in some 

countries, such as the USA, Canada, and Japan (Centner et al., 2014, Niño et al., 2017).  

 If similar compounds for minimising heat stress are developed in the future,  one 

possible way to test their benefits is to compare with other known naturally occurring 

compounds with opposite effects on thermoregulation (i.e., those promoting heat stress). An 

excellent example is Ergovaline – an ergot alkaloid often found in endophyte-infected species 

(e.g., Ryegrass and Tall fescue), which is toxic to cattle due to its dopaminergic effects causing 

disturbances on animal physiology. A number of studies have found an association between 

Ergovaline and predisposition to heat stress in livestock characterised by increased core body 

temperature, excessive panting, shade seeking (since Ergovaline promotes vasoconstriction 

thus limiting heat dissipation), decreased feed intake, weight gain, and milk production (see 

review by Klotz and Nicol (2016)). In fact, “fescue toxicosis” is a big issue in the USA 

compromising feed intake and productivity in cattle and sheep during summer seasons when 

animals are fed endophyte-contaminated diets (Paterson et al., 1995, Klotz and Nicol, 2016). I 

believe that the development of  compounds for use in reducing heat stress in livestock are less 

likely to face significant regulatory hurdles compared to, for example, Ractopamine or 

Zilpaterol (discussed above) because they can help to improve animal welf are (health 

problems, burns, hunger, thirsty, frustration, aggression, etc.), which is becoming a growing 

issue worldwide due to global warming. Indeed, a recent survey in Brazil (Yunes et al., 2021) 

found that the public was more receptive to gene-editing aimed to minimise heat stress than 

gene-editing geared towards improving muscle growth in animals. 

6.3.4. Prioritised sequence variants increase the accuracy of genomic predictions. How 

can the industry benefit or implement these markers? 

 It is not enough to merely discover candidate variants controlling heat tolerance without 

demonstrating their relevance in animal breeding and in other species. Therefore, in Chapter 5, 

I tested whether adding sets of prioritised sequence variants from GWAS into the standard-

industry 50k SNP array enhances the prediction accuracy for heat tolerance in dairy cattle. This 

is relevant because the genetic improvement for a trait is linearly related to the accuracy of 

estimated breeding values (EBVs), selection intensity, genetic variation and is inversely 

proportional to the generation cycle (Schaeffer, 2006). Even a smaller lift in prediction 
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accuracy is valuable to the wider industry with respect to the economic efficiency of breeding 

programmes. 

 In Chapter 5, I tested different prediction scenarios to see the margin of increase in the 

accuracy for heat tolerance. The discovery of sequence variants for heat tolerance benefited 

from using a large sample size and genotype dataset (~15 million SNPs) of only Holstein cows 

(N = 20,623) or a combined set of Holsteins + Jersey cows (N = 25,766) in single -trait and 

meta-GWAS analyses. This means increased power and precision of GWAS to discover 

multiple candidate causal variants functionally linked to the biology of thermal stress in 

animals. Consequently, I found gains in accuracy of up to 10% in some scenarios when the 

pre-selected set of sequence markers (~9,000 SNPs) were added to the standard-industry 50k 

SNP panel. However, the gain in prediction accuracies varied considerably depending on the 

scenario tested.  

 Overall, the results confirmed that pre-selected sequence variants are relevant for heat 

tolerance and can be used to drive the genetic gain for this trait. There are several possible 

practical ways to leverage these pre-selected variants for the dairy industry such as: a) including 

them in the standard 50k SNP arrays used for routine genomic evaluation b) use these variants 

to design customized SNP panels, e.g., Xiang et al. (2021), which I will discuss in subsequent 

sections. 

6.3.5. Incorporate prioritised SNPs for heat tolerance in the standard-industry 50k SNP 

(ST-50K) custom panel? 

 The Australian dairy industry currently uses 50k SNP array in routine genomic 

evaluations implemented by DataGene (https://datagene.com.au/); Melbourne, Australia). This 

organisation receives genotypes and animal information from various authorised Genomic 

Service Providers (GSPs). Usually, these GSPs supply genotypes for animals from various 

lower density SNP chips (only those accepted by DataGene) which are then imputed to the 

standard 50k SNP array. To do this, DataGene has a special reference set of animals for 

imputation with real standard 50k genotypes. Building and optimising such robust reference 

set and SNP chips (e.g., 50k) requires considerable work and resources including SNP 

discovery, filtering high-quality SNPs (including a high polymorphism, MAF, and call rate), 

and deploying onto a genotyping assay. Therefore, while this thesis has discovered important 
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sequence variants for heat tolerance, we should expect a lag of time before an ‘imputation 

reference’ set of animals is assembled with real genotypes for these variants. Notably, the 

routine evaluation of HT-ABV in Australia is currently based on the estimated SNP effects 

from the standard 50k SNP array that were computed following previous work (Nguyen et al., 

2016, Nguyen et al., 2017a). 

6.3.6. Incorporate prioritised SNPs for heat tolerance into the combined set of standard-

industry 50k SNP (ST-50K) and XT-50K SNP custom panel? 

 An alternative way to benefit from the heat tolerance variants from this study is to 

impute them in the ‘imputation reference’ set of animals, such that the SNPs used for routine 

imputation in the industry comprise both the real genotypes and imputed sequence variants for 

heat tolerance instead of only real genotypes. While this could enable faster and cost-effective 

way for utilizing heat tolerance variants from this thesis in the industry, the fact that some 

imputed variants in the ‘imputation reference’ set are associated with an imputation error may 

be less appealing to the breeders. Besides, most candidate causal variants for heat tolerance 

discovered in this thesis (see Supplementary Figure S5) are associated with low minor allele 

frequencies (i.e., they are rare variants), meaning that they are likely to be imputed with large 

error. However, stringent imputation quality checks can be applied to retain high-quality 

candidate causal variants for a trait in the ‘imputation reference’ set. In this regard, there is a 

proposal in Australia to build ‘imputation reference’ set of animals that combines real genotype 

variants for the standard 50k SNP (ST-50K) and XT-50K array (Iona Macleod; personal 

communication; Figure 6-5). The latter panel (XT-50K) was recently developed by Xiang et 

al. (2021). The new imputation panel (ST-50K + XT-50K) will contain imputed variants from 

XT-50K that are missing in the ST-50K and vice versa (Iona MacLeod; personal 

communication). The new combined panel may provide a convenient way to augment ‘refined’ 

set of heat tolerance variants discovered in this thesis for routine genomic evaluation. 

Therefore, I recommend future tests to see added benefits of integrating heat tolerance ‘refined’ 

set of variants into the new combined imputation panel (i.e., ST-50K + XT-50K; Figure 6-5). 
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Figure 6-5 Incorporating pre-selected ‘refined’ set of heat-tolerance SNPs (HT-SNPs) into the 

combined set of real genotypes from standard-industry 50k (ST-50K) and XT-50K SNP panel 

developed recently by Xiang et al. (2021). 

6.3.7. Use pre-selected markers to design special SNP panels? 

  With the increasing availability of whole-genome sequence data in recent years, there 

has been an evolving trend towards screening causal mutations, or variants in high LD with 

causative mutations for multiple traits and using them to design customized SNP panels for 

driving genetic improvements in livestock (e.g., Liu et al., 2021, Xiang et al., 2021). As noted 

earlier, Xiang et al. (2021) developed a custom SNP array (called ‘XT-50K’ array) that includes 

potential causative mutations discovered from dairy cattle for 34 traits, representing milk 

production, fertility, type, and management. Since heat tolerance traits were not part of the 34 

traits analysed, I recommend that the pre-selected ‘refined’ core set of variants from this thesis 

be incorporated in the XT-50K SNP panel in the future. This could enable simultaneous 

improvement of heat tolerance with other traits contributing to farm profitability (i.e., ‘win for 

all’). Also, it could help circumvent the possible issues related to low imputation accuracy on 

genomic predictions if the pre-selected variants are imputed in the industry 50k SNP array 

since most of these variants are characterised by low minor allele frequency (see Chapter 5; 
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Figure S5). Furthermore, and as demonstrated by (Khansefid et al., 2020), I expect sustained 

genomic predictions over many generations for heat tolerance when using the XT-50K array 

since the prioritised markers are closer to the causal mutations. These researchers found that 

using the XT-50K array yields a consistent and superior accuracy of predictions in crossbred 

cows than the standard 50K, or HD SNP panels – crossbred cows represent “more distant 

relationships or many generations”. 

 In their work, Xiang et al. (2021) prioritised sequence variants for designing XT-50K 

panel based on the extent of pleiotropy and functionality across 34 traits. The magnitude of 

pleiotropy was estimated based on multi-trait meta-GWAS, while functionality was assessed 

using Function-And-Evolutionary Trait Heritability (FAETH) score (Xiang et al., 2019). 

Prioritised markers included top-ranked variants with low multi-trait p-value and high FAETH 

score, which were found to increase genetic variances and prediction accuracies for economic 

traits than the bottom-ranked variants. Since pre-selected variants in this thesis did not consider 

FAETH scores, I expect some selected variants lacking significant functionality across multiple 

traits should be weeded out, such that a smaller ‘refined SNP set’ remains for incorporating 

into the future re-designed XT-50K array. 

 If the objective is to obtain a ‘refined’ set of SNPs that are beneficial across breeds, 

then it would be necessary to further prune the selected variants for their effect direction and 

the LD. More importantly, it would be crucial to do further rigorous tests to ensure that the 

selected ‘refined SNP set’ yields added benefits when they are included in the XT-50K array. 

Finally, since various biological mechanisms contribute to variations in heat tolerance 

(morphological, physiological, behavioural, etc.), it is imperative to continue searching for 

candidate causal variants underlying this trait for inclusion in the custom SNP arrays. 

Ultimately, this may facilitate rapid genetic progress for thermotolerance while maintaining 

milk productivity in farm animals. 

 While including ‘refined SNP set’ for heat tolerance in the custom panel (e.g., XT-50K) 

could be the most ideal strategy for the industry to benefit from the outcome of this thesis, we 

would still expect to see a lag of time, say several years before this is implemented. This is 

because re-designing and optimizing such fixed custom arrays is time-consuming and costly, 

requiring the re-assembly of an ‘imputation reference’ set of animals for routine genomic 
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evaluations. In addition, combining SNPs for heat tolerance with SNPs for other traits (e.g., 

based on meta-analysis) when re-designing such custom chips is likely to ‘dilute’ or diminish 

the effects of major SNPs for heat tolerance. Furthermore, increasing the number of SNPs in  

the custom SNP chips (i.e., adding heat tolerance markers) also increases the genotyping costs, 

which may impede uptake by breeders. Therefore, alternative more suitable options need to be 

sought taking advantage of emerging genotyping technologies. 

6.3.8. Capitalize on the new sequencing technologies to speed up the uptake of prioritised 

variants for heat tolerance in the industry? 

 The next-generation sequencing technology is rapidly evolving; thus, increasing 

efficiency and reducing genotyping costs. For example, the low-pass or low-coverage genome 

sequencing [also called ‘skim sequencing’ in which a depth of 1x or less of the genome is 

sequenced] is emerging as a potential revolutionary tool for genotyping (1000 Genomes Project 

Consortium, 2015). Recent work in humans (Martin et al., 2021, Rubinacci et al., 2021) and 

cattle (Snelling et al., 2020) have shown high (> 0.90) concordance of variants in the standard 

SNP arrays versus imputed genotyped calls for individuals that had been sequenced at low 

coverage (0.5-1x) based on a haplotype reference panel. This implies that skim sequencing 

could offer a competitive cost-effective alternative in the foreseeable future; thus, replacing the 

“gold standard” SNP arrays, which have been popular in the market for over a decade. In 

addition, skim sequencing is also intuitive in that it can minimise the inherent ascertainment 

bias of SNP arrays and allows the detection of rare variants for a trait (Rubinacci et al., 2021). 

Overall, such technological advancements are intriguing, as they could allow screening many 

individuals at an affordable cost to identify heat-tolerant genotypes without the need to 

continuously re-design customized SNP arrays. However, even as this new development 

unfolds, it would be crucial at this point to test the value of the candidate variants for heat 

tolerance discovered in this thesis when they are added to the custom SNP panels such as the 

XT-50K array (Xiang et al., 2021). 

6.3.9. Consider reference population to further improve genomic prediction for heat 

tolerance? 

 Most genomic predictions analyses in Chapter 5 used a reference set of only Holstein 

bulls. However, using a multi-breed reference set (Holsteins + Jersey bulls), in which pre-

selected variants were from only Holsteins yielded a consistent increase in the accuracies for 
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most prediction scenarios (see Chapter 5; Figure 4). Also, the bias of predictions (calculated as 

the regression coefficient of the slope phenotypes on the GEBV in the validation sets) decreases 

(i.e., closer to 1) when using a multi-breed compared to a single-breed reference set. These 

findings emphasise the importance of having a large reference population that represents 

multiple breeds for training prediction equations for heat tolerance. In recent work, Khansefid 

et al. (2020) found that equalizing breeds in the reference set instead of the  Holstein-dominated 

set increases the accuracy and reduces the bias of predictions. Similarly, van den Berg et al. 

(2020) found that the reliability of genomic prediction highly depends on the choice of the 

animals in the reference set. These authors reported that including few closely related Holsteins 

in the reference set (instead of just increasing the size of Holsteins) increased the reliabilities 

of prediction in the Australian Red dairy cattle. Work is underway in Australia to enlarge the 

size of the reference population through dedicated genotyping of cows with high-quality 

phenotypes under a project called Ginfo (Pryce et al., 2018). As such, future work is required 

to see if updating the reference set that was used to estimate the SNP effects for HT ABVs in 

2017 by Nguyen et al. (2017a) increases the reliability of heat tolerance. In line with this, I 

recommend testing the added benefits of using the updated reference set in addition to 

considering the ‘refined set’ of pre-selected sequence markers discovered in this thesis. 

6.4. Concluding remarks 

 Overall, this thesis has made novel discoveries that increase our knowledge o f the 

genetic basis and biology of thermal stress, which may open new avenues for minimising the 

effects of heat stress in animals, considering escalating warming climate worldwide. The study 

found substantial genetic variation for heat tolerance among Australian dairy cattle, with some 

re-ranking occurring among the bulls when comparing their perf ormance in colder and hotter 

environments, although the level of re-ranking is not high enough (genetic correlation > 0.80) 

to necessitate forming separate breeding schemes at this stage. However, the study found that 

Australian dairy animals are becoming less adapted to their production environments 

(evidenced by increasing G × E or re-ranking), which is a concerning trend that requires routine 

monitoring to prevent future economic losses as the climate gets warmer. The dairy sires 

identified as heat-resilient, or generalists could be used by farmers in warmer environments to 

optimise performance and can also help reverse the growing G × E trend in Australia.  
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 The research also leveraged the availability of a large dataset (~30,000 cows and ~15 

million SNPs) to discover genetic variants (based on GWAS) that make Australian dairy cattle 

differ in their response to heat stress. Interestingly, the results revealed specific candidate 

causal variants and genes related to the nervous (neuroactive ligand-receptor interaction and 

glutamatergic synapse) and metabolic functions (citrate cycle) as key hallmarks for 

thermotolerance in animals including 61 candidate causal variants for heat tolerance in 

genomic sites highly conserved across 100 vertebrate species. In follow-up research (Chapter 

5), candidate variants identified from GWAS were found to be relevant for heat tolerance and 

can be used to increase the accuracy of prediction when they are added into the industry 50k 

SNP panel, with a margin of gain ranging from 0.1% to 10% units depending on the prediction 

scenario, which is critical for driving the genetic improvement for this trait. 

6.5. Future research considerations 

6.5.1. Further refine the prioritised SNP set… 

 While the results of this thesis are encouraging showing that we can increase the 

prediction accuracy of heat tolerance by using a small set of pre-selected sequence variants 

(~2, 000 to 9,000 SNPs), additional work is still needed to obtain a ‘refined SNP set’ for this 

trait that can be incorporated in standard industry SNP panels or the custom SNP chips, e.g., 

XT-50K array (Xiang et al. 2021). Specifically, the pre-selected SNPs from this thesis need to 

be pruned for LD and MAF, check their effect direction (especially, if there are to be used 

across multiple breeds), and ensure that the pruned set is well-spaced across the genome in 

relation to other SNPs in custom arrays. Also, check the FEATH scores as described by Xiang 

et al. (2019), if the objective is to rank the pre-selected variants based on functional and 

evolutionary significance across multiple traits. This is important considering that Australian 

selection indices include multiple traits of economic importance, such as production, fertility, 

and type traits (Byrne et al., 2016). Furthermore, rigorous tests are needed to ensure that the 

‘refined SNP set’ yields added benefits when they are incorporated into the custom SNP panels, 

e.g., the XT-50K array (Xiang et al., 2021). 

6.5.2. Heat-tolerance trait definition and selection criteria… 

 Throughout this thesis, I focused analyses of heat tolerance based on milk production 

traits (i.e., milk, fat, and protein yield slope traits). While these traits are economically 

attractive as breeding targets for heat stress with respect to producer perspective, other novel 
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traits that better captures heat tolerance need to be investigated. As in Brito et al. (2020), this 

thesis proposes traits associated with thermoregulation called thermal circulation index (TCI) 

which quantifies heat dissipation efficiency, such that animals with large TCI values are 

expected to experience a greater decline in productivity under heat stress conditions relative to 

the average population. However, future work is needed to explore the suitability of this trait 

as the breeding target for heat tolerance. If this trait is established to be a suitable target for 

heat tolerance, then inexpensive selection criteria traits can be explored, such as milk decays 

(i.e., milk slope straits) or MIR-predicted milk biomarkers. Also, it is important to consider 

other traits for the genetic selection of heat tolerance (fertility, health, conformation, energy 

balance, etc.) since heat tolerance is a highly complex trait involving multi-faceted biological 

processes (physiological, behavioral, morphological, etc.). 

6.5.3. Explore resilience indicators for multiple traits… 

 Another way to breed for heat tolerance is to consider resilience indicators in genomic 

selection. This is a developing but growing area of research that warrants more and deeper 

exploration. With increasing climate change and variability, I foresee the potential 

development of a breeding value called ‘general resilience’ in the future, which encompasses 

multiple traits that contribute to farm profitability, including heat-tolerance. So that the top-

ranking animals for general resilience breeding value are expected to have smaller phenotypic 

variance or deviation relative to the average population and can recover more quickly following 

one or multiple environmental disturbances (heat, diseases, parasites, nutrition, precipitation, 

management, variability in climate, etc.). Thanks to the advancement in phenotyping 

technologies, this is increasingly becoming possible with the availability of big data for genetic 

evaluations. 

6.5.4. New traits and comparative studies… 

 One of the main challenges to breeding for resilience is possible negative (undesirable) 

effects on milk production – a key driver for farm profitability. In this thesis, I spent a 

considerable amount of work trying to separate heat-resilient genes and those controlling milk 

yield traits. This proved to be a non-trivial task since the heat-tolerance traits (milk yield slopes) 

used in the GWAS are strongly negatively correlated (~0.80) with the level milk yield, meaning 

that they are controlled, to a large extent, by the same genes. Besides, this correlation estimate 

means that high-producing animals have a higher reduction in their yield as the temperature-
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humidity increases and vis versa for lower producing animals. Ideally, farmers would desire to 

have animals that are both high-producing and heat-tolerant. As such, the results in this thesis 

and previous work (e.g., Nguyen et al., 2016) suggest that striking the optimum balance 

between these two traits is challenging but not insurmountable. One possible way to deal with 

this issue is to explore other heat-tolerance or resilience indicators that are potentially less 

correlated with milk production (e.g., measures of core body temperature, respiratory rate, heart 

rate, milk biomarkers, etc.). Recent development in sensor technology has provided an 

opportunity to capture large heat tolerance phenotypes at an individual level and in real-time 

(Koltes et al., 2018), which may facilitate us to better understand the biology of this trait. 

Besides defining new phenotypes, the heat tolerance milk yield slope traits could be considered 

in the breeding goals and the negative correlation accounted for in the selection indices. 

Moreover, to better understand the genetic control of heat tolerance, comparative studies within 

and between species need to be sought, e.g., dairy vs beef breeds or even small ruminants such 

as goats and sheep. 

6.5.5. More suitable model (s) for quantifying heat stress in Australian dairy industry… 

 It is also crucial to investigate alternative more accurate ways of quantifying the 

magnitude of environmental heat load to the animals. In this thesis, and following previous 

work in Australia (Hayes et al., 2016, Nguyen et al., 2016), I calculated the rate of milk decline 

as a function of THI (i.e., heat tolerance or slope traits). Since the THI model used (Yousef, 

1985) does not consider wind speed and solar radiation, it is possible that the magnitude of heat 

on the animals may have been underestimated, given that Australian dairy herds are 

predominantly reared outdoors on pasture where they experience direct effect of these weather 

elements, which contrast with some other countries, e.g., the USA where dairy cows are mostly 

confined indoors and fed total mixed rations. Therefore, future research is warranted to 

recommend the best suitable THI model (s) for the industry. 

6.5.6. Follow-up work on key biological pathways for heat-tolerance… 

 This thesis highlights the relevance of genes related to the nervous (neuroactive ligand-

receptor interaction and glutamatergic synapse) and metabolic (citrate or Krebs cycle) 

functions as key drivers for thermotolerance in dairy animals. However, while several studies 

have linked these pathways to thermal stress in livestock (e.g., Kim et al., 2017, Garner et al., 

2020), this thesis provides new insights into the molecular aspects (i.e., candidate causal 
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mutations) underpinning these biological features, which require further in -depth 

interrogations. 

6.5.7. Larger sample size and international collaborations… 

 The results in this thesis (Chapter 4) point to a highly polygenic nature of heat tolerance 

characterised by many causal variants with small effects. As such, an even larger dataset (~ 

30,000 cows were used in this thesis) with tens of thousands of indiv iduals such as those 

typically used in humans (Wood et al., 2014) would be required in future work to detect causal 

variants with very small effects and the effects of rare causal variants. Sharing data via 

international collaborations is one critical avenue to achieve the large sample size needed for 

mapping and validating heat-tolerant causal variants. Alternatively, a more feasible approach 

is to perform a meta-analysis of GWAS results on heat tolerance traits from different countries, 

e.g., meta-GWAS for cattle stature (Bouwman et al., 2018).  

 Moreover, these collaborations may open promising platforms to compare and pinpoint 

specific genetic variants that make adapted breeds (say those from warm climates, e.g., Zebu) 

differ from temperate breeds (e.g., Holsteins) in their thermotolerance. In this regard, some 

promising progress has been made in mapping a thermotolerance gene, referred to as the 

‘SLICK’ gene from the Senepol cattle, and work is now ongoing in several countries to transfer 

specific alleles from this gene to Holstein dairy cattle via crossbreeding or gene editing 

(Hansen, 2020). Nonetheless, the specific allele combination or the percentage of adapted breed 

genetic background required to benefit from heterosis or hybrid vigour advantage for resilience 

in crossbreds while optimizing productivity remains unknown, which warrants future research. 

Also, it is possible that crossbred cattle carrying the SLICK genotype and are ranked high for 

heat tolerance GEBVs have superior thermotolerance ability, which require future 

interrogations to confirm this hypothesis. Overall, the genetic tools offer promising and long-

term prospects of improving resilience aspects in animals, which is crucial in addressing the 

double challenge of increasing animal production, even more, to feed a growing population 

while coping with the effects of rising global temperatures and ever-changing production 

environments. This thesis work contributes to this overarching goal. 
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GENOTYPE BY ENVIRONMENT INTERACTION FOR HEAT TOLERANCE IN 
AUSTRALIAN HOLSTEIN DAIRY CATTLE
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SUMMARY
Genomic breeding values for heat tolerance in dairy cattle were first released in Australia in 

December 2017 to select animals with better tolerance to heat stress. It is also important to identify 
animals which perform well in a wide range of temperature and humidities, given the large seasonal 
and geographical variation in Australia. The aim of this study was to investigate the magnitude of 
genotype by environment interactions for heat tolerance in Australian Holsteins. A total of 2.5 mil-
lion test-day milk yield records from 823,055 cows and 6,615 sires were included in the analysis. 
The heritability estimates at 5th and 95th percentile of temperature-humidity index (THI) were: 0.27 
and 0.21, 0.21 and 0.14, and 0.19 and 0.14 for milk, protein and fat yield, respectively. The genetic 
correlations at the extreme THI values, that is THI = 60 and THI = 75 (equivalent to the tempera-
ture and relative humidity of around 20 oC and 45 and, 31 oC and 50, respectively) were: 0.87, 0.84, 
and 0.86 for milk, protein and fat, respectively. A re-ranking among sires was observed in different 
environments. These results could allow farmers to make decisions on whether to select sires which 
are best suited to specific environments, or those that are consistent across a range of environments.

INTRODUCTION
The desire to breed for robustness in the dairy industry is intensifying, driven in part by climate 

change. One of the key components of robustness is genotype by environment interactions (G × E), 
which refers to the change in performance or a change in the ranking of animals in different envi-
ronments. In Australia, dairying is carried out in a wide range of production systems and climatic 
conditions suggesting that reranking of genotypes may occur.

Various studies have demonstrated the presence of G × E due to heat stress in dairy cattle as 
reviewed by Carabaño et al. (2017). Previous studies in Australia using test-day records reported 
evidence of G × E for production traits due to heat stress for Australian Holsteins (Hayes et al. 2003; 
Haile-Mariam et al. 2008). These studies used first parity or whole lactation data.

Genetic selection for production traits in Australian dairy cattle has resulted in considerable genetic 
gains. However, this may have led to increased sensitivity to heat stress in dairy animals (Carabaño et 
al. 2017) and possibly increased G × E because of an unfavourable genetic correlation between heat 
tolerance and milk production traits (Ravagnolo et al. 2000). Nguyen et al. (2017) noted a declining 
genetic trend for heat tolerance in Australian Holstein and Jersey dairy cattle at a rate of 0.3%/year. 
This declining trend coupled with increasing temperature and frequency of heat events suggests the 
importance of revisiting the magnitude of changes in animal performance at different environmental 
temperature and humidities. The objective of this study was to investigate G × E for heat tolerance 
using test-day milk yield records in combination with temperature and humidity data from publicly 
available weather stations over a 15-year period.

MATERIALS AND METHODS
Test-day data. First lactation milk, protein and fat yield data (consisting of 6.6 million records 

for Holstein cows between 2003 to 2017) were obtained from DataGene (DataGene Ltd., Melbourne, 
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Australia). Data editing was as follows: (1) tests < 5d or > 305d days in milk (DIM) and herd test days 
with less than 10 cows were removed; (2) sires with daughters in less than 2 herds and herds using 
fewer than 2 sires were excluded and (3) only cows with at least 4 records were retained for analyses. 
The final dataset comprised 5.2 million records for 823,055 cows and 6,615 sires from 3,732 herds. 
The pedigree for these data included up to 15 generations. 

Climate data. Climate data included hourly dry bulb and dew point temperature and relative 

humidity obtained from the Bureau of Meteorology (Melbourne, Australia) for 163 weather stations in 
Australia from 2003 to 2017. The pairwise distances between herds were calculated from geographical 
coordinates and assigned to the nearest weather station. Hourly temperature-humidity indexes (THI) 
for each weather station were calculated as follows (Yousef 1985): ​​THI = ​T​ db​​ + ​(​​0.36 ​T​ dp​​​)​​ + 41.2​)​​​​, 
where ​​T​ db​​ ​= hourly dry bulb temperature (°C); Tdp is dew point temperature (°C) and ​​T​ dp​​​ = (237.3b)/
(1.0 − b), where b = [log (RH/100.0) + (17.27​​T​ db​​​)/(237.3 + ​​T​ db​​​)]/17.27, and RH = relative humidity. 
The THI values were then averaged for 24 hours to get the daily THI. The daily THI on the test day, 
1, 2, 3, and 4th day before test day were then averaged and assigned to the test-day records.

Milk yield traits in Australia have been reported to begin declining at THI > 60 (Hayes et al. 
2003; Nguyen et al. 2016). Therefore, the THI threshold was set at 60 in this study (i.e., if THI < 
60 then THI = 60). A small proportion (0.004%) of tests obtained at THI ≥ 75 were given a value of 
75. This was to avoid unexpected trajectories as possible artefacts, which are often related to fitting 
polynomials with few extreme data points.

Statistical analysis. A univariate random regression sire model was applied to the data as follows: ​​
y​ ijk​​ = μ + ​HTD​ i​​+ ​YS​ j​​+ ​∑ n=1​ 

3  ​ ​A​ n​​ ​X​ n​​​+ ​∑ n=1​ 
8  ​ ​D​ n​​ ​Z​ n​​​+ ​∑ n=1​ 

2  ​ ​P​ n​​ ​T​ n​​​+ ​∑ n=0​ 
1  ​ ​S​ kn​​ ​W​ n​​​+ ​e​ ijk​​​, where ​​y​ ijk​​​ is yield of milk in 

litres, fat or protein in kg from the ith herd test day, jth year season of calving, and daughter of the 
kth sire; μ is the intercept; HTDi is the effect of the ith herd test day; YSj is the effect of the jth year 
season of calving; Xn, Zn, and Pn are the nth-order Legendre polynomials corresponding to age on 
day of test, DIM at test, and THI, respectively; An, Dn and Tn are the fixed regression coefficient of 
traits on age at test, DIM at test, and THI, respectively; Skn is a random regression coefficient on THI 
for the kth sire; Wn is either the intercept (n = 0) or slope solution (n = 1) for heat load index (THI) 
for cows and sires; and eijk is the vector of residual effects. The following (co)variance structure was 

assumed: ​Var ​(S)​ = ​[​​s​ 0​​​ ​s​ 1​​
​]​  =  ​[​​A ​σ​​ 2​​ ​s​ 0​​

​​
​ 

 ​Aσ​ ​s​ 0​​​s​ 1​​
​​
​ A ​σ​ ​s​ 0​​​s​ 1​​

​​​  A ​​σ​​ 2​​ ​s​ 1​​
​​ ​]​​, where A is the relationship matrix for sires constructed 

from pedigree data; ​​s​ 0​​,​ ​​s​ 1​​​ are the intercept and slope for sires; ​​​σ​​ 2​​ ​s​ 0​​
​​, ​σ​ ​s​ 0​​​s​ 1​​

​​, ​​σ​​ 2​​ ​s​ 1​​
​​​ are (co)variance for sire 

effects of THI. Heterogeneous error variance was modelled for 10 DIM intervals over a lactation 
(DIM = 5–30, 31–60, 61–90, 91–120, 121–150, 151–180, 181–210, 211–240, 241–270, and 271–300) 
as follows: ​Var ​(e)​  =  R = diag​{I ​​σ​​ 2​​ ​e​ 1​​

​​, ​​Iσ​​ 2​​ ​e​ 2​​
​​… ​​Iσ​​ 2​​ ​e​ 10​​

​​}​, ​where ​​​σ​​ 2​​ ​e​ 1​​
​​​, ​​​σ​​ 2​​ ​e​ 2​​

​​…​ ​​​σ​​ 2​​ ​e​ 10​​
​​​ represents error variances 

and I is the identity matrix. (Co)variance components were estimated using ASREML version 4.2 
(Gilmour et al. 2015).

Calculation of genetic parameters. Additive genetic variances for sires were extracted from the 
diagonal elements of the covariance Ĝ matrix calculated as Ĝ = 4* ​ΦVar​(Ŝ)​Φ′​, where ​Φ​ is the matrix 
of Legendre polynomial functions for THI; ​Ŝ​ is the sire (co)variance matrix. The genetic correlations 
were obtained from transforming the covariance Ĝ matrix to a correlation matrix. The heritability 

as a function of THI was calculated as ​​​h​​ 2​​ i​​  =  ​ 4 * ​​​ ̂  σ ​​​ 2​​ s ​(​​i​)​​​​ _ ​​​ ̂  σ ​​​ 2​​ s​(​​i​)​​​​+ ​​​ ̂  σ ​​​ 2​​ e​​ ​​, where ​​​​ ̂  σ ​​​ 2​​ s ​(​​i​)​​​​​ is sire variance at i THI and ​​​​ ̂  σ ​​​ 2​​ e​​​ is 
the average residual variance over the lactation. The estimated breeding value (EBV) for the sire i 
along the THI trajectory was calculated as ​​EBV​ i​​ = ​ø​ j​​ * ​​ ̂  a ​′​ i​​​, where ​​​ ̂  a ​′​ i​​​ is the vector of estimated random 
regression coefficients for the slope and intercept for sire i; ​​ø​ j​​​ is the vector of Legendre polynomials 
evaluated at THI j. To examine the changes in performance along the THI trajectory, we estimated 
EBVs for sires with more than 1000 daughters with yield records.

165



Proc. Assoc. Advmt. Anim. Breed. Genet. 23:39-42

RESULTS AND DISCUSSION
Table 1 shows genetic variances and heritability estimates at the 5th, 50th and 95th percentiles of 

THI. The genetic variance and heritability estimates decrease with increasing THI values. The heri-
tability was greater for milk yield at the 5th and 95th percentiles (0.27 and 0.21) compared to protein 
yield (0.21 and 0.14) and fat yield (0.19 and 0.14). 

Table 1. Additive genetic variances and heritabilities for milk, fat and protein yields at the 5th, 
50th and 95th percentiles of the temperature-humidity index (THI)

Additive genetic variance Heritability
5th 50th 95th 5th 50th 95th

Milk (kg) 4.55 3.86 3.54 0.27 0.23 0.21
Fat (kg) 0.005 0.004 0.003 0.19 0.17 0.14
Protein (kg) 0.004 0.003 0.002 0.21 0.17 0.14

At the extremes of the trajectory of THI (i.e., THI 60 vs 75), the genetic correlations were 0.87, 
0.84, 0.86 for milk, protein and fat, respectively (Figure 1). In the previous study, Hayes et al. (2003) 
reported smaller G × E estimates for milk (0.94), protein (0.92) and fat (0.90). Greater G × E in our 
study is likely in part due to increased sensitivity to heat stress in study population following continued 
selection for production traits over the years or a slight difference between the analyses; Hayes et al. 
(2003) included a random regression coefficient on THI for cows in their models.

Figure 1. Additive genetic correlations for milk (□), protein (▲) and fat (●) yields at tempera-
ture-humidity index (THI) = 60 and those at THI up to 75

Reranking exists among sires, as seen from the differences in the reaction norms of EBVs for fat 
yield (Figure 2). Two groups of sires were identified based their EBVs at thermoneutral (THI = 60) 
and heat stress (THI = 75) conditions. The first group (shown in gray) are sires with above-average 
EBVs at THI = 60 and smaller EBVs at THI = 75 (i.e., environmentally sensitive sires). Daughters of 
these sires will likely produce less under heat stress conditions and therefore can be used in regions 
with the consistently low heat load. A more controlled environment, such as the provision of shade 
and diets designed to reduce core body temperature will be necessary if their daughters are to perform 
optimally under high heat load conditions. 

The second group (Figure 2; shown in black) are sires with above-average and stable EBVs (i.e., 
resilient or robust sires); their performances are comparatively consistent and are well suited for 
variable environments. If the objective is to breed for robustness or resilience, then these sires are 
ideal candidates for selection. Australian dairying is predominantly pasture-based characterised by 
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an array of factors including weather conditions which vary considerably between years as well as 
seasonal variability in feed quantity and quality feeds. Under these conditions and considering current 
trends towards extensive exchange of sires between regions or export of sires to other countries, it 
would be more beneficial to select for robust sires. 

This study only considered first lactation data. Greater reranking is expected with later lactations 
due to relatively higher sensitivity to heat stress associated with greater milk yield in multiparous 
cows (Carabaño et al. 2017). This will be investigated in further studies.

Figure 2. Estimated breeding values (reaction norms) along the THI for a sample of 10 sires with 
over 1000 daughters with fat yield records; the gray lines (▲) represent sires with above-average 
EBV at the thermoneutral conditions (THI = 60) and smaller EBV at heat stress conditions (THI 
= 75) whereas the black lines (●) are sires with above-average and stable EBVs

CONCLUSION
The results from this study indicate G × E due to heat stress exists at extreme THI for all the milk 

traits studied. The differences observed in the reaction norms (i.e., EBVs along the trajectory of THI) 
among the sires suggest that genetic variation in sire sensitivity to heat stress exist, which can be used 
to select animals that perform optimally in different environments.
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 Heat tolerance is the ability of an animal to maintain production and reproduction levels under 

hot conditions and is now a trait of economic relevance in dairy systems worldwide. Understanding the 

genetic basis for heat tolerance is an important part of the strategy to breed for cattle adapted to warmer 

environments. We sought to identify and validate candidate genes involved in heat tolerance in 

Australian Holstein cattle using 50K SNP chip and imputed whole-genome sequences (WGS) in two 

datasets: cows (n = 20,623) and bulls (n = 1,622). The WGS was imputed using Run 7 of the 1000 Bull 

Genome Project based on the ARS-UCD1.2 reference genome. After quality checks, approximately 

45K and 15 million SNPs remained for analysis from the 50K chip and the WGS, respectively. The heat 

tolerance phenotypes that were used for this study were derived from test-day milk, protein and fat yield 

data of cows that calved between 2003 to 2017 and represent the response of cows to heat stress. For 

the three milk traits, the slope which measures change in milk yield due to variability in temperature-

humidity index from reaction norm models calculated for individual animals after accounting for known 

fixed effect was used as phenotype in association analysis using GCTA software. We used cows for 

discovery and bulls that were not sires of the cows for validation. Our results point to the polygenic 

nature of heat tolerance, with no variants surpassing a significance threshold of p < 1.0 × 10−6 for 50K 

SNP data. While we detected some associations when the threshold was set at p < 1.0 × 10−3, there 

were high false discovery rates. In contrast, we detected multiple variants with p < 1.0 × 10−6 across 

the genome using WGS, suggesting greater power compared to 50K SNP data. Across our cow and bull 

validation set, we confirmed several candidate genes, including some that have been reported 

previously. Our results are preliminary and could be useful to enhance the reliability of heat tolerance 

genomic breeding values of Australian Holstein cattle, which is currently about 38%. This will be 

investigated in a further study. 

Key words: heat tolerance, SNPs, dairy cattle, WGS, milk yields 
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SUMMARY 

Genomic breeding values for heat tolerance were first developed and released to the Australian 
dairy industry in 2017, to allow farmers to select animals that better tolerate hot and humid 
conditions. It is desirable to improve the reliability of these genomic predictions to help accelerate 
the genetic improvement for this trait. Whole-genome sequence data may contain causative 
mutations, or variants in high linkage disequilibrium with causal mutations for traits. This study 
investigated the potential improvements in the accuracy of genomic prediction for heat tolerance 
when adding informative markers to the 50k industry SNP panel used routinely by DataGene for 
Australian dairy genomic evaluations. We selected informative sequence variants from a genome-
wide association study (GWAS) of heat tolerance phenotypes of 20,623 Holstein cows (each cow 
with ~15 million imputed sequence variants) and augmented the 50k SNP panel with these SNPs for 
genomic prediction using a Holstein bull reference (N = 3,323) and Holstein cow validation set (N 
= 8,484). The accuracy of genomic prediction of heat tolerance for reduction in milk, fat, and protein 
yield under hot and humid conditions increased by 0.1%, 4%, and 6% units, respectively when 
informative markers were integrated with 50k SNP data. Since genetic gain is linearly related to 
EBV accuracy, this lift in accuracy is important for driving the genetic improvement of heat 
tolerance. 

 
INTRODUCTION 

Heat tolerance is the ability of an animal to maintain production and reproductive performance 
under hot and humid conditions. The desire to breed for heat tolerance is growing worldwide due to 
the increasing effect of global warming on animal production. Considerable research has been 
conducted so far in many countries, including Australia, where the first breeding values for heat 
tolerance were released to the dairy industry in 2017 (Nguyen et al. 2017).  

Since genetic gain is linearly related to the accuracy of estimated breeding values (EBVs), even 
a small lift in the accuracy of the heat tolerance EBV is important to the dairy industry. Besides 
increasing the size of the reference population, one way to boost the accuracy is to increase the 
density of markers used for genomic predictions. However, increasing the marker set from lower 
density SNP panels to whole-genome sequence have, in most cases, yielded limited, or no 
appreciable increase in the accuracies for various traits in cattle (e.g., Van Binsbergen et al. 2015). 
A promising alternative, in which a boost of accuracy has been realized in previous reports (e.g., 
Moghaddar et al. 2019), has been to augment standard industry SNP panels (i.e., 50k or 600K arrays) 
with a small set of informative or causal mutations for a trait. To fully maximize predictions, this 
approach requires careful selection of informative markers. Thanks to the 1000 Bull Genomes 
project (Hayes and Daetwyler 2019), it is now possible to use this sequence database to impute 
genotyped animals up to whole genome sequence. This may facilitate accurate selection of highly 
informative variants for use in genomic predictions, especially for complex traits such as heat 
tolerance. 

In this study, we selected informative variants for heat tolerance from a genome-wide association 
study (GWAS) using milk production records of 20,623 Holstein cows, each having over 15 million 
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imputed sequence variants. We then investigated the accuracy of prediction when sets of these 
selected variants were added to the standard industry 50k SNP array, by training the prediction in a 
bull reference set, and validating it in an independent set of Holstein cows. 

 
MATERIALS AND METHODS 

Phenotypes. The phenotypes used in this study were obtained from DataGene (DataGene Ltd., 
Melbourne, Australia; https://datagene.com.au/) and included test-day milk, fat, and protein yields 
for Holstein cows and bulls, collected from dairy herds between 2003 and 2017 that were matched 
with climate data (daily temperature and humidity) obtained from weather stations across Australia’s 
dairying regions. The distribution of dairy herds and weather stations, data filtering, and the 
calculation of environmental covariate (i.e., temperature-humidity index or THI) used in this work 
were described in our earlier studies (Nguyen et al. 2016, Cheruiyot et al. 2020). 

Calculation of heat tolerance phenotypes for cows and bulls. The rate of decline (slope) in 
milk, fat, and protein yield due to heat stress events was estimated using reaction norm models as 
described by Cheruiyot et al. 2020. In these models, data on milk, fat, or protein yield were adjusted 
for fixed effects, including herd test day, year season of calving, parity, age at calving, jointly for 
parity and DIM, and jointly for stage of lactation and THI. Random effects fitted in the model 
included a random regression on a linear orthogonal polynomial of THI, where the intercept 
represents the level of mean milk yield and the linear component represents the change in milk yield 
(slope) due to heat stress for each cow (i.e., trait deviations (TD)) and a residual term. Slope solutions 
for each bull’s daughters were averaged to obtain slope traits for bulls (i.e., daughter trait deviations 
(DTD)). 

Genotypes and study design. Two genotype data sets were available: 50k SNP array and ~15 
million imputed whole-genome sequence variants. The number of Holstein animals with genotypes 
and heat tolerance phenotypes were 29,107 ♀/3,323 ♂. We split the Holstein cows into two: 1) QTL 
discovery set (N = 20,623; comprising older cows born before 2013) for selecting informative 
markers for heat tolerance, and 2) genomic prediction validation set (N = 1,223; young cows born 
after 2012). We used Holstein bulls as a training set for genomic prediction. We ensured that none 
of the cows in the QTL discovery set were daughters of the bulls in the training set to avoid parent-
daughter pairs between the two datasets to minimise close genetic relationships. 

QTL discovery analysis and selection of informative SNPs. We performed single-trait GWAS 
analysis to test associations between individual SNP and cows' slope traits (milk, fat, and protein) 
using GCTA software (Yang et al. 2011). The models used for analyses are described by Cheruiyot 
et al. (https://www.biorxiv.org/content/10.1101/2021.02.04.429719v1.full). 

Following the GWAS, we selected informative variants defined as ‘top SNPs’ for each slope 
trait as follows: for SNPs passing the GWAS threshold of −𝑙𝑙𝑙𝑙𝑙𝑙10(𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) = 2; we chose the most 
significant SNP from within each 100 kb window and sliding 50 kb to the next window along each 
chromosome. We then removed one SNP of any pair of the selected ‘top SNPs’ in strong LD (r2 > 
0.95). 

Genomic prediction. We used BayesR (Erbe et al. 2012) to estimate prediction accuracies for 
50k SNP panel and compared the resulting accuracies with those obtained from adding ‘top SNPs’ 
to the 50k SNP set (i.e., 50k + ‘top SNPs’) using BayesRC method (MacLeod et al. 2016). The 
BayesR model fitted to the training bulls (N = 3,323) for 42,572 variants from 50k SNP panel was: 
y = Xβ +  Zg + Wv + e , where 𝐲𝐲 = vector of heat tolerance slope phenotypes; 𝐗𝐗 = design matrix; 
𝛃𝛃 = vector of fixed effect solutions; 𝐙𝐙 = design matrix relating phenotypes to GBV; g = vector of 
GBV ~ 𝑁𝑁(0, 𝐈𝐈𝜎𝜎𝑔𝑔2), where 𝜎𝜎𝑔𝑔2 is the additive genetic variance for the trait; 𝐖𝐖 = design matrix of SNP 
genotypes; 𝐯𝐯 = vector of SNP effects, modelled to have four possible normal distributions 
corresponding to zero, small, medium and large effects, respectively; 𝐞𝐞 = vector of residual errors 
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𝑁𝑁(0,𝐄𝐄𝜎𝜎𝑒𝑒2), where E is a diagonal matrix calculated as diag(1 𝑤𝑤𝑖𝑖⁄ ), with 𝑤𝑤𝑖𝑖  being a weighting factor 
for ith sire calculated based on the available number records following Garrick et al. (2009).  

We then used the BayesRC method to analyse 50k + ‘top SNPs’ dataset; an extension of the 
BayesR model that allows pre-allocation of variants to 2 or more classes (MacLeod et al., 2016) and 
hence a different posterior mixture distribution within each class if the class is enriched for 
informative SNPs. In our case the SNPs from 50k array (42,572) were allocated to class I and the 
selected ‘top SNPs’ to a separate class II, because the latter may be enriched with causal mutations 
for heat tolerance. For both BayesR and BayesRC models, we performed five MCMC replicate 
chains, each with 40,000 iterations of which 20,000 were discarded as burn-in for all the traits. We 
ran the analysis for 2 random validation sets of 600, and 623 Holstein cows. 

Calculating accuracy of genomic prediction. For each of the three validation cow sets 
(described above), the accuracy of prediction was calculated as: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖) =  𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺,𝑝𝑝ℎ𝑒𝑒𝑒𝑒

�ℎ2
, 

where 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖  = Holstein cow validation set; 𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺 , 𝑝𝑝ℎ𝑒𝑒𝑒𝑒 = correlation of GBV and phenotypes (i.e., 
slope traits); ℎ2 = genomic heritability calculated for each trait using variance component estimates 
of Holstein cows (N = 29,107) for 50k SNP array (45,504 SNPs) data based on –reml option of 
GCTA software (Yang et al. 2011). The bias of prediction was assessed as the regression coefficient 
of the phenotypes (pre-corrected for fixed effects) on the GBV for animals in the validation set. 

 
RESULTS AND DISCUSSION 

In this study, we used a large dataset of Holstein cows (N = 20,623) to select informative markers 
from a GWAS and then tested them for increased genomic prediction of heat tolerance phenotypes.  

The genomic heritability estimates (± standard errors) for the heat tolerance milk (HTMYslope), 
fat (HTFYslope) and protein (HTPYslope) yield slope traits from Holstein cows that used to 
calculate the accuracy of predictions were 0.23 ± 0.01, 0.21 ± 0.01, and 0.20 ± 0.01, respectively. 
The number of informative markers for heat tolerance (i.e., ‘top SNPs’) selected from GWAS (p < 
0.01) was highest for HTPYslope (9,633) followed by HTFYslope (9,352), and HTMYslope (9,207) 
traits. Similarly, the total number of markers used in the BayesRC analyses (i.e., 50k + top SNPs) 
were 51,750, 51,894, 52,168, for HTMYslope, HTFYslope and HTPYslope traits, respectively. We 
chose a cut-off of p < 0.01, which is comparatively relaxed, to capture both markers with small and 
large effect sizes for heat tolerance. 

Figure 1 shows the accuracy and bias of genomic predictions in the Holstein validation cows. 
For the BayesR model using only 50k SNP data, we found the highest accuracy of prediction for 
HTFYslope (0.49 ± 0.01), followed by HTMYslope (0.49 ± 0.01) and HTPYslope (0.39 ± 0.01). 
The bias across all study traits was > 1.0 (Figure 1) indicating ‘deflation’ or under prediction, 
meaning less variance among predicted than observed values. 

When the selected ‘top SNPs’ were added to the standard 50k SNP array and analysed using the 
BayesRC model, we found a consistent increase in the prediction accuracy across all the traits with 
values of 0.001, 0.04, and 0.06 for HTMYslope, HTFYslope and HTPYslope traits, respectively 
(Figure 1). This increase in accuracy is notable for HTFYslope and HTFYslope traits and likely to 
be associated with the pre-selected markers (potentially functionally linked with heat tolerance) and 
the method used (BayesRC). The bias of prediction for BayesRC was comparable that for BayesR. 
In this study, we investigated the potential benefits of sequence variants selected from a single breed 
(Holsteins) on the accuracy of genomic predictions for the same breed (within-breed prediction). 
The value of sequence variants selected in across-breed population (combined Holsteins and Jersey) 
on genomic prediction of other breeds (Jersey and crossbred cattle) will be investigated in a further 
study. 
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Figure 1. Accuracy of genomic prediction in Holsteins cows based on BayesR (50k; grey) and BayesRC 
(50k+topSNPs; blue) models for heat tolerance milk (HTMYslope), fat (HTFYslope), and protein 
(HTPYslope) yield slope traits. Vertical lines are the standard errors of prediction estimated from 2 
random validation sets of 600, and 623 Holstein cows 
 
CONCLUSION 

Overall, our results show that the accuracy of genomic prediction for reduction in milk, fat, and 
protein yields under hot and humid conditions can be improved by 0.1%, 4%, and 6% units, 
respectively when selected informative sequence variants are added to the industry-implemented 
50k SNP panel. 
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