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Abstract

Software vulnerability evaluation and assessment is a fundamental and systematic

review process to identify the severity levels of existing vulnerabilities in cyber-

security. It is essential for information systems to find out potential security

weaknesses and thus to recommend remediation or mitigation actions in a timely

manner. Existing studies and tools on vulnerability assessment are criticized for

apparent flaws in vulnerability exploitability prediction and analysis. This the-

sis aims to enhance the performance of exploitability prediction and analysis by

leveraging advanced deep learning and knowledge graph techniques, thus helping

improve existing vulnerability risk evaluation and management systems.

The thesis first focuses on the binary vulnerability prediction problem and

proposes a framework named ExBERT to predict if a vulnerability will be ex-

ploited or not. Further, a novel consecutive batch learning algorithm, called

Real-time Dynamic Concept Adaptive Learning (RDCAL), is proposed to deal

with concept drift and dynamic class imbalance problems in online learning sce-

narios. Then, the thesis predicts the probable vulnerability exploitation time

as a multiclass online learning problem and accordingly proposes an Adaptive

Sliding Window Weighted Learning (ASWWL) algorithm. Finally, this thesis

explores the co-exploitation behaviour discovery problems by formulating it as

a link prediction problem between vulnerability entities within a cybersecurity

domain-specific knowledge graph. A general Modality-Aware Graph Convolu-

tional Network module and a Graph Knowledge Transfer Learning strategy are

designed for link prediction.

The thesis contributes to the deep learning community by developing more

accurate and domain-specific algorithms and models for binary and multiclass

i



Abstract

classification, online learning, data imbalance handling and graph embedding and

representation. It also contributes to the cybersecurity community by providing

more accurate vulnerability exploitability prediction and exploitation behaviour

analysis, which are essential for vulnerability risk evaluation and management.
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Chapter 1

Introduction

1.1 Motivation

As global data expands at exponential rates in terms of volume, velocity, vari-

ety and complexity, both commercial and personal data are increasingly exposed

to the threat of network attacks caused by software vulnerabilities [1, 2]. Each

year, thousands of software vulnerabilities are archived and disclosed to the pub-

lic, and the scale and types of risks from cyber threats expand proportionately

[3]. More than 160,000 vulnerabilities have been disclosed to the public through

open-source databases so far. Bilge and Dumitras pointed out that once a vul-

nerability is disclosed, the opportunity of being exploited increases by five orders

of magnitude[4].

With the increasing number of vulnerabilities, it is impossible to patch every

vulnerability in a timely manner. To effectively and efficiently allocate budget

and resources and make emergency plans in advance, vulnerability assessment

and management has become a crucial measure for both a single organisation and

the entire cybersecurity community to protect information systems and networks

from cyberattacks, intrusions, malware and various types of data breaches [5, 6].

Based on the fact that only 10-–15% of vulnerabilities actually ever have a

known exploit, and even fewer are weaponised as part of hacking toolkits [7, 8],

a critical challenge for vulnerability risk management is to make a reasonable

1



1.1 Motivation

trade-off between coverage and efficiency. On the one hand, firms are trying to

patch as many disclosed vulnerabilities as possible to provide the highest level of

protection. On the other hand, they have to deprioritise most relatively low-risk

vulnerabilities and only focus on these high-risk ones due to limited vulnera-

bility patching and remediation resources. Therefore, vulnerability exploitation

analysis has become one of the most vital tasks for vulnerability assessment and

management.

Considering the writing, testing and installation costs of patching software

vulnerabilities, exploitation analysis is vital to identify the vulnerabilities most

likely to be exploited accurately. The results of exploitation analysis would be

used to evaluate the severity of software vulnerabilities and thus prioritise the

order of patching.

However, existing solutions for exploitation analysis in both industry and

academia still have a long way to go to meet the requirements of modern infor-

mation systems. For example, the de facto industry standard for vulnerability

assessment, Common Vulnerability Scoring System (CVSS), only provides an ex-

ploitability score between 0-10 to indicate the overall exploitability severity. This

exploitability score is proven to be inconsistent with the real-world exploitation

results [7]. In academia, researchers adopted a variety of machine learning and

deep learning models and algorithms to predict the exploitability of vulnerabili-

ties, where vulnerability features were extracted from publicly available informa-

tion, including descriptions, CVSS metrics, social media streams, etc. [9, 10, 11].

Although promising results were achieved on the prediction of exploitability, more

in-depth research is demanded on a varied range of topics, such as the exploitabil-

ity prediction in online learning scenarios, exploitation time prediction and the

analysis of interrelationships of vulnerabilities affected the same product.

To help build a better vulnerability assessment model and thus make bet-

ter decisions on vulnerability management, this thesis focuses on vulnerability

exploitation analysis. Specifically, this thesis tackles the following tasks.

(1) Vulnerability exploitability prediction. This thesis analyses the exploitabil-

ity of a vulnerability based on its publicly available information. Further, this

thesis builds a novel model along with comprehensive features to predict how

likely a new software vulnerability will be exploited.
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(2) Vulnerability exploitation time prediction. If a vulnerability will be ex-

ploited, this thesis analyses the possible exploitation time period of the vulnera-

bility. Further, this thesis builds a novel model along with comprehensive features

to predict the possible exploitation time period of a new software vulnerability.

(3) Vulnerability co-exploitation behaviour discovery. This thesis also analyses

the relationships between different vulnerabilities and predicts if two or more vul-

nerabilities will be co-exploited by the same exploit. More specifically, this thesis

proposes a novel model based on a knowledge graph to predict if co-exploitation

links exist between different vulnerabilities to cause large scale and severe cyber-

attacks.

1.2 Challenging Problems

This section analyses the challenging problems associated with each task sepa-

rately.

1.2.1 Challenging Problems in Exploitability Prediction

Predicting the exploitability of vulnerabilities is crucial for decision-makers to

prioritise their efforts and patch the most critical vulnerabilities.

The Common Vulnerability Scoring System (CVSS), the de facto industry

standard for vulnerability assessment, is widely criticised for the inconsistency

between CVSS scores and the exploitability of vulnerabilities.

In the academic community, researchers have tried to build binary classifica-

tion models to accurately predict the exploitability of a vulnerability based on

its description. However, the main challenge comes from the lack of an effective

semantic feature extraction method due to the small size of description corpus.

Furthermore, previous studies built exploitability prediction with a batch

learning mode, which actually made a strong assumption that the data distri-

bution is static over time. Therefore, these studies failed to consider the concept

drift problem due to the evolving user behaviours and system environments.

Therefore, better methods are expected for inventors and decision-makers to

predict the exploitability of vulnerabilities.
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1.2.2 Challenging Problems in Exploitation Time Predic-

tion

Exploitation time is an essential factor for vulnerability assessment in cybersecu-

rity management. Previous works always focus on predicting whether a vulnera-

bility will be exploited or not and ignore predicting the possible exploitation time

for exploitable vulnerabilities. The exploitation time prediction problem can be

formulated as an online multiclass prediction problem, which faces at least three

challenging problems.

Firstly, because of the increased data complexity and the imbalanced one-

vs-all data distribution for each class, the multiclass classification task itself is

inherently more challenging than binary classification problems [12].

The second challenge comes from the dynamic multiclass data imbalance sta-

tus existing in an online learning setting. When samples with randomly dis-

tributed multiclass labels are fed into the classifier as a data stream, the real-time

data imbalance statuses dynamically change over time [13]. Because of lacking

prior knowledge of the whole data, some specifically designed techniques should

be employed to detect and track the class imbalance pattern over time [14].

Thirdly, compared with offline learning, online learning may involve new con-

cepts when new samples arrive [15]. Therefore, strategies to deal with possible

concept drift problems should be designed to ensure no dramatic performance

decrease occurs when making predictions on new samples.

1.2.3 Challenging Problems in Co-exploitation Behaviour

Discovery

Co-exploitation behaviour can reveal intricate relationships between different vul-

nerabilities. However, to the best of our knowledge, existing works all make

exploitation predictions and vulnerability risk analysis for a single vulnerabil-

ity based on the available information of every single vulnerability. No previous

works tried to make predictions on the relationships between different vulner-

abilities. Traditional machine learning and deep learning models are powerful

to extract latent features from multimodal information sources for every single

4



1.2 Challenging Problems

sample [16, 17, 18]. However, they are incapable of discovering and embedding

relationships between different samples from either homologous or heterogeneous

entities. Therefore, as the first research work on co-exploitation behaviour dis-

covery, the possible challenging problems are as follows:

(1) How to formulate the co-exploitation behaviour discovery problem into a

general machine learning or deep learning task? As previously mentioned, the

exploitability prediction problem and exploitation time prediction problem can

be formulated as a binary classification problem and a multiclass classification

problem accordingly. However, as each co-exploitation behaviour may involve an

indefinite number of vulnerabilities and exploits, it is inappropriate to simply for-

mulate the co-exploitation behaviour discovery problem as a binary classification

problem.

(2) How to construct a labelled dataset for the co-exploitation behaviour dis-

covery problem? As the first work on co-exploitation behaviour discovery, there

is no well-structured publicly available dataset for direct usage. Considering that

co-exploitation behaviour may span several years and involve an uncertain num-

ber of vulnerabilities and exploits which are from different data sources, it is a

challenge to collect and construct a labelled co-exploitation behaviour discovery

dataset.

(3) How to embed features from vulnerabilities, exploits and their relation-

ships into a unified feature space? To make decisions on whether co-exploitation

behaviour exists, information on both the involved vulnerabilities and exploits,

as well as their relationships, should be taken into consideration. A vast volume

of information from diverse sources, including credible vendors, cybersecurity ex-

perts, technical posts and even social media, would be involved. This information

may include videos, photos, speeches, reports, code snippets and texts. It is chal-

lenging to properly fuse and embed this multimodality information into a unified

feature space.
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1.3 Contributions

To partly solve the aforementioned problems, this thesis leverages advanced arti-

ficial intelligence techniques, including but not limited to machine learning, deep

learning and knowledge graphs, to provide feasible solutions for effective and ac-

curate exploitability prediction, exploitation time prediction and co-exploitation

behaviour discovery. The contributions of this thesis are both theoretical and

practical.

1.3.1 Theoretical Contributions

The thesis contributes to the artificial intelligence community by developing more

accurate and domain-specific algorithms and models for binary and multiclass

classification, online learning, data imbalance handling and graph embedding

and representation. Specifically, the theoretical contributions of the thesis are as

follows.

(1) The thesis proposes a binary classification framework named ExBERT to

address the challenge of lacking an effective semantic feature extraction method

due to the small size of the description corpus. ExBERT firstly applies a transfer

learning strategy to fine-tune a pre-trained Bidirectional Encoder Representa-

tions from Transformers (BERT) model with a domain-specific corpus to extract

semantic features. Then, a pooling layer and a long short term memory (LSTM)

classification layer are added on top of the fine-tuned BERT model to make bi-

nary classification decisions. ExBERT can be used as a general text-based binary

classification framework for scenarios where the size of the domain-specific corpus

is too small to train a comprehensive natural language processing (NLP) model

alone.

(2) The thesis proposes a general online binary classification framework called

Real-time Dynamic Concept Adaptive Learning (RDCAL) to address the concept

drift problem due to the evolving user behaviours and system environments. RD-

CAL is a consecutive batch learning framework containing a Class Rectification

Strategy (CRS) and a Balanced Window Strategy (BWS) [19]. Under online

learning scenarios, CRS is a general algorithm to handle the actual drift problem
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in sample labels, and BWS is a general algorithm to tackle the dynamic class

imbalance problem.

(3) To address the challenging problems in exploitation time prediction, this

thesis formulates the exploitation time prediction problem as a multiclass clas-

sification problem. An Adaptive Sliding Window Weighted Learning (ASWWL)

algorithm is designed to handle the combined challenges posed by multiclass

classification, multiclass imbalance and online learning. Specifically, a Sliding

Window Imbalance Factor (SWIF) is designed to trace the dynamic imbalanced

status of each class in real-time.

(4) To handle the challenging problems in co-exploitation behaviour discov-

ery, this thesis formulates the co-exploitation behaviour discovery problem as a

link prediction problem. Then, a general Modality-Aware Graph Convolutional

Network (MAGCN) module is proposed to enhance graph embedding and repre-

sentation capability with multimodality node properties. Furthermore, this thesis

also proposes a general Graph Knowledge Transfer Learning (GKTL) strategy to

transfer node embeddings between different subgraphs extracted from the same

knowledge graph. Both MAGCN and GKTL can be used in graph-based knowl-

edge representation and reasoning applications.

1.3.2 Practical Contributions

From a practical perspective, the thesis contributes to the cybersecurity com-

munity by providing more accurate vulnerability exploitability prediction and

exploitation behaviour analysis, which are essential for vulnerability risk evalua-

tion and management. Specifically, the practical contributions of the thesis are

as follows.

(1) The thesis successfully applies ExBERT to solve a practical problem in

cybersecurity, i.e. the vulnerability exploitability prediction problem. The per-

formance of ExBERT is verified on 46,176 real-world vulnerabilities.

(2) The thesis successfully applies RDCAL, as well as CRS and BWS to solve

the real-time vulnerability exploitability prediction problem. This is the first

work to undertake exploitability prediction in an online learning mode to the best
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of our knowledge. The performance of RDCAL is also verified by experiments

conducted on real-world vulnerabilities.

(3) The thesis successfully applies ASWWL and SWIFT to solve the exploita-

tion time prediction problem in cybersecurity. To the best of our knowledge, this

is the first work to undertake exploitation time prediction in an online learning

mode. The performance of ASWWL is verified by the results of experiments on

a real-world dataset.

(4) The thesis formulates the vulnerability co-exploitation behaviour discov-

ery problem as a link prediction problem between vulnerability entities within

a cybersecurity domain-specific knowledge graph. This is the first work on vul-

nerability co-exploitation behaviour discovery to the best of our knowledge. The

thesis successfully applies MAGCN and GKTL to boost the link prediction per-

formance.

1.4 Thesis Outline

This thesis consists of 7 chapters, including this one. The rest of the thesis is

organised as follows.

Chapter 2 introduces the background and foundations of vulnerability as-

sessment and risk evaluation, including the terminologies in cybersecurity, the

databases and datasets used in this thesis, the latest development and progress,

as well as existing problems of vulnerability assessment and exploitability analysis

in both industry and academia.

Chapter 3 elaborates a framework named ExBERT to predict if a vulner-

ability will be exploited or not accurately. ExBERT essentially is an improved

BERT model for exploitability prediction. Results on 46,176 real-world vulnera-

bilities demonstrate that the proposed ExBERT framework achieves 91.12% for

accuracy and 91.82% for precision, outperforming the state-of-the-art approach,

which achieves 89.0% for accuracy and 81.8% for precision.

Chapter 4 presents a novel consecutive batch learning algorithm, called Real-

time Dynamic Concept Adaptive Learning (RDCAL), to deal with concept drift
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and dynamic class imbalance problems existing in exploitability prediction in on-

line learning scenarios. In particular, a Class Rectification Strategy (CRS) is

designed to handle the actual drift in sample labels, and a Balanced Window

Strategy (BWS) is proposed to boost the minority class during real-time learn-

ing. The results of experiments conducted on real-world vulnerabilities collected

between 1988 to 2020 show that the overall performance of classifiers, including

neural networks, SVM, HoeffdingTree and logistic regression (LR), improves by

over 3% by adopting the proposed RDCAL algorithm. Furthermore, RDCAL

achieves state-of-the-art performance on exploitability prediction compared with

other concept drift algorithms.

Chapter 5 generalises the consecutive batch learning framework introduced

in Chapter 4 to multiclass classification problems and further proposes an Adap-

tive Sliding Window Weighted Learning (ASWWL) algorithm to tackle the dy-

namic multiclass imbalance problem existing in many industrial applications, in-

cluding exploitation time prediction. The results of experiments carried out on a

real-world dataset demonstrate the proposed ASWWL algorithm can significantly

enhance the performance of the minority classes without compromising the per-

formance of the majority class. Furthermore, the generalised consecutive batch

learning framework achieves the most robust and state-of-the-art performance

compared with the other five consecutive batch learning algorithms.

Chapter 6 presents a feasible and high-performance solution for the co-

exploitation behaviour discovery problem, which is formulated as a link pre-

diction problem between vulnerability entities within a cybersecurity domain-

specific knowledge graph. A general Modality-Aware Graph Convolutional Net-

work (MAGCN) module and a Graph Knowledge Transfer Learning (GKTL)

strategy are proposed to boost the link prediction performance. The proposed

solution is verified by the experiments conducted on a real-world cybersecurity

knowledge graph consisting of co-exploitation incidents between 1995 to 2021.

Chapter 7 concludes the findings and contributions of this thesis and dis-

cusses possible challenges and potential for future work.
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Chapter 2

Background and Foundations

With the ongoing adoption of information technology and its impact on national

economies and society, software plays a key role in the daily life of both organisa-

tions and individuals [20]. However, a growing number of vulnerabilities caused

by poor design or overlooked implementation are being disclosed nowadays [21].

The insecurity of information technology is often inevitable, which is a side effect

brought by the use of information technology [22]. The scale, type and destruc-

tiveness of cyber threats and cyber attacks are increasing year by year as more and

more software vulnerabilities are discovered and publicly disclosed. According to

CVE details [23], more than 166,000 software vulnerabilities have been disclosed

and archived from 1988 to the end of 2021. More vulnerabilities are available

from various channels and venues (e.g., security bulletins, forums, social media,

and so on). Bilge and Dumitras pointed out that once a vulnerability is dis-

closed, the chance of being exploited increases by five orders of magnitude[4, 7].

Obviously, unpatched known vulnerabilities impose significant security risks to

modern society. Obviously, unpatched known vulnerabilities impose significant

security risks to modern society.
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2.1 Vulnerability and Vulnerability Disclosure

Vulnerability is a term referring to a system flaw that can leave it open to attack.

According to the Common Vulnerabilities and Exposures (CVE) consortium, it

is formally defined as a weakness in the computational logic (e.g., code) found in

software and some hardware components (e.g., firmware) that, when exploited,

results in a negative impact on confidentiality, integrity, or availability (CIA)

[24, 25].

Vulnerability disclosure is the practice of reporting security flaws in computer

software or hardware [26]. Vulnerability can be disclosed by multiple parties,

including but not limited to third-party or internal software developers, vendors,

suppliers, cybersecurity professionals and cybersecurity researchers [27]. Differ-

ent parties have different preferences for vulnerability disclosure time. Software

vendors, suppliers and related developers usually prefer to disclose vulnerabilities

after the corresponding patches or remedies are available. By contrast, affected

end-users, cybersecurity professionals and researchers tend to disclose vulnerabil-

ities as early as possible.

2.2 Exploit and Exploitability

A typical exploit in the cybersecurity domain can be a piece of software, a chunk of

data, or a sequence of commands, which takes advantage of a bug or vulnerability

to cause unintended or unanticipated behaviour [28].

Exploitation is the behaviour of using an exploit to abuse software, hardware

or other electronic equipment, including things like gaining control of a computer

system, allowing privilege escalation, or launching a denial-of-service (DoS) attack

[29].

Exploitability is the state or condition of being exploitable. In the cybersecu-

rity domain, a vulnerability is identified as exploitable when the proof-of-concept

of the corresponding exploit exists. Exploitability is an important vulnerability

assessment metric to reflect the properties of the vulnerability that lead to a

successful attack [30].
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Table 2.1: Six vulnerability lifecycle events

Event Occurred Time Avalable to Public?

creation tcreat No

discovery tdisco No

exploit available texplo No

disclosure tdiscl Yes

patch available tpatch Yes

patch installation tinsta Yes

2.3 Lifecycle of a Vulnerability

Frei et al. described a typical vulnerability lifecycle in [31]. We simplify the main

events of the lifecycle in Table 2.1. A typical vulnerability lifecycle consists of six

events, namely, creation, discovery, exploit available, disclosure, patch available

and patch installation. It should be noted that the order of occurrence of these

six events may be slightly different for individual vulnerabilities. For example,

vulnerability exploitation may occur before disclosure.

When a vulnerability is disclosed, the vulnerability information has three fea-

tures, namely, free access, independence and validation [31]. Information about

disclosed vulnerabilities is available to the public for free. Then, disclosed vulner-

ability information will be widely accepted and used by the entire cybersecurity

community. Finally, the disclosed information undergoes a thorough assessment

by a panel of security experts, and some assessment results will also be added to

the disclosed vulnerability as basic risk ratings.

The time period between vulnerability discovery and disclosure is called the

pre-disclosure phase, denoted as △ tdisco(v), where △tdisco(v) = tdiscl(v) - tdisco(v);

tdiscl(v) is the disclosure time of v and tdisco(v) is the discovery time of v. At this

stage, the newly discovered vulnerabilities remain largely private. If they are

known by researchers or vendors, they can work to provide patches before they

become exploitable or disclosed in public. However, once they are discovered by

malicious intruders or cyber-criminals, the potential risk involved can be signifi-

cantly elevated. However, in this pre-disclosure phase, few things can be done to
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stop exploitation.

The time period from disclosure to patch available is another important phase,

namely, the post-disclosure phase, denoted as △tpatch(v), where △tpatch(v)= tpatch(v)

- tdiscl(v) and tpatch(v) is the patch available time of v. At this stage, the risks

of exploitation soar because more parties, including hackers and cyber-criminals,

know of the existence of and have detailed information on the vulnerability. To

make matters worse, end-users of the affected products will also be aware of the

existence of this vulnerability, which will undoubtedly bring great pressure to

vendors and service providers. Therefore, it is crucial for vendors and security

information providers (SIPs) to provide a patch or give effective security advice.

This research focuses on improving exploitability predictions and analysis to bet-

ter inform decision-makers to prioritise the most urgent and risky vulnerabilities.

Similarly, post-patch phase refers to the time period between vulnerability

patch available and patch installation, which is denoted as △tinsta(v), where

△tinsta(v)= tinsta(v) - tpatch(v) and tinsta(v) is the patch instalment time of v. At

this stage, if users are able to install the patch of v in a timely manner, the risks

of exploitation can be mitigated.

2.4 Cybersecurity Ecosystem

Whenever a new vulnerability is discovered, various parties with different and

often conflicting motivations and incentives become involved in a complex way [31,

32]. Participants include but are not limited to discoverers, security advisories,

cyber-criminals, traders in white or underground black markets, vendors and

the public. The so-called security ecosystem consists of these players and their

interactions. Fig. 2.1provides a high-level view of a cybersecurity ecosystem.

As shown in Fig. 2.1, Path (A) and (B) in red are at high risk, while paths (D)

and (E) in green have fewer security concerns. Most vulnerabilities go through

the path (C). Once disclosed, the security of a vulnerability is uncertain, depend-

ing on whether it is exploited by attackers or patched by vendors. The risk of

exploitation soars after being disclosed, as described in [4], ‘after vulnerabilities
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Fig. 2.1. Cybersecurity ecosystem illustration

are disclosed publicly, the volume of targeted attacks increases by five orders of

magnitude.’

Vulnerabilities can be mitigated by patches, reconfigurations, and other worka-

rounds. However, there is a consistent trend that the exploit availability contin-

uously exceeds patch availability. Furthermore, most vulnerabilities are never

actually exploited [33]. Thus, considering the development, test, distribution,

and deployment costs of software patches, it is crucial for inventors to prioritise

the remediation of vulnerabilities that are most likely to be exploited. In other

words, vulnerability risk evaluation and exploitability prediction are important

to enable inventors to make better decisions.

Based on the results of vulnerability risk evaluation, decision-makers such as

vendors and cybersecurity specialists can prioritise vulnerabilities and allocate

resources to patch and protect systems. Furthermore, an increasingly obvious

trend is that hackers are more inclined to combine several vulnerabilities when

launching attacks. Predicting the links between a newly added vulnerability

and existing vulnerabilities will help avoid co-exploitation behaviour by patching

any of these vulnerabilities. Despite the strong demand in the industry, only a

few studies consider inferring exploitable links amongst new vulnerabilities and

mitigating exploitations from the perspective of complex networks.
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2.5 The Disclosed Vulnerabilities and Exploits

Historical vulnerability and exploit records are the most important and valuable

digital assets for vulnerability assessment and management. Therefore, many

commercial or non-profit organisations collect, store, and maintain their own

vulnerabilities and exploit databases. Some of them are available to the public.

The rest of this section introduces several well-known and publicly accessible

databases and repositories. They provide comprehensive and credible information

on vulnerabilities and potential links of detailed exploits (if exploitable).

2.5.1 CVE: Common Vulnerabilities and Exposures database

At present, vulnerability disclosure sources mainly include individual vendors, cy-

bersecurity forums and open source databases. Each disclosed vulnerability will

be assigned a unique identification code, CVE-ID. CVE-ID is widely accepted

by both local individual information providers/repositories and multiple global

vulnerability databases [9]. This unique CVE-ID of each vulnerability facilitates

the fast and accurate integration of data across multiple information sources and

databases. In other words, it can be used to retrieve and link various informa-

tion of the same vulnerability from different databases. Apart from CVE-ID,

vulnerability disclosure reports may also include disclosure date, the names and

corresponding version numbers of affected software products, required permission,

the scope of impact and repair suggestions etc. [9].

The CVE database is one of the most well-known vulnerability databases.

It stores essential disclosed vulnerability information, such as the CVE-ID, de-

scription, one or more public reference links [34]. A vulnerability description is

a brief paragraph on each vulnerability, which contains abundant details such as

the vulnerability type, names of affected products and vendors, a summary of

affected versions, the impact, the access that an attacker requires to exploit the

vulnerability and the important code components or inputs that are involved [35].

Depending on the source of disclosure, the description of a software vulnerability

is usually written by the party requesting its CVE-ID.
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Fig. 2.2. A vulnerability listed in the CVE database

The information in the CVE database serves as the baseline for vulnerabil-

ity disclosure and is referenced by many vulnerability databases, security prod-

ucts and services. The vulnerability list in the CVE database organised by

year is available for download in several formats, i.e. comma separated for-

mat, HTML, text, and XML. More than 160,000 vulnerability entries spanning

over 20 years from 1999 to the present are included in the CVE database. The

CVE database provides multiple attributes of each vulnerability for the pub-

lic, such as Description, References, Assigning CNA, Date Record Created and

Phase. Fig. 2.2 shows a screenshot of vulnerability information listed in the CVE

database. For more information, refer to the official website of the CVE database

https://cve.mitre.org/index.html.

2.5.2 NVD: National Vulnerability Database

The NVD database is the U.S. government repository of standards-based vulnera-

bility management data represented using the Security Content Automation Pro-

tocol (SCAP) [36]. It provides an analysis of CVE entries published in the CVE

database. Based on the descriptions and references provided by the CVE database

and other publicly accessed supplemental data, NVD expert panellists conduct an
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Fig. 2.3. A vulnerability listed in the NVD database

initial vulnerability assessment and give results based on certain standards, such

as impact metrics (defined by Common Vulnerability Scoring System (CVSS)),

applicability statements (defined by Common Platform Enumeration (CPE)),

vulnerability types (defined by Common Weakness Enumeration (CWE)), and

also other pertinent metadata [36]. Fig. 2.3 shows the screenshot of information

on a vulnerability listed in the NVD database.

Most importantly, the NVD database keeps re-analysing vulnerabilities as

time and resources change over time to ensure the information provided by NVD

is up to date. The NVD database is updated periodically to maintain the accuracy

and real-timeliness of vulnerability information. The data feeds in the NVD

database are available to the public for free. [37].
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Fig. 2.4. A vulnerability listed in CVE Details

2.5.3 CVE Details

CVE Details is a website developed by security consultant Serkan Özkan, who

wanted to find an easy-to-use list of security vulnerabilities [23]. CVE Details

contains information from multiple sources, including NVD XML data feeds, the

Exploit Database [38], software vendor statements and additional vendor-supplied

data, and Metasploit modules [23]. CVE Details presents each vulnerability entry

on a single, easy-to-use web page. Fig. 2.4 shows an example of the vulnerability

information listed in CVE Details. Some statistics on vulnerabilities, vendors,

products, and exploits are also available in tables or figures [23].
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Fig. 2.5. An exploit listed in the EDB database

2.5.4 EDB: Exploit Database

The Exploit Database is an archive of public exploits and their targeted vulner-

abilities, developed for use by penetration testers and vulnerability researchers

[38]. The exploits in EDB are gathered from public sources and are freely avail-

able to the public. Each exploit in the EDB database has a unique EDB-ID for

identification purposes.

The EDB database provides proofs-of-concept rather than advisories for vul-

nerabilities. Therefore, many researchers use the existence of exploits as the first

sign of the exploitability of vulnerabilities [28, 33, 39], although exploitations

always appear behind the existence of exploits. Fig. 2.5 shows a screenshot of

information on an exploit listed in the EDB database. Apart from the proof-of-

concepts’ executive codes, other crucial information on an exploit is also provided,

such as EDB-ID, CVE-ID, Author, Type and Platform, as shown in Fig. 2.5. The

EDB database is also a CVE-compatible database, making it possible to link the

information of vulnerabilities and exploits.

At present, most commercial vulnerability management systems regularly

synchronise the vulnerability and exploit information from these mainstream
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databases. Furthermore, the experimental data of most research papers on vul-

nerability risk assessment come from the integration results of these open-sourced

mainstream databases [7, 19, 40, 41, 42]. To provide more examples for reference,

Table 2.2 lists the Uniform Resource Locator (URL) of examples of more vulner-

abilities or exploits contained in the aforementioned four databases. The URL is

entered into a browser for detailed information corresponding to that vulnerability

or exploit. It is worth mentioning that the exploit listed below each vulnerability

in Table 2.2 is the specific exploit attacking that vulnerability.

2.6 Vulnerability Assessment and Management

Vulnerability management is a crucial measure for both organisations and the

entire cybersecurity community to protect their information systems and networks

from cyberattacks, intrusions, malware and various types of data breaches [42].

Since the availability of exploits is much more in quantity than the availability

of patches [43], it is important for vulnerability management experts to assess

the risk level of existing vulnerabilities accurately. For risk management and

vulnerability repair of modern information systems, vulnerability assessment and

prioritisation are the most basic steps in order to allocate budget and resources

efficiently and effectively [44].

To date, various methods have been developed and introduced to assess soft-

ware vulnerabilities and predict the trends of vulnerability outbreaks [42, 45].

The rest of this section introduces the de facto industry standard and some of

the latest developments in the academic community on vulnerability assessment.

2.6.1 Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS) is the de facto industry stan-

dard to assess the severity of security vulnerabilities. It originated from a research

project which aimed to promote a common understanding of vulnerabilities and

their impact through the development of a common vulnerability scoring sys-

tem by the National Infrastructure Advisory Council (NIAC) in July 2003 [46].
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Table 2.2: Examples of vulnerabilities and their corresponding exploits listed in

CVE, NVD, CVE Details and EDB

CVE-ID/EDB-ID Database URL

CVE-2020-25015

CVE
https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-25015

NVD https://nvd.nist.gov/vuln/detail/CVE-2020-25015

CVE Details
https://www.cvedetails.com/cve-details.php?

cve id=CVE-2020-25015

EDB-ID: 49000 EDB https://www.exploit-db.com/exploits/49000

CVE-2021-24275

CVE
https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2021-24275

NVD https://nvd.nist.gov/vuln/detail/CVE-2021-24275

CVE Details
https://www.cvedetails.com/cve-details.php?

cve id=CVE-2021-24275

EDB-ID: 50346 EDB https://www.exploit-db.com/exploits/50346

CVE-2021-24287

CVE
https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2021-24287

NVD https://nvd.nist.gov/vuln/detail/CVE-2021-24287

CVE Details
https://www.cvedetails.com/cve-details.php?

cve id=CVE-2021-24287

EDB-ID: 50349 EDB https://www.exploit-db.com/exploits/50349

CVE-2021-24286

CVE
https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2021-24286

NVD https://nvd.nist.gov/vuln/detail/CVE-2021-24286

CVE Details
https://www.cvedetails.com/cve-details.php?

cve id=CVE-2021-24286

EDB-ID: 50350 EDB https://www.exploit-db.com/exploits/50350
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Table 2.3: Metrics in CVSS metric groups

Metric Group Metric Name (and Abbreviated Form)

Base

metric

group

Attack Vector (AV), Attack Complexity (AC),

Privileges Required (PR), User Interaction (UI),

Scope (S), Confidentiality (C), Integrity (I), Availability.

Temporal

metric

group

Exploit Code Maturity (E),

Remediation Level (RL),

Report Confidence (RC).

Environmental

metric

group

Confidentiality Requirement (CR), Integrity Requirement (IR),

Availability Requirement (AR), Modified Attack Vector (MAV),

Modified Attack Complexity (MAC), Modified Privileges Required (MPR),

Modified User Interaction (MUI), Modified Scope (MS),

Modified Confidentiality (MC), Modified Integrity (MI),

Modified Availability (MA).

CVSS is currently at version 3.1 and under the custody of the Forum of Inci-

dent Response and Security Teams (FIRST). FIRST is the premier organisation

and recognised global leader in incident response. Currently, FIRST has more

than 400 members ranging from government, commercial, and educational or-

ganisations, spread over Africa, the Americas, Asia, Europe and Oceania [47].

Nowadays, CVSS is recommended by a wide range of computer, networking and

software vendors, such as Cisco, the NVD database, Microsoft and Oracle [48].

2.6.1.1 CVSS Metric Groups

CVSS defines three independent metric groups, namely, the base metric group,

temporal metric group, and environmental metric group, whose detailed metric

names are shown in Table 2.3 [30]. Only the base metric group is mandatory for

calculating a vulnerability CVSS score.
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2.6.1.2 CVSS Scores

The values of CVSS metrics shown in Table 2.3 are either a number between

0-10 or a discrete categorical value, which are given by a cybersecurity experts

panel according to the basic information of disclosed vulnerabilities [30]. Based

on these metric groups, CVSS then calculates an overall score between 0-10.0 as

the final CVSS score of a vulnerability according to a specially designed formula,

where 10.0 represents the highest risk [7]. The detailed calculation process can

be found in [30].

In particular, CVSS includes a formula to calculate the exploitability score of

a vulnerability, as shown in Equation (2.1) [30].

Exploitability = 8.22 × AV × AC × PR × UI, (2.1)

where 8.22 is the coefficient assigned by a panel of CVSS cybersecurity experts;

AV, AC, PR and UI are the abbreviated forms of the four base metrics listed in

Table 2.3.

In addition to an overall score between 0 and 10, CVSS also provides a quali-

tative evaluation method for vulnerabilities by mapping the overall CVSS score to

five risk levels, namely, none (0.0), low (0.1-3.9), medium (4.0-6.9), high (7.0-8.9)

and critical (9.0-10.0 ).

CVE Details presents the current vulnerability distribution by CVSS scores

based on 162,031 vulnerabilities, which shows the weighted average CVSS score

for all disclosed vulnerabilities is 6.5 [23].

2.6.1.3 Limitations of CVSS

CVSS is a carefully designed scoring system based on expert knowledge and

accepted by a wide range of organisations. However, it is widely questioned by

researchers that an overall score calculated by combining multiple metric groups

with fixed weights, such as a CVSS score, can accurately represent the risk level

of different software vulnerabilities [7].

Furthermore, CVSS is widely criticised by the academic community for the

inconsistency between CVSS scores and the exploitability of vulnerabilities [9,

23



2.6 Vulnerability Assessment and Management

28, 39]. The overall CVSS scores of existing disclosed vulnerabilities show that

there is no significant correlation between the CVSS score of a vulnerability and

the possibility of its exploitability.

To further validate the criticism of CVSS in the academic community, the

work in [7] visualises two CVSS metrics, namely, base score and exploitability

score, that are most relevant to the exploitability of vulnerabilities from two

CVSS versions (CVSS V2.0 and V3.0), as shown in Fig. 2.6. The data samples

in Fig. 2.6 are from all disclosed vulnerabilities recorded in the NVD database

from 1988 to 2019. Figure 6 shows exploited vulnerabilities in dark orange and

unexploited vulnerabilities in the navy. The Y-axis represents the comparison

of the number of these two types of vulnerabilities with the same CVSS metric

score. The X-axis indicates the value of the corresponding CVSS metrics and the

larger the value, the greater the risk of the corresponding vulnerabilities. Taking

the V2 exploitability score shown in subplot (b) as an example, the blue bar with

a score between 8 and 10 is very high, indicating that the number of unexploited

vulnerabilities in this interval is very large. Obviously, this contradicts the low

probability of unexploited vulnerabilities.

Similarly, the contradiction between the CVSS metric score and the exploitabil-

ity of vulnerabilities is also reflected in subplots (a), (c) and (d). It is worth

noting that V3 is an improved CVSS version of V2. However, as can be seen

from subplots (c) and (d), the deficiency that CVSS cannot effectively depict the

exploitability of vulnerabilities has not been significantly improved.

Other concerns on the application of CVSS as a vulnerability assessment in-

dicator include the following two points. Firstly, the value assignment of CVSS

metrics relies on an expert panel, which is costly in time and money. Furthermore,

it is difficult to ensure consistency when the personnel changes.

2.6.2 Vulnerability Assessment in Academia

Researchers in the academic community have tried to find a better way to evaluate

the severity of vulnerabilities. In addition to the CVSS system, the authors in [39]

considered two risk factors: (1) the existence of a public proof-of-concept exploit;

(2) the existence of an exploit traded in the cybercrime black markets to evaluate
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Fig. 2.6. The CVSS metric score distribution of vulnerabilities

the possibility of exploitation using a case-control study methodology. Although

some improvements have been achieved, it is still not satisfactory and needs to

be improved. The work in [49] applied time series analysis to build predictive

models for all the reported vulnerabilities of five popular web browsers: Firefox,

Chrome, Safari, Internet Explorer and Opera. A more recent study [21] proposed

a GARCH model to investigate the long-term and time-invariant dependence re-

lationships in vulnerabilities leveraging multivariate time series analysis, and then

to predict the vulnerability disclosure trends and dependencies. However, these

works concentrated on predicting the trends and the number of disclosed vulner-

abilities for certain vendors or applications, instead of predicting the severity of

vulnerabilities or the possibility of exploitation.

Other researchers focused on the prediction of vulnerability exploitability. The

state-of-the-art machine learning algorithms [9, 10, 11] cast exploit prediction as a

problem of binary classification. Based on the large-scale vulnerability databases,

the work in [9] labelled each vulnerability as ‘exploited’ or ‘not exploited’. The

feature extraction algorithm in [9] is a kind of one-hot representation. More
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2.6 Vulnerability Assessment and Management

specifically, they use a set of binary features to record whether or not particu-

lar tokens (e.g., ‘buffer’, ‘heap’, ‘DNS’) appear in specific text fields (e.g., ‘title’,

‘solution’, ‘product name’). The classifier adopted in [9] is one of the most pop-

ular large margin classifiers, namely the linear support vector machine (LSVM)

classifier. In the online experiment mode, where classifiers are repeatedly trained

with all vulnerabilities seen up to a point in time, they achieved a classification

accuracy of nearly 85%.

Sabottke, Suciu and Dumitras [10] proposed a Twitter-based exploit detector,

predicting real-world exploitations. In this work, they extract features from NVD,

OSVDB and Twitter streams and manually select features based on the mutual

information between features and labels. The LSVM classifier is also used in their

work. One of the contributions of this work is that it not only can predict if a

vulnerability will be exploited, it can also predict the emergence of exploits on

an average of two days in advance. However, the features extracted from Twitter

streams are also manually selected statistical features (e.g., specific words, number

of retweets and replies, information about the users posting these messages).

Along the same line, the work in [11] proposed an exploitability prediction

method based on neural language models. Instead of extracting linguistic fea-

tures using traditional TF-IDF-based representation, it adopts the neural lan-

guage models to learn word embeddings based on the corpus collected from mul-

tiple sources. By capturing the linguistic regularities of human languages, such

as syntactic, semantic similarity and logic analogy, the learned embeddings can

better classify discussions about exploited vulnerabilities than traditional text

analysis methods [11].

The work in [50] investigated the effectiveness of different features, including

common words from vulnerability descriptions, external references and vendor

products, CVSS scores and categorial attributes, and Common Weakness Enu-

meration (CWE) numbers, in predicting the exploitability of vulnerabilities. Ja-

cobs, Romanosky et al. proposed an open, data-driven framework, called the

Exploit Prediction Scoring System (EPSS), to estimate the probability of a vul-

nerability being exploited within the first twelve months after disclosure [51].

Paper [7] employed transfer learning to extract paragraph-level embeddings from

vulnerabilities and built a high-performance exploitation predictive model.
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2.6 Vulnerability Assessment and Management

In summary, although the use of machine learning and pattern recognition

methods to predict exploitability has received increasing attention in past decades,

this field is still not satisfactory in terms of research methods and research results.

More research needs to be directed to create a more secure cyber environment.

Furthermore, some of the latest research advances in machine learning and deep

learning, such as word embedding, graph representation can be introduced into

this field to make a difference.
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Chapter 3

Vulnerability Exploitability

Prediction

From the feature extraction and selection strategies to the selection of classifiers,

there are enormous choices in building machine learning (ML) or deep learning

(DL) based exploitability prediction models. This chapter focuses on the vulner-

ability description-based exploitability prediction problem and proposes a novel

exploitability prediction framework, ExBERT, based on transfer learning [52].

This chapter starts with an elaborate analysis of existing problems of cur-

rently description-based exploitability prediction models in Section 3.1, followed

by an introduction of the related works, including transfer learning, the Bidirec-

tional Encoder Representations from Transformers (BERT) model and wordpiece

tokenization in Section 3.2. Then, section 3.3 formulates the exploitability predic-

tion problem and clarifies its optimization objective. Section 3.4 elaborates the

proposed ExBERT framework, followed by the experiment results and analysis

in Section 3.5. Finally, a conclusion is provided in Section 3.6.

3.1 Introduction

Considering the limitation of CVSS scores in the exploitability prediction of vul-

nerabilities described in Section 2.6.1.3, researchers have been trying to build
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more accurate exploitability prediction models, leveraging the emerging machine

learning and deep learning techniques [45, 53, 54]. In particular, to reduce de-

pendence on domain knowledge and time delay problems existing in CVSS, an

increasing number of scholars assess vulnerabilities and predict exploitability by

mining vulnerability descriptions [9, 11, 53, 55, 56]. Although some promising

results were reported in previous studies, the following problems still exist:

(1) Failure to consider the polysemy problem in natural language processing

(NLP) and the special technical terms in cybersecurity. For example, there are

two sentences: sentence A ‘A buffer overflow in lsof allows local users to obtain

root privilege’ and sentence B ‘Roses will not root in such acid soil’. The meaning

of the word ‘root’ in sentences A and B are different. Furthermore, the word ‘lsof’

in sentence A is a term in cybersecurity which means ‘list open files’. Terms such

as ‘lsof’ are essential to capture the semantic meaning in vulnerability descriptions

and should not be ignored. In previous description-based exploitability prediction

studies, researchers used the Term Frequency-Inverse Document Frequency (TF-

IDF) algorithm[9, 11], the rule-based statistical method [50, 56, 57] and word-

embedding [11, 55, 58] techniques to extract semantic features from descriptions.

These feature extraction methods use identical representations or methods to

deal with the same word or phrase. Therefore, they cannot capture the polysemy

of words in different contexts. Furthermore, the cybersecurity domain corpus

contains many low-frequency domain-specific words, such as package names, tool

names, variable names and other technical terms. None of the previous studies

addresses this problem.

(2) Failure to consider the dependencies between the features extracted from

descriptions when choosing classifiers. As sequential texts, dependencies exist

in vulnerability descriptions. For example, the meaning of ‘root’ in the phrase

‘root privilege’ depends on the word ‘privilege’. Existing studies applied support

vector machine (SVM) [9, 11, 50], random forest (RF) [11, 59], naive Bayes [56]

and fully-connected neural networks (denoted as DenseNN) [55] as the classifiers

for exploitability prediction. These classifiers treat features as individuals with

no dependency. Therefore, they fail to capture the dependencies within each

description.
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(3) No publicly accessed unified datasets exist in the exploitability prediction

community. Publicly accessed unified datasets are a very important factor in

developing machine learning or deep learning algorithms. Although researchers

collect data from the same open-source dataset, i.e. NVD [37] and EDB [38], the

chosen vulnerabilities, the exploitability status at a specific time, and the total

amount of vulnerabilities vary in different studies. To the best of our knowledge,

no publicly accessed unified dataset exists for exploitability prediction so far. The

major reason is that vulnerability-related databases are dynamically increasing,

and the exploitability of vulnerabilities also changes over time. Researchers al-

ways try to obtain the latest data to support their research. As a result, all

existing studies use self-collected datasets when predicting the exploitability of

vulnerabilities [9, 11, 50, 55, 56].

Compared with previous works, the main merits of the proposed framework

ExBERT can be summarized as follows.

(1) ExBERT can extract context-aware token embeddings from vulnerability

descriptions and embed low-frequency cybersecurity technical terms. The BERT

model provides different token embeddings for the same token according to its

context, which means it can understand word polysemy. Inspired by transfer

learning, ExBERT fine-tunes a pre-trained BERT model using vulnerability de-

scriptions instead of training a BERT from scratch, to overcome the insufficiency

of the domain corpus. ExBERT also inherits the capability of polysemy embed-

ding from BERT, which means it can extract context-aware token embeddings.

Furthermore, ExBERT adopts a wordpiece tokenization algorithm to deal with

low-frequency cybersecurity technical terms to gain better semantic features.

(2) ExBERT can extract comprehensive sentence-level semantic features in-

stead of token-level features by designing a pooling layer on top of the fine-tuned

BERT. The concept of the pooling layer was originally used in convolutional neu-

ral networks (CNN) to reduce dimensionality and extract high-level features. In

this chapter, ExBERT introduces a pooling layer to extract sentence-level se-

mantic features from token-level features extracted from the fine-tuned BERT

model.

(3) ExBERT applies the long short term memory (LSTM) model as the classi-

fier in exploitability prediction instead of using SVM, RF, CNN, etc., to deal with
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the existing long-term dependencies in vulnerability descriptions. Descriptions

are sequential inputs with long term dependencies, recurrent neural networks

(RNNs) and their variation LSTM have been proven to be good at capturing

the long-term dependencies in sequential data and dealing with natural language

[60]. ExBERT is the first to apply LSTM in exploitability prediction.

3.2 Related Works

The most related techniques involved in this chapter are briefly reviewed and

presented in this section.

3.2.1 Transfer Learning

Transfer learning is an emerging learning strategy in machine learning (ML) that

focuses on learning and storing knowledge gained from one domain and applying

it to a different but related domain [61, 62, 63]. A Domain D consists of two

components: a feature space χ and a marginal probability distribution P (X),

where X = x1, . . . , xn ∈ χ. In general, if two domains are different, then they

may have different feature spaces χ or different marginal probability distributions

P (X). Given a specific domain, D = {χ, P (X)}, a task τ = {Y, f(·)} consists

of two components: a label space Y and a predictive function f(·), which can

be written as P (y|x). Labels can be y = {0, 1} in binary classification. The

predictive function f(·) is not observed, but can be estimated from the training

data {xi, yi} (xi ∈ X, yi ∈ Y).

We further denote Ds = (xs1 , ys1), . . . , (xsn , ysn) as the source domain, where

xsi ∈ χs and ysi ∈ Ys representing features and corresponding labels. Similarly,

the target domain is denoted as Dt = {(xt1 , yt1), . . . , (xtm , ytm)}, where xti ∈ χt

and yti ∈ Yt. In general, 0<n≪ m.

Given all the defined notations, transfer learning is formally defined as [61]:

Transfer Learning: Given a source domain Ds and a learning task τs, a

target domain Dt and a learning task τt, transfer learning aims to help improving

the learning of the target predictive function ft(·) in Dt using the knowledge

learnt in Ds and τt, where Ds ̸= Dt or τs ̸= τt.
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3.2.2 BERT Model

In 2018, Devlin and Chang et al. at Google AI Language proposed an NLP model

named BERT for language understanding [64]. It has caused a stir in the deep

learning community by achieving the state-of-the-art results on eleven NLP tasks

instead of on a single task or domain, including Natural Language Inference (NLI)

and Question Answering (SQuAD v1.1). BERT is developed based on a popular

Transformer model[65] and it trains a multi-layer Transformer in a bidirectional

way.

To enable bidirectional training, BERT defined two training tasks: Masked

Language Model (MLM) and Next Sentence Prediction (NSP). The training pro-

cess of MLM is shown in Fig. 3.1. Given an input sentence, 15% tokens are

randomly replaced with a [MASK] token, then train the BERT model to predict

the masked tokens. Tokens [CLS] and [SEP] in Fig. 3.1 are manually added as

the beginning marker and ending marker of an input sentence. BERT consists of

12 stacked Transfer layers, named as Transfer Layer -1, . . . , -11, -12. The out-

put of each Transfer Layer corresponding to the token embeddings of the input

tokens. For example, the output of the first node in each Transfer Layer is the

token embedding of [CLS]. In the original paper[64], only the token embedding

corresponding to [CLS] in Transfer Layer -1 is used to predict the value of the

masked token, other token embeddings are discarded as shown in Fig. 3.1. Then,

a DenseNN is used as a classifier on top of the [CLS] token embedding to calculate

all possibilities on the vocabulary of BERT.

Similarly, the NSP training process is shown in Fig. 3.2. Given two sentences,

[CLS] is added as the beginning of the first sentence and two [SEP] tokens are

added at the end of these two sentences. BERT is trained to predict if Sentence

B is the sub-sequent sentence of Sentence A. Also, in NSP task, only the to-

ken embedding of [CLS] is used to do classification, other token embeddings are

discarded.

Because BERT has become ubiquitous recently for NLP tasks and our imple-

mentation is effectively identical to the original paper except for some tiny data

pre-processing, we omit an exhaustive description of the model architecture and

refer readers to [64] as well as its GitHub resources [66].
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Although the performance of BERT is outstanding, we cannot apply it directly

to exploitability prediction. For one thing, training BERT from scratch is slow

and resource-consuming. It is infeasible and unnecessary for most downstream

applications to train such a comprehensive NLP model from scratch. For another,

the corpora size in most downstream applications including exploitability predic-

tion are too small to train such a complicated NLP model. For example, the total

words in descriptions collected from published vulnerabilities between 1999 and

2019 is only about 5 million. Fortunately, Google has released several versions of

pre-trained models, which are well trained on BooksCorpus (800 million words)

[67] and English Wikipedia (2,500 million words).

Applying transfer learning to BERT is a feasible solution for exploitability pre-

diction. Paper [68] demonstrated that the pretraining-then-fine-tuning paradigm

has an even better performance and generalization capability than training from

scratch for BERT model in a visualization way. Therefore, we can fine-tune

a pre-trained BERT model using cybersecurity domain corpus and transfer the

knowledge learnt from the super-large pre-training corpora to the new cyberse-

curity task.

3.2.3 Wordpiece Tokenization

Wordpiece tokenization was first proposed by Wu et al. in 2016 to handle

rare words in Google’s Neural Machine Translation System [69]. It divides low-

frequency words to a set of common sub-word units (wordpieces) if these words

are not in the vocabulary. For example, Table 3.1 lists some wordpiece tok-

enized words when adopting the same vocabulary (contains 30,255 tokens) with

BERT. We can see that for some common words contained in the vocabulary like

‘windows’, ‘linux’, ‘root’ and ‘leaves’, the tokenized tokens are the same with the

original words. For some low-frequency words which are not in the vocabulary like

‘spyware’, ‘malware’, ‘vulnerabilities’ and ‘overflow’, they are tokenized into sev-

eral wordpieces like [‘spy’, ‘##ware’], [‘mal’, ‘##ware’], [‘vu’,‘##ln’, ‘##era’,

‘##bilities’] and [‘over’, ‘##flow’] based on the vocabulary. The rest part fol-

lowed the ‘##’ in a token should be attached to the previous token without space

when reversing the tokenization.
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Table 3.1: Examples of wordpiece tokenization

Originial words Tokenized wordpieces

windows ‘windows’

linux ‘linux’

root ‘root’

leaves ‘leaves’

spyware ‘spy’, ‘##ware’

malware ‘mal’, ‘##ware’

vulnerabilities ‘vu’, ‘##ln’, ‘##era’, ‘##bilities’

overflow ‘over’, ‘##flow’

Wordpiece tokenization is a powerful tool to deal with rare words or domain-

specific terms. Because it can deal with words which are not contained in a

vocabulary. The tokenized word is a fixed token combination once the vocabu-

lary is fixed. Many NLP models including BERT can leverage the bidirectional

information of a sequence. Therefore, the model can understand the semantic

meaning of a fixed token combination after training [70, 71], which means the

tokenized word can still be identified and represented by the corresponding NLP

model.

The corpus for exploitability prediction contains around 5 million words,

which is too small to train a robust NLP model from scratch. Therefore, we

need to apply transfer learning to the pre-trained BERT model and transfer the

knowledge learnt from the huge pre-training corpus to the cybersecurity domain.

When applying transfer learning, it is important to use the identical wordpiece to-

kenizaiton method including the same vocabulary as the pre-trained NLP model.

Because it will split the the downstream-task’s corpus into tokens the same way

with the pretraining corpus, and the pre-trained semantic knowledge will be in-

herited by downstream applicaitons. Furthermore, technology is evolving and

new technical terms are emerging every day. Therefore, it is impossible to keep

changing the vocabulary of the NLP model. In fact, different vocabulary will

only cause different forms of token conbinations. As long as keeping consistency,

it makes no difference for a machine to understand ‘overflow’, { ‘over’, ‘##flow’}
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or { ‘ov’, ‘##erf’, ‘##low’}. Therefore, instead of building a cybersecurity do-

main vocabulary for exploitability prediction, we use the identical vocabulary

with BERT.

3.3 Problem Formulation

Exploitability prediction is a classification problem in the machine learning do-

main. The input is a vulnerability description and the output is the likelihood

of the input vulnerability being exploitable. As text information, descriptions

cannot be used as the input of a classification model directly and it must be

transformed into numerical vectors using semantic feature extraction algorithms

such as one-hot, Bag-of-Words [72], Skip-gram [72], GloVe [73] and BERT. We

formulate the exploitability prediction model as (3.1),

ŷ = f(Θ, x), (3.1)

where x is the input feature extracted from a vulnerability description; Θ is the

model parameters and f(·) is the predictive function determined by the predictive

model structure and ŷ is the predicted probability in a closed interval [0,1].

We denote the dataset for exploitability prediction as D, Y , where D=[d(1),

d(2), · · · , d(m)]; d(i) is the i-th description of the i-th vulnerability; m is the total

number of vulnerabilities in D. Accordingly, Y=[y(1), y(2), · · · , y(m)] is the ground

truth label vector and y(i) ∈ {1, 0} indicates if the i-th sample is exploitable or not.

To implement exploitability prediction, D will be transformed into a numerical

feature matrix X=[x(1),x(2), · · · , x(m)], where x(i) ∈ Rn is the feature extracted

from d(i) and n is the feature dimension. According to (3.1), the predictive

output corresponding to X is Ŷ=f(Θ, X), where Ŷ=[ŷ(1), ŷ(2), · · · , ŷ(m)]; ŷ(i) is

the predicted probability corresponding to x(i).

Since exploitability prediction is a binary classification task, according to the

conventions in machine learning, the training objective for optimizing the pre-

dictive model parameter Θ is to minimise the binary cross-entropy loss function

expressed as (3.2) [74, 75].
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min
Θ

E(x,y)∼(X,Y )[L(x,y)(Θ)])

= − 1

m

m∑
i=1

[y(i) • log(ŷi) + (1 − y(i)) • log(1 − ŷi)].
(3.2)

3.4 Methodology

To predict the exploitability of vulnerabilities using descriptions, we propose a

framework ExBERT based on transfer learning. This section specifies the archi-

tecture of ExBERT and how it works in detail.

3.4.1 Architecture of ExBERT

ExBERT mainly consists of two stages, i.e., BERT transfer learning and ex-

ploitability prediction application, as shown in Fig. 3.3. The BERT transfer

learning process will finally generate a fine-tuned BERT model, which will be

used in the exploitability prediction application stage. Exploitability prediction

application process consists of four steps, namely, tokenization, token embedding,

sentence embedding and exploitability prediction. Fig. 3.3 shows the sequential

relationship of these steps. Firstly, in the tokenization step, vulnerability descrip-

tions are split into tokens with wordpiece tokenization algorithm. Then, in token

embedding step, the tokenized tokens are put into the fine-tuned BERT model.

The outputs of the fine-tuned BERT at the l-th (l=-1,-2,· · · ,-L) layer are the

extracted token embeddings, where L is the total number of Transfer layers in

BERT and the symbol ‘-’ indicates that we count the layer from the output layer

to the input layer. Next, in the sentence embedding step, instead of picking [CLS]

token embedding directly as the sentence embedding, we design a Pooling Layer

to extract the sentence-level semantic features based on all token embeddings.

Finally, a Classification Layer with an LSTM classifier is designed to calculate

the predicted likelihood of exploitability ŷ. We state how the proposed framework

works in detail in the rest of this section.

37



3.4 Methodology

Source domain

Pre-trained

BERT

Fine-tuned

BERT

Randomly 

initialized

BERT Training Fine-tuning

Wikipedia 

(2,500 million words)
 Description Corpus 

(5 million words)

Token embedding 

by fine-tuned BERT

[CLS]

token2

token3

[SEP]
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Fig. 3.3. The architecture of the proposed framework ExBERT

3.4.2 BERT Transfer Learning

BERT transfer learning means fine-tuning a pre-trained BERT into a fine-tuned

BERT using the collected description corpus. The pre-trained BERT is trained

from a randomly initialized BERT on the two pre-training corpora BooksCorpus

and English Wikipedia performed on 4 Cloud TPUs in Pod configuration (16

TPU chips total) [64]. Google AI has trained and released many versions of

pre-trained BERT to satisfy different applications.

The first thing for BERT transfer learning is to download a proper pre-trained

BERT model. We choose the uncased BERTbase [66] as the pre-trained model,

which consists of 12 Transfer layers. Then, all vulnerability descriptions in the

NVD database from 1999 to 2019 are collected as the domain corpus.

We simplify the input-output relationship of the pre-trained BERT model as

formula (3.3),

e[l] = fBERT (ΘBERTpret, t), (3.3)

where t=[t1, t2, · · · , tn] is a token list with n tokens which is tokenised from a

vulnerability description; e[l]=[e
[l]
1 , e

[l]
2 , · · · , e[l]n ] is the corresponding l-th layer’s

token embeddings extracted from the pre-trained BERT model; ΘBERTpret is
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the pre-trained BERT model parameters; fBERT (·) is the forward propagation

mapping function between t and e[l], which is decided by the BERT structure;

e
[l]
j ∈ RH

[l]
BERT is the l-th layer’s token embedding for the j-th token tj, where

H
[l]
BERT is the hidden size of the l-th layer.

After transfer learning, parameters of BERT are updated from the pre-trained

state ΘBERTpret to the fine-tuned state ΘBERTft. Compared with training a BERT

model from scratch, applying transfer learning to BERT model can not only

maintain the high performance brought by the comprehensive model, but also

avoid the extremely high training cost and the lack of domain data.

3.4.3 Exploitability Prediction Application

3.4.3.1 Tokenization via Wordpiece Tokenization

Tokenization via Wordpiece Tokenization is a data pre-processing process for

NLP. Descriptions D are tokenized into token lists T=[t(1),t(2), · · · , t(m)], where

t(i)=[t
(i)
1 , t

(i)
2 , · · · , t(i)n ] is a token list split from description d(i); n is the pre-set

max sequence length for tokenized descriptions. The notation t
(i)
j means the j-th

token split from the i-th description d(i), where i ∈{1,2,· · · , m} and j ∈{1, 2,

· · · , n}.

3.4.3.2 Token Embedding by Fine-tuned BERT

The output of tokenizaiton is the input of token embedding. When inputting a

token list t, the fine-tuned BERT will output different level of token embeddings

through different BERT Transfer Layers. For example, the l-th layer’s token

embeddings extracted from the fine-tuned BERT is expressed as below:

e[l] = fBERT (ΘBERTft, t). (3.4)

Similar with equation (3.3), t=[t1, t2, · · · , tn] is a token list with n tokens,

e[l]=[e
[l]
1 , e

[l]
2 , · · · , e[l]n ] is the corresponding l-th layer’s token embeddings extracted

from fine-tuned BERT model. e
[l]
j ∈ RH

[l]
BERT is the l-th layer’s token embedding

for the j-th token tj, where H
[l]
BERT is the hidden size of the l-th layer of BERT.

Especially, the embedding of the first token [CLS] is e
[−1]
1 . Generally speaking,

39



3.4 Methodology

the closer l is to the output layer, the more specific and application-relevant the

corresponding token embeddings are. In the original paper, they always extract

the last layer’s token embedding for [CLS] e
[−1]
1 as the semantic feature to do

classification task.

3.4.3.3 Sentence Embedding by Pooling Layer

In order to leverage the abundant semantic information contained in all token

embeddings and more layers, instead of using e
[−1]
1 only like the original paper,

we design a Pooling Layer for ExBERT to obtain the sentence-level embeddings

on top of the fine-tuned BERT. The input of the Pooling Layer is the token

embeddings e[l] extracted from fine-tuned BERT. The output of the Pooling

Layer is decided by the adopted pooling strategy. Common pooling strategies for

NLP tasks include ‘Mean’ and ‘Max’. Additionally, paper [64] has demonstrated

that the token embedding for [CLS] e
[l]
1 can be used as the sentence embedding

for downstream tasks directly. Therefore, we define the output of the Pooling

Layer as a piecewise function formulated in (3.5),

e
[l]
sent =


mean(e[l]), pooling strategy is Mean

max(e[l]), pooling strategy is Max

e
[l]
1 , pooling strategy is [CLS]

, (3.5)

where l can be any single layer in BERT or a combination of several layers; e
[l]
sent

means the extracted sentence-level embedding.

3.4.3.4 Exploitability Prediction in Classification Layer

Following the Pooling Layer is a Classification Layer, which contains a hidden

layer and an output layer. We adopt a LSTM layer instead of a DenseNN as the

hidden layer to capture the dependencies amongst extracted sentence embeddings.

The output of the hidden layer is formulated in (3.6),

ah = fLSTM(ΘLSTM , esent), (3.6)
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where ah ∈ RHh is the activation result and Hh is the number of hidden nodes in

the hidden LSTM layer; ΘLSTM is the parameters for the LSTM layer; fLSTM(·)
is the mapping functions for LSTM.

The final output layer is a DenseNN layer with one sigmoid node and the final

exploitability prediction result is calculated as below,

ŷ = σ(Wah + b), (3.7)

where weights W and bias b are the parameters of the final DenseNN layer, σ

is the sigmoid activation function and ŷ is the final possibility of vulnerability

exploitability.

3.5 Experiments and Results

All experiments in this work are implemented on an Ubuntu 18.04 operating sys-

tem with two NVIDIA GeForce RTX 2080 Ti GPUs. The deep learning frame-

work used is Keras [76] with a TensorFlow backend.

3.5.1 Dataset Collection and Experimental Setting

The datasets used in this work are downloaded from NVD [37] and EDB [38], con-

taining all vulnerabilities and exploits published between 1999 and 2019. Different

vulnerabilities and exploits are identified by CVE-IDs and EDB-IDs accordingly.

Most studies including this work mark a vulnerability as exploitable when it has

a corresponding proof-of-concept exploit identified by an EDB-ID. As shown in

Fig. 3.4, we obtain ‘CVE-ID/Description’ pairs from NVD database and ‘EDB-

ID/CVE-ID’ pairs from EDB website. The two databases are integrated into

‘Description/Exploitability’ pairs through CVE-ID matching. If a CVE-ID can

be found in the ‘EDB-ID/CVE-ID’ pairs, the corresponding exploitability is set to

1 and the vulnerability is exploitable. Otherwise, the corresponding exploitability

is set to 0 and the vulnerability is unexploitable. Finally, the collected dataset

is denoted as {D,Y }. In total, we download 123,254 ‘CVE-ID/Description’ pairs

from the NVD website and 41,365 ‘EDB-ID/CVE-ID’ pairs from the EDB web-

site.
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Fig. 3.4. Dataset collection process

After data de-duplication and integration, we finally get 118,209 samples.

Among them, 23,073 (19.52%) unique vulnerabilities have corresponding exploits

which are exploitable. We randomly selected 23,073 non-exploitable vulnerabil-

ities, along with all exploitable vulnerabilities, to form a balanced dataset with

46,176 vulnerabilities. The dataset is divided to a training set, a validation set

and a test set according to a ratio of 70%: 15%: 15%. The training set is used

to train classifiers; validation set is used to select hyper-parameters and test set

is used to evaluate the final performance of ExBERT.

We apply wordpiece tokenization on all descriptions and listed the distribution

of the word counts and token counts in Fig. 3.5, in which we omit word bins >

300 and token bins > 600 to give more details on the valid data. In fact, 99.16%

of descriptions is ≤ 128 words. After tokenization, 99.11% of descriptions is ≤
254 tokens. Considering the added tokens [CLS] and [SPE], the hyper-parameter

max sequence length is set to 256.

The pre-trained BERT model used in this chapter is a downloaded BERTbase

[66] model, whose Transfer layer L=12 and hidden size H
[l]
BERT=768. All 118,209

vulnerability descriptions are used as the fine-tuning corpus, and the training

epochs are set to 3. It takes about 3 hours and 20 minutes to finish the fine-

tuning process on 2 NVIDIA GeForce RTX 2080 Ti GPUs.
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Fig. 3.5. The word count and token count distributions for descriptions

3.5.2 Ablation Study

ExBERT is an improved framework based on BERT and we propose three im-

provements in token embedding stage, Pooling Layer and Classification Layer.

Compared with the original BERT model, the proposed improved factors and

their possible values are listed as below.

(1) In token embedding stage, the BERT model can be fine-tuned BERT or

pre-trained BERT.

(2) In Pooling Layer, pooling strategy can be Mean, Max or [CLS] and BERT

token embedding layer l can be -1,-2, et al.

(3) In Classification Layer, the classifier can be DenseNN, RNN and LSTM.

When implementing ExBERT as a whole, those improvements make contri-

butions at the same time. To evaluate the effect and influence of every single

factor in ExBERT, we conduct a series of ablation studies and list the results in

this section.

3.5.2.1 Wordpiece Tokenization Effect Analysis

As described in Section 3.2.3, we adopt wordpiece tokenization method to deal

with low-frequency cybersecurity domain-specific words. To verify if the semantic

meaning of low-frequency words which are not contained in the vocabulary can

be learnt, we select several words in Table 3.1 to visualise their word embeddings

in a two-dimensional space as shown in Fig. 3.6.

To get the data points in Fig. 3.6, we first feed each word into the pre-

trained BERT and fine-tuned BERT separately. Although the words ‘spyware’,
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Fig. 3.6. Word embeddings in a two-dimensional space

‘malware’ and ‘vulnerabilities’ are not contained in the vocabulary, they can be

tokenized in token sequences. BERT has the capacity to learn semantic knowledge

bidirectionally from a token sequence. Specifically, their word embeddings can be

represented by their corresponding [CLS] token embeddings in the last layer of

the pre-trained or fine-tuned BERT model. After that, a Principal Component

Analysis (PCA) algorthm is used to reduce those token embeddings to a two-

dimensional space.

In the cybersecurity domain, both ‘spyware’ and ‘malware’ are harmful soft-

ware that can take advantage of software ‘vulnerabilities’ to attack a user’s sys-

tem. As shown in Fig. 3.6, both ‘spyware’ and ‘malware’ have a relatively

shorter distance to ‘vulnerabilities’ with fine-tuned BERT model, compared with

pre-trained BERT model. This example shows that, after fine-tuning with cy-

bersecurity corpus, the fine-tuned model is indeed better at understanding the

semantics in the cybersecurity context than the pre-trained model.

This conclusion also holds for words in the vocabulary, such as ‘windows’,

‘linux’, ’root’ and ‘leaves’. In a general context, ‘windows’ mean an opening in a

wall or roof, so it has a long distance with ‘linux’, which is an operating system,

in a semantic space established by BERT model. However, a fine-tuned BERT

model learnt that both ‘windows’ and ‘linux’ are operating systems, so they are

very close in the fine-tuned cybersecurity semantic space. Similarly, in a general
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Table 3.2: Word distances in a two-dimensional space

Word pairs In vocabulary
Distances

(BERT)

Distances

(Fine-tuned BERT)

spyware→vulnerabilities No 11.44 3.66

malware→vulnerabilities No 5.79 2.41

spyware→malware No 5.67 2.62

windows→linux Yes 13.59 1.61

linux→root Yes 7.56 1.45

root→leaves Yes 1.76 6.38

context, both ‘root’ and ‘leaves’ are a part of plants, so they are quite close in

BERT semantic space. In contrast, ‘root’ has a much closer relationship with

‘linux’ than with ‘leaves’ in the cybersecurity context.

Table 3.2 lists the Euclidean distances between word pairs in Fig. 3.6, in

which the minimum distance of each word pair is emphasised in bold.

3.5.2.2 Transfer Learning Effect Analysis

To evaluate the effect and influence of transfer learning on the performance of ex-

ploitability prediction, we fix pooling strategy as [CLS], BERT token embedding

layer l=-1 and classifier in Classification Layer as DenseNN. The only variable

factor is the BERT model in token embedding stage.

Token Embedding Visualization Comparison. Fig. 3.7 shows the [CLS] token

embeddings of 1000 randomly chosen samples extracted from fine-tuned BERT

and pre-trained BERT. The original [CLS] token embedding’s dimension is re-

duced from H
(−1)
BERT=768 to 2 using Principal Component Analysis (PCA). The

horizontal axis is the 1st principal component and the vertical axis is the 2nd prin-

cipal component of [CLS] token embedding. The dots in navy are non-exploited

samples while the dots in dark orange are exploited samples. It is obvious that

[CLS] token embeddings extracted from fine-tuned BERT are more promising to

separate exploitable and unexploitable vulnerabilities compared with pre-trained

BERT.
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Fig. 3.7. [CLS] token embeddings visualization comparison

Table 3.3: Comparison on fine-tuned BERT and pre-trained BERT

Models Fine-tuned BERT Pre-trained BERT Improvement(%)

Best epoch 11.63 53.47 78.24%

Loss 0.2348 0.4516 48.01%

Accuracy 0.9098 0.7924 14.54%

F1 score 0.9106 0.7943 14.71%

Precision 0.9134 0.7963 14.53%

Recall 0.9078 0.7926 14.53%

Classification performance Comparison. To make quantitative comparison,

we input the [CLS] token-embeddings extracted from fine-tuned and pre-trained

BERT to a DenseNN classifier and compare their classification performance in

Fig. 3.8 and Table 3.3.

Fig. 3.8 shows the results of one training process. The left subplots are the

results on fine-tuned BERT while the right subplots are on the pre-trained BERT.

The x-axes represent the number of training epochs and the y-axes are the metrics

specified by the y-labels. The lines in navy are the results on the training set

while the lines in dark orange are on the validation set. Fig. 3.8 shows that

using fine-tuned BERT can achieve approximately 0.9 on the accuracy, F1 score,

precision and recall on the validation set, while using the pre-trained BERT can
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Fig. 3.8. Training process comparison on fine-tuned BERT and pre-trained BERT
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Table 3.4: Comparison on pooling strategies

Pooling strategies Mean Max [CLS]

Best epoch 16.17 22.53 11.63

Loss 0.2386 0.2421 0.2348

Accuracy 0.9063 0.9036 0.9098

F1 score 0.9070 0.9044 0.9106

Precision 0.9106 0.9069 0.9134

Recall 0.9034 0.9019 0.9078

only get around 0.8 on all criteria.

Table 3.3 shows the performance comparison on the test set. To reduce the

influence of randomness, we repeat the training and test experiments 30 times and

place the mean values into Table 3.3. Best epoch is the training epoch number

on which the model achieves the smallest validation loss. Results on the test set

demonstrate the effectiveness of the transfer learning. The accuracy has improved

by 14.54% from 0.7924 to 0.9098 via transfer learning. The F1 score, precision

and recall also have an equivalent improvement as shown in Table 3.3. The

average best epoch is decreased by 78.24% from 53.47 to 11.63, which indicates

the fine-tuned BERT model are more presentative in the exploitability prediction

domain and therefore needs less training epochs to distinguish the exploitable

and unexploitable vulnerabilities.

3.5.2.3 Pooling Layer Effect Analysis

There are two variable factors in Pooling Layer, i.e., pooling strategy and BERT

token embedding layer. These two factors are analysed separately below.

Pooling Strategy Comparison. Similarly, to evaluate the effect and influence

of pooling strategy on the performance of exploitability prediction, we fix to-

ken embedding model as fine-tuned BERT, BERT token embedding layer l=-1

and classifier in Classification Layer as DenseNN. The only variable factor is the

pooling strategy. Evaluation results are shown in Fig. 3.9 and Table 3.4.
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Fig. 3.9 shows the results of one training process. All left subplots are the

results of ‘Mean’ pooling strategy, all middle subplots are for ‘Max’ and all right

subplots are for [CLS]. Similarly, all x-axes represent the number of epochs for

training and all y-axes are the metrics specified by y-labels. The lines in navy are

results on the training set while the lines in dark orange are on the validation set.

The results in Table 3.4 are also the average results of 30 independent experiments

to eliminate the influence of randomness.
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Fig. 3.9. Training process comparison on pooling strategies
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Table 3.5: Comparison on BERT token embedding layers

BERT layers Best epoch Loss Accuracy F1 score Precision Recall

-1 11.63 0.2348 0.9098 0.9106 0.9134 0.9078

-2 8.13 0.2370 0.9068 0.9076 0.9103 0.9049

-1,-2 10.17 0.2352 0.9092 0.9099 0.9136 0.9062

-3,-4 9.10 0.2444 0.9030 0.9039 0.9053 0.9026

-1,-2,-3,-4 8.10 0.2343 0.9087 0.9096 0.9112 0.9079

Furthermore, Fig. 3.9 shows that although pooling strategy ‘Mean’, ‘Max’ and

[CLS] can achieve equivalent good performance on their best epochs, ‘Mean’ has a

more stable performance on both training set and validation set when the training

epoch increases. However, both ‘Max’ and [CLS] will become overfitting when

training epoch increases, which means the performance increases on the training

set but decreases on the validation set, thus the generalization performance will

become worse.

Table 3.4 indicates all pooling strategies can achieve very good performance.

However, [CLS] has a weak advantage.

BERT Token Embedding Layer Comparison. Similarly, to evaluate the effect

and influence of BERT token embedding layer on the performance of exploitability

prediction, we fix token embedding model as fine-tuned BERT, pooling strategy

as [CLS] and classifier in Classification Layer as DenseNN. The only variable

factor is the BERT token embedding layer in Pooling Layer. Setting BERT

token embedding layer l ∈{-1,-2,[-1,-2],[-3,-4],[-1,-2,-3,4]}, the evaluation results

for BERT token embedding Layer are listed in Table 3.5. When BERT layer

contains more than one layer (i.e. [-1,-2]), the token embedding for each token is

the concatenation of token embeddings in each layer.

Table 3.5 also presents the average results of 30 independent experiments to

reduce the influence of randomness. As shown in Table 3.5, layer -1 achieves the

best accuracy 0.9098 and F1 score 0.9106, layer [-1,-2] gains the best precision

0.9136 and layer [-1,-2,-3,-4] reaches the smallest best epoch 8.1 and the best recall

0.9079. However, generally speaking, different BERT token embedding layers

have an equivalent performance on exploitability prediction and none of them has
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Table 3.6: Classifier Comparison Results

Classifiers Best epoch loss Accuracy F1 score Precision Recall

DenseNN 11.63 0.2348 0.9098 0.9106 0.9134 0.9078

RNN 14.73 0.2350 0.9102 0.9109 0.9136 0.9083

LSTM 11.57 0.2354 0.9112 0.9116 0.9182 0.9051

an overwhelming advantage. To decrease the computing complexity caused by

concatenating token embedding between different layers, finally, ExBERT fixed l

to -1.

3.5.2.4 Classifier Effect Analysis

Similarly, to evaluate the effect and influence of classifier on the performance

of exploitability prediction, we fix token embedding model as fine-tuned BERT,

pooling strategy as [CLS] and BERT token embedding layer l=-1. The only

variable factor is the classifier in Classification Layer. The evaluation results for

different classifiers are listed in Table 3.6, which also presents the average results

of 30 independent experiments to reduce the influence of randomness.

As shown in Table 3.6, classifier RNN achieves the best recall 0.9083 and

LSTM obtains the best accuracy 0.9112, F1 score 0.9116 and precision 0.9182.

Therefore, LSTM has a weak advantage compared with DenseNN and RNN.

3.5.3 Remarks

In Section 3.5.2, we analyse the effect and influence of various design factors

separately. In this section, we put things together and list the exploitability

prediction results on ExBERT and BERT as well as 8 variants for both of them

(ExBERT V1 to ExBERT V8 and BERT V1 to BERT V8) in Fig. 3.10 and Table

3.7. Obviously, ExBERT and its variants outperformed BERT and its variants

with a large margin, improved by almost 14% on accuracy, F1 score, precision

and recall.
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Table 3.7: Performance comparison on ExBERT and BERT as well as their

variants

BERT
Pooling

strat.
Classifiers Model

Best

epoch
Loss Acc. F1 Prec. Recall

Fine-

tuned

BERT

Mean

DenseNN ExBERT V1 16.17 0.2386 0.9063 0.9070 0.9106 0.9034

RNN ExBERT V2 31.30 0.2391 0.9071 0.9079 0.9103 0.9055

LSTM ExBERT V3 15.47 0.2385 0.9068 0.9076 0.9100 0.9053

Max

DenseNN ExBERT V4 22.53 0.2421 0.9036 0.9044 0.9069 0.9019

RNN ExBERT V5 17.57 0.2429 0.9034 0.9042 0.9074 0.9011

LSTM ExBERT V6 28.27 0.2418 0.9034 0.9042 0.9066 0.9019

[CLS]

DenseNN ExBERT V7 11.63 0.2348 0.9098 0.9106 0.9134 0.9078

RNN ExBERT V8 14.73 0.2350 0.9102 0.9109 0.9136 0.9083

LSTM ExBERT 11.57 0.2354 0.9112 0.9116 0.9182 0.9051

Pre-

trained

BERT

Mean

DenseNN BERT 65.30 0.4389 0.7996 0.8032 0.7978 0.8088

RNN BERT V1 96.83 0.4510 0.7945 0.7959 0.7994 0.7925

LSTM BERT V2 54.57 0.4386 0.8000 0.8029 0.8002 0.8058

Max

DenseNN BERT V3 90.20 0.4670 0.7758 0.7735 0.7909 0.7573

RNN BERT V4 88.26 0.4750 0.7749 0.7750 0.7837 0.7666

LSTM BERT V5 94.40 0.4648 0.7795 0.7794 0.7889 0.7705

[CLS]

DenseNN BERT V6 53.47 0.4516 0.7924 0.7943 0.7963 0.7926

RNN BERT V7 95.90 0.4535 0.7879 0.7890 0.7939 0.7843

LSTM BERT V8 38.00 0.4521 0.7917 0.7935 0.7957 0.7916
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Fig. 3.10. Performance comparison on ExBERT and BERT as well as their vari-

ants

3.5.4 Comparison With Other Similar Works

We compare ExBERT with several existing algorithms from the aspects of feature

extraction method, classification algorithm and four classification metrics in Table

3.8. All algorithms listed in Table 3.8 use vulnerability descriptions from the NVD

database as the input feature to predict the exploitability of vulnerabilities. The

results of other works are obtained from the original papers. Results in Table

3.8 show that ExBERT has greatly improved the performance of vulnerability

exploitability prediction on accuracy, F1 score, precision and recall.

3.5.5 Result Analysis

Based on results presented in Fig. 3.8 to Fig. 3.10 and Table 3.3 to Table 3.7,

we can draw the following conclusions.

(1) The proposed framework ExBERT achieves the state-of-the-art results for

exploitability prediction problem. ExBERT can achieve 91.12% on the accuracy,

0.9116 on F1 score, 91.82% on precision and 90.51% on recall.

(2) The dominating factor for performance improvement is BERT fine-tuning
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Table 3.8: Performance comparison with other similar works

Researchers Feature extraction Classifier Acc. F1 Prec. Recall

Bozorgi[9] TF-IDF SVM 0.890 - - -

Nazgol Tavabi [11] TF-IDF/Doc2Vec SVM/RF - 0.660 - -

Zhuobing Han [55] word embedding CNN 0.816 0.816 0.818 0.815

Michel Edkrantz [50] 10,000 MCWs SVM 0.833 - 0.825 0.834

ExBERT Fine-tuned BERT LSTM 0.911 0.912 0.918 0.905

via transfer learning other than pooling strategies or classifiers. Fig. 3.7, Fig.

3.8 and Table 3.3 have verified that only extracting [CLS] token embedding from

the fine-tuned BERT can achieve desirable performance. Keeping other settings

identical, extracting features from the pre-trained BERT can only get around 0.8

on all metrics.

(3) As demonstrated in Fig. 3.10 and Table 3.7, pooling strategy [CLS] can

achieve the best performance on fine-tuned BERT, while ‘Mean’ is the best for

the pre-trained BERT. ‘Max’ is the worst for both of them. The reason why

[CLS] can achieve best results on the fine-tuned BERT is that [CLS] itself is a

token embedding extracted from the fine-tuned BERT and it learns some semantic

information of the entire sentence during the fine-tuning process.

(4) LSTM is the best classifier for ExBERT, as shown in Table 3.6 and 3.7.

This verifies that LSTM is suitable for dealing with sequence inputs by capturing

the dependencies within inputs.

3.6 Conclusion

To find the most possible exploitable vulnerabilities, this chapter proposes an

exploitability prediction framework ExBERT to accurately predict if a vulner-

ability will be exploited or not. The experiment results on 46,176 real-world

vulnerabilities show that ExBERT can achieve state-of-the-art performance on

exploitability prediction.
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Chapter 4

Online Vulnerability

Exploitability Prediction

ExBERT, proposed in Chapter 3, has achieved good performance on vulnerabil-

ity exploitability prediction. However, two drawbacks still exist. Firstly, it is

implemented under the assumption that the data distribution and patterns for

exploitability prediction are static, so ExBERT is trained and validated in an

offline learning mode on randomly shuffled data between 1999 and 2020. Fur-

thermore, ExBERT focuses on learning the semantic features from vulnerability

descriptions but ignores other available sources of related information.

This chapter proposes a novel consecutive batch learning algorithm, called

Real-time Dynamic Concept Adaptive Learning (RDCAL), to predict vulnera-

bility exploitability in an online learning mode. RDCAL can deal with possible

concept drift and dynamic class imbalance problems in a real-time exploitability

prediction scenario. Furthermore, in addition to vulnerability description, mul-

tiple sources of vulnerability information are taken into account when extracting

features, including information on user privilege, user interaction, availability,

authentication, confidentiality, severity, etc.

This chapter starts with a literature review in Section 4.1, followed by the

related works on concept drift and concept drift learning in Section 4.2. Then

a detailed description of RDCAL is presented in Section 4.3. The real-time ex-
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ploitability prediction results of RDCAL on real-world vulnerabilities from 1988

to 2020 are provided in Section 4.4, followed by a comparison with other baseline

algorithms and a discussion. Section 4.5 concludes this chapter.

4.1 Introduction

In industry, most organisations prioritise their remediation efforts by overly re-

lying on the Common Vulnerability Scoring System (CVSS) [30, 77]. However,

CVSS has been found to be sub-optimal as an exploitability indicator. In some

cases, it is no better than randomly choosing vulnerabilities to remediate [8, 78].

To complement CVSS, researchers seek to construct machine-learning and

deep-learning-based predictive models by making use of a large collection of mul-

tiple open-source datasets together [45]. For example, Bozorgi et al. adopted

an SVM classifier to predict whether vulnerabilities will be exploited within t

(t ≥0) days, operating on high dimensional feature vectors extracted from the

text fields, time stamps, cross-references and other entries in the existing vulnera-

bility disclosure reports[9]. Finally, the best performance of 79.82% was recorded

in 2010 [9]. The work in [50] investigated the binary classification performance

of exploitability prediction on a wide range of machine learning (ML) classifiers,

including SVM, k-nearest neighbours (KNN), naive Bayes and random forests,

achieving the best testing accuracy of 83% with the SVM algorithm on data

collected from the NVD[37] and EDB [38] databases. In these previous works,

text-related features are usually extracted using traditional statistical text pro-

cessing techniques, such as the Term Frequency-–Inverse Document Frequency

(TF—IDF) algorithm and common word counting, without capturing the con-

text and obtaining semantic features at a high level.

With recent advances in natural language processing (NLP) [79, 80], tech-

niques such as word embedding, sen2vec and Bidirectional Encoder Representa-

tions from Transformers (BERT) are employed to extract semantic features from

vulnerability descriptions[11, 56], having achieved great success in classification

performance. For example, by applying transfer learning to a pre-trained BERT

model, the work in [7] achieved an accuracy of 91% in exploitability prediction.
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Despite the advances, a close inspection reveals that the existing approaches

make strong assumptions with respect to data distributions. In other words, they

assume that all available data share the same data distribution, using batch learn-

ing to train the classifier and adopt hold-out evaluation to evaluate their models

in a randomly separated test set. Due to the evolving system behaviours and

environments, concept drift exists in the data distribution of both vulnerabilities

and exploits [6]. As a result, traditional batch learning and hold-out evaluation

can lead to an inflated performance because of unveiling unseen data in the future

to construct the predictive model.

Considering the real-world applications of exploitability prediction, this chap-

ter conducts concept drift learning and trains the classifier incrementally as new

data becomes available. Furthermore, a prequential evaluation or an interleaved-

test-then-train evaluation mode will be used to assess the real-time performance

of the classifier. This means that new data would be used to test the classifier’s

performance before training the classifier. Undoubtedly, as an online learning

mode, concept drift learning is more in line with a practical application than

batch learning or offline learning [81]. It also enables the classifier to capture

new concepts when new data arrive. Therefore, it can achieve more reliable ex-

ploitability prediction performance.

On the other hand, compared with batch learning, predicting exploitability

with concept drift learning faces the following challenges due to the dynamic and

incomplete nature of evolving data.

(1) Class label drift problem. A unique trait of vulnerabilities is that their

exploitability is chronologically variable. In other words, at one time slice, a

vulnerability may be labelled as unexploitable, since no corresponding published

exploits exist. However, several months or years later, the vulnerability can

become exploitable with proof-of-concept exploits available. In the batch learning

scenario, both vulnerabilities and exploits are collected at a certain date. Thus,

the time variation factor and label drift problem are ignored by previous studies.

However, with concept drift learning, class label drift is a problem that has to

be considered when collecting the data on vulnerabilities and exploits, evaluating

and updating the classifier over time.
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(2) Dynamic class imbalance problem. All data is available in batch learning

scenarios, and the class imbalance status is static and determined. Therefore,

existing solutions, such as resampling samples, generating synthetic samples and

penalizing misclassification samples, can be applied directly. However, the mag-

nitude of data imbalance is dynamically changing in the data stream. Probably,

the minority class may become the majority class in a certain time slice. There-

fore, more flexible and sensitive strategies are urged for handling the dynamic

class imbalance problem in concept drift learning.

To partly solve the aforementioned problems, this chapter proposes an online

learning algorithm called RDCAL to address these two challenges in concept

drift learning and improve the practicability and classification performance for

the exploitability prediction task. RDCAL comprises two strategies. One is the

Class Rectification Strategy (CRS), which is designed to handle the actual drift

in sample labels, and the other is the Balanced Window Strategy (BWS), which

is used to boost the prediction performance of the minority class during real-

time learning. The proposed RDCAL learning algorithm with a fully-connected

neural networks (DenseNN) classifier achieves state-of-the-art performance on

exploitability prediction in data stream learning scenarios, compared with the

other five adaptive data stream learning algorithms.

4.2 Related Work

The online exploitability prediction problem is formulated as a concept drift learn-

ing problem. This section discusses some of the most important and related

literature in data stream learning.

4.2.1 Concept Drift

Concept drift is a phenomenon in which the statistical properties of a target

domain change over time in an arbitrary way [82]. Given a set of samples at

a period of time [0, t], denoted as S0,t = {d0, d1, · · · , dt}, where di={Xi, yi}
is one data sample or instance observed at time step i, Xi ∈ Rn is a feature
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vector in an n-dimensional feature space X and yi is the corresponding label. Let

S0,t follows a certain distribution F0,t(X, y), if F0,t(X, y) ̸= Ft+1,∞(X, y), concept

drift occurs at time step t+1. The term concept drift at time step t can be

defined as the change of joint probability of X and y at time step t, denoted

as ∃t : Pt(X, y) ̸= P(t+1)(X, y) [82]. Considering that Pt(X, y) is determined by

two parts as Pt(X, y)=Pt(X) × Pt(y|X), there are three main sources triggering

a concept drift.

(1) Virtual drift: Pt(X) ̸= P(t+1)(X) while Pt(y|X)=Pt+1(y|X). Since Pt(X)

drift doesn’t affect the decision boundary, it has been considered a virtual drift

[82, 83].

(2) Actual drift: Pt(y|X) ̸= Pt+1(y|X) while Pt(X) = P(t+1)(X). When actual

drift happens, the actual decision boundary changes. If the classifier cannot

update accordingly, the performance will decrease.

(3) Hybrid drift: a mixture of virtual drift and actual drift.

4.2.2 Concept Drift Learning

According to when to handle concept drift, there are generally two learning strate-

gies, namely, lazy and active. For the lazy strategy, concept drift learning consists

of a drift detection process and a drift adaptation process [84]. When new data

arrives, either data-distribution-based or error-rate-based detection algorithms

are used to detect the occurrence of concept drift. ADaptive sliding WINdow

(ADWIN) [85], for example, is a data-distribution-based detection algorithm, by

calculating the absolute value of some statistics over two windows and compar-

ing it with a pre-defined threshold to determine if drift occurs. PageHinkley [86],

another example of data-distribution-based method, employs a Page-Hinkley test

as a drift detector to monitor the features’ magnitude of changes. Kolmogorov-

Smirnov Windowing (KSWIN) is a concept change detection method based on the

Kolmogorov-Smirnov (KS) statistical test [87]. Drift Detection Method (DDM)

[88], Early Drift Detection Method (EDDM) [89] and Drift Detection Method

based on Hoeffding’s bounds (HDDM) [90] are examples of concept change de-

tection methods based on learner’s error rate. Once drift occurs, drift adaptation
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algorithms will adjust the classifier model accordingly. For active strategy, the

classifier updates constantly and incrementally when new data is available.

Generally speaking, the performance of lazy-strategy-based concept drift learn-

ing algorithms are more effective than active-strategy-based methods, due to less

frequency of updating classifier. However, the drift detection process itself is also

resource-consuming. Furthermore, the performance of lazy strategy algorithms is

greatly limited to the sensitivity of drift detection algorithms.

For both learning strategies, basically, regarding how to handle concept drift

there are four strategies. Firstly, redesign base classifiers, such as redesigning the

nodes of decision tree [91] or the structures of Neural Networks [15]. Secondly,

retrain or fine-tune the parameters or hyperparameters of the learner[41, 92].

Thirdly, adaptively change the training set formation methods, such as adjusting

training windows, training sample selection strategies and training sample weights

adaptively[93, 94, 95]. Lastly, fusion rules or classifier ensemble algorithms are

also good choices for drift adaptation [92, 96, 97].

Among these four strategies, ensemble algorithms are the most popular to

reach state-of-the-art performance. On the other hand, it also has a higher com-

putational complexity. It is worth noting that these four strategies are not sep-

arated from each other. Instead, they are often combined with each other to

achieve better performance.

4.3 Real-time Dynamic Concept Adaptive Learn-

ing

To avoid either the possible omission of concept drift detection with lazy strategy

or the frequent classifier updating with active strategy, we make a trade-off.

Specifically, this work adopts a consecutive batch learning strategy as the learning

framework for exploitability prediction. With respect to concept drift adaptation,

the proposed RDCAL algorithm involves a combination of classifier parameter

fine-tuning and training set reformation.
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4.3.1 Consecutive Batch Learning Framework

The workflow of the consecutive batch learning framework adopted by this work is

shown in Fig. 4.1. As a general concept drift learning framework, it is algorithm-

agnostic. In other words, the feature extraction algorithms, feature selection

algorithms, classifier models and classifier updating strategies used in this frame-

work can be flexibly selected without affecting how the whole framework works.

We introduce the involved notations and main processes in the following subsec-

tions.
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Fig. 4.1. Consecutive batch learning framework.

4.3.1.1 Feature extraction

As shown in Fig. 4.1, I={I(1), · · · , I(k), · · · } is a sequence of consecutive raw

input data batches in chronological order. Each data batch I(k) contains Na raw

samples arriving in a time slice T (k). Different feature extraction and feature

selection algorithms can be used to extract the numerical features X={X(1), · · · ,
X(k), · · · } from I, where X(k)={X(k)

1 , X
(k)
2 , · · · , X(k)

Na
} is the feature set extracted

from the k-th input raw data batch I(k); X(k) ∈ RNa×n; Na is the number of

samples in the data batch; n is the dimension of the extracted sample feature;

X
(k)
i ∈ Rn (i ∈ [1, Na]) is the i-th sample in the data batch X(k).
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4.3.1.2 Prediciton

The notation in Fig. 4.1 f (1)(·), · · · , f (k)(·), · · · represents a sequence of different

status of the same classifier with different parameters, where f (k)(·) represents

the classifier used to predict the output label at the k-th time slice. f (k+1) is

the sequential status fine-tuned from f (k) based on the labelled data in the k-th

time slice and the learning strategies adopted. If no prior data or knowledge is

available, f (1)(·) can be initialized with random parameters. Otherwise, it can be

initialized with a pre-trained model.

Once feature X(k) is extracted from raw data batch I(k), the corresponding

predicted label Ŷ (k) can be calculated by (4.1).

Ŷ (k) = f (k)(X(k)), (k ≥ 1). (4.1)

Ŷ={Ŷ (1), Ŷ (2), · · · , Ŷ (k), · · · } represents the sequence of consecutive predicted

label batches, which can be used by downstream applications before real labels

are available.

4.3.1.3 Data integration

The notation O={O(1), · · · , O(k), · · · } in Fig. 4.1 represents a sequence of raw

output data stream, where O(k) is the batch collected within T (k), the same time

period with I(k). Note that, the size of O(k) is not necessarily the same as I(k)

and the samples in I(k) and O(k) are not in one-to-one correspondence.

Considering the situation in cybersecurity, let I(k)= {I(1)1 , · · · , I(k)Na
} be a

batch of latest disclosed vulnerabilities within the time period of T (k), where I
(k)
i

(i=1, · · · , Na) is the i-th vulnerabilities. O(k) is a batch of exploits published

in the same time period T (k). Obviously, O(k) can exploit vulnerabilities in I(k)

and other historical vulnerabilities in I(1), · · · , I(k−1) as well as some unknown

vulnerabilities not included in O. Exploits in O(k) contain the CVE-ID (a glob-

ally unique vulnerability identifier) information of the exploited vulnerabilities,

making it possible to integrate the exploit data batch and the vulnerability data

batch. Specifically, if the vulnerabilities in I(k) are exploited by exploits in O(k),

the corresponding labels are 1 (exploitable), otherwise, are 0 (unexploitable).
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Generally speaking, each raw data in I(k) has a globally unique Sample Iden-

tification (SID), which is also inherited by the data in X(k). Through integrating

I and O with the SIDs of raw data, a sequence of class labels in batches Yc={Y (1)
c ,

· · · , Y (k)
c , · · · } can be obtained. The subscript c is the capital of ‘current’, which

means the labels are obtained by integrating the current output data batch O(k)

collected in the current time period T k. Y
(k)
c ={Y (k)

c1 , · · · , Y (k)
cNa

} is the batch labels

corresponding to I(k) and X(k). The value of Y
(k)
ci (i=1, 2, · · · , Na) is calculated

by (4.2).

Y
(k)
ci (i = 1, 2, · · · , Na) =

{
1, if fSID(X

(k)
i ) ∈ fSID(O(k))

0, if fSID(X
(k)
i ) ̸∈ fSID(O(k))

, (4.2)

where X
(k)
i is the i-th data in X(k) and the function of fSID(·) is to find out the

appeared SID set.

4.3.1.4 Classifier update

Let D
(k)
t ={X(k), Yc

(k)} be a labelled training set for the k-th time slice and W (k)

= ones(Na, 1) be the corresponding batch sample weight. The function ones(·)
means to generate an array according to the specified dimensions, filled with 1. If

no learning strategies are applied to optimise the performance of the consecutive

batch learning framework, classifier would be updated from f (k)(·) to f (k+1)(·) by

fitting D
(k)
t with a sample weight of W (k).

Algorithm 4.1 is the pseudocode of the above-mentioned consecutive batch

learning framework. Line 3, 4, 5 and 16 are four main steps executed at each

data batch. Lines 6 to 15 related to the RDCAL learning strategy will be covered

in Section 4.3.2.
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Algorithm 4.1 Consecutive batch learning framework

Input: I={I(1), · · · , I(k), · · · }; Na; O={O(1), · · · , O(k), · · · }; f (1)(·). Output:

X={X(1), · · · , X(k), · · · }; Ŷ={Ŷ (1), Ŷ (2), · · · , Ŷ (k), · · · }; Yc={Y (1)
c , · · · , Y (k)

c , · · · }; Dt={D(1)
t ,

· · · , D(k)
t , · · · }; f (2)(·), f (3)(·), · · · , f (k+1)(·), · · · }.

1: W (k)=ones(Na,1); D
(k)
t =∅

2: for each k ≥ 1 do

3: Feature extraction: extract and select features X(k) ∈ RNa×n from I(k)

4: Prediciton: predict labels Ŷ (k) by calculating Ŷ (k)=f (k)(X(k))

5: Data integration: integrate X(k) and O(k) to obtain D
(k)
t = {X(k), Yc

(k)}

6: if RDCAL== True then

7: if CRS== True then

8: run Algorithm 4.2 and get D
(k)
r

9: D
(k)
t = D

(k)
t ∪D

(k)
r

10: end if

11: if BWS== True then

12: run Algorithm 4.3 and get D
(k)
b and W

(k)
b

13: D
(k)
t =D

(k)
b ; W (k)=W

(k)
b

14: end if

15: end if

16: Classifier update: update f (k) to f (k+1) based on D
(k)
t and W (k)

17: end for

4.3.2 Real-time Dynamic Concept Adaptive Learning

RDCAL is a general learning strategy used to improve the performance of consec-

utive batch learning framework, when existing class label drift and dynamic class

imbalance. Specifically, RDCAL employs a Class Rectification Strategy (CRS) to

handle the actual drift problem and a Balanced Window Strategy (BWS) to deal

with the dynamic class imbalance problem. RDCAL achieves better performance

by optimizing the labelled training set D
(k)
t and the corresponding sample weight

W (k) applied to update the classifier over time.

As shown in Fig. 4.1, the blue quadrangle named RDCAL is the proposed

learning strategy. The specific implementation of RDCAL is listed in line 6-15 of
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Algorithm 4.1. It is worth noting that CRS and BWS are optional for RDCAL.

In real-world applications, they can be implemented separately or combinedly,

depending on the existing problem in the corresponding data stream. However,

if both of them are employed, CRS should be applied before BWS. The detailed

implementations of CRS and BWS are given in Section 4.3.3 and 4.3.4 accordingly.

4.3.3 Class Rectification Strategy

CRS is designed to handle the class drift problem, which is also described as an

actual drift in Section 4.2.1.

To adjust the classifier in real-time, the sample labels Yc
(k) in the training set

D
(k)
t of batch k (k ≥1) are the current labels determined by the current output

data O(k). Once the label of a sample has changed in a later time, according to a

vanilla consecutive batch learning framework, the classifier has no chance to learn

from the actually drifted samples, where vanilla means a naive version without

any learning strategy, i.e. Algorithm 4.1 when RDCAL==False.

CRS is a strategy to rectify the label of the historical data. Once a class la-

bel drift is detected, the corresponding sample will be added into a rectified set.

The rectified set works as a supplement to the original training set to finetune the

classifier in real-time. Specifically, as shown in Algorithm 4.1, in a general consec-

utive batch learning framework, if RDCAL==True and CRS==True, Algorithm

4.1 will go to Algorithm 4.2.

For each k-th time slice, the input for Algorithm 4.2 includes historical ex-

tracted feature batches X
(k)
h = {X(1), · · · , X(k−1)}, historical label batches Y

(k)
hc =

{Y (1)
c , · · · , Y (k−1)

c }, and the current output batch O(k).

To start with, initialise S=∅ and D
(k)
r =∅, where S is a temporary set to hold

the SIDs found in the current output batch O(k); D
(k)
r is used to hold all rectified

samples in the current time slice. If k equals 1, because no historical samples

exist to rectify, CRS returns an empty D
(k)
r .

When k >1, there are two steps to form a rectified set. Lines 6-11 in Algorithm

4.2 specify the first step, obtaining all SIDs appeared in current output data O(k).

The historical data corresponding to these SIDs may have a class label drift. Step

2, described in lines 13-20 of Algorithm 4.2, rectifies the historical samples one
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by one. Once a rectified sample xh is identified, set its rectified label yr to 1 and

add this rectified sample {xh, yr} to D
(k)
r .

Finally, a rectified set D
(k)
r for time slice k is returned to Algorithm 4.1 line

8 and will be merged with the original D
(k)
t and from a new D

(k)
t as discribed in

Algorithm 4.1 line 9.

Algorithm 4.2 Class Rectification Strategy

Input: X
(k)
h ={X(1), · · · , X(k−1)}; Y(k)

hc ={Y (1)
c , · · · , Y (k−1)

c }; O(k).

Output: D
(k)
r .

1: S=∅; D
(k)
r =∅

2: if k==1 then

3: break

4: else

5: # step (1): obtain SIDs in O(k).

6: for O
(k)
i in O(k) do

7: s=fSID(O
(k)
i )

8: if s ̸= ∅ then

9: S=S ∪ {s}

10: end if

11: end for

12: # step (2): rectify history dataset {X(k)
h , Y

(k)
hc }.

13: for s in S do

14: for xh, yhc in zip(X
(k)
h , Y

(k)
hc ) do

15: if s == fSID(xh) and yhc==0 then

16: yr=1

17: D
(k)
r =D

(k)
r ∪{xh, yr}

18: end if

19: end for

20: end for

21: end if

22: return D
(k)
r
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4.3.4 Balanced Window Strategy

BWS is designed to cope with the dynamic class imbalance problem in stream

learning. The basic idea behind BWS is to keep a balanced training set D
(k)
b at

each time slice k.

Basically, in the vanilla consecutive batch learning framework, the training set

D
(k)
t used to update classifier from f (k)(·) to f (k+1)(·) is imbalanced, no matter

applying CRS or not. To make things worse, the imbalance status within D
(k)
t

changes irregularly and dynamically over time.

BWS is a strategy to keep a balanced window to dynamically hold the latestNb

negative samples and Nb positive samples as the balanced training set D
(k)
b for the

current k-th time slice. The class balance size Nb (Nb ≥ Na) is a hyperparameter

of BWS to control the size of each class within D
(k)
b .

To keep D
(k)
b balanced, the samples belonging to the current minority class

will stay more time slices in the balanced window. To avoid the possible over-

fitting caused by multiple-times training on the same minority class samples,

BWS designs a balanced sample weight W
(k)
b to control the training weight of

each sample. When it is the first time slice at which a sample occurs in D
(k)
b ,

its corresponding balanced sample weight w
(k)
b =1. After that, w

(k)
b is related to

N , the number of time slices that the corresponding sample has stayed in the

balanced window. Specifically, w
(k)
b can be calculated by (4.3).

w
(k)
b = αN−1, (N ⩾ 1), (4.3)

where the time decay factor α (α ∈(0,1]) is another hyperparameter for BWS.

Since classes in D
(k)
b are balanced, it can partially solve the class imbalance

problem. W
(k)
b is a mechanism to penalise those samples staying too long at D

(k)
b

to avoid over-fitting. Combining these two factors, BWS provides an effective

solution to the dynamic class imbalance problem.

Regarding implementation, as shown in Algorithm 4.1, in a general consecu-

tive batch learning framework, if RDCAL==True and BWS==True, Algorithm

4.1 will go to Algorithm 4.3. For the k-th time slice, the inputs of BWS include

existing training set D
(k)
t and sample weight W (k), the class balance size Nb and

the time decay factor α.
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To start with, if k equals 1, no historical balanced dataset and sample weight

are available to work as old data. Therefore, both Dold and Wold are initialized

as ∅, as shown in line 2 of Algorithm 4.3. Otherwise, the Db
(k) will act as the

Dold for the next time slice, and Wb
(k) will decay in a rate α and then work as

Wold for the next time slice, as shown in line 15 of Algorithm 4.3.

For each time slice k, as shown in line 4 of Algorithm 4.3, we first concatenate

the old data and current existing data to generate the initial balanced dataset

Db
(k) and the corresponding sample weight Wb

(k). Then, check if the sample size

of each class in Db
(k) is bigger than the pre-set class balance size Nb. If yes, only

keep the latest Nb samples and their balanced sample weights for each class, as

shown in lines 5-14 in Algorithm 4.3.

Finally, the Db
(k) and Wb

(k) is returned to Algorithm 4.1 and worked as the

new training set D
(k)
t and sample weight W (k) to update the classifier, as shown

in lines 12-13 in Algorithm 4.1.
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Algorithm 4.3 Balanced Window Strategy

Input: D
(k)
t ; W (k); Nb; α.

Output: D
(k)
b ; W

(k)
b .

1: if k=1 then

2: Dold = ∅; Wold = ∅

3: end if

4: D
(k)
b = concatenate(Dold, D

(k)
t ); W

(k)
b = concatenate(Wold, W

(k))

5: get the indexes of all negative samples idx0

6: if len(idx0 > Nb) then

7: idx0 = idx0[-Nb : -1]

8: end if

9: get the indexes of all positive samples idx1

10: if len(idx1 > Nb) then

11: idx1 = idx1[-Nb : -1]

12: end if

13: idx = idx0 ∪ idx1

14: D
(k)
b = D

(k)
b [idx]; W

(k)
b = W

(k)
b [idx]

15: Dold = D
(k)
b ; Wold = α ∗W (k)

b

16: return D
(k)
b ; W

(k)
b

4.4 Experimental Study

In this part, we validate the performance of RDCAL to learn the real-time dy-

namic patterns on a real-world vulnerability dataset. First, we set the experi-

ments in Section 4.4.1. Then, we compare the performance of four classifiers,

namely, DensNN, HoeffdingTree, SVM and LR, when applying and without ap-

plying RDCAL in Section 4.4.2, to verify if RDCAL is classifier-agnostic. Further-

more, we compared the performance of RDCAL and other five drift adaptation

algorithms on the task of exploitability prediction in Section 4.4.3. Finally, we

analyse the effects of hyperparameters of RDCAL in Section 4.4.4.
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4.4.1 Experimental Setting

4.4.1.1 Dataset

Data source We validate RDCAL on a real-world dataset containing 140,758

vulnerabilities disclosed between 1988 and 2020. 23,413 of them have found cor-

responding exploits in ExploitDB, recognized as positive sample. Specifically, the

National Vulnerability Database works as the consecutive raw input data stream

I, while ExploitDB provides the consecutive raw output data stream O. The

CVE-ID works as the SID to integrate NVD and EDB.

Data stream trend Fig. 4.2 shows the monthly number of disclosed vulner-

abilities and exploits from 1988 to 2020, demonstrating the number of disclosed

vulnerabilities are soaring and much more than available exploits in recent years.

Therefore, accurate exploitability prediction is of importance to improve the re-

mediation efficiency through filtering out low-risk vulnerabilities.
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Fig. 4.2. Monthly number of disclosed vulnerabilities and exploits from 1988 to

2020.

Dynamic class imbalance status When dealing with the collected vulner-

abilities and exploits as a real-time data stream, the real-time dynamic class

proportion of the current label and rectified label is shown in Fig. 4.3. The

dynamic class proportion is calculated by the Sliding Window Imbalance Factor

Technique, proposed by [41], setting the window size z = 1000. The current label
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yc of each vulnerability is obtained following the formula (4.2), where Na sets to

1. The rectified label yr of each vulnerability is obtained following Algorithm 4.3,

where Na is also set to 1.
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Fig. 4.3. Real-time dynamic class proportion status comparison of current label

and rectified label from 1988 to 2020.

On one hand, Fig. 4.3 shows the dynamic changing trends of class imbalance

status. At first, the proportion of class 0 was higher than class 1, and then

decreased moderately to about 40%, which is lower than class 1. But, it went up

to 80% shortly and then stabilized and in the interval of [80%, 100%]. On the

other hand, Fig. 4.3 illustrates only a small portion of vulnerabilities suffers class

drift problem. Therefore the proportion of rectified label 1 drawn in blue line is

only a bit higher than the current label 1 drawn in red dashed line.

Class rectification To visualise the real-time class rectified vulnerabilities, we

draw Fig. 4.4. Set Na = 1, and once a vulnerability in I was disclosed, we will

search for the corresponding exploits published in the same current time slice

(the time period between current vulnerability and last vulnerability disclosed)

in O. These corresponding exploits will be used to rectify all existing vulnera-

bilities. The horizontal axis in Fig. 4.4 is the exploit publish date and is also

the class rectification date. The vertical axis is the publish date of these rectified

vulnerabilities.
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Fig. 4.4. Real-time class rectification results.

Taking the date 2007-02-23 as an example. A vulnerability CVE-2007-1083

was published on that date. To obtain the current label, we check all the exploits

published on 2007-02-23, Elist = [‘EXPLOIT-DB:25452’, ‘EXPLOIT-DB:3362’,

‘EXPLOIT-DB:3363’, ‘EXPLOIT-DB:3364’, ‘EXPLOIT-DB:3365’, ‘EXPLOIT-

DB:3366’, ‘EXPLOIT-DB:3367’, ‘EXPLOIT-DB:29641’, ‘EXPLOIT-DB:29642’,

‘EXPLOIT-DB:29640’, ‘EXPLOIT-DB:29643’]. Execute fSID(Elist), all exploited

vulnerabilities are found, Vlist= [‘CVE-2005-4832’, ‘CVE-2006-5276’, ‘CVE-2006-

0549’, ‘CVE-2005-4832’, ‘CVE-2007-1133’, ‘CVE-2007-1130’, ‘CVE-2007-1131’,

‘CVE-2007-1126’, ‘CVE-2007-1124’, ‘CVE-2007-1127’, ‘CVE-2007-1125’]. Since

CVE-2007-1083 is not in the list, we can set its current label as unexploitable.

Check the exploitability of vulnerabilities in Vlist, we find that only three of

them, namely CVE-2005-4832, CVE-2006-0549 and CVE-2006-5276 are labelled

as unexploitable. Therefore, their class labels are rectified from unexploitable to

exploitable on 2007-02-23. Specifically, we mark them with red ‘×’ markers and

also annotate their CVE-ID and publish date in Fig. 4.4.

4.4.1.2 Evaluation Metrics.

As exploitability prediction is binary-classification, we adopt four widely used

evaluation metrics, namely, Accuracy, Precision, Recall and F1 score as evaluation
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metrics. Furthermore, as we deal with stream data, to further evaluate algorithms

over different time slices, the geometric mean (G-mean) is also calculated as an

evaluation metric, following [41]. The definition of G-mean is shown in (4.4),

G-mean(x1, x2, · · · , xn) = n
√
x1 × x2 × · · · × xn (4.4)

where x1, x2, · · · , xn are the n elements to calculate the G-mean of them [41].

4.4.1.3 Feature Extraction and Selection

We extract features from raw input database NVD. Both vulnerability description

and CVSS metrics are available. On one hand, we follow [7] and apply a fine-

tuned BERT model to extract semantic features from vulnerability description.

On the other hand, we select the identical CVSS V2.0 metrics with [41] as tabular

features, applying one-hot encoding to transfer categorical features into one-hot

numeric arrays. Finally, to reduce the computational complexity, 10 features from

each side are selected via Principal Component Analysis (PCA) to concatenate a

20-dimensional feature set for exploitability prediction.

4.4.2 RDCAL Versus Vanilla Learning

To verify the effectiveness of RDCAL, we compare the performance of four clas-

sifiers, namely, DensNN, HoeffdingTree, SVM and LR, when using RDCAL and

without using RDCAL. Specifically, DensNN is a fully-connected Neural Net-

work with a 10-node-hidden layer, implemented with Keras [98]; HoeffdingTree

is an incremental decision tree induction algorithm, implemented with a python

package, scikit-multiflow [99]; SVM and LR are two traditional machine learning

classifiers, implemented with scikit-learn [100]. The parameters for these classi-

fiers keep default setting. When applying RDCAL, the hyperparameters are set

as Na=200, Nb=200 and α=0.4.

Table 4.1 summarises the experiment results, where classifier with a ‘ Vanilla’

means using Algorithm 4.1 without RDCAL, while classifier with a ‘ RDCAL’

means using Algorithm 4.1 with RDCAL. All classifiers in Table 4.1 are pre-

trained with the first 100 samples, and then are evaluated in an interleaved-test-

then-train evaluation mode.
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Table 4.1: Overall performance comparison between Vanilla and RDCAL strategy

Classifier Accuracy Precision Recall F1 Score G-mean △G-mean

DenseNN Vanilla 89.53% 84.21% 74.03% 78.70% 81.41% 0

DenseNN RDCAL 90.31% 81.01% 82.88% 81.92% 83.95% 3.12%

HoeffdingTree Vanilla 89.73% 84.76% 74.32% 79.15% 81.78% 0

HoeffdingTree RDCAL 90.59% 81.61% 83.25% 82.37% 84.37% 3.16%

SVM Vanilla 88.61% 83.03% 70.88% 76.41% 79.45% 0

SVM RDCAL 89.73% 79.06% 82.88% 80.92% 83.05% 4.53%

LR Vanilla 88.10% 80.99% 71.22% 75.77% 78.77% 0

LR RDCAL 88.79% 76.49% 82.11% 79.19% 81.52% 3.49%

Values in columns Accuracy, Precision, Recall and F1 Score are the geometric

mean of these metrics over all time-slice. Columns G-mean represents the G-mean

of these four metrics. The last column △G-mean is calculated by (4.5).

△G-mean =
G-mean(C RDCAL) − G-mean(C Vanilla)

G-mean(C Vanilla)
× 100% (4.5)

Where ‘C Vanilla ’ is the Vanilla learning version with the classifier C and ‘C RDCAL

’ is the RDCAL learning version.

As shown in Table 4.1 and Fig. 4.5, RDCAL can improve the overall perfor-

mance of all these four classifiers for more than 3%. Especially, for SVM, RDCAL

learning strategy makes a significant improvement of 4.53%. Therefore, RDCAL

is classifier-agnostic for improving the performance of concept drift learning with

class drift problem and dynamic class imbalance problem.

Table 4.1 gives more details. For all these four classifiers, RDCAL can increase

the Accuracy, Recall and F1 Score, but causes a decrease in the Precision. For

the exploitability prediction problem, the positive samples are more valuable

than negative samples. In other words, Recall is a more important metric than

Precision. Therefore, the reduction in Precision caused by the promotion of

Recall is acceptable. By comparing the G-mean of these four algorithms, we can

see that HoeffdingTree achieves the best performance among both the Vanilla

74



4.4 Experimental Study

DenseNN HoeffdingTree SVM LR
Classifier

G-
m

ea
n

81.41% 81.78%
79.45% 78.77%

83.95% 84.37% 83.05% 81.52%

Vanilla
RDCAL

 0%

 1%

 2%

 3%

 4%

 5%

G-
m

ea
n

G-mean

Fig. 4.5. Overall G-mean and △G-mean comparison between Vanilla and RDCAL

learning strategy over four different classifiers

version classifiers and the RDCAL version classifiers. DenseNN takes the second

place. LR, limited by its simplicity, performs worst.

Fig. 4.6 presents the corresponding real-time performance of these RDCAL

version classifiers. The publish date starts from 1995-11-01 instead of from 1988,

because the first 100 samples are used to pre-train the classifiers and thus are not

reported. An interesting result reflected in Fig. 4.6 is that, in the early years,

HoeffdingTree had an obvious advantage over DenseNN. However, in recent years,

DenseNN gradually catches up and passes HoeffdingTree. A reasonable guess is

that with the accumulation of learning data, the neural network algorithm grad-

ually shows its advantages on learning complex data patterns. Another thing is

that the performance of Precision, Recall and F1 Score have a similar fluctuating

trend with label 1 in Fig. 4.3.

4.4.3 RDCAL Versus Other Drift Adaptive algorithms

In this section, we compared the performance of RDCAL with five other con-

cept drift adaptation algorithms on the task of exploitability prediction. The

experimental setting for all involved algorithms is specified below.

• RDCAL is the proposed consecutive batch learning with RDCAL strategy.
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Fig. 4.6. Real-time performance comparison between four different classifiers with

RDCAL learning strategy

The classifier used in this section is DenseNN and hyperparameters are set

as Na=200, Nb=500 and α=0.9.

• SAMKNN is the Self Adjusting Memory [93] model which builds an ensem-

ble with models targeting current or former concepts.

• DWM is the dynamic weighted majority algorithm [96], which keeps a dy-

namic online weighted learner ensemble by operations like training, weight-

ing, removing and adding base learners to cope with concept drift.

• HTA is the HoeffdingTree Classifier [101] employing ADWIN [85] to detect

concept drift and bootstrapping strategy to get better performance.

• LPPNSE is the Learn++.NSE ensemble classifier [97], which is an incre-

mental learning algorithm for all kinds of concept drift, including addition

or deletion of concept classes.

• VFDRC is the Very Fast Decision Rules classifier [94], which is an incre-

mental rule learning classifier to adapt with concept drift.
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All of the above-mentioned adaptive algorithms except DenseNN are imple-

mented using the python package, scikit-multiflow [99] in this chapter.

The average results of 10 times of independent experiments are shown in Ta-

ble 4.2 and Fig. 4.7. Regarding the overall G-mean, RDCAL performs best at

83.20±0.05%. The second place is HTA at 82.16±0.46%. Next are SAMKNN

and DWM, achieving 81.35±0.07% and 81.05±0.09%. Both LPPNSE and VF-

DRC have poor performance on this task, only obtaining around 74% of G-mean.

As for single metric, Table 4.2 shows that RDCAL achieves the best Recall at

86.05±0.10% and best F1 Score at 81.11±0.05% with a large margin above others.

However, HTA achieves the best Accuracy with a small advantage over others.

It also achieves the best Precision at 81.52±0.59%.

Table 4.2: Overall performance comparison between RDCAL and other five drift

adaptation algorithms

Algorithms Accuracy Precision Recall F1 Score G-mean

RDCAL 89.48±0.03% 76.72±0.06% 86.05±0.10% 81.11±0.05% 83.20±0.05%

SAMKNN 89.19±0.04% 81.04±0.06% 76.83±0.11% 78.86±0.08% 81.35±0.07%

DWM 88.22±0.12% 75.30±0.24% 82.52±0.08% 78.73±0.09% 81.05±0.09%

HTA 89.57±0.19% 81.52±0.59% 78.26±1.18% 79.74±0.61% 82.16±0.46%

LPPNSE 84.73±0.12% 70.77±0.34% 71.20±0.16% 70.98±0.18% 74.19±0.17%

VFDRC 84.38±0.75% 69.63±2.08% 72.51±2.12% 70.98±1.09% 74.14±0.99%

Since HTA is an improvement based on HoeffdingTree, we can compare the

performance of HTA with HoeffdingTree Vanilla and HoeffdingTree RDCAL in

Table 4.1. The overall G-mean of HoeffdingTree Vanilla is 81.78%, lower than

HTA at 82.16%, showing the effectiveness of HTA in improving the performance

of HoeffdingTree classifier. However, compared with the G-mean of Hoeffd-

ingTree RDCAL at 84.37%, it is obvious that RDCAL has a much better effect

on improving the performance of HoeffdingTree.

Fig. 4.7 shows the real-time performance on these four metrics. Consistent

with Table 4.2, RDCAL, SAMKNN, DWM achieve equivalent best performance

on Accuracy; HTA and SAMKNN are the best on Precision; RDCAL alone

achieves the best Recall with an overwhelming advantage; RDCAL and HAT
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achieve equivalent good performance on F1 score, followed by SAMKNN and

DWM. Although, in recent years, the proportion of class 1 goes down sharply to

about 10%, we can see that the Recall of RDCAL is still quite stable, compared

with other algorithms.
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Fig. 4.7. Real-time performance comparison between RDCAL and other five drift

adaptation algorithms

Both Table 4.2 and Fig. 4.7 demonstrate that RDCAL is the best concept

adaptation algorithm in this exploitability prediction task. RDCAL only adopt

a single classifier during the whole online learning process. However, its perfor-

mance is even better than ensemble algorithms with multiple classifiers, such as

SAMKNN, DWM and LPPNSE.

4.4.4 Hyperparameter Influence Analysis

The parameters of classifiers can be learnt from data automatically. However,

the hyperparameters of RDCAL, namely, Na, Nb and α, should be elaborately

adjusted. As shown in Table 4.1, DenseNN RDCAL achieves G-mean of 83.95%
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by setting Na=200, Nb=200 and α=0.4. However, in Table 4.2, with the same

DenseNN classifier, RDCAL only achieves 83.20% on G-mean, when setting

Na=200, Nb=500 and α=0.9. Therefore, in this section, we discuss how these

three hyperparameters affect the performance of RDCAL. Furthermore, since

RDCAL consists of two optional learning strategies, CRS and BWS, we also

discuss the effect of them separately.

Therefore, we study CRS and BWS separately under different settings of

Na, Nb and α in the following subsections. All experiments adopt the same

consecutive batch learning framework described in Algorithm 4.1, employing an

identical DenseNN as the classifier. Baseline is Algorithm 4.1 with neither CRS

nor BWS, setting the consecutive batch size Na to 200.

4.4.4.1 Class Rectification Strategy and Na

To discuss the effect of CRS and Na, we conduct a series of experiments to learn

the performance of CRS when Na traverses in [50, 100, 200, 500, 1000].

The the real-time performance of different settings is shown in Fig. 4.8. We

can see that all settings adopting CRS have quite similar performance. Although

Baseline has a higher Precision, solutions with CRS are much better in terms of

Accuracy, Recall and F1 Score, regardless the value of Na. Therefore, CRS alone

is useful in improving the performance of concept drift learning.

Table 4.3 shows the overall performance comparison. When adopting CRS,

Na=200 achieves the best Accuracy, Recall, F1 Score and the overall G-mean.

All other Na settings achieve over 2% improvement in G-mean than Baseline.

Table 4.3: Overall performance comparison of CRS with different Na

Na Accuracy Precision Recall F1 Score G-mean ∆G-mean

Baseline 89.56±0.22% 84.02±0.24% 74.52±0.90% 78.89±0.51% 81.56±0.44% 0

50 90.19±0.05% 83.06±0.07% 79.11±0.18% 80.99±0.11% 83.23±0.10% 2.12%

100 90.18±0.02% 83.01±0.10% 79.18±0.15% 80.99±0.05% 83.24±0.04% 2.13%

200 90.21±0.03% 82.96±0.05% 79.40±0.15% 81.08±0.08% 83.31±0.07% 2.21%

500 90.15±0.03% 82.81±0.08% 79.32±0.13% 80.97±0.06% 83.21±0.05% 2.09%

1000 90.12±0.02% 82.68±0.06% 79.36±0.11% 80.91±0.05% 83.17±0.04% 2.04%
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Fig. 4.8. Real-time performance comparison of CRS with different Na

Fig. 4.9 shows the G-mean and ∆G-mean of CRS with different Na. Obvi-

ously, the best performance is achieved whenNa=200, where G-mean is 83.31±0.07%

and ∆G-mean is 2.21%.
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4.4.4.2 Balanced Window Strategy and Nb

To discuss the effect of BWS and Nb, α is fixed to 1. Experiments are designed to

compare the performance of BWS when Nb traverses in [50, 100, 200, 500, 1000].

Fig. 4.10 shows the real-time performance comparison of BWS with different

selections ofNb. Baseline wins the best Accuracy and Precision, but gets the worst

Recall. As for the F1 Score, Baseline is also among the best. Different settings

distinguished each other at the beginning, and then the gaps were gradually

narrowing down with the two classes became much more balanced. However, in

recent years, the gaps began to widen due to the severe class imbalance.
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Fig. 4.10. Real-time performance comparison of BWS with different Nb (α = 1)

Table 4.4 shows the overall performance comparison. Nb=500 achieves the

best F1 Score at 79.33±0.09% and the overall G-mean at 81.64±0.08%. Baseline

performs the best on Accuracy and Precision, while Nb=50 achieves the best

Recall. With respect to ∆G-mean, only Nb=500 and Nb=1000 have a weak

advantage over Baseline. Considering their extraordinary performance on Recall,

the reason should be the over-fitting to minority class. BWS will keep the minority

class samples in the balanced window more than one time slice, therefore they will

be used to update the classifier more than once. Without a time decay weight, it

is very likely to result in over-fitting.
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Table 4.4: Overall performance comparison of BWS with different Nb (α = 1)

Nb Accuracy Precision Recall F1 Score G-mean ∆G-mean

Baseline 89.58±0.11% 84.17±0.13% 74.32±0.42% 78.83±0.24% 81.52±0.21% 0

50 86.00±0.80% 68.44±1.76% 89.73±1.55% 77.50±0.47% 79.97±0.47% -1.90%

100 87.30±0.12% 70.70±0.23% 88.32±0.25% 78.48±0.07% 80.87±0.06% -0.80%

200 87.89±0.07% 72.02±0.16% 87.97±0.08% 79.16±0.10% 81.48±0.09% -0.05%

500 88.15±0.11% 72.64±0.26% 87.44±0.23% 79.33±0.09% 81.64±0.08% 0.14%

1000 88.26±0.14% 73.21±0.27% 86.51±0.13% 79.29±0.13% 81.59±0.13% 0.09%

Fig. 4.11 shows the G-mean and ∆G-mean of BWS with different Nb. The

best performance is achieved when Nb=500, which is only 0.14% better than

Baseline. Therefore, it is vital to set an appropriate time decay factor to weaken

the influence of old data when using BWS.
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Fig. 4.11. Performance improvement comparison of BWS with different Nb (α =

1)

4.4.4.3 Balanced Window Strategy and α

Similarly, to discuss the effect of BWS and α, Nb is fixed to 500. Experiments

are designed to compare the performance of BWS when α traverses in [0.3, 0.5,

0.7, 0.8, 0.9, 1].
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Fig. 4.12 shows the real-time performance comparison of BWS with differ-

ent selections of α. In terms of Accuracy, all settings except for α=1 achieves

equivalent results. For Precision and Recall, the results are quite different. Gen-

erally speaking, settings achieving good precision usually have poor performance

on Recall and vice versa. Performance on F1 Score is highly related to the class

proportion. For example, when class 1 and class 0 are almost half to half, all

settings have good results, while when the two classes are highly imbalanced,

different settings can make a big difference.
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Fig. 4.12. Real-time performance comparison of BWS with different α (Nb=500)

Table 4.5 shows the overall performance comparison. We can see that the

best overall G-mean is achieved by α=0.9, which is 2.19% better than Baseline.

Followed by α=0.8 and 0.7. The worst is α=1, which means that BWS only keeps

a balanced window but not weakens sample weights overtime. As we analysed

before, in this case, the performance can decrease because of over-fitting to the

minority class. α=0.3 only gets limited improvement due to the too fast time

decay of minority samples in the balanced window.
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Table 4.5: Overall performance comparison of BWS with different α (Nb=500)

α Accuracy Precision Recall F1 Score G-mean ∆G-mean

Baseline 89.54±0.12% 83.91±0.50% 74.46±0.35% 78.74±0.15% 81.47±0.14% 0

0.3 89.82±0.05% 84.23±0.09% 75.37±0.20% 79.50±0.14% 82.06±0.11% 0.72%

0.5 89.95±0.02% 83.76±0.08% 76.64±0.08% 79.99±0.03% 82.44±0.02% 1.19%

0.7 90.09±0.03% 82.57±0.06% 79.14±0.05% 80.77±0.05% 83.04±0.04% 1.93%

0.8 90.01±0.03% 81.28±0.07% 80.82±0.09% 81.00±0.06% 83.19±0.06% 2.11%

0.9 89.78±0.03% 79.15±0.06% 83.32±0.10% 81.14±0.05% 83.25±0.05% 2.19%

1 87.98±0.23% 72.28±0.61% 87.45±0.42% 79.11±0.19% 81.44±0.18% -0.03%

Fig. 4.13 shows the G-mean and ∆G-mean of BWS with different values of

α. The best performance is achieved with α=0.9, which is 2.19% better than the

Baseline.
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Fig. 4.13. Performance improvement comparison of BWS with different α

(Nb=500)

According to Tables 4.3, 4.4 and 4.5, the best Na is 200, the best Nb is 500 and

the best α is 0.9. However, these results are obtained by ablation studies, which

means only one factor is applied to the consecutive batch learning framework

each time. When applying CRS and BWS at the same time, the best choice for

these three hyperparameters should be tested simultaneously.
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4.4.5 Discussion Remarks

The effectiveness of RDCAL is validated by three series of experiments. First,

the experiments in Section 4.4.2 demonstrate that RDCAL can improve the per-

formance of four different classifiers in a consecutive batch learning scenario by

more than 3%. Then, the experiments in Section 4.4.3 show that RDCAL per-

forms the best among six concept drift adaptation algorithms. Finally, we discuss

the influence of hyperparameters on RDCAL and demonstrate the effectiveness

of CRS and BWS separately. Therefore, RDCAL is indeed classifier-agnostic

and a state-of-the-art concept drift learning algorithm in dealing with the online

exploitability prediction problem.

4.5 Conclusion

This chapter proposes a novel real-time dynamic concept adaptive learning algo-

rithm under a consecutive batch learning setting. Specifically, RDCAL consists of

two strategies, namely, the Class Rectification Strategy (CRS) and the Balanced

Window Strategy (BWS). CRS is designed to handle the actual drift in sample

labels and BWS is a strategy to deal with the dynamic class imbalance problem.

Comprehensive experiments show that RDCAL can significantly improve the

performance of a wide range of classifiers, including neural networks, SVM, deci-

sion trees and logistic regression in exploitability prediction. Furthermore, RD-

CAL achieves state-of-the-art performance on a real-world dataset containing

140,758 vulnerabilities, compared with the other five adaptive data stream learn-

ing algorithms. However, it is worth noting that the effectiveness of concept drift

adaptation algorithms, including RDCAL, strongly depends on the characteristics

of the data.
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Chapter 5

Vulnerability Exploitation Time

Prediction

ExBERT discussed in Chapter 3, and RDCAL discussed in Chapter 4 are so-

lutions for offline and online vulnerability prediction, respectively. Both belong

to binary classification problems, predicting whether a vulnerability will be ex-

ploited or not. To suit real-world data stream applications and provide more

fine-grained results for vulnerability evaluation, this chapter specifically inves-

tigates the exploitation time prediction problem and formulates it as an online

imbalanced multiclass classification problem. Specifically, the consecutive batch

learning framework used in Chapter 4 has been generalized into a multiclass online

learning setting, and an Adaptive Sliding Window Weighted Learning (ASWWL)

algorithm within the generalized consecutive batch learning framework has been

proposed to tackle the dynamic multiclass imbalance problem existing in many

industrial applications, including exploitation time prediction in this chapter.

Furthermore, a Sliding Window Imbalance Factor (SWIF) is proposed in this

chapter as the index of measuring the dynamic imbalanced status of each class.

The rest of this chapter is organised as follows. Section 5.1 briefly introduces

the background and contributions of this chapter, followed by related works on

learning strategy and multiclass imbalanced learning in Section 5.2. Then a

detailed description of SWIF, consecutive batch learning and the corresponding

86



5.1 Introduction

framework for exploitation time prediction, as well as the ASWWL algorithm,

are presented in Section 5.3. The datasets, evaluation metrics and experiment

results are presented inSection 5.4. Finally, Section 5.5 concludes this chapter

with a discussion on limitations.

5.1 Introduction

Exploitation time is an essential factor for vulnerability assessment in cybersecu-

rity management. A substantial number of previous works have tried to develop

more accurate and reliable exploitability prediction models. For example, the

work in [11] proposed a neural language model-based approach, named Dark-

Embed, to predict whether vulnerabilities will be exploited or not. The work in

[50] investigated the effectiveness of different features, including common words

from vulnerability descriptions, external references and vendor products, CVSS

scores and categorical attributes, and Common Weakness Enumeration (CWE)

numbers in predicting the exploitability of vulnerabilities. Jacobs, Romanosky et

al. proposed an open, data-driven framework, called the Exploit Prediction Scor-

ing System (EPSS), to estimate the probability of a vulnerability being exploited

within the first twelve months after disclosure [51]. The work in [7] employed

transfer learning to extract paragraph-level embeddings from vulnerabilities and

built a high-performance exploitation predictive model.

However, to the best of our knowledge, no previous research has specifically

investigated the exploitation time prediction problem, except for a few papers on

Zero-Day Exploit detection [102], which is also a binary classification problem.

Therefore, these works are incapable of predicting exploitation time in finer gran-

ularity. Furthermore, previous studies handled historical data in a batch learning

manner, ignoring the temporal characteristics and possible implicit concept drifts

in the data. Previous studies also overlooked another challenging problem, dy-

namic imbalanced data, by adopting batch learning.

To suit the real-world situation and provide more fine-grained results for vul-

nerability evaluation, this chapter treats the exploitation time prediction problem

as a multiclass imbalanced online learning problem. An integrated consecutive
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batch learning framework is proposed to predict the exploitation time in finer

granularity. Instead of dealing with data using batch learning, consecutive batch

learning is adopted as the online learning strategy to enable the classifier to

capture the real-time temporal concepts. Furthermore, an ASWWL algorithm is

designed to tackle the dynamic class imbalance problem caused by online learning

to achieve better performance.

To summarize, the main contributions are as follows:

(1) An integrated consecutive batch learning framework is proposed to pre-

dict the exploitation time of vulnerabilities, which is a generalization of the online

learning framework used in Chapter 3. The proposed framework handles histori-

cal data in a consecutive batch learning manner, enabling the classifier to capture

the temporal features and possible concept drifts caused by the evolving system

and user behaviours. Compared with previous studies, this chapter predicts the

exploitation time as a multiclass classification problem instead of a binary clas-

sification problem to provide more fine-grained results for decision-makers.

(2) A general learning algorithm, ASWWL, is proposed to deal with the dy-

namic multiclass imbalance problem, which is pervasive in real-world applica-

tions. The effectiveness of ASWWL in improving the performance of the mi-

nority classes has been demonstrated by a series of experiments conducted on a

real-world dataset.

(3) The proposed integrated consecutive batch learning framework with the

ASWWL algorithm achieves the most robust and state-of-the-art performance

on the multiclass exploitation time prediction task, compared with the other five

consecutive batch learning algorithms on the same dataset.

5.2 Related Work

5.2.1 Learning Strategy

According to the availability of data and the way of feeding data to train and

test classifiers, there are two learning algorithms, i.e. batch learning and stream

learning. Batch learning is used for applications in which all data is available.
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In this case, classifiers are usually evaluated in a hold-out manner, which means

that data is randomly divided into a training set and a test set. Classifiers are

evaluated in a separated test set. The data imbalanced status is determined and

static in batch learning because all data is available.

By contrast, for stream learning, data appears over time and classifiers are

incrementally trained when new data is available. In this case, classifiers are of-

ten evaluated on the newly arrived data before using it to train the classifiers[92].

Stream learning inherently faces more challenges than batch learning. For ex-

ample, concept drifts and dynamic class imbalance are two major problems that

need to be addressed.

Stream learning has been studied for a long time [103], among them ensem-

ble learning is the most popular strategy to boost performance. Back in 2001,

a Concept-adapting Very Fast Decision Tree (CVFDT) was proposed to learn

time-changing concepts by keeping a decision tree consistent with a window of

examples, based on a batch learning version of Very Fast Decision Tree (VFDT)

[101]. In 2007, Kolter, J. Z. and Maloof, A. M. proposed a Dynamic Weighted Ma-

jority (DWM) ensemble algorithm, which dynamically trained multiple learners

and weighted them according to their performance to get a global ensemble result

[96]. The authors concluded that DWM outperformed algorithms that employ in-

crementally learning with a single learner, train all previously observed examples,

or employ an unweighted, fixed-size ensemble of learners[96]. Paper [91] proposed

a Hoeffding Tree Adaptive (HTA) algorithm to adaptively learn concept drifts

over time, by maintaining a Hoeffding Window Tree and a Hoeffding Adaptive

Tree at the same time in 2009. To handle the concept drift in nonstationary en-

vironments (NSEs), paper [97] introduced an ensemble Learn++.NSE (LPPNSE)

algorithm in 2011, by employing a dynamically weighted majority voting mech-

anism. Kosina, P. and Gama, J developed a Very Fast Decision Rules Classifier

(VFDRC)[94] and the adaptive extension (AVFDRC) to detect and adapt changes

in data distributions in 2015. Paper [93] proposed a Self Adjusting Memory K

Nearest Neighbor (SAMKNN) model for heterogeneous concept drift, inspired by

biological memory models in 2016. An open-source framework, named Scikit-

Multiflow [92] was released in 2018, providing the implementation of multiple

steam data generators, stream learning algorithms, evaluators and transformers
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[104]. In 2019, Anwar, M. M. et al. proposed an index-based algorithm to dis-

cover and track the evolution of user groups drove by time-sensitive activities in

social networks [105].

5.2.2 Multiclass Imbalanced Learning

This chapter focuses on the task of multiclass imbalanced online learning problem.

Let x(t) ∈ Rn is a vector in n dimensional feature space X observed at time step

t. y(t) is the corresponding label and y(t) ∈{c[1], c[2], · · · , c[nc]}(nc ⩾3), where c[1],

c[2], · · · , c[nc] are the nc class labels that have appeared so far. We call x(t) an

instance of a data stream at time step t and a pair (x(t), y(t)) a labelled instance.

In fact, most data streams suffer from dynamic class imbalance, which severely

damages the performance of classifiers. To relieve the negative impact, the most

important thing is to identify the class imbalance status and describe the severity

of different multiclass imbalance levels.

Paper [106] defined an Imbalance Factor (IF) w(t)={w(t)
[1] , w

(t)
[2] , · · · , w

(t)
[N ]} to

indicate the overall class proportions in time step t, which has the capability of

keeping track of the real time imbalanced statuses of all classes. Specifically, the

data proportion of class c[k], denoted as w
(t)
[k] , is updated by (5.1).

w
(t)
[k] =

(t− 1) ∗ w(t−1)
[k] + [(x(t), c[k])]

t
, (k = 1, 2, · · · , nc and t ≥ 1) (5.1)

where w
(0)
[k] = 0, [(x(t), c[k])]=1 if the true label of x(t) equals to c[k], other-

wise 0. Equation (5.1) actually calculates the global Imbalance Factor over all

previously encountered examples until time step t. As t increases, w
(t)
[k] would be

less sensitive to the latest imbalanced status. However, the imbalanced status in

exploitation time prediction scenario, as well as many other data streams, often

changes dynamically and irregularly. Therefore, Equation (5.1) is insensitive to

reflect the new imbalanced status, due to the great influence of old data.

An improvement of equation (1) in weakening the influence of older data is

introduced in paper [107]. As shown in formula (5.2), w
(t)
[k] is updated along with

a time decay factor θ.
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w
(t)
[k] = θw

(t−1)
[k] + (1 − θ)[(x(t), c[k])], (k = 1, 2, · · · , nc and t ≥ 1) (5.2)

Time decay Imbalance Factor calculated by (5.2) assumes that all classes

decay at the same rate θ and finally the first item in equation (5.2) will gradually

converge to 0 over time. However, this assumption can hardly hold true in real-

world applications, especially for data steam situations like the exploitation time

prediction problem.

The Imbalance Factor is the basis of further processing of the multiclass im-

balance problem. For example, after obtaining w
(t)
[k] , a Multiclass Oversampling

(MO) method and a Multiclass Undersampling (MU) method were used to handle

the multiclass imbalanced online learning problem in [107]. Both MO and MU

resample data by training the current labelled instance (x(t), y(t)) K times when

updating classifier from f (t) to f (t+1), where K obeys a Poisson Distribution,

namely, K ∼ Poisson(λ) and λ is defined by (5.3).

λ =

{
w

(t)
max/w

(t)
[k] , (k = 1, 2, · · · , nc and t ≥ 1), for MO method

w
(t)
min/w

(t)
[k] , (k = 1, 2, · · · , nc and t ≥ 1), for MU method

(5.3)

where w
(t)
min=minN

k=1w
(t)
[k] is the minimum class proportion at time step t and

w
(t)
max=maxN

k=1w
(t)
[k] is the maximum class proportion. Obviously, λ ≥ 1 for the

MO method. Therefore, according to the properties of Poisson Distribution, the

MO algorithm can increase the training epochs for the minority samples, equiv-

alent to oversample instances from the minority class. Similarly, λ ≤ 1 for the

MU method and the chance of learning majority classes will be reduced.

Based on those previous works, a new Sliding Window Imbalance Factor

(SWIF) is proposed to indicate the real-time multiclass imbalance status in Sec-

tion 5.3.1. Furthermore, the Adaptive Sliding Window Weighted Learning al-

gorithm is proposed to boost the performance of multiclass-imbalanced online

learning in section 5.3.4.
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5.3 Methodology

5.3.1 Sliding Window Imbalance Factor

To overcome the drawbacks of IF calculated by (5.1) and (5.2), Sliding Window

Imbalance Factor (SWIF) is designed to dynamically reflect the latest multiclass

proportions in a data stream.

The SWIF of each class w(t) =[w
(t)
[1] , w

(t)
[2] , · · · , w

(t)
[cn]

] is designed on the basis of

Equation (5.1) and (5.2), where w
(t)
[k] (k={1, 2, · · · , nc}) represents the imbalance

factor of class c[k]. Instead of calculating the overall imbalance factor so far like

Equation (5.1) or setting a fixed time decay factor θ for all classes and time

steps like Equation (5.2), SWIF calculates the imbalance factor of class c[k] with

Equation (5.4).

w
(t)
[k] =


(t−1)∗w(t−1)

[k]
+[(x(t),c[k])]

t
, (k = 1, 2, · · · , nc and 1 ≤ t < z)

z∗w(t−1)
[k]

−[(x(t−z), c[k])]+[(x(t), c[k])]

z
, (k = 1, 2, · · · , nc and t ⩾ z)

(5.4)

where z (z ≥ nc) is the number of samples within a sliding window, which can

be fixed during the whole online learning process or it can also be adaptively

adjusted according to some hyper-parameter optimisation strategies, such as Grid

Search, Random Search and Bayesian Optimisation. It is worth noting that, when

1 ≤ t < z, SWIF is identical with Equation (5.1).

5.3.2 Consecutive Batch Learning

Consecutive batch learning is a special case of data stream learning, where stream

data is handled in consecutive batches. Let S = {D(0), D(1), · · · , D(k), · · · } be a

chronological data stream, where D(k)={X(k), Y (k)} (k ≥ 1) is the k-th batch of

observed samples or instances. X(k)={x(k)1 , x
(k)
2 , · · · , x(k)nb }, where nb is the total

number of samples in the k-th data batch and x
(k)
i ∈ Rn (i= 1, 2, · · · , nb) is the

feature vector of the i-th sample in the k-th batch. Y (k)={y(k)1 , y
(k)
2 , · · · , y(k)nb } is

the corresponding labels for batch k.
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Let f (1)(·), · · · , f (k)(·), · · · denote the consecutive classifier statuses which are

incrementally trained from the consecutive data batches. For consecutive batch

learning, at each time step k (k ≥ 1), f (k)(·) will be used to predict the labels

of arrived data X(k) for the usage of downstream applications, when the corre-

sponding true labels Y (k) are unavailable. The predicted labels Ŷ (k) is calculated

as (5.5).

Ŷ (k) = f (k)(X(k)), (k ≥ 1). (5.5)

After the ground truth Y (k) for the k-th data batch is available, the labelled

data D(k)={X(k), Y (k)} will be used to fit f (k)(·) to get the next classifier status

f (k+1)(·).

5.3.3 An Integrated Framework for Exploitation Time Pre-

diction

The work flow of the proposed integrated consecutive batch learning framework

for exploitation time prediction problem is illustrated in Fig. 5.1. Like any

other consecutive batch learning, there are two major stages for each data batch,

namely, prediction and classifier update. The notations in Fig. 5.1 are consistent

with the definitions in Section 5.3.2. We will first explain all of the components

displayed in Fig. 5.1 below.

Descriptions are a collection of vulnerability descriptions in the k-th batch.

Specifically, a description is a brief paragraph containing information like the

affected products, the required privilege, the possible attack paths of a vulner-

ability. Descriptions are usually disclosed with vulnerabilities by some publicly

available database, such as the National Vulnerability Database (NVD) [108] and

the Common Vulnerabilities and Exposures database(CVE) [34]. Descriptions

should be further treated before being fed to a classifier.

Pre-trained BERT is a released Bidirectional Encoder Representations from

Transformers (BERT) model [64]. BERT has proven to be an excellent Natural

Language Processing (NLP) model which can extract semantic features from both

words and sentences. In the proposed framework, we adopt a pre-trained BERT
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Fig. 5.1. Workflow of the proposed integrated framework (k ≥ 1).

model to extract sentence-level semantic feature X
(k)
des from Descriptions instead of

training a BERT model from scratch, considering the limited scale of vulnerability

description corpus.

CVSS V2.0 represents a set of attributes selected from the 2.0 version of

CVSS metrics. Some of the attributes are not numerical. For example, the value

range of the attribute access complexity is {High, Medium, Low}.

Encoding is the method to encode all CVSS V2.0 attributes to numerical

features X
(k)
cvss.

Feature reduction and fusion involves a feature reduction process and a

feature fusion process. In the proposed framework, we first separately reduce the

dimension of X
(k)
des and X

(k)
cvss to an acceptable value by applying feature reduction

algorithms. Then, fuse the results to form the feature X(k) of the k-th batch via

concatenating, averaging, ranking or other fusion strategies.

Downstream applications are the possible industry applications relying on

the predicted labels Ŷ (k), such as the cybersecurity management system, which

will use the predicted labels to make decisions on patching the corresponding
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vulnerability or not.

Exploit-DB [38] is an open-source exploit database, working as the data

source of ground truth in our proposed framework.

Ground truth is the class labels corresponding toX(k), which can be encoded

into Y (k), by one hot encoding, label encoding, custom binary encoding or other

methods.

ASWWL is the proposed Adaptive Sliding Window Weighted Learning al-

gorithm. Instead of weighting different learners, we weigh each sample based

on real-time imbalanced status. The detailed description of ASWWL will be

presented in Section 5.3.4.

Classifier fitting is the process of fitting the classifier f (k)(·) to the k-th data

batch {X(k), Y (k)} with weight W (k) based on a predefined cost function.

As shown in Algorithm 5.1, the inputs of the proposed framework include

data sources like descriptions, CVSS V2.0 and Exploit-DB, a pre-trained BERT

model, an initialized classifier f (1)(·) and the size of data batch nb. As time

passes, the framework will generate a series of intermediate results, namely, the

sequence of features extracted from descriptions Xdes= {X(1)
des, · · · , X(k)

des, · · · },

features extracted from descriptions CVSS 2.0 Xcvss={X(1)
cvss, · · · , X(k)

cvss, · · · },

fused features X={X(1), · · · , X(k), · · · }, true labels Y={Y (1), · · · , Y (k), · · · }
and classifier statuses f (2)(·), · · · , f (k+1)(·), · · · . The final valuable output for

downstream applications is the sequence of predicted labels Ŷ={Ŷ (1), · · · , Ŷ (k),

· · · }.
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Algorithm 5.1 An integrated framework for exploitation time prediction

Input: Descriptions; CVSS V2.0; Exploit-DB; Pre-trained BERT; f (1)(·), nb.

Output: Ŷ={Ŷ (1), · · · , Ŷ (k), · · · }.

1: for the k-th batch (k ≥ 1) do

2: Feed the k-th batch of Descriptions to a pre-trained BERT model to extract features

X
(k)
des.

3: Encode the k-th batch of CVSS V2.0 attributes to numerous features X
(k)
cvss.

4: Apply feature reduction algorithm to X
(k)
des and X

(k)
cvss separately and fuse the results to

get the fused feature X(k).

5: Predict the labels Ŷ (k) of X(k) for downstream applications by Equation (5.5).

6: From Exploit-DB data find out the ground truth and encode it to Y (k).

7: D(k)={X(k), Y (k)}.

8: if ASWWL == True then

9: Run Algorithm 5.2 and get the returned W (k)

10: else

11: W (k)=None

12: end if

13: Update f (k) to f (k+1) based on D(k) and W (k)

14: end for

For the k-th batch (k ≥ 1), steps 2-5 specify the implementation of the pre-

diction stage shown in Fig. 5.1, while steps 6-13 are the implementation of the

classifier update stage. ASWWL is an optional strategy for improving perfor-

mance, as shown in steps 8-12. The framework without ASWWL is a baseline

version and the framework with ASWWL is an improved version, providing adap-

tive weights for each single sample in D(k).

5.3.4 Adaptive Sliding Window Weighted Learning

Adaptive Sliding Window Weighted Learning is designed for handling dynamic

multiclass imbalance problem existing in data stream. Sliding window is a widely-

used strategy in multiple areas [91, 101, 109], such as signal processing and en-

semble learning. We employ this idea to adaptively measure the current class
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imbalanced status and then calculate weights W (k)={w(k)
1 , w

(k)
2 , · · · , w(k)

nb } for

the k-th data batch.

Specifically, let Y
(k)
e denote the list of all existing sample labels in chrono-

logical order, and z (z ≥ nc) is the sliding window size, where nc is the number

of unique labels in the data stream. The first step of ASWWL is to find out

the labels of the latest z samples, denoted as Ysw. The second step is counting

the number of samples Nc (c=1, 2, · · · , nc) belonging to each class within Ysw.

Finally, calculate the weight w
(k)
i of the i-th sample in the k-th batch by formula

(5.6).

w
(k)
i =

Nmax

N
, (i = 1, 2, · · · , nb). (5.6)

where Nmax = maxnc
c=1Nc and N is the number of samples belonging to the same

class of sample {x(k)i , y
(k)
i }. Obviously, w

(k)
i ≥ 1.

The implementation of ASWWL is illustrated in Algorithm 5.2. The input

includes all existing true labels Y
(k)
e ={Y (1), · · · , Y (k)}, the current batch number

k, batch size nb and a pre-set sliding window size z. The output is the weight

for batch k. Step 1 initializes the weight for each sample in batch k to 1. Step 2

expands all existing label collections in Y
(k)
e into a list Y

(k)
e . Steps 3-19 calculate

the weight of each sample using a loop. Among them, steps 4-9 is to find out the

labels of the latest samples within the sliding window Ysw; steps 10-16 count the

number of samples of each class in Ysw; and steps 17-18 calculates the weight for

the i-th sample w
(k)
i .
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Algorithm 5.2 Adaptive Sliding Window Weighted Learning

Input: Y
(k)
e ={Y (1), · · · , Y (k)}, k, nb, z.

Output: W (k).

1: W (k)=ones(nb,1)

2: Y
(k)
e = [y for y in Y

(k)
e ]

3: for i in range(1,nb) do

4: idx=(k − 1) ∗ nb + i

5: if idx-z ≥0 then

6: Ysw=Y
(k)
e [inx-z:idx]

7: else

8: Ysw=Y
(k)
e [0:idx]

9: end if

10: C = unique(Ysw), nc=len(C).

11: for c in range(nc) do

12: Count Nc (the number of samples belonging to C[c] in Ysw).

13: if Y
(k)
i ==C[c] then

14: N = Nc

15: end if

16: end for

17: Nmax = maxnc
c=1 Nc

18: w
(k)
i =Nmax/N

19: end for

20: return W (k) = {w(k)
1 , w

(k)
2 , · · · , w(k)

nb }

5.4 Experiments

In this section, we report the experiment results of exploitation time prediction.

Section 5.4.1 presents the dataset and experimental setting of this work, followed

by the introduction of evaluation metrics in Section 5.4.3. Section 5.4.4 gives

the performance comparison of the baseline version and the ASWWL version

of the proposed framework, adopting three classifiers, namely, Neural Networks

(NN), Hoeffding Tree (HT) and Naive Bayes (NB). Section 5.4.5 provides the
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performance comparison of our method with five other data stream algorithms.

5.4.1 Dataset and Experimental Setting

The vulnerability data including descriptions and CVSS 2.0 attributes is collected

from NVD and the exploit data comes from Exploit-DB. In this chapter, when a

proof-of-concept exploit exists in Exploit-DB, the corresponding vulnerability is

identified as exploited. Vulnerabilities and exploits are integrated by CVE-IDs.

The dataset used in this work contains 23,413 exploited vulnerabilities collected

between 1990 to 2020.

A vulnerability’s exploitation time is the time interval between the publica-

tion date of vulnerability and the earliest publication date of its corresponding

exploits in days. When a vulnerability is exploited after being published, its ex-

ploitation time is positive and the class label is marked as Pos. Similarly, when

a vulnerability is exploited before being published, the exploitation time is nega-

tive and the class label is marked as Neg. When the vulnerability and its earliest

exploit are published on the same day, the exploitation time equals to zero, and

the corresponding class label is ZeroDay.

The total number of vulnerabilities in the collected dataset for classes Pos, Neg

and ZeroDay are 3,971 (16.96%), 18,127 (77.42%) and 1,315 (5.62%) respectively.

Fig. 5.2 shows the exploitation time distribution of all collected 23,413 exploitable

vulnerabilities. All vulnerabilities shown in Fig. 5.2 will be used as the input data

stream to the proposed online learning framework.

To have an intuition on the multiclass imbalanced dynamics of the collected

dataset, we draw the overall imbalance factor calculated by (5.1) and the SWIF

calculated by Equation (5.4) in Fig. 5.3. Although subplots (a) and (b) share

the same trend, (a) is too smooth to reflect the latest imbalanced dynamics. For

example, the subplot (b) of Fig. 5.3 shows that in recent years the ratio of Pos

vulnerabilities increased dramatically and sometimes the proportion is even over

0.6. However, due to the great influence of history data, the overall imbalance

factor shown in subplot (a) can only see a very smooth increase.
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Fig. 5.2. Exploiltation time distributions of vulnerabilities from 1990 to 2020

Fig. 5.3. Dynamical multiclass imbalanced statuses over time: (a) is calculated

by Equation (5.1); (b) is calculated by Equation (5.4) when z=50.

5.4.2 Feature Extraction, Reduction and Fusion

Recently developed machine learning and deep learning algorithms are powerful

to extract features from unstructured raw data [15, 110, 111]. Previous studies

usually extract features from CVSS metrics or vulnerability descriptions for vul-

nerability assessment or exploitability prediction [11, 55, 111]. In this chapter, we

extract features from both sides to maximise the representativeness of extracted

features.

Specifically, the extracted feature attributes from CVSS metrics and their

value types are listed in Table 5.1. The adopted feature attributes all come from

CVSS version V2.0, instead of version V3.0, because V2.0 is available for almost

all published vulnerabilities, while V3.0 is only available for vulnerabilities pub-
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lished after 2015 in most cases. These attributes are encoded by one hot encoding

method. Furthermore, the data batch size nb is set to 100 for all experiments in

this work. Therefore, after encoding, the features extracted from CVSS V2.0

X
(k)
cvss ∈ R30∗100.

Table 5.1: Selected CVSS V2.0 attributes and their value types

Value types CVSS 2.0 attributes

Numerical Number of References *, Base Score, Impact Score, Exploitability Score

Categorical Access Vector, Access Complexity, Authentication, Confidentiality Im-

pact, Integrity Impact, Availability Impact, Severity

Boolean User Interaction Required, Obtain User Privilege, acInsufInfo, Obtain

Other Privilege

* This attribute does not belong to CVSS V2.0 metrics. It is the total number of reference

information of a vulnerability listed in NVD dataset.

Meanwhile, a pre-trained Bidirectional Encoder Representations from Trans-

formers (BERT) [64] model is employed to extract sentence-level semantic fea-

tures from vulnerability descriptions. The implementation and pre-trained BERT

model are available at GitHub [66]. We use the token embedding of [CLS] at the

last Transformer Layer of BERT model as the final feature representation of a

vulnerability’s description, which is a vector in a 768 dimensional feature space.

Considering that the data batch size nb is set to 100, X
(k)
des ∈ R768∗100.

The feature reduction method adopted in this work is Principal Component

Analysis (PCA) and the feature fusion method is concatenation. We extract 10

features from X
(k)
des and X

(k)
cvss respectively and then concatenate them to get a

X(k) ∈ R20∗100. The data batch size nb is set to 100 for all experiments in this

work.

5.4.3 Evaluation Metrics

For classification problems, Accuracy, the number of correct predictions divided

by all predictions made, is the most important evaluation metrics. However, for
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tasks with class imbalance, Accuracy alone can be misleading. Therefore, Preci-

sion and Recall are used as a supplement to show the exactness and completeness

of a classifier. Furthermore, F1 Score is usually considered as the final measure

to decide which classifier is better, because it conveys balances between Precision

and Recall.

As exploitation time prediction is an imbalanced multiclass classification prob-

lem, we adopt Accuracy, Precision, Recall and F1 score to measure the perfor-

mance of a classifier on each single class. Furthermore, we employ two average

strategies to show the overall performance on all classes, namely, Macro and

Micro.

Macro is an average strategy that calculates all metrics for each class sepa-

rately, and then find their unweighted mean.

Micro is an average strategy that calculates all metrics globally on all classes

by counting the total true positives, false positives, true negatives and false neg-

atives.

5.4.4 Comparison Between ASWWL and the Baseline

As described in Section 5.3.3, the proposed framework has a baseline version

and an ASWWL version. To verify the effectiveness of the proposed ASWWL

algorithm, we perform comparison studies on three different classifiers, namely,

Neural Networks (NN), Hoeffding Tree (HT) and Naive Bayes (NB). The hyper-

parameters are set as follows, batch step nb=100, sliding window size z=3 for

classifiers NN and NB and z=5 for classifier HT.

In this subsection, we present the performance comparison on each single class

separately in Figs. 5.4, 5.5, 5.6, and Tables 5.2, 5.3, 5.4, followed by the Macro

and Micro average performance on all classes shown in Table 5.5.

5.4.4.1 Classification Results of Different Classifiers on the Majority

Class Neg

Fig. 5.4 shows the real-time classification result on class Neg. The red line, IF, in

subplot (a) is the overall Imbalance Factor of class Neg, calculated by Equation
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(5.2), while the blue line, SWIF, in subplot (a) represents the Sliding Window

Imbalance Factor calculated by Equation (5.4), when z=50. Obviously, SWIF can

reflect the latest imbalanced status, while IF is much less sensitive than SWIF

due to the influence of history samples.
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Fig. 5.4. Real-time classification results of different classifiers on class Neg.

Subplots (b), (c), (d), (e) present four metrics respectively. Generally speak-

ing, all these metrics fluctuate in the same trend as the Imbalance Factor of class

Neg. Classifier NN, in red color, performs best, followed by HF in blue and NB

in green. Furthermore, the ASWWL version performs better than the baseline

version for all three classifiers most times.

Table 5.2 shows the quantitative results evaluated on all existing samples in a

prequential-evaluation manner. We emphasise the best of each metric and each
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classifier in bold. Overall, NN baseline achieves the best Accuracy, Recall and F1

Score, while NN ASWWL performs the best in Precision. NN ASWWL gets a

slightly worse F1 Score than NN baseline. However, the ASWWL version works

better than the baseline version when adopting HT or NB as the classifier of the

proposed framework.

Table 5.2: Overall classification results of different classifiers on all existing sam-

ples of class Neg.

Algorithms Accuracy Precision Recall F1 Score

NN ASWWL 81.13% 85.64% 90.88% 88.18%

NN baseline 81.57% 83.65% 94.71% 88.84%

HT ASWWL 79.33% 83.50% 91.37% 87.26%

HT baseline 78.65% 81.93% 92.93% 87.09%

NB ASWWL 77.40% 84.66% 86.51% 85.57%

NB baseline 76.14% 84.43% 84.83% 84.63%

Generally speaking, the difference between the ASWWL version and the base-

line version on majority class Neg is non-significant and both versions can achieve

quite good performance.

5.4.4.2 Classification Results of Different Classifiers on the Minority

Class—ZeroDay

Similarly, Fig. 5.5 shows the real-time classification results on one of the minor-

ity classes—ZeroDay. The subplot (a) shows the IF in red and SWIF in blue.

Subplots (c), (d), (e) display the same fluctuation trend with (a).

For Accuracy in subplot (b), classifier NN and HT obtain an equivalent perfor-

mance, better than classifier NB. There is little difference between the ASWWL

version and the baseline version on Accuracy. However, the ASWWL version of

all three classifiers perform significantly better than the baseline version on Pre-

cision, Recall and F1 Score, which verify the effectiveness of ASWWL in boosting

the performance on the minority classes.
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Fig. 5.5. Real-time classification results of different classifiers on class ZeroDay.

Table 5.3 is the corresponding quantitative classification results evaluated

on all existing samples. Obviously, the ASWWL version has an overwhelming

advantage than the baseline version on Precision, Recall and F1 Score while

keeping an equivalent performance on Accuracy. Classifier NN is also the best

classifier among these three classifiers.

5.4.4.3 Classification Results of Different Classifiers on the Minority

Class—Pos

Class Pos is another minority class in exploitation time prediction problem. The

real-time classification results on class Pos are shown in Fig. 5.6. Subplot (a)
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Table 5.3: Overall classification results of different classifiers on all existing sam-

ples of class ZeroDay.

Algorithms Accuracy Precision Recall F1 Score

NN ASWWL 93.89% 42.62% 25.25% 31.71%

NN baseline 94.02% 39.86% 12.55% 19.09%

HT ASWWL 93.61% 36.57% 18.63% 24.69%

HT baseline 93.48% 24.33% 7.60% 11.59%

NB ASWWL 90.67% 21.30% 24.49% 22.78%

NB baseline 90.77% 18.45% 18.78% 18.61%

shows that in the beginning years, class Pos accounted for about 35%, and then

dropped to less than 20% very quickly. In recent years, its SWIF increased to a

level of more than 60%, leading to a remarkable increase in the performance of

Precision, Recall and F1 Score, as shown in subplot (c), (d), (e). Classifier NN

also performs best in most times. Classifier NB performs much better than HT

on Recall and F1 Score for class Pos.

Table 5.4 presents the overall classification result on all existing samples of

class Pos. We bold the best performance on each classifier and each metric. The

results in Table 5.4 show that both baseline and ASWWL may achieve the best

on some metrics. However, considering F1 Score is a balanced metrics reflecting

both precision and recall, we conclude that the ASWWL version performs much

better than the baseline version, when adopting NN and HT as the classifier. The

baseline version performs slightly better than the ASWWL version when choosing

NB as the classifier.

5.4.4.4 Average Classification Results of Different Classifiers on Mul-

tiple Classes

According to the description above, generally speaking, the ASWWL version per-

forms better than the baseline version on F1 Score, especially for these two minor-

ity classes, no matter adopting which classifier. Two exceptions are NN ASWWL

on the class Neg and NB ASWWL on the class Pos.
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Fig. 5.6. Real-time classification results of different classifiers on class pos.

We list the Macro and Micro average performance over all three classes in

Table 5.5. We can see that the ASWWL version achieves a much better Macro

average F1 Score than the baseline version on all three classifiers. Among them,

NN ASWWL achieves the best Macro F1 Score on 56.62%, 5.42% higher than

NN baseline and 5.27% higher than the second place, HT ASWWL. For Micro F1

Score, the ASWWL version with a HT or NB classifier also performs better than

the baseline version over 1%. NN baseline is slightly better than NN ASWWL.

To conclude, ASWWL is effective to boost the classification performance of

the minority class, by giving larger weights to minority class samples adaptively.
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Table 5.4: Overall classification results of different classifiers on all existing sam-

ples of class Pos.

Algorithms Accuracy Precision Recall F1 Score

NN ASWWL 84.29% 54.19% 46.35% 49.97%

NN baseline 85.09% 59.56% 37.05% 45.69%

HT ASWWL 83.04% 49.83% 36.45% 42.10%

HT baseline 83.50% 52.00% 31.90% 39.54%

NB ASWWL 82.85% 49.20% 41.83% 45.22%

NB baseline 81.91% 46.43% 45.14% 45.77%

5.4.5 Comparison With Other Data Stream Learning Al-

gorithms

The proposed framework is designed to predict the exploitation time in a data

stream context. To verify its performance, we compared the ASWWL version of

the proposed framework with a NN classifier (our method) with five data stream

learning algorithms introduced in Section 5.2.1, namely, SAMKNN, DWN, HTA,

LPPNSE and VFDRC on the same dataset. We first list the results on each class

separately and then give the average performance on these classes.

5.4.5.1 Classification Results of Different Data Stream Learning Al-

gorithms on the Majority Class Neg

The realtime classification performance comparison on class Neg is shown in Fig.

5.7. Subplot (a) is the realtime IF and SWIF of class Neg. Generally speaking,

SAMKNN, HTA and our method achieve better performance than the rest on all

four metrics. The detailed results are summarized in Table 5.6.

As shown in Table 5.6, our method gets an 88.18% F1 Score, which is at the

equivalent level of the best, 88.45%, achieved by SAMKNN. HTA also gets quite

a high F1 Score at 88.11% compared with the rest. DWD performs the worst on

class Neg, with an 82.86% F1 Score. our method also achieves almost the same
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Table 5.5: Average classification results of different classifiers on multiple classes.

Average Algorithms Accuracy Precision Recall F1 Score

Macro

NN ASWWL 79.66% 60.82% 54.16% 56.62%

NN baseline 80.34% 61.02% 48.11% 51.20%

HT ASWWL 77.99% 56.63% 48.82% 51.35%

HT baseline 77.81% 52.75% 44.15% 46.07%

NB ASWWL 75.46% 51.72% 50.94% 51.19%

NB baseline 74.41% 49.77% 49.58% 49.67%

Micro

NN ASWWL 79.66% 79.66% 79.66% 79.66%

NN baseline 80.34% 80.34% 80.34% 80.34%

HT ASWWL 77.99% 77.99% 77.99% 77.99%

HT baseline 77.81% 77.81% 77.81% 77.81%

NB ASWWL 75.46% 75.46% 75.46% 75.46%

NB baseline 74.41% 74.41% 74.41% 74.41%

Accuracy as SAMKNN. DWM performs best on Precision with 97.55% and HTA

on Recall with 93.57%.

5.4.5.2 Classification Results of Different Data Stream Learning Al-

gorithms on the Minority Class—ZeroDay

The real-time performance on one of the minority classes ZeroDay is presented in

Fig. 5.8. Subplots (a) to (e) demonstrate the real-time imbalance status and four

classification metrics on class ZeroDay. SAMKNN presented by the blue dotted

lines achieves the best Accuracy, Precision and F1 score, followed by our method

in red solid lines. As for Recall, the HTA in green solid line achieves the best,

followed by SAMKNN, our method and VFDRC. DWM performs the worst on

class ZeroDay.

Table 5.7 gives the overall classification result on all existing samples of class

ZeroDay. SAMKNN also performs the best on Accuaray, Precision and F1 Score.

HTA achieves the best Recall. our method is the runner-up on all metrics. HTA is

also in the third place of the overall performance measured by F1 Score. The worst
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Fig. 5.7. Real-time classification results of different data stream learning algo-

rithms on class Neg.

F1 Score belongs to LPPNSE with 19.03%, which is also quite good, considering

that class ZeroDay only accounts for 5.62%.

5.4.5.3 Classification Results of Different Data Stream Learning Al-

gorithms on the Minority Class—Pos

Finally, we present the real-time classification result on class Pos in Fig 5.9.

HTA, SAMKNN and our methods are at the first level in regard to Accuracy and

Precision. However, both HTA and SAMKNN have very poor performance on

Recall and F1 Score. our method, along with LPPNSE and VFDRC, achieves
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Table 5.6: Overall classification results of different data stream learning algo-

rithms on all existing samples of class Neg.

Algorithms Accuracy Precision Recall F1 Score

Our Method 81.13% 85.64% 90.88% 88.18%

SAMKNN 81.15% 84.17% 93.19% 88.45%

DWM 74.80% 87.55% 78.65% 82.86%

HTA 80.44% 83.26% 93.57% 88.11%

LPPNSE 74.19% 84.50% 81.66% 83.06%

VFDRC 76.28% 83.98% 85.73% 84.85%

Table 5.7: Overall classification results of different data stream learning algo-

rithms on all existing samples of class ZeroDay.

Algorithms Accuracy Precision Recall F1 Score

Our Method 93.89% 42.62% 25.25% 31.71%

SAMKNN 94.32% 48.96% 24.94% 33.05%

DWM 92.91% 31.89% 22.97% 26.70%

HTA 93.13% 35.13% 26.24% 30.04%

LPPNSE 89.71% 17.05% 21.52% 19.03%

VFDRC 90.90% 22.54% 25.40% 23.88%

the best F1 Score most of the times.

Table 5.8 displays the overall classification result on all existing samples of

class Pos. HTA achieves the best Accuracy and Precision and DWM performs

best on Recall. Taking F1 Score as the overall performance of an algorithm, our

method obtains the best at 49.97%, 5.69% higher than the second one, 45.52%

achieved by DWM.
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Fig. 5.8. Real-time classification results of different data stream learning algo-

rithms on class ZeroDay.

5.4.5.4 Average Classification Results of Different Data Stream Learn-

ing Algorithms on Multiple Classes

As discussed above, not a single algorithm achieves the best on all classes or all

metrics. We further discuss the performance of the afore-mentioned algorithms by

calculating their Macro and Micro average classification performance. As shown

in Table 5.9, our method achieves the best Macro F1 Score with 56.62%, which is

1.36% higher than the second place, SAMKNN, and 3.73% higher than the third

place (HTA).

With respect to the Micro F1 Score, SAMKNN achieves the best with 79.85,
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Fig. 5.9. Real-time classification results of different data stream learning algo-

rithms on class Pos.

which is only 0.19% better than our method and 0.70% higher than HTA, the

third best algorithm.

The results show that our method is among the best of all these six algorithms.

Our method is also the most robust algorithm, which can always achieve the best

or the equivalent best performance on different metrics and classes.
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Table 5.8: Overall classification results of different data stream learning algo-

rithms on all existing samples of class Pos.

Algorithms Accuracy Precision Recall F1 Score

Our Method 84.29% 54.19% 46.35% 49.97%

SAMKNN 84.24% 55.07% 37.03% 44.28%

DWM 76.42% 37.37% 58.22% 45.52%

HTA 84.74% 59.45% 30.74% 40.53%

LPPNSE 79.09% 38.96% 41.58% 40.22%

VFDRC 81.87% 45.84% 39.53% 42.45%

Table 5.9: Average classification results of different data stream learning algo-

rithms on multiple classes.

Average Algorithms Accuracy Precision Recall F1 Score

Macro

Our Method 79.66% 60.82% 54.16% 56.62%

SAMKNN 79.85% 62.73% 51.72% 55.26%

DWM 72.07% 52.27% 53.28% 51.70%

HTA 79.15% 59.28% 50.18% 52.89%

LPPNSE 71.50% 46.84% 48.25% 47.44%

VFDRC 74.53% 50.79% 50.22% 50.39%

Micro

Our Method 79.66% 79.66% 79.66% 79.66%

SAMKNN 79.85% 79.85% 79.85% 79.85%

DWM 72.07% 72.07% 72.07% 72.07%

HTA 79.15% 79.15% 79.15% 79.15%

LPPNSE 71.50% 71.50% 71.50% 71.50%

VFDRC 74.53% 74.53% 74.53% 74.53%

5.5 Conclusions

Vulnerability exploitation time prediction is of importance for vulnerability as-

sessment and cybersecurity management. To provide results with finer granu-

larity and adopt a real-world online learning situation, we treat this task as a
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data stream classification problem. This chapter proposes an integrated consecu-

tive batch learning framework to predict the exploitation time of vulnerabilities.

Furthermore, a SWIF index is designed to indicate the real-time dynamic class

imbalance status. We further propose an ASWWL algorithm to handle the ex-

isting dynamic multiclass imbalance problem in data stream scenarios. Experi-

ments conducted on real-world vulnerabilities collected between 1990 and 2020

show that the ASWWL algorithm is effective in boosting the classification per-

formance of the minority classes without compromising the performance of the

majority class. We also compare our method with the other five data stream

learning algorithms. The results show that our method is the most robust algo-

rithm on different metrics and classes. The performance of our method is also

among the best of all these six algorithms.
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Chapter 6

Vulnerability Co-exploitation

Behaviour Discovery

Complex graph connections exist between vulnerabilities and exploits. However,

previous studies and tools on vulnerability assessment are often designed to as-

sess a single vulnerability separately, based on its text description information,

affected products, Common Vulnerability Scoring System (CVSS) metric scores

and other available attributes [7, 21, 42, 45]. Leveraging the latest advances in

graph driven intelligence, this chapter explores the vulnerability risk evaluation

by analysing the co-exploitation behaviours between vulnerabilities.

Co-exploitation behaviour, referring to multiple software vulnerabilities be-

ing exploited jointly by one or more exploits, brings enormous challenges to the

prevention and remediation of cyberattacks. This chapter formulates software

vulnerability co-exploitation behaviour discovery as a link prediction problem

between vulnerability entities within a cybersecurity domain-specific knowledge

graph. To boost performance and enhance the explainability of link prediction,

a Modality-Aware Graph Convolutional Network (MAGC) module is proposed

to embed multimodality entity attributes and topological graph connectivity fea-

tures into a unified lower-dimensional feature space. Further, a Graph Knowledge

Transfer Learning (GKTL) strategy is designed to transfer knowledge between

subgraphs extracted from the same knowledge graph. The proposed strategies
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are demonstrated by the experiments conducted on a real-world cybersecurity

knowledge graph consisting of co-exploitation incidents between 1995 to 2021.

The rest of this chapter is organised as follows. Section 6.1 briefly intro-

duces the co-exploitation discovery problem and the contributions of this chapter.

Section 6.2 presents the related works on graph embedding and representation.

Section 6.3 specifies the principal and implementation details of the proposed

MAGCN and GKTL algorithms. Section 6.4 presents the experimental data and

the results of co-exploitation behaviour discovery. A conclusion is presented in

the last section.

6.1 Introduction

6.1.1 Motivations

Software vulnerabilities, also known as bugs or weaknesses in software, pose a

significant threat to modern information systems’ data security and privacy pro-

tection. To make matters worse, the explosive growth in the number of software

vulnerabilities leaves vendors overwhelmed, and it is difficult for vendors to pro-

vide patches and remedies on time. Vulnerability evaluation and assessment is

the fundamental and systematic review process to identify the severity levels of

existing vulnerabilities in cybersecurity [112, 113]. It is essential for information

systems to find out potential security weaknesses and thus to recommend reme-

diation or mitigation actions timely [42, 114, 115]. Previous studies and tools

on vulnerability assessment are often designed to assess individual vulnerability

separately based on its text description information, affected products, Common

Vulnerability Scoring System (CVSS) metric scores, and other available attributes

[7, 21, 45]. Consequently, they fail to analyse the inner relationships between dif-

ferent vulnerabilities.

In-depth analysis of security incidents shows that more and more exploits, also

known as malware or malicious software, tend to attack multiple vulnerabilities

jointly. With the explosive growth trend in the number of software vulnera-

bilities, co-exploitation behaviours will also increase dramatically in future. An
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Fig. 6.1. Examples of real world co-exploitation behaviours.

example of co-exploitation is shown on the official web page [116] of Dell Technolo-

gies. Multiple vulnerabilities are found in Dell OpenManage Network Manager

(OMNM), identified as CVE-2018-15767 [117] and CVE-2018-15768 [118]. The

first vulnerability can make malicious users get root privileges to run arbitrary

commands on OMNM. If the first vulnerability is exploited, attackers can leverage

the escalated privileges to read/write files stored on the server filesystem through

the second vulnerability. A proof-of-concept exploit, identified as EDB-ID: 48582,

can co-exploit these two vulnerabilities and is available in the Exploit DataBase

(ExploitDB) [119]. Co-exploitation behaviour brings enormous challenges to the

prevention and remediation of cyber-attacks. It takes Dell Technologies over 8.5

months to release a new version of OMNM to patch these two vulnerabilities from

February 16, 2018, until November 2, 2018.

We illustrate this example in a knowledge graph, as shown in Fig. 6.1. There

are three types of entities with labels, i.e., ‘Exploit’ in orange, ‘Vulnerability’ in

navy and ‘Product’ in blue accordingly. The ‘Exploit’ entity identified by EDB-

ID: 45852 [119] is the proof-of-concept exploit to co-exploit the two vulnerabilities

found in Dell OMNM, namely, CVE-2018-15767 [117] and CVE-2018-15768 [118],

respectively. Therefore, ‘EXPLOITS’ relationships exist between them. Further-

more, both vulnerabilities have an ‘AFFECTS’ relationship with the ‘Product’

entity, which has a ‘Name: Dell OpenManage Network Manager’ property. To

conclude, Fig. 6.1 demonstrates that the exploit EDB-ID: 45852 can attack Dell

OMNM by co-exploiting CVE-2018-15767 and CVE-2018-15768.
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Co-exploitation behaviour can reveal intricate interrelationships between dif-

ferent vulnerabilities. Taking co-exploitation behaviours into account can provide

a broader and deeper perspective for vulnerability assessment than considering a

single vulnerability itself. Furthermore, co-exploitation behaviour discovery can

help the vendors remedy multiple interrelated vulnerabilities in one update or

solution. It can not only save money and time for vendors but also improve user

experience by less bothering them with vulnerability alerts and remedy releases.

However, traditional deep learning algorithms are not good at analysing the re-

lationships between different entities because of the inherent deficiency of their

implementation process. To the best of our knowledge, no related works have

been trying to predict the possible co-exploitation behaviours between different

vulnerabilities. To fill this gap, this chapter is trying to explore a feasible way

to predict if two vulnerabilities will be co-exploited in the future, leveraging the

knowledge graph’s power.

6.1.2 Challenges

Knowledge graph (KG), as a new data structure containing not only the topo-

logical connectivity information between nodes but also the non-topological at-

tributes and features of nodes, has emerged as the primary tool for knowledge

representation and reasoning across the areas of semantic webs, finance indus-

try, social networks, e-commerce recommendations, protein interaction analysis

et al.. Among KG-empowered applications, link prediction has been attracting

increased attention in academia and industry.

The co-exploitation behaviour discovery problem can be formulated as a link

prediction problem between different ‘Vulnerability’ entities within a cybersecu-

rity domain-specific KG. Specifically, we can construct a co-exploitation graph by

adding virtual ‘CO-EXPLOITATION’ edges between two ‘Vulnerability’ entities

exploited by the same ‘Exploit’ entity. For example, Fig. 6.1 could be refactored

as Fig. 6.2 in this way. The corresponding ‘Exploit’ entity EDB-ID: 45822 is saved

as a property of the added ‘CO-EXPLOITATION’ relationship. As a result, the

problem of predicting if co-exploitation behaviour exists between two vulnerabili-
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Fig. 6.2. Transformed co-exploitation graph.

ties is transformed into predicting if a ‘CO-EXPLOITATION’ relationship exists

between two ‘Vulnerability’ entities in a graph.

As a link prediction task, based on the cybersecurity domain knowledge, the

main challenges for co-exploitation behaviour discovery are identified as below.

(1) Multi-modality problem. A huge volume of multimodal information, in-

cluding videos, photos, speeches, reports, code snippets and texts, can be involved

in vulnerability co-exploitation behaviour prediction. Diverse information comes

from credible vendors, cybersecurity experts, technical posts, and social media.

How to properly fuse, aggregate and embed multi-modality information is a key

problem to be solved.

(2) Graph sparsity problem. As a subgraph extracted from a cybersecurity

knowledge graph, the co-exploitation graph is a very sparse one. According to

[41], only about 17.60% of vulnerabilities published between 1999 to 2020 have

corresponding exploits. Based on our further investigation, the ratio of vulnera-

bilities involving co-exploitation behaviour is less than 5% among all vulnerabili-

ties. Therefore, how to boost the link prediction performance is another challenge

when considering the sparsity of the co-exploitation graph.

(3) Time difference problem. Because of the diversity of data sources and the

possible conflicting interests between different parties, disclosure time difference

often exists between different information sources on the same vulnerability. For

example, for a vulnerability, usually, the verified vendor description is available

earlier than the CVSS scores and its exploitation information. The time difference

problem should also be considered when designing the link prediction algorithms

within a cybersecurity knowledge graph.
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6.1.3 Contributions

As the first exploration of co-exploitation behaviour discovery in cybersecurity,

the main contributions of this chapter are threefold.

(1) We propose a Modality-Aware Graph Convolutional Networks (MAGCN)

for graph knowledge embedding and representation in multi-modality scenarios.

Instead of concentrating on multi-modality features before inputting a Graph

Neural Networks (GNN) model, MAGCN treats each modality separately with

flexible message passing, aggregation and update functions within a traditional

GNN forward propagation process. Therefore, the intermediate embedding re-

sults of each modality are detachable and available for use, which increases the

transparency and explainability of the contribution of each modality. MAGCN

can work as a general GNN module combined with other GNN modules to form

more complex deep learning models.

(2) We design a Graph Knowledge Transfer Learning (GKTL) strategy to

tackle sparsity and time difference problems. Firstly, we extract a target graph

and a source graph from a knowledge graph following some restrictions to ensure

that the source graph is much denser than the target graph and no time difference

exists in the extracted sub-graphs. Then, train and learn graph knowledge from

the source graph with a self-supervised link prediction task. Finally, transfer the

learnt graph knowledge to the target graph and finalise the target link prediction

task. GKTL provides a general solution for link prediction tasks’ sparsity and

time difference problems.

(3) We explore using link prediction algorithms to discover co-exploitation

behaviours empowered by a cybersecurity domain-specific knowledge graph. The

effectiveness of the proposed MAGCN and GKTL algorithms are verified on a

real-world KG containing co-exploitation instances between 1995 to 2021.

The rest of this chapter is organised as follows. Section 6.2 introduces re-

lated works. Section 6.3 specifies the proposed MAGCN and GKTL algorithms.

Section 6.4 presents experimental data and results of co-exploitation behaviour

discovery. Conclusion and future works are discussed in the last section.
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6.2 Related Works

Graph embedding and representation is the foundation of most graph-based appli-

cations. Traditional node topological feature embedding methods in graph theory

include Page Rank [120], Article Rank [121], Betweenness Centrality [122], Har-

monic Centrality [123] and so forth. These algorithms are widely used to measure

the importance of nodes based on graph connectivity. Inspired by recent deep

learning advances, such as the skip-gram and word2vec models, many research

works also embed the nodes connectivity information with deep learning tech-

niques. Among them, Deepwalk [124] and node2vec [125] are two well-known

pioneer graph embedding methods. Other works embed the graph connectivi-

ties from a matrix factorization perspective, such as SocDim, NEU, HOPE and

GraRep [126].

However, the aforementioned methods are all focused on the structural fea-

tures and ignore the nodes attributes. To leverage the features from both non-

topological and topological aspects, a series of algorithms based on GNN have

been proposed. These algorithms learn a function to generate a node’s embed-

ding by aggregating the non-topological features from itself, its neighbour nodes

and their relationships. The learnt GNN can be generalized to unseen nodes or

graphs. Below, we present some representative GNN examples, namely, Graph

Convolutional Networks (GCN) [127], GraphSAGE [128] and Graph Attention

Networks (GAT) [129].

Let a graph G be represented by a triplet (V, A, X), where V is the vertex

set, A is the adjacency matrix indicating edges between nodes and X ∈ Rn×|V| is

the feature matrix corresponding to V, n is the node’s attribute dimension and

|V| is the total number of nodes in V. X could be extracted from multi-modality

sources. For example, node feature sources in social networks may include users’

profiles, images, and posts.

Generalizing the idea of convolutional networks beyond simple pixel lattices,

GCN transforms and combines the information from neighbours of a node to

compute its embedding. The primary forward propagation process is formulated
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as (6.1).

h(l)v = σ

 ∑
u∈N(v)

1

cuv
h(l−1)
u W (l) + b(l)

 , (l ≥ 1), (6.1)

where h
(l)
v is the embedding of node v; l is the current depth of the GCN layer;

N(v) denotes the set of neighbour nodes of node v; cuv =
√
|N(u)|

√
|N(v)| is a

normalization constant based on graph structure working as the weight of massage

from node u ∈ N(v) to v; | · | denotes the number of distinct nodes in the specified

set; σ is the activation function; W (l), b(l) are the node-wise learnable parameters,

shared by all nodes in V . The initialization embedding of node v at layer l = 0

is its original node features, i.e., h
(0)
v = xv.

To provide more flexible aggregation strategies when dealing with massages

from N(v) and take the embedding of node v itself into consideration, the authors

[128] proposed a GraphSAGE GNN module, as shown in (6.2) and (6.3).

h
(l)
N(v) = AGG

(
{hl−1

u ,∀u ∈ N(v)}
)
, (6.2)

where h
(l)
N(v) is the aggregation of massages from N(v) at layer l, ‘AGG’ denotes

the aggregation operator, which can be flexibly designed as ‘mean’, ‘average’,

‘max’, ‘min’ or more complicated functions, such as MLP and LSTM layers.

h(l)v = σ
((
h(l−1)
v ∥ h(l)

N(v)

)
W (l) + b(l)

)
, (6.3)

where ∥ means the concatenation operator and h
(l−1)
v is the embedding of node v

at layer l − 1.

To automatically learn the weights of neighbour nodes when aggregating mes-

sages, GAT was proposed to apply an attention strategy to GCN. The main

implementation steps of GAT are broken down as (6.4)-(6.7), [129].

z(l−1)
v = W (l−1)h(l−1)

v , (6.4)

where z
(l−1)
v is the linear transformation for node embedding h

(l−1)
v and W (l−1) is

the corresponding learnable node-wise shared weight matrix.

e(l−1)
vu = LeakyReLU

(
a(l−1)T (z(l−1)

v ∥ z(l−1)
u )

)
, (6.5)

123



6.3 Methodology

where e
(l−1)
vu is the attention score between two nodes v and u, activated by a

LeakyReLU function; a(l−1) is a learnable weight vector for the concatenation of

z
(l−1)
v and z

(l−1)
u .

α(l−1)
vu =

exp(e
(l−1)
vu )∑

k∈N(v) exp(e
(l−1)
vk )

, (6.6)

where α
(l−1)
vu is the normalized attention scores calculated by applying a softmax

function on the pair-wise attention scores between node v and its neighbours.

h(l)v = σ

 ∑
u∈N(v)

α(l−1)
vu z(l−1)

u

 . (6.7)

Equation (6.7) shows the final aggregation process, where α
(l−1)
vu works as the

weight to show the importance of the corresponding relationship between v and

u.

In addition to the attention mechanisms, many other modern deep learning

techniques can also be incorporated into a GNN module, such as batch normal-

ization, dropout, gating and skip connections. Our proposed MAGCN belongs to

a variation of GCN, focusing on multi-modality scenarios.

6.3 Methodology

6.3.1 Modality-Aware Graph Convolutional Networks

MAGCN is tailored for node embedding of monopartite graphs with multiple-

modality node features. Typical feature modalities include visual, acoustic, tex-

tual, tabular, etc. A schematic illustration of MAGCN is shown in Fig. 6.3, along

with the elaboration of our design and implementation presented in the following

sections.

6.3.1.1 Problem Setting

Let a monopartite graph G be represented by a triplet (V, A, X), where V is

the vertex set; A is the adjacency matrix and X = [X1 ∥ X2 ∥ · · · ∥ Xm] is the
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Fig. 6.3. Schematic illustration of the proposed MAGCN module.

concatenated graph feature matrix. Xi ∈ Rni×|V| (i ∈ {1, 2, · · · ,m)} is the feature

matrix of the i-th modality; ni is the corresponding feature dimension; |V| is the

total number of nodes in V and m is the total number of feature modalities. For

an individual node v ∈ V, the i-th modality feature vector is denoted as x(i,v),

which is the i-th vector in feature matrix Xi. Fig. 6.3 demonstrates a typical

node v and its multi-modal features x(1,v), x(2,v), · · · , x(m,v) in the upper left

corner.

6.3.1.2 Modality-Aware Node Embedding

As shown in Fig. 6.3, the main idea of MAGCN is to set m channels to deal

with m modalities separately. For a specific channel i ∈ {1, 2, · · · , m}, the main

forward propagation processes of layer l (l ≥ 1) include an edge-wise message

passing, a node-wise message reduction and a node-wise embedding update.

The edge-wise message passing process for the i-th modality in layer l (l ≥ 1)

can be formulated as (6.8)-(6.10), where z
(l−1)
(i,v) is a linear transformation; W l−1

i is

the node-wise shared trainable parameters; h
(l−1)
(i,v) is the i-th modality embedding

of layer l−1 for node v, which is initialized as (6.9). In Equation (6.10), M
(l)
(i,u→v)

is the massage passed from u ∈ N(v) to v through edge u→ v; ϕ
(l)
i is the applied
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message function, which could be ‘add’, ‘sub’, ‘mul’, ‘div’, dot product or other

vector to vector operations.

z
(l−1)
(i,v) = W

(l−1)
i h

(l−1)
(i,v) , (v ∈ V). (6.8)

h
(0)
(i,v) = x(i,v), (i ∈ {1, 2, · · · ,m}, v ∈ V). (6.9)

M
(l)
(i,u→v) = ϕ

(l)
i

(
z
(l−1)
(i,v) , z

(l−1)
(i,u)

)
,

(v ∈ V, u ∈ N(v), l ≥ 1, i ∈ {1, 2, · · · ,m}).
(6.10)

The next is the node-wise message reduction process, formulated as (6.11),

where ρ
(l)
i is the applied reduce function to aggregate all messages from N(v)

into a final message M
(l)
(i,v). General reduce functions include ‘sum’, ‘max’, ‘min’,

‘mean’, etc.

M
(l)
(i,v) = ρ

(l)
i

({
M

(l)
(i,u→v),∀u ∈ N(v)

})
, (v ∈ V). (6.11)

Sequentially, MAGCN will update node-wise embeddings by aggregatingM
(l)
(i,v)

and h
(l−1)
(i,v) with an update function ψ

(l)
i , as shown in Equation (6.12), where h

(l)
(i,v)

is the embedding of the i-th modality of node v at layer l. Θl
i is the node-wise

shared trainable parameter matrix of ψ
(l)
i .

h
(l)
(i,v) = ψ

(l)
i

(
Θl

i, h
(l−1)
(i,v) ,M

(l)
(i,v)

)
, (v ∈ V). (6.12)

Fig. 6.3 demonstrates the modality-aware node embedding process of modal-

ity 1 with blue, modality 2 with green and modality m with orange. In the

lower-left corner, taking the modality 1 as an example, we list a legend of differ-

ent symbols and representations.

6.3.1.3 Modality Fusion, Module Stacking and Training

After the node-wise modality-aware embedding, we get the node embeddings

h
(l)
(i,v)(i ∈ {1, 2, · · · ,m), v ∈ V} from all modalities, which could be used to stack

more MAGCN layers. However, when stacking with other GNN layers (i.e., GCN,

GAT) after a MAGCN layer, we need to fuse the node embeddings of v from all

modalities using a modality fusion function f (l), as shown in Equation (6.13). h
(l)
(v)

is the fused overall embedding and Λ(l) is the node-wise shared trainable param-

eter matrix of f (l). Apart from being used to stack with other GNN layers, the
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overall node embedding h
(l)
(v) also works as the input of the subsequent prediction

head layer to deal with node-/edge-/graph-level tasks. The right part of Fig. 6.3

illustrates an example of a node-level task.

h
(l)
(v) = f (l)

(
Λ(l), {h(l)(i,v), ∀i ∈ {1, 2, · · · ,m}}

)
. (6.13)

The node-wise learnable parameters Wil, Θl
i and Λ(l) of the MAGCN model

will be jointly trained with node-/edge-/graph-level tasks in an end-to-end fash-

ion. Specifically, for node-level tasks, the prediction result could be calculated as

(6.14), where the operator Headnode could be a simple linear transformation or

other more complicated functions.

ŷv = Headnode

(
h(l)v

)
, (v ∈ V). (6.14)

For edge-level tasks, including link prediction, the prediction would be made

using pairs of node embeddings, as shown in (6.15), where u and v are the end

nodes of the edge u→ v. Edge-level prediction head could be arbitrary function

with two vector inputs, for example, Headedge

(
h
(l)
u , h

(l)
v

)
=

(
h
(l)
u

)T

h
(l)
v .

ŷuv = Headedge

(
h(l)u , h

(l)
v

)
, (u, v ∈ V). (6.15)

Similarly, a graph-level task makes predictions using all node embeddings in a

graph, as shown in (6.16). The simplest way for Headgraph is pooling operations,

such as ‘max’, ‘min’ and ‘mean’.

ŷG = Headgraph

({
h(l)v ,∀v ∈ V

})
(6.16)

Comparing the results of the prediction head layer with the corresponding

labels, a Mean Squared Error (MSE) loss function for regression tasks or a cross-

entropy (CE) loss function for classification tasks could be defined and used to

train the parameters of MAGCN model with advanced optimization algorithms,

such as Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation

(Adam). The performance of a MAGCN model can also be evaluated based on

the results of the prediction head and the corresponding labels.
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To conclude, compared with other GNN modules, MAGCN is always modality-

aware in the whole massage passing, reduction and aggregation process. There-

fore, users can flexibly design the massage function, reduction function and up-

date function based on the characteristics of the modality. Furthermore, MAGCN

enhances the explainability of link prediction by improving the transparency of

the intermediate embedding results of each modality and providing the possibility

of interpreting the contribution of each modality to the final prediction results.

6.3.2 Graph Knowledge Transfer Learning

6.3.2.1 Problem Setting

Inspired by the transfer learning strategy in Deep Learning (DL), GKTL aims to

improve the performance of the predictive tasks on the target graph by using the

knowledge learnt from the source graph. When the target graph is incomplete or

too sparse to learn enough knowledge from itself, GKTL provides an option to

transfer graph knowledge from another more dense and complete source graph.

The target graph is determined by the application tasks. For example, for

co-exploitation discovery, the co-exploitation graph with ‘Vulnerability’ entities

and ‘CO EXPLOITATION’ relationships is the target graph. There are some

restrictions when selecting the corresponding source graph. (1) The source and

target graphs are sub-graphs extracted from the same KG, but the source graph

is much denser than the target graph. (2) Both the source graph and target graph

are monopartite graphs. Their entity set and the corresponding entity property

matrix are identical, but their relationship types are different.

Let the target graph be present as Gt = (V, At, X, rt), where V and X are the

entity set and its corresponding feature matrix; At is the adjacency matrix, which

is not full rank when Gt is unconnected; rt is the relationship type. Similarly, the

source graph is represented as Gs = (V, As, X, rs), where V and X are exactly the

same with the target graphs; As is the adjacency matrix and rs is the relationship

type of Gs.

Fig. 6.4 shows the schematic illustration of GKTL. A source graph and a

target graph are extracted from the same knowledge graph. They share the
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Fig. 6.4. Schematic illustration of GKTL.

same V and X but have different relationship types, differentiated with blue and

orange. Firstly, the source graph learns node embeddings H(s,V) with arbitrary

GNNs and a self-supervised link prediction task. Then, the target graph transfers

the learntH(s,V) as its own node embeddingH(t,V), followed by node-/edge-/graph-

level prediction tasks. The detailed implementation is presented in the following

subsections.

6.3.2.2 Source Graph: Self-supervised Node Embedding

Both topological and non-topological knowledge of the entity set V could be

learnt from the source graph. The source graph learns node embedding with a

self-supervised link prediction task to ensure no additional information is needed

except the source graph itself. Concretely, for Gs = (V, As, X, rs), we input the

graph into a GNN-based model (GNNs), followed by an edge-level link-prediction

head to learn the node embedding of the graph. The GNNs consist of one or more

GNN layers, such as GCN, GraphSAGE, GAT and MAGCN. The output node

embeddings of V could be expressed as (6.17).

H(s,V) = fGNNs (As, X,P) (6.17)
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where fGNNs represents the forward propagation mapping function of the applied

GNNs, P is the involved trainable parameters.

For ∀ v ∈ V, its node embedding h(s,v) could be found in H(s,V) with its index

in V. Correspondingly, the link prediction result of edge u→ v with nodes u and

v is shown as (6.18).

ŷ(s,uv) = Headedge

(
h(s,u), h(s,v)

)
, (u, v ∈ V), (6.18)

where Headedge could be any edge mapping function.

To train the parameters P of GNNs, the self-supervised node embedding pro-

cess is implemented as follows. We randomly split all the edges in the source

graph into a training set and a validation set as positive samples (y(s,uv)=1). Then

randomly sample some non-existing edges in the source graph as the correspond-

ing negative samples (y(s,uv)=0). Finally, the CE loss function is applied to train

the GNNs parameters P on the training set, and the hyper-parameters of GNNs

are optimized on the validation set.

6.3.2.3 Target Graph: Graph Knowledge Transfer Learning

The target graph transfers the graph knowledge learnt from the source graph as

its node embeddings directly, as shown in (6.19).

H(t,V) = H(s,V) (6.19)

where H(s,V) is the node embedding matrix of V learnt from source graph. The

logic behind equation (6.19) is that the node set V in the target graph is exactly

the same as the source graph. The node set V of both the source graph and the

target graph comes from the same KG and presents the same group of entities in

a physical world. Therefore, the entity embeddings are transferable between the

source and target graphs.

GKTL can tackle the sparsity problem of the target graph by learning graph

knowledge from a much dense source graph. The time difference problem can be

eliminated by deliberately selecting the source graph.
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Fig. 6.5. Visualized schema of the cybersecurity knowledge graph.

6.4 Experiments: Co-exploitation Behaviour Dis-

covery

6.4.1 Dataset Introduction

We built a KG using vulnerabilities and exploits information between 1995 to

2021 collected from CVE Details1, National Vulnerability Database (NVD)2 and

the exploit database3. Fig. 6.5 shows the visualized schema of this KG. The

KG is implemented in Neo4j 4 graph database platform. Python is the main

programming language, and Cypher is also used to manipulate KG. We adopt

‘py2neo’ 5 to connect the Neo4j graph database with Python applications.

For each ‘Vulnerability’ entity, two modality features are involved. One is the

textual modality, which contains the description of a vulnerability given by cyber-

experts when published. Following the same preprocessing process of [40, 41], we

apply a pre-trained BERT model to embed the textual modality into a 768-

dimensional feature then reduce the dimension to 20 with principal component

analysis. Another is the tabular modality, consisting of 8 numerical features, 10

boolean features and 16 category features.

1https://www.cvedetails.com/
2https://nvd.nist.gov/
3https://www.exploit-db.com/
4https://neo4j.com/
5https://py2neo.org/2021.1/
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Table 6.1: Basic statistical information of the dataset

Stats. Original knowledge graph Source graph Target graph

Entity types
Exploit, Vulnerablity,

Product, Vendor
Vulnerablity Vulnerablity

Relationship types

EXPLOITS, AFFECTS,

BELONGS TO,

CO EXPLOITATION,

CO AFFECT

CO AFFECT
CO EXPLO-

ITATION

No. of nodes 256,971 6,090 6,090

No. of edges 288,956 30,416 6,880

No. of isolated nodes 0 712 1,833

For co-exploitation behaviour discovery, the co-exploitation subgraph is the

target graph. We randomly add some isolated ‘Vulnerability’ nodes into the target

graph to simulate the real-world situation more realistically. Following the two

restrictions listed in Section 6.3.2.1, we set the much dense co-affect subgraph as

the source graph. Table 6.1 shows the basic statistical information of the original

knowledge graph and extracted subgraphs.

information are disclosed chronologically. To avoid information leakage caused

by using future co-exploitation events to deduce past events, we split the edges in

the target graph by the co-exploitation time. Fig. 6.6 shows the yearly distribu-

tion of the number of co-exploitation events. Accordingly, we set co-exploitation

behaviour before 2015 as the positive samples in the training set, which con-

tains 5349 ‘CO EXPLOITATION’ edges in total. The rest 1531 co-exploitation

events that happened in 2015 or later are included in the test set as the positive

samples. Negative samples are randomly sampled from the entities set. For the

source graph splitting, the guideline is to make sure the ‘Vulnerability’ entity set

is always the same as the target graph.
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Fig. 6.6. The yearly distribution of number of co-exploitation behaviours

6.4.2 Co-exploitation Discovery Performance

To verify co-exploitation discovery performance when applying MAGCN and

GKTL, we first train the source graph via the ‘CO AFFECT’ edge prediction task

to get the embeddings of the entire ‘Vulnerability’ entity set. The parameters of

adopted GNNs in the source graph are learnt from the source graph training set.

Since the ‘CO AFFECT’ edge information is available once the corresponding

‘Vulnerability’ entity is added in the cybersecurity KG, the learnt GNNs can be

generalized to the entire ‘Vulnerability’ entity set of the source graph. There-

fore, the entire ‘Vulnerability’ entity embeddings H(s,V) could be calculated with

Equation (6.17). Then, take H(s,V) as the node embeddings of the target graph

H(t,V) and add a binary classifier as the prediction head to predict the edge-level

co-exploitation discovery task, as formulated in Equation (6.18).

To demonstrate the performance of the proposed MAGCN module, we sep-

arately apply MAGCN, GCN [127], GraphSAGE [128], EdgeGCN [130] and

GINGCN [131] as the GNNs layer adopted in the source graph self-supervised

node embedding process. Pytorch and Deel Graph Library (DGL) 1 are used for

implementation. In the process of graph knowledge transfer learning, we apply

four widely used classifiers as the edge-level prediction head, namely, multilayer

perceptron (MLP), random forest (RF), Support Vector Machine (SVM) and lo-

gistic regression (LR). These classifiers are implemented with the sklearn library.

In this chapter, a 2-layer MAGCN is adopted, within which ‘max’ and ‘mean’

1https://www.dgl.ai/
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are adopted massage functions; ‘e mul u’ and ‘u sub v’ are adopted reduction

functions; concatenation function is adopted as the reduce function and fusion

function.

Table 6.2 shows the final co-exploitation discovery results on the test set of

the target graph. To reflect performance on both positive and negative samples,

we take the F1 score as the overall performance. Table 6.2 shows the proposed

MAGCN achieves the best F1 score with all classifiers. The last column, ∆F1

shows the percentage improvement of MAGCN on the F1 score compared with

the corresponding GNN module, ranging from 0.98% to 19.13%.

6.4.3 GKTL Performance Analysis

Table 6.3 shows the performance comparison with or without GKTL as indicated

by the first column. When GKTL is not applied, the ‘Vulnerability’ entity em-

bedding matrix H(t,V) is learnt from the sparse target graph itself. The edge-level

prediction head used in Table 6.3 is MLP. The last column, ∆F1 shows the per-

centage improvement on the F1 score when applying GKTL. Table 6.3 shows

GKTL is effective for all GNN modules. Furthermore, when without applying

the GKTL strategy, MAGCN also achieves the best F1 score at 74.60% compared

with other GNN modules.

6.4.4 Discussion

We briefly discuss how the proposed MAGCN and GKTL tackle the challenges

mentioned in Section 6.1.

(i) MAGCN is proposed to solve the multi-modality problem. Table 6.2 shows

MAGCN is superior to other GNN modules. The fundamental reason is that

other GNN modules concatenate different modalities before inputting them to

the GNN model and treat the concatenated features as the same modality. How-

ever, MAGCN inputs different modalities into different channels and therefore

can flexibly choose the most suitable massage function, reduce function and up-

date function for each modality. Consequently, MAGCN needs to do more work
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Table 6.2: Co-exploitation discovery performance

Classifier GNNs Acc(%) Pre(%) Recall (%) F1(%) ∆F1

MLP MAGCN 81.58 83.32 81.58 81.34

MLP GCN 79.07 79.67 79.07 78.96 ↑3.01%

MLP GraphSAGE 79.95 81.98 79.95 79.62 ↑2.16%

MLP EdgeGCN 78.31 80.26 78.31 77.96 ↑4.34%

MLP GINGCN 80.60 80.95 80.60 80.55 ↑0.98%

RF MAGCN 80.05 83.65 80.05 79.50

RF GCN 77.43 80.47 77.43 76.86 ↑3.44%

RF GraphSAGE 76.42 80.37 76.42 75.63 ↑5.12%

RF EdgeGCN 78.31 81.58 78.31 77.74 ↑2.26%

RF GINGCN 79.23 81.08 79.23 78.91 ↑0.75%

SVM MAGCN 78.22 78.22 78.22 78.22

SVM GCN 73.12 73.24 73.12 73.09 ↑7.02%

SVM GraphSAGE 75.83 76.39 75.83 75.71 ↑3.32%

SVM EdgeGCN 68.35 69.36 68.35 67.94 ↑15.13%

SVM GINGCN 73.87 73.91 73.87 73.86 ↑5.90%

LR MAGCN 77.56 78.72 77.56 77.34

LR GCN 65.35 66.11 65.35 64.93 ↑19.13%

LR GraphSAGE 73.97 76.20 73.97 73.40 ↑5.37%

LR EdgeGCN 68.81 70.50 68.81 68.16 ↑13.47%

LR GINGCN 72.24 73.59 72.24 71.84 ↑7.66%

on selecting those essential functions. MAGCN treats these functions as hy-

perparameters, which can be selected based on expert experience, conventional

practice or general hyperparameter optimization algorithms, such as grid search

and random.

(ii) GKTL is proposed to solve the graph sparsity problem. The prediction

task-related target graphs are usually relatively sparse because of their incom-

pleteness and unavailability. However, we can learn from other more dense source

graphs as long as the source and target graphs share the same entity set. As shown

in Table 6.1, it is evident that the source graph (with 30,416 edges and 712 iso-
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Table 6.3: GKTL influence on co-exploitation discovery performance

GKTL GNNs Acc(%) Pre(%) Recall (%) F1(%) ∆F1

N MAGCN 75.44 79.34 75.44 74.60

Y MAGCN 81.58 83.32 81.58 81.34 ↑9.03%

N GCN 59.01 59.34 59.01 58.65

Y GCN 79.07 79.67 79.07 78.96 ↑34.62%

N GraphSAGE 50.65 65.79 50.65 35.10

Y GraphSAGE 79.95 81.98 79.95 79.62 ↑126.84%

N EdgeGCN 70.87 72.58 70.87 70.30

Y EdgeGCN 78.31 80.26 78.31 77.96 ↑10.90%

N GINGCN 65.97 68.40 65.97 64.81

Y GINGCN 80.60 80.95 80.60 80.55 ↑24.29%

lated nodes) is about 4.42 times denser than the target graph (with 6,880 edges

and 1,833 isolated nodes). It’s straightforward that more knowledge could be

learnt from more dense graphs. Therefore, GKTL can improve the performance

of the target graph, no matter what kind of GNN module is applied.

(iii) GKTL can also tackle the time difference problem by extracting the

information with the same available time into the same sub-graph. For example,

the ‘AFFECTS’ and ‘CO AFFECT’ information is available when a vulnerability

is officially published. However, the ‘EXPLOITS’ and ‘CO EXPLOITATION’

information may be known several months or years later after a vulnerability is

published. Therefore, a time difference exists between the co-affect information

and the co-exploitation information for the same vulnerability. GKTL avoids

dealing with the graphs existing time differences by extracting and learning from

time-consistent sub-graphs.

6.5 Conclusion

Accurate and timely co-exploitation discovery is of importance for cybersecurity

experts to effectively identify and remediate sophisticated cyber attacks with
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chained vulnerabilities. This chapter formulates the co-exploitation discovery

as a link prediction problem in KG. To solve the existing challenges and boost

the performance of co-exploitation discovery, this chapter proposed a general

MAGCN module for graph node embedding and representation and a GKTL

strategy for graph knowledge transfer learning. The effectiveness of both MAGCN

and GKTL are verified on a real-world cybersecurity knowledge graph.
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Chapter 7

Conclusion

This chapter summarizes the main work of the thesis in Section 7.1 and points

out some promising research topics for future work in Section 7.2.

7.1 Summary

Rigorous vulnerability evaluation and assessment empowers organisations to make

informed and knowledge-powered risk management decisions. The research of this

thesis focuses on establishing state-of-the-art vulnerability exploitability predic-

tion models and risk assessment frameworks, based on the latest deep learning

and knowledge graph techniques. Specifically, three tasks and the corresponding

solutions are presented in this thesis.

7.1.1 Vulnerability Exploitability Prediction

The exploitability of a vulnerability indicates if a vulnerability will be exploited

or not. Considering the inaccuracy of the CVSS Exploitability score calculated

by Equation (2.1) and the poor performance of traditional machine learning

algorithm-based exploitability prediction models, the first research aim of this

thesis is to develop a high-performance exploitability prediction strategy.
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Chapter 3 details the effort of improving exploitability prediction performance

under an offline setting. Specifically, a binary classification framework named

ExBERT was proposed to predict the exploitability of vulnerabilities based on

their descriptions only. ExBERT applies the transfer learning technique and

fine-tunes a widely used pre-trained NLP model, BERT, on the corpus consisting

of vulnerability descriptions to extract domain-specific semantic features. The

extracted semantic features are fed into a pooling layer and an LSTM classifica-

tion layer for the final decision-making. The experiments showed that ExBERT

achieved state-of-the-art performance on a real-world dataset.

Chapter 4 is an extension work on exploitability prediction. Compared with

Chapter 3, this chapter focuses on the concept drift and dynamic class imbalance

problem existing in the exploitability prediction problem under a real-time online

learning setting and proposed an improved consecutive batch learning framework

named RDCAL. Instead of merely extracting semantic features from vulnerability

description, RDCAL also extracted tabular features from relational databases like

NVD. The experiment results conducted on real-world vulnerabilities collected

between 1988 and 2020 show that RDCAL is effective in improving the online

exploitability prediction performance of a variety of classifiers, including neural

networks, SVM, HoeffdingTree and logistic regression by over 3%.

7.1.2 Vulnerability Exploitation Time Prediction

To provide more fine-grained results for vulnerability evaluation, this thesis fur-

ther formulates exploitation time prediction as a multiclass classification problem.

Chapter 5 explored the vulnerability exploitation time prediction problem.

A generalized consecutive batch learning framework was adopted to predict the

probable exploitation time period of vulnerabilities. Within the framework, SWIF

was designed as an index to reflex the real-time multiclass imbalanced status,

and an ASWWL algorithm was proposed to tackle the general dynamic mul-

ticlass imbalanced problems existing in many real-world applications, including

the exploitation time prediction problem. The experiment results demonstrate

that the ASWWL algorithm can significantly enhance the performance of the

minority classes without compromising the performance of the majority class.

139



7.1 Summary

Furthermore, the consecutive batch learning framework with the ASWWL algo-

rithm achieved the most robust and state-of-the-art performance compared with

the other five consecutive batch learning algorithms.

7.1.3 Vulnerability Co-exploitation Behaviour Discovery

Complex connections exist between vulnerabilities and exploits. For example, a

known exploit can take advantage of several different vulnerabilities. If the co-

exploitation behaviour between different vulnerabilities can be identified, decision-

makers can have a wider and deeper perspective for vulnerability assessment than

considering a single vulnerability itself.

Chapter 6 formulated the vulnerability co-exploitation behaviour discovery

problem as a link prediction problem. A MAGCN module was designed to solve

the multimodality information fusion and feature extraction problem. Further-

more, the GKTL strategy was designed to solve the graph sparsity and time

difference problem identified in the co-exploitation behaviour discovery problem.

The performance of MAGCN and GKTL was demonstrated by the experiments

conducted in a real-world cybersecurity-domain specific knowledge graph consist-

ing of co-exploitation incidents between 1995 and 2021.

7.1.4 Contributions to Vulnerability Management

A typical vulnerability management process can be broken down into four se-

quential steps, i.e., identifying vulnerabilities, evaluating vulnerabilities, treat-

ing vulnerabilities and reporting vulnerabilities. The results of this thesis can

help automate vulnerability management in the step of evaluating vulnerabilities.

Specifically, the online exploitability prediction framework proposed in Chapter 4

can be deployed to evaluate the exploitability of identified vulnerabilities. Within

the framework, ExBERT proposed in Chapter 3 can help improve the accuracy

of exploitability prediction by extracting high-level semantic features from vul-

nerability descriptions. Once a vulnerability is predicted to be exploitable, the

algorithms presented in Chapter 5 can be used to help infer the specific time
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frame in which a vulnerability would be exploited. Then, the system can recom-

mend the most urgent vulnerabilities to the next step, treating vulnerabilities.

Furthermore, the algorithms proposed in Chapter 6 can prioritise vulnerabilities

by identifying their possible ci-exploitation behaviours.

To summarise, the results of this thesis can be adopted to improve the de-

cision making of evaluating vulnerabilities from the perspective of exploitability

prediction, exploitation time prediction and co-exploitation behaviour discovery.

A better vulnerability evaluation and assessment is the basis of allocating budget

and resources effectively and efficiently and thus achieving better risk manage-

ment and mitigation in modern information systems.

7.2 Future Work

The research works of this thesis provided some feasible solutions for vulnerability

exploitability prediction and analysis. However, there are still many unsolved

challenging problems. This section lists some promising directions for future

work in improving vulnerability assessment and management.

(1) Combine the exploitability prediction result with other vulnerability as-

sessment metrics to form a more comprehensive vulnerability risk evaluation

model.

Although chapters 3 and 4 provided feasible solutions for both offline and

online exploitability prediction, there is still no comprehensive vulnerability risk

evaluation model. In addition to exploitability, the risk level of a vulnerability is

affected by many other aspects, such as the affected number of devices and users,

the affected business process and the cost comparison between exploitation and

remediation. CVSS is an example of a comprehensive vulnerability risk evalu-

ation model. However, its effectiveness is far from satisfactory. More accurate

availability prediction is undoubtedly conducive to vulnerability risk assessment,

but how to combine the exploitability prediction results with other influencing

factors to form a realistic and effective vulnerability risk assessment model will

be a challenge for a long time in the future.

(2) Explore the exploitation time prediction with much finer granularity.
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Chapter 5 divided exploitation time into three classes, Neg, ZeroDay and Pos,

based on the time differences between the date of a vulnerability being exploited

and being published. Although the prediction results given in Chapter 5 are more

detailed than exploitability prediction, a finer-granular exploitation time predic-

tion would be more useful in practice, especially for Pos vulnerabilities. For

example, the predicted exploitation time period can be yearly, monthly, weekly

or even daily, which makes it a regression problem. The main challenge of finer

granularity comes from data deficiencies and data imbalance within each gran-

ularity. With the increase in available vulnerabilities and exploit data and the

development of unsupervised learning techniques, we may have good solutions for

this problem in the future.

(3) Construct cybersecurity-domain specific knowledge graph and explore

more knowledge graph powered vulnerability intelligence applications.

Chapter 6 is an example of leveraging knowledge graphs and graph theory

to solve a specific problem in vulnerability assessment and risk evaluation. In

Chapter 6, the major source of vulnerabilities and exploits comes from existing

well-organised databases, such as NVD, EDB and CVE Details. However, there

are scalable vulnerability raw data from multimodal information sources, such as

social media, software vendors, technical forums. This information can be used

to build a large-scale open-source cybersecurity-domain specific knowledge graph.

Based on the constructed knowledge graph, more knowledge graph powered vul-

nerability intelligence applications can be implemented, including but not limited

to subgraph matching to discover multi-stage and highly sophisticated cyberat-

tack tactics and multi-hop question-and-answer systems, which can make highly

specialised cyber knowledge more accessible.
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