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Abstract: X-ray free-electron lasers (XFELs) provide high-brilliance pulses, which offer unique
opportunities for coherent X-ray imaging techniques, such as in-line holography. One of the
fundamental steps to process in-line holographic data is flat-field correction, which mitigates
imaging artifacts and, in turn, enables phase reconstructions. However, conventional flat-field
correction approaches cannot correct single XFEL pulses due to the stochastic nature of the
self-amplified spontaneous emission (SASE), the mechanism responsible for the high brilliance
of XFELs. Here, we demonstrate on simulated and megahertz imaging data, measured at
the European XFEL, the possibility of overcoming such a limitation by using two different
methods based on principal component analysis and deep learning. These methods retrieve
flat-field corrected images from individual frames by separating the sample and flat-field signal
contributions; thus, enabling advanced phase-retrieval reconstructions. We anticipate that the
proposed methods can be implemented in a real-time processing pipeline, which will enable
online data analysis and phase reconstructions of coherent full-field imaging techniques such as
in-line holography at XFELs.
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1. Introduction

The advent of X-ray free-electron lasers (XFELs) [1,2] providing ultrashort, high coherent
flux X-ray pulses has opened the opportunity to explore spatial and temporal resolutions not
possible before with X-rays [3]. The high brilliance of XFELs is a consequence of the self-
amplified spontaneous emission (SASE) [4,5] and large-scale facilities deploying this radiation for
application have been constructed worldwide [1,6–9]. Although SASE produces high intensity,
short, and coherent X-ray pulses, it is a stochastic process that introduces shot noise and poor
temporal coherence [10]. This shot noise, which manifests itself in differing physical properties
of XFEL pulses from shot to shot, may degrade the quality of X-ray techniques, such as X-ray
imaging techniques.

Coherent X-ray imaging techniques benefit directly from the high brilliance of XFELs by
exploiting phase contrast rather than the attenuation contrast as used by conventional X-ray
imaging techniques. Thus, such techniques, when implemented at high-brilliance sources, can
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explore spatial and temporal resolutions not reachable before with traditional techniques. One
example of coherent X-ray imaging techniques is in-line holography [11]. In-line holography is
a full-field imaging technique that records interferometric images (holograms) from which the
phase information can be extracted by means of phase retrieval algorithms [12,13]. However, the
holograms have to be flat-field corrected [14] in order to apply many of those algorithms.

Flat-field correction (FFC) is a technique to mitigate systematic image artifacts that may arise
from detector behavior and/or from an optical system. Thus, the FFC of a homogeneous sample
should produce a uniform signal in the optical system. For this purpose, images without any
sample (flat-field images) and any illumination (dark-current images) are collected. Originally,
FFC was a technique conceived to reduce fixed-pattern noise in a dataset. In such a scenario, the
FFC is obtained by normalizing a sample image with the average flat-field image and subtracting
the average dark-current image. However, using the average value as a representative flat-field
image for flat-field correction is not appropriate when large variations in the illumination per
frame are observed. This is a typical issue for XFEL single-pulse experiments due to the stochastic
nature of the SASE source. Thus, conventional flat-field correction methods are not applicable,
and approaches capable of estimating each pulse’s flat-field contribution are needed. One of these
methods is retrospective flat-field [15–17]. Such methods estimate the flat-field contribution
only from sample measurements. Nonetheless, these methods assume that the acquisitions
are performed under similar illumination conditions. Therefore, such methods cannot trivially
account for the stochastic fluctuation of a SASE source. Another simple solution to estimate the
FFC for each pulse is to use a beamsplitter prior to the sample to estimate the illumination on the
sample. However, this approach may be challenging for magnification geometries. It also reduces
the photon flux on the sample, which is undesirable when aiming for optimum illumination (and
hence contrast). An alternative to this approach that avoids the aforementioned limitations is
to use dynamic flat-field correction approaches capable of estimating the flat-field per pulse by
exploiting a series of flat-field images.

Dynamic FFC using eigen flat fields has been successfully applied to the data collected from
storage rings [18] and recently applied to X-ray free-electron lasers [19]. The performance of
this dynamic flat-field correction method [18] in XFELs depends on the dimensionality of the
eigen flat-fields to describe the SASE fluctuations up to a certain confidence level. Thus, the
performance and execution time varies between XFELs and experimental stations. Another
relevant aspect that affects the performance of such methods is how well the flat-field images
reproduce the illumination on the sample. For example, systematic and stochastic effects, which
vary from shot to shot up to time scales of hours and days, can alter the sample illumination
during the experiment. These variations should be well-described by the flat-field images;
otherwise, they cannot be corrected even if they are merely translated due to the locality of
the method. One common way to minimize or circumvent this problem is to acquire flat-field
images before and after each sample acquisition. Thus, reducing the time interval between
flat-field and sample acquisitions minimizes those potential systematic effects. Detrimentally,
this solution can significantly reduce the available experimental time, and it does not address
potential variations like translations that may happen during long acquisitions. As experimental
time at XFEL facilities is limited and competitively acquired, shift-invariant approaches that can
relax the requirements imposed by local approaches and minimize the acquisition of flat-field
images are desirable.

Among state-of-the-art shift-invariant approaches, convolutional neural networks (CNNs)
[20] are deep-learning approaches (DL) [21,22] that have revolutionized signal processing and
pattern recognition. Since their first implementations, CNNs have demonstrated their capability
to identify and classify distorted and shifted patterns [20,23]. Such capabilities relax the
aforementioned constraints associated with local approaches as illumination artifacts don’t have
to be in the same position or exact shape to be corrected. However, conventional CNN approaches
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to address FFC require large amounts of paired data between sample images and their flat-field
corrected counterparts. Nonetheless, this data can be acquired before and after the experiment,
not before and after each acquisition, greatly reducing the experimental overhead time to collect
flat and dark-field frames.

This work studies the performance and implementation of flat-field correction approaches in
scenarios where conventional FFC based on an average illumination does not work. Here, we
study state-of-the-art dynamic flat-field correction approaches capable of estimating the flat-field
contribution for each sample frame. Additionally, we apply and implement DL approaches based
on CNNs to address this problem. Both approaches are validated and studied with simulated
data and experimental data coming from single-pulse experiments at the European XFEL. From
these studies, we demonstrate that DL approaches perform at the level of state-of-the-art dynamic
flat-field correction approaches. However, DL approaches are not sensitive to local artifacts, and
their execution is faster and compatible with online (i.e., real- or quasi-real-time) reconstructions.

The remainder of the paper is structured as follows: First, we introduce FFC and the details
of conventional, dynamic, and DL flat-field correction approaches. Second, we perform
studies of the performance of such algorithms on simulated data based on single-pulse imaging
experiments performed at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond
Crystallography (SPB/SFX) [24] instrument of the European XFEL [9,25]. Third, we apply them
to experimental data coming from MHz microscopy [26], an imaging technique that exploits
single pulses and the unique repetition rate of the European XFEL to record megahertz movies
with online holography. Finally, we discuss the capabilities of these algorithms to address FFC at
XFELs as well as their compatibility with online processing and real-time analysis.

2. Flat-field correction methods

Flat-field correction (FFC) is a technique conceived for decreasing the fixed-pattern noise, which
occurs with the same pattern under the same conditions. In the case of X-ray holography and
X-ray imaging techniques, the fixed-pattern noise can arise from various causes: non-uniform
scintillator-screen sensitivity, non-uniformity of a 2D X-ray detector, and an in-homogeneous
X-ray beam [27].

To correct for the fixed-pattern noise, flat-field correction approaches assume that the recorded
image of an object has two contributions, as shown in Fig. 1. One of these contributions comes
from the illumination (flat-field), and the other one comes from the detector’s electronic noise
(dark current). In order to disentangle the object contribution from these two components, we
acquire two sets of images. The first set includes flat-field images (f), i.e., images with the
X-ray illumination but without any sample. The second set, known as the dark-current set (d),
contains images without X-ray beam illumination. Then, the object contribution is estimated by
calculating the normalized image nj of a sample image sj following:

nj =
sj − d
f − d , (1)

where the index j refers to the image number.

2.1. Conventional FFC

Generally, the FFC is computed by using the average value of large sets of flat-field

(f)

and dark-field
(d)
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Fig. 1. Flat-field and dark-current contribution to a recorded image of a reference object as
assumed by conventional flat-field correction approaches.

images. In such a scenario, Eq. (1) is rewritten as follows:

nj =
sj − d̄
f̄ − d̄

. (2)

This approach is suitable for imaging systems with stationary illumination and detector response.
However, this method is not applicable when the frame-to-frame variations are not well-described
by their average value.

2.2. Dynamic FFC

As noted, for SASE XFELs, the X-ray illumination is not necessarily uniform from XFEL pulse
to pulse. Hence, XFEL pulses produced via SASE vary their wavelength, position, and intensity
profile from shot to shot. To deal with this problem, the flat-field contribution for each image
or pulse must be estimated. Among state-of-the-art approaches to address this issue, dynamic
flat-field correction methods estimate the flat-field image (fj) for each measured image (sj) [18].
Thus, Eq. (1) becomes:

nj =
sj − d̄
fj − d̄

. (3)

fj is then estimated using a flat-field basis with a number of elements K:

f̂j ≈ f̄ +
K∑︂

k=1
ŵjkuk , (4)

where uk is an element of the basis, and ŵjk is the projection coefficient for an element of the
basis k to the measured frame j. Thus, this method can be decomposed into two main processes:
calculating the flat-field basis uk and optimizing the coefficients ŵjk. Figure 2 summarizes the
main steps of these two processes.

The first process, the estimation of the flat-field basis, can be decomposed into three steps:
computation, selection, and filtering of the flat-field basis, as shown in the left column of Fig. 2.
The flat-field basis was extracted using the principal-component-analysis function (PCA) in
MATLAB. This process generates the normalized basis analogous to the direct calculation done
in Ref. [18]. One advantage of using this PCA function is that it returns the percentage of the
total variance explained by each element of the basis. In this work, we have selected the elements
of the basis based on the percentage of the total variance explained by each element, instead of
selecting based on the parallel analysis as done by Ref. [18]. The obtained flat-field basis from
these methods still contained noise. Thus, the basis is then filtered by using the block matching
filter [28] to improve the signal-to-noise ratio.

After calculating the flat-field basis, the second process or computation of the coefficients
ŵjk is performed. The ŵjk coefficients are computed to estimate the flat field f̂j, as described in
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Fig. 2. The processes to estimate a flat field of a sample image used in the dynamic flat-field
correction approaches.

Eq. (4). This is done by optimizing ŵjk to minimize the variation in the normalized image nj, as
evaluated in Ref. [18].

2.3. Deep-learning FFC (DL FFC)

The aforementioned solutions to the flat-field correction problem are local, e.g., they cannot
correct for systematic drifts in the illumination. Solutions to circumvent this limitation are
translation or shift-invariant approaches such as CNNs. CNNs are deep-learning approaches
that have shown great potential in image segmentation, pattern recognition, denoising, and
super-resolution. Given their potential, we propose a convolutional encoder-decoder neural
network to address the FFC at XFELs. First, the encoder reduces the resolution of the images
by repeated application of convolution and max pooling operations, extracting and separating
key features of the images. Then, the decoder recovers the dimension of the images through
transposed convolution and upsampling operations, removing the unwanted illumination artifacts
and producing a normalized image.

For this work, we used a state-of-the-art encoder-decoder architecture based on U-Net [29].
Our U-Net or flat-field correction generator (G) is trained using a generative adversarial network
(GAN) [30], i.e., we constrain it with an adversarial counterpart known as discriminator (D) as in
pix2pix [31]. GANs were first introduced in 2014 by Goodfellow [32] and have evolved with
many variations since then. The basic idea of a GAN is to train the generator and discriminator
networks simultaneously instead of just training one single network. The two networks compete
with each other: the generator receives feedback from the discriminator and adjusts its behavior
accordingly, while the discriminator learns to distinguish between real data and the data produced
by the generator. Unlike conventional CNN trained with an L2 norm, which learns to converge to
the average of all possible solutions [33], GAN, on the other hand, can provide better modeling of
the data distribution [32,34], which in our case will provide sharper and clear flat-field corrected
images. Specifically, we used the PatchGAN discriminator [34] for this work. Both networks
(U-Net generator G and PatchGAN discriminator D) were trained simultaneously.
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The total loss function used for our training has three components or loss functions (LGAN ,
LL2 , and LFRC). LGAN loss includes the adversarial component. LL2 loss calculates the L2
distance between the ground truth and the generated flat-field corrected images. Finally, the
LFRC or Fourier Ring Correlation (FRC) loss calculates the cross-correlation of two images over
rings in frequency space [35,36], which helps to avoid defects in the frequency space and provide
enhanced results [37]. With these three components, the total loss was expressed as:

L = arg min
G

max
D

log(D(n)) + log(1 − D(G(s))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
LGAN

+ λ ∥n − G(s)∥2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
LL2

+

µ

∥︁∥︁∥︁∥︁∥︁∥︁∥︁1 −

∑︁
r∈R F [n] (r) · F [G(s)] (r)∗√︂∑︁

r∈R |F [n] (r)|2 ·
∑︁

r∈R |F[G(s)] (r)|2

∥︁∥︁∥︁∥︁∥︁∥︁∥︁
2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

LFRC

,
(5)

where n denotes the normalized image, s denotes the measured sample image, R is the radius
of the ring in Fourier space, and r stands for individual rings. The weight parameters λ and µ
specify the relative weight of the LL2 and the LFRC with respect to the LGAN , respectively.

As training proceeds, the generator learns to generate flat-field-noise-free images, while the
discriminator, supervised by the adversarial loss, learns to distinguish whether the images are
flat-field corrected or not. In this way, the generator will, in the end, learn to generate flat-field
corrected images, which the discriminator cannot identify.

3. Simulation study based on the experimental data

This section compares and validates the three aforementioned flat-field correction methods using
simulated data based on experiments performed at the European XFEL.

The data was created following the approach depicted in Fig. 1. First, we created flat-field
images from a linear combination of a flat-field basis extracted from data collected in 2019 at the
SPB/SFX instrument of European XFEL [26]. The experimental frames were recorded using
a Shimadzu HPV-X2 camera at approximately a 1 MHz rate with frames of 250 × 400 pixels.
To create the flat fields, the basis extracted from the experimental data were sorted from the
maximum to the minimum percentage of the total variance explained by each basis. We used the
first 15 elements of the basis and generated the coefficients for each basis. The generation of the
coefficients was done by dividing the basis into three groups: i) the first group contained the
first and the second elements of the basis, ii) the second group contained the third to the eighth
elements, and iii) the rest of the elements were in group 3. The coefficients for each element of
the basis were randomly generated, but the total weight of the coefficients in each group was
fixed. Specifically, the total weight of the coefficients for each element of the basis in the first,
second, and third groups was fixed to 0.75, 0.20, and 0.05, respectively. The criteria to assign the
total weight of each group was based on the total-variance percentage of the basis elements from
the experimental data. Second, we created reference objects with random geometrical shapes
and positions that were multiplied by one of the randomly generated flat-field images.

The simulated sample images, together with their reference object or oracle, were used to
evaluate the performance of each of the flat-field correction methods, as shown in Fig. 3. A
total of one thousand flat-field images were generated for conventional and dynamic flat-field
correction methods. To train the DL FFC, a total of five thousand pairs of reference objects
together with their images were generated. We used four Nvidia Tesla V100 GPUs for the training.
We used the weight parameters λ = 5000 and µ = 1. In the beginning, the training was mainly
supervised by the L2 loss LL2 , which provides fast convergence. As training went on, LL2 and
the adversarial loss LGAN became both dominant. The FRC loss LFRC was orders of magnitude
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smaller than LL2 and worked as an auxiliary part. The batch size or the number of images passed
to both networks per training point was 180. The initial learning rates or updating weight for
the generator G and the discriminator D were set to be 0.0002 and 0.0001, respectively. After
every 100 epochs, i.e., 100 complete training cycles over the whole dataset, the learning rates
were reduced by a factor of 0.1. We stopped the training after 700 epochs, which took around
six hours to finish. One hundred extra images were generated to test the performance of all the
methods. One of these generated reference objects together with its simulated sample image are
depicted in Fig. 3(a) and 3(b), respectively. The flat-field corrected versions of this simulated
sample image are shown in Fig. 3(c), 3(d), and 3(e) for conventional FFC, dynamic FFC, and DL
FFC, respectively.

Fig. 3. Flat-field corrected results from a single reference image (a) and its simulated
image (b). The flat-field corrected images for conventional, dynamic, and deep-learning
approaches are shown in (c-e), respectively. The line profile over the red line in patches (a-e)
is shown in (f). All the flat-field corrected line profiles are linearly transformed to match the
reference-image range for visualization and comparison purposes, while the simulated-image
and reference line profiles were not modified.

To evaluate the performance of each flat-field correction method, we calculated the variance
between the flat-field corrected image or estimated normalized image n̂j and the simulated
normalized image nj for all the test images (N = 100), as follows:

σ2 =
1
N

N∑︂
j=1

M∑︂
i=1

(︁
n̂ij − nij

)︁2 , (6)

where the indices i and j refer to each of the M pixels of each image and the test image,
respectively. The average variances and their standard deviation over the one hundred images for
the conventional, the dynamic, and the DL flat-field correction methods are 1.1×10−3±1.3×10−3,
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4×10−5±4×10−5 and 6×10−6±4×10−6, respectively. The results show that the DL FFC provides
the best results. In contrast, conventional FFC cannot correct for the simulated illumination
fluctuations, and the variance is approximately two orders of magnitude worse than for the two
other methods.

This simulation demonstrates the potential to perform flat-field correction with DL approaches.
Furthermore, the simulations do not contain any non-local transformations that may enhance the
performance of DL vs. dynamic flat-field correction approaches. Another aspect to consider for
online and real-time flat-field correction applications is the computation time. For instance, the
computational times to flat-field correct the simulated Shimadzu HPV-X2 frames using our DL
approach or the dynamic method took in the order of 0.1 ms and 1 s, respectively.

4. FFC of XFEL experimental data

In this section, we describe the application of the presented flat-field correction methods to
experimental data collected in the European XFEL in 2021 to study the Venturi effect at megahertz
rate with micrometer resolution using in-line holography. The experiments were performed
at the SPB/SFX instrument at 9.3 keV, recording continuously at 1.125 MHz, which was the
repetition rate used for these experiments within one train of the European XFEL [26]. The
recorded movies were obtained using a Shimadzu HPV-X2 camera with an effective pixel size
of 3.2 µm. For such an effective pixel size, the field of view was 1.28 × 0.8 mm. The distance
between the sample and the detector or defocusing distance was 0.29 m. Figure 4(a) depicts one
of the experimental frames to study the Venturi effect. On the top-right part of this frame, one
can observe the turbulent dynamics induced inside the tube.

Fig. 4. Flat-field corrected results from experimental data. The flat-field corrected images
from an acquired sample frame (a) for the conventional, dynamic, and DL methods are
shown in patches, (b-d), respectively.

We performed FFC for all the methods described in section 2. In order to perform conventional
and dynamic FFC, we collected two sets of flat-field images: one of them before and the other
one after the sample acquisitions. We observed that some of the features present in the flat-field
images were shifted between the two sets. In fact, we determined by performing dynamic FFC
that the flat-field images after the sample acquisition reproduced the illumination artifacts present
in the sample set better than the first set of flat-field images or a combination of both of them.
Thus, we only used the latter dataset given the locality of the dynamic and conventional flat-field
correction methods. The flat-field images acquired after the sample sets contained a total of
11904 frames. Following the process described in section 2, we obtained a basis with 27 elements,
which predict 87 % of the total variance.
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The DL flat-field correction method relies on large training datasets. We performed our
training using 20315 pairs of sample (sj) and dynamic flat-field corrected (nj) images. The
input images were padded into 256 × 512 pixels to fit into our U-Net implementation. We used
the same initial learning rates and loss weights parameters as the training for simulation study
(section 3.). The learning rates were reduced by a factor of 0.68 every 10 epochs, and we stopped
the training after 100 epochs. The training process took about 14 hours to finish.

The results for a specific sample image are depicted in Fig. 4. The input image (s) is shown in
Fig. 4(a). This image contained artifacts such as stripe artifacts in the marked red-square area.
Thus, flat-field correction methods are required to minimize these stripes and artifacts, which may
lead to misinterpretations of the studied dynamics and hinder the applicability of state-of-the-art
phase-reconstruction methods. The flat-field corrected results obtained for this image with the
conventional, dynamic, and DL methods are displayed in Fig. 4(b)-(d), respectively. One can
observe that the conventional flat-field correction method cannot mitigate the strip artifacts
present in the red area. However, the dynamic and DL flat-field correction methods are successful
in suppressing those artifacts.

In order to quantify the performance of the flat-field correction methods, we estimated the
average modulus of the gradient over an area without any sample feature. Specifically, we selected
the red-square area shown in Fig. 4, which did not contain any feature over 1024 sample frames.
The gradient modulus in the aforementioned scenario is expected to be zero up to the noise
variations. Thus, we used a 2D Gaussian filter with σ = 3 pixels to mitigate the noise while
preserving the slow varying features coming from the illumination before calculating the gradient
modulus. The gradient modulus over the selected region for the 1024 images after applying FFC
using the conventional, the dynamic, and the DL method are 0.055 ± 0.004, 0.034 ± 0.003, and
0.035 ± 0.003, respectively. The dynamic and DL flat-field correction methods obtained the
best results as expected from the results shown in Fig. 4. Given that we trained the DL flat-field
correction method with dynamic flat-field corrected data, it is not expected that DL FFC can
outperform the dynamic flat-field correction method. Nonetheless, DL FFC can obtain flat-field
corrected images four orders of magnitude faster than the dynamic methods.

5. Conclusion

We have studied three different flat-field correction approaches and their application to single SASE
pulses produced by the European XFEL. In such a scenario, we demonstrate that conventional
flat-field correction methods cannot provide a satisfactory solution as the stochastic fluctuations
between SASE pulses are not well-described by the average values of the flat-field images. This
limitation is overcome by dynamic and DL flat-field correction methods. Both methods can
disentangle the flat-field or illumination effects from the sample effects enabling image processing
and phase-reconstruction approaches for coherent or phase-contrast techniques such as in-line
holography.

To validate the capabilities of the flat-field correction methods, we have performed simulations
of single-pulse experiments based on megahertz imaging datasets obtained from the European
XFEL. Our results show that dynamic and DL flat-field correction approaches can obtain good
flat-field corrected images with small variations with respect to the simulated objects. DL FFC
performs slightly better than the dynamic approach as it is a supervised approach trained on the
perfect data. Nonetheless, the DL approach can obtain flat-field corrected images four orders of
magnitude faster than the dynamic approach.

Furthermore, we have applied these flat-field correction methods to experimental data acquired
from the SPB/SFX instrument of the European XFEL. From the results presented here, it can
be observed and confirmed that dynamic and DL methods provide good flat-field corrected
images, while conventional methods cannot correct most of the illumination features present
in the collected images. We have also quantified the performance of the algorithms using the
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average value of the modulus of the gradient over a flat area, i.e., an area without any sample
feature. The results confirm that dynamic and DL approaches perform at the same level. This is
a consequence of using dynamic flat-field corrected images to train our DL approach. Thus, the
performance of the DL approaches will be at the level of the dynamic approaches.

We conclude that dynamic and DL approaches can address the challenge of obtaining flat-field
corrected images from single SASE pulses of an XFEL or any other source with stochastic
illumination. Thus, these methods enable the application of coherent X-ray imaging methods,
such as in-line holography, for these sources. Given the non-local or shift-invariant properties of
DL approaches such as CNNs, we propose the use of such approaches to avoid the continuous
acquisition of flat-field images as required by dynamic flat-field correction approaches whenever
systematic drifts or changes in the illumination are observed. Moreover, the fast execution
of DL approaches, four orders of magnitude faster than dynamic approaches, will enable the
development of a real-time processing pipeline for phase reconstruction and image processing
at XFELs for techniques such as in-line holography. To achieve this goal, we have envisioned
the deployment of dynamic and DL flat-field correction approaches at the European XFEL.
The former will provide the training dataset for the DL approach. The latter will be used to
provide real-time flat-field corrected images and maximize the available usage of the beamtime
by minimizing the requirement of recording flat-field images.
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