

Article Topological Transcendental Fields ⁺

Taboka Prince Chalebgwa ^{1,‡} and Sidney A. Morris ^{2,3,*,‡}

- ¹ The Fields Institute for Research in Mathematical Sciences, 222 College Street, Toronto, ON MST 3J1, Canada; taboka@aims.ac.za
- ² School of Engineering, IT and Physical Sciences, Federation University Australia, P.O. Box 663, Ballarat, VIC 3353, Australia
- ³ Department of Mathematical and Physical Sciences, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: morris.sidney@gmail.com
- ⁺ This paper is dedicated to Alf van der Poorten who introduced the second author to transcendental number theory.
- ‡ These authors contributed equally to this work.

Abstract: This article initiates the study of topological transcendental fields \mathbb{F} which are subfields of the topological field \mathbb{C} of all complex numbers such that \mathbb{F} only consists of rational numbers and a nonempty set of transcendental numbers. \mathbb{F} , with the topology it inherits as a subspace of \mathbb{C} , is a topological field. Each topological transcendental field is a separable metrizable zerodimensional space and algebraically is $\mathbb{Q}(T)$, the extension of the field of rational numbers by a set *T* of transcendental numbers. It is proven that there exist precisely 2^{\aleph_0} countably infinite topological transcendental fields and each is homeomorphic to the space \mathbb{Q} of rational numbers with its usual topology. It is also shown that there is a class of $2^{2^{\aleph_0}}$ of topological transcendental fields of the form $\mathbb{Q}(T)$ with *T* a set of Liouville numbers, no two of which are homeomorphic.

Keywords: topological field; transcendental number; algebraic; countably infinite; homeomorphic; extension field; subfield

check for updates

Citation: Chalebgwa, T.P.; Morris, S.A. Topological Transcendental Fields. *Axioms* 2022, *11*, 118. https://doi.org/10.3390/ axioms11030118

Academic Editor: Alexander Šostak

Received: 30 January 2022 Accepted: 5 March 2022 Published: 7 March 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Preliminaries

We begin by setting out our notation and making some simple preliminary observations.

Remark 1. We shall discuss four fields: \mathbb{C} , the field of all complex numbers; \mathbb{R} , the field of all real numbers; \mathbb{A} , the field of all algebraic numbers; and \mathbb{Q} , the field of all rational numbers. Observe the following easily verified facts:

- (*i*) Fields \mathbb{C} and \mathbb{R} have cardinality c, the cardinality of the continuum;
- (*ii*) Fields \mathbb{A} and \mathbb{Q} have cardinality \aleph_0 ;
- (iii) \mathbb{C} with its Euclidean topology is homeomorphic to $\mathbb{R} \times \mathbb{R}$, where \mathbb{R} has its Euclidean topology;
- (iv) Each of these four fields has a natural topology; \mathbb{C} and \mathbb{R} have Euclidean topologies, while \mathbb{A} and \mathbb{Q} inherit a natural topology as a subspace of \mathbb{C} ;
- (v) Field \mathbb{Q} is a dense subfield of the topological field \mathbb{R} (that is, the closure, in the topological sense, of \mathbb{Q} is \mathbb{R});
- (vi) Topological field \mathbb{A} is a dense subfield of the topological field \mathbb{C} ;
- (vii) $\mathbb{C} \supset \mathbb{A} \supset \mathbb{A} \cap \mathbb{R} \supset \mathbb{Q}$, but \mathbb{A} is not a subset of \mathbb{R} ;
- (viii) Field \mathbb{C} is a vector space of dimension \mathfrak{c} over \mathbb{A} and it is also a vector space of dimension \mathfrak{c} over \mathbb{Q} ;
- (*ix*) \mathbb{A} *is a vector space of countably infinite dimension over* \mathbb{Q} *;*
- (x) \mathbb{N} denotes the set of positive integers and \mathbb{Z} denotes the set of all integers, each with the discrete topology;
- (xi) \mathcal{T} is the topological space of all transcendental numbers, where $\mathcal{T} = \mathbb{C} \setminus \mathbb{A}$ and has a natural topology as a subspace of \mathbb{C} . The topology of \mathcal{T} is separable, metrizable, and zero-dimensional. Furthermore, the cardinality of \mathcal{T} is \mathfrak{c} and \mathcal{T} is dense in \mathbb{C} .

Remark 2. Now, we mention some not so easily verified known results:

- (*i*) \mathcal{T} is homeomorphic to the space \mathbb{P} of all irrational real numbers. \mathbb{P} is also homeomorphic to the countably infinite product $\mathbb{N}^{\mathbb{N}}$. (see ([1], §1.9));
- (ii) TQ denotes the set $T \cup \mathbb{Q}$. It is also homeomorphic to \mathbb{P} ;
- (iii) In 1932, Kurt Mahler classified the set of all transcendental numbers T into three disjoint classes: S, T, and U. For a discussion of this important classification, see ([2], Chapter 8). It has been proven that each of these sets has cardinality c. Furthermore, the Lebesgue measure of T and U are each zero. Thus, S has full measure, that is its complement has a measure of zero;
- (iv) We introduce the classes $SQ = S \cup \mathbb{Q}$, $TQ = T \cup \mathbb{Q}$, $UQ = U \cup \mathbb{Q}$. Clearly SQ, TQ, and UQ each have cardinality c, TQ, and UQ have measure zero, and SQ has full measure;
- (v) In 1844, Joseph Liouville showed that all members of a certain class of numbers, now known as the Liouville numbers, are transcendental. A real number x is said to be a Liouville number if, for every positive integer n, there exists a pair (p,q) of integers with q > 1, such that $0 < |x \frac{p}{q}| < \frac{1}{q^n}$ (see [3]). The Liouville numbers are a subset of the Mahler class U. We denote the set of Liouville numbers by L and the set $L \cup \mathbb{Q}$ by LQ.

Recall the following definitions from [4]. While Weintraub stated the definitions and propositions using countably infinite sets, there is no problem to state these using the sets of any cardinality.

Definition 1. Let \mathbb{E} be an extension field of \mathbb{F} . Then, $\alpha \in \mathbb{E}$ is said to be transcendental over \mathbb{F} if α is not a root of any nonzero polynomial $p(X) \in \mathbb{F}[X]$, the ring of polynomials over \mathbb{F} in the variable X with coefficients in \mathbb{F} . The quantity $\alpha \in \mathbb{E} \setminus \mathbb{F}$ is said to be algebraic over \mathbb{F} if it is not transcendental over \mathbb{F} .

Definition 2. An extension field \mathbb{E} of a field \mathbb{F} is said to be a completely transcendental extension of \mathbb{F} if α is transcendental over \mathbb{F} , for every $\alpha \in \mathbb{E} \setminus \mathbb{F}$.

Definition 3. Let \mathbb{E} be an extension field of field \mathbb{F} . Then, \mathbb{E} is a purely transcendental extension of \mathbb{F} if \mathbb{E} is isomorphic to the field of rational functions $\mathbb{Q}(\{X_i : i \in I|\})$ of variables $\{X_i : i \in I\}$, where I is a finite or infinite index set.

Definition 4. Let field \mathbb{E} be an extension of the field \mathbb{F} . If I is any index set, the subset $S = \{s_i : i \in I\}$ of \mathbb{E} is said to be algebraically independent over \mathbb{F} if for all finite subsets $\{i_1, \ldots, i_n\}$ of I, all nonzero polynomials $p \in \mathbb{F}[X_{i_1}, \ldots, X_{i_n}]$, $p(s_{i_1}, \ldots, s_{i_n}) \neq 0$. By convention, if $S = \emptyset$, then S is said to be algebraically independent over \mathbb{F} .

Remark 3. Observe that, if a set S is algebraically independent over \mathbb{Q} , then it is algebraically independent over \mathbb{A} . Furthermore, algebraic independence implies linear independence.

Remark 4. Central to their definition of the classes *S*, *T*, and *U*, was the feature that Mahler wanted, namely that any two algebraically dependent transcendental numbers lie in the same class—*S*, *T*, or *U*.

We shall use ([4], Lemmas 6.1.5 and 6.1.8) which are stated here as Proposition 2 and Proposition 1. In this context, it is useful to recall the classical result of Jacob Lüroth, proven in 1876, that every field that lies between any field \mathbb{F} and an extension field $\mathbb{F}(\alpha)$ is itself an extension field of \mathbb{F} by a single element of the field $\mathbb{F}(\alpha)$.

Proposition 1. Let \mathbb{E} be a purely transcendental extension of a field \mathbb{F} . Then, \mathbb{E} is a completely transcendental extension of \mathbb{F} .

Proposition 2. Let \mathbb{E} be an extension field of the field \mathbb{F} and let $S = \{s_i : i \in I\}$ be algebraically independent over \mathbb{F} , where I is an index set. Then, the extension field $\mathbb{F}(S)$ is a purely transcendental extension.

Recall the following definition from, for example, [5,6]:

Definition 5. A field \mathbb{F} with a topology τ is said to be a topological field if the field operations:

- (*i*) $(x, y) \rightarrow x + y$ from $\mathbb{F} \times \mathbb{F}$ to \mathbb{F} ;
- (ii) $x \to -x$ from $\mathbb{F} \setminus \{0\}$ to $\mathbb{F} \setminus \{0\}$;
- (*iii*) $(x, y) \rightarrow xy$ from $\mathbb{F} \times \mathbb{F}$ to \mathbb{F} ; and
- (iv) $x \to x^{-1}$ from \mathbb{F} to \mathbb{F}

are all continuous.

The standard examples of topological fields of characteristic 0 are \mathbb{R} , \mathbb{C} , and \mathbb{Q} with the usual Euclidean topologies. Indeed, by ([7], §27, Theorem 22), the only connected locally compact Hausdorff fields are \mathbb{R} and \mathbb{C} . However, Shakhmatov in [8] proved the following beautiful result:

Theorem 1. On every field \mathbb{F} of infinite cardinality \aleph , there exist precisely $2^{2^{\aleph}}$ distinct topologies which make \mathbb{F} a topological field.

Motivated by the definition of a transcendental group introduced in [9], we define here the notion of a *topological transcendental field*.

Definition 6. *The topological field* \mathbb{F} *is said to be a* topological transcendental field *if algebraically it is a subfield of* \mathbb{C} *, is a subset of* $\mathbb{Q} \cup \mathcal{T}$ *, and has the topology it inherits as a subspace of* \mathbb{C} *.*

Remark 5. *Of course, the underlying field of a topological transcendental field is a a completely transcendental extension of* \mathbb{Q} *.*

2. Countably Infinite Transcendental Fields

Proposition 3. If t is any transcendental number, then $\mathbb{Q}(t)$ is a topological transcendental field.

Proof. This proposition is an immediate consequence of Propositions 1 and 2. \Box

Remark 6. Of course it is not true that if t_1 and t_2 are transcendental, then $\mathbb{Q}(t_1, t_2)$ is necessarily a transcendental field. For example, if $t_1 = \pi$ and $t_2 = \pi + \sqrt{2}$, then $\mathbb{Q}(t_1, t_2)$ is not a topological transcendental field as $\sqrt{2} \in \mathbb{Q}(t_1, t_2)$. In fact, Paul Erdős [10] proved that for every real number rthere exist Liouville numbers t_3, t_4, t_5, t_6 such that $t_3 \cdot t_4 = r$ and $t_5 + t_6 = r$. Indeed, he proved that for each real number r, there are uncountably many Liouville numbers t_3, t_4 and t_5, t_6 with these properties. As a consequence, we see that if L is the set of all Liouville numbers, then $\mathbb{Q}(L)$ is not a topological transcendental field.

Having established the existence of countably infinite topological transcendental fields, we now describe a very concrete example. However, first we state a well-known theorem on transcendental numbers—please see Theorem 1.4 and the comments following it, in [2].

Theorem 2. (*Lindemann*–Weierstrass Theorem) For any $m \in \mathbb{N}$ and any algebraic numbers $\alpha_1, \alpha_2, \ldots, \alpha_m$ which are linearly independent over \mathbb{Q} , the numbers $e^{\alpha_1}, e^{\alpha_2}, \ldots, e^{\alpha_m}$ are algebraically independent.

Theorem 3. Let $S = \{\alpha_1, \alpha_2, ..., \alpha_n, ...\}$ be a countably infinite set of algebraic numbers which are linearly independent over \mathbb{Q} . If $T = \{e^{\alpha_1}, e^{\alpha_2}, ..., e^{\alpha_n}, ...\}$, then $\mathbb{Q}(T)$, is a topological transcendental field.

Proof. By Propositions 1 and 2, $\mathbb{Q}(T)$ is a topological transcendental field. \Box

Theorem 4. There exist precisely 2^{\aleph_0} countably infinite topological transcendental fields, each of which is homeomorphic to \mathbb{Q} .

Proof. Using the notation of Theorem 3, there are 2^{\aleph_0} subsets of *T* and, due to algebraic independence, any two such subsets *V*, *W*, $V \neq W$, are such that $\mathbb{Q}(V) \neq \mathbb{Q}(W)$.

Furthermore, there are only 2^{\aleph_0} countably infinite subsets of \mathbb{C} . Thus, there exist precisely 2^{\aleph_0} countably infinite topological transcendental groups.

By ([1], Theorem 1.9.6), the space \mathbb{Q} of all rational numbers up to homeomorphism is the unique non-empty countably infinite separable metrizable space without isolated points. In a topological field (indeed in a topological group), there are isolated points if and only if the topological field has a discrete topology. However, by ([11], Theorem 6), the only discrete subgroups of \mathbb{C} are isomorphic to \mathbb{Z} and $\mathbb{Z} \times \mathbb{Z}$, neither of which has the algebraic structure of a field. Thus, every countably infinite topological transcendental field is homeomorphic to \mathbb{Q} . \Box

3. Topological Transcendental Fields of Continuum Cardinality

Theorem 5. Let \mathbb{K} be a topological transcendental field of cardinality card(\mathbb{K}). Then, the extension field $\mathbb{K}(t)$ is a topological transcendental field for all but a set of cardinality card(\mathbb{K}) of $t \in \mathbb{C}$.

Proof. The extension field $\mathbb{K}(t)$ consists of elements *z* of the form

$$z = \frac{c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n}{d_0 + d_1 t + d_2 t^2 + \dots + d_m t^m},$$

for $c_0, c_1, \ldots, c_n, d_0, d_1, \ldots, d_m \in \mathbb{K}$, $n, m \in \mathbb{N}$. If *z* is an algebraic number *a*, then

$$c_0 + c_1 t + c_2 t_2 + \dots c_n t^n - a d_0 - a d_1 t - a d_2 t^2 - \dots - a d_m t^m = 0.$$
(*)

For any given $n, m \in \mathbb{N}$, given $c_0, c_1, \ldots, c_n, d_0, d_1, \ldots, d_m \in \mathbb{K}$, and given $a \in \mathbb{A}$, the Fundamental Theorem of Algebra says that there at most $\max(n, m)$ algebraic number solutions of (*) for *t*. As there are only a countably infinite number of algebraic numbers *a*, we see that for given $c_0, c_1, \ldots, c_n, d_0, d_1, \ldots, d_m \in \mathbb{K}$, there are a countable number of solutions of (*) for *t*. Noting that the number of choices of $c_0, c_1, \ldots, c_n, d_0, d_1, \ldots, d_m \in \mathbb{K}$ is card \mathbb{K} , for each $n, m \in \mathbb{N}$, we obtain that *z* is a transcendental number except for at most $\aleph_0 \times \operatorname{card}(\mathbb{K}) = \operatorname{card}(\mathbb{K})$ values of *t*, which proves the theorem. \Box

Noting our Remark 6, Corollary 1 is of interest.

Corollary 1. If t_1, t_2 are transcendental numbers, then $\mathbb{Q}(t_1, t_2)$ is a topological transcendental field for all but a countably infinite number of pairs (t_1, t_2) . Indeed, if W is a countable set of transcendental numbers, then $\mathbb{Q}(W)$ is a topological transcendental field for all but a countably infinite number of sets W. \Box

Corollary 2. Let \mathbb{K} be a topological transcendental field of cardinality $\aleph < 2^{\aleph_0}$. Then, there exists $a \ t \in \mathbb{C}$ such that $\mathbb{K}(t)$ is a topological transcendental field which properly contains \mathbb{K} . \Box

Theorem 6. Let *E* be any set of cardinality c of transcendental numbers. Then, there exists a topological transcendental field $\mathbb{Q}(T)$ of cardinality c, where $T \subseteq E$. Further, $\mathbb{Q}(T)$ has 2^{c} distinct topological transcendental subfields.

Proof. Consider the set \mathcal{F} of all topological transcendental fields $\mathbb{Q}(F)$, where F is a subset of E, with the property that for each pair $W, V \subset F$ such that $W \neq V, \mathbb{Q}(V) \neq \mathbb{Q}(W)$.

By Corollary 1 and the fact that *E* is uncountable, there exist $s, t \in E, t \notin \mathbb{Q}(s), s \notin \mathbb{Q}(t)$, and $\mathbb{Q}(s, t)$ is a topological transcendental field. Then, $\mathbb{Q}(s, t) \in \mathcal{F}$.

Put a partial order on the members of \mathcal{F} by set theory containment. Consider any totally ordered subset \mathcal{S} of members of \mathcal{F} . Let \mathbb{K} be the union of members of \mathcal{S} . Clearly it is a member of \mathcal{F} and is an upper bound of \mathcal{S} . Therefore, by Zorn's Lemma, \mathcal{F} has a maximal member $\mathbb{Q}(T)$, where $T \subseteq E$.

Suppose that *T* has cardinality $\aleph < \mathfrak{c}$, then by the proof of Theorem 4, there exists an $e \in E$, such that $\mathbb{Q}(T)(e) = \mathbb{Q}(T, \{e\})$ is a topological transcendental field which is easily seen to be a member of \mathcal{F} . This contradicts the maximality of $\mathbb{Q}(T)$. Thus, *T* has cardinality \mathfrak{c} .

Furthermore, by the definition of \mathcal{F} , $\mathbb{Q}(T)$ has 2^c distinct topological transcendental subfields. \Box

Theorem 7. Let *E* be a set of transcendental numbers of cardinality c. Then, there exist 2^{c} topological transcendental fields $\mathbb{Q}(T)$, where $T \subseteq E$, no two of which are homeomorphic.

Proof. By the Laverentieff Theorem, Theorem A8.5 of [1], there are at most \mathfrak{c} subspaces of \mathbb{C} which are homeomorphic. Thus, from Theorem 6 there are $2^{\mathfrak{c}}$ topological transcendental fields, no two of which are homeomorphic. \Box

Corollary 3. Let *E* be the set *L* of Liouville numbers or the Mahler set *U* or the Mahler set *T* or the Mahler set *S*. Then, there exist 2^c topological transcendental fields $\mathbb{Q}(T)$, where $T \subseteq E$, no two of which are homeomorphic. \Box

As noted in Remark 3, the Mahler sets T and U and the set of Liouville numbers, being a subset of U, have Lebesgue measure zero, while the Mahler set S has full measure; we thus conclude by asking whether there are any topological transcendental fields of nonzero Lebesgue measure.

Author Contributions: The authors contributed equally to the research and the writing of the article. All authors have read and agreed to the published version of the manuscript.

Funding: The first author's research is supported by the Fields Institute for Research in Mathematical Sciences, via the Fields-Ontario postdoctoral Fellowship.

Acknowledgments: Sidney A. Morris thanks John Loxton for suggesting he look at topological transcendental fields. The authors thank the reviewers for helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. van Mill, J. The Infinite-Dimensional Topology of Function Spaces; Elsevier: Amsterdam, The Netherlands, 2001.
- 2. Baker, A. Transcendental Number Theory; Cambridge University Press: Cambridge, UK, 1975.
- 3. Angell, D. Irrationality and Transcendence in Number Theory; CRC Press: Boca Raton, FL, USA, 2022.
- 4. Weintraub, S.H. Galois Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009.
- 5. Warner, S. Topological Fields; North-Holland Publishing Company: Amsterdam, NY, USA, 1989.
- 6. Shell, N. Topological Fields and Near Valuations; Routledge: London, UK, 1990.
- 7. Pontryagin, L.S. Topological Groups; Gordon and Breach: New York, NY, USA, 1966.
- 8. Shakhmatov, D.B. Cardinal invariants of topological fields. Dokl. Akad. Nauk. SSSR 1983, 271, 1332–1336.
- 9. Morris, S.A. Transcendental Groups, to Appear. Available online: https://arxiv.org/abs/2112.12450 (accessed on 7 March 2022).
- 10. Erdős, P. Representations of real numbers as sums and products of Liouville numbers. Mich. Math. J. 1962, 9, 59–60. [CrossRef]
- 11. Morris, S.A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups; Cambridge University Press: Cambridge, UK, 1977.