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Abstract: This article initiates the study of topological transcendental fields F which are subfields
of the topological field C of all complex numbers such that F only consists of rational numbers
and a nonempty set of transcendental numbers. F, with the topology it inherits as a subspace
of C, is a topological field. Each topological transcendental field is a separable metrizable zero-
dimensional space and algebraically is Q(T), the extension of the field of rational numbers by a set T
of transcendental numbers. It is proven that there exist precisely 2ℵ0 countably infinite topological
transcendental fields and each is homeomorphic to the space Q of rational numbers with its usual
topology. It is also shown that there is a class of 22ℵ0 of topological transcendental fields of the form
Q(T) with T a set of Liouville numbers, no two of which are homeomorphic.

Keywords: topological field; transcendental number; algebraic; countably infinite; homeomorphic;
extension field; subfield

1. Preliminaries

We begin by setting out our notation and making some simple preliminary observations.

Remark 1. We shall discuss four fields: C, the field of all complex numbers; R, the field of all real
numbers; A, the field of all algebraic numbers; and Q, the field of all rational numbers. Observe the
following easily verified facts:

(i) Fields C and R have cardinality c, the cardinality of the continuum;
(ii) Fields A and Q have cardinality ℵ0;
(iii) C with its Euclidean topology is homeomorphic to R×R, where R has its Euclidean topology;
(iv) Each of these four fields has a natural topology; C and R have Euclidean topologies, while A

and Q inherit a natural topology as a subspace of C;
(v) Field Q is a dense subfield of the topological field R (that is, the closure, in the topological

sense, of Q is R);
(vi) Topological field A is a dense subfield of the topological field C;
(vii) C ⊃ A ⊃ A∩R ⊃ Q, but A is not a subset of R;
(viii) Field C is a vector space of dimension c over A and it is also a vector space of dimension c over

Q;
(ix) A is a vector space of countably infinite dimension over Q;
(x) N denotes the set of positive integers and Z denotes the set of all integers, each with the discrete

topology;
(xi) T is the topological space of all transcendental numbers, where T = C \A and has a natural

topology as a subspace of C. The topology of T is separable, metrizable, and zero-dimensional.
Furthermore, the cardinality of T is c and T is dense in C.

Axioms 2022, 11, 118. https://doi.org/10.3390/axioms11030118 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11030118
https://doi.org/10.3390/axioms11030118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-6132-6368
https://orcid.org/0000-0002-0361-576X
https://doi.org/10.3390/axioms11030118
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11030118?type=check_update&version=1


Axioms 2022, 11, 118 2 of 5

Remark 2. Now, we mention some not so easily verified known results:

(i) T is homeomorphic to the space P of all irrational real numbers. P is also homeomorphic to the
countably infinite product NN. (see ([1], §1.9));

(ii) T Q denotes the set T ∪Q. It is also homeomorphic to P;
(iii) In 1932, Kurt Mahler classified the set of all transcendental numbers T into three disjoint

classes: S, T, and U. For a discussion of this important classification, see ([2], Chapter 8). It
has been proven that each of these sets has cardinality c. Furthermore, the Lebesgue measure of
T and U are each zero. Thus, S has full measure, that is its complement has a measure of zero;

(iv) We introduce the classes SQ = S ∪ Q, TQ = T ∪ Q, UQ = U ∪ Q. Clearly SQ, TQ, and UQ
each have cardinality c, TQ, and UQ have measure zero, and SQ has full measure;

(v) In 1844, Joseph Liouville showed that all members of a certain class of numbers, now known as
the Liouville numbers, are transcendental. A real number x is said to be a Liouville number
if, for every positive integer n, there exists a pair (p, q) of integers with q > 1, such that
0 < |x− p

q | <
1
qn (see [3]). The Liouville numbers are a subset of the Mahler class U. We

denote the set of Liouville numbers by L and the set L ∪Q by LQ.

Recall the following definitions from [4]. While Weintraub stated the definitions and
propositions using countably infinite sets, there is no problem to state these using the sets
of any cardinality.

Definition 1. Let E be an extension field of F. Then, α ∈ E is said to be transcendental over F
if α is not a root of any nonzero polynomial p(X) ∈ F[X], the ring of polynomials over F in the
variable X with coefficients in F. The quantity α ∈ E \ F is said to be algebraic over F if it is not
transcendental over F.

Definition 2. An extension field E of a field F is said to be a completely transcendental extension
of F if α is transcendental over F, for every α ∈ E \ F.

Definition 3. Let E be an extension field of field F. Then, E is a purely transcendental extension
of F if E is isomorphic to the field of rational functions Q({Xi : i ∈ I|}) of variables {Xi : i ∈ I},
where I is a finite or infinite index set.

Definition 4. Let field E be an extension of the field F. If I is any index set, the subset S = {si :
i ∈ I} of E is said to be algebraically independent over F if for all finite subsets {i1, . . . , in} of I, all
nonzero polynomials p ∈ F[Xi1 , . . . , Xin ], p(si1 , . . . , sin) 6= 0. By convention, if S = ∅, then S is
said to be algebraically independent over F.

Remark 3. Observe that, if a set S is algebraically independent over Q, then it is algebraically
independent over A. Furthermore, algebraic independence implies linear independence.

Remark 4. Central to their definition of the classes S, T, and U, was the feature that Mahler
wanted, namely that any two algebraically dependent transcendental numbers lie in the same
class—S, T, or U.

We shall use ([4], Lemmas 6.1.5 and 6.1.8) which are stated here as Proposition 2 and
Proposition 1. In this context, it is useful to recall the classical result of Jacob Lüroth, proven
in 1876, that every field that lies between any field F and an extension field F(α) is itself an
extension field of F by a single element of the field F(α).

Proposition 1. Let E be a purely transcendental extension of a field F. Then, E is a completely
transcendental extension of F.
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Proposition 2. Let E be an extension field of the field F and let S = {si : i ∈ I} be alge-
braically independent over F, where I is an index set. Then, the extension field F(S) is a purely
transcendental extension.

Recall the following definition from, for example, [5,6]:

Definition 5. A field F with a topology τ is said to be a topological field if the field operations:

(i) (x, y)→ x + y from F× F to F;
(ii) x → −x from F \ {0} to F \ {0};
(iii) (x, y)→ xy from F× F to F; and
(iv) x → x−1 from F to F
are all continuous.

The standard examples of topological fields of characteristic 0 are R, C, and Q with the
usual Euclidean topologies. Indeed, by ([7], §27, Theorem 22), the only connected locally
compact Hausdorff fields are R and C. However, Shakhmatov in [8] proved the following
beautiful result:

Theorem 1. On every field F of infinite cardinality ℵ, there exist precisely 22ℵ distinct topologies
which make F a topological field.

Motivated by the definition of a transcendental group introduced in [9], we define
here the notion of a topological transcendental field.

Definition 6. The topological field F is said to be a topological transcendental field if alge-
braically it is a subfield of C, is a subset of Q ∪ T , and has the topology it inherits as a subspace
of C.

Remark 5. Of course, the underlying field of a topological transcendental field is a a completely
transcendental extension of Q.

2. Countably Infinite Transcendental Fields

Proposition 3. If t is any transcendental number, then Q(t) is a topological transcendental field.

Proof. This proposition is an immediate consequence of Propositions 1 and 2.

Remark 6. Of course it is not true that if t1 and t2 are transcendental, then Q(t1, t2) is necessarily
a transcendental field. For example, if t1 = π and t2 = π +

√
2, then Q(t1, t2) is not a topological

transcendental field as
√

2 ∈ Q(t1, t2). In fact, Paul Erdős [10] proved that for every real number r
there exist Liouville numbers t3, t4, t5, t6 such that t3 · t4 = r and t5 + t6 = r. Indeed, he proved
that for each real number r, there are uncountably many Liouville numbers t3, t4 and t5, t6 with
these properties. As a consequence, we see that if L is the set of all Liouville numbers, then Q(L) is
not a topological transcendental field.

Having established the existence of countably infinite topological transcendental fields,
we now describe a very concrete example. However, first we state a well-known theorem
on transcendental numbers—please see Theorem 1.4 and the comments following it, in [2].

Theorem 2. (Lindemann–Weierstrass Theorem) For any m ∈ N and any algebraic numbers
α1, α2, . . . , αm which are linearly independent over Q, the numbers eα1 , eα2 , . . . , eαm are alge-
braically independent.



Axioms 2022, 11, 118 4 of 5

Theorem 3. Let S = {α1, α2, . . . , αn, . . . } be a countably infinite set of algebraic numbers which
are linearly independent over Q. If T = {eα1 , eα2 , . . . , eαn , . . . }, then Q(T), is a topological
transcendental field.

Proof. By Propositions 1 and 2, Q(T) is a topological transcendental field.

Theorem 4. There exist precisely 2ℵ0 countably infinite topological transcendental fields, each of
which is homeomorphic to Q.

Proof. Using the notation of Theorem 3, there are 2ℵ0 subsets of T and, due to algebraic
independence, any two such subsets V, W, V 6= W, are such that Q(V) 6= Q(W).

Furthermore, there are only 2ℵ0 countably infinite subsets of C. Thus, there exist
precisely 2ℵ0 countably infinite topological transcendental groups.

By ([1], Theorem 1.9.6), the space Q of all rational numbers up to homeomorphism
is the unique non-empty countably infinite separable metrizable space without isolated
points. In a topological field (indeed in a topological group), there are isolated points if
and only if the topological field has a discrete topology. However, by ([11], Theorem 6),
the only discrete subgroups of C are isomorphic to Z and Z×Z, neither of which has the
algebraic structure of a field. Thus, every countably infinite topological transcendental field
is homeomorphic to Q.

3. Topological Transcendental Fields of Continuum Cardinality

Theorem 5. Let K be a topological transcendental field of cardinality card(K). Then, the extension
field K(t) is a topological transcendental field for all but a set of cardinality card(K) of t ∈ C.

Proof. The extension field K(t) consists of elements z of the form

z =
c0 + c1t + c2t2 + . . . cntn

d0 + d1t + d2t2 + . . . dmtm ,

for c0, c1, . . . , cn, d0, d1, . . . , dm ∈ K, n, m ∈ N. If z is an algebraic number a, then

c0 + c1t + c2t2 + . . . cntn − ad0 − ad1t− ad2t2 − · · · − admtm = 0. (∗)

For any given n, m ∈ N, given c0, c1, . . . , cn, d0, d1, . . . , dm ∈ K, and given a ∈ A, the
Fundamental Theorem of Algebra says that there at most max(n, m) algebraic number
solutions of (∗) for t. As there are only a countably infinite number of algebraic numbers
a, we see that for given c0, c1, . . . , cn, d0, d1, . . . , dm ∈ K, there are a countable number of
solutions of (∗) for t. Noting that the number of choices of c0, c1, . . . , cn, d0, d1, . . . , dm ∈ K
is cardK, for each n, m ∈ N, we obtain that z is a transcendental number except for at most
ℵ0 × card(K) = card(K) values of t, which proves the theorem.

Noting our Remark 6, Corollary 1 is of interest.

Corollary 1. If t1, t2 are transcendental numbers, then Q(t1, t2) is a topological transcendental
field for all but a countably infinite number of pairs (t1, t2). Indeed, if W is a countable set of
transcendental numbers, then Q(W) is a topological transcendental field for all but a countably
infinite number of sets W.

Corollary 2. Let K be a topological transcendental field of cardinality ℵ < 2ℵ0 . Then, there exists
a t ∈ C such that K(t) is a topological transcendental field which properly contains K.

Theorem 6. Let E be any set of cardinality c of transcendental numbers. Then, there exists a
topological transcendental field Q(T) of cardinality c, where T ⊆ E. Further, Q(T) has 2c distinct
topological transcendental subfields.
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Proof. Consider the set F of all topological transcendental fields Q(F), where F is a subset
of E, with the property that for each pair W, V ⊂ F such that W 6= V, Q(V) 6= Q(W).

By Corollary 1 and the fact that E is uncountable, there exist s, t ∈ E, t /∈ Q(s), s /∈ Q(t),
and Q(s, t) is a topological transcendental field. Then, Q(s, t) ∈ F .

Put a partial order on the members of F by set theory containment. Consider any
totally ordered subset S of members of F . Let K be the union of members of S . Clearly it is
a member of F and is an upper bound of S . Therefore, by Zorn’s Lemma, F has a maximal
member Q(T), where T ⊆ E.

Suppose that T has cardinality ℵ < c, then by the proof of Theorem 4, there exists an
e ∈ E, such that Q(T)(e) = Q(T, {e}) is a topological transcendental field which is easily
seen to be a member of F . This contradicts the maximality of Q(T). Thus, T has cardinality c.

Furthermore, by the definition of F , Q(T) has 2c distinct topological transcendental
subfields.

Theorem 7. Let E be a set of transcendental numbers of cardinality c. Then, there exist 2c

topological transcendental fields Q(T), where T ⊆ E, no two of which are homeomorphic.

Proof. By the Laverentieff Theorem, Theorem A8.5 of [1], there are at most c subspaces of
C which are homeomorphic. Thus, from Theorem 6 there are 2c topological transcendental
fields, no two of which are homeomorphic.

Corollary 3. Let E be the set L of Liouville numbers or the Mahler set U or the Mahler set T or the
Mahler set S. Then, there exist 2c topological transcendental fields Q(T), where T ⊆ E, no two of
which are homeomorphic.

As noted in Remark 3, the Mahler sets T and U and the set of Liouville numbers, being
a subset of U, have Lebesgue measure zero, while the Mahler set S has full measure; we
thus conclude by asking whether there are any topological transcendental fields of nonzero
Lebesgue measure.
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