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sites were detected for OL, SW, and PR, and MTAs 
specific for the different water stress sites were iden-
tified for all traits. Five MTAs were associated with 
multiple traits; 4 of 5 MTAs were variously associ-
ated with the three traits of SW, OL, and PR. This 
study provided insights into the phenotypic vari-
ability and genetic architecture of important safflower 
agronomic traits under different environments.
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Introduction

Safflower (Carthamus tinctorius L.) is a member of 
the Compositae family, grown as a vegetable, cut 
flower, herbal medicine, animal feed, birdseed, and 
oilseed, etc. in over 60 geographical regions cover-
ing the Middle East, Africa, America, Europe, and 
Asia (Knowles and Ashri 1995). In recent years, with 
a growing demand for healthy cooking oil and clean 
biofuel and bio-lubricants, safflower has emerged as a 
modern industrial oilseed crop due to its higher oleic 
and linoleic acid content compared to other oilseed 
crops (Fernández-Martinez et  al. 1993; Khalid et  al. 
2017). In 2019, FAO data showed safflower seed pro-
duction world-wide was approximately 0.6 million 
tonnes, and the top 4 largest growers (Kazakhstan, 
United States, Russian Federation, and Mexico) pro-
duce over 75% of total production (FAO 2019). The 

Abstract  Genome-wide association studies were 
conducted using a globally diverse safflower (Cartha-
mus tinctorius L.) Genebank collection for grain yield 
(YP), days to flowering (DF), plant height (PH), 500 
seed weight (SW), seed oil content (OL), and crude 
protein content (PR) in four environments (sites) that 
differed in water availability. Phenotypic variation 
was observed for all traits. YP exhibited low overall 
genetic correlations (rGoverall) across sites, while SW 
and OL had high rGoverall and high pairwise genetic 
correlations (rGij) across all pairwise sites. In total, 
92 marker-trait associations (MTAs) were identified 
using three methods, single locus genome-wide asso-
ciation studies (GWAS) using a mixed linear model 
(MLM), the Bayesian multi-locus method (BayesR), 
and meta-GWAS. MTAs with large effects across all 
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Australian safflower growing area is currently about 
40,000 ha, down from its peak of 74,688 ha in 1979 
(Jochinke et al. 2008). As a potential crop that could 
grow in a drier environment, safflower is gaining 
more research attention (Li and Mündel 1996).

To date, genetic analyses for agronomic traits in 
safflower have largely been undertaken using con-
ventional family-based methods (Kotecha 1979; 
Ramachandram and Goud 1981). This has allowed 
the identification of genes and quantitative trait loci 
(QTL) for traits such as plant height, seed oil con-
tent, and days to flowering (Hamdan et al. 2012; Pearl 
et  al. 2014). Association mapping approaches have 
also been used to identify QTL in safflower. Study 
using AFLP markers detected four marker-trait asso-
ciations (MTAs) for PH under drought conditions in 
safflower (Ebrahimi et al. 2017a). Six MTAs for PH, 
five MTAs for DF, and several MTAs for oil content, 
oleic acid content, and linoleic acid content were 
identified in an association study using microsatellite 
markers (Ambreen et al. 2018). The Fad2 gene family 
(Fatty acid desaturases, FAD) in safflower has been 
sequenced with genes being isolated and cloned (Cao 
et al. 2013; Wood et al. 2018). However, no genome-
wide association studies (GWAS) based on single 
nucleotide polymorphisms (SNPs) markers have been 
reported in safflower.

Statistical methods used in GWAS analysis are 
important for identifying MTAs for complex traits 
(Wang et  al. 2019; Zhang et  al. 2010). Single-locus 
GWAS with mixed linear models (MLM-GWAS) 
has been widely used to detect the MTAs for agro-
nomic traits in a variety of plants, including wheat 
(Ledesma-Ramírez et  al. 2019), rapeseed (Qu et  al. 
2017),  soybean (Leamy et  al. 2017a),  etc..  To 
increase power to discover SNP with small effects and 
reduce false-positive associations, summary statistic-
based methods (meta-GWAS) have been adopted in 
some studies (Joukhadar et  al. 2021; Pasaniuc and 
Price 2017). In canola, a meta-GWAS analysis iden-
tified 79 genomic regions conferring potential candi-
date resistance to canola blackleg disease, more sig-
nificant SNPs than single-locus GWAS (Fikere et al. 
2020). Differing from single-locus MLM-GWAS 
testing one marker at a time, multi-locus GWAS 
have been applied by fitting all loci simultaneously to 
improve fine-mapping (Kaler et al. 2020; Tamba et al. 
2017). As a multi-locus Bayesian method, BayesR 
simultaneously accommodates all SNPs in the model, 

and SNPs effects were a mixture of four normal dis-
tributions, which include SNPs with 0, small, and 
moderate effects. In each distribution, fewer SNPs 
explain the gradually more genetic variance (Daet-
wyler et al. 2014; Erbe et al. 2012). BayesR has been 
used to identify QTL or associations in dairy cattle 
and wheat (Pasam et al. 2017; Xiang et al. 2021).

The variation in phenotypes among genotypes in 
different environments is evaluated as the extent of 
the genotype-by-environment interaction (G × E), 
which is also referred to as the traits phenotypic plas-
ticity (Bradshaw 1965). Identifying G × E interaction 
patterns and their genetic basis under multi-environ-
ment trials can deepen the knowledge of the genetic 
architecture of traits (Das et al. 2019; Kusmec et al. 
2018). In a canola study, 12 environment-stable QTL 
and 43 environment-specific QTL were detected for 
flowering time in three different ecological condi-
tions, which provided new insights into the genetic 
regulatory network underlying the control of flower-
ing time (Li et  al. 2018a). Few studies investigating 
G × E interaction patterns have been reported in saf-
flower, which were carried out to evaluate genotypes 
and yield stability (Alizadeh et  al. 2017; Jamshid-
moghaddam and Pourdad 2013).

In Australia, crop production is challenged by 
spatial drought patterns due to seasonal rainfall and 
high temperatures (Chenu et  al. 2013). Therefore, 
understanding the G × E interaction and genetic basis 
underlying grain yield and related agronomic traits 
are important for safflower breeding. In this study, a 
globally diverse Genebank collection of 406 acces-
sions was grown in 4 different field environments (2 
trials in one location but with different field manage-
ment in 2017 and 2 locations in 2018). The aims were 
to (1) assess genetic variability in the different envi-
ronments and the level of G × E interaction for grain 
yield and related agronomic traits and (2) identify 
MTAs via GWAS at each environment to study the 
genetic basis of the G × E interaction for grain yield 
and related agronomic traits.

Materials and methods

Plant material and phenotyping

A total of 406 globally diverse safflower accessions 
were sourced from the Australian Grain Genebank 
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(AGG), including elite cultivars, breeding lines, and 
landraces. Accessions information and the field trial 
experiment design are previously described (Zhao et al. 
2021). In brief, with a randomized complete block 
design, all accessions were sown at two field sites in 
two consecutive years (2017 and 2018, a total of four 
sites) with plot size of 1 m x 5 m, 5 rows in each plot, 
and 220 seeds sowed per plot. Sites 1 and 2 were sown 
in 2017 at the same location (Horsham, Victoria) in a 
low rainfall zone. Site 1 was flood irrigated before sow-
ing and considered an optimal site with a full soil water 
profile. Site 2 was rainfed, with soil water stress start-
ing in late spring (during the flowering stage). Sites 3 
and 4 were sown in 2018. Site 3 was at the same loca-
tion as sites 1 and 2 but was rainfed and experienced 
soil water stress during the entire growing season, with 
minimal rain in the early spring and high temperature 
towards the end of the season. Site 4 was in a higher 
rainfall zone (Wonwondah, Victoria) and received more 
rain overall than site 3, but also experienced soil water 
stress.

Days to flowering (DF) was recorded as the num-
ber of days from sowing to 25% of the plot flowering. 
Plant height (PH) was measured at the late flowering 
stage from the ground surface to the top of the plot 
canopy in cm. Seed weight (SW) was measured as ran-
dom 500 achenes from the whole plot in grams. Grain 
yield was measured as yield per plot (YP) in kilograms 
harvested by machine. Seed protein (PR) and seed oil 
content (OL) were determined by near-infrared reflec-
tance spectroscopy (NIR, Foss Pacific Pty Ltd, Den-
mark) with calibration by the Dumas nitrogen combus-
tion method for protein (TruMac, Leco Corporation St 
Joseph USA), and the Soxhlet extraction for oil (Soxtec 
25,050, FOSS, Hilleroed, Denmark). The NIR predic-
tion models R-squared (R2) and standard error of pre-
diction (SEP) were 0.93 and 0.7% for seed protein con-
tent and 0.95 and 1.2% for seed total oil content.

Statistical analysis of phenotypic data

Summary statistics were calculated for each trait at 
each site. The best linear unbiased estimates (BLUE) 
for each trait at each site were calculated by a single 
site linear mixed model with safflower accessions fit-
ted as fixed effects. The model was illustrated as:

(1)Ymijk = � + gm + Rj + rj + ck + �mijk

where Ymijk is the phenotypes of accessions m in 
rep j at row i, column k; µ is the overall mean, gm is 
the fixed accession genetic effect, and Rj is the repli-
cate effect; ri is the row effect, ck is the column effect, 
and ɛmijk is the residual, including the AR1 × AR1 
covariance structure to adjust spatial variation.

Pearson’s correlation at each site was calculated 
based on the BLUEs of each trait. BLUEs were used 
as the “phenotypes” for the GWAS.

To assess the G × E level for each trait, the four 
sites were combined, and the genetic effect associated 
with accessions was decomposed into two compo-
nents, the genetic effect of accessions and the interac-
tion effect between accessions and sites (G × E effect), 
which were assumed to be homogenous for all sites. 
The linear mixed model was:

where Yijk is the phenotype of accession k in rep j 
at site i, µ is the overall mean, Si is the fixed i-th site 
effect, Rj is the fixed replicate effect, Gk is the random 
accession genetic effect, SGik is the random G × E 
effect, and ɛijk is the residual. Two models, including 
and excluding the G × E effect, were compared, and 
a log-likelihood ratio test was used to test the sig-
nificance of the G × E effect for each trait (Kendall 
and Stuart 1979). The genetic correlation among the 
four sites (rGoverall) was estimated as the ratio of the 
genetic effect of accessions to total genetic variance, 
calculated as rGoverall = �2

G
∕(�2

G
+ �

2

GE
) , where �2

G
  is 

the genetic variance of accessions and �2

GE
 is the vari-

ance for G × E interaction. High genetic correlation 
among sites indicated low G × E interaction, while 
low genetic correlation indicated high G × E interac-
tion (Li et al. 2016).

A heterogeneous variance structure was also fitted 
in the linear mixed model, which assumes that acces-
sions genetic effect is independent at each site. It can 
be illustrated as:

where the terms are the same as above, with the 
site as a fixed effect and the accession and trial repli-
cate effects both nested within sites as a random effect 
with different variance for each site. The residual var-
iance was also nested within the site, with the 
AR1 × AR1 covariance structure used to adjust spatial 
variation across columns and rows. The genetic 

(2)Yijk = � + Si + Rj + Gk + SGik + �ijk

(3)Yijk = � + Si + SRij + SGik + �ijk
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correlation of the accession effect between two sites 
was calculated as rGij = �GiGj∕

√

�
2

Gi
∗ �

2

Gj
 , where the 

�
2

Gi
 and �2

Gj
 are the variance of the accession genetic 

effect at sites i and j, respectively. The �GiGj is the 
covariance of the accessions genetic effect at sites i 
and j. Similar to the above, high genetic correlations 
between two sites indicated a low G × E interaction. 
The significance of the genetic correlation between 
two sites was tested for deviation from 1 using likeli-
hood ratio tests. If rGij significantly differed from 1, it 
suggested the ranking of accessions at the two sites 
was different. Akaike information criterion (AIC) was 
used to compare the fitness of models 2 and 3.

SNP genotyping and population structure

A total of 349 accessions were genotyped using a gen-
otyping-by-sequencing assay as described in (Zhao 
et  al. 2021). In brief, genomic DNA was extracted 
from six crushed seeds per accession, digested with 
restriction endonucleases PstI (6-bp cutter) and MseI 
(4-bp cutter), followed by the amplification, puri-
fication, and sequencing by Illumina Hiseq 3000 
sequencer. SNP discovery and genotype calling were 
conducted with custom scripts, and SNPs were fil-
tered for a missing data rate < 30% and minor allele 
frequency (MAF) > 0.01 and imputed with LinkIm-
pute (Money et  al. 2015). A total of 318 samples 
were passed the filtering, and population structure 
was evaluated from the genomic relationship matrix 
(GRM) according to VanRaden (VanRaden 2008). 
SNPs were further filtered with MAF > 0.05 and het-
erozygosity < 0.3 for 318 samples for the genome-
wide association study. The physical position of the 
filtered SNP was determined by mapping their flank-
ing sequences to a draft safflower genome assembly 
(unpublished data) with 12 main scaffolds (pseu-
dochromosomes). Linkage disequilibrium (LD) was 
calculated for all pairwise SNP using PLINK (Purcell 
et al. 2007).

Genome‑wide association study

Single site GWAS was conducted for each trait using 
the BLUEs of each trait as the “phenotypes” (Sup-
plementary Table s1). First, a single SNP regression 
model, referred to as MLM-GWAS, implemented 
in the GCTA software (Yang et  al. 2011), was 

performed with the GRM fitted to account for popu-
lation structure. Second, the Bayesian multi-locus 
approach-BayesR was performed using the Markov 
chain Monte Carlo (MCMC) method with 50,000 
iterations and 25,000 burn-in. SNPs with large effects 
were declared if they had a nonzero effect with at 
least a 0.7 posterior probability, averaged over 5 runs 
(Erbe et  al. 2012). And third, meta-GWAS imple-
mented in the software Metal (Willer et al. 2010) was 
performed for each trait, with each single site MLM-
GWAS treated as an independent study. Manhattan 
and quantile–quantile (Q-Q) plot generated with an R 
script (Yu et al. 2006) were used to visualize associa-
tions for each trait. SNP identified by all three meth-
ods were considered candidate MTAs for each trait.

Results

Phenotypic variation and correlations

In total, 406 globally diverse safflower accessions 
were evaluated in four field trials. The phenotypic 
distributions and means for grain yield (YP), plant 
height (PH), days to flowering (DF), 500 seed weight 
(SW), seed protein (PR), and oil content (OL) are 
shown in Fig. 1. The mean YP was the highest at site 
1 (1.89 kg/plot), a third less at site 2 (1.21 kg/plot), 
and halved at sites 3 and 4 (0.66 and 0.72  kg/plot) 
(Supplementary Table  s2). The distribution for YP 
was much narrower at sites 3 and 4 compared with 
sites 1 and 2 for YP (Fig.  1). PH showed a similar 
distribution pattern to YP, with lower means at sites 3 
and 4 (~ 60 cm) compared to sites 1 and 2 (~ 115 cm). 
DF had the highest mean value and narrowest distri-
bution at site 2 (~ 160 days, Fig. 1). There were differ-
ences in trait means between sites for the three seed 
traits (SW, PR, and OL), but they were more subtle 
than those observed for YP and PH. The SW mean 
was higher at sites 3 and 4 (~ 20.6 g) than at sites 1 
and 2 (19.56 g and 18.77 g, respectively). The mean 
of PR ranged from 15.14 to 15.92% across four sites, 
and OL decreased about 1% with different water 
stress environments, from 31.83% at site 1 down to 
29.69% at site 3. Similarly, the distributions for the 
three seed traits did not change dramatically across 
the four sites (Fig. 1, Supplementary Table s2).

Pearson correlations between traits at each site 
showed that YP was positively correlated with PH 
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(0.34–0.479) and negatively correlated with PR 
(− 0.208– − 0.405). SW was negatively correlated 
with OL (− 0.518– − 0.505), PR (− 0.55– − 0.383), 
and PR was positively correlated with OL 
(0.19–0.639) over all sites. However, DF is positively 
correlated with PH at sites 1, 3, and 4 (0.464–0.62) 
and negatively correlated with PH at site 2 (Table 1).

G × E interaction

G × E interactions for each trait were determined 
through combined site analysis, and the overall 
genetic correlations ranged from 0 to 1 among sites 
for all traits (model 2). The model including G × E 
interaction effects had a higher log-likelihood than 

the model excluding G × E interactions, and the G × E 
interaction effects were all significant (Supplemen-
tary Table  s3, s4). High overall genetic correlations 
(rGoverall) among sites were observed for SW and OL 
(0.95 and 0.94, respectively), indicating low G × E 
interaction for those traits, while low rGoverall for YP 
(0.48) indicated a strong G × E interaction. G × E lev-
els were moderate for PH, DF, and PR, with rGoverall 
value ranging from 0.67 to ~ 0.79 (Supplementary 
Table s4).

To account for differences in G × E interactions 
between sites, a linear mixed model assuming hetero-
geneous genetic and residual variances (model 3) was 
adopted. The AIC was lower for all traits for model 3 
than for model 2, suggesting that model 3 fitted the 

Fig. 1   Distribution of grain yield (YP), plant height (PH), days to flowering (DF), 500 seed weight (SW), seed protein (PR), and oil 
content (OL) among the 406 safflower accessions at each of the four field trial sites (ENV, dashed line shows the trait mean)
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data better (Supplementary Table  s5). The genetic 
correlation (rGij) between pairwise site combinations 
varied; however, traits with high rGoverall also had 
high rGij between pairwise sites (Table  2). Accord-
ing to Robertson (Robertson 1959), a correlation of 
performance between environments ≤ 0.8 indicates a 
considerable re-ranking of individuals. SW and OL 
had high pairwise genetic correlations between all 
sites with rGij values > 0.9, especially between sites 
3 and 4, in which a rGij (0.99) was not significantly 
different from 1. As the rest traits all had rGij ≥ 0.80 
between sites 3 and 4, suggesting that those two sites 

could be treated as a single site with limited re-rank-
ing. Genetic correlations for PH were uniformly high 
between pairwise sites (rGij ≥ 0.80), while the genetic 
correlations for DF and YP varied, with those for YP 
being the most variable.

Genome‑wide associations

The heatmap of the genomic relationship matrix (G) 
revealed a strong population structure among 318 
accessions (Supplementary Figure  s1), which was 
consistent with the previous observation (Zhao et al. 

Table 1   Pearson 
correlation between traits at 
each site

Site Trait OL PH PR SW YP

DF 0.101 0.464  − 0.093  − 0.215 0.101
ENV1 OL  − 0.109 0.19  − 0.508 0.154

PH  − 0.222 0.01 0.441
PR  − 0.383  − 0.369
SW 0.034
DF 0.29  − 0.076 0.2  − 0.352  − 0.156

ENV2 OL  − 0.075 0.203  − 0.505 0.03
PH  − 0.317 0.129 0.479
PR  − 0.484  − 0.405
SW 0.206
DF 0.027 0.579 0.074  − 0.17 0.097

ENV3 OL  − 0.058 0.513  − 0.51  − 0.029
PH  − 0.078  − 0.051 0.42
PR  − 0.55  − 0.29
SW 0.177
DF 0.02 0.62  − 0.02  − 0.152 0.192

ENV4 OL  − 0.112 0.639  − 0.518 0.104
PH  − 0.109  − 0.001 0.34
PR  − 0.471  − 0.208
SW 0.07

Table 2   Genetic 
correlations (rGij, 
with standard error in 
parenthesis) between sites 
for six traits were calculated 
with model 3

*Genetic correlation is not 
significantly differed from 
value of 1 at 0.05 level

Site pair Trait

ENV_i ENV_j YP PH DF SW OL PR
1 2 0.69 (0.04) 0.84 (0.02) 0.6 (0.04) 0.96 (0.01) 0.94 (0.01) 0.89 (0.02)
1 3 0.45 (0.06) 0.81 (0.05) 0.85 (0.02) 0.93 (0.01) 0.95 (0.01) 0.7 (0.04)
1 4 0.68 (0.05) 0.81 (0.03) 0.85 (0.02) 0.93 (0.01) 0.95 (0.01) 0.67 (0.04)
2 3 0.39 (0.07) 0.87 (0.04) 0.35 (0.05) 0.93 (0.01) 0.9 (0.01) 0.78 (0.03)
2 4 0.46 (0.06) 0.8 (0.03) 0.36 (0.05) 0.92 (0.01) 0.91 (0.01) 0.73 (0.04)
3 4 0.82 (0.06) 0.87 (0.05) 0.99 (0)* 0.99 (0)* 0.99 (0)* 0.94 (0.02)
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2021). After further filtering, a total of 1806 SNPs 
were used for GWAS studies, with 1780 positioned 
on the 12 pseudochromosomes of the draft safflower 
genome assembly, about 100–200 SNPs per pseu-
dochromosome. LD decayed rapidly over a short 
physical distance, followed by a slower decline over 
longer pairwise distances (Supplementary Figure s2).

Combined QQ plots for the four sites showed that 
the inclusion of G matrix in the GWAS effectively 
accounted for the observed population structure 
(Fig. 2, Supplementary Figure s3). A relaxed signifi-
cance threshold of -log10(p) ≥ 2 was used to denote 
MTAs in the MLM-GWAS, which resulted in the 
identification of between 41 and 71 putative MTAs 
for each trait across the four sites. For the meta-
GWAS, the number of significant SNPs was more 

than twice the number found in the MLM-GWAS for 
OL, SW, and PR. Fewer MTAs were detected using 
the BayesR method, especially for PR (Table  3). 
SNPs with large effects in the BayesR analysis typi-
cally overlapped with SNPs above the significance 
threshold in the MLM-GWAS (Fig. 2, Supplementary 
Figure s3).

A total of 92 significant MTAs were detected 
by all three GWAS approaches (Table  3, Supple-
mentary Tables  s6-s11). Heatmap of pairwise LD 
between significant MTAs for each trait was plotted 
to show that MTAs were not tightly linked (Supple-
mentary Figure  s4). By comparing MLM-GWAS 
and BayesR results, the significant MTAs were clas-
sified as site-specific or shared among sites, where 
sites 3 and 4 were treated as a single site. Traits 

Table 3   Number of MTAs 
identified by different 
GWAS methods

Trait MLM-GWAS Meta-GWAS BayesR Common 
MTAs

Shared MTAs 
(> = 2 sites)

Site-
specific 
MTAs

DF 52 62 38 16 2 14
OL 54 116 38 30 12 18
PH 71 71 32 17 7 10
PR 55 119 5 5 3 2
SW 41 150 27 20 11 9
YP 59 48 10 4 1 3

Fig. 2   a QQ plot for seed oil content (OL) at the four trial 
sites; b negative log10 p values are plotted against for all SNPs 
across four sites for OL, and the blue line indicates the thresh-
old of significance with the MLM-GWAS method; and c SNP 

effects are plotted against for all SNPs across four sites for OL 
with the BayesR GWAS method. SNPs are sorted according to 
physical position in the 12 pseudochromosomes and are in the 
same order for each of the four trial sites
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with low overall G × E (high genetic correlation) 
had a higher percentage of shared MTAs across 
sites (SW and OL), while traits with high to moder-
ate overall G × E (PH, DF, and YP) detected limited 
shared MTA between pairwise sites. Five and six 
MTAs shared across all sites were observed for SW 
and OL, respectively, with Locus 6195 and 28,935 
for OL and Locus 3057 and 27,064 for SW showing 
large effects (> 0.15). PR had three shared MTAs, 
and locus 3057 with large effects were detected 
across all sites. Seven MTAs for PH were shared 
between two sites, and five of seven were between 
sites 1 and 2. Two and one MTAs were shared 
between two sites for DF and YP, respectively. All 
site-specific MTAs were consistent in effect direc-
tion but varied in magnitude across sites, except 
the MTAs for locus 25,179 and 6025 associated 
with DF and PH, respectively, which had opposite 
directions with near zero effect at nonsignificant 
sites. The number of site-specific MTAs observed 
for each trait differed among sites. 12 out of 18 
site-specific SNPs for OL were observed at site 3 
(or site 4), six of nine site-specific MTAs for SW 
were observed at site 1, and eight of 14 site-specific 
MTAs for DF were observed at site 1 (Table 3, Sup-
plementary Tables s6–11).

Five MTAs had significant associations with 
more than one trait. Locus 5628 was associated 
with PH at sites 2 and 3 and DF at site 1. Locus 
9819 was associated with DF at site 1, OL at site 

3, and PR at sites 2 and 3. Locus 17,302 and 3057 
increased SW but decreased PR and OL at site 2 
and site 3 (or site 4), respectively. Locus 28,935 was 
associated with low SW and high OL at sites 2 and 
3 (or site 4) (Table 4).

Discussion

Understanding G × E is an important initial step to 
developing strategies for a breeding program in the 
target environment(s). Our results showed that G × E 
patterns differed between safflower traits. The iden-
tification of site-shared and site-specific MTAs in 
GWAS provides knowledge to broaden our under-
standing of the genetic basis of G × E interactions for 
important safflower traits.

Different G × E interaction patterns were observed for 
safflower traits

The seasonal rainfall in the Victoria Wimmera region 
(Horsham and Wonwondah) had an impact on saf-
flower agronomic traits. Safflower is normally sown 
in Winter in Australia to maximize the usage of the 
available water from Winter and early Spring rain 
(Wachsmann et al. 2008). In our study, we observed 
that water stress during flowering decreased safflower 
grain yield substantially. Further, insufficient Spring 
rain heavily reduced safflower production via poor 

Table 4   MTAs with effects 
on multiple traits with their 
MAF, physical position, 
Z-score, and p value from 
the meta-GWAS

SNP MAF Pseu-
dochromo-
some

Physical position Trait Site Z-score P value

Locus5628 0.39 1 83,711,358 DF 1 4.167 3.08E-05
PH 2,3 4.638 3.51E-06

Locus9819 0.1 8 79,766,528 DF 1 4.598 4.26E-06
PR 2,3,4 5.709 1.14E-08
OL 3 4.763 1.91E-06

Locus17302 0.1 12 1,089,790 PR 2 -4.555 5.24E-06
SW 1,2 4.97 6.68E-07
OL 2 -3.701 0.000215

Locus3057 0.06 7 15,110,222 PR 1,2,3,4 -8.97 2.95E-19
SW 1,2,3,4 7.021 2.2E-12
OL 3,4 -4.45 8.58E-06

Locus28935 0.08 8 23,744,954 SW 2,3,4 -5.623 1.88E-08
OL 1,2,3,4 6.767 1.32E-11
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biomass accumulation. Similar grain yield instabil-
ity induced by rainfall patterns has also been reported 
in other crops (Sadras and Dreccer 2015). Besides 
grain yield, a 1% decrease of OL was observed under 
differing water stress, consistent with previous stud-
ies that oil content decreased under drought stresses 
(Ebrahimi et al. 2017b; Joshan et al. 2019). The posi-
tive correlation between OL and PR (0.14 to ~ 0.46 
across sites), which was also reported in a previous 
study (r = 0.476) (Oz 2016), indicated that artificial 
selection for OL in safflower has a limited impact on 
seed protein compared with soybean (Leamy et  al. 
2017b). The negative correlation between SW with 
PR and OL across all four sites suggests a negative 
relationship between carbohydrate accumulation and 
protein and oil accumulation, which could be simi-
lar to the competition in cereal crops (Bjarnason and 
Vasal 1992; Pasam et al. 2012).

The overall G × E interactions were significant for 
all the traits studied. However, there were different 
levels of G × E for the different traits. The heterogene-
ous model further revealed detailed G × E patterns for 
each trait, which indicated the rank changes of acces-
sions between sites. The high G × E observed for YP 
across sites was consistent with studies in other crops 
(He et al. 2019; Tolessa et al. 2013). Low to moderate 
pairwise genetic correlation indicated re-ranking for 
YP was high among sites. Only 4 accessions showed 
yield stability through presence in the top 50 high 
yield accessions across all sites, which could be used 
for the future breeding program. The cultivars and 
breeding lines performed well at site 1 (19 accessions 
out of the 50 top YP accessions) but not at the other 
three sites, suggesting that introgression of water 
stress tolerance from landraces could improve saf-
flower yield stability. The low level of G × E for OL 
with limited re-ranking across sites observed in our 
study was also indicated in a soybean study (Sudarić 
et  al. 2006). According to the BLUEs for each site, 
about half of the top 30 accessions with high OL 
were cultivars and breeding lines, reflecting breeding 
efforts to improve OL in safflower cultivars. Although 
a moderate rGoverall was observed for DF and PH, the 
pairwise genetic correlation showed that lines were 
reranked strongly for DF at site 2 compared with 
other sites. The genetic divergence of DF among the 
accessions in response to water stress at flowering 
implied DF is important in developing drought toler-
ant varieties (Bhandari et al. 2020).

GWAS identified MTAs for safflower traits

GWAS has been widely used to study the genetic 
basis of the important agronomy traits with diverse 
germplasm in crops (Liu and Yan 2019). Multi-
environment trials normally were combined to pre-
sent the overall phenotypic variation for GWAS to 
detecting the associations between markers and traits 
(Landers and Stapleton 2014; Leamy et  al. 2017c). 
However, with diverse germplasm, the phenotypic 
variation displayed under differed environments can 
be used to measure the plasticity of the traits or trait 
G × E level with proper statistical models (Des Marais 
et  al. 2013; Malosetti et  al. 2013). Environmental 
stable and environmental-specific MTAs can help 
our understanding of the genetic basis of trait G × E, 
and it also will enrich our knowledge of the genetic 
architecture of the important agronomy traits (Li et al. 
2018b; Timpson et  al. 2018). In our study, GWAS 
was carried out with a globally diverse safflower col-
lection for six agronomic traits in four field trials that 
differed with water availability. MTAs shared across 
sites were identified for traits with low G × E, and 
site-specific MTAs were discovered for all traits with 
more site-specific MTAs than shared MTAs identified 
for moderate overall G × E traits.

A high number of significant MTAs were identi-
fied for seed oil content (OL) by all three GWAS 
approaches, of which 18 were shared across sites, and 
12 were site-specific, indicating the complex genetic 
control of this trait. Studies with canola showed that 
24 candidate genes were involved in fatty acid bio-
synthesis (Qu et  al. 2017). In safflower, a transcrip-
tome study showed that a significant number of tran-
scription factors were involved in oil accumulation 
in safflower seeds (Li et  al. 2021). The six MTAs 
shared across four sites will be of interest to saf-
flower breeders and geneticists as sources of genetic 
variation to improve the seed oil content in safflower 
under different growing conditions. Similarly, numer-
ous MTA (total 20) were identified for seed weight 
(SW), of which 11 were shared across sites. Three 
MTAs explaining more than 10–20% phenotypic vari-
ance across sites will provide useful information for 
breeders to modify SW in safflower (Supplementary 
Table s9).

The molecular basis for G × E interactions could 
be due to site-specific QTLs, gene expression, or 
differences in the magnitude of expression across 
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environments (Des Marais et  al. 2013; Li et  al. 
2018b). In our study, all site-specific MTAs showed 
differing allelic effects across sites for each trait (Sup-
plementary Table  s6–11); however, the effects were 
significant in some environments but not in other 
environments. We observed moderate overall G × E 
for PH and DF with a higher number of site-specific 
MTAs. Markers associated with PH and DF under 
drought conditions in safflower have been reported 
(Ebrahimi et  al. 2017a). Only one MTA was identi-
fied for DF at site 2, which could be related to the nar-
row phenotypic variation observed at site 2 (Stich and 
Melchinger 2010). Few MTAs for PR and YP were 
detected by all three GWAS methodologies. However, 
those that were identified explained a high proportion 
of the phenotypic variation for each trait, indicating 
their potential importance for genetic improvement.

Correlations between traits can be caused by plei-
otropy or a close linkage of loci associated with the 
traits (Chen and Lübberstedt 2010). Shared major 
genes or QTL for flowering time and plant height 
have been reported in soybean (Cober and Morrison 
2010; Fang et al. 2017). In our study, locus 5628 was 
associated with DF at site 1 and PH at site 2 and 3, 
suggesting the MTA is likely tightly linked to dif-
ferent QTL affecting both traits, rather than being 
a single QTL with pleiotropic effects. In canola, a 
QTL affecting both OL and PR in repulsion was 
reported, suggesting the PR and OL biosynthesis 
pathways interfere and/or compete with one another 
(Chao et  al. 2017). In maize, high OL and high PR 
were achieved using the opaque2 modifier genes. 
However, a yield reduction was noted (Vanous et al. 
2019). In our study, we identified four MTAs affect-
ing three traits, one MTA influencing both SW and 
OL, one MTA associated with PR and OL, and two 
MTAs interfering SW, OL, and PR. The allelic effects 
of those MTAs were consistent with the correlation 
observed in the field among the three traits that PR 
and OL are positively correlated, and both traits are 
negatively correlated with SW. This suggested that 
safflower breeding for PR and OL may differ from 
canola and maize. However, balancing seed weight 
and seed quality (OL and PR) would be a challenge. 
There were other strong phenotypic correlations, such 
as YP with PH and YP with PR, but associated mark-
ers were not identified. The reason could be the low 
number of significant SNPs that were observed for 
grain yield.

The interplay of GWAS results and genetic 
architectures

SW and OL are known as highly heritable traits in 
many crops, while yield is more quantitative in nature 
(Ward et al. 2019; Xiao et al. 2019). The number of 
MTAs identified by the three GWAS methods did not 
fully reflect the complexity of the trait genetic archi-
tecture. One reason for this could be the thresholds 
used by the three methods. The p value used in our 
single locus MLM-GWAS was relaxed, and a sig-
nificant number of candidate MTAs were observed 
for all traits. With meta-GWAS, we reported signifi-
cant SNPs number with -log10P value at 3 instead 
of 2, which detected more significant SNPs for each 
trait indicating the increased power (Supplementary 
Table s12). However, multi-locus BayesR, which can 
improve association mapping resolution by remov-
ing multiple SNPs being in LD with the same QTL, 
could detect SNPs with larger effects (Kemper et al. 
2015; Pasam et al. 2017). We observed fewer MTAs 
for all traits with the BayesR methods with the arbi-
trary threshold of 0.7 posterior probability of a SNP 
having an effect. This threshold may have been too 
stringent for polygenic traits such as YP and PR. Only 
10 MTAs associated with YP, and 5 MTAs associated 
with PR were detected with BayesR, which explained 
5–28% of the phenotypic variance.

Heterogenous model fit the data better

Mixed linear models are widely used for G × E analy-
sis in crop research (Smith et al. 2005). Falconer and 
Mackay (1996) suggested that the same trait meas-
ured in different environments should be considered 
as different (but correlated) traits. In our study, the 
homogenous model 2 combined the four sites together 
and estimated the overall GXE pattern with only 
three parameters. However, the heterogeneous model 
3 treated each site as an independent environment, 
and a total of 26 parameters were estimated. The 
increased number of parameters allowed dissection 
of G × E among individual environments to reveal 
hidden patterns of genetic correlation between sites. 
Furthermore, the AIC, BIC, and Logl were improved 
for all traits, indicating model 3 was better able to 
fit the data (Hirotugu. 1998). These findings agreed 
with Malosetti et al. (2013), who compared different 
models to study G × E interactions and concluded that 
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sophisticated mixed models are necessary to allow for 
heterogeneity of genetic variances and correlations 
across environments.

In conclusion, two mixed linear models were 
applied to analyse the G × E pattern for grain yield 
(YP), days to flowering (DF), plant height (PH), 500 
seed weight (SW), seed oil content (OL), and seed 
protein content (PR) in a globally diverse safflower 
collection grown in four field trials. The heterogenous 
mixed linear model (MLM) fitted data better and 
provided a detailed estimation of the G × E pattern. 
We observed that different water stress conditions 
impacted the performance of each of these traits dif-
ferently, with low overall G × E observed for OL and 
SW and high overall G × E for YP. In total, 92 MTAs 
were identified with large effects MTAs detected for 
OL, SW, and PR across all sites. Site-specific MTAs 
were detected for all traits with differed allelic effects, 
suggesting these MTAs could be associated with 
trait G × E. Five MTAs were associated with multi-
ple traits. The uniform GWAS thresholds used in the 
study could have impacted the number of significant 
SNP identified for complex traits. This study has pro-
vided new insights into the genetic architecture of the 
traits studied, and it presents opportunities to exploit 
the MTA identified in breeding programs to increase 
yield stability and local adaptation in safflower.
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