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Abstract

In Riemannian geometry, a geodesic is the shortest curve between any two close
points. Geodesics are analogues of straight lines in Euclidean geometry, and as
such, are probably the most important curves on a Riemannian manifold. In a met-
ric Lie group, geodesics can be described by the famous Euler-Arnold equation,
which in practice is a finite-dimensional system of nonlinear ordinary differential
equations on the Lie algebra of the Lie group. In this project, we study the Lya-
punov stability of certain distinguished geodesics called homogeneous geodesics,
which correspond to the stationary solutions of the Euler-Arnold equation. We
give a complete classification in case of three-dimensional Lie groups and a partial
classification in dimension four.
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Introduction

In this introduction, we will informally explain the scope of this thesis, leaving
the precise statements and definitions to later chapters, and then formulate our
main results.

The research undertaken in the thesis lies in the overlap of three areas — Lie
theory, Riemannian geometry and Ordinary differential equations (Dynamical sys-
tems). We study the dynamical behaviour of geodesics on Lie groups of low dimen-
sions (of dimension 3 and 4).

Informally, one can think of a Lie group of dimension n ≥ 1 as a topological
group which is at the same time an n-dimensional manifold; the latter means that lo-
cally a neighbourhood of each point is homeomorphic to an open ball in Rn (the ac-
tual definition requires certain differentiability — see Definition 1.2 in Chapter 1).
Naturally, we require group operations to be differentiable. Popular examples of
Lie groups include Rn under addition and matrix groups — e.g., the groups of
nonsingular, orthogonal, or unitary matrices under matrix multiplication.

Given a Lie group G, we add to two existing structures, algebraic and topolog-
ical, the third one, geometric — the metric. We require that the topology defined
by that metric coincides with the topology on the Lie group. But to get the most
natural class of metrics, we also want geometry to interplay with algebra. To do
that, we require that the left multiplication by any g ∈ G is an isometry of the met-
ric. Metrics with this property are called left-invariant (we consider not all possible
left-invariant metrics, but only those which are Riemannian — see Section 1.5 for
precise definition). The property of a metric to be left-invariant means that it is suf-
ficient to define it on an arbitrarily small neighbourhood of the identity e ∈ G, or
in fact, in the Riemannian case, on the tangent space g to G at the identity. It turns
out that left-invariant Riemannian metrics on a Lie group are in a one-to-one corre-
spondence with inner products on g — given any such inner product we can carry
it over the whole group G by its left action on itself (see Section 1.5). The tangent
space g to the group G at the identity is an n-dimensional space, which carries an
additional structure — it is a Lie algebra. This means that g is equipped with a natu-
ral bilinear, skew-symmetric binary operation satisfying the Jacobi identity called
the Lie bracket (see Section 1.2); informally, this bracket on g is obtained by “differ-
entiating” the group structure on G. Popular examples of Lie algebras include the
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abelian Lie algebra with zero bracket, the space R3 with the bracket defined by the
cross product, the space of square matrices with the bracket defined by the com-
mutator of two matrices, etc. Furthermore, it turns out that not only a Lie group G
defines its Lie algebra g (as the tangent space at the identity with the correspond-
ing Lie bracket), but also, vice versa, any abstractly defined Lie algebra g (a space
Rn with the Lie bracket) determines a Lie group to which g is the Lie algebra, and
moreover, such a Lie group is essentially unique (see Section 1.3).

The above construction effectively reduces the study of geometry of Lie groups
with left-invariant metrics to the study of metric Lie algebras. The latter is a linear
space Rn with two independent structures — the Lie bracket and the inner product.

On a Lie group with a left-invariant Riemannian metric, we have two distin-
guished classes of curves: the one-dimensional subgroups coming from the alge-
bra of G and the geodesics coming from geometry on G. Recall that a geodesic on
an arbitrary Riemannian space plays the same role as a straight line in Rn — it is
locally the shortest curve between any two close points. It is known that any ge-
odesic passing through the identity e ∈ G is uniquely determined by its tangent
vector at the identity; it is also known that any one-dimensional subgroup of G
is uniquely determined by its tangent vector at the identity. But in general, these
curves are different. However, by a result of [17], any left-invariant metric on a Lie
group has at least one homogeneous geodesic — a geodesic which is also a subgroup.

In this setup, we can now describe the question which we address in this thesis.
Although not every geodesic is homogeneous, we ask whether the property of
being a homogeneous geodesic is stable — is it so that if a tangent vector X at the
identity defines a homogeneous geodesic, then any vector close to it will define
a geodesic which “converges” to that homogeneous geodesic? This question was
first studied in the pioneering paper of Arnold [1]. We give a complete answer
in the first two nontrivial cases, for 3-dimensional and partly for 4-dimensional
metric Lie groups.

Our methodology will be to first translate our question to the language of met-
ric Lie algebras. As we explained above, every Lie group G with a left-invariant
metric is locally uniquely determined by its metric Lie algebra g. Consider a
(naturally parameterised) geodesic γ = γ(t) in G starting at the identity (so that
γ(0) = e), take the unit tangent vector γ̇(t) at a point γ(t) and translate that vector
to g by the differential of the left action of the element γ−1(t) ∈ G on G; then we
will get a unit vector X(t) ∈ g (see Section 1.6 for details). As a result, a geodesic
of G defines a curve on the unit sphere of g. Such a curve (sometimes called the
hodograph of γ) satisfies a nonlinear ordinary differential equation known as the
Euler-Arnold equation:

Ẋ = ad∗
XX (0.0.1)
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(see Section 1.6 for details and unexplained notation). If the geodesic γ is homoge-
neous (i.e., locally is a subgroup), then the corresponding curve X(t) is just a sin-
gle point — the stationary solution of (0.0.1). We say that a homogeneous geodesic
(or equivalently, the corresponding stationary point X0) is stable, if that stationary
point is a Lyapunov stable solution of equation (0.0.1) — that is, any solution X(t)

of (0.0.1) which starts close to X0 remains close to X0 for all times t > 0. Other-
wise, the homogeneous geodesic (and the corresponding stationary point) is called
unstable (see Section 1.7).

In this thesis, we classify all the stationary points and determine which of them
are stable and which are unstable for all 3-dimensional metric Lie algebras, and
partly for 4-dimensional metric Lie algebras. It is important to emphasise that
equation (0.0.1) “lives” on a sphere (the function ∥X∥2 is a first integral), so in
the 3-dimensional case, we have an autonomous system of ODEs on the two-
dimensional unit sphere S2 in the 3-dimensional space g, and similarly, on the
three-dimensional sphere S3 in the 4-dimensional case.

The thesis outline is as follows. The first chapter is expository, it provides back-
ground results from Lie theory, Riemannian geometry and Stability theory as a
foundation for the work later on. The main findings of the thesis are presented
in the next three chapters. In Chapter 2, we first give a classification of all met-
ric Lie algebras of dimension 3. There are two large classes of such algebras —
unimodular and non-unimodular (see Section 2.1). In the unimodular case, the clas-
sification is given in the cornerstone paper of Milnor [21]; the classification in the
non-unimodular case is also well known in the literature (see [20]; for complete-
ness, we give a full proof in Section 2.1). Next we determine, for each case, the sta-
tionary points of the Euler-Arnold equation (0.0.1): we find all unit vectors X ∈ g

for which the right-hand side ad∗
XX is zero. In some cases, the set of stationary

points will be infinite (e.g. the equator of S2 or even the whole sphere S2). We fur-
ther treat each case separately to determine the stability of the stationary points.
The unimodular case is substantially easier (see Section 2.3); using Milnor’s clas-
sification, we find that in each case, the Euler-Arnold equation (0.0.1) either can
be solved explicitly or admits another first integral (except for ∥X∥2) which is a
quadratic form in X . Then the trajectories of (0.0.1) lie on the curves in the in-
tersection of the unit sphere S2 with the certain quadratic surfaces (hyperbolic or
elliptic cylinders). This allows us to easily determine which stationary points are
stable and which are unstable 1.

The non-unimodular case of 3-dimensional metric Lie algebras is much harder.
There are no easy-to-find first integrals. We use several well-known techniques

1A substantial part of the work on this case was done during the candidate’s AMSI VRS.
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from the stability theory of the ODEs. One of them is linearisation: the stability
of a stationary point is determined by the eigenvalues of the Jacobian matrix of
the right-hand side of (0.0.1) at that point. In several cases, this technique is in-
conclusive; then we use Lyapunov and Chetaev stability criteria. In one case we
need something more — we use a theorem from the original Arnold’s paper [1]
(see Theorem 1.46).

Chapters 3 and 4 follow the same methodology. In Chapter 3, we first introduce
the definition of nilpotent Lie algebras before providing a classification of nilpotent
metric Lie algebras of dimension 4, up to orthogonal isomorphism. We then ap-
ply the Euler-Arnold equation (0.0.1) to find homogeneous geodesics, and classify
their corresponding stability status. In Chapter 4, we discuss the stability analysis
of homogeneous geodesics in 4-dimensional unimodular metric Lie algebras with
a nontrivial centre. Even though we normally proceed in a case-by-case basis, we
notice a very interesting pattern that comes up in both of these algebras. We find
that the stability status of homogeneous geodesics determined by the Jacobian con-
dition (see Theorem 1.39) and Arnold’s condition (see Theorem 1.46) both depend
on a similar function and complement each other. The condition where these two
theorems are indecisive is a lot harder and more unconventional, we have to go
back to the definition of stability and apply different direct approaches (topologi-
cal methods, algebraic manipulations, etc.) to test for stability.

The results of the thesis can be summarised in the following theorems. To the
best of our knowledge, these results did not appear in the literature before.

0.1. THEOREM. Let g be an unimodular metric Lie algebra of dimension 3. By [21],
there exists an orthonormal basis {e1, e2, e3} for g relative to which the Lie bracket is given
by

[e1, e2] = λ3e3, [e2, e3] = λ1e1, [e3, e1] = λ2e2,

where we can assume λ1 ≥ λ2 ≥ λ3.
The following table gives the classification of stable and unstable stationary points of

the Euler-Arnold equation (0.0.1) on the unit sphere S2 = S2(1) ⊂ g (the coordinates are
given relative to the basis {e1, e2, e3}).
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Case Stationary points Stability
λ1 = λ2 = λ3 Every point of S2 Stable

λ1 > λ2 = λ3
(±1, 0, 0) Stable

All points on the circle X1 = 0 Unstable

λ1 = λ2 > λ3
(0, 0,±1) Stable

All points on the circle X3 = 0 Unstable

λ1 > λ2 > λ3

(±1, 0, 0) Stable
(0,±1, 0) Unstable
(0, 0,±1) Stable

TABLE 0.1. Stability of homogeneous geodesics in 3-dimensional
unimodular metric Lie algebras.

0.2. THEOREM. Let g be a non-unimodular metric Lie algebra of dimension 3. Then
there exists an orthonormal basis {e1, e2, e3} for g relative to which the Lie bracket is given
by

[e1, e2] = αe2 + βe3, [e1, e3] = γe2 + δe3, [e2, e3] = 0,

where we can assume α + δ > 0 and α > 0.

Denote M =

(
α β

γ δ

)
. If det(M) = 0, we can specify the basis {e1, e2, e3} in such

a way that γ = δ = 0. The following table gives the classification of stable and unstable
stationary points of the Euler-Arnold equation (0.0.1) on the unit sphere S2 = S2(1) ⊂ g

if M is singular.

β Stationary points Stability
(0, 0,±1) Stable

β = 0

(
−
√
1− c2, 0, c

)
, |c| < 1 Stable(√

1− c2, 0, c
)
, |c| < 1 Unstable

β ̸= 0

(
−
√

α2−c2(α2+β2)

α
,−βc

α
, c

)
, |c| < α√

α2+β2 Stable(√
α2−c2(α2+β2)

α
,−βc

α
, c

)
, |c| ≤ α√

α2+β2 Unstable

TABLE 0.2. Stability of homogeneous geodesics in 3-dimensional
non-unimodular metric Lie algebras if M is singular.
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If det(M) ̸= 0, we can specify the basis {e1, e2, e3} in such a way that γ = −β. The
following table gives the classification of stable and unstable stationary points of the Euler-
Arnold equation (0.0.1) on the unit sphere S2 = S2(1) ⊂ g if M is non-singular (where in
the case δ < 0, we define ρ =

√
α, σ =

√
−δ).

δ Stationary points Stability

δ > 0
(1, 0, 0) Unstable
(−1, 0, 0) Stable

δ = 0

(1, 0, 0) Unstable
(−1, 0, 0) Stable
(0, 0,±1) Unstable

δ < 0

(1, 0, 0) Unstable

detM < 0
(−1, 0, 0) Unstable

(ρ2 + σ2)
−1/2

(0,±σ,±ρ) Stable

detM > 0

(−1, 0, 0) Stable
(ρ2 + σ2)

−1/2
(0, s1σ, s2ρ) Stable

s1, s2 ∈ {−1, 1}, s1s2β > 0.
(ρ2 + σ2)

−1/2
(0, s1σ, s2ρ) Unstable

s1, s2 ∈ {−1, 1}, s1s2β < 0.

TABLE 0.3. Stability of homogeneous geodesics in 3-dimensional
non-unimodular metric Lie algebras if M is nonsingular.
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0.3. THEOREM. Let g be a nilpotent metric Lie algebra of dimension 4. Then either
(1) g is abelian, or (2) there exists an orthonormal basis {e1, e2, e3, e4} for g relative to
which the only nonzero Lie brackets (up to skew-symmetry) are given by one of the follow-
ing:

[e1, e2] = ce4, c ̸= 0,

or [e1, e2] = ae3 + be4, [e1, e3] = ce4, a, c ̸= 0.

The following table gives the classification of stable and unstable stationary points of
the Euler-Arnold equation (0.0.1) on the unit sphere S3 = S3(1) ⊂ g (where in the third
case, we define P = aX2X3+bX2X4+cX3X4 andQ = (aX3+bX4)

2+c2X2
4 +acX2X4).

Case Stationary Point Stability
Abelian Every point of S3 Stable

[e1, e2] = ce4, c ̸= 0

The circle X2
3 +X2

4 = 1 Stable
The sphere X3 = 0

minus the points (0, 0, 0,±1)
Unstable

[e1, e2] = ae3 + be4, [e1, e3] = ce4,
a, c ̸= 0

The circle X2
1 +X2

2 = 1 Unstable

Intersection of sphere X1 = 0

and P = 0

Q > 0 or
Q = 0 and b = 0

Stable

Q < 0 or
Q = 0 and b ̸= 0

Unstable

TABLE 0.4. Stability of homogeneous geodesics in 4-dimensional
nilpotent metric Lie algebras.
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0.4. THEOREM. Let g be an unimodular metric Lie algebra of dimension 4 with a
nontrivial centre. Then either (1) g is nilpotent, or (2) there exists an orthonormal basis
{e1, e2, e3, e4} for g relative to which the only nonzero Lie brackets (up to skew-symmetry)
are given by

[e1, e2] = λ3e3 + v3e4, [e2, e3] = λ1e1 + v1e4, [e3, e1] = λ2e2 + v2e4,

where λi, vi ∈ R. If at least two of λi are zeros, then g is nilpotent. If at least two of λi are
equal, say λ1 = λ2, then g is not necessarily nilpotent, but the Euler-Arnold equation is
the same as for the nilpotent metric algebra given by the above brackets, with λ1 = λ2 = 0

and λ3 replaced by λ3 − λ1. In both cases, the stability analysis is given in Theorem 0.3.
Assume that λi are pairwise non-equal (and hence no more than one λi is zero). The

following table gives the classification of stable and unstable stationary points of the Euler-
Arnold equation (0.0.1) on the sphere S3 ⊂ g when g is not nilpotent (where we define
σ(x) = (s− λ3)(s− λ2)x

2
1 + (s− λ3)(s− λ1)x

2
2 + (s− λ2)(s− λ1)x

2
3).

Case Stationary Point Stability
x = 0 (0, 0, 0,x4),x4 ∈ R Stable

x ̸= 0

X0 = x+ x4e4 satisfying
Lx+ x4v = sx where
L = diag(λ1,λ2,λ3),

λi are pairwise nonequal
and x4, s ∈ R

σ(x) > 0 Stable
σ(x) < 0 Unstable

σ(x) = 0 and
s /∈ {λ1,λ2,λ3}

Unstable

σ(x) = 0 and
s = λ1 and

λ2 − λ1 and λ3 − λ1
have the same sign

Stable

σ(x) = 0 and
s = λ1 and

λ2 − λ1 and λ3 − λ1

have opposite signs

Unstable

TABLE 0.5. Stability of homogeneous geodesics in 4-dimensional
unimodular metric Lie algebras with a nontrivial centre.
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CHAPTER 1

Preliminaries on Lie theory, Riemannian geometry
and Stability theory

In this chapter, we introduce notions and definitions which will provide us
with the necessary background for the next three chapters. Sections 1.1-1.3 give
a general exposition of abstract Lie groups and Lie algebras, and then these theo-
ries are illustrated with concrete examples from matrix Lie groups in Section 1.4.
Section 1.5 outlines some main results in Riemannian metrics and Levi-Civita con-
nection, and then introduces left-invariant Riemannian metrics on Lie groups. In
Section 1.6, we give the proof of the Euler-Arnold equation for geodesics on a Lie
group with a left-invariant metric, which plays the central role in this thesis. Fi-
nally, the definition of stationary points and stability of stationary points are given
in Section 1.7, together with several well-known techniques from the stability the-
ory of the ODEs that are used in the project.

1.1. Lie groups

In this section, we give the definition of a Lie group, and proceed to construct
the Lie algebra of the Lie group as its tangent space at the identity. The references
are [12] and [25].

1.1. DEFINITION. Let M be a topological space with topology O. Then M is
called an n-dimensional topological manifold, if the following holds:

1. M is Hausdorff , that is, for all p, q ∈ M with p ̸= q there exists open sets
U ,V ⊂M with p ∈ U , q ∈ V and U ∩ V = ∅.

2. The topology of M has a countable basis, that is, there exists a countable
subset B ⊂ O, such that for every U ∈ O there are Bi ∈ B, i ∈ I , with

U =
⋃
i∈I

Bi

3. M is locally homeomorphic to Rn, that is, for all p ∈M there exist an open
subset U ⊂ M with p ∈ U , an open subset V ⊂ Rn and a homeomorphism
f : U → V .

Informally, a manifold is a space such that when you zoom in enough, it looks
like a flat Euclidean space. A topological manifold is called differentiable (of class

9



Ck) if the open subsets U and the homeomorphisms f in Definition 1.1 can be
chosen in such a way that if U1 and U2 intersect, then the map f2 ◦ f−1

1 between the
corresponding domains of Rn is differentiable of class Ck.

1.2. DEFINITION. A Lie group is a differentiable manifold which is also a group
such that the multiplication map

m : G×G→ G, (x, y) 7→ xy

and the inversion map

ι : G→ G, x 7→ x−1

are differentiable.

1.3. EXAMPLE. The simplest example is the commutative Lie group Rn under
vector addition.

Many important Lie groups belong to families of “classical Lie groups”.

1.4. EXAMPLE. The general linear group GL(n) is the group of n×n invertible real
matrices under matrix multiplication. It is an open subset of the space of all n× n

matrices. Multiplication is differentiable because the matrix entries of a product
matrix AB are polynomials in the entries of matrices A and B. Inversion is differ-
entiable by Cramer’s formula for the inverse. Hence, GL(n) is a Lie group.

1.5. EXAMPLE. The special linear group

SL(n) = {A ∈ GL(n) : det(A) = 1},

is the group of all volume-preserving linear transformations of Rn. The orthogonal
group

O(n) = {A ∈ GL(n) : AAT = I},
where AT is the transpose matrix of A and I is the identity matrix, is the group of
norm-preserving linear transformations of Rn. The special orthogonal group

SO(n) = {A ∈ GL(n) : AAT = I and det(A) = 1},

is the group of all rotations of Rn; it is a normal subgroup of O(n) of index 2.

As a Lie group is a differentiable manifold, one can introduce, at each point
of it, the tangent space to the Lie group at that point. The tangent space at the
identity of the group plays a distinguished role: on top of a usual structure of a
linear space it carries the structure of a Lie algebra defined from the Lie bracket
which is inherited (and canonically constructed) from the multiplication in the Lie
group. This correspondence, which we will define rigorously in the next section,
assigns to a complicated object (a differentiable manifold with a group structure)

10



a much easier to understand object — a linear space with an additional binary
operation. Amazingly, all the information about the Lie group is encoded in the
so-constructed Lie algebra (strictly speaking, assuming that the group is simply-
connected as a topological manifold).

11



1.2. Lie algebras and left-invariant vector fields

In this section, we give the definition of a Lie algebra and of the Lie algebra
associated with a Lie group. Our exposition is based on [5] and [18].

Any Lie group G acts on itself by the left multiplication. If g ∈ G is fixed, this
action is defined by

Lg(h) = gh, for all h ∈ G.

The map Lg : G → G is a diffeomorphism, as for each g ∈ G, we can define a
differentiable inverse of Lg by

L−1
g (h) = g−1h = Lg−1(h), for all h ∈ G.

Suppose that F : M → N is a differentiable map between two differentiable
manifolds M and N . Then for each m ∈M , we can define a map

dFm : TmM → TF (m)N ,

called the differential (the tangent map) of F at m. This is a linear map that pushes
forward the tangent space TmM at a point m ∈ M to the tangent space TF (m)N at
the point F (m) ∈ N . In particular, for any g ∈ G, the map Lg : G → G induces
the map dLg : ThG → TghG. We say that a vector field on the Lie group G is left-
invariant, if it is invariant relative to the action of Lg. More precisely, we have the
following definition.

1.6. DEFINITION. A vector field X on a Lie group G is said to be left-invariant
if for all g,h ∈ G, we have

d(Lg)h(X(h)) = X(Lg(h)) = X(gh).

Equivalently, a vector field X is left-invariant iff the following diagram commutes

G G

TG TG

Lg

X X

d(Lg)

,

for all g ∈ G, where TG is the tangent bundle of G.
Choosing an arbitrary vector X(e) ∈ TeG, we can set h = e in Definition 1.6 to

define a vector field X on G by

X(g) = d(Lg)e(X(e)).

This means that there is a unique left-invariant vector field X on G with the pre-
scribed tangent vector at the identity. Conversely, any left-invariant vector field
must have d(Lg)h(X(h)) = X(gh), so for all g, we have X(g) = d(Lg)e(X(e)).
Hence, we come to the following conclusion.

12



1.7. THEOREM. Let G be a Lie group. Then the vector space of all left-invariant vector
fields on G is isomorphic to the tangent space of G at the identity.

Given a vector field X on a differentiable manifold M we can define, for any
differentiable function f : M → R, the function X(f), the derivative of f in the
direction of X .

1.8. DEFINITION. Let M be a differentiable manifold, and let X and Y be dif-
ferentiable vector fields on M . Then the operator [X,Y ], called the Lie bracket of
X and Y , is defined by

[X,Y ](f) = X(Y (f))− Y (X(f)), (1.2.1)

for an arbitrary C∞-function f :M → R.

The key fact is that although the right-hand side seemingly involves the second
derivatives of f , it in fact only depends on the first derivatives, and so this operator
actually gives rise to a new vector field (see [18]). Moreover, the so-defined Lie
bracket possesses some very nice properties.

1.1. PROPOSITION. Let X,Y ,Z be differentiable vector fields. Then the Lie bracket
satisfies the following properties:

1. Anti-symmetry:

[X,Y ] = −[Y ,X].

2. Bilinearity: For a, b ∈ R,

[aX + bY ,Z] = a[X,Z] + b[Y ,Z],

[Z, aX + bY ] = a[Z,X] + b[Z,Y ].

3. The Jacobi identity:

[X, [Y ,Z]] + [Y , [Z,X]] + [Z, [X,Y ]] = 0.

PROOF. Anti-symmetry is obvious from (1.2.1). For bilinearity, let f : M → R
be an arbitrary C∞-function, and a, b ∈ R. We have

[aX + bY ,Z](f) = (aX + bY )(Z(f))− Z((aX + bY )(f))

= aX(Z(f)) + bY (Z(f))− aZ(X(f))− bZ(Y (f))

= a[X,Z](f) + b[Y ,Z](f),

and the second relation follows from anti-symmetry.
13



The Jacobi identity can be verified directly. We have

[X, [Y ,Z]](f) + [Y , [Z,X]](f) + [Z, [X,Y ]](f)

= X[Y ,Z](f)− [Y ,Z]X(f) + Y [Z,X](f)− [Z,X]Y (f) + Z[X,Y ](f)− [X,Y ]Z(f)

= XY Z(f)−XZY (f)− Y ZX(f) + ZY X(f) + Y ZX(f)− Y XZ(f)

− ZXY (f) +XZY (f) + ZXY (f)− ZY X(f)−XY Z(f) + Y XZ(f)

= 0.

□

Taking the properties in Proposition 1.1 as axioms, we obtain the following
definition.

1.9. DEFINITION. A Lie algebra over R is a real vector space g, together with a
map called the Lie bracket

g× g → g, (x, y) 7→ [x, y]

satisfying the following properties:

1. Anti-symmetry: for all X,Y ∈ g,

[X,Y ] = −[Y ,X].

2. Bilinearity: for any a, b ∈ R and for all X,Y ,Z ∈ g

[aX + bY ,Z] = a[X,Z] + b[Y ,Z],

[Z, aX + bY ] = a[Z,X] + b[Z,Y ].

3. The Jacobi identity: for all X,Y ,Z ∈ g,

[X, [Y ,Z]] + [Y , [Z,X]] + [Z, [X,Y ]] = 0.

The first example of a Lie algebra comes from the above construction: the lin-
ear space of all C1-vector fields on a differentiable manifold, with the Lie bracket
defined by (1.2.1) is a Lie algebra, by Proposition 1.1. Note that this Lie algebra is
“huge”, of infinite dimension. However, if our manifold is a Lie group, we have
the following remarkable fact: the Lie bracket of left-invariant vector fields is again
left-invariant (see [18]). This fact justifies the following definition.

1.10. DEFINITION. The Lie algebra of a Lie group G is the Lie algebra of left-
invariant vector fields on G equipped with the bracket defined by (1.2.1).

Combining this with Theorem 1.7, we see that the Lie algebra of a Lie group
can be identified with the tangent space to the Lie group at the identity, with the
Lie bracket of two vectors defined as the value at the identity of the Lie bracket of
the corresponding left-invariant vector fields.

14



We finish this section with several examples of finite-dimensional Lie algebras.
The simplest example is an abelian Lie algebra — the Lie bracket of any two ele-
ments is zero.

1.11. EXAMPLE. A well-known example of a Lie algebra is R3 with the Lie
bracket defined by the cross product [x, y] = x× y.

1.12. EXAMPLE. Matrix Lie algebras. On the space of n × n real matrices we
can define the Lie bracket as the matrix commutator. Then this space and any of its
subspaces closed under the commutator are examples of a Lie algebra. Examples of
such subspaces include the subspace of all matrices with zero trace, the subspace
of all skew-symmetric matrices, the subspace of upper-triangular matrices, etc.
In Section 1.4, we will see that these examples of Lie algebras correspond to the
examples of Lie groups which we gave at the end of Section 1.1.
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1.3. The exponential map and the adjoint representation

In the previous section we demonstrated a canonical construction which asso-
ciates to a given Lie group its Lie algebra (viewed as the tangent space to the Lie
group at the identity). In this section, we first show how to go in the opposite direc-
tion: starting with a Lie algebra we will construct the locally unique Lie group to
which it is associated. We then provide a different construction of the correspon-
dence between a Lie group and its Lie algebra which will allow us to explicitly
obtain the Lie bracket on the Lie algebra by “differentiating” the group law. Our
exposition follows [5], [7], [12], [18], and [25].

1.13. DEFINITION. A homomorphism between two Lie groups G1 and G2 is a
map ϕ : G1 → G2 that is a homomorphism of groups and a differentiable map
between the manifolds G1 and G2. An isomorphism ϕ of Lie groups is a bijection
such that both ϕ and ϕ−1 are homomorphisms of Lie groups.

Let G be a Lie group and g be its Lie algebra viewed as the tangent space at
the identity. We have the following theorem (whose proof can be found e.g. in
[7]) which establishes a one-to-one correspondence between the set of nonzero el-
ements of g and the set of one-dimensional subgroups of G. We view R as the
one-dimensional abelian Lie group by addition.

1.14. THEOREM. Let G be a Lie group and g be its Lie algebra. Then, for each X ∈ g,
there exists a unique homomorphism γX : R → G that is differentiable at t = 0 and
satisfies d

dt
γX(t)

∣∣
t=0

= X .

This theorem motivates the definition of the exponential map.

1.15. DEFINITION. The map exp : g → G, called the exponential map of G, is
defined as follows, for any X ∈ g:

expX = γX(1),

where γ is the homomorphism in Theorem 1.14.

The exponential map of G possesses the following important properties.

1.2. PROPOSITION. For all t, s ∈ R and X ∈ g,

1. exp(tX) = γX(t).
2. exp(s+ t)X = exp sX exp tX .
3. (exp tX)−1 = exp(−tX).

The significance of the exponential map is that it allows us to go from the Lie
algebra g back to the Lie group G.
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We now introduce a different approach to define the Lie bracket on the Lie
algebra of a Lie group (as compared to the approach via left-invariant vector fields
in Section 1.2) and show their equivalence.

1.16. DEFINITION. LetG be a Lie group. ThenG acts on itself by the conjugation
map, that is, for all g ∈ G, we can define

Cg : G→ G, Cg(h) = ghg−1.

It is easy to see that Cg is a Lie group isomorphism: it is a group automorphism,
and it is differentiable together with its inverse, because of differentiability of the
group operations. Also, as Cg(e) = geg−1 = e, the conjugation map preserves the
identity, so we can look at the differential of Cg at the identity.

1.17. DEFINITION. The adjoint representation of a Lie group G is a map Ad :

G→ GL(g), where GL(g) is the group of all invertible linear transformations of the
vector space g, defined for all g ∈ G by

Adg : Te(G) → Te(G), Adg = d(Cg)e.

For g, g′ ∈ G, we have

Cgg′(h) = (gg′)h(gg′)−1 = g(g′hg′−1)g−1 = Cg ◦ Cg′ .

So applying the chain rule to both sides at the identity gives

Adgg′ = Adg ◦ Adg′ .

Thus, the map Ad : g → Adg is a homomorphism from G to GL(g). Also, note
that Ad is differentiable, so we can take the differential at the identity.

1.18. DEFINITION. The adjoint representation of the Lie algebra g of a Lie group
G is a map ad : g → gl(g), where gl(g) is the space of all linear transformations of
the vector space g, defined for all X ∈ g by

ad : g → gl(g), adX = d(Ad)e(X).

We now show that the adjoint representation defined above agrees with the
definition of the Lie bracket of g.

1.19. THEOREM. For all X,Y ∈ g, we have adXY = [X,Y ].

PROOF. First, observe that by Theorem 1.14, if X is a left-invariant vector field
on G, then we have

Xf(g) =
d

dt
f(g exp tX)

∣∣∣
t=0

for all g ∈ G and f ∈ C∞(G).
17



Now, let g ∈ G, X,Y ∈ g, and f ∈ C∞(G). Then we have

(adXY (f))(g) =

(
d

dt
(Adexp(tX)Y )f

∣∣∣
t=0

)
(g)

=
d

dt

(
(Adexp(tX)Y )f

)
(g)
∣∣∣
t=0

=
d

dt

d

du
f(g exp(tX) exp(uY ) exp(−tX))

∣∣∣
t=u=0

.

Applying the chain rule, the relation becomes

(adXY (f))(g) =
d

dt

d

du
f(g exp(tX) exp(uY ))

∣∣∣
t=u=0

− d

dt

d

du
f(g exp(uY ) exp(−tX))

∣∣∣
t=u=0

=
d

dt
Y f(g exp tX)

∣∣∣
t=0

− d

du
Xf(g expuY )

∣∣∣
u=0

= XY f(g)− Y Xf(g)

= [X,Y ]f(g).

Hence, we have adXY = [X,Y ]. □
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1.4. Example: matrix Lie groups

We illustrate the constructions from the previous section for matrix Lie groups
(see e.g., Examples 1.4 and 1.5). In this case, the exponential map can be calculated
explicitly.

1.20. DEFINITION. For an n× n matrix X , the exponential of X , denoted eX or
expX , is defined by the power series

eX =
∞∑
n=1

Xn

n!
= I +X +

X2

2!
+
X3

3!
+ . . . ,

where I is the n× n identity matrix.

It can be shown that this series is absolutely converging. It has the following
properties.

1.3. PROPOSITION. Let X and Y be n× n matrices. We have

1. e0 = I .
2. If X and Y commute, then eX+Y = eXeY .
3. det(eX) = etr(X).
4. The curve t 7→ etX is differentiable, and

d

dt
(etX) = XetX .

In particular,
d

dt
(etX)

∣∣
t=0

= X.

5. If X is sufficiently close to the identity, one can define the logarithm of X by

log(X) =
∞∑
n=1

(−1)n+1 1

n
(X − I)n = (X − I)− 1

2
(X − I)2 +

1

3
(X − I)3 − . . .

Then the maps exp and log are inverse, i.e., log(eX) = X .

1.21. EXAMPLE. LetG be the general linear group GL(n) (the group of invertible
n×n real matrices). Then the tangent space to this group at the identity is the space
gl(n) of all n× n real matrices. Indeed, for any X ∈ gl(n), the curve γ(t) = exp(tX)

lies in GL(n) for all t ∈ R by Proposition 1.3(3.). We have γ(0) = I ; differentiating
at t = 0 we find γ̇(0) = X by Proposition 1.3(4.).
Furthermore, from Definition 1.16 we have CA(B) = ABA−1 for A,B ∈ GL(n). In
particular, for B = exp(tY ), where Y ∈ gl(n) we obtain

AdA(B) =
d

dt
(A exp(tY )A−1)

∣∣
t=0

= AY A−1,
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by Definition 1.17. Then from Definition 1.18, taking A = exp(tX) for X ∈ gl(n)

we find

adXY =
d

dt

(
Adexp(tX)Y

)∣∣
t=0

=
d

dt

(
exp(tX)Y exp(−tX

)∣∣
t=0

= XY − Y X,

by Proposition 1.3(4.) and the product rule.
Hence by Theorem 1.19, the Lie bracket of the Lie algebra gl(n) is defined by the
matrix commutator:

[X,Y ] = XY − Y X, for X,Y ∈ gl(n).

1.22. EXAMPLE. Let G be the special linear group SL(n) (the group of n×n real
matrices with determinant 1). Then the tangent space to this group at the identity
is the space sl(n) of all n × n real matrices of trace zero. Indeed, for any X ∈ (n),
the curve γ(t) = exp(tX) lies in GL(n) for all t ∈ R by Proposition 1.3(3.): we have
det(etX) = etr(tX) = e0 = 1. Its derivative at t = 0 is the matrix X by Proposi-
tion 1.3(4.). By a similar argument in Example 1.21, we find that the Lie bracket on
sl(n) is the matrix commutator (note that the commutator of two matrices always
has zero trace).

1.23. EXAMPLE. LetG be the special orthogonal group SO(n) (the group of n×n
real orthogonal matrices with determinant 1). Then the tangent space to this group
at the identity is the space so(n) of all n×n skew-symmetric real matrices. Indeed,
let X ∈ so(n). Then, XT = −X , so X and XT commute, and by Proposition 1.3(2.),
we have

eXeX
T

= eX+XT

= e0 = I.

Furthermore, as eXT
= (eX)T (because (XT )m = (Xm)T for all m ∈ N), we have

I = eXeX
T

= eX(eX)T .

Therefore, we conclude that if X ∈ so(n), then eX ∈ O(n) (is an orthogonal ma-
trix). As the trace of any skew-symmetric matrix is zero, from the previous exam-
ple we find that det eX = 1, so in fact, eX ∈ SO(n). Repeating the argument of
Example 1.21 we obtain that the Lie bracket on so(n) is again the matrix commu-
tator (note that the commutator of two skew-symmetric matrices is again skew-
symmetric).

Note that we could have started with the “full” orthogonal group O(n) instead.
The above construction would then give us the same Lie algebra so(n). This il-
lustrates the fact that two different Lie groups can have the same Lie algebra.
However, the difference between such groups is purely topological (so that they
coincide in a neighbourhood of the identity); in this particular example, the group
O(n) is disconnected, and SO(n) is its connected component which contains the
identity.
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1.5. Preliminaries from Riemannian geometry

We give some main definitions and results from Riemannian geometry that are
used in later sections. The references are [2], [10], [19], and [24].

1.24. DEFINITION. Let V be a vector space over R. An inner product on V is a
function that takes each ordered pair (u, v) of elements of V to a number ⟨u, v⟩ ∈ R
that has the following properties:

1. Positive definite: for all v ∈ V ,

⟨v, v⟩ ≥ 0; and ⟨v, v⟩ = 0 if and only if v = 0.

2. Symmetric: for any u, v ∈ V

⟨u, v⟩ = ⟨v,u⟩.

3. Linear: for all u, v,w ∈ V and a, b ∈ R,

⟨au+ bv,w⟩ = a⟨u,w⟩+ b⟨v,w⟩.

1.25. DEFINITION. A Riemannian metric on a differentiable manifold M is a
correspondence that associates to each point p of M an inner product ⟨·, ·⟩p on
the tangent space Tp(M), which varies differentiably in the following sense: for
every pair of differentiable vector fields X,Y in a neighborhood of p, the map
p 7→ ⟨Xp,Yp⟩ is differentiable. A differential manifold with a Riemannian metric is
called a Riemannian manifold.

1.26. DEFINITION. Let M and N be Riemannian manifolds. A diffeomorphism
ϕ :M 7→ N is called an isometry if

⟨X,Y ⟩p = ⟨dϕp(X), dϕp(Y )⟩ϕ(p), for all p ∈M , X,Y ∈ Tp(M).

Riemannian metrics are abundant “in nature”. The most trivial example is the
Euclidean metric on Rn whose value at each x ∈ Rn is just the usual dot product
on Tx(Rn) (the latter can be identified with Rn). Taking any differentiable surface
in R3, we can turn it into a Riemannian manifold by defining the inner product of
two tangent vectors at any point as their dot product in R3; this example can be
easily generalised for arbitrary dimensions.

Another important class of Riemannian metrics is the class of left-invariant
metrics on a Lie group. As a Lie group is a differentiable manifold as well as a
group, we can choose a Riemannian metric that links its geometric structure with
its group properties. More specifically, we choose a Riemannian metric so that the
left multiplications Lg : G→ G are isometries for all g ∈ G.
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1.27. DEFINITION. A Riemannian metric on a Lie groupG is called left-invariant
if

⟨X,Y ⟩h = ⟨d(Lg)h(X), d(Lg)h(Y )⟩gh, for all g,h ∈ G, X,Y ∈ Th(G).

As a left-invariant metric has such a large isometry group, it is not surprising
that it is completely determined by its value at a single point (for which we can
choose the identity). We have the following proposition (in which we use the iden-
tification between left-invariant vector fields and the tangent space to a Lie group
at the identity — see Theorem 1.7).

1.4. PROPOSITION. There is a bijective correspondence between left-invariant metrics
on a Lie group G, and inner products on the Lie algebra g of G.

PROOF. If the metric on G is left-invariant, then for all g ∈ G and all X,Y ∈
Tg(G), due to the left-invariance of the vector fields X,Y and the metric, we have

⟨X,Y ⟩g = ⟨d(Lg−1)g(X), d(Lg−1)g(Y )⟩e = ⟨Xe,Ye⟩ = ⟨X,Y ⟩e.

Thus, ⟨X,Y ⟩ defines an inner product on g = Te(G).
Conversely, let ⟨·, ·⟩ be an inner product on g and consider

⟨X,Y ⟩g = ⟨d(Lg−1)g(X), d(Lg−1)g(Y )⟩e

for all g ∈ G and all X,Y ∈ Tg(G). It can be easily checked that this inner product
induces a left-invariant metric on G. Hence, the result follows as desired. □

1.28. DEFINITION. Let g be a Lie algebra andG be the corresponding Lie group.
A metric Lie algebra (g, ⟨., .⟩) is a Lie algebra g together with a Euclidean inner
product ⟨., .⟩ on g. This inner product ⟨., .⟩ on g induces a left-invariant metric on
the Lie group G by Theorem 1.4.

Let X(M) be the set of all differentiable vector fields on a differentiable mani-
fold M .

1.29. DEFINITION. An (affine) connection on a differentiable manifold M is a
map

∇ : X(M)× X(M) → X(M)

denoted by (X,Y ) 7→ ∇XY that satisfies the following properties:

1. ∇f1X+f2Y = f1∇X(Z) + f2∇Y (Z),

2. ∇X(Y + Z) = ∇X(Y ) +∇X(Z),

3. ∇X(fY ) = f∇X(Y ) +X(f)Y ,

for all X,Y ,Z ∈ X(M) and f1, f2 ∈ C1(M). ∇XY is called the covariant derivative
of Y in the direction of X .
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Informally speaking, the connection is a way to define the directional derivative
of a vector field on a manifold. Clearly there are many possible connections on
a manifold, however, in the case of a Riemannian manifold, it is advantageous
to choose a particular connection ∇ that reflects the properties of its Riemannian
metric.

1.30. DEFINITION. Given any metric ⟨·, ·⟩ on a differentiable manifoldM , a con-
nection ∇ on M is called compatible with the metric, or a metric connection if it
satisfies

X⟨Y ,Z⟩ = ⟨∇XY ,Z⟩+ ⟨Y ,∇XZ⟩,

for all vector fields X,Y ,Z ∈ X(M).

It turns out that a Riemannian manifold can admit different metric connections,
so compatibility is still not sufficient to identify a unique connection on such a
manifold.

1.31. DEFINITION. A connection ∇ on a differentiable manifold M is called
symmetric if it satisfies

∇XY −∇YX = [X,Y ],

for all vector fields X,Y ∈ X(M).

Now these two conditions guarantee a unique connection on a manifold.

1.32. THEOREM (Fundamental Theorem of Riemannian geometry). Let M be
any Riemannian manifold. Then there exists a unique connection ∇ on M that is com-
patible with the metric of M and is symmetric. This connection is called the Levi-Civita
connection on M .

PROOF. We derive a formula for ∇. Suppose that ∇ is such a connection, and
let X,Y ,Z ∈ X(M). Then by compatibility of ∇, we have

X⟨Y ,Z⟩ = ⟨∇XY ,Z⟩+ ⟨Y ,∇XZ⟩,

Y ⟨Z,X⟩ = ⟨∇YZ,X⟩+ ⟨Z,∇YX⟩,

Z⟨X,Y ⟩ = ⟨∇ZX,Y ⟩+ ⟨X,∇ZY ⟩.

Then, by symmetry of ∇, we have

X⟨Y ,Z⟩ = ⟨∇XY ,Z⟩+ ⟨Y ,∇ZX⟩+ ⟨Y , [X,Z]⟩,

Y ⟨Z,X⟩ = ⟨∇YZ,X⟩+ ⟨Z,∇XY ⟩+ ⟨Z, [Y ,X]⟩,

Z⟨X,Y ⟩ = ⟨∇ZX,Y ⟩+ ⟨X,∇YZ⟩+ ⟨X, [Z,Y ]⟩.
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Adding the first two equations and subtracting the third yields

X⟨Y ,Z⟩+ Y ⟨Z,X⟩ − Z⟨X,Y ⟩

= 2⟨∇XY ,Z⟩+ ⟨Y , [X,Z]⟩+ ⟨Z, [Y ,X]⟩ − ⟨X, [Z,Y ]⟩.

Solving for ⟨∇XY ,Z⟩, we have

2⟨∇XY ,Z⟩ = X⟨Y ,Z⟩+ Y ⟨Z,X⟩ − Z⟨X,Y ⟩

− ⟨Y , [X,Z]⟩ − ⟨Z, [Y ,X]⟩+ ⟨X, [Z,Y ]⟩.

This formula is called Koszul’s formula. Thus, we obtain an expression that in-
volves only the metric and the Lie bracket, but no ∇, which proves uniqueness. It
is easy to check that ∇ so defined is indeed a metric compatible, symmetric affine
connection, hence Koszul’s formula also gives existence. □

1.33. DEFINITION. Let M be a differentiable manifold and let γ : I → M be a
curve in M . Then a vector field along the curve γ is a differentiable map V : I →
TM such that V (t) ∈ Tγ(t)M for all t ∈ I .

An obvious example is the tangent vector field γ̇(t), which is a vector along γ(t).
Now as we have a vector field, we see that it is also possible to find the covariant
derivative along the curve.

1.5. PROPOSITION. LetM be a Riemannian manifold with the Levi-Civita connection
∇, and let γ : I →M be a curve in M . Then there exists a unique operator that associates
to a vector field V another vector field V̇ (t) = DV

dt
along the curve γ that satisfies the

following properties:

1. For any function f ∈ C1 on I ,

D

dt
(fV )(t) = ḟ(t)V (t) + f(t)V̇ (t),

2. If V is induced by a vector field Y ∈ X(M), that is, V (t) = Y (γ(t)) for all t ∈ I ,
then

DV

dt
= ∇γ̇(t)Y .

The vector field DV
dt

is called the covariant derivative of V along γ.

1.34. DEFINITION. Let M be a Riemannian manifold equipped with a connec-
tion ∇. A curve γ : I →M is called a geodesics on M if

Dγ̇(t)

dt
= ∇γ̇(t)γ̇(t) = 0.
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1.35. EXAMPLE. This definition suggests that geodesics are curves with zero
“acceleration” in some sense. For example, the geodesics of Rn are the straight
lines with constant velocities:

Dγ̇(t)

dt
= 0 iff γ̈(t) = 0.

The most important property of geodesics is that it is locally a length-minimising
curve between any two points, and conversely, all locally length-minimising curves
are geodesics (see [19]).
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1.6. Euler-Arnold equation for geodesics on a Lie group

In this section, we deduce the Euler-Arnold equation, which plays a central role
in our work. Our exposition follows the material in [1], [9], [10], and [22], to which
we also refer the readers for further details.

We begin by introducing the adjoint of the operator ad. Let g be a metric Lie
algebra with the inner product ⟨·, ·⟩. For X,Y ,Z ∈ g, define

⟨Z, adXY ⟩ = ⟨ad∗
XZ,Y ⟩.

The map ad∗ : g → gl(g), X 7→ ad∗
X is called the coadjoint representation of g.

1.6. PROPOSITION. ad∗ is bi-linear, that is, ad∗
XY is linear in both arguments X,Y ∈

g.

PROOF. Let X,Y1,Y2 and Z ∈ g and a1, a2 ∈ R, we have

⟨a1Y1 + a2Y2, [X,Z]⟩ = a1⟨Y1, [X,Z]⟩+ a2⟨Y2, [X,Z]⟩

=⇒ ⟨a1Y1 + a2Y2, adXZ⟩ = a1⟨Y1, adXZ⟩+ a2⟨Y2, adXZ⟩

=⇒ ⟨ad∗
X(a1Y1 + a2Y2),Z⟩ = a1⟨ad∗

XY1,Z⟩+ a2⟨ad∗
XY2,Z⟩

=⇒ ⟨ad∗
X(a1Y1 + a2Y2),Z⟩ = ⟨a1ad∗

XY1 + a2ad
∗
XY2,Z⟩.

As this is true for any Z, we get ad∗
X(a1Y1 + a2Y2) = a1ad

∗
XY1 + a2ad

∗
XY2, which

proves linearity by Y . Similarly, we have ad∗
a1X1+a2X2

Y = a1ad
∗
X1
Y + a2ad

∗
X2
Y for

any X1,X2 and Y ∈ g and any a1, a2 ∈ R, which proves the linearity by X . □

The following proposition gives the formula for the Levi-Civita connection of
a left-invariant metric on a Lie group.

1.7. PROPOSITION. Let G be a Lie group with a left-invariant metric ⟨·, ·⟩, and let
X,Y ,Z be left-invariant vector fields. Then we have

∇XY = 1
2
([X,Y ]− ad∗

XY − ad∗
YX) .

PROOF. Let G be a Lie group with a left-invariant metric ⟨·, ·⟩, and let X,Y ,Z

be left-invariant vector fields. Then, by Proposition 1.4, ⟨·, ·⟩g evaluated on left-
invariant vector fields does not depend on g ∈ G. Therefore, we have

X⟨Y ,Z⟩ = 0, Y ⟨X,Z⟩ = 0, Z⟨X,Y ⟩ = 0.

26



Now, substituting this into the Koszul’s formula in Theorem 1.32, we obtain

2⟨∇XY ,Z⟩ = −⟨Y , [X,Z]⟩ − ⟨Z, [Y ,X]⟩+ ⟨X, [Z,Y ]⟩

= ⟨[X,Y ],Z⟩ − ⟨[Y ,Z],X⟩ − ⟨[X,Z],Y ⟩

= ⟨[X,Y ],Z⟩ − ⟨adYZ,X⟩ − ⟨adXZ,Y ⟩

= ⟨[X,Y ],Z⟩ − ⟨Z, ad∗
YX⟩ − ⟨Z, ad∗

XY ⟩

= ⟨[X,Y ],Z⟩ − ⟨ad∗
XY ,Z⟩ − ⟨ad∗

YX,Z⟩,

as required. □

We are ready to prove the Euler-Arnold equation. Let G be a Lie group with
a left-invariant metric and let g be the corresponding metric Lie algebra. For a C2

curve γ : I → G, define the curve X : I → g by X(t) = dLγ(t)−1 γ̇(t) (so that X(t) is
the result of translation, by the differential of the left action, of the vector γ̇(t) from
the point γ(t) to the identity). The curve X(t) lies in the Lie algebra g of G and is
sometimes called the hodograph of γ. In this notation, we have the following.

1.36. THEOREM. The curve γ(t) is a naturally parameterised geodesic on a Lie group
G if and only if

Ẋ = ad∗
XX, (1.6.1)

Equation (1.6.1) is called the Euler-Arnold equation.

PROOF. We prove the “only if” part; the “if” part follows by reversing the ar-
gument. Let G be a Lie group with a left-invariant metric ⟨·, ·⟩ and g be the Lie
algebra of left-invariant vector fields of G. Let γ = γ(t) be a geodesic on G, with
t a natural parameter, and let γ̇(t) = dγ

dt
be the unit tangent vector field along γ.

Denote Ei an orthonormal basis in g relative to the inner product ⟨·, ·⟩; extend each
Ei to a left-invariant vector field on G and let Ei(t) be the value of that vector field
at the point γ(t). We can decompose γ̇(t) =

∑
iXi(t)Ei(t), where Xi(t) : R → R are

C1 functions. Note that in this notation, X(t) =
∑

iXi(t)Ei. As γ is a geodesic, by
Definition 1.34, we have

0 = ∇γ̇(t)γ̇(t) = ∇γ̇(t)

∑
i

XiEi

=
∑
i

ẊiEi +
∑
i

Xi∇XEi

=
∑
i

ẊiEi +
∑
i

Xi∇∑
j XjEj

Ei

=
∑
i

ẊiEi +
∑
ij

XiXj∇Ej
Ei.
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Note that Ei are left-invariant vector fields, so by Proposition 1.7, we have

∇Ej
Ei =

1

2
([Ej,Ei]− ad∗

Ej
Ei − ad∗

Ei
Ej).

Thus, the last equation becomes

0 =
∑
i

ẊiEi +
1

2

∑
ij

XiXj([Ej,Ei]− ad∗
Ej
Ei − ad∗

Ei
Ej).

By Proposition 1.6, we have∑
i,j

XiXjad
∗
Ej
Ei =

∑
i

∑
j

XiXjad
∗
Ej
Ei =

∑
i

Xiad
∗∑

XjEj
Ei

=
∑
i

Xiad
∗
XEi = ad∗

X(
∑
i

XiEi) = ad∗
XX.

So we have

0 = Ẋ +
1

2
[X,X]− 1

2
ad∗

XX − 1

2
ad∗

XX

= Ẋ − ad∗
XX,

which yields the Euler-Arnold equation. □

1.6.1. REMARK. Equation (1.6.1) always has a first integral 1
2
∥X∥2. This is easy

to prove since we have(
1

2
∥X∥2

)·

=

(
1

2
⟨X,X⟩

)·

= ⟨Ẋ,X⟩ = ⟨ad∗
XX,X⟩ = ⟨X, adXX⟩ = 0.

In the 3-dimensional case, this gives

X2
1 +X2

2 +X2
3 = constant,

and in the 4-dimensional case,

X2
1 +X2

2 +X2
3 +X2

4 = constant,

where Xi = Xi(t) are the components of X(t) relative to an orthonormal basis for
g.
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1.7. Stability of stationary points of autonomous systems of ODEs

Continuing from the previous section, we introduce the definition of station-
ary points from Dynamical systems theory that is equivalent to homogeneous
geodesics on Lie groups. We also describe the condition of Lyapunov stability
of stationary points. The references are [4], [11], and [16].

Consider an autonomous system of ordinary differential equations: forX : I →
Ω ⊂ Rn, f : Ω → Rn ∈ C1,

Ẋ = f(X), (1.7.1)

whose right-hand side is independent of t. The points X0 where f vanishes, i.e.,
where f(X0) = 0 are called stationary points of the system. Clearly, if X0 is a sta-
tionary point, then X(t) = X0 is a solution of (1.7.1). If we look at the Euler-Arnold
equation (1.6.1), then by definition, the stationary points can be found by equat-
ing the expression on the right-hand side to zero. Geometrically, the stationary
points of the Euler-Arnold equation (1.6.1) correspond to geodesics on the metric
Lie group whose tangent vector is left-invariant, that is, to geodesics of the form
exp(tX). Thus such geodesics are 1-dimensional subgroups ofG (see Theorem 1.14
and Definition 1.15). They are called homogeneous geodesics.

1.37. DEFINITION. A stationary point X0 of (1.7.1) is called (Lyapunov) stable
if for any ϵ > 0, there exists a ϵ′ > 0 such that for any solution X(t), we have

∥X(0)−X0∥ < ϵ′ ⇒ ∥X(t)−X0∥ < ϵ, for all t ≥ 0.

Otherwise the point X0 is called (Lyapunov) unstable.

Informally speaking, a stationary point of the system is stable if the solutions
starting at nearby points remain close to it for all future times. The question of
stability is extremely significant in real-world physical applications, where systems
are constantly subject to small changes and it is often impossible to measure a
perfect initial condition. A stable stationary point allows some small perturbations,
which means that it corresponds to a steady state observed in a realistic system. On
the other hand, even small errors in the initial state would force the solutions to
move away from an unstable stationary point.

We begin the stability analysis by assuming that the system (1.7.1) is linear and
homogeneous, that is,

Ẋ = AX, (1.7.2)

where A is a constant n × n matrix, and that the stationary point of interest is the
zero solution X(t) = 0.

1.38. THEOREM. Given the system (1.7.2), denote λ1,λ2, · · · ,λm ∈ C the eigenvalues
of the matrix A (note that m ≤ n).
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(i) If Re(λi) < 0 for all i = 1, 2, · · · ,m, then the stationary point of (1.7.2) is stable.
(ii) If Re(λi) > 0 for at least one i = 1, 2, · · · ,m, then the stationary point of (1.7.2)

is unstable.

The proof can be found in [11]. As our system (1.6.1) from the Euler-Arnold
equation is nonlinear, we will now describe a technique known as linearisation for
nonlinear systems. Suppose we have an autonomous system (1.7.1) and X0 is a
stationary point of this system, i.e., f(X0) = 0. Consider a perturbation X near X0,
that is, X = X0 + Z, where Z is small. The equation (1.7.1) becomes

Ż = f(X0 + Z).

Taking the Taylor expansion of the right-hand side at X0 gives

Ż = f(X0) + J(X0)Z + o(Z),

where O(Z) denotes higher-order terms in the expansion, and J(X0) is the Jaco-
bian matrix of the system evaluated at X0, defined by

J(X0) =


∂f1
∂X1

∂f1
∂X2

· · · ∂f1
∂Xn

∂f2
∂X1

∂f2
∂X2

· · · ∂f2
∂Xn

...
...

...
∂fn
∂X1

∂fn
∂X2

· · · ∂fn
∂Xn

∣∣∣X=X0

.

As X0 is a stationary point, we have f(X0) = 0, and for solutions close to the
stationary point, O(Z) is negligible. We obtain the linearised system of (1.7.1) at
X0:

Ż = J(X0)Z.

We can then apply Theorem 1.38 to get the following important result.

1.39. THEOREM. Let X0 be a stationary point of the system (1.7.1), and let J(X0) be
the Jacobian matrix of f at X0. Then:

(i) If all the eigenvalues of J(X0) have negative real parts, then the pointX0 is stable.
(ii) If at least one eigenvalue of J(X0) has a positive real part, the pointX0 is unstable.

In the 2-dimensional case (n = 2), the criteria given in Theorem 1.39 can be ex-

pressed in a nicer way. Recall that for a 2× 2 matrix J =

(
a b

c d

)
, the characteristic

polynomial is given by

det(J − λI) = λ2 − (a+ d)λ+ (ad− bc) = λ2 − tr(J)λ+ det(J),

where tr(J) and det(J) are the trace and the determinant of the matrix J , respec-

tively. The eigenvalues of J are −tr(J)±
√

tr2(J)−4 det(J)

2
, and Theorem 1.39 can be re-

stated as follows.
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1.40. THEOREM. Let n = 2. Suppose X0 is a stationary point of the system (1.7.1),
and let J0 = J(X0) be the 2× 2 Jacobian matrix of f at X0. Then

(i) If det(J0) < 0, then the point X0 is unstable.
(ii) If det(J0) > 0, then the point X0 is unstable if tr(J0) > 0 or stable if tr(J0) < 0.

We need to emphasise that both Theorem 1.39 and 1.40 are not applicable if the
Jacobian matrix has zero eigenvalues, because in that case, stability can depend on
the higher order terms in the Taylor expansion. In the case of zero eigenvalues,
we discuss another method, known as the Lyapunov’s direct method. The name
is inspired by the fact that we can determine the stability of a stationary point
without any knowledge of the solution of the system, but rather via a suitable
auxiliary function.

1.41. THEOREM. Let X0 be a stationary point of the system (1.7.1). Let V : D → R
be a differentiable function defined on an open set D containing X0. Suppose further that

(1) V is positive definite on D, i.e., V (X0) = 0, and V (X) > 0 for all X ∈
D \ {X0};

(2) The derivative V̇ of V is negative definite onD, i.e., V̇ (X0) = 0, and V̇ (X) < 0

for all X ∈ D \ {X0}.
Then X0 is stable.

The function V is called a Lyapunov function. The proof of the theorem can be
found in [4], [11] or [23].

1.42. EXAMPLE. Consider the following dynamical systemẊ1 = −2X1X
2
2 −X3

1

Ẋ2 = −X2 +X2
1X2

.

The only stationary point for this system is the origin (X1,X2) = (0, 0). To investi-
gate its stability, consider the quadratic Lyapunov function

V = X2
1 +X2

2 .

It is clear that V is positive definite on the entire space R2. In addition, the deriva-
tive of V given by

V̇ = −2X2
2 − 2X2

1 (X
2
1 +X2

2 )

is negative definite. By Theorem 1.41, we conclude that (X1,X2) = (0, 0) is a stable
stationary point. Note that the Jacobian matrix of the system at (X1,X2) = (0, 0) is(
0 0

0 −1

)
, whose determinant is zero. Hence Theorem 1.40 is not applicable.
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In some cases, we need a stronger version of this theorem known as the Chetaev
Instability Theorem [6]:

1.43. THEOREM. LetX0 be a stationary point of the system (1.7.1). Let V (X) be a dif-
ferentiable function defined on a neighbourhood of X0 and let Q be a connected component
of the set {X : V (X) > 0}. Suppose further that

(1) X0 lies on the boundary of Q;
(2) There exists a neighbourhood D of X0 such that V̇ > 0 for all X ∈ D ∩Q.

Then X0 is unstable.

The function V is called a Chetaev function.

1.44. EXAMPLE. Consider the following dynamical systemẊ1 = X2
1 + 2X5

2

Ẋ2 = X1X
2
2

.

Again, the only stationary point for this system is the origin (X1,X2) = (0, 0). To
investigate its stability, consider the Chetaev function

V = X2
1 −X4

2 ,

which is positive inside the region Q bounded by

X1 = X2
2 and X1 = −X2

2 .

Clearly the origin lies on the boundary ofQ, and if we letD be the right half-plane,
then V̇ = 2X3

1 > 0 for all (X1,X2) ∈ D ∩ Q. By Theorem 1.43, we conclude that
(X1,X2) = (0, 0) is an unstable stationary point.

There is another stability theorem by Arnold [1, Théorème 4] that we use fre-
quently in the project. This theorem concerns a special type of stationary points in
a Lie group.

1.45. DEFINITION. Suppose X0 ∈ g is a stationary point and Y ∈ g is an arbi-
trary point. Denote B(X,Y ) = ad∗

YX . Then X0 is called regular if the dimension of
the linear space

LX0 = {Y ∈ g : B(X0,Y ) = 0}
is locally constant.

1.46. THEOREM. Suppose X0 is a regular stationary point. If the quadratic form

Φ(Y ) = ∥B(X0,Y )∥2 + ⟨[Y ,X0],B(X0,Y )⟩

is positive definite on the orthogonal complement to the space LX0 , then the point X0 is
stable.
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CHAPTER 2

Stability of homogeneous geodesics
in 3-dimensional metric Lie algebras

In Chapter 1, we have given a survey of related theories necessary for our un-
derstanding of stability of homogeneous geodesics on a Lie group. We now begin
to discuss the main findings of the project in this chapter. In Section 2.1, we give
the classification of 3-dimensional metric Lie algebras. In Section 2.2, we proceed
to apply the Euler-Arnold equation (1.6.1) to find all the homogeneous geodesics
of the Lie algebra, and classify their stability status respectively for unimodular
Lie algebras in Section 2.3 and for non-unimodular Lie algebras in Sections 2.4-2.5.

2.1. Classification of 3-dimensional metric Lie algebras

The classifications which we obtain in this section will be the starting point of
the proof of the first two main theorems of this thesis. We note that both these clas-
sifications are not new; the classification in the unimodular case was obtained in
[21] and is also known in the non-unimodular case (see e.g. [20]); for completeness
we provide the full proof in both cases.

It is important to emphasise that the classification of real 3-dimensional Lie
algebras up to isomorphism is a classical result obtained by Bianchi in 1898 (see
[3] for English translation). We will classify 3-dimensional metric Lie algebras up
to isometric isomorphism.

We start with 3-dimensional unimodular metric Lie algebras. Recall that a met-
ric Lie algebra is a Lie algebra endowed with a positive definite inner product
⟨·, ·⟩. Given a Lie algebra g, for any X ∈ g, the linear map adX : g → g is defined
by adXY = [X,Y ] by Theorem 1.19.

2.1. DEFINITION. A Lie algebra g is said to be unimodular if tr(adX) = 0 for all
X ∈ g.

2.2. LEMMA. [21, Lemma 4.1] Let g be a 3-dimensional metric Lie algebra with the
inner product ⟨·, ·⟩. Then there exists a unique linear map L : g → g such that the Lie
bracket is given by

[X,Y ] = L(X × Y ),

where × is the cross product in the underlying 3-dimensional Euclidean space of g.
The Lie algebra g is unimodular if and only if the map L is symmetric relative to ⟨·, ·⟩.
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PROOF. Choose a positively oriented orthonormal basis {e1, e2, e3} for (g, ⟨·, ·⟩)
and define the linear map L : g → g by L(e1) = [e2, e3],L(e2) = [e3, e1],L(e3) =

[e1, e2]. Then L(ei× ej) = [ei, ej], hence L(X×Y ) = [X,Y ] by bilinearity of both the
Lie bracket and the cross product.
Introduce αij ∈ R, where i, j ∈ {1, 2, 3}, by

L(ei) =
∑3

j=1
αijej.

Then we have:

ade1(e1) = [e1, e1] = 0,
ade1(e2) = [e1, e2] = L(e3) = α31e1 + α32e2 + α33e3,
ade1(e3) = [e1, e3] = −[e3, e1] = −L(e2) = −α21e1 − α22e2 − α23e3.

We obtain

ade1 =

0 α31 −α21

0 α32 −α22

0 α33 −α23

 ,

and so tr(ade1) = α32 − α23.
Likewise, we get tr(ade2) = α13 − α31 and tr(ade3) = α21 − α12.
Thus, g is unimodular if and only if the matrixα11 α12 α13

α21 α22 α23

α31 α32 α33


of L relative to our basis is symmetric: αij = αji for every i, j, that is, if L is a
symmetric linear map. □

If L is symmetric, then there exists an orthonormal basis {e1, e2, e3} of eigenvec-
tors of L, so that Lei = λiei for i = 1, 2, 3 where λi are the corresponding eigenval-
ues of L. Then we have

[e1, e2] = Le3 = λ3e3,

[e2, e3] = Le1 = λ1e1,

[e3, e1] = Le2 = λ2e2.

(2.1.1)

These equations give Milnor’s classification of 3-dimensional unimodular metric
Lie algebras: every such algebra is uniquely determined by a choice of three real
numbers λ1,λ2,λ3.

2.1.1. REMARK. The three eigenvalues λ1,λ2,λ3 are defined up to orientation.
This means that if we change the orientation of our basis to the opposite, then L

changes to −L, and so we can switch sign of all three eigenvalues without chang-
ing the properties of the Lie algebra. Furthermore, by scaling the vectors of our
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basis we can make every nonzero λi to be equal to its sign (but of course, we lose
orthonormality). This gives Milnor’s classification of 3-dimensional unimodular
Lie algebras up to isomorphism (no metric!): we can choose the sign, +,− or 0 for
every element of the triple (λ1,λ2,λ3), up to cyclic permutation and simultaneous
change of the sign to the opposite.

In conclusion, we have 6 classes of 3-dimensional unimodular Lie algebras as
follows in the table.

Signs of (λ1,λ2,λ3) Possible variations
(0, 0, 0)

(+, 0, 0) (0,+, 0), (0, 0, +), (−, 0, 0), (0,−, 0), (0, 0,−)

(+,+, 0) (0,+,+), (+, 0,+), (−,−, 0), (0,−,−), (−, 0,−)

(+,−, 0) (0,+,−), (−, 0, +), (−, +, 0), (0,−, +), (+, 0,−)

(+,+,+) (−,−,−)

(+,+,−) (−, +,+), (+,−, +), (−,−, +), (+,−,−), (−, +,−)

TABLE 2.1. Classes of 3-dimensional unimodular Lie algebras.

To obtain the classification for 3-dimensional non-unimodular metric Lie alge-
bras, we use the map L constructed in Lemma 2.2 and the Jacobi identity. This
classification is also known in the literature (see e.g., [20]).

2.3. LEMMA. Let g be a 3-dimensional non-unimodular metric Lie algebra with the
inner product ⟨·, ·⟩. Then there exists an orthonormal basis {e1, e2, e3} for g such that the
Lie brackets in g are given by

[e1, e2] = αe2 + βe3, [e1, e3] = γe2 + δe3, [e2, e3] = 0,

where α + δ > 0.

PROOF. Choose an arbitrary orthonormal basis {e1, e2, e3} for g. By Lemma 2.2,
we have Le1 = [e2, e3], Le2 = [e3, e1], and Le3 = [e1, e2]. Then the Jacobi identity
gives

[e1, [e2, e3]] + [e2, [e3, e1]] + [e3, [e1, e2]] = 0

=⇒ L(Le1 × e1) + L(Le2 × e2) + L(Le3 × e3) = 0.

Now denote αij, i, j ∈ {1, 2, 3}, the entries of the matrix L. Note that L(ei) =∑3
j=1 αijej , and so

Le1 × e1 = α13e2 − α12e3,

Le2 × e2 = −α23e1 + α21e3,

Le3 × e3 = α32e1 − α31e2.
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Thus, from the Jacobi identity we obtain

L(α13e2 − α12e3) + L(−α23e1 + α21e3) + L(α32e1 − α31e2) = 0.

By linearity of L we obtain

α13Le2 − α12Le3 − α23Le1 + α21Le3 + α32Le1 − α31Le2 = 0

=⇒ (α23 − α32)Le1 + (α31 − α13)Le2 + (α12 − α21)Le3 = 0

So if we let

v =

α23 − α32

α31 − α13

α12 − α21

 ,

the latter equation is equivalent to Lv = 0. As g is non-unimodular, by Lemma 2.2,
αij ̸= αji for at least one pair (i, j). Thus, v ̸= 0. So we can specify our basis in such

a way that e1 is a unit vector in the direction of v, so that v =

c0
0

, where c ̸= 0.

Then α31 − α13 = α12 − α21 = 0 and the equation Lv = 0 givesα11 α12 α13

α21 α22 α23

α31 α32 α33


c0
0

 = 0 =⇒ c

α11

α21

α31

 = 0 =⇒

α11

α21

α31

 = 0.

Therefore we obtain

[e1, e2] = α32e2 + α33e3,

[e1, e3] = −α22e2 − α23e3,

[e2, e3] = 0.

By changing e1 to −e1 if necessary, we can assume that −c = α32 −α23 > 0, and the
proof is complete up to changing the notation. □
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2.2. Homogeneous geodesics in 3-dimensional metric Lie algebras

In this section, we will write down the Euler-Arnold equation for geodesics in
3-dimensional metric Lie algebras and find the stationary points. This was inde-
pendently done in [20].

We begin with 3-dimensional unimodular Lie algebras. Consider the six cases
in Table 2.1.

1. (λ1,λ2,λ3) = (0, 0, 0). This is an abelian Lie algebra, so we have [X,Y ] = 0 for
any X,Y .
Hence

Ẋ(t) = ad∗
XX = 0. (2.2.1)

2. (λ1,λ2,λ3) : (+, 0, 0). If X = X(t) is the hodograph of a geodesic γ on the Lie
group G of the algebra g and X = X1e1 + X2e2 + X3e3 is its decomposition
relative to the basis ei, we obtain

X(t) = X1e1 +X2e2 +X3e3

=⇒ adX(t) = X1ade1 +X2ade2 +X3ade3

=

0 −λ1X3 λ1X2

0 0 0

0 0 0

 .

Equation (1.6.1) givesẊ1

Ẋ2

Ẋ3

 =

 0

−λ1X1X3

λ1X1X2

 =⇒


Ẋ1 = 0

Ẋ2 = −λ1X1X3

Ẋ3 = λ1X1X2

. (2.2.2)

3. (λ1,λ2,λ3) : (+,+, 0). Computing in a similar manner, we obtain
Ẋ1 = λ2X2X3

Ẋ2 = −λ1X1X3 , forλ1,λ2 > 0.

Ẋ3 = (λ1 − λ2)X1X2

(2.2.3)

4. (λ1,λ2,λ3) : (+,−, 0). We obtain a system similar to system (2.2.3), but with the
condition that λ1 > 0 and λ2 < 0:

Ẋ1 = λ2X2X3

Ẋ2 = −λ1X1X3 , forλ1 > 0,λ2 < 0.

Ẋ3 = (λ1 − λ2)X1X2

(2.2.4)
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5. (λ1,λ2,λ3) : (+,+,+). The system of ODEs is
Ẋ1 = (λ2 − λ3)X2X3

Ẋ2 = (λ3 − λ1)X1X3 , forλ1,λ2,λ3 > 0.

Ẋ3 = (λ1 − λ2)X1X2

(2.2.5)

6. (λ1,λ2,λ3) : (+,+,−). We obtain a system similar to system (2.2.5), but with the
condition that λ1,λ2 > 0 and λ3 < 0:

Ẋ1 = (λ2 − λ3)X2X3

Ẋ2 = (λ3 − λ1)X1X3 , forλ1,λ2 > 0,λ3 < 0.

Ẋ3 = (λ1 − λ2)X1X2

(2.2.6)

We find the stationary points for each of these six systems by equating all the
expressions on the right-hand sides to zero. Recall that by Remark 1.6.1, these
systems have a first integral 1

2
∥X∥2, which means that if the initial condition lies

on a sphere, then so does the whole solution curve. Hence, it is sufficient to study
its behaviour on the unit sphere S2 = S2(1) ⊂ R3.

1. For (2.2.1), Ẋ = 0, so all points on the sphere S2 are stationary points.
2. For system (2.2.2), stationary solutions are given by

X1 = 0 or X2 = X3 = 0,

so on S2 we have a pair of antipodal points (±1, 0, 0) and the whole circleX1 = 0.
3. For systems (2.2.3) and (2.2.6), in case λ1 ̸= λ2 we have three pairs of antipodal

points (±1, 0, 0), (0,±1, 0) and (0, 0,±1). If λ1 = λ2, we get a pair of antipodal
points (0, 0,±1) and the circle X3 = 0.

4. For system (2.2.4), we get three pairs of antipodal points (±1, 0, 0), (0,±1, 0) and
(0, 0,±1).

5. For system (2.2.5), if λi, i = 1, 2, 3, are pairwise nonequal, we have three pairs
of antipodal points (±1, 0, 0), (0,±1, 0) and (0, 0,±1). If λi = λj ̸= λk, where
i, j, k ∈ {1, 2, 3}, we get a pair of antipodal points Xi = Xj = 0 and the circle
Xk = 0. If λ1 = λ2 = λ3, all points on the sphere S2 are stationary.

This completes the search for homogeneous geodesics in 3-dimensional uni-
modular metric Lie algebras.
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We continue with 3-dimensional non-unimodular metric Lie algebras. Let g be
a 3-dimensional non-unimodular metric Lie algebra with the inner product ⟨·, ·⟩.
Then by Lemma 2.3, there exists an orthonormal basis {e1, e2, e3} for g such that
the Lie brackets in g are given by

[e1, e2] = αe2 + βe3, [e1, e3] = γe2 + δe3, [e2, e3] = 0,

where α + δ > 0. We compute

ade1(e1) = [e1, e1] = 0,
ade1(e2) = [e1, e2] = αe2 + βe3,
ade1(e3) = [e1, e3] = −γe2 + δe3.

Thus, we obtain ade1 =

0 0 0

0 α β

0 γ δ

. Similarly, ade2 =

 0 0 0

−α 0 0

−β 0 0

 and ade3 =

 0 0 0

−γ 0 0

−δ 0 0

.

Hence, we obtain

adX = X1ade1 +X2ade2 +X3ade3

=

 0 0 0

−αX2 − γX3 αX1 γX1

−βX2 − δX3 βX1 δX1

 ,

which gives

ad∗
X = X1ad

∗
e1
+X2ad

∗
e2
+X3ad

∗
e3

=

0 −αX2 − γX3 −βX2 − δX3

0 αX1 βX1

0 γX1 δX1

 .

So, the Euler-Arnold equation (1.6.1) gives

Ẋ = ad∗
XX

=⇒

Ẋ1

Ẋ2

Ẋ3

 =

0 −αX2 − γX3 −βX2 − δX3

0 αX1 βX1

0 γX1 δX1


X1

X2

X3


=

(−β − γ)X2X3 − αX2
2 − δX3

3

αX1X2 + βX1X3

γX1X2 + δX1X3

 .
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If we let x = X1, u =

(
X2

X3

)
, and M =

(
α β

γ δ

)
, then the last equation can be

written in a more compact form as the following autonomous system of differential
equations: ẋ = −⟨Mu,u⟩

u̇ = xMu
. (2.2.7)

We find the stationary points of system (2.2.7) on the unit sphere S2 given by

x2 + ∥u∥2 = 1 ⇔ X2
1 +X2

2 +X2
3 = 1.

The right-hand side of (2.2.7) is always zero when u = 0. This gives two an-
tipodal stationary points (±1, 0, 0), independent of the matrix M . To find other
stationary points, we consider several cases depending on the matrix M .

1. Suppose that the matrix M is singular, i.e., there is a vector u ̸= 0 such that
Mu = 0. Note that the kernel of M must be 1-dimensional, as otherwise we
would have M = 0, which contradicts the fact from Lemma 2.3 that tr(M) =

α + δ > 0. As M is singular, we have det(M) = det(MT ) = 0, so the transpose
matrix MT of M is also singular. Thus, there exists a unit vector u such that
MTu = 0. We can then specify the basis in the (u1,u2)-plane relative to which

u =

(
0

1

)
. Then we have M =

(
α β

0 0

)
, with α > 0. This leads to 2 subcases.

(i) Suppose that β = 0, so that M =

(
α 0

0 0

)
. The system (2.2.7) becomes


Ẋ1 = −αX2

2

Ẋ2 = αX2X3

Ẋ3 = 0

. (2.2.8)

Setting the right-hand side to 0, we find X2 = 0. This gives the circle of
stationary points X2

1 +X2
3 = 1.

(ii) Suppose that β ̸= 0, so that M =

(
α β

0 0

)
. The system (2.2.7) becomes


Ẋ1 = −(αX2 + βX3)X2

Ẋ2 = (αX2 + βX3)X1

Ẋ3 = 0

. (2.2.9)

The right-hand side is 0 when X1 = X2 = 0 or when αX2 + βX3 = 0. So
the set of stationary points is the pair of antipodal points (0, 0,±1) and the
circle in the intersection of the plane αX2 + βX3 = 0 and the unit sphere S2.
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Note that the antipodal points (±1, 0, 0) found earlier lie on the circles in both
subcases.

2. Suppose thatM is nonsingular. Assuming u ̸= 0, the stationary points of system
(2.2.7) satisfy ⟨Mu,u⟩ = 0 and x = 0. DenoteMS the symmetrisation of the matrix
M , that is, MS = 1

2
(M +MT ). We have

MS =
1

2

((
α β

γ δ

)
+

(
α γ

β δ

))
=

(
α β+γ

2
β+γ
2

δ

)
.

Moreover, we have

⟨MSu,u⟩ = (β + γ)u1u2 + αu21 + δu22 = ⟨Mu,u⟩.

We can now choose an orthonormal basis in the (u1,u2)-plane relative to which

the symmetric matrix MS is diagonal, so that MS =

(
α 0

0 δ

)
. Thus the equation

⟨Mu,u⟩ = 0 is equivalent to ⟨MSu,u⟩ = 0 ⇐⇒ αu21 + δu22 = 0. Furthermore, by
Lemma 2.3, at least one of α or δ must be positive, so up to relabelling the basis
we can assume α > 0. Then the stationary points depend on the value of δ. We
consider three subcases.

(i) δ > 0. Then the only solution to αu21 + δu22 = 0 is u1 = u2 = 0. Hence the
only possible stationary points are the antipodal points (±1, 0, 0).

(ii) δ = 0. Then u1 = 0, this gives the points (0, 0,±1). So there are two pairs
of antipodal stationary points: (±1, 0, 0) and (0, 0,±1).

(iii) δ < 0. Denote ρ =
√
α, σ =

√
−δ (note that ρ,σ > 0). Then we get

ρ2u21 − σ2u22 = 0. Substituting this into u21 + u22 = 1 gives (u1,u2) =

(ρ2+σ2)−1/2(0,±σ,±ρ). Hence there are three pairs of antipodal stationary
points: (±1, 0, 0) and (ρ2 + σ2)−1/2(0,±σ,±ρ).
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The following table summarises our findings for homogeneous geodesics on
the unit sphere in 3-dimensional non-unimodular metric Lie algebras.

Case Form of M Stationary Points on S2

detM = 0

M =

(
α 0

0 0

)
,α > 0 The circle X2

1 +X2
3 = 1, X2 = 0.

M =

(
α β

0 0

)
,α > 0, β ̸= 0

1 pair of antipodal points
(0, 0,±1) and the circle in the
intersection of the plane
αX2 + βX3 = 0 and S2.

detM ̸= 0

M =

(
α β

−β δ

)
,α, δ > 0

1 pair of antipodal points:
(±1, 0, 0).

M =

(
α β

−β 0

)
,α > 0

2 pairs of antipodal points:
(±1, 0, 0) and (0, 0,±1).

M =

(
α β

−β δ

)
=

(
ρ2 β

−β −σ2

)
,

where α > 0 > δ

3 pairs of antipodal points:
(±1, 0, 0) and
(ρ2 + σ2)−1/2(0,±σ,±ρ).

TABLE 2.2. Homogeneous geodesics on the unit sphere in
3-dimensional non-unimodular metric Lie algebras.
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2.3. Stability analysis: unimodular case.
Proof of Theorem 0.1

In this section, we give the stability analysis of stationary points in 3-dimensional
unimodular metric Lie algebras and prove Theorem 0.1. The proof goes on a
case-by-case basis using the classification of stationary points from systems (2.2.1)-
(2.2.6) obtained in Section 2.2, page 38.

1. For (2.2.1), all points are stationary points and are stable.
2. System (2.2.2) gives

Ẋ1 = 0

Ẋ2 = −λ1X1X3

Ẋ3 = λ1X1X2

⇒


X1 = c

X2 = −c1 sin(λ1ct) + c2 cos(λ1ct)

X3 = c1 cos(λ1ct) + c2 sin(λ1ct)

.

• The stationary points (±1, 0, 0) are the “north pole” and the “south pole” of
the unit sphere S2. Let X0 = (1, 0, 0) and consider the solution X(t) with
X(0) = (c, c2, c1). We have

∥X(0)−X0∥ = ∥X(t)−X0∥ =
√
(1− c)2 + c21 + c22,

for all t ∈ R. So if we choose ϵ′ = ϵ, the stability condition of Definition 1.37
will be satisfied. This shows that X0 (and similarly −X0) is stable. This
fact agrees with the observation that every solution to (2.2.2) travels on the
“parallels” of the sphere, so the distance to the poles remains constant all
the time.

• The stationary point on the “equator” of the sphere given by X1 = 0 is un-
stable. Indeed, fixing a stationary point X0 on the equator and choosing a
point X(0) close to it and not lying on the equator, we find that the solution
X(t) travels on the parallel of the sphere and does not remain in a neigh-
bourhood of X0, it will eventually be close to the antipodal point −X0.

3. System (2.2.3) gives
Ẋ1 = λ2X2X3

Ẋ2 = −λ1X1X3 , forλ1,λ2 > 0.

Ẋ3 = (λ1 − λ2)X1X2

We have(
λ1X

2
1 + λ2X

2
2

)·
= 2λ1λ2X1X2X3 − 2λ1λ2X1X2X3 = 0.

It follows that the function λ1X2
1 + λ2X

2
2 is a first integral, and so every solution

of this system lies on the intersections between the sphere S2 and the elliptic
cylinder λ1X2

1 + λ2X
2
2 = c1 (see Figure 2.1–the axis X3 points “up”).
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FIGURE 2.1. Intersection of S2 with the elliptic cylinder.

We see that the stationary point (0, 0, 1) shown in Figure 2.1 (and its antipo-
dal point) is stable, as any solution which starts close to that point remains close
to it for all times.

To study other stationary points it is convenient to consider the other two
first integrals

(λ1 − λ2)X
2
1 − λ2X

2
3 = c2,

and (λ1 − λ2)X
2
2 + λ1X

2
3 = c3.

• Let λ1 > λ2. Then all the solutions lie in the intersections of S2 with a family
of hyperbolic cylinders (λ1 − λ2)X

2
1 − λ2X

2
3 = c2 (see Figure 2.2).

FIGURE 2.2. Intersection of S2 with the hyperbolic cylinder.

We see that the stationary point (1, 0, 0) shown in Figure 2.2 is unstable, as a
solution with a starting point close to it will not remain close; eventually it
will be close to its antipodal point. By a similar argument the point (−1, 0, 0)

is also unstable.
On the other hand, the stationary point (0, 1, 0) is stable: the solutions lie
on the elliptic cylinders (λ1 − λ2)X

2
2 + λ1X

2
3 = c3 (see Figure 2.3) and so

the solution which starts close to the stationary point remains close to it.
Similarly the point (0,−1, 0) is stable.
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FIGURE 2.3. Intersection of S2 with the elliptic cylinder.

• If λ1 < λ2, a similar argument shows that the stationary points (±1, 0, 0) are
stable, and the stationary points (0,±1, 0) are unstable.

• If λ1 = λ2, then system (2.2.3) reduces to system (2.2.2), with the station-
ary points (0, 0,±1) stable, and the stationary points on the circle X3 = 0

unstable.
4. System (2.2.4) is similar to system (2.2.3), but with λ1 > 0, λ2 < 0. The following

equations give three first integrals for the system:

λ1X
2
1 + λ2X

2
2 = c1,

(λ1 − λ2)X
2
1 − λ2X

2
3 = c2,

and (λ1 − λ2)X
2
2 + λ1X

2
3 = c3.

Note that the first equation defines a family of hyperbolic cylinders, while the
last two define families of elliptic cylinders. Arguments similar to the above
show that the stationary points (0, 0,±1) are unstable and the stationary points
(0,±1, 0) and (±1, 0, 0) are stable.

5. System (2.2.5) gives
Ẋ1 = (λ2 − λ3)X2X3

Ẋ2 = (λ3 − λ1)X1X3 , forλ1,λ2,λ3 > 0,

Ẋ3 = (λ1 − λ2)X1X2

with three first integrals

(λ3 − λ1)X
2
1 − (λ2 − λ3)X

2
2 = c1,

(λ1 − λ2)X
2
2 − (λ3 − λ1)X

2
3 = c2,

and (λ1 − λ2)X
2
1 − (λ2 − λ3)X

2
3 = c3.

• If λ1 = λ2 = λ3, then all points are stationary points and are stable.
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• If exactly two of λ1,λ2,λ3 are equal, then system (2.2.5) reduces to system
(2.2.2), in which we have stable stationary points at the poles and unstable
stationary points on the equator.

• If λ1,λ2,λ3 are pairwise different, we can assume that λ1 > λ2 > λ3 > 0.
Then λ1 − λ2,λ2 − λ3 > 0 and λ3 − λ1 < 0. Hence the points (±1, 0, 0)

and (0, 0,±1) are stable and the points (0,±1, 0) are unstable, by arguments
similar to the above.

6. System (2.2.6) is similar to system (2.2.5), with the same stationary points being
stable and unstable, respectively.

An examination of similarities between the above cases suggests that the num-
ber of cases can be reduced. By relabelling the basis vectors, we can always assume
that λ1 ≥ λ2 ≥ λ3. Combining some of the above cases into a single case we get the
following classification.

Case Stationary points Stability
λ1 = λ2 = λ3 Every point of S2 Stable

λ1 > λ2 = λ3
(±1, 0, 0) Stable

All points on the circle X1 = 0 Unstable

λ1 = λ2 > λ3
(0, 0,±1) Stable

All points on the circle X3 = 0 Unstable

λ1 > λ2 > λ3

(±1, 0, 0) Stable
(0,±1, 0) Unstable
(0, 0,±1) Stable

TABLE 2.3. Stability of homogeneous geodesics in 3-dimensional
unimodular metric Lie algebras.

This table, together with Lemma 2.2, completes the proof of Theorem 0.1.
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2.4. Stability analysis: non-unimodular case I.
Proof of Theorem 0.2 for a singular matrix M

In this and the next section, we investigate the stability of stationary points in
3-dimensional non-unimodular metric Lie algebras and prove Theorem 0.2. Using

the classification in Lemma 2.3 and defining the matrix M =

(
α β

γ δ

)
, we can

reduce the Euler-Arnold equation to the form (2.2.7).
This section deals with the case when the matrix M is singular. By specifying

the orthonormal basis, we can take M =

(
α β

0 0

)
, where α > 0 (see Section 2.2,

page 40) and the system (2.2.7) can be further reduced to the form (2.2.9):


Ẋ1 = −(αX2 + βX3)X2

Ẋ2 = (αX2 + βX3)X1

Ẋ3 = 0

=⇒


Ẋ1 = −(αX2 + βX3)X2

Ẋ2 = (αX2 + βX3)X1

X3 = c ∈ R.

. (2.4.1)

It follows that the trajectory of every solution of (2.4.1) on the unit sphere S2

is either a single (stationary) point (0, 0,±1) if |c| = 1, or lies on the circles X3 =

c, X2
1 + X2

2 = 1 − c2 if |c| < 1. We immediately get that the stationary points
(0, 0,±1) are stable: if we take an arbitrary starting point X(0) on the sphere, the
distance from any point on the trajectory X(t) to either of (0, 0,±1) remains the
same (see Figure 2.4–this is the phase portrait in the X1X2-plane).

FIGURE 2.4. Stationary points (0, 0,±1) are stable.

To study the nature of the other stationary points we will consider two cases
from the Table 2.2, depending on whether β = 0 or β ̸= 0.
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(i) If β = 0, then from (2.4.1), we have
Ẋ1 = −αX2

2

Ẋ2 = αX1X2

X3 = c

. (2.4.2)

The set of the stationary points is the circle X2 = 0, and so on every circle
X3 = c ∈ (−1, 1) we have two stationary points (±

√
1− c2, 0, c). As X2

1 +

X2
2 = 1− c2, the first equation of (2.4.2) gives a separable equation

Ẋ1 = −α(1− c2 −X2
1 ),

which can be solved explicitly to give

X1 =
√
1− c2

(
−1 +

2

1 + ĉe2αt
√
1−c2

)
,

where ĉ ≥ 0 depends on the initial condition.
When t→ ∞, we haveX1 → −

√
1− c2, so the stationary point

(
−
√
1− c2, 0, c

)
, c ∈

(−1, 1) is stable, while the stationary point
(√

1− c2, 0, c
)
, c ∈ (−1, 1) is un-

stable (see Figure 2.5–this is the directional field between X1 and t).

FIGURE 2.5. Stationary points (±
√
1− c2, 0, c), c ∈ (−1, 1).

(ii) If β ̸= 0, then as above, we can take X3 = c ∈ (−1, 1). The solution lies on
the circle X2

1 +X2
2 = 1− c2 in the plane X3 = c, and on this circle, the system

(2.4.1) takes the form Ẋ1 = −(αX2 + βc)X2

Ẋ2 = (αX2 + βc)X1

. (2.4.3)
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For every c ∈ (−1, 1), the stationary points are given by the intersection of
the circle X2

1 + X2
2 = 1 − c2 with the line X2 = −βc

α
. Their number depends

on c. We have three possibilities.
(a)

∣∣−βc
α

∣∣ > √
1− c2 ⇐⇒ |c| > α√

α2+β2
. The circle and the line do not meet,

and hence there are no stationary points.
(b)

∣∣−βc
α

∣∣ = √
1− c2 ⇐⇒ |c| = α√

α2+β2
. The circle and the line meet at the

point (X1,X2) = (0,−βc
α
), which is the only stationary point. For the sys-

tem (2.4.3), choose a parametrisation X1 = − |βc|
α

sinϕ, X2 = −βc
α
cosϕ.

The stationary point corresponds to ϕ = 2πn, n ∈ Z. Then the first equa-
tion of (2.4.3) becomes

ϕ̇ = |βc|(cosϕ− 1).

This is a separable equation which can be solved explicitly to give

ϕ(t) = 2 arccot

(
cot

ϕ(0)

2
+ |βc|t

)
,

where ϕ(0) ∈ (0, 2π) is the initial point. So if we start arbitrarily close
to the stationary point ϕ = 0, the function ϕ(t) will eventually approach
π, so that the corresponding point on the circle will be the antipodal to
the stationary point. It follows that the trajectory starting close to the
stationary point does not remain close to it, and so the stationary point(
0,−βc

α

)
is unstable (see Figure 2.6–this is the directional field between ϕ

and t).

FIGURE 2.6. Stationary points (0,−βc
α
, c) are unstable.
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(c)
∣∣−βc

α

∣∣ < √
1− c2 ⇐⇒ |c| < α√

α2+β2
. The circle and the line meet

at two points (X1,X2) =

(
±
√

α2−c2(α2+β2)

α
,−βc

α

)
. For system (2.4.3),

we can parameterise X1 =
√
1− c2 sinϕ and X2 =

√
1− c2 cosϕ, ϕ ∈

[−π, π]. The two stationary points correspond to ϕ ∈ [−π, π] where
cosϕ = − βc

α
√
1−c2

=⇒ ϕ = ± arccos
(
− βc

α
√
1−c2

)
. Then the first equation

of (2.4.3) becomes

ϕ̇ = −α
√
1− c2 cosϕ− βc. (2.4.4)

Although this equation is separable, it is easier to apply Theorem 1.39
to test for stability. In the one-dimensional case, the Jacobian matrix of
equation (2.4.4) is given by the derivative of the right-hand side:

J(ϕ) = α
√
1− c2 sinϕ,

and hence

J

(
arccos(− βc

α
√
1− c2

)

)
= α

√
α2(1− c2)− β2c2 > 0,

J

(
− arccos(− βc

α
√
1− c2

)

)
= −α

√
α2(1− c2)− β2c2 < 0.

So we obtain that the stationary point (X1,X2) =

(√
α2−c2(α2+β2)

α
,−βc

α

)
is unstable, and the stationary point (X1,X2) =

(
−
√

α2−c2(α2+β2)

α
,−βc

α

)
is stable (see Figure 2.7–this is the directional field between ϕ and t).

FIGURE 2.7. Stationary points (±
√

α2−c2(α2+β2)

α
,−βc

α
, c).
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Summarising the above we obtain the following dynamics of stationary
points on the unit sphere S2 for the case β ̸= 0.

•

•

(0,0,1): Stable

(0,0,-1): Stable

•

Stable
•

Unstable
◦

Unstable

FIGURE 2.8. Stability of stationary points on the unit sphere S2 in
the case β ̸= 0.

This completes the stability analysis of the stationary points in the case when
the matrix M is singular. The following table summarises our findings.

β Stationary points Stability
(0, 0,±1) Stable

β = 0

(
−
√
1− c2, 0, c

)
, |c| < 1 Stable(√

1− c2, 0, c
)
, |c| < 1 Unstable

β ̸= 0

(
−
√

α2−c2(α2+β2)

α
,−βc

α
, c

)
, |c| < α√

α2+β2 Stable(√
α2−c2(α2+β2)

α
,−βc

α
, c

)
, |c| ≤ α√

α2+β2 Unstable

TABLE 2.4. Stability of homogeneous geodesics in 3-dimensional
non-unimodular metric Lie algebras if M is singular.
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2.5. Stability analysis: non-unimodular case II.
Proof of Theorem 0.2 for a nonsingular matrix M

We now proceed with the study of stability of stationary points when the matrix
M is nonsingular. Recall that by a choice of the basis, we can assume that M is
given by

M =

(
α β

−β δ

)
, where α,α + δ > 0,

so that the symmetrisation MS is diagonal. The Euler-Arnold equation then be-
comes 

Ẋ1 = −αX2
2 − δX2

3

Ẋ2 = (αX2 + βX3)X1

Ẋ3 = (−βX2 + δX3)X1

. (2.5.1)

defined on the unit sphere S2. According to our classification in Table 2.2, we have
three cases depending on the value of δ.

We first consider the stability of the stationary points (±1, 0, 0), which we have
in all cases.

(1) Consider the stationary point (1, 0, 0). In a neighbourhood of this point, we
have X1 =

√
1−X2

2 −X2
3 . The system (2.5.1) then becomesẊ2 =
√

1−X2
2 −X2

3 (αX2 + βX3)

Ẋ3 =
√

1−X2
2 −X2

3 (−βX2 + δX3)
.

We apply Theorem 1.40. The Jacobian matrix of the above system at (0, 0) is

J(0, 0) =

(
α β

−β δ

)
=M . As α+ δ > 0 (Lemma 2.3), Theorem 1.40 implies that

the stationary point (1, 0, 0) is unstable, regardless of the value of det(M) (see
Figure 2.9–this is the phase portrait in the X2X3-plane).
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FIGURE 2.9. Stationary points (1, 0, 0) is unstable.

(2) Similarly, in a neighbourhood of the stationary point (−1, 0, 0), we can write
X1 = −

√
1−X2

2 −X2
3 . The system (2.5.1) becomesẊ2 = −

√
1−X2

2 −X2
3 (αX2 + βX3)

Ẋ3 = −
√

1−X2
2 −X2

3 (−βX2 + δX3)
.

Then the Jacobian matrix is given by J(0, 0) =

(
−α −β
β −δ

)
= −M . Thus, if

δ ≥ 0, we have det(−M) = αδ + β2 > 0 and tr(−M) = −(α + δ) < 0, hence the
stationary point (−1, 0, 0) is stable by Theorem 1.40 (see Figure 2.10).

FIGURE 2.10. Stationary points (−1, 0, 0) is stable when δ ≥ 0.
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However, if δ < 0, then this point is unstable when det(M) < 0 ⇔ δ < −β2

α
,

and is stable when det(M) > 0 ⇔ δ > −β2

α
(see Figure 2.11).

(a) Unstable when det(M) < 0 (b) Stable when det(M) > 0

FIGURE 2.11. Stability of (−1, 0, 0) depending on det(M).

To study the stability of other stationary points of system (2.5.1), we separately
consider 3 cases (i), (ii) and (iii) from Section 2.2, page 41 (or see the last three rows
of Table 2.2).

(i) δ > 0. We only have one pair of antipodal stationary points (±1, 0, 0), and
according to the above analysis, the point (1, 0, 0) is unstable and the point
(−1, 0, 0) is stable.

(ii) δ = 0 (note that β ̸= 0, as det(M) ̸= 0). We have two pairs of station-
ary points: (±1, 0, 0) and (0, 0,±1). Again, the aforementioned analysis tells
that the point (1, 0, 0) is unstable and the point (−1, 0, 0) is stable. We con-
sider the pair (0, 0,±1). In the neighbourhood of these points, we have
X3 = ±

√
1−X2

1 −X2
2 , so from (2.5.1) we obtainẊ1 = −αX2

2

Ẋ2 =
(
αX2 ± β

√
1−X2

1 −X2
2

)
X1

. (2.5.2)

We are interested in the stability of the point (X1,X2) = (0, 0). The Jacobian
matrix at this point has a zero eigenvalue, so Theorem 1.39 is not applicable.
Instead we apply Theorem 1.43. First note that by changing the sign of X2 if
necessary, we can reduce the system (2.5.2) to the formẊ1 = −αX2

2

Ẋ2 =
(
αX2 − |β|

√
1−X2

1 −X2
2

)
X1

. (2.5.3)
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Following Theorem 1.43, we introduce the Chetaev function V = −X1X2.
The set {(X1,X2) : V (X1,X2) > 0} has two connected components; we take
for Q the quadrant X1 < 0,X2 > 0. Clearly the stationary point (the origin)
lies on the boundary ofQ. Furthermore, in view of equations (2.5.3), we have

V̇ = αX3
2 +

(
|β|
√

1−X2
1 −X2

2 − αX2

)
X2

1 .

The first term on the right-hand side is always positive, and the second
one is positive provided

√
1−X2

1 −X2
2 > α|β|−1X2, which implies X2

1 +

(1 + α2β−2)X2
2 < 1. The latter inequality defines the interior domain of the

ellipseX2
1+(1+α2β−2)X2

2 = 1. Taking that domain forDwe obtain that V̇ > 0

on D ∩Q, and so the point (X1,X2) = (0, 0) is unstable by Theorem 1.43 (see
Figure 2.12–this is the phase portrait in the X1X2-plane).

FIGURE 2.12. Stationary points (0, 0,±1) are unstable.

(iii) δ < 0. We have three pairs of antipodal stationary points: (±1, 0, 0) and(
ρ2 + σ2)−1/2(0,±σ,±ρ

)
. We already know that the point (1, 0, 0) is unsta-

ble, and the point (−1, 0, 0) is unstable when det(M) < 0, and stable when
det(M) > 0.
Consider the other two pairs (ρ2 + σ2)−1/2(0,±σ,±ρ), where α = ρ2 and δ =

−σ2. To analyse the stability of these points, we will use Theorem 1.46. First
we check for the regularity condition of stationary points from Definition
1.45. Let Y = (Y1,Y2,Y3) and X = (0,X1,X2) be arbitrary points in g. We
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have

B(X,Y ) = ad∗
YX =

0 −αY2 − γY3 −βY2 − δY3

0 αY1 βY1

0 γY1 δY1


 0

X1

X2


=

−αX1Y2 − γX1Y3 − βX2Y2 − δX2Y3
αX1Y1 + βX2Y1

γX1Y1 + δX2Y1


=

(
−⟨Mu, v⟩
Y1Mu

)
, (2.5.4)

and

[Y ,X] = adYX =

 0 0 0

−αY2 − γY3 αY1 γY1
−βY2 − δY3 βY1 δY1


 0

X1

X2


=

 0

αX1Y1 + γX2Y1
βX1Y1 + δX2Y1


=

(
0

Y1M
Tu

)
, (2.5.5)

where u =

(
X1

X2

)
, v =

(
Y2
Y3

)
and M =

(
α β

γ δ

)
.

Take X0 to be one of the four stationary points, that is, X0 =

(
0

u0

)
, where

u0 = (ρ2 + σ2)
−1/2

(
±σ
±ρ

)
. Then (2.5.4) and (2.5.5) give

B(X0,Y ) =

(
−⟨Mu0, v⟩
Y1Mu0

)
and [Y ,X0] =

(
0

Y1M
Tu0

)
,

and B(X0,Y ) = 0 only whenY1Mu0 = 0

⟨Mu0, v⟩ = 0
=⇒


Y1 = 0

v is a multiple of u0
(as Mu0 ⊥ u0 and det(M) ̸= 0).

X0 clearly satisfies the above condition and thus is regular. We calculate

Φ(Y ) = ∥B(X0,Y )∥2 + ⟨[Y ,X0],B(X0,Y )⟩

= ⟨Mu0, v⟩2 + Y 2
1

(
∥Mu0∥2 + ⟨Mu0,M

Tu0⟩
)
. (2.5.6)

56



The first term on the right-hand side of 2.5.6 is clearly positive, so Φ is pos-
itive definite if the sum in the bracket is positive. From the assumption, we

have M =

(
α β

γ δ

)
=

(
ρ2 β

−β −σ2

)
and u0 = (ρ2 + σ2)−1/2

(
s1σ

s2ρ

)
, where

s1, s2 ∈ {1,−1}. Then

Mu0 = (ρ2 + σ2)−1/2

(
ρ2 β

−β −σ2

)(
s1σ

s2ρ

)

= (ρ2 + σ2)−1/2

(
ρ2s1σ + βρs2

−βs1σ − σ2s2ρ

)
.

Hence,

∥Mu0∥2 =
1

ρ2 + σ2

((
ρ2s1σ + ρs2β

)2
+
(
βs1σ + σ2s2ρ

)2)
.

Similarly, we have

MTu0 = (ρ2 + σ2)−1/2

(
ρ2 −β
β −σ2

)(
s1σ

s2ρ

)

= (ρ2 + σ2)−1/2

(
ρ2s1σ − βρs2
βs1σ − σ2s2ρ

)
.

Thus,

⟨Mu0,M
Tu0⟩ =

1

ρ2 + σ2

((
ρ2s1σ

)2 − (ρs2β)
2 + (βs1σ)

2 −
(
σ2s2ρ

)2)
.

Therefore, the sum in the bracket of (2.5.6) becomes

∥Mu0∥2 + ⟨Mu0,M
Tu0⟩ = 2ρσ(ρσ + s1s2β).

• If |β| < ρσ, then ∥Mu0∥2+⟨Mu0,M
Tu0⟩ > 0, hence Φ(Y ) is positive definite,

and by Theorem 1.46, all four stationary points are stable. Note that this is
exactly the case when β2 < −αδ ⇐⇒ det(M) < 0.

• If |β| > ρσ (which is equivalent to det(M) > 0), then two of the four sta-
tionary points are stable by Theorem 1.46; these are the points for which
s1s2β > 0, as Φ(Y ) is then positive definite. For the other two points, we
can apply Theorem 1.40. Choose s1, s2 ∈ {−1, 1} in such a way that the
sign of β is −s1s2. Then we have

ρσ + s1s2β = ρσ − |β| < 0.
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Denote r =
√
σ2 + ρ2 and let θ be chosen in such a way that ρ = s2r sin θ,

σ = s1r cos θ. Introduce spherical coordinates (ϕ,ψ) so that
X1 = sinψ

X2 = cosψ cos(θ + ϕ), ϕ ∈ [0, 2π), ψ ∈
[
π
2
, −π

2

]
.

X3 = cosψ sin(θ + ϕ)

Substituting these expressions into system (2.5.1), we findψ̇ = r2 cosψ sinϕ sin(2θ + ϕ)

ϕ̇ = sinψ(−β − 1
2
r2 sin(2(ϕ+ θ)))

,

and the stationary point of interest is ψ = ϕ = 0 by the above choice of θ.
The Jacobian matrix of this system at ψ = ϕ = 0 is

J(0, 0) =

(
0 r2 sin(2ϕ)

−β − 1
2
r2 sin(2ϕ) 0

)
=

(
0 2s1s2ρσ

−β − s1s2ρσ 0

)
,

=⇒ det(J(0, 0)) = 2s1s2ρσ(β + s1s2ρσ) = 2ρσ(s1s2β + ρσ) < 0,

since |β| > ρσ. Hence, by Theorem 1.40, these two points are unstable.

This completes the stability analysis of the stationary points in the case when
the matrix M is nonsingular. The following table summarises our findings.

δ Stationary points Stability

δ > 0
(1, 0, 0) Unstable
(−1, 0, 0) Stable

δ = 0

(1, 0, 0) Unstable
(−1, 0, 0) Stable
(0, 0,±1) Unstable

δ < 0

(1, 0, 0) Unstable

detM < 0
(−1, 0, 0) Unstable

(ρ2 + σ2)−1/2(0,±σ,±ρ) Stable

detM > 0

(−1, 0, 0) Stable
(ρ2 + σ2)−1/2(0, s1σ, s2ρ) Stable
s1, s2 ∈ {−1, 1}, s1s2β > 0.
(ρ2 + σ2)−1/2(0, s1σ, s2ρ) Unstable
s1, s2 ∈ {−1, 1}, s1s2β < 0.

TABLE 2.5. Stability of homogeneous geodesics in 3-dimensional
non-unimodular metric Lie algebras if M is nonsingular.

This table, together with Lemma 2.3 and Table 2.4, settles the proof of Theorem 0.2.
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CHAPTER 3

Stability of homogeneous geodesics
in 4-dimensional nilpotent metric Lie algebras

In this chapter, we continue our stability analysis for 4-dimensional metric Lie
algebras. We look at a special class of such algebras, namely the nilpotent Lie al-
gebras. Proceeding in a similar manner to Chapter 2, we begin by introducing
nilpotent Lie algebras and obtaining a classification for nilpotent metric Lie al-
gebras of dimension 4 in Section 3.1. Section 3.2 gives the system of differential
equations derived from the Euler-Arnold equation that can be used subsequently
to find homogeneous geodesics. Then stability analysis for these stationary points
is performed in Section 3.3. The references for Section 3.1 are [8], [13], and [15].

3.1. Classification of 4-dimensional nilpotent metric Lie algebras

3.1. DEFINITION. Let g be a Lie algebra. A subspace a ⊂ g is said to be a Lie
subalgebra if it is closed under the Lie bracket in g, that is,

[X,Y ] ∈ a for X,Y ∈ a.

3.2. DEFINITION. An ideal in a Lie algebra g is a vector subspace i so that

[g, i] ⊂ i.

In other words, an ideal i satisfies the condition

[X,Y ] ∈ i for all X ∈ g,Y ∈ i.

The Lie algebra g itself and {0} are trivial ideals of g. From Examples 1.22 and
1.21, it is clear that sl(n) is an ideal of gl(n). Another important example of an ideal
is the following.

3.3. DEFINITION. The centre Z(g) of a Lie algebra g is defined by

Z(g) := {X ∈ g : [X,Y ] = 0 for all Y ∈ g}.

We will see how a sequence of ideals of g gives rise to the important class of
nilpotent Lie algebras.
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3.4. DEFINITION. Let g be a Lie algebra. The descending central series of g is
defined inductively:

g0 = g,

gk = [g, gk−1], for k ≥ 1.

The first term g1 is called the derived subalgebra of g.

3.5. LEMMA.

(a) gk+1 ⊆ gk.
(b) All members of the descending central series are ideals of g.

PROOF. We first prove (a) by induction. The base case g1 ⊆ g0 = g is obvious
because [X,Y ] ∈ g, for any X,Y ∈ g. Now assume that gk+1 ⊆ gk for some k ≥ 0.
By definition, we have

gk+2 = [g, gk+1] ⊆ [g, gk] = gk+1,

so this completes the induction step. We can obtain (b) readily from (a). □

In light of Lemma 3.5, the descending central series of g is a sequence of ideals
g0 ⊇ g1 ⊇ g2 . . . of g. Note that for a finite-dimensional Lie algebra, the descending
central series cannot decrease for infinitely long, so for some k ≥ 0, it becomes sta-
ble in the sense that gk = gk+1. And then by definition, gk+1 = [g, gk] = [g, gk+1] =

gk+2, and so on, so that gk = gk+1 = gk+2 = gk+3 = . . .. This may happen even at
the very first step: it could be that g0 = g1 (e.g., for 3-dimensional unimodular Lie
algebras such that λ1,λ2,λ3 ̸= 0, see Lemma 2.2), or at the second step: g0 is strictly
bigger than g1, but then g1 = g2 = . . . (e.g., for 3-dimensional non-unimodular Lie
algebras with a non-singular matrix M , see Lemma 2.3).

3.6. DEFINITION. A Lie algebra g is called nilpotent if gk = 0 for some k. If k
is the smallest number with this property, that is, if gk−1 ̸= 0, then g is said to be
k-step nilpotent.

3.7. EXAMPLE.

(1) Abelian Lie algebras are one-step nilpotent.
(2) Let n(n) be the subalgebra of gl(n) consisting of all strictly upper triangular

n×n real matrices. Then n(n) is a (n−1)-step nilpotent Lie algebra, for the
first time we take the commutator, we lose the super diagonal, and then we
lose another diagonal for each commutator after that. Consequently, the
zero diagonal is expanding to the top right corner of the matrices, hence
nn−1 = 0.
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(3) Let g be the 3-dimensional unimodular Lie algebras discussed in Lemma
2.2. Then there exists an orthonormal basis {e1, e2, e3} for g relative to
which the Lie brackets are given by

[e1, e2] = λ3e3, [e2, e3] = λ1e1, [e3, e1] = λ2e2.

(a) Assume that λ1,λ2,λ3 ̸= 0. Then g0 = g, and g1 = [g, g0] = g0. Hence
we obtain g0 = g1 = g2 = . . ., so this is not a nilpotent algebra.

(b) Assume that λ1 = λ2 = 0 and λ3 ̸= 0, which gives the 3-dimensional
Heisenberg Lie algebra. Then the descending central of g is

g0 = g = Span(e1, e2, e3),

g1 = [g, g0] = Span(e3),

g2 = [g, g1] = 0

Thus g is a 2-step nilpotent Lie algebra.
(4) Let g be a 4-dimensional metric Lie algebras with an orthonormal basis

{e1, e2, e3, e4} relative to which the only nonzero Lie brackets are given by

[e1, e2] = ae3 + be4, a, b ̸= 0.

Then the descending central of g is

g0 = g = Span(e1, e2, e3, e4),

g1 = [g, g0] = Span(e3, e4),

g2 = [g, g1] = 0.

Hence, this algebra is a 2-step nilpotent Lie algebra.

We note several useful properties of nilpotent algebras.

3.8. LEMMA. Let g be a nilpotent algebra of step k, and Z(g) be the centre of g. Then

(a) The descending central series of g is strictly decreasing up to gk, i.e., g = g0 ⊋
g1 ⊋ g2 ⊋ . . . ⊋ gk = 0.

(b) If g ̸= 0, then Z(g) ̸= 0.
(c) (adX)

k = 0 for all X ∈ g, i.e., adX is a nilpotent linear map (this is the easy
direction of Engel’s theorem).

(d) Suppose additionally that dim g > 1. Then the dimension decreases by at least 2
at the first term of the descending central series, i.e., dim g1 ≤ dim g− 2.

PROOF.

(a) This is clear, since if gl = gl+1 for some l < k, then gl = gl+1 = gl+2 = . . .,
and so gl = 0 by definition of nilpotent algebra, and so the step of the
algebra is l < k, a contradiction.
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(b) This follows readily from the fact that the last nonzero term of the descend-
ing central series is contained in Z(g).

(c) Recall that for a Lie algebra g, adX(Y ) = [X,Y ] for all X,Y ∈ g. Then the
definition of nilpotency can be rephrased as follows: for anyX1,X2, . . . ,Xn,
Y in g, we have

[X1, [X2, [. . . [Xk,Y ] . . .]] ∈ gk = 0,

or
adX1adX2 · · · adXk

(Y ) = 0.

In particular, (adX)
k = 0 for all X ∈ g.

(d) Assume that dim g1 = dim g − 1, and choose an arbitrary X ∈ g such that
X /∈ g1. Note that any Y ∈ g can be decomposed as Y = aX + Z, where
Z ∈ g1 and a ∈ R. Now taking two arbitrary vectors Y1,Y2 ∈ g, we have
Y1 = a1X + Z1,Y2 = a2X + Z2, where Z1,Z2 ∈ g1 and a1, a2 ∈ R. Then

[Y1,Y2] = [a1X + Z1, a2X + Z2] = a1[X,Z2]− a2[X,Z1] + [Z1,Z2].

But [X,Z2], [X,Z1], [Z1,Z2] ∈ [g, g1] = g2, and so [Y1,Y2] ∈ g2. As Y1,Y2 ∈ g

are arbitrary, this gives [g, g] = g1 ⊂ g2. But by Lemma 3.5 (a), g2 ⊂ g1,
so g1 = g2, and then by assertion (a), g1 = 0, so that g is abelian. By our
assumption dim g ≥ 2, we have 0 = dim g1 ≤ dim g− 2, as required.

□

We are now ready to give a classification of nilpotent metric Lie algebras of
dimension 4. To the best of our knowledge, this classification result did not appear
in the literature before.

3.9. LEMMA. Let g be a 4-dimensional nilpotent metric Lie algebra. Then either g is
abelian, or there exists an orthonormal basis {e1, e2, e3, e4} for g relative to which the only
nonzero Lie brackets (up to skew-symmetry) are given by one of the following:

[e1, e2] = ce4, c ̸= 0, (3.1.1)

or [e1, e2] = ae3 + be4, [e1, e3] = ce4, a, c ̸= 0. (3.1.2)

PROOF. Let g be a 4-dimensional nilpotent metric Lie algebra, and consider its
derived subalgebra g1. Then by Lemma 3.8(d), dim g1 ≤ dim g − 2 = 4 − 2 = 2,
hence dim g1 = 0, 1 or 2.

1. dim g1 = 0. This implies that g1 = 0, and g is abelian.
2. dim g1 = 1. Choose an orthogonal basis {e1, e2, e3, e4} for g such that e4 ∈ g1.

Then we have

g1 = [g, g] =⇒ [ei, ej] = cije4 for i, j ∈ {1, 2, 3, 4}.
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By Lemma 3.8 (a) and (b), g1 contains a nontrivial vector from the centre Z(g) of
g, and as dim g1 = 1, e4 must belong to the centre of g. Hence

[ei, e4] = 0 for i ∈ {1, 2, 3, 4}.

So we have

[e1, e2] = c12e4, [e1, e3] = c13e4,

[e2, e1] = −c12e4, [e2, e3] = c23e4,

[e3, e1] = −c13e4, [e3, e2] = −c23e4,

while all other brackets are zeros. Hence the matrix

C = (cij) =

 0 c12 c13
−c12 0 c23

−c13 −c23 0


is skew-symmetric and non-vanishing. Let u = c23e1 − c13e2 + c12e3, then u ̸= 0,
and

[e1,u] = [e1, c23e1 − c13e2 + c12e3]

= c23[e1, e1]− c13[e1, e2] + c12[e1, e3]

= −c13c12e4 + c13c12e4

= 0.

Similarly, [e2,u] = [e3,u] = 0. We now take a new orthonormal basis {e′1, e′2, e′3}
for the subspace spanned by {e1, e2, e3} such that e′3 is a unit vector in the direc-
tion of u. Then relative to the new orthonormal basis {e′1, e′2, e′3, e4} of g, the only
non-zero Lie bracket (up to skew-symmetry) is

[e′1, e
′
2] = ce4, with c ̸= 0 as g1 ̸= 0.

3. dimg1 = 2. Again, as g1 contains a nontrivial vector from the centre of g, choose
an orthogonal basis {e1, e2, e3, e4} for g so that e1, e2 ⊥ g1, e3, e4 ∈ g1 and e4 is in
the centre of g. Then by definition, we obtain

[ei, e4] = 0 and [ei, ej] ∈ g1 for i, j ∈ {1, 2, 3, 4}.

By listing, the only possible non-zero Lie brackets (up to skew-symmetry) are

[e1, e2] = a12e3 + b12e4,

[e1, e3] = a13e3 + b13e4,

[e2, e3] = a23e3 + b23e4.
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Assume that a13 ̸= 0, we calculate

[e1, [e1, e3]] = [e1, a13e3 + b13e4]

= a13[e1, e3] + b13[e1, e4]

= a213e3 + a13b13e4,

and

[e1, [e1, [e1, e3]]] =
[
e1, a

2
13e3 + a13b13e4

]
= a213[e1, e3] + a13b13[e1, e4]

= a313e3 + a213b13e4,

and so on. This would never get to 0, contradicting the definition of nilpotency.
Hence, we conclude that a13 = 0. A similar reasoning yields a23 = 0.
Now assume further that b13 = b23 = 0. Consider [e1, e2] = a12e3 + b12e4 ∈ g1.
Then g1 is spanned by a single vector a12e3 + b12e4, hence dimg1 = 1, contradict-
ing the assumption dim g1 = 2. Thus at least one of b13 or b23 must be non-zero,
and we can now take a new orthonormal basis {e′1, e′2, e3, e4} for g such that

e′1 =
1√

b213 + b223
(b13e1 + b23e2) ,

e′2 =
1√

b213 + b223
(b23e1 − b13e2) .

We obtain

[e′1, e
′
2] =

[
1√

b213 + b223
(b13e1 + b23e2),

1√
b213 + b223

(b23e1 − b13e2)

]

=
b223

b213 + b223
[e2, e1]−

b213
b213 + b223

[e1, e2]

= −[e1, e2] = ae3 + be4,

and

[e′1, e3] =

[
1√

b213 + b223
(b13e1 + b23e2), e3

]

=
b13√

b213 + b223
[e1, e3] +

b23√
b213 + b223

[e2, e3]

=
b213√

b213 + b223
e4 +

b223√
b213 + b223

e4

=
√
b213 + b223e4 = ce4,
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and

[e′2, e3] =

[
1√

b213 + b223
(b23e1 − b13e2), e3

]

=
b23√

b213 + b223
[e1, e3]−

b13√
b213 + b223

[e2, e3]

=
b13b23√
b213 + b223

e4 −
b13b23√
b213 + b223

e4

= 0.

Hence, relative to this basis, the only nonzero Lie bracket (up to skew-symmetry)
are

[e′1, e
′
2] = ae3 + be4,

[e′1, e3] = ce4, where a, c ̸= 0.

□
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3.2. Homogeneous geodesics in 4-dimensional nilpotent metric Lie algebras

In this section, we apply the Euler-Arnold equation (1.6.1) respectively to the
three cases in Lemma 3.9 to obtain equations for geodesics in 4-dimensional nilpo-
tent metric Lie algebras, and proceed to find the homogeneous geodesics subse-
quently. Again, by Remark 1.6.1, it is sufficient to study the stationary points that
are on the unit sphere S3 = S3(1) given by X2

1 +X2
2 +X2

3 +X2
4 = 1.

1. g is abelian, i.e, [X,Y ] = 0 for any X,Y ∈ g. Hence,

Ẋ(t) = ad∗
XX = 0. (3.2.1)

So all points on the unit sphere S3 are stationary points.
2. g is determined by an orthonormal basis {e1, e2, e3, e4} relative to which the Lie

brackets (3.1.1) is defined. We have
ade1(e1) = [e1, e1] = 0,
ade1(e2) = [e1, e2] = ce3,

ade1(e3) = [e1, e3] = 0,

ade1(e4) = [e1, e3] = 0.
We obtain

ade1 =


0 0 0 0

0 0 0 0

0 c 0 0

0 0 0 0

 .

Similarly, we find

ade2 =


0 0 0 0

0 0 0 0

−c 0 0 0

0 0 0 0

 and ade3 = ade4 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Thus,

adX(t) = X1ade1 +X2ade2 +X3ade3 +X4ade4

=


0 0 0 0

0 0 0 0

−cX2 cX1 0 0

0 0 0 0

 .
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Hence, the Euler-Arnold equation gives
Ẋ1

Ẋ2

Ẋ3

Ẋ4

 =


−cX2X3

cX1X3

0

0

 =⇒


Ẋ1 = −cX2X3

Ẋ2 = cX1X3

Ẋ3 = 0

Ẋ4 = 0

, for c ̸= 0. (3.2.2)

Equating the right-hand side of (3.2.2) to zero, we obtain stationary points given
by X1 = X2 = 0 or X3 = 0. Hence, the set of stationary points of system (3.2.2)
is the union of two disjoint subsets, S1 and S2 given by the following.

• S1 is the circle X1 = X2 = 0,X2
3 +X2

4 = 1.
• S2 is the the sphere X3 = 0,X2

1 +X2
2 +X2

4 = 1 minus the points (0, 0, 0,±1)

(so that S1 and S2 are disjoint).
3. g is determined by an orthonormal basis {e1, e2, e3, e4} relative to which the Lie

brackets (3.1.2) is defined. We have

ade1 =


0 0 0 0

0 0 0 0

0 a 0 0

0 b c 0

 , ade2 =


0 0 0 0

0 0 0 0

−a 0 0 0

−b 0 0 0

 ,

ade3 =


0 0 0 0

0 0 0 0

0 0 0 0

−c 0 0 0

 , ade4 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Hence,

adX(t) =


0 0 0 0

0 0 0 0

−aX2 aX1 0 0

−bX2 − cX3 bX1 cX1 0

 .

Thus, the Euler-Arnold equation gives
Ẋ1

Ẋ2

Ẋ3

Ẋ4

 =


−aX2X3 − (bX2 + cX3)X4

aX1X3 + bX1X4

cX1X4

0



=⇒


Ẋ1 = −aX2X3 − (bX2 + cX3)X4

Ẋ2 = aX1X3 + bX1X4

Ẋ3 = cX1X4

Ẋ4 = 0

, for a, c ̸= 0. (3.2.3)
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3.2.1. REMARK. Note that system (3.2.3) has an obvious first integral F1(X) =

X4. Moreover, by cross-multiplying the second and third equations, we obtain

Ẋ2 −
a

cX4

X3Ẋ3 −
b

c
Ẋ3 = 0

=⇒
(
X2 −

a

2cX4

X2
3 −

b

c
X3

).
= 0.

It follows that the function F2(X) = aX2
3 + 2bX3X4 − 2cX2X4 is another first

integral.

For system (3.2.3), if X4 = 0, then the stationary points are

X3 = 0 or X1 = X2 = 0,

so we have the circleX2
1+X

2
2 = 1 and the points (0, 0,±1, 0) as stationary points.

If X4 ̸= 0, this implies that X1 = 0 and −aX2X3 − (bX2 + cX3)X4 = 0. Hence
the stationary points are the intersection between the unit sphere S3, the great
hypersphere X1 = 0 ⇐⇒ X2

2 + X2
3 + X2

4 = 1 and the quadratic cone aX2X3 +

bX2X4 + cX3X4 = 0.
In conclusion, the set of stationary points of system (3.2.3) is the union of

two disjoint subsets, S3 and S4 given by the following.
• S3 is the circle X3 = X4 = 0,X2

1 +X2
2 = 1.

• S4 is the intersection of the great hypersphere X1 = 0, X2
2 + X2

3 + X2
4 = 1,

with the quadratic cone P (X2,X3,X4) = 0, where

P (X2,X3,X4) = aX2X3 + bX2X4 + cX3X4,

minus the points (0,±1, 0, 0) (so that S3 and S4 are disjoint).
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3.3. Stability analysis and proof of Theorem 0.3

In this section, we give the stability analysis of homogeneous geodesics in 4-
dimensional nilpotent metric Lie algebras. We look at the form of the systems
(3.2.1), (3.2.2) and (3.2.3) and the corresponding stationary point sets S1,S2,S3,S4

obtained in Section 3.2, and apply various techniques from Section 1.7 to test for
their stability.

1. For system (3.2.1), all points are stationary points and are stable.
2. System (3.2.2) gives

Ẋ1 = −cX2X3

Ẋ2 = cX1X3

Ẋ3 = 0

Ẋ4 = 0

⇒


X1 = c1 cos(αct) + c2 sin(αct)

X2 = c1 sin(αct)− c2 cos(αct)

X3 = α

X4 = β

.

(a) We show that any stationary point in S1 is stable. Indeed, consider the
solution X(t) = (c1 cos(αct) + c2 sin(αct), c1 sin(αct)− c2 cos(αct),α, β) and
fix a stationary point X0 =

(
0, 0,σ,±

√
1− σ2

)
. Then we have

∥X(0)−X0∥ = ∥X(t)−X0∥

=

√
(α− σ)2 +

(
β ∓

√
1− σ2

)2
+ c21 + c22

for all t ∈ R. So if we choose ϵ′ = ϵ, the stability condition is satisfied. This
shows that any stationary point on the circle is stable.

(b) For X3 = 0, fix a stationary point X0 =
(
δ,µ, 0,±

√
1− δ2 − µ2

)
. Then

∥X(0)−X0∥ =

√
(c1 − δ)2 + (c2 + µ)2 + α2 +

(
β ∓

√
1− δ2 − µ2

)
,

and

∥X(t)−X0∥ =

(
(c1 cos(αct) + c2 sin(αct)− δ)2

+ (c1 sin(αct)− c2 cos(αct)− µ)2 + α2

+
(
β ∓

√
1− δ2 − µ2

))1/2

.

Thus, the solution would not remain close to X0. Instead, the trajectory
would be travelling away from X0 and coming back to it from the other
side. Hence, we conclude that any stationary point in S2 is unstable.
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3. System (3.2.3) is given by
Ẋ1 = −aX2X3 − (bX2 + cX3)X4

Ẋ2 = aX1X3 + bX1X4

Ẋ3 = cX1X4

Ẋ4 = 0

, for a, c ̸= 0.

(a) We show that any stationary point in S3 is unstable. Indeed, take X0 =

(cosα, sinα, 0, 0),α ∈ [0, 2π] as an arbitrary point from S3. For the initial
condition, choose the point

X(0) =
(√

1− ϵ2 cosα,
√
1− ϵ2 sinα, ϵ, 0

)
with a small nonzero ϵ such that aϵ > 0. We then haveẊ1 = −aϵX2

Ẋ2 = aϵX1

⇒

X1 = c1 cos(aϵt) + c2 sin(aϵt)

X2 = c1 sin(aϵt)− c2 cos(aϵt)
.

Given the initial condition, we obtainX1 =
√
1− ϵ2 cosα cos(aϵt)−

√
1− ϵ2 sinα sin(aϵt)

X2 =
√
1− ϵ2 cosα sin(aϵt) +

√
1− ϵ2 sinα cos(aϵt)

.

Hence the solution is
(√

1− ϵ2 cos(α + aϵt),
√
1− ϵ2 sin(α + aϵt), ϵ, 0

)
. For a

small ϵ, the initial condition is arbitrarily close to X0, but the point on the
trajectory corresponding to t = π

aϵ
is almost antipodal to X0. This shows

that any stationary point on the circle S3 is unstable.
(b) For S4, it is difficult to determine the stability of the stationary points using

the behaviour of the trajectory. Instead, we overcome this difficulty by the
aid of Theorem 1.46.
Take a stationary point X0 = (0,X2,X3,X4) from S4 and an arbitrary point
Y = (Y1,Y2,Y3,Y4) in g. We then have

B(X0,Y ) = ad∗
YX0 =


0 0 −aY2 −bX2 − cX3

0 0 aY1 bY1
0 0 0 cY1

0 0 0 0




0

X2

X3

X4



=


−aX3Y2 − (bY2 + cY3)X4

aX3Y1 + bX4Y1
cX4Y1

0

 , (3.3.1)
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and

[Y ,X0] = adYX0 =


0 0 0 0

0 0 0 0

−aY2 aY1 0 0

−bY2 − cY3 bY1 cY1 0




0

X2

X3

X4



=


0

0

aX2Y1
bX2Y1 + cX3Y1

 . (3.3.2)

We want to check the regularity condition for X0, that is, we want to deter-
mine the linear subspace

LX0 = {Y ∈ g |B(X0,Y ) = 0},

and compute its dimension. From (3.3.1), B(X0,Y ) = 0 only when
−aX3Y2 − (bY2 + cY3)X4 = 0

aX3Y1 + bX4Y1 = 0

cX4Y1 = 0

.

This further divides into two cases.
(1) If X4 ̸= 0, then Y1 = 0, and if we let Y4 = z2 and Y2 = −cX4z1, then

LX0 = {(0,−cX4z1, (aX3 + bX4)z1, z2) | z1, z2 ∈ R}, and so dim(LX0) =

2.
(2) If X4 = 0, then X3 ̸= 0, and so Y1 = Y2 = 0. The subspace LX0 is given

by the same formula and hence has the same constant dimension of 2.
Thus by Definition 1.45, every point X0 ∈ S4 is regular, and Theorem 1.46
applies. We find that the orthogonal complement to L(X0) is the two-
dimensional space

L(X0)
⊥ = {(w1, (ax3 + bx4)w2, cx4w2, 0) |w1,w2 ∈ R}.

We compute

∥B(X0,Y )∥2 = w2
2

(
(aX3 + bX4)

2 + (cX4)
2

)2

+ w2
1

(
(aX3 + bX4)

2 + (cX4)
2

)2

,

and

⟨[Y ,X0],B(X0,Y )⟩ = acw2
1X2X4.
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Then for Y ∈ L(X0)
⊥, the quadratic form Φ is given by

Φ(Y ) = ∥B(X0,Y )∥2 + ⟨[Y ,X0],B(X0,Y )⟩

= w2
2

(
(aX3 + bX4)

2 + (cX4)
2

)2

+ w2
1

(
(aX3 + bX4)

2 + (cX4)
2 + acX2X4

)
.

Hence, by Theorem 1.46, if a stationary point X0 = (0,X2,X3,X4) satisfies
the inequality Q(X2,X3,X4) > 0, where

Q(X2,X3,X4) = (aX3 + bX4)
2 + c2X2

4 + acX2X4, (3.3.3)

then X0 is stable.
To complement the above finding, we compute the Jacobian matrix of

system (3.2.3) at X0 = (0,X2,X3,X4)

J(X0) =


0 −aX3 − bX4 −aX2 − cX4 −bX2 − cX3

aX3 + bX4 0 0 0

cX4 0 0 0

0 0 0 0

 .

So the characteristic equation det(J(X0)− λI) = 0 gives

λ2
(
(aX3 + bX4)

2 + c2X2
4 + acX2X4 + λ2

)
= 0.

Hence, two of the eigenvalues of the Jacobian matrix are zeros and the other
two are the roots of the equation

λ2 = −Q(X2,X3,X4),

where the polynomial Q is given by (3.3.3). It now follows from Theorem
1.39 that when Q(X2,X3,X4) < 0, the point X0 ∈ S4 is unstable.

In summary, we have proved the following stability theorem.

3.10. THEOREM. A stationary pointX0 = (0,X2,X3,X4) ∈ S4 is stable ifQ > 0,
and is unstable if Q < 0, where

Q(X2,X3,X4) = (aX3 + bX4)
2 + c2X2

4 + acX2X4.

It remains to determine the stability of the stationary points when Q = 0.
This set of points (if it is nonempty) is the set of common zeros of the two
polynomials P and Q on the unit sphere X3

2 + X2
3 + X2

4 = 1, hence can be
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obtained from the following system
(aX3 + bX4)

2 + c2X2
4 + acX2X4 = 0

aX2X3 + bX2X4 + cX3X4 = 0

X3
2 +X2

3 +X2
4 = 1

.

We first determine the set of common zeros of the polynomialsQ(X2,X3,X4)

and P (X2,X3,X4). Starting with (aX3 − bX4)Q− acX4P = 0, we have

(aX3 + bX4)
3 + c2bX3

4 = 0

=⇒ aX3 + bX4 = − 3
√
c2bX4 (3.3.4)

Substituting this into P , we obtain

X4

(
cX3 −

3
√
c2bX2

)
= 0.

If X4 = 0, then X3 = 0, and the stationary point is (0,±1, 0, 0), which is
excluded from S4. Hence, we can assume that X4 ̸= 0, then

cX3 −
3
√
c2bX2 = 0 =⇒ cX3 =

3
√
c2bX2.

Now let b = β3 and c = γ3, we have γX3 = βX2 =⇒ X2 =
γX3

β
. Combining

with (3.3.4), we obtain

X3 =
−β
a

(β2 + γ2)X4 and X2 =
−γ
a

(β2 + γ2)X4.

Substituting everything into the unit sphere, we get

X2
4 =

a2

(γ2 + β2)3 + a2

Choosing z such that z2 = 1
(γ2+β2)3+a2

, we have X4 = ±az, and the pair of
antipodal stationary points is given by

X0 =

(
0, zγ(β2 + γ2), zβ(β2 + γ2),−az

)
∈ S4. (3.3.5)

We prove the following.

3.11. THEOREM. The points X0 given by (3.3.5) are both stable if b = 0, and
unstable if b ̸= 0.

PROOF. We prove the theorem in two cases.
(1) First suppose that b = β3 ̸= 0. Consider the set of points W on the unit

sphere such that the two first integrals

F1(X) = X4, and

F2(X) = aX2
3 + 2bX3X4 − 2cX2X4
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from Remark 3.2.1 take the same values at W as at X0. That means that

F1(W ) = F1(X0) =⇒ W4 = −az,

and

F2(W ) = F2(X0)

=⇒ 2γ3zW2 +W 2
3 − 2β3zW3 + (β6 − 3β2γ4 − 2γ6)z2 = 0

=⇒ W2 =
−W 2

3 + 2β3zW3 − (β6 − 3β2γ4 − 2γ6)z2

2γ3z

Substituting W2 and W4 into the equation ∥W∥2 = 1 yields

4c2z2W 2
1 +

(
W3 + zβ(3γ2 − β2)

)(
W3 − zβ(β2 + γ2)

)3
= 0

=⇒ W1 =
±
√

−
(
W3 + zβ(3γ2 − β2)

)(
W3 − zβ(β2 + γ2)

)3
2cz

.

Now consider a solution W (t) of system (3.2.3) along which the first
integrals take the required values. From the third equation, we have

Ẇ3 = cW1W4

=⇒ Ẇ3 = ±1

2
a

√
−
(
W3 + zβ(3γ2 − β2)

)(
W3 − zβ(β2 + γ2)

)3
.

Let ϕ = W3 − zβ(β2 + γ2); then the differential equation becomes

ϕ̇ = ±1

2
a
√

−(ϕ+ 4zβγ2)ϕ3.

Continuing with the substitution ψ = 1
ϕ

gives a separable differential
equation

ψ̇ = ±1

2
a
√

−1− 4zβγ2ψ

=⇒ ψ̇√
−1− 4zβγ2ψ

=
a

2

=⇒
√

−1− 4zβγ2ψ = c− atβγ2z,

where c ∈ R is an arbitrary constant. Let τ = c − atβγ2z; then ψ and ϕ

take the form

ψ =
τ 2 + 1

−4βγ2z
=⇒ ϕ =

−4βγ2z

τ 2 + 1
.
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Consequently, we obtain a solution

W3(t) = zβ(β2 + γ2)− 4zβγ2

1 + τ 2
,

and W1(t) =
Ẇ3

−acz
=

8β2γzτ

(τ 2 + 1)2
.

Finally, the first equation of system (3.2.3) gives

W2(t) =
Ẇ1 + γ3W3W4

−aW3 − β3W4

= zγ(β2 + γ2) +
4zβ2γ(τ 2 − 1)

(τ 2 + 1)2
.

So the whole trajectory of system (3.2.3) having the same values of the
first integrals as the stationary point X0 is given by

W (t) =

(
8zγβ2τ(τ 2 + 1)−2,

zγ(β2 + γ2) + 4zβ2γ(τ 2 − 1)(τ 2 + 1)−2,

zβ(β2 + γ2)− 4zβγ2(1 + τ 2)−1,−az
)
,

where τ = c− atβγ2z. Note that the initial point of this trajectory W (0)

corresponds to taking τ = c. By taking c in such a way that |c| is very
large and that c has the same sign as zβγ2a, W (0) can be chosen arbi-
trarily close to X0 =

(
0, zγ(β2 + γ2

)
, zβ(β2 + γ2),−az

)
. However, for

τ = 0 =⇒ t = c
aβγ2z

> 0, we have

W (t) =
(
0, zγ(−3β2 + γ2), zβ(β2 − 3γ2),−az

)
,

and

∥W (t)−X0∥2 = 4|zγβ|
√
β2 + γ2.

Thus the distance from this point W (t) to X0 is a positive constant re-
gardless of how close we choose the initial condition W (0) from X0.
This proves by definition that X0 is unstable if b ̸= 0.

(2) Suppose b = 0, X0 =
(
0, c√

a2+c2
, 0, −a√

a2+c2

)
. Suppose X = X(t) is a

solution to system (3.2.3) on the unit sphere such thatX(0) is close toX0.
Recall that we have F1(X) = X4 and F2(X) = aX2

3 +2bX3X4−2cX2X4 =

aX2
3 − 2cX2X4 as two first integrals. Consider the function

G(X) = X2
1 + (X2 + ca−1X4)

2

= X2
1 +X2

2 +X2
3 +X2

4 +

(
c2

a2
− 1

)
X2

4 −
aX2

3 − 2cX2X4

a

= 1− (c2a−2 − 1)F1(X)2 − a−1F2(X).
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Hence, G(X) is also a first integral of the system. We note that G(X(0))

is close to G(X0) by continuity. But we have

G(X0) =

(
c√

a2 + c2
− ca−1a√

a2 + c2

)2

= 0.

Thus, by choosing X(0) sufficiently close to X0 we get G(X) = δ for
some small δ ̸= 0. This gives

X2
1 + (X2 + ca−1X4)

2 = δ

=⇒
(
X2 +

c

a
X4

)2
= δ −X2

1

=⇒
((

X2 −
c√

a2 + c2

)
+
c

a

(
X4 +

a√
a2 + c2

))2

≤ δ

=⇒
∣∣∣∣(X2 −

c√
a2 + c2

)
+
c

a

(
X4 +

a√
a2 + c2

)∣∣∣∣ ≤ √
δ.

Therefore, by the triangle inequality, we have∣∣∣∣X2 −
c√

a2 + c2

∣∣∣∣ ≤ ∣∣∣∣(X2 −
c√

a2 + c2

)
+
c

a

(
X4 +

a√
a2 + c2

)∣∣∣∣
+
∣∣∣ c
a

∣∣∣ · ∣∣∣∣X4 +
a√

a2 + c2

∣∣∣∣
≤

√
δ +

∣∣∣ c
a

∣∣∣ · ∣∣∣∣X4 +
a√

a2 + c2

∣∣∣∣ . (3.3.6)

We consider∣∣∣∣X4 +
a√

a2 + c2

∣∣∣∣ = |F1(X)− F1(X0)| = |F1(X(0))− F1(X0)| .

So by continuity, we can make |F1(X(0))− F1(X0)| = δ′, for some small
positive δ′, and (3.3.6) becomes∣∣∣∣X2 −

c√
a2 + c2

∣∣∣∣ ≤ ∣∣∣ ca∣∣∣ δ′ +√
δ. (3.3.7)

We calculate

∥X −X0∥2 = ∥X∥2 + ∥X0∥2 − 2⟨X,X0⟩

= 2− 2

(
c√

a2 + c2
X2 −

a√
a2 + c2

X4

)
=

2(a2 + c2)

a2 + c2
− 2cX2√

a2 + c2
+

2aX4√
a2 + c2

=
2√

a2 + c2

(
a

(
X4 +

a√
a2 + c2

)
− c

(
X2 −

c√
a2 + c2

))
.
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So

∥X −X0∥2 =
∣∣∥X −X0∥2

∣∣
=

2√
a2 + c2

∣∣∣∣a(X4 +
a√

a2 + c2

)
− c

(
X2 −

c√
a2 + c2

)∣∣∣∣
≤ 2√

a2 + c2

(
|a|
∣∣∣∣X4 +

a√
a2 + c2

∣∣∣∣+ |c|
∣∣∣∣X2 −

c√
a2 + c2

∣∣∣∣)
≤ 2√

a2 + c2

(
|a|δ′ + |c|

(∣∣∣ c
a

∣∣∣ δ′ +√
δ
))

.

Choosing X(0) close enough to X0, we can make δ and δ′ small enough
so that ∥X − X0∥2 is smaller than any given ϵ > 0. This proves by
definition that X0 is stable if b = 0.

□

This completes the stability analysis of homogeneous geodesics in 4-dimensional
nilpotent metric Lie algebras. The following table summarises our findings on the
unit sphere S3.

Case Stationary Point Stability
Abelian Every point of S3 Stable

[e1, e2] = ce4, c ̸= 0

The circle X2
3 +X2

4 = 1 Stable
The sphere X3 = 0

minus the points (0, 0, 0,±1)
Unstable

[e1, e2] = ae3 + be4, [e1, e3] = ce4,
a, c ̸= 0

The circle X2
1 +X2

2 = 1 Unstable

Intersection of sphere X1 = 0

and P = 0

Q > 0 or
Q = 0 and b = 0

Stable

Q < 0 or
Q = 0 and b ̸= 0

Unstable

TABLE 3.1. Stability of homogeneous geodesics in 4-dimensional
nilpotent metric Lie algebras.

This table, together with Lemma 3.9, completes the proof of Theorem 0.3.
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CHAPTER 4

Stability of homogeneous geodesics in 4-dimensional unimodular
metric Lie algebras with a nontrivial centre

The study of stability of homogeneous geodesics in 3-dimensional unimodular
metric Lie algebras has been completed in Chapter 2, with Milnor’s classification
as an important starting point. In this chapter, we look at unimodular metric Lie
algebras of the next nontrivial dimension, dimension 4. Again, we begin by ob-
taining a classification for unimodular algebras in Section 4.1, and we find all ho-
mogeneous geodesics for the algebras from Euler-Arnold equation in Section 4.2.
Finally, stability analysis for these homogeneous geodesics is conducted in Section
4.3.

4.1. Classification of 4-dimensional unimodular metric Lie algebras
with a nontrivial centre

Recall the definition of unimodular Lie algebras from Section 2.1.

4.1. DEFINITION. A Lie algebra g is called unimodular if tr(adX) = 0 for all
X ∈ g.

In this section, we consider a classification of 4-dimensional unimodular metric
Lie algebras with a nontrivial centre. Note that the nilpotent algebras with which
we worked in the last section are of this kind; this follows from Lemma 3.8 (c) and
the following resut (see [14]).

4.1. PROPOSITION. Suppose that T : V → V is a nilpotent linear map and λ is an
eigenvalue of T . Then λ = 0.

PROOF. By complexifying if necessary, let Tv = λv, where v ̸= 0 is an eigenvec-
tor corresponding to the eigenvalue λ. Then by induction, we have

T nv = λnv

for each n ∈ N. As T is a nilpotent map, T k = 0 for some k, hence λkv = 0, implying
λ = 0. □
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By the above proposition, all eigenvalues of a nilpotent map are zeros. As the
trace is the sum of the eigenvalues, we obtain that tr(adX) = 0 for all X in a nilpo-
tent Lie algebra, hence the algebra is unimodular. However, note that there are
more algebras in this class.

We start by considering all possible cases for dimZ(g), where Z(g) is the centre
of g. By our assumption, dimZ(g) > 0, and so dimZ(g) ∈ {1, 2, 3, 4}.

1. If dimZ(g) = 4, then every element commutes with each other, hence g is
abelian. We already considered that case.

2. The case dimZ(g) = 3 is not possible by the definition of the centre and the
anti-symmetry of the Lie brackets.

3. Suppose dimZ(g) = 2, and choose an orthonormal basis ei for g such thatZ(g) =
Span(e3, e4). Then the only nontrivial Lie bracket is [e1, e2] = c1e1 + c2e2 + c3e3 +

c4e4. Then we have

ade1 =


0 c1 0 0

0 c2 0 0

0 c3 0 0

0 c4 0 0

 and ade2 =


−c1 0 0 0

−c2 0 0 0

−c3 0 0 0

−c4 0 0 0

 .

As g is unimodular, we have tr(ade1) = tr(ade2) = 0 =⇒ c1 = c2 = 0. Hence
[e1, e2] = c3e3 + c4e4 ∈ Z(g), hence the algebra g is nilpotent (see Example 3.7
(4)). We already considered this case in the last section.

We can therefore assume that dimZ(g) = 1 and choose an orthonormal basis ei
for g in such a way that Z(g) = Span(e4). Define the 3× 3 matrix Lrk, r, k = 1, 2, 3,
as follows: L3k = ⟨[e1, e2], ek⟩, L1k = ⟨[e2, e3], ek⟩, L2k = ⟨[e3, e1], ek⟩, for k = 1, 2, 3.
From unimodularity, we have

tr(ade1) = 0

=⇒
4∑

i=1

⟨ade1ei, ei⟩ = 0

=⇒
4∑

i=1

⟨[e1, ei], ei⟩ = 0

As e4 ∈ Z(g), we have [e1, e4] = 0, hence this reduces to

⟨[e1, e2], e2⟩+ ⟨[e1, e3], e3⟩ = 0

=⇒ ⟨[e1, e2], e2⟩ − ⟨[e3, e1], e3⟩ = 0

=⇒ L32 − L23 = 0

=⇒ L32 = L23.
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Similarly, from tr(ade2) = tr(ade3) = 0, we get L13 = L31 and L12 = L21. Thus
L is a symmetric matrix, and so we can choose {e1, e2, e3} in such a way that it is
diagonal: L = diag(λ1,λ2,λ3). Then we have

L11 = ⟨[e2, e3], e1⟩ = λ1

⇒ [e2, e3] = λ1e1 + v1e4,

and L22 = ⟨[e3, e1], e2⟩ = λ2

⇒ [e3, e1] = λ2e2 + v2e4,

and L33 = ⟨[e1, e2], e3⟩ = λ3

⇒ [e1, e2] = λ3e3 + v3e4.

Suppose at least two of λi are zeros, for example, λ1 = λ2 = 0. Then from the
above formulas, g1 = Span(e3, e4) and g2 = Span(e4) = Z(g). Then g3 = 0, so
g is nilpotent. Thus we have obtained the following classification of unimodular
metric Lie algebras of dimension 4 with a nontrivial centre. To the best of our
knowledge, this classification result did not appear in the literature before.

4.2. LEMMA. Let g be a 4-dimensional unimodular metric Lie algebra with a nontrivial
centre. Then either g is nilpotent, or there exists an orthonormal basis {e1, e2, e3, e4} for g
relative to which the only nonzero Lie brackets (up to skew-symmetry) are given by

[e1, e2] = λ3e3 + v3e4, [e2, e3] = λ1e1 + v1e4, [e3, e1] = λ2e2 + v2e4, (4.1.1)

where λi, vi ∈ R and no more than one λi is 0.
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4.2. Homogeneous geodesics in 4-dimensional unimodular metric Lie algebras

We are now able to write down the Euler-Arnold equation for 4-dimensional
unimodular metric Lie algebras according to Lemma 4.2. As we already covered
the case when g is nilpotent in Chapter 3, we only need to deal with the second
case, where g is defined by an orthonormal basis {e1, e2, e3, e4} relative to which the
Lie brackets (4.1.1) is obtained. Take L to be the 3×3 diagonal matrix as previously
defined; then (4.1.1) can be rewritten as

[x, y] = L(x× y) + ⟨v,x× y⟩e4,

where × is the usual cross-product in V = R3, x = (x1,x2,x3), y = (y1, y2, y3), v =

(v1, v2, v3) ∈ V . Then for X = x+ x4e4,Y = y + y4e4 ∈ g, with x4, y4 ∈ R, we have

adXY = [X,Y ] = [x, y] = L(x× y) + ⟨v,x× y⟩e4. (4.2.1)

Hence, for Z = z + z4e4 ∈ g, we have

⟨ad∗
XY ,Z⟩ = ⟨adXZ,Y ⟩ (by definition of ad∗)

= ⟨L(x× z) + ⟨v,x× z⟩e4, y + y4e4⟩

= ⟨L(x× z), y⟩+ y4⟨L(x× z), e4⟩

+ ⟨⟨v,x× z⟩e4, y⟩+ y4 ⟨⟨v,x× z⟩e4, e4⟩

(by linearity of the inner product)

= ⟨L(x× z), y⟩+ y4⟨v,x× z⟩

(by definition of L and orthonormality of basis)

= ⟨x× z,Ly⟩+ y4⟨v,x× z⟩ (by symmetry of L)

= ⟨Ly × x, z⟩+ y4⟨v,x× z⟩ (by symmetry of L)

= ⟨(Ly + y4v)× x, z⟩,

where we are using the elementary fact that ⟨v,x× z⟩ = ⟨v × x, z⟩. This gives

ad∗
XY = (Ly + y4v)× x, (4.2.2)

for X = x+ x4e4,Y = y + y4e4 ∈ g.
The Euler-Arnold equation follows readily from 4.2.2ẋ = (Lx+ x4v)× x

ẋ4 = 0
(4.2.3)

where X(t) = x(t) + x4e4,x(t) ⊂ V .
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This can also be written in the expanded form as follows
ẋ1 = v2x3x4 − v3x2x4 + x2x3(λ2 − λ3)

ẋ2 = v3x1x4 − v1x3x4 + x1x3(λ3 − λ1)

ẋ3 = v1x2x4 − v2x1x4 + x1x2(λ1 − λ2)

ẋ4 = 0

. (4.2.4)

4.2.1. REMARK. Equations (4.2.4) possess a very remarkable phenomenon. If
we add to L any multiple of the identity matrix (“shifting L”), the Euler-Arnold
equations (4.2.3) do not change, and so all the dynamics is preserved. This is es-
pecially interesting because the algebra g itself does change (to a non-isomorphic
algebra, in general). One immediate use of this observation is the following. If at
least two of the three numbers λ1,λ2,λ3 are equal, we can replace L by a diagonal
matrix having at least two zeros on the diagonal. The equations (4.2.4) stay the
same, but the algebra becomes nilpotent by (4.1.1), and so we know all about sta-
tionary points and their stability from Theorem 0.3. We can therefore assume from
now on that λ1,λ2,λ3 are pairwise non-equal. We can also assume that all three are
non-zero by shifting L by a small multiple of the identity matrix, if necessary. This
will help us to avoid considering too many cases.

4.2.2. REMARK. We have two obvious first integrals for equations (4.2.3)

I1(X) = x4 (from ẋ4 = 0), (4.2.5)

and I2(X) = ∥x∥2 (from Remark 1.6.1 and I1). (4.2.6)

We obtain the third one I3(X) by noting that

⟨ẋ,Lx+ x4v⟩ = ⟨(Lx+ x4v)× x,Lx+ x4v⟩ = 0.

Now consider

⟨Lx+ 2x4v,x⟩. = ⟨Lẋ,x⟩+ ⟨Lx, ẋ⟩+ 2x4⟨v, ẋ⟩

(by differentiation of inner product)

= ⟨ẋ,Lx⟩+ ⟨ẋ, v⟩x4 + ⟨Lx, ẋ⟩+ x4⟨v, ẋ⟩

= ⟨ẋ,Lx+ x4v⟩+ ⟨ẋ,Lx+ x4v⟩

(by linearity of inner product)

= 0.

Hence,

I3(X) = ⟨Lx,x⟩+ 2x4⟨v,x⟩ (4.2.7)

is another first integral of equations (4.2.3).
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We can proceed to find the stationary points of equations (4.2.3). A point X0 =

x + x4e4 ∈ g is stationary when (Lx + x4v) × x = 0, which implies that the two
vectors Lx+ x4v and x are linearly dependent. We have several further cases.

1. Assume that x = 0. This gives X0 = (0, 0, 0,x4), x4 ∈ R.
2. Assume that x ̸= 0. Then there exists a unique s ∈ R such that

Lx+ x4v = sx. (4.2.8)

2.1. For every s /∈ {λ1,λ2,λ3}, equation (4.2.8) gives

(sI − L)x = x4v

=⇒ x = x4(sI − L)−1v.

Thus, we have stationary points given by

X0 = x4

(
(s− λ1)

−1v1, (s− λ2)
−1v2, (s− λ3)

−1v3, 1

)
, x4 ∈ R. (4.2.9)

2.2. Assume that s = λi for some i = 1, 2, 3, but vi ̸= 0. Then as λi are pairwise
nonequal by Remark 4.2.1, from equation (4.2.8) we have stationary points
given by X0 = xiei, xi ∈ R.

2.3. Assume that vi = 0 for some i = 1, 2, 3. Suppose v1 = 0, then the cases
s = λ2 and s = λ3 reduce to case 2.2.. Hence taking s = λ1 in (4.2.8), we get
a 2-plane of stationary points {(x1, v2x4

λ1−λ2
, v3x4

λ1−λ3
,x4)|x1,x4 ∈ R}. Similarly,

we get a corresponding 2-plane of stationary points for v2 = 0 or v3 = 0, or
a union of such 2-planes if more than one vi is zero.
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4.3. Stability analysis and proof of Theorem 0.4

In this section, we give the stability analysis of homogeneous geodesics of 4-
dimensional unimodular (but not nilpotent) metric Lie algebras obtained from the
last section. We note an interesting finding that comes up in this case as well as in
other previous cases, namely that the stability status determined by the Jacobian
condition (Theorem 1.39) and Arnold’s condition (Theorem 1.46) both depend on
a similar function and complement each other.

1. Assume that x = 0. The stationary point X0 = (0, 0, 0,x4),x4 ∈ R is stable; this
follows from Remark 4.2.2 that I1(X) = x4 and I2(X) = ∥x∥2 are first integrals:
all the points on any trajectory lie at the same distance from the stationary point
X0.

2. Assume that x ̸= 0. By (4.2.8), the stationary point X0 = x + x4e4 of equations
(4.2.3) satisfies Lx+ x4v = sx, with some unique s ∈ R. That means that

v1x4 = (s− λ1)x1

v2x4 = (s− λ2)x2

v3x4 = (s− λ3)x3

.

The Jacobian matrix of equations (4.2.4) at X0 is given by

J(X0) =


0 (λ2 − s)x3 −(λ3 − s)x2 v2x3 − v3x2

−(λ1 − s)x3 0 (λ3 − s)x1 v3x1 − v1x3
(λ1 − s)x2 −(λ2 − s)x1 0 v1x2 − v2x1

0 0 0 0

 .

So the characteristic equation det(J(X0)− µI) = 0 gives

µ2
(
µ2 + (s− λ3)(s− λ2)x

2
1 + (s− λ3)(s− λ1)x

2
2 + (s− λ2)(s− λ1)x

2
3

)
= 0.

Hence, two of the eigenvalues of the Jacobian matrix are zeros and the other two
are the roots of the equation

µ2 = −σ(x1,x2,x3),

where the polynomial σ(x) is given by

σ(x) = (s− λ3)(s− λ2)x
2
1 + (s− λ3)(s− λ1)x

2
2 + (s− λ2)(s− λ1)x

2
3. (4.3.1)

It now follows from Theorem 1.39 that if a stationary point X0 satisfies the in-
equality σ(x) < 0, then X0 is unstable.

To complement this result, we apply Theorem 1.46. Take a stationary point
X0 = x + x4e4 and an arbitrary point Y = y + y4e4 ∈ g. From equations (4.2.2)
and (4.2.8), we know that

B(X0,Y ) = ad∗
YX0 = (Lx+ x4v)× y = sx× y. (4.3.2)
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We want to find the regularity condition forX0, that is, we want to determine the
linear subspace LX0 = {Y = y+y4e4 |B(X0,Y ) = 0} and compute its dimension.
From (4.3.2) and assuming that s ̸= 0, we have

B(X0,Y ) = 0 ⇐⇒ y ∥ x.

Hence, LX0 = Span(x, e4) and so dim(LX0) = 2. By continuity, s ̸= 0 and x ̸= 0

for nearby stationary points, and so dim(LX0) is locally constant, hence X0 is
regular. Then the quadratic form Φ is given by

Φ(Y ) = ∥B(X0,Y )∥2 + ⟨[Y ,X0],B(X0,Y )⟩

= s2∥x× y∥2 + ⟨L(y × x) + ⟨v, y × x⟩e4, sx× y⟩

(by (4.3.2) and (4.2.1))

= s2∥x× y∥2 + ⟨L(y × x), sx× y⟩+ ⟨⟨v, y × x⟩e4, sx× y⟩

(by linearity of the inner product)

= s2∥x× y∥2 + ⟨L(y × x), sx× y⟩

(by orthonormality)

= s2∥x× y∥2 − s⟨L(x× y),x× y⟩

(by properties of cross product)

= s ⟨(sI − L)(x× y),x× y⟩

(by linearity of inner product).

Note that multiplication by s ̸= 0 doesn’t affect the fact that Φ is definite, and so
it suffices to consider the quadratic form

ϕ(Y ) = ⟨(sI − L)(x× y),x× y⟩

on V = R3, which we want to be definite when restricted to the subspace x⊥.
We calculate

ϕ(Y ) =
(
(s− λ3)x

2
2 + (s− λ2)x

2
3

)
y21 +

(
(s− λ3)x

2
1 + (s− λ1)x

2
3

)
y22

+
(
(s− λ1)x

2
2 + (s− λ2)x

2
1

)
y23 + 2(λ3 − s)x1x2y1y2

+ 2(λ2 − s)x1x3y1y3 + 2(λ1 − s)x2x3y2y3. (4.3.3)

Let Q be a symmetric matrix given by

Q =

(s− λ3)x
2
2 + (s− λ2)x

2
3 (λ3 − s)x1x2 (λ2 − s)x1x3

(λ3 − s)x1x2 (s− λ3)x
2
1 + (s− λ1)x

2
3 (λ1 − s)x2x3

(λ2 − s)x1x3 (λ1 − s)x2x3 (s− λ1)x
2
2 + (s− λ2)x

2
1

 ,
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then we have ϕ(Y ) = ⟨Qy, y⟩. Note that Qx = 0, so x is an eigenvector of Q with
corresponding eigenvalue η1 = 0. Hence, for ϕ to be definite on its orthogonal
complement, the other two eigenvalues η2 and η3 of Q must have the same sign.
Consider the characteristic polynomial χ(η) of Q

χ(η) = η(η − η2)(η − η3) = η3 − (η2 + η3)η
2 + η2η3η.

η2 and η3 are of the same sign if and only if the coefficient of η in χ(η) is posi-
tive. Computing χ(η) we find that this coefficient equals ∥x∥2σ(x), where σ(x)
is given by (4.3.1). Hence, by Theorem 1.46, if a stationary point X0 satisfies the
inequality σ(x) > 0, then X0 is stable.

To complete this case, we remove the assumption s ̸= 0. Suppose we have a
stationary point X0 = x + x4e4 such that s = 0. Then by Remark 4.2.1, we can
replace L by L + cI, c ̸= 0, so that the Euler-Arnold equations (4.2.3), together
with the corresponding stationary points, stay the same. The function σ(x) also
remains unchanged: we shift both λi and s by the same c. Then by repeating the
argument, we find that X0 is stable provided σ(x) > 0.

In summary, we have proved the following stability theorem.

4.3. THEOREM. A stationary point X0 = x + x4e4 is stable if σ(x) > 0, and is
unstable if σ(x) < 0, where

σ(x) = (s− λ3)(s− λ2)x
2
1 + (s− λ3)(s− λ1)x

2
2 + (s− λ2)(s− λ1)x

2
3.

It therefore remains to study the case σ(x) = 0. Let X0 = x + x4e4, x ̸= 0, be
a stationary point with σ(x) = 0.

2.1. We first deal with the case when s ∈ R determined by (4.2.8) satisfies the
condition s /∈ {λ1,λ2,λ3}. Consider the set ΓX0 of points Y = y+y4e4 ∈ g for
which all three first integrals found in Remark 4.2.2 take the same values as
at X0. As first integrals are constant along trajectories, any trajectory which
starts at a point of ΓX0 remains in ΓX0 for all t ∈ R. In other words, ΓX0 is a
union of trajectories. Clearly, X0 ∈ ΓX0 and is a constant trajectory, because
X0 is a stationary point. We prove the following lemma.

4.4. LEMMA. Let X0 = x + x4e4, x ̸= 0, be a stationary point of (4.2.3) with
σ(x) = 0 and s /∈ {λ1,λ2,λ3}. Then

(a) ΓX0 is compact.
(b) ΓX0 \ {X0} is homeomorphic to R (to an open interval).
(c) ΓX0 contains no stationary points of (4.2.3) other than X0.

PROOF. We first prove assertion (a). Note that ΓX0 is the intersection of
zero sets of a finite number of polynomial functions. As polynomial func-
tions are continuous, the inverse image of a closed set is closed. Since {0}
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is a closed set, the zero set of a polynomial equation is closed, and hence
ΓX0 is closed. Moreover, it is bounded as y4 = x4 and ∥y∥2 = ∥x∥2, for any
Y = y + y4e4 ∈ ΓX0 . It then follows that ΓX0 is compact.
To prove assertion (b), take Y = y+ y4e4 ∈ ΓX0 . We have Ii(Y ) = Ii(X0), i =

1, 2, 3, which gives y4 = x4, ∥y∥2 = ∥x∥2 and ⟨Ly, y⟩ + 2⟨v, y⟩y4 = ⟨Lx,x⟩ +
2⟨v,x⟩x4. Denote z = y − x ∈ R3. Then

∥z∥2 + 2⟨z,x⟩ = ∥y − x∥2 + 2⟨y − x,x⟩

= ∥x∥2 + ∥y∥2 − 2⟨y,x⟩+ 2⟨y,x⟩ − 2∥x∥2

= ∥y∥2 − ∥x∥2

= 0,

and from (4.2.8), we have

⟨Lz, z⟩+ 2⟨sx, z⟩

=⟨Lz, z⟩+ 2⟨Lx+ x4v, z⟩

=⟨Lz, z⟩+ 2⟨Lx, z⟩+ 2⟨v, z⟩x4
=⟨L(y − x), y − x⟩+ 2⟨Lx, y − x⟩+ 2⟨v, y − x⟩x4
=⟨L(y − x), y − x⟩+ 2⟨Lx, y − x⟩+ 2⟨v, y − x⟩x4
=⟨Ly, y⟩ − ⟨Lx,x⟩+ ⟨Lx, y⟩ − ⟨Ly,x⟩+ 2⟨v, y⟩x4 − 2⟨v,x⟩x4
= 0.

It follows that ΓX0 lies in the hyperplane y4 = x4, and in that hyperplane,
ΓX0 is given by y = x+ z, where z satisfies the equations

∥z∥2 + 2⟨z,x⟩ = 0 and ⟨(L− sI)z, z⟩ = 0. (4.3.4)

Geometrically, the first equation of (4.3.4) gives

(z1 + x1)
2 + (z2 + x2)

2 + (z3 + x3)
2 = x21 + x22 + x23,

hence it defines a sphere in R3 of radius ∥x∥ centered at −x. This sphere
passes through the origin z = 0 and its normal vector at the origin is x. The
second equation gives

(s− λ1)z
2
1 + (s− λ2)z

2
2 + (s− λ3)z

3
1 = 0,

hence it defines a quadratic cone in R3 with the vertex at the origin. The
generatrix l of the cone is given by

z = a(L− sI)−1x, a ∈ R.
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This is because it passes through the cone vertex and satisfies the cone equa-
tion

⟨(L− sI)z, z⟩ = a2⟨(L− sI)(L− sI)−1x, (L− sI)−1x⟩

= a2⟨x, (L− sI)−1x⟩

=
σ(x)

(s− λ1)(s− λ2)(s− λ3)

= 0.

Furthermore, the normal vector to the cone along this line is again x. Thus
equations (4.3.4) define the intersection of the cone and the sphere in R3

such that the vertex of the cone lies on the sphere and the tangent plane to
the sphere at this point is tangent to the cone along one of its generatrices l.
Moreover, no other generatrix l′ of the cone lies in this plane (see Figure 4.1).

FIGURE 4.1. Intersection between the sphere and the cone given by
equations (4.3.4).

We now need a small result here.

4.2. PROPOSITION. The set of generatrices of the cone is homeomorphic to a circle.

PROOF. Consider the intersection of the cone with a large sphere cen-
tered at the origin. We get a disjoint union of two curves C1,C2 which are
symmetric to each other about the origin and which are both homeomor-
phic to a circle. On the other hand, the set of generatrices of the cone is in
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one-to-one correspondence with the points of the curve, say C1. Hence, we
obtain the result as required. The following diagram shows the homeomor-
phism.

O

l1 l2

C1

P1 P2

□

Returning to assertion (b), let l′ ̸= l be a generatrix of the cone. It passes
through the origin and is not tangent to the sphere at the origin, which
means that there is a unique point of intersection of l′ with the sphere, dif-
ferent from the origin (see Figure 4.1). That point P ′ continuously depends
on l′, and so the intersection of the sphere and the cone given by (4.3.4) is the
union of the origin and a curve homeomorphic to a circle (from Proposition
4.2) minus one point (see Figure 4.2).

FIGURE 4.2. Intersection curve between the sphere and the cone
given by equations (4.3.4).

That curve is homeomorphic to ΓX0 \ {X0}, since it is obtained by a par-
allel translation in R4 = g. This implies that ΓX0 \ {X0} is homeomorphic to
a circle minus a point, and via stereographic projection, to R. This proves
assertion (b).

Finally, we prove assertion (c). Assume that Y = y + y4e4 is a stationary
point of (4.2.3) in ΓX0 . As y ̸= 0, by (4.2.8), we have Ly + y4v = s′y for some
s′ ∈ R. Hence

Lz = L(y − x) = s′y − y4v − sx+ x4v = s′y − sz = s′z + (s′ − s)x,
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where z = y − x satisfies (4.3.4). Now if s′ = s, we have Lz = sz, and so
z = 0 as s /∈ {λ1,λ2,λ3}. Otherwise, if s′ ̸= s, from the second equation of
(4.3.4), we get

s∥z∥2 = ⟨Lz, z⟩

= ⟨s′z + (s′ − s)x, z⟩

= s′∥z∥2 + (s′ − s)⟨x, z⟩.

This implies

(s− s′)∥z∥2 = −(s− s′)⟨x, z⟩ =⇒ ∥z∥2 + ⟨x, z⟩ = 0.

By the first equation of (4.3.4), we get ∥z∥2 = 0 ⇔ z = 0. So in either case,
we have z = 0, and then y = x which implies Y = X0. Thus X0 is the only
stationary point of (4.2.3) in ΓX0 . □

We now take a point Y ∈ ΓX0 \ {X0} and consider the trajectory γ = γ(t)

of (4.2.3) passing through Y . Note that γ ⊂ ΓX0 . By assertion (c) of Lemma
4.4, Y is not a stationary point, hence γ is not a single point, and γ doesn’t
contain X0, as the trajectory of X0 is {X0}. It follows that γ ⊂ ΓX0 \ {X0}.
Again, assertion (c) gives γ̇ ̸= 0, hence the point γ(t) moves monotonically,
in the same direction along the open interval ΓX0 \ {X0} when t ∈ (−∞,∞)

(ΓX0 \ {X0} is an open interval by assertion (b)). As ΓX0 is compact by
assertion (a), the limit points

Y± = lim
t→±∞

γ(t)

exist and lie on ΓX0 . But then Y+ must be a stationary point of (4.2.3), for
otherwise a small piece of the trajectory of the solution passing through Y+
overlaps with the trajectory γ of Y , and so Y+ lies in the interior of γ. Similar
argument applies to Y−, thus it follows from assertion (c) that

Y+ = Y− = X0,

and so for the trajectory γ = γ(t) with γ(0) = Y , we have limt→±∞ γ(t) =

X0. This means that whenever t0 < 0, we can take Z = γ(t0) such that
∥Z −X0∥ < δ for a given δ > 0. Then the solution of (4.2.3) with Z at t0 can
be as close to the stationary point X0 as possible, but the future trajectory
t 7→ γ(t0 + t) will pass through the point Y at t = −t0 at a fixed distance
ϵ = ∥Y − X0∥, meaning it is not arbitrarily close to X0 anymore. Thus we
have proved the following theorem.

4.5. THEOREM. A stationary point X0 = x+x4e4 satisfying x ̸= 0,σ(x) = 0 and
s /∈ {λ1,λ2,λ3} is unstable.
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2.2. Lastly, we consider a stationary point X0 = x+x4e4 satisfying x ̸= 0,σ(x) =

0 and s ∈ {λ1,λ2,λ3}. Recall that λi are pairwise nonequal, and so up to
relabelling we can assume that s = λ1 ̸= λ2,λ3. Then from σ(x) = 0, we get
x1 = 0. Then from (4.2.8), we either get x = 0, which is invalid; or v1 = 0.
So this case reduces to one stationary point

X0 = (0,
v2x4

λ1 − λ2
,
v3x4

λ1 − λ3
,x4), x4 ̸= 0. (4.3.5)

We prove the following.

4.6. THEOREM. Suppose that σ(x) = 0 and s = λ1, then the stationary point X0

given by (4.3.5) is stable if λ2 − λ1 and λ3 − λ1 have the same sign, and unstable
if λ2 − λ1 and λ3 − λ1 have opposite signs.

PROOF.
(a) We first consider the case when the numbers λ2 − λ1 and λ3 − λ1 have

the same sign c = ±1. Then λi − λ1 = c|λi − λ1| for i = 2, 3. Let
Y = y + y4e4 ∈ g be a point such that ∥Y −X0∥ < δ for a small positive
δ. Note that this means |yi − xi| < δ, for all i = 1, 2, 3, 4. By Remark
4.2.2, we have I1(Y ) = y4 and I2(Y ) = ∥y∥2. Instead of the first integral
I3, it will be more convenient to consider the first integral

I4 = c

(
I3 − λ1I2 +

(
v22

λ2 − λ1
+

v23
λ3 − λ1

)
I21

)
at Y , that is,

I4(Y ) = c(λ2 − λ1)

(
y2 +

v2y4
λ2 − λ1

)2

+ c(λ3 − λ1)

(
y3 +

v3y4
λ3 − λ1

)2

= |λ2 − λ1|
(
(y2 − x2) +

v2(y4 − x4)

λ2 − λ1

)2

+ |λ3 − λ1|
(
(y3 − x3) +

v3(y4 − x4)

λ3 − λ1

)2

≤ |λ2 − λ1|
(
δ +

|v2|δ
|λ2 − λ1|

)2

+ |λ3 − λ1|
(
δ +

|v3|δ
|λ3 − λ1|

)2

=Mδ2,

for some constant M > 0 which only depends on λi, vi, but not on X0

or Y . Let Z = z + z4e4 be an arbitrary point on the trajectory of (4.2.3)
starting at Y . Then I4(Z) = I4(Y ) ≤Mδ2. This gives

|λ2 − λ1|
(
(z2 − x2) +

v2(z4 − x4)

λ2 − λ1

)2
+ |λ3 − λ1|

(
(z3 − x3) +

v3(z4 − x4)

λ3 − λ1

)2
≤Mδ2.
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Consequently, for i = 2, 3,∣∣∣∣(zi − xi) +
vi(z4 − x4)

λi − λ1

∣∣∣∣ ≤Miδ,

where Mi =
√

M
|λi−λ1| > 0. But z4 = y4, so for i = 2, 3,

|zi − xi| ≤Miδ +
|vi||y4 − x4|
|λi − λ1|

≤M ′
iδ,

where M ′
i = Mi +

|vi|
|λi−λ1| > 0. Let m = max(1,M ′

2,M
′
3). Then for i =

2, 3, 4

|zi − xi| ≤ mδ,

Consider

∥z − x∥2 = ∥z∥2 + ∥x∥2 − 2⟨z,x⟩

= ∥y∥2 + ∥x∥2 − 2⟨z,x⟩

(as I2(Y ) = I2(Z) ⇔ ∥z∥2 = ∥y∥2)

= ∥y∥2 + ∥x∥2 − 2⟨y,x⟩+ 2⟨y,x⟩ − 2⟨z,x⟩

= ∥y − x∥2 + 2⟨y − x,x⟩ − 2⟨z − x,x⟩. (4.3.6)

By Cauchy-Schwartz inequality, we have

|⟨y − x,x⟩| ≤ ∥y − x∥ ∥x∥ ≤ δ∥x∥,

and

|⟨z − x,x⟩| = |(z2 − x2)x2 + (z3 − x3)x3|

≤ |z2 − x2| ∥x∥+ |z3 − x3| ∥x∥

≤ 2mδ∥x∥.

Hence, equation (4.3.6) gives

∥z − x∥2 ≤ δ2 + 2δ∥x∥+ 4mδ∥x∥. (4.3.7)

Now consider

∥Z −X0∥2 = ∥z − x∥2 + (z4 − x4)
2

= ∥z − x∥2 + (y4 − x4)
2 (as z4 = y4)

≤ ∥z − x∥2 + δ2

≤ δ2 + 2δ∥x∥+ 4mδ∥x∥+ δ2 (by (4.3.7)).

Therefore

∥Z −X0∥ ≤
√

2δ (δ + ∥x∥(1 + 2m)).
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Thus, the distance between Z and X0 tends to zero when δ approaches
zero. So for any ϵ > 0 there exists δ > 0 such that for any Y ∈ g,

∥Y −X0∥ < δ =⇒ ∥Z −X0∥ < ϵ,

for all points Z on the trajectory of (4.2.3) starting at Y .
Hence given the above assumptions, if λ2 − λ1 and λ3 − λ1 have the
same sign, then the stationary point X0 is stable.

(b) It remains to consider the case when the numbers λ2 − λ1 and λ3 − λ1
have opposite signs. Relabelling if necessary we can assume that λ2 −
λ1 > 0 > λ3 − λ1. Denote λ2 − λ1 = a2 and λ3 − λ1 = −b2, a, b > 0.
Similar to the above, we consider the set ΓX0 of points Y = y+ y4e4 ∈ g

for which all three first integrals I1, I2, I3 take the same values as they
take at X0. We know that y4 = x4, and moreover, z = y − x satisfies
equations (4.3.4). The second equation of (4.3.4) gives

a2z21 − b2z22 = 0.

We can then let z2 = bw and z3 = caw, for w ∈ R, c = ±1 and substitute
into the first equation of (4.3.4) to get

z21 + (a2 + b2)w2 + 2w(bx2 + cax3) = 0.

As x ̸= 0, we can choose c = ±1 in such a way that (bx2 + cax3) ̸= 0.
Thus dividing the previous equation by (a2 + b2)2 yields

z21
(a2 + b2)2

+
1

a2 + b2

(
w2 +

2w(bx2 + cax3)

a2 + b2

)
= 0.

By completing the square, we get

z21
(a2 + b2)2

+
1

a2 + b2

(
w +

bx2 + cax3
a2 + b2

)2

=
(bx2 + cax3)

2

(a2 + b2)3
.

Multiplying by (bx2+cax3)
2 and denoteA = − bx2+cax3

a2+b2
andB = bx2+cax3√

a2+b2
,

we get

A2z21 +B2(w − A)2 = A2B2

⇒ z21
B2

+
(w − A)2

A2
= 1.

So we can let z1 = B sin θ,w = A(1 − cos θ) for θ ∈ [0, 2π). Substituting
into equations (4.2.3), we get the equation

θ̇ = −abcB(1− cos θ)

⇒ θ(t) = 2 arccos(abcB(t− t0)), for some t0 ∈ R.
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This gives z1(t) =
2abcB2(t−t0)
1+abB2(t−t0)2

,w(t) = 2A
1+abB2(t−t0)2

, and so

Y (t) = X0 + z(t)

= X0 +
1

1 + abB2(t− t0)2
(
2abcB2(t− t0), 2Ab, 2Aac

)
.

Now by choosing a large positive t0, we can make Y (0) arbitrarily close
to X0, but the point Y (t0) on the trajectory lies at a fixed distance from
X0. This proves that given the above assumptions, if λ2−λ1 and λ3−λ1
have opposite signs, then the stationary point X0 is unstable.

□

This completes the stability analysis of homogeneous geodesics in 4-dimensional
unimodular metric Lie algebras with a nontrivial centre. The following table sum-
marises our findings on the sphere S3, where we define

σ(x) = (s− λ3)(s− λ2)x
2
1 + (s− λ3)(s− λ1)x

2
2 + (s− λ2)(s− λ1)x

2
3.

Case Stationary Point Stability
x = 0 (0, 0, 0,x4),x4 ∈ R Stable

x ̸= 0

X0 = x+ x4e4 satisfying
Lx+ x4v = sx where
L = diag(λ1,λ2,λ3) ,

λi are pairwise nonequal
and x4, s ∈ R

σ(x) > 0 Stable
σ(x) < 0 Unstable

σ(x) = 0 and
s /∈ {λ1,λ2,λ3}

Unstable

σ(x) = 0 and
s = λ1 and

λ2 − λ1 and λ3 − λ1
have the same sign

Stable

σ(x) = 0 and
s = λ1 and

λ2 − λ1 and λ3 − λ1
have opposite signs

Unstable

TABLE 4.1. Stability of homogeneous geodesics in 4-dimensional
unimodular metric Lie algebras.

This table, together with Lemma 4.2 in Section 4.1, completes the overall proof
of Theorem 0.4.
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