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Abstract
Domestication and genetic improvement of maize improve yield and stress tolerance due to changes in morphological 
and physiological properties, which likely alter rhizosphere microbial diversity.  Understanding how the evolution of maize 
germplasm impacts its rhizobacterial traits during the growth stage is important for optimizing plant-microbe associations 
and obtaining yield gain in domesticated germplasms.  In this study, a total of nine accessions representing domestication 
and subsequent genetic improvement were selected.  We then sequenced the plant DNA and rhizobacterial DNA 
of teosinte, landraces and inbred lines at the seedling, flowering and maturity stages in a field trial.  Moreover, the 
soil chemical properties were determined at the respective stages to explore the associations of soil characteristics 
with bacterial community structures.  The results showed that domestication and genetic improvement increased the 
rhizobacterial diversity and substantially altered the rhizobacterial community composition.  The core microbiome in the 
rhizosphere differed among germplasm groups.  The co-occurrence network analysis demonstrated that the modularity 
in the bacterial network of the inbred lines was greater than those of teosinte and the landraces.  In conclusion, the 
increased diversity of the rhizobacterial community with domestication and genetic improvement may improve maize 
resilience to biotic stresses and soil nutrient availability to plants.  
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1. Introduction

In agricultural systems, rhizosphere microbiota are 
associated with crop growth and health due to their 
functions in accessing nonlabile nutrients, mitigating 
abiotic and biotic stresses and preventing pathogen 
infection (Mendes et al. 2011; Bulgarelli et al. 2013).  
These benefits induced by rhizospheric microorganisms 
depend on the genetic variation of crop genotypes (Turner 
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et al. 2013; Ofek et al. 2014; Pérez-Jaramillo et al. 2017).  
The genotype-specific microorganisms in the rhizosphere 
are mainly attributed to the quality and quantity of root 
secretions which are manipulated by genotype-specific 
gene expression (Lakshmanan et al. 2012; Badri et al. 
2013; Lebeis et al. 2015).

Plant domestication may dramatically influence the 
microbial community in the rhizosphere (Pérez-Jaramillo 
et al. 2016; Tian et al. 2020).  During plant domestication, 
not only have plant phenotypic traits been genetically 
improved, such as large seed size and apical dominance 
(Gepts et al. 2004; Doebley et al. 2006; Purugganan 
and Fuller 2009; Hou et al. 2020), but the plant-microbe 
interactions are also likely to be beneficial to the increase 
in crop yield in agricultural systems (Rodriguez et al. 2008; 
Farrar et al. 2014).  Thus, it is necessary to clarify whether 
the rhizospheric microbial community has changed 
with the plant domestication and genetic improvement 
process, and whether the beneficial interactions between 
the plant and the rhizospheric microorganisms have been 
enhanced.  Tackling these knowledge gaps is ultimately 
important to further improve crop yield by shaping the 
interrelationship between rhizospheric microorganisms 
and crop plants.

Recent studies indicated that domestication altered the 
assembly of rhizosphere microorganisms.  Compared with 
wild plants, changes in the microbial community assembly 
in the rhizosphere of domesticated plants may facilitate an 
improvement in stress resistance and adaptability to some 
agricultural measures (such as fertilization and irrigation) 
for yield gain.  For example, the relative abundance of 
putative fungal pathogens was lower in the rhizosphere of 
modern sunflower cultivars than that of ancient cultivars 
(Leff et al. 2017).  Similarly, significant differences in the 
diversity and composition in the rhizosphere of barley 
(Bulgarelli et al. 2015), common bean (Pérez-Jaramillo 
et al. 2017) and sugar beet (Zachow et al. 2014) were 
found between wild and domesticated germplasms.  
However, all the crop species in these studies were grown 
in pots and examined at only one growth stage.  It has 
been shown that the rhizobacterial community composition 
varies with the growth stage of many plant species, such 
as Arabidopsis, alfalfa, soybean, wheat, sugar beet and 
corn (Baudoin et al. 2003; Mougel et al. 2006; Houlden 
et al. 2008; Micallef et al. 2009; Xu et al. 2009).  As the 
dynamics of rhizospheric microbes correspond with plant 
growth development and field experiments can realistically 
reflect crop yield improvement due to domestication, a 
field investigation of the microbial community assembly at 
key growth stages would be more convincing for revealing 
plant-microbe interactions in response to domestication 
and improvement processes.

Maize was domesticated from teosinte (Zea mays 
ssp. parviglumis), and this domestication event occurred  
~9 000 years ago (Matsuoka et al. 2002; Doebley 2004).  
The domestication resulted in original maize landraces, 
which were spread throughout the USA by native 
Americans and adapted to various environments.  With 
maize landraces, crop breeders began to select maize 
inbred lines with specific alleles for hybrid breeding, 
which ultimately increased the maize yield and enhanced 
stress tolerance (Duvick 1977; Duvick et al. 2004).  Maize 
domestication reduces plant genetic diversity, resulting 
in morphological and physiological changes (Yamasaki 
et  al. 2005).  The potentially homogenized changes 
for high yield are assumed to suppress soil microbial 
diversity (Pérez-Jaramillo et al. 2017).  However, limited 
knowledge is available on the coevolutionary process 
of maize domestication with microbial recruitment in the 
rhizosphere and whether domestication indeed leads to 
a change in bacterial diversity that is relevant to plant 
performance.

In this study, we used teosinte, landraces and inbred 
lines of maize to explore the association between maize 
accessions and microbial assembly in the rhizosphere, 
which would provide new insight into integrating microbial 
coevolution in future plant breeding.  In a field trial, these 
selected maize accessions were subjected to genomic 
sequencing, and the rhizobacterial community was 
analysed using 16S rRNA sequencing.  We explored the 
association of the microbiome in the rhizosphere with 
maize domestication and genetic improvement processes 
and examined whether the relationship changed at 
different growth stages of maize.  We hypothesized 
that the coevolutionary trajectory between the genetic 
improvement of maize germplasms and the microbiomes 
in its rhizosphere might occur, resulting in a decrease in 
rhizobacterial diversity and a change in the rhizobacterial 
assembly.

2. Materials and methods

2.1. Plant materials

A total  of  n ine accessions represent ing the ful l 
domestication and subsequent genetic improvement 
process were selected in this study.  Three teosinte 
(Zea mays ssp. paraviglumis) accessions, W71-2  
(CIMMYT 8781), B72-1 (CIMMYT 8784) and TEO: 
BALSAS (CIMMYT 9477), were from Mexico.  Three 
landraces including NAYA36 (CIMMYT 2253), GUAN102 
(CIMMYT 1526) and CHIS236 (CIMMYT 1222), 
represented the diversity of pre-modern cultivated lines 
that occurred approximately 9 000 years ago.  These 
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landraces were derived from the wild progenitor (teosinte) 
in the Balsas River valley in Mexico (Matsuoka et al. 
2002; Piperno et al. 2009; van Heerwaarden et al. 2011).  
The three modern inbred lines were B73 (temperate), 
Mo17 (temperate) and Zheng58 (temperate) (Appendix A).

2.2. Maize genotyping and genetic diversity   
analysis

Seeds from teosinte, landraces and inbred lines were 
separately germinated in an incubator with a 12-h dark-
light cycle.  The germinated seeds were sown into 
vermiculite media, and the plants were grown in a climate 
chamber for 2 weeks before leaves were sampled.  
Plant DNA was isolated by the cetyltrimethylammonium 
bromide (CTAB) method (Saghai-Maroof et al. 1984), and 
the quality and concentration of DNA were determined 
by agarose gel electrophoresis and NanoDrop.  In this 
study, the target sequencing (GBTS) method was used 
for genotyping (Guo et al. 2019), and a 1K SNP panel 
was used for single nucleotide polymorphism (SNP) 
identification.  All of these procedures were performed 
by CapitalBio Technology Corporat ion Co.,  Ltd. 
(Shijiazhuang, Hebei Province, China).

After filtering the loci containing missing genotypes, 
a total of 8 463 high-quality SNPs were used for genetic 
diversity analysis.  A neighbor-joining phylogenetic tree 
was created using MEGA7.0 Software (Kumar et al. 2016) 
with 1 000 bootstrap replicates.  The neighbor-joining 
tree was visualized with an online program of Interactive 
tree of life (iTOL) (Letunic and Bork 2019).  To identify 
groups of individuals that conform to a genotypic makeup 
under a null model of evolution, the admixture Bayesian 
clustering approach was implemented in the program 
STRUCTURE (version 2.3.4) (Pritchard et al. 2000).  
With 20 000 replicates and 20 000 MCMC replicates with 
10 iterations of each model from 1 to 6 populations (k), 
we aligned the data from different runs using CLUMPP 
software (Jakobsson and Rosenberg 2007).  Structure 
Harvester online software (Earl and Vonholdt 2012) using 
the Evanno criterion (Evanno et al. 2005) was used to 
estimate the number of genetic groups.

2.3. Setup of the field experiment and rhizosphere 
soil sampling

A field experiment was performed at South China 
Agricultural University, Guangzhou, China (113°64´N, 
23°24´E).  The soil was classified as Ali-Udic Argosol.  
A completely randomized block design was deployed 
in this experiment.  Each plot had an area of 24 m2.  
The planting density was 57 000 plants ha–1.  Seeds 

from different accessions were sterilized with sodium 
hypochlorite and then rinsed in sterile water three times.  
After that, the seeds were soaked in ddH2O for 12 h for 
germination.  The sterilized seeds were germinated on 
sterile vermiculite.  Seedlings with consistent growth 
were selected and transplanted to the field after 4 d.  
Rhizosphere soil samples were collected at the seedling, 
flowering and maturity stages at 20, 50 and 80 d after 
sowing.  In brief, most of the soil attached to the roots was 
removed by shaking.  The roots were then immersed in 
sterile water, and after 10 s of vortexing, the rhizosphere 
soil was collected after sedimentation and stored at –80°C 
prior to DNA extraction.

2.4. Rhizosphere soil chemical analyses

A pH meter (FE20-FiveEasy™ pH, Mettler Toledo, 
Germany) was used to determine the soil pH in a 1:5 
soil:water suspension.  A TOC-5000A analyser (Shimadzu 
Corp, Kyoto, Japan) was used to measure the soil total 
carbon (SOC) and total nitrogen (Jones and Willett 2006).  
The available potassium (AK) was extracted in 1 mol L–1 
ammonium acetate and determined by flame photometry 
(FP640, INASA, China).  Available phosphorus (Olsen-P) 
was extracted in 0.5 mol L–1 NaHCO3, NH4

+ and NO3
– 

were extracted by 2 mol L–1 KCl and then determined by 
a continuous flow analytical system (SKALAR SAN++, 
Netherlands) (Sun et al. 2015).

2.5. Soil DNA extraction and next-generation se-
quencing

Rhizobacterial DNA was extracted using the Fast DNA 
SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA).  To 
amplify the V3–V4 region, the 16S ribosomal RNA gene 
was amplified by PCR with the primers 338F (5´-barcode-
A C T C C T R C G G G A G G C A G C A G - 3 ´ )  a n d  8 0 6 R 
(5´-GGACTACCVGGGTATCTAAT-3´) with 12 nt unique 
barcodes.  The PCR program was as follows: 95°C for  
45 s, followed by 28 cycles at 94°C for 15 s, 54°C for 45 s 
and 70°C for 10 s, followed by a final extension at 70°C 
for 3 min.  The PCR products were then purified using the 
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, 
Union City, CA, USA) and paired-end sequenced on 
an Illumina MiSeq platform using 2×300 bp chemistry 
(Illumina Inc., San Diego, CA, USA).  

2.6. Data analysis

The raw sequence in FASTQ files was processed using 
QIIME 1.9.1.  Briefly, based on the barcodes, all the 
sequence reads were quality trimmed and assigned 
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to each sample.  The chimaera of the sequence was 
detected and removed.  The clean sequences were then 
clustered to operational taxonomic units (OTUs) at 97% 
similarity using the UPARSE pipeline (Edgar 2011), and 
the taxonomies were assigned to each OTU using the 
RDP Classifier (Cole et al. 2009).  Shannon’s diversity 
and Chao1 richness and index were also calculated in 
QIIME.  Principal coordinate analysis (PCoA), redundancy 
analysis (RDA), and the adonis test and the Mantel test 
were performed in R with the “vegan” package.  The 
differences in phyla and genera among the genotypes 
were analysed using STAMP with 95% confidence 
intervals (Parks and Beiko 2010).  To acquire the 
biomarkers of taxa across teosinte, landrace and inbred 
line genotypes, we classified the relative abundances 
of phylum, class, order, family, genus and OTU levels 
against maize varieties using the package RandomForest 
in R (Zhang et  al. 2018, 2019).  The importance of 
features and the cross-validation curve were visualized 
in R using the “ggplot2” package.  Ternary plots were 
constructed to show the abundance comparison of OTUs 
(>5‰) for teosinte, landrace and inbred line genotypes in 
the three growth stages using the “vcd” package (Friendly 
and Meyer 2015).  Differences between treatments in soil 
properties, alpha diversity and the relative abundances of 
bacterial phyla and genera were assessed by one-way or 
two-way ANOVA in Genstat (ver. 13.0).

2.7. Core bacteria and co-occurrence network  
analyses

Core bacteria, which contain a list of OTUs observed in 
60% of all the rhizosphere samples, were obtained in 
QIIME using MicrobiomeAnalyst (Chong et al. 2020).  
Core bacteria analyses were also performed for each 
germplasm group.  Bacterial co-occurrence networks 
were analysed for each sweet corn germplasm group.  
In order to study the network structure of the OTUs with 
high abundance, we selected OTUs with more than 
0.2% relative abundance to calculate Spearman’s rank 
correlation coefficients.  The correlations between OTUs 
were selected at P<0.05 and Spearman’s correlation 
coefficient of more than 0.8 (Mendes et al. 2018).  The 
nodes and edges represent bacterial OTUs and the 
correlations between bacterial OTUs, respectively.  
Statistical analyses were calculated using the “psych” 
package in R and then visualized in Gephi (Jiang et al. 
2017).  Keystone species were defined according to 
high node degree, high betweenness centrality and high 
closeness centrality (Berry and Widder 2014; Agler et al. 
2016).

3. Results

3.1. Genetic relations among maize accessions

The 1K SNP panel was used to study the genetic 
variations among the 9 accessions.  We identified 10 129 
SNPs as genetic markers for further diversity analysis.  
After filtering the loci with missing genotypes, there were 
8 463 high-quality SNPs.  Using these SNPs, phylogenetic 
analysis showed that the teosinte, landraces and inbred 
lines were clearly grouped into three clusters (Fig. 1-A 
and B).  We explored patterns of population structure 
in the maize accessions using STRUCTURE analysis.  
There was a sharp peak of Δk at k=3, suggesting that the 
number of clusters was set to 3 germplasm groups; i.e., 
teosinte, landrace and inbred lines (Fig. 1-C; Appendix B).

3.2. Diversity of rhizobacterial communities in the 
rhizosphere of germplasm groups

Domestication and genetic improvement increased the 
alpha diversity of rhizobacterial communities across 
growth stages (one-way ANOVA, P<0.05) (Fig.  2-A).  
Although the alpha diversity was significantly different 
among germplasm groups (permutational multivariate 
ANOVA (PERMANOVA), R2=0.304, P=0.004), there 
was no difference of the alpha diversity between growth 
stages (PERMANOVA, R2=0.051, P=0.371) (Table 1).  In 
particular, the Shannon diversity index was significantly 
higher in the rhizosphere of the landraces and inbred lines 
than teosinte at the flowering stage, but by the mature 
stage, the Shannon index in the rhizosphere of the inbred 
lines was higher than teosinte (Appendix C).  Regarding 
beta diversity, PCoA and two-way PERMANOVA revealed 
that germplasm and growth stage interactively affected 
the rhizobacterial communities (PERMANOVA, P=0.001) 
(Fig. 2-B and C; Table 1).  The rhizobacterial communities 
of maize germplasms were separated into three groups 
at every investigated growth stage (PERMANOVA, 
P=0.0001) (Fig. 2-D–F).

3.3. Specific microbiomes of germplasm groups

Proteobacteria, Firmicutes, Actinobacteria and Chloroflexi 
were the most abundant bacterial phyla living in the 
rhizosphere across growth stages, accounting for 
78.48–82.15% of the whole community (Appendix D).   
The abundances of  Act inobacter ia ,  F i rmicutes, 
Chloroflexi,  Gemmatimonadete, Patescibacteria, 
Planctomycetes and Nitrospirae in the rhizosphere 
varied (P<0.05) among germplasms, while the relative 
abundances of Actinobacteria, Firmicutes, Acidobacteria, 
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Gemmatimonadetes, Patescibacteria and Nitrospirae 
changed (P<0.05) with growth stage (Appendix D).  
Moreover, six phyla were interactively affected (P<0.05) 
by germplasm and growth stage.  The relative abundance 
of Firmicutes was greater in the inbred lines than in the 
landraces and teosinte (Welch’s t-test, P<0.05, Bonferroni-
corrected) (Fig. 3-A–C; Appendix D).  Bacteroidetes had 
significantly greater relative abundance in the rhizosphere 
of inbred lines than in the landraces and teosinte at the 
flowering stage, while an opposite trend was observed at 
the maturity stage (Fig. 3-A–C).

At the genus level, 56 and 60 genera were significantly 

(P<0.05) affected by germplasm and growth stage, 
respectively (Appendix E).  Moreover, 63 genera were 
interactively affected (P<0.05) by germplasm and 
growth stage.  Among them, Bacillus, which belongs to 
Firmicutes, was enriched in the rhizosphere of the inbred 
lines at the flowering and maturity stages but not at the 
seedling stage.  Streptomyces affiliated to Actinobacteria 
were enriched in the rhizosphere of landraces at the 
seedling and flower stages but enriched in the rhizosphere 
of teosinte at the maturity stage (Appendix E).

A linear model analysis was used to identify bacterial 
OTUs significantly enriched in rhizosphere soil of teosinte, 

Fig. 1  Origin and genetic structure of the maize accessions.  A, maize domestication and improvement process.  B, neighbor-
joining phylogenetic tree constructed based on 8 463 SNPs.  C, admixture plot showing clustering of different accessions into three 
clusters based on Bayesian-based clustering analysis.
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Fig. 2  Rhizobacterial community diversity and structure of maize.  A, estimated rhizobacterial Shannon diversity indexes from 
teosinte, landrace and inbred lines.  Statistically significant differences were determined by one-way ANOVA with Student’s t-test 
(P<0.05).  B, principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarities of 16S rRNA diversity in the rhizosphere of 
the three maize germplasms (permutational multivariate ANOVA (PERMANOVA), P=0.001).  C, three growth stages (PERMANOVA, 
P=0.001).  D-F, three germplasms in the seedling (PERMANOVA, P=0.001). flower (PERMANOVA, P=0.001),  and maturity stages 
(PERMANOVA, P=0.001), respectively. 
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landraces and inbred lines.  At the seedling stage, OTUs 
belonging to Bacillus, Streptomyces and Sphingomonas 
dominated in the rhizospheres of teosinte, landraces and 
inbred lines, respectively (Fig. 4).  At the flowering stage, 
OTUs belonging to JG30-KF-AS9, Sphingomonas and 
Devosia were mainly abundant in teosinte, landraces 
and inbred lines, respectively.  At the maturity stage, 
Glycomyces, JG30-KF-AS9 and Bacillus were dominant 
in the rhizosphere of teosinte, landraces and inbred lines, 
respectively.  More detailed information is available in 
Appendices F and G.

3.4. Bacterial biomarkers for germplasm groups

The random forest model based on the family level 
showed the highest accuracy (83.7%) within all taxonomic 
levels (Appendix H).  The importance of indicator bacterial 
families was assessed by a 10-fold cross-validation 
of eight replicates.  The cross-validation error was the 
lowest when the 21 most relevant families were used 
in the analyses.  Thus, we defined these 21 families as 
biomarker taxa (Appendix I).  Among them, five, five and 
four families showed the highest relative abundances in 
teosinte, landraces and inbred lines, respectively (FDR 
adjusted P<0.05, Wilcoxon rank sum test) (Appendix I).   
Microbacteriaceae and Glycomyceatceae were the 
highest in teosinte, Streptomycetaceae was the highest in 
landraces, and 0319-6G20 was the highest in the inbred 
line genotype (Appendix I).

3.5. Core microbiome for germplasm groups

Among the total of 9132 OTUs, we found that five 
OTUs; i.e., OTU3725 (Bacillus), OTU4484 (Bacillus), 
OTU4419 (Sphingomonas), OTU7344 (Sphingomonas) 
and OTU7265 (Chujaibacter), were consistently present 
in the rhizosphere of all germplasms across the growth 
stages (Fig. 5-A–E).  In addition to the common core 
species mentioned above, OTU3955 (norank_Gaiellales) 
and OTU4054 (Sphingobium) were core species specific 
to teosinte and landraces, respectively, while OTU1750 
(Bacillus) and OTU4054 (unclassified_Rhizobiaceae) 

were the core species specific to inbred lines (Fig. 5-F–I).  
The total relative abundance of OTU3725, OTU4484 and 
OTU1750 belonging to Bacillus was 6.2%, and the total 
relative abundance of OTU4419 and OTU7344 affiliated 
with Sphingomonas was 2.0%.

3.6. Higher co-occurrence network complexity in 
domesticated maize

Using the combined 16S rRNA data for the three stages 
of the three genotypes, the co-occurrence network in the 
rhizosphere showed marked differences in complexity 
among teosinte, landraces and inbred lines (Fig.  6; 
Table  2).  Briefly, the average clustering coefficient 
(avgCC) and average degree (avgK) decreased with 
domestication and genetic improvement, while the 
average path length (APL), negative correlations and 
modularity (M) showed the opposite trend.  The keystone 
species of the bacterial network in the rhizosphere were 
identified by calculating node degree, closeness centrality 
and betweenness centrality for all nodes in the network 
(Appendix J).  In general, OTU6313 (norank_JG30-
KF-AS9), OTU8602 (WX54) and OTU7370 (norank_
Amb-16S-1323) were identified as keystone species 
for teosinte, while OTU8091 (norank_JG30-KF-AS9), 
OTU273 (norank_IMCC26256) and OTU6 (norank_
Elsterales) were keystone species for the landraces.  
For the inbred l ines, the keystone species were 
OTU7272 (uncultured_JG30-KF-AS9) ,  OTU2948 
(uncultured_Fictibacillus) and OTU7056 (uncultured_
FCPS473).  

Moreover,  the co-occur rence network  in  the 
rhizospheres of different growth stages showed a similar 
trend across the growth stages (Appendix K).  In general, 
the avgCC and avgK decreased with domestication and 
genetic improvement at the three growth stages, while the 
APL and M showed the opposite trend.  However, the APL 
did not show a regular trend at the three growth stages 
(Appendix L).

3.7. Association of rhizobacterial community with 
soil chemical properties

In RDA (Fig.  7-A), the soil physical and chemical 
properties that were significantly correlated with the 
bacterial community were selected by the mantel 
test.  The direction and length of the arrow shows 
the effect of environmental factors on the bacterial 
community, indicating the relationship between soil 
chemical characteristics and bacterial community 
s t ructures.   For  the f i rs t  two axes of  RDA, the 
variances explained were 39.9 and 20.3% of the total 

Table 1  The effects of germplasm and growth stage of maize 
on the differentiation of bacterial communities based on 
permutational multivariate ANOVA (PERMANOVA)

Factor
Bacterial 

community
Bacterial 
diversity

R2 P-value R2 P-value
Germplasm 0.068 0.001 0.304 0.004
Growth stage 0.151 0.001 0.051 0.371
Germplasm×Growth stage 0.116 0.001 0.211 0.004
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Fig. 3  Analysis of the differences in relative abundance at the genus level among teosinte, landraces and inbred lines at the 
seedling (A), flowering (B) and maturity (C) stages.  Statistically significant differences were determined by Welch’s t-tests followed 
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Fig. 4  Taxonomic distribution of bacterial taxa among different maize accessions at each growth stage.  A–C, ternary plots depicting 
compartments showing the distributions of community differentiation among different germplasm groups at each growth stage.  Each 
circle represents an operational taxonomic unit (OTU).  The size of each circle represents its relative abundance.  The position of 
each circle is determined by its contribution to the total relative abundance.  Colored circles represent germplasm groups in one 
compartment; i.e., green for teosinte, red for landraces, and orange for inbred lines, whereas grey circles represent OTUs that are 
not significantly enriched in a specific compartment.  The numbers of differentiated OTUs are displayed in brackets at the vertex of 
the ternary plots.  D–F, the pie charts show the relative abundance (%) of enriched OTUs in different phyla in each compartment.
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variation, respectively.  The bacterial communities 
in the rhizosphere were significantly correlated with 
Olsen-P and NH4

+ (Fig. 7-A).  Moreover, the Shannon 

index was positively correlated with pH, Olsen-P and 
NH4

+ (Fig. 7-B).  The soil chemical characteristics are 
shown in Appendix M.
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Fig. 6  Co-occurrence network of the rhizobacterial community for teosinte (A), landraces (B) and inbred lines (C).  Nodes represent 
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Table 2  Topological characteristics of rhizobacterial networks for teosinte, landraces and inbred lines 
Network metrics Teosinte Landraces Inbred lines
Number of nodes 94 85 100
Number of edges 401 569 643
Number of positive correlations 326 (81.30%) 393 (68.89%) 392 (60.96%)
Number of negative correlations 75 (18.70%) 176 (31.11%) 251 (39.04%)
Average path length (APL) 3.18 2.515 2.75
Graph density 0.092 0.16 0.13
Network diameter 8 6 7
Average clustering coefficient (avgCC) 0.61 0.64 0.66
Average degree (avgK) 8.53 13.38 12.86
Modularity (M) 1.05 1.665 5.21
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Fig.  7  The correlations between microorganisms and environmental factors.  A, redundancy analysis (RDA) constraining 
rhizobacterial community structure by soil chemical properties across all samples.  B, linear regression relationships between 
soil chemical properties and Shannon’s diversity.  SOC, soil organic carbon; Olsen-P, available phosphorus; NH4

+, ammonium 
nitrogen; NO3

–, nitrate nitrogen.
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4. Discussion

Domestication could change the root architecture, 
such as root length and branching, as well as root 
exudation, which likely affects rhizobacterial community 
diversity and structure (Pérez-Jaramillo et al. 2017).  
The maize domestication and genetic improvement 
process increased the rhizobacterial community diversity 
(Fig. 2-A), which was consistent with previous findings 
(Shenton et  al. 2016) that domesticated accessions 
of rice displayed higher alpha diversity than their wild 
accessions.  However, this result was against our 
hypothesis, and Pérez-Jaramillo et  al. (2017, 2019) 
found that there were no significant differences in the 
alpha diversity between wild and modern accessions of 
Phaseolus vulgaris.  Moreover, bacterial diversities were 
even lower in other modern crops, such as soybean and 
sunflower, when compared with their wild genotypes (Jeff 
et al. 2017; Liu et al. 2019).  The different compositions 
of root exudates among crop species may contribute to 
these discrepancies.  In addition, the experiments were 
conducted under different soil conditions, which may 
lead to different results, as soil heterogeneity is one of 
the main factors affecting rhizosphere microorganisms 
(Garcia-Palacios et al. 2012; Hartman et al. 2018).  Future 
experiments in different soils could help to elucidate the 
general trend of the influence of domestication on the 
rhizosphere microorganisms.  

A positive correlation of the Shannon index with 
labile nutrient concentrations indicates that inbred 
lines did not suppress microbial diversity, as enriched 
nutrients promote certain taxa and thus lower diversity 
(Lian et  al. 2019).  Therefore, in this study, organic 
compounds released from roots played a major role in 
their influence on microbial diversity in the rhizosphere.  
In addition, fertilization likely imposed a greater impact 
on the microbial diversity in the rhizosphere of teosinte 
than inbred lines, as modern accessions are adapted 
to a high input of fertilizer (Pérez-Jaramillo et al. 2019).  
However, these assumptions warrant further investigation 
of the microbial community metabolizing plant-derived C 
compounds under different fertilization conditions.

A previous study has found that the core microbiomes 
of teosinte and landrace seed endophytes were 
identified as belonging to Paenibacillus, Enterobacter, 
Methylobacterium, Pantoea and Pseudomonas, while 
Stenotrophomonas were only found in seeds of the wild 
ancestors (Johnston-Monje and Raizada 2011).  In this 
study, a common set of five core microbiomes was found 
in rhizosphere soil of wild and domesticated genotypes, 
indicating that some microbe affinities were retained after 
the domestication and genetic improvement processes 

both in seed endophytes and the rhizosphere soil.  
However, these core microbiomes showed various relative 
abundances in the rhizosphere of different genotypes.

The domestication and genetic improvement processes 
altered the core microbiome in the rhizosphere, which 
was likely associated with plant adaptability to farming 
environments.  The core OTU3955 (norank_Gaiellales) 
was specific to teosinte in comparison to OTU4054 
(Sphingobium) for landraces.  These core OTUs were 
different from the OTU1750 (Bacillus) and OTU4054 
(unclassified_Rhizobiaceae) of inbred lines (Fig. 5-F–I).   
The change in core OTUs over the domestication 
and improvement processes was likely relevant to the 
improvement of biotic stress resilience and soil nutrient 
availability to the plants.  Some Sphingomonas strains could 
protect plants by producing some antibiotic compounds, 
which may be partially responsible for the control of some 
soil-borne fungal pathogens present in domesticated 
maize (Chagas et al. 2018).  These bacteria probably 
responded more efficiently to root signals, such as alkaloids, 
terpenoids and lipids released by the roots of domesticated 
maize (Chagas et al. 2018; Xu et al. 2019).  In addition, 
Sphingomonas were also reported to be able to degrade 
lignin and pectin (Hashimoto and Murata 1998; de Gonzalo 
et al. 2016), which may be associated with the mineralization 
of organic matter that facilitates the transformation of 
nutrients making them available to plants as well.

As a core OTU in the rhizosphere inbred lines belonged to 
Bacillus, a number of studies have demonstrated that species 
of Bacillus have been identified as plant growth promoters 
(Canbolat et al. 2006) and biocontrol agents for some 
pathogenic species (Kolton et al. 2011).  Some species were 
also considered phosphate-solubilizing bacteria (Zaidi et al. 
2009), which can mobilize insoluble phosphorus making it 
available to plants (Oteino et al. 2015).  Moreover, OTU6980 
(unclassified_Rhizobiaceae) was increased in the maize 
demonstrating the seedling and flowering stages (Fig. 5-I), 
and this result was partly consistent with Aymé et al. (2020)´s 
research in which the abundance of Rhizobiales significantly 
increased with the demonstration of tetraploid wheat.  
Rhizobiales are considered nitrogen-fixing bacteria (Wang 
and Bai 2019), implying that inbred lines in this study might 
facilitate a rhizobacterial function in N2 fixation.  However, 
some researchers speculate that modern maize may have 
lost or weakened genes related to the production of aerial 
root-associated mucilage to decrease the diazotrophic activity 
on N2 fixation (Van Deynze et al. 2018; Wang and Bai 2019).  
Considering these different findings, we assume that the 
modern accessions may uniquely interact with the aboriginal 
community composition in specific soils to maximize the 
nutrient availability in the rhizosphere.  Regarding Gaiellales, 
this genus was only recently identified and remains poorly 



1199HUANG Jun et al.  Journal of Integrative Agriculture  2022, 21(4): 1188–1202

understood (Albuquerque et al. 2011; Ma et al. 2016).
In addition to these core microbiomes, the genus 

Streptomyces was enriched in the rhizosphere of 
domesticated maize at the flowering stage.  Streptomycin, 
an antibiotic produced by Streptomyces, is antagonistic 
to gram-positive and gram-negative bacteria and has 
been shown to enhance plant defenses and trigger 
plant systemic resistance (Schatz et al. 2005; Chaparro 
et al. 2014).  Therefore, a higher relative abundance of 
Streptomyces indicates that domesticated maize might 
have more advantages in resisting stresses.  Interestingly, 
Chloroflexi and Acidobacteria were enriched in the 
teosinte rhizosphere at the flowering stage (Fig. 3-A).  
These two phyla were reported to be able to survive under 
nutrient-deficient or suboptimal abiotic conditions (Fierer 
2017), which may enhance teosinte adaptability to abiotic 
stress environments (Szoboszlay et al. 2015; Fierer 2017; 
Xu et al. 2019).  However, the extent to which these 
enriched bacterial taxa may improve the plant adaptability 
to biotic and abiotic stresses remains unknown, requiring 
more mechanistic experiments in the future.  These 
experiments also need to be carried out in different soil 
types and under different climatic conditions in order to 
evaluate the universality of the findings in this study.

The complexity of the rhizobacterial network increased 
with the domestication and improvement processes.  The 
greater modularity in the bacterial network of modern 
germplasm than wild germplasm could be attributed to 
increased interspecies competition (Saavedra et al. 2011; 
Fan et al. 2018).  Highly connected and modular microbial 
communities in domesticated maize can activate the plant 
immune system to accelerate the activation of pathogen 
defenses (Dodds and Rathjen 2010; Hu et al. 2020).  In 
this sense, the process of domestication and genetic 
improvement has a positive feedback on the rhizosphere 
soil microbial community structure, which may enhance the 
host competitiveness.  Moreover, the keystone species 
in the rhizosphere varied among teosinte, landraces and 
inbred lines, which would be a critical determinant of the 
other community compositions in the rhizosphere (Ma 
et al. 2016; Jiang et al. 2017).  The root architectures and 
metabolomes differ between wild and modern maize (Xu 
et al. 2019), which could influence microhabitats in the 
rhizosphere and consequently the network structure of the 
bacterial community (Pérez-Jaramillo et al. 2017).

The large production of sugar-rich mucus secreted from 
aerial roots of modern maize genotypes provides a habitat 
for nitrogen-fixing microorganisms, such as Rhizobium 
and Burkholderia species (Van Deynze et al. 2018).  The 
potential function of nitrogen fixation in modern maize 
increases the cycle of nitrogen, which may explain why 
the concentrations of NO3

– and NH4
+ increased in the 

rhizosphere of modern maize (Van Deynze et al. 2018).  
It is worth noting that although NH4

+ was analyzed as the 
main factor affecting the microbial community structure in 
this study, other soil chemical properties did not change 
significantly in the rhizosphere of those genotypes, 
since all genotypes were cultivated in the same soil with 
the same field management.  Root exudates and root 
morphology are expected to play a more important role 
in affecting the structure of the rhizosphere microbial 
community (Pérez-Jaramillo et al. 2017).  Therefore, 
future research should focus on the root exudates and 
root phenotypic traits associated with microorganisms.

5. Conclusion

Domestication and the genetic improvement of maize 
from teosinte to inbred lines led to an increase in 
rhizobacterial diversity.  The core microbiome in the 
rhizosphere of domesticated germplasms differed from 
wild germplasm and might increase the biotic stress 
resilience of plants and soil nutrient availability to 
plants.  The co-occurrence network structure was more 
complicated with domestication, which might enhance 
the competitiveness of domesticated maize in biotically 
stressed environments.  More information on microbial 
functions linking plant gene expression should be 
considered in the future to better understand the impact of 
the domestication and genetic improvement processes on 
feature-based microbiome assembly.  Moreover, more soil 
types should be considered for exploring general trends in 
rhizobacterial shifts during the domestication and genetic 
improvement processes.
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