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Abstract 

Human beings usually summarize documents by reading them in entirety, developing an understanding of 

the meaning of the content and highlighting the main features.  Automated text summarization (or text 

summarization) is a computerized process generating a summary for a given text.  Text summarization is 

challenging as machines have limited human knowledge, a limited ability to understand natural language and 

a limited ability to grasp the main features using knowledge.  In the thesis, we propose a Joint Knowledge-

based Topic Level Attention for a Convolutional Sequence Text Summarization System using Natural 

Language Representation (KTSNR) to resolve the challenges in text summarization that comprise ontology-

based machine-readable knowledge base (OMRKBS), a topic knowledge base (TKB) and a convolutional 

sequence network-based text summarization model with knowledge-powered topic level attention 

(KTOPAS). OMRKBS provides background knowledge about a term that is machine-interpretable and 

enables the machine to understand the text. OMRKBS uses natural language independent knowledge 

representation, rules and algorithms to transform and map the meaningful and structured information as 

background knowledge. TKB is a prior knowledge base which provides knowledge-powered topic 

information to an Abstractive Text Summarization model (ATS) model. TKB uses a knowledge-powered 

topic model (KPTopicM) to learn about the topic information that incorporates the background knowledge 

from knowledge bases (such as OMRKBS, ConceptNet and Probase) into a statistical model to produce 

coherent and meaningful topic information, which we call knowledge-powered topic information. KTOPAS 

is a text summarization model based on convolutional sequence networks with knowledge-powered topic 

level attention.  The framework incorporates knowledge-powered topic information (which is received from 

TKB) with a high-level topic attention which enables KTOPAS to produce coherent and human-like 

summaries with word diversity. The experiment results show that (1) OMRKBS achieves higher accuracy 

than the other baselines, namely ConceptNet, DBpedia and WordNet; (2) KTOPAS achieves more 

competitive results than other baselines by generating human readable, meaningful and informative 

summaries; and (3) TKB improves the effectiveness of the resulting summaries by providing knowledge-

powered topic information to KTOPAS and demonstrates the quality of the proposed system KTSNR. 

Keywords:  Deep Learning, Knowledge Base, Natural Language Representation, Topic Model, 

Concept, Abstractive Text Summarization, Convolutional Model, Attention Model.   
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Chapter 1.  

 

Introduction 

Automatic summarization means automatically summarizing text using machines. 

Automatic text summarization [1] focuses on compressing content into a brief version that 

carries the salient parts of the source articles [2]. The exponential growth of online text 

documents on the Internet means people have access to a huge amount of information such 

as news articles, scientific content, and legal documents which are much larger than the 

summaries of text information.  Consequently, users must spend a lot of time finding their 

target information from the large amount of textual data. Therefore, the urge to generate 

concise summaries of documents is becoming increasingly important and essential. Manual 

summarization which is the process of rephrasing or paraphrasing the full text into its short 

version manually is clearly not useful for such a huge amount of text information. Hence, 

automatic text summarization has become an interesting research area to academics.  A 

large body of research has been developed to improve automatic text summarization 

approaches over the last fifty years [1] [3-4].  

Extractive and abstractive summarization are two methods of automatic text 

summarization. Extractive text summarization (ETS) captures a subset of either sentences 

or words from the source text in the generated summaries and abstractive text 

summarization (ATS) generates novel summaries that capture the main theme or meaning 

of the document and paraphrases sentences based on the experience of the previous 

histories of the summarization instead of selecting sentences from the original text.  A large 

body of research has been published on extractive summarization over the past two decades 

[5-7]. Extractive summaries may lose the main context of the documents whereas 

abstractive summaries capture the actual context of the document. The ATS model 

represents the source text in a sequential representation, then produces a summary with 

new sentences that do not come from the source text. ATS produces text which is 

qualitatively closer to human-written phrases or sentences without being limited to phrases 

from the source document in the generated summaries. This is because ATS generates 

summaries from experience or history of the corpus and learns where and when to focus 



2 

on the specific words related to the source document.  Recently, the ATS model 

[36][42][145][146] has shown significant improvement compared to extractive summaries 

since it retrieves the information from multiple documents to create a precise summary of 

information. Therefore, we focus on the ATS approach to generate concise and novel 

summaries. Recently, deep learning-based ATS approaches have been proposed which are 

able to meet the expectations of researchers due to their prominent features and the 

effectiveness of their approach such as representing sequential documents, capturing 

contextual and semantic information, and generating new sentences [2] [7-10]. 

1.1. Challenges 

In general, the task of automatic text summarization is a significant challenge in the area 

of natural language processing (NLP) and artificial intelligence. Luhn [11] first introduced 

research on text summarization in 1958 which automatically generated the main theme of 

articles and papers. To provide summarized information of text by preserving the original 

meaning, many approaches have been proposed using either extractive [6], abstractive [10] 

or hybrid [8] approaches. These summarization approaches focus on various challenges in 

this research area such as: i) identifying the most important and relevant portion of the 

source text to be included in the generated summary  [12-13], ii) generating new relevant 

vocabulary or phrases in the summaries [14-15], iii) multi-document text summarization 

[16-18], iv) summarizing text which is long in length [15][17]  v) generating abstractive 

summaries [10][19-21] that are human readable and meaningful.   

However, most approaches often fail to generate coherent and concise summaries, losing 

the main theme and deviating from human-written summaries [142].  We know human-

written summaries are meaningful, readable, and relevant to the original document since 

human experts use short phrases or a small number of words to compose content, utilizing 

their previous knowledge and experience while focusing on the main topic and retaining 

the original meaning of the document. Humans usually follow three steps to summarize a 

document. First, they understand and summarize documents by reading them in entirety, 

developing an understanding of the meaning of the content, then highlighting the main 

features, and finally summarizing the text using short phrases or a small number of 
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words.  By imitating the same steps taken by humans to generate summaries, it is possible 

that a system will be able to generate summaries similar to a human-written summary. 

Therefore, we focus on building a complete ATS system by following the same steps as 

those followed by humans: i) understand text using background knowledge, ii) capture the 

main ideas and original meaning of the source text iii) generate summaries using phrases 

or words. However, researchers are still attempting to improve the various techniques and 

approaches to enable machines to produce relevant summaries that match human-written 

summaries. This is because machines have a limited ability in terms of human knowledge 

and their ability to understand language, so building this system is challenging. Limited 

research has been conducted on constructing this kind of system which acknowledges 

background knowledge while generating abstractive summaries. We describe the three 

challenges: understanding text, capturing the main idea and generating abstract summaries 

in the area of the automatic text summarization of research fields. 

1.1.1. Understanding Text  

Humans use natural language for communication through speaking or writing. In 

computing, natural language represents the information of human knowledge and uses 

computational methods to analyze the textual data using a process known as natural 

language processing (NLP). This process gives computers the ability to read, understand 

and interpret human language. NLP investigates how to effectively generate and 

understand human language in text. This is not a simple task, as it involves a deep 

understanding of human language. To generate human-like summaries, the system needs 

to represent important, relevant semantic information of the source document. To extract 

the important relevant information, the system needs to understand the text and to 

understand the text, the system requires background knowledge of the text which is 

machine readable and interpretable. NLP techniques are used to analyze the syntactic and 

semantic information. Syntax refers to the way words are arranged in a sentence to allow 

it to make grammatical sense. Semantics refers to the meaning expressed by a text. 

Therefore, the domain of NLP research can be utilized in the problem of text 

summarization, in which the objective is to understand and shorten the source text using 
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the background knowledge while retaining the most important information and ensuring 

that the output summary is human-readable.   

A machine-readable knowledge base (MRKB) is a repository that provides structured, 

logical, meaningful information about a term which is accessible and interpretable by the 

system. We call this information rich structured information (RSI). Huge efforts have been 

made to obtain the RSI and construct the MRKB with RSI [22-25]. Ontologies are 

representations of a shared conceptualization of various domains and great success has 

been achieved in the extraction, sharing, reuse and representation of knowledge.  Recent 

research [24-25] which uses an ontology as a repository for MRKB has been proven 

effective. However, it is a long-term issue to build an ontology- based MRKB with RSI 

which can provide fully machine interpretable individual and structural features about a 

term. By resolving the challenges in constructing the ontology based MRKB, the MRKB 

enables the system to understand the context and the interpretation of words and the form 

of sentences. 

1.1.2. Capturing the Main Idea 

Due to the considerable amount of redundant and irrelevant information in the collection 

of texts, it is challenging to focus on important and relevant features while generating 

summaries. Therefore, ATS often fails to capture the salient information in the generated 

summaries. Extracting the salient features from the source text is one of the important steps 

in text summarization.  Recently, topic models that are used for learning hidden topics have 

received much attention in automatic summarization research fields.  A topic model is a 

kind of a probabilistic generative model that originated from the field of NLP and is widely 

applied in text mining.  Latent semantic indexing (LSI), a topic model, was introduced in 

1990 [26] and served as a base of the development of the topic model. However, LSI cannot 

be considered as a genuine topic model because this is not based on a probabilistic model. 

Later, probabilistic latent semantic analysis (PLSA) [27] based on LSA was introduced and 

is considered as a valid topic model. In 2003, a complete statistical topic model Latent 

Dirichlet allocation (LDA) was proposed [28] which is an extension of PLSA. Nowadays, 

LDA serves as a base for the improvement of the topic model and there are an increased 
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number of research studies which introduce the topic model based on LDA for various 

purposes, such as classification, clustering, feature selection, and topic identification [29-

31]. LDA represents a document using the hidden labels (also called topics) as a 

distribution over topics where topics are distributions over vocabulary. As each topic is 

represented by a number of words with the highest probability from its distribution, topics 

can be expressed clearly. Therefore, a topic represents semantic and coherent information. 

LDA is an unsupervised approach and is able to effectively handle the challenges which 

are due to a lack of supervised and huge unlabeled data. However, the advantage of having 

a background knowledge of a document is not utilized properly in a statistical LDA model 

which often results in the failure to generate coherent and consistent information on a topic. 

Incorporating prior knowledge in a statistical topic model could potentially result in further 

improvement [32-33]. 

1.1.3. Generating Abstractive Summaries  

Recently, many neural abstractive summarization models have been proposed that use 

either LSTM-based sequence-to-sequence [34-38], attentional models [39-40] or 

Transformer [9][41] as their backbone architectures. The attention model [39] is a 

mechanism to measure the weights to put attention at the encoder states for each decoder 

state in the neural network. These models also integrate various techniques into their 

backbone architecture such as coverage [41], copy mechanism [42], pretrained approach 

[43] and content selector module [44] to improve their performance. Furthermore, recent 

work has been conducted on abstractive summarization based on reinforcement learning 

techniques that optimize objectives in addition to the standard maximum likelihood loss 

[20][45].  Most models are based on the sequential recurrent neural network (S2S-RNN) 

ATS [36]. There are several drawbacks to using S2S-RNN: i) the current hidden state 

depends on the previous histories of the hidden state that prevents parallel computation 

within a sequence, ii) it is not trained to capture word dependency nor the patterns in the 

text, such as key phrases. On the other hand, the convolutional sequence network (CSN) 

[80] is a convolutional neural network [75] based architecture for seq2seq learning. In this 

model, the current state is independent which allows parallelization over every element in 

a sequence. Both RNN- and CSN-based ATS use the attention mechanism to decide which 
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source words in the inputs should be the focus when generating a summary at the decoder 

state. Researchers have proposed several CSN-based text summarization models. 

However, most approaches have a tendency to include irrelevant and ambiguous 

information from the source in the summaries. The reason for this is that these models 

consider the attention of a source word to the summary and do not consider high-level 

attention in terms of topic information or the background knowledge of the source text to 

the summary.  

Limited models propose a topic-based-level topic attention where the topic information is 

chosen using the LDA statistical topic model [1][3]. These models incorporate the topic 

information in ATS using high-level attention. However, the topic information is based 

only on the statistical LDA model without prior background knowledge which may focus 

on irrelevant topic words and result in generating incoherent and redundant summaries.   

Conceptual information is the commonsense knowledge or external information of the 

source text from a concept-based knowledge base which captures the latent semantic 

information of the text and provides contextual information. Ontology-based knowledge is 

a kind of concept-based knowledge base. Using conceptual information as background 

knowledge in topic models would be a potential solution to enrich the novelty of topics. 

Currently, there has been limited research on deep learning-based ATS using conceptual 

information. To bridge the gap between the topic information and background knowledge 

of the document in the summaries, incorporating topic information based on background 

knowledge into a CSN-based summarization model could be effective. 

1.2. Motivation 

The motivation for the research is to build an automatic text summarization system which 

can understand documents by interpreting and apprehending the content using background 

knowledge, which is capable of capturing the topic information with that knowledge and 

which is able to generate a summary that is qualitatively close to human-written sentences.  

The question to be addressed is: how can a machine interpret and understand a document 

using knowledge, identify the topic information from the document and then summarize 

the text in a way that is close to human-written summaries?  
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1.3. Objective 

In this thesis, our main objective is to build a system which enables a machine to summarize 

a document similar to the process followed by humans. For this, we focus on three tasks: 

first, understanding documents by interpreting and apprehending the content using NLP. 

We aim to obtain machine interpretable information (RSI) from the background knowledge 

of terms, and then construct an ontology-based machine-readable knowledge-based system 

by mapping the RSI so that a machine can read and understand the knowledge about the 

terms from that knowledge base. Second, we aim to obtain the salient features from the 

text using background knowledge. We incorporate the extracted RSI from the first step as 

the background knowledge of the source to the statistical topic model to reveal the hidden, 

contextual and meaningful topic information of the source text. Finally, we generate 

summaries that are qualitatively close to human-written sentences. We aim to summarize 

the document with a deep learning-based abstractive text summarization model (such as 

the CSN-based text summarization model) by incorporating the topic information 

generated in the second step. We propose a framework to build a complete ATS system 

based on deep learning called Joint Knowledge-based Topic Level Attention for a 

Convolutional Sequence Text Summarization System using Natural Language 

Representation (KTSNR) which consists of three steps: OMRKBS, TKB and KTOPAS.  

First, we construct an ontology-based machine-readable knowledge base system 

(OMRKBS) using natural language independent knowledge representations to provide RSI 

about a term which is machine-interpretable and accessible. Natural language independent 

knowledge representations (NLIKR) is a scheme to represent the individual features of 

human knowledge that are readable by machines. NLIKR regards each word as a concept 

which should be defined by its relations with other concepts. ORMKBS employs 

algorithms and rules to transform the text into RSI. OMRKBS utilizes NLIKR to discover 

concepts and their relations in RSI and maps the RSI information in OMRKBS. OMRKBS 

helps the system to understand the text by providing the RSI as background knowledge 

while obtaining topic information in the next step.  
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Second, we construct a knowledge base to provide topic information based on background 

knowledge (which is retrieved from OMRKBS, ConceptNet and Probase) called a Topic 

Knowledge Base (TKB).  We introduce a conceptualization algorithm to derive the 

probability distribution of concepts or the background knowledge of each word in the text. 

We propose the Knowledge-powered Topic Model (KPTopicM) which incorporates 

background knowledge using concept distribution into a statistical topic model to produce 

topic information. We trained KPTopicM and use this learned data as a prior repository 

called TKB. We use TKB as a prior knowledge base to enable the system to identify the 

topic information based on background knowledge while generating summaries in the next 

step.  

Table 1.1: Example of generated output from the three-step framework 

OMRKBS  

Background knowledge of a concept: 

‘earthquake’: “An earthquake is the shaking of the surface of the Earth resulting from a sudden release of 

energy in the Earth's lithosphere”. 
‘military campaign’: “A military campaign is a long-duration significant military strategy plans incorporating a 

series of interrelated military operations or battles forming a distinct part of a larger conflict often called a 

war.”   

Structural information (RSI) of the concept from OMRKB:  

‘earthquake’: <earthquake, shake, surface> < earthquake, results from, release of energy, in, Earth's 

lithosphere> 

‘military campaign’: <military strategy, plans> <incorporate, military, operations >< incorporate, battles> 

<form, conflict> <war> 

TKB  

Earthquake: Japan, earthquake, tsunami, disaster, shake, loss, nuclear, crisis, radiation, Asia 

military campaign’: 

KTOPAS 

Input 1:  A fairly large earthquake measuring a magnitude of 6.7 on the Richter scale rocked wide areas of 

central and western Japan Sunday, followed by four aftershocks, the meteorological agency said. 

Input 2: Barak Obama on Wednesday announced the closure of government schools with immediate effect 

as a military campaign against religious separatists escalated in the north of the country. 

Generated Summary of Input1: Powerful earthquake shakes the wide area of Japan. 

Generated Summary of Input 2: America shutdown school because war escalated in the north of the country. 

Finally, we propose a convolutional sequence network-based text summarization model 

with knowledge-powered topic level attention (KTOPAS) to generate a meaningful and 

concise summary.  The framework incorporates knowledge-powered topic information 

(which is retrieved from the prior TKB) into a convolutional sequence text summarization 

model with high-level topic attention. This model introduces a tri-attention mechanism 

which enables the model to produce coherent and human-like summaries with word 

diversity. KTOPAS comprises a three-level CSN: word, knowledge and topic-level CSN 
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to capture the contextual alignment information from three aspects. The source inputs and 

knowledge-powered topic information are encoded at the encoder and the summary output 

at the decoder of the word and topic-level CSN respectively. The knowledge-level CSN 

encodes the input elements at the encoder to decode the knowledge-powered topic 

information at the decoder. We compute the attention jointly from the three-level CSN and 

combine them into one. We introduce a final probability distribution to predict the next 

target of the summary output at the decoder state. 

In our earlier research, we first identified the topic information from the background 

knowledge using the classic LDA topic model and then incorporated the topic information 

into the CSN-based ATS model. We present this research in chapter 5. However, the classic 

LDA model does not consider word dependencies in topic information and only considers 

concepts as background knowledge. Therefore, we extend our research by proposing a 

topic model called the knowledge-powered topic model (KPTopicM) and constructing a 

prior TKB using the KPTopicM. TKB provides a knowledge-powered topic model to 

KTOPAS.  KTOPAS considers indirect word dependencies and the direct dependencies of 

concepts in the topic information. We present an extension of this research in chapter 6. 

Once we built the system KTSNR, we trained KTSNR using the Gigaword and CNN/Daily 

mail datasets.  Table 1.1 shows examples of the output of our three-step framework. These 

examples will be used in this thesis to illustrate the steps of the framework. We see from 

Table 1.1 that OMRKB generates the RSI for each concept, such as ‘earthquake’ and 

‘military campaign’, TKB generates topic information based on the background 

information of ‘earthquake’ and ‘military campaign’, KTOPAS generates summaries for 

the two examples where these concepts are key words. 

1.4. Contributions 

The major contributions of the research are as follows: 

KTSNR:  We build a Joint Knowledge-based Topic Level Attention for a Convolutional 

Sequence Text Summarization System using Natural Language Representation (KTSNR) 
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to generate human readable, meaningful and concise summaries that resemble human-

written summaries. We describe the contributions of the three parts of KTSNR as follows. 

 

A. OMRKBS 

• We propose a framework to automatically develop a comprehensive ontology-

based machine-readable knowledge base system (OMRKBS) with RSI to provide 

machine interpretable, individual, meaningful and salient features with a diverse 

range of vocabulary. 

• We propose algorithms to transform the text to RSI and devise formulas to discover 

concepts and their relations in the RSI and design a program to map RSI in 

OMRKBS. 

• The OMRKBS achieved better results in terms of accuracy compared to the others 

KBSs, namely Dbpedia, WordNet and ConceptNet. 

 

B. TKB 

• We propose a conceptualization algorithm that retrieves semantically relevant and 

salient background knowledge of the document.  

• We develop a KPTopicM algorithm to incorporate conceptual information in the 

topic model to generate coherent and relevant topic information to the source text. 

• We construct a prior topic knowledge base using KPTopicM to provide knowledge-

powered topic information to KTOPAS.  

• KPTopicM achieved better results in terms of accuracy compared to the other topic 

models, namely LDA and KB-LDA. 

 

C. KTOPAS 

• We propose a deep learning-based abstractive text summarization model with 

knowledge-based topic level attention (KTOPAS) that incorporates generated topic 

information-based background knowledge using a high-level topic attention to 

produce coherent and human-like summaries with word diversity. 

• We introduce a tri-attention channel which jointly learns the attention of the word, 

knowledge, and topic level attention, and then combines the three attention weights 
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into one and produces the final attention weight to generate semantically well-

formed and coherent summaries. 

• We produce the final probability distribution of the next target element in the output 

summary at the decoder of the word and topic level convolutional network. 

• KTOPAS achieved better results in terms of accuracy compared to other state-of-

the-art methods. 

 

Figure 1.1: Example of the application of summarization in real technology.  

1.5. Significance of the Research 

As we know, there is a massive amount of data available upon request on the Internet. Most 

data appear to be unnecessary to the user, making it difficult for users to learn about news, 

events, objects, services or terms.  A considerable amount of time and effort is required to 

extract actual facts from the large amount of textual data available. A concise and 

meaningful summary of a source description can give users an idea about the facts.  A user 

does not have to spend time and effort to read the whole content which possibly contains 

unnecessary information. They can look at the brief and concise summary and obtain a 

simple idea of what the content is about. Figure 1.1 shows an example of the query result 

https://dictionary.cambridge.org/dictionary/english/considerable
https://dictionary.cambridge.org/dictionary/english/amount
https://dictionary.cambridge.org/dictionary/english/time
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of the search term ‘nasa perseverance rover’ from Google. ‘Perseverance is a rover which 

Nasa launched to explore Mars in 2020’. We can obtain news about the Perseverance rover 

from Google where each result contains a headline and a summary of the news. Therefore, 

the user can understand what the Perseverance rover is when they read the summary of 

each result. Moreover, a short summary, which conveys the essence of the document, helps 

the search engine find relevant information quickly. This is because summarization 

provides a way to cluster similar documents and present a summary. When a search engine 

obtains the summaries of each result for the query, the system clusters similar results and 

presents the results to the query. Summarization can be applied in various areas such as: 

search engine queries, generating news headlines, monitoring the media, classifying the 

intent of chatbots, interpreting product reviews and so on. Therefore, text summarization 

has attracted a high level of interest from researchers. However, ATS models have various 

limitations due to the challenges we mentioned earlier such as a lack of understand the 

content, a failure to capture topic information and a focus on irrelevant information. We 

focus on generating human-like summaries by exploring the advantage of following the 

same procedure followed by humans and resolve the challenges by retrieving the 

background knowledge, understanding the content, and identifying topics using contextual 

and semantic information. 

 In this thesis, we identify the research gap in utilizing background knowledge while 

capturing topic information in the generated summaries. Our OMRKBS provides latent 

and structured information which helps the model understand the content. We use this 

OMRKBS to retrieve the semantic and informative background knowledge and use 

KPTopicM to obtain coherent and consistent topic information from this background 

knowledge. We built a prior topic knowledge base (TKB) with the pre-trained KPTopicM 

model. Also, the importance of rare words is ignored sometimes since the current state-of-

the-art ATS model does not consider knowledge about rare words. Conceptualization and 

TKB help to recognize the importance of rare words in the document using the background 

knowledge of the words in the document. Our summarization model KTOPAS uses this 

TKB to capture the coherent salient information from the knowledge background in the 

generated summaries.  KTOPAS utilizes the properties of CSN to improve the accuracy 

and execution time of our proposed ATS model. The tri-attention channel makes the 
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KTOPAS model more efficient by capturing more relevant latent semantic and contextual 

information from the text while generating coherent and semantically well-formed 

summaries. The probability distribution helps to decide the output of each state and 

whether to include the information from the original or topic knowledge and reinforcement 

learning to maximize the output. Finally, the full KTSNR system is capable of generating 

coherent, concise and relevant summaries with word diversity in a way which is similar to 

humans.  

1.6. Structure of the Thesis  

Chapter 2 provides a literature review, background on the fundamental, recent research and 

the competitive baselines that are related to this thesis, starting with the knowledge 

extraction step which involves various commonly used knowledge bases, natural language 

processing (NLP), NLP tools and the natural language representation approach. Then, the 

LDA topic model is reviewed which is widely used by the suggested methods to obtain 

topics from data mining the literature. Finally, we discuss the fundamental background 

which is required to develop an ATS model, such as word embedding, neural network 

theory, encoder-decoder sequence network and the attention mechanism, and the recent 

work on automatic text summarization from extractive to abstractive summarization. 

Chapter 3 presents the problem of the abstractive text summarization model in detail and 

gives a brief description of whole thesis methodology, describing how the methodology 

solves the problem step by step and details the significance (contribution) of our research. 

Chapter 4 describes the construction of the OMRKBS framework to construct an ontology-

based machine-readable knowledge base to provide machine readable information about a 

term. It starts by discussing the challenges in obtaining RSI and constructing a machine-

readable knowledge base and introduces solutions to resolve these challenges. Then, it 

describes the related work and recent work on knowledge base system construction with 

RSI. We present our methodology for the construction of OMRKBS, followed by 

OMRKBS output representation. Then, the experiment results on the available dataset are 

discussed. We published a journal paper using the research in this chapter. 
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Chapter 5 proposes a CSN-based abstractive text summarization model called 

TEXSCTTA.  This model incorporates topic information based on the background 

knowledge using a high-level attention mechanism. First, we discuss the challenges in 

capturing salient information due to the lack of background knowledge in the text 

summarization model, followed by the recent work on the ATS model. Next, we propose 

a convolutional sequence network (CSN)-based ATS model to resolve the challenges. 

Then, we conduct the experiments and evaluate our model against other models. Finally, 

we conclude the chapter. One conference paper has been accepted based on the research in 

this chapter. 

Chapter 6 is an extension of the research in chapter 5. In chapter 5, topic information is 

chosen from the background knowledge based on the classic LDA topic model. In this 

chapter, we propose a new topic model KPTopicM and topic information is obtained using 

KPTopicM. This KPTopicM has been incorporated in the proposed ATS model discussed 

in chapter 5. This chapter first introduces the problem of obtaining coherent topic 

information and generating meaningful and concise summaries due to the failure to identify 

coherent information. Next, the related and recent work is discussed. Then, an approach is 

presented to construct a prior topic knowledge base using KPTopicM to provide topic 

information to our summarization model. Then, we propose knowledge-powered topic-

level attention to the convolutional sequence-based text summarization model (KTOPAS) 

to incorporate the topic information generated from the prior topic knowledge base. 

Finally, we discuss the results of our experiment and the evaluation. Our experiment shows 

that KTOPAS improves the accuracy of the summary results compared to the TEXSCTTA 

model discussed in chapter 5. We submitted a journal paper based on the research in this 

chapter.   

Chapter 7 is the final chapter where we draw a conclusion, discuss the limitations and 

provide suggestions for future work. 
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Chapter 2.  

 

Related Work and Background 

There is a large body of research on automatic text summarization from obtaining the 

meaningful background knowledge and topic information of the document to summarizing 

the document using topic information.  Earlier [1] research extensively focused on the area 

of automatic text summarization; later significant developments were made in 

summarization from extractive [5] aspects to more abstractive [8] aspects.   This chapter 

reviews the recent literature on the progress made on knowledge extraction, topic 

identification and automatic text summarization.  

2.1. Knowledge Representation 

Humans can easily understand the meaning and identify the topics of content since we have 

knowledge of an object or term which has been acquired through experience over years 

and stored in memory. We take the following sentence as an example: “A fairly large 

earthquake measuring a magnitude of 6.7 on the Richter scale rocked wide areas of central 

and western Japan Sunday, followed by four aftershocks, the meteorological agency said.” 

As we have knowledge of earthquakes, we know this is not a person, rather this is a natural 

disaster which can shake the earth’s surface. However, machines are unable to comprehend 

what they read, so it is a significant challenge for machines to understand the meaning of 

a text segment in natural language. To start, we describe the related work and the 

techniques in knowledge representation. 

2.1.1. Natural Language Representation 

A natural language is a tool in the representation of the individual features of human 

knowledge. Natural language processing (NLP) enables machines to extract and analyze 

information about terms. Since our interest is to structure text into machine-readable 

information, which is aligned with the purpose of natural language, our focus is on 

representing information using NLP. 
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2.1.2. Machine-Readable Knowledge Base 

A machine-readable knowledge base (MRKB) [46] stores features and structured 

information on terms which is accessible by systems. The MRKB maps the structured 

information to enable the machine to interpret and understand the information. Researchers 

have made progress in extracting features and obtaining structural information from 

various sources. However, these methods often face challenges in obtaining information 

that is machine interpretable and easy for human beings to understand. Moreover, the 

explicit representation usually ignores the context of text and cannot capture the semantic 

features of a document. We know that human language requires taxonomies or ontologies 

to interconnect concepts in the domain to understand text. There are many knowledge bases 

or ontologies for a specific domain [47-48], but the availability of a useful comprehensive 

knowledge base is limited online. These knowledge base systems share two drawbacks:  i) 

concept space is limited in the existing knowledge base, ii) the processes to construct a 

knowledge base to improve the quality of information are not accurate. Thus, there are 

inaccuracies and inconsistencies in the knowledge base while under construction. 

A concept-based knowledge base [49-53] is a type of MRKB that utilizes taxonomies and 

ontologies to discover concepts and establish the relationships among concepts to map the 

information in the MRKB. An ontology is the formal representation of knowledge by a set 

of concepts that can be operated as a knowledge base in various text mining tasks such as 

clustering [54-55], classification [56-57], summarization [130-131] and others. OWL is the 

ontology representation language used and the output from Protégé-OWL is an XML-based 

file format, which facilitates further application and communication. The construction of a 

knowledge base system (KBS) based on an ontology is gaining increasing attention from 

the research community [22][60][46]. Most research studies provide descriptions of 

concepts using the relations between concepts [61-62] and a more enriched meaning [63-

64]. The attributes or descriptions are from sources that are publicly available but are 

difficult to obtain and structure into a single KBS [46]. Currently, there are a large number 

of studies on the construction of these resources, some of the most commonly used being 

ConceptNet [50], FrameNet [65] and SUMO [52].  However, building an ontology-based 

knowledge base manually is a huge task that requires much time. Moreover, obtaining rich 
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structured information that represents knowledge about terms is tedious work [50]. There 

have been many efforts to transform unstructured data into structural information to 

improve data quality [53][66]. Additionally, some approaches are restricted to a single 

domain, hence they are not applicable to other domains. 

Source of Knowledge-Based Systems 

There are various knowledge bases from which to extract knowledge as concepts or 

instances. Several examples are as follows:  

• BioPortal [47]:  BioPortal is one of the largest repositories of biomedical 

knowledge based on ontologies in the world.  These ontologies provide important 

and fundamental knowledge on various domains to accelerate the extraction, 

annotation, processing, integration and representation of data.  

• ConceptNet [50]: is an open-source comprehensive knowledge base based on a 

semantic network that is designed to help systems understand the meanings of terms 

as humans do [53]. ConceptNet represents the relations between words such as: A 

net is used for catching fish. “Leaves” is the plural form of “leaf”. 

• DBpedia [49]: The DBpedia is a knowledge base which contains structured 

information extracted from Wikipedia which covers many specific domains and 

background knowledge. This knowledge base is able to generate results for 

expressive queries. There are more than 400 domains in the DBpedia ontology. 

• CRISP [48]: The Computer Retrieval of Information on Scientific Projects (CRISP) 

thesaurus contains terminology used for indexing biomedical information. It 

comprises more than eight thousand preferred terms that are categorized 

hierarchically into eleven domains.  

• Probase [51]: Probase is a probabilistic taxonomy-based universal and 

comprehensive knowledge base system containing conceptual information which 

is the probability of the concept set belonging to a term or word. Probase reads a 

large number of documents to discover extensive concepts and obtain instances and 

attributes for each concept that build the relationship among them. Furthermore, 

Probase measures the weight scores of the concepts, instances, attributes and their 

relationships and these scores can be used to make inferences over textual 
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information. Then, the most likely concepts are derived from a set of words or a 

short text. 

• WordNet [66]: WordNet is a large knowledge base based on an English lexical 

database. In WordNet, a concept is represented by parts of speech which is 

categorized into sets of rational synonyms (Synsets). Synsets are interconnected by 

establishing relations between semantic and lexical concepts. WordNet is also a 

publicly available database which can be downloaded from the 

link https://wordnet.princeton.edu/. The structure of WordNet makes it a useful tool 

for natural language processing and computational linguistics. 

2.1.3. Natural Language Processing 

Natural language processing (NLP) [67] is a computational technique to learn, understand, 

and produce human language content. NLP systems can be used to facilitate human-to-

human (i.e., machine translator) and human-to-machine (i.e., chatbot agents) 

communication. Moreover, using the advantage of both machine and human knowledge 

(such as the immense volume of human language online as content) allows people or 

systems to understand unknown language.  Over the last two decades, research in the NLP 

fields has been applied to practical technology for consumer businesses (such as Facebook, 

Google, Twitter, Amazon, and Chatbot). These developments have been motivated by the 

following: (i) an exponential growth in computing functions, (ii) the accessibility of 

gigantic amounts of data (iii) improvements in deducing the structure of natural language 

and its contextual information and (vi) significance progress in machine learning 

technology. These achievements present a computational approach to the Semantic web 

that combines statistical analysis and ML with a knowledge of natural language. 

Earlier, NLP research focused on automation of the reasoning of the semantic and syntactic 

structure of language and the development of base methods, such as voice recognition and 

translation. Currently, the attention of researchers is focused on the development of real-

world applications of these methods such as generating chat and conference systems, voice-

to-voice translation engines, mining such as the classification and summarization of 

https://wordnet.princeton.edu/
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massive amounts of information on health, finance, research, new articles etc., obtaining 

the topic and sentiment (positive or negative) of reviews on products and services.  

Preprocessing 

We describe the process of extracting structured information from unstructured text using 

NLP in the following. 

• Sentence Segmentation: This step breaks the text into separate sentences. 
 

• Tokenization: This step divides the text into sentences and the sentences into words. 

First, words are converted to lowercase and then punctuation is removed from 

words. Words with less than three characters are removed from the vocabulary.   
 

• Stop word removal: This step removes stop words.  
 

• Lemmatization: is a process of transforming the different forms of a single word 

to its base or dictionary form that have the same meaning.    
 

Example 1: Let a be the various forms of b base word. a→ Lemmatization→b 

means that lemmatization transforms a to b. 

troubled → Lemmatization → trouble 

constructing → Lemmatization →construct 

better→ Lemmatization→ good 
 

A lemma of a word is its dictionary or canonical form. To extract a lemma correctly, 

lemmatization identifies the part of speech of the words (such as noun, verb, 

adjective, or other) in the text. Also, the contextual meaning in the document needs 

to be considered when extracting the lemma. 
 

Example 2:  Take the word “shaking” as an example. The word is a noun for the 

sentence “a sudden, violent shaking of the earth's surface is caused by a 

powerful earthquake”, a verb for the sentence “An earthquake is the shaking of the 

surface of the Earth resulting from a sudden release of energy”. Lemmatization 

returns “shaking” when the word is a noun and returns “shake” when the word is a 

verb. 
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• Name entity recognition: The aim of name entity recognition is to identify and tag 

the concepts as nouns if they represent the predefined groups such as a person, 

organization, place, country, etc.  

NLP Tools 

In this section, we describe several important NLP tools which we use to implement our 

system. 

• Stanford CoreNLP: Stanford CoreNLP is a widely used tool for natural language 

preprocessing. It is a flexible NLP tool that offers multiple annotators, such as POS 

taggers, lemmatizes, named entity annotators, sentiment and coreference 

annotators, annotators for constituency and dependency parsing [68]. There are 

instructions for NLP that can be executed using the command line through the Java 

API or Python packages. 

• Protégé: Protégé is an open-source software tool for editing ontologies through 

which users can construct and update a knowledge base [69]. There are many 

plugins for various services to manipulate ontologies, such as the integration and 

management of multiple ontologies, visualization of the graph of the ontology, 

inference query engines, importation of large data and so on. The interface for direct 

manipulation allows programmers to build and update the ontology domains that 

consist of important concepts and their relationships in the knowledge base. Cellfile 

is a Protégé plugin which is used to import CSV data into the ontology, however, 

this plugin cannot load large data. 

• OWL API: There is an OWL API based on JAVA for implementation such as 

creating, manipulating, and serializing the ontology-based OWL. The tool supports 

the construction and editing of OWL ontologies, inferring over ontologies, and the 

utilization of ontologies in the knowledge base [65]. 

• Mapping Expression: Mapping expression is a mapping language which 

transforms the data enclosed in the spreadsheets to the OWL. However, the current 

techniques in mapping often experience challenges in converting data. First, most 

approaches are designed to process simple data in spreadsheets [61].  Generally, 

they consider that the data in the spreadsheet table complies to the relational rule. 

https://stanfordnlp.github.io/CoreNLP/cmdline.html
https://stanfordnlp.github.io/CoreNLP/api.html
https://stanfordnlp.github.io/CoreNLP/api.html
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The rows define various entities, and the columns define the values of the 

correspondence entities in the table. We call this rule the ‘value-per-column’. 

However, the practical or real spreadsheet data do not comply with this simple rule 

since there are various widely used spreadsheet tools which are formable without 

the restriction of specific tabular structures. Recently, researchers have focused 

their attention to overcome the value-per-column challenges and to support 

mappings for inconsistent spreadsheet data [49]. However, most techniques employ 

an RDF-based technique to map the mapping expression. This is effective for 

mapping spreadsheet data to RDF but is very inconvenient for mapping data in 

OWL due to its redundant RDF serialization. 

SPARQL  

SPARQL is a semantic query language and protocol to extract and process data stored 

in the Resource Description Framework (RDF) format.   SPARQL has the ability to query 

the required and optional network relations along with their associations and 

disassociations [70]. The system queries are responsive since variables can exist in 

complex class expressions and relate to the class or property names [71].  

 

Figure 2.1 : An example of concept representation in the NLIKR scheme 

https://en.wikipedia.org/wiki/RDF_query_language
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2.1.4. NLIKR Scheme 

Concepts, also called classes, are a core component of most ontologies. A concept 

represents a group of different individuals who share common characteristics which may 

be specific. NLIKR is a scheme which is based on a dictionary theme where the user can 

search a dictionary and information will be more meaningful and logical. This scheme was 

proposed by Liu and Chen [72] where each English word is represented as a concept. 

Description does not define each concept or word. Word or concept are defined by its 

properties (i.e., its relationships with other concepts). A characteristic or nature of a concept 

is represented through its relationships with other concepts. As a result, concept definition 

can go beyond human language since every word is a concept and is defined with another 

concept. A concept succeeded its super concepts properties. For example, ‘water’ is a sub-

concept of ‘liquid’. Therefore, ‘water’ inherits characteristics of ‘liquid’, such as liquid has 

no fixed shape. Figure 2.1 details the association between ‘water’ and other concepts such 

as ‘<water’, ‘colour’, ‘transparent>’, ‘<water’, ‘taste’, ‘tasteless>’ and ‘<water’, ‘density’, 

‘1>’ represent the properties of ‘water’. In the associations, ‘color’, ‘transparent’, ‘taste’, 

‘tasteless’ are all concepts. 

 
Figure 2.2: Three-layer hierarchical LDA technique 

2.2. LDA Topic Model 

Topic models specify the task of obtaining salient latent information that best defines a set 

of documents.  We call this salient information topics. These topics are generated during the 

process of topic modelling.  Latent Dirichlet Allocation (LDA) [28] is a widely known topic 

modelling technique. LDA is an unsupervised generative probabilistic method for modeling 

http://ontogenesis.knowledgeblog.org/514#_individual
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a corpus. The idea of LDA is very straightforward. LDA assumes a definite set of topics 

and each topic is represented by a set of words. The aim of LDA is to map the documents 

to the topics where these topics represent most words in each document.  Figure 2.2 shows 

the dependencies of the topic on the word and the document on the topic to measure the 

probability distributions among them. In the LDA model, first, the random assignment of 

latent topics represents the documents. A topic is defined by a probabilistic distribution over 

words and each document is represented by a probabilistic distribution over topics. A topic 

with a set of words which has the highest probability is able to define a topic well in LDA. 

In the LDA model, Dirichlet distribution is the distribution over a set of topic distributions 

where each topic distribution is themselves a distribution per document, or the distribution 

over set of word distributions where each word distribution is themselves a distribution per 

topic. Here, α and β are the parameter of Dirichlet priors over the topic distributions per 

document and word distributions per topic respectively. α controls how topic represent the 

documents. High score α indicates most topics represent a document or low α indicates few 

topics represents a document.  β controls how words represent the topics. High score β 

indicates most words represent a topic and low β indicates few words represent a topic.  

We refer to Dirichlet as Dir. Multinominal distribution means the distribution of the 

number of outcomes, and we refer to multinominal distribution as Mult. Let k topics 

describe a set of documents and the set of topics in each document d are represented by a 

k-Mult. The Dirichlet is a probability distribution over the k Mult of a topic set. Dirichlet 

distributions encode the intuition that documents are related to a few topics. 

2.2.1. Data Pre-processing 

Documents are preprocessed through sentence segmentation, tokenization, stop word 

removal, lemmatization and removing the empty or null value. 

2.2.2. Allocation 

Once the Dirichlet is obtained, the topics of the documents and the words of the documents 

to topics are allocated. The Dirichlet parameter supervises whether each word in a topic 

has the same probability or if some words have a bias to a topic. Similarity, the Dirichlet 
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parameter supervises the distribution of topics in a document.  Let D ∈ {d1, d2,…, dm}be a 

corpus of m documents and nd be the number of words in document d. P(z|d) is the 

probability distribution of topics z ϵ {t1, t2, …,  tk} in document d, also denoted as θd and 

P(w|z) is the probability distribution of words w ϵ {w1, w2, …, wn} in topic z, also denoted 

Фz. Table 2.1 shows all the notations which are used to define the LDA model in this 

chapter. The probability of a word w given in the document d, P(w|d) is equal to 

∑𝑡𝑖∈𝑡
 𝑝(𝑤 ∣ 𝑡𝑖)𝑝(𝑡𝑖 ∣ 𝑑) 2.1 

where t is the set of topics.  

Table 2.1: Notations are used for the topic model in this chapter. 

 

 

 

 

 

 

 

 

 

 

2.2.3. Algorithm 

To learn the weights of these two matrices  𝜃𝑑and 𝜙𝑧, LDA models document D through 

the following generative process: 

• Probe each document and assign each word in the document to a topic randomly. This 

generates a random topic distribution over documents and word distributions over 

topics. 

𝑉 the size of the vocabulary 

𝑘 the number of topics  

𝑑 a document 

𝑤𝑖 a single word in the document d at position i 

w𝑑 the vector of word assignments in document 𝑑 

𝑧 a topic (label) 

𝑧𝑖 the topic assignment to a word token 𝑤𝑖 

z𝑑 the vector of topic assignments to all word tokens of a document 

 is assigned to topic 𝑧 

𝑛𝑑 number of word tokens in 𝑑 

𝑛𝑑𝑧 number of word tokens in 𝑑 that have been assigned to topic 𝑧 

𝜙𝑧 word distribution for topic 𝑧 

𝜃𝑑 topic distribution for document 𝑑 

𝛼𝑧 Dirichlet parameter on 𝜃 for topic z 

𝛽𝑤  Dirichlet parameter on 𝜙 for word w 
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• The distributions are improved by adjusting metrics. To adjust the metrics, probe each 

word w in each document d and measure: P (z |d) and P (w| z): 

• This generative model predicts all the assignments of words except word w to the 

current topic are right. Reassign word w a to new topic z with the probability P(z|d) * 

P(w|z).  

• Repeat this step for the entire document. 
 

When the last step is iterated a large number of times, a steady state is reached where topic 

assignment fits well. The topic sets of each document are obtained by utilizing these 

assignments. Therefore, these assignments are used to estimate a topic set of a document d 

using the probabilities of words assigned to each topic in document d and estimate the 

association of words to each topic using the probabilities of words assigned to each topic 

overall. The formal way to define this algorithm is as follows:  

(a) sample a word distribution for each topic z ϵ {t1, t2, …, tK} which is ϕz from a Dir with 

parameter β 

(b) select a topic distribution for each document d ϵ {d1, d2, …, dm} which is θd from a Dir 

with parameter α. 

(c) For each word w in each document d ϵ {d1, d2, …, dM} 

 i Draw a topic zn from Mult (θd). 

ii Draw a word wn from Mult ϕ(zn). 

2.2.4. Gibbs Sampling 

Gibbs sampling [73] is an algorithm to sample the conditional distributions of variables 

successively and this converges to the steady state through the long run iteration. This 

algorithm is used for LDA to adjust the parameters θ and ϕ, and to operate assignments on 

the topic variable zn. This algorithm modifies the assignment zn of word wn in document d 

to a topic 𝑗 ∈ {𝑡1, … , 𝑡𝑘} for a large number of iterations. The conditional probability of a 

word wn in document d that represent a topic j is computed by the following equation. 

𝑃(𝑧𝑑,𝑖 = 𝑗 ∣ 𝑧−𝑑,𝑛, wi, 𝛼, β) =
𝑛𝑑,𝑗 + 𝛼𝑗

∑𝑥
𝑘  𝑛𝑑,𝑥 + 𝛼𝑖

𝑣𝑗,𝑤𝑖
+ 𝛽𝑤𝑖

∑𝑥  𝑣𝑗,𝑥 + 𝛽𝑖
 2.2 
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where n(d,x) denotes the number of times topic j is used to represent document d, v(j,x) 

denotes the number of times the given word w is used to represent topic j. We can see that 

the equation has measure weights of two aspects. In the first part, the weight provides the 

strength of the association between the topic and document that expresses how much a 

topic represents a document and in the second part, the weight provides the strength of the 

association between a word and topic that expresses how much a word represents a topic. 

A vector is obtained that explains how likely it is that this word belongs to each of the 

topics. We see from the equation that the Dir parameters α and β serve as a smooth function 

which gives scope to a word to represent a topic in the future, even though the value of nd,j 

or v(j,w) is zero. 

2.2.5. Example of LDA 

We describe an example of the LDA technique for illustration. We use four sentences as 

documents to show how LDA works.  

Document 1: A fairly large earthquake measuring a of 6.7 on the Richter scale rocked wide 

areas of central and western Japan Sunday, followed by four aftershocks, the 

meteorological agency said. 

Document 2: Barak Obama on Wednesday announced the closure of government schools 

with immediate effect as a military campaign against religious separatists escalated in the 

north of the country. 

Document 3: An earthquake is the shaking of the surface of the Earth.  

Document 4: A military campaign is a long-duration significant military strategy plan 

incorporating a series of interrelated military operations or battles forming a distinct part 

of a larger conflict often called a war. 

First, we choose a number of topics and randomly assign a topic to each word in the 

document. 

 

t3 t2 t1 t3 t2 

earthquake military campaign country shake Japan 

Second, we repeat this for each document in the corpus to find the total count of words in 

each document associated with the topics. 
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 t1 t2 t3 

Document 1 1 1 2 
 

Then, we find the total count of each word in the corpus associated with the topics. 

 t1 t2 t3 

earthquake 15 0 35 

military campaign 7 50 1 

country 42 10 15 

shake 5 0 20 

Japan 10 8 15 

war 5 50 0 

Again, we reassign a word such as ‘Japan’ from a document to a topic randomly. We show 

the effect of the reassignment in the count for the 2nd iteration as follows. To reassign, the 

word ‘Japan’ is removed from topic t2. 

t3 t2 x t3 t1 

earthquake military campaign Japan shake Country 

 

As a result, the count of the word ‘Japan’ in document 1 that belongs to topic t2 decreases 

to zero. 

 t1 t2 t3 

Document 1 1 0 2 

 

Also, the total count of the word ‘Japan’ that belongs to topic t2 decreases.  

 t1 t2 t3 

earthquake 15 0 35 

military campaign 7 50 1 

country 42 10 15 

shake 5 0 20 

Japan 10 7 15 

war 5 50 0 

 

Then, we compute the weight which tells us how much each topic represents a document 

based on the assignments. Let ni be the number of words in document i, niz is the current 

assignment of z ϵ {t1, t2, …, tK} topics in document i, α is the Dirichlet parameter and k is the 

number of the topics. The weight is calculated using the following equation which shows 

the association of a document to topics. This is the first part of equation 2.2. 
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𝑛𝑖𝑧 + 𝛼

𝑛𝑖 − 1 + 𝑘𝛼
 

2.3 

Topic t1          Topic t2             Topic t3 

 

The blue horizontal bars show the weight scale of how much document i represents each 

topic using the weight obtained from part 1 of the equation. We can see that topic t1 and t3 

represent document 1. Let 𝑐𝑤,𝑧 be the assignment corpus-wide of a word w to topics z. The 

weight is calculated to measure the association of a word to each topic using the following 

equation. 

𝑐𝑤,𝑧 + 𝛽

∑ 𝑐𝑤,𝑧 + 𝛽𝑤𝑤𝜖𝑉
 

2.4 

We compute the weight which tells us how much a word such as ‘Japan’ represents each 

topic based on other documents in the corpus. 

 t1 t2 t3 

Japan 9 7 15 

We calculate the weight association of a word in document i using equation 2.2. 

Topic t1           Topic t2            Topic t3 

 

 

 

 

The orange bars show how much each topic represents a word in the document using the 

weight obtained from part 2 of equation 2.2. We can see that topic t3 fits the word ‘Japan’ 

and document i. Topic t2 fits the word ‘Japan’ but does not fit document i. Topic t1 fits 

document i but does not fit the word ‘Japan’.  

We reassign the word ‘Japan’ to topic t3 since this word represents topic t3 the most. 

t3 t1 t2 t3 t3 

earthquake country military campaign Japan shake 

Incremental count based on the new assignment. 

 t1 t2 t3 

Document 1 1 0 3 
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Total count of the assignment of each word in each topic. 

 t1 t2 t3 

earthquake 15 0 35 

military campaign 7 50 1 

country 42 10 15 

shake 5 0 20 

Japan 10 7 15 

war 5 50 0 

 

By repeating the method, the topic model reaches a steady state which means each topic 

is represented by topic words well and each document is represented by topics well. 

2.3. Abstractive Text Summarization 

Text summarization is abstractive when the sentences do not appear in the original source 

text in the generated summaries. Instead, summary sentences are produced from the 

paraphrase of the main sentences of the source text. The paraphrase or new vocabulary that 

is different from the original document is learnt from the given dataset collected from the 

human-written content such as articles, product reviews, and news using artificial 

intelligence techniques such as artificial neural networks. Artificial intelligence is a 

technology that enables computer systems to perform a task which usually requires human 

intelligence. Since the dataset is coming from the written summaries of human knowledge, 

artificial intelligence techniques are capable of learning to generate summaries as humans 

do. Humans build a semantic representation of text in their brains, then choose the words 

from their vocabulary of general knowledge that suits the semantics to generate a summary 

to represent the main theme of the content. However, developing this kind of artificial 

intelligence technique is not easy. This requires the natural language generation technique. 

Recently, a deep learning-based neural network which is part of the artificial intelligence 

approach has been proven very effective for natural language generation techniques such 

as summarization, classification, and so on. Deep learning is able to resolve the challenges 

in representation learning by introducing contextual alignment. We describe the 

fundamental theories for a simple neural network, deep learning network, and the recent 

research on abstractive text summarization models based on the deep learning network. 
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2.3.1. Word Embeddings 

A word embedding [74] is a pre-trained model to represent word vocabularies of the 

document. This represents the words in a similar group if they have a similar meaning. This 

is a method which represents words as a vector in a predefined vector space. Each word is 

embedded to one vector and a similar mechanism of a neural network trains this vector. 

This is a key advancement in the research on deep learning and can resolve the challenges 

in natural language processing. Word embedding is able to capture the contextual 

information of a word in a document such as semantic and syntactic similarity, the relation 

among the words in the text and so on. Word2Vec is a word embedding algorithm based 

on a statistical approach to learn an independent word embedding model from a large 

dataset efficiently. This drives the training of the neural network-based model, such as 

classification, translation, and text summarization, more efficiently. In the neural network-

based model, input and output are embedded using the word embedding model at the 

encoder and decoder, respectively to capture the contextual information of the text to 

achieve more efficient results. 

2.3.2. Simple Neural Network 

An artificial neural network (NN) [75] is a model that is inspired by the mechanism of the 

human nervous system (such as the information processing mechanism in the human brain) 

to process the information. First, the feedforward neural network was proposed by [76] 

which is a simple artificial neural network model. A NN consists of multiple neurons also 

called nodes that are structured in layers. Nodes of neighbor layers are connected via edges 

which have weights to represent their association.  A feedforward neural network contains 

three kinds of nodes: input, hidden and output nodes. Figure 2.3 shows a model of a simple 

neural network. 

Input Nodes 

The information from the original source is fed into the nodes of the network that are 

arranged together in the input layer. First, the input nodes do not need to compute any 
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parameter values as they feed the information to the hidden nodes of the next layer. Let xi 

be the input embedding and yi be the output embedding.  

Hidden Nodes 

There is no direct connection between hidden nodes and the source text. First, each word 

in the source text embeds into the input nodes and then passes the information through the 

computation from the input nodes to the hidden nodes in the next hidden layer.  The hidden 

layer represents the collection of hidden node forms. There is an indirect connection with 

the input nodes and the hidden nodes. Feedforward networks must have a single input and 

output layer and can have no or multiple hidden layers. The computation of a hidden node 

is called a hidden state. Let ai
l
 be the state of i-th node in l-th hidden layer. 

 

Figure 2.3: Simple neural network model.  

Each circle defines a node, and that node has a computation called state ‘a’. An arrow connects the node from 

the previous layer to the current node using the weight. SoftMax is an activation function which normalizes the 

weight of each node in each layer. 

Output Nodes 

The output layer represents the collection of output nodes that carry the 

information from the network to the outside world through computation. Let ai
l be the 

computation of the i-th hidden node of the lth layer. We call this computation hidden state. 

f () is the activation function: sigmoid or SoftMax. The SoftMax function [139] is applied 

using the following equation.  
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𝑎1
1 = 𝑓(𝑥) = 𝑓(𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑤3 ∗ 𝑥3 + 𝑤4 ∗ 𝑥4) 2.5 

𝑥 = 𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑤3 ∗ 𝑥3 + 𝑤4 ∗ 𝑥4 2.6 

𝑎1(1) =
1

1 + 𝑒−𝑥
 

2.7 

We use the SoftMax function to normalize the weight of the nodes for each layer which 

transforms the weight of the nodes of each state into probabilities where the sum of their 

probabilities is one. This function generates the probability distributions of a set of possible 

outcomes which is represented by an output vector. In the feedforward network, the 

information is passed in one direction (forward only) from the input nodes through the 

hidden nodes (if any) to the output nodes. A multi-layer network means when a 

feedforwarding network has one or more hidden layers over one input and one output 

layer.   A multi-layer network with a single hidden layer is shown in Figure 2.3. The 

connections between nodes carry weights which express their strength of association. 

Back Propagation and Weight Updating 

Initially, all the weights in the network are assigned randomly. The errors are calculated at 

each of the output nodes for the input nodes and are propagated back through the network 

using a backpropagation algorithm. The algorithm calculates the total error at the output 

nodes and feeds the errors back through the network. Then, the gradient descent method is 

applied to adjust or update all the weights in the network to reduce error at the output layer.  

Activation Function 

Activation functions introduce non-linearity into the output of a node. This is a very 

important mechanism in NN that defines the output of that node given an input or set of 

inputs. In general, this is computed by adding the total sum of the weighted parameters of 

its input and bias. This decides whether the node is activated or not. In a neural network, 

we update the weights and biases of the neurons on the basis of the error at the output. This 

process is known as back-propagation. Activation functions enable the process of back-

propagation by passing the gradients along with the error to update the weights and biases. 

Several activation functions are frequently used in NN as follows:  
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• Sigmoid function: this function receives a real-valued input and provides the output 

to a range between 0 and 1.  This is calculated using the following equation. 

σ(x) = 1 / (1 + exp(−x)) 2.8 

• Tanh function: this function receives a real-value input and provides the output to 

the range [-1, 1]. We calculate this using the following formula. 

tanh(x) = 2σ(2x) – 1 2.9 

• SoftMax function: this function is a type of sigmoid function that converts the 

weight into probabilities where the sum of their probabilities is one. This produces 

an output vector that represents the probability distributions of a set of potential 

outcomes. 

Learning 

Learning is a process to train the model using a given large dataset which automatically 

learns and improves from the experience/history of the dataset without explicit 

programming design. Adjusting the weights is the main objective in the learning process 

in neural networks. There are no cycles in the feedforward network which means the output 

of the output layer is not fed again to the input nodes. A feedforward network does not 

consider the previous histories of the process of information and processes the next input 

independently. Therefore, feedforward networks do not learn the sequences or the temporal 

dependency between inputs. 

2.3.3. Deep Neural Networks 

A deep neural network is a neural network with more than one hidden layer. Each node in 

the hidden layer is connected to nodes of the next hidden layer. The arrow from each node 

carries a weight property to the next connected node which supervises how much that node 

affects the activation of the others connected to it. The network is described as deep because 

of the features of the deep hidden layers and the derivation of its effectiveness from the 

deep hidden layers. 
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Figure 2.4: Recurrent neural network (left) and feedforward neural networks (right).  

2.3.4. Recurrent Neural Network 

Recurrent neural networks [74] are introduced to utilize the output obtained through the 

hidden layers to process future input. In contrast to the feedforward network, RNNs not 

only propagate the information forward, but they also propagate the information backward 

from later processing stages to earlier stages. This mechanism allows the network to 

express the dynamic temporal behavior. RNNs are able to use their internal memories to 

process the sequences of inputs. This feature enables them to be applied to tasks such as 

handwriting recognition, translation, speech recognition and so on. Figure 2.4 compares 

the feedforward network and RNN. RNN not only connects nodes but also keeps their 

internal memory for future processing.  

 

Figure 2.5: Mechanism to keep the previous histories in the current state.  
 

Figure 2.5 shows how the state of a node keeps the memory of the previous history of 

information processing. RNN keeps the memory of the information processing of the input 

sequence to the output each time and feeds this information for the next prediction of the 

input elements. It is able to predict the next target element for a given sentence using the 



35 

memory of the previous words processing information. The RNN remembers all these 

relations among the words in sentences during the training. 

2.3.5. Encoder-Decoder Sequence to Sequence Model 

A neural network architecture based on a recurrent network is introduced in [77] which 

comprises two parts: the encoder and decoder. This model learns to encode a variable-

length sequence into a fixed-length vector representation and to decode a given fixed-

length vector representation back into a variable-length sequence. Figure 2.6 illustrates the 

architecture of the encoder and decoder sequence-to-sequence model. 

 

Figure 2.6: Encoder and decoder architecture based neural network.  

h defines a state of the encoder part and s defines a state of the decoder part. x= {x1, x2, …} are the input elements 

and y= {y1, y2, …} are the output elements. Encoders represent the input sequence and decoders represent the 

output sequence for the input elements.  

Encoder 

An encoder presents the input sequence into a vector with a fixed length using RNN. There 

are different types of units, such as LSTM [35] or GRU for RNN is used in RNN for better 

performance where each unit receives a single element of the input sequence and 
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concentrates the information for that element and feeds it forward. The input sequence is a 

set of words in a sentence or a document. Let xi represent a word in the sentence at encoder 

state i. The encoder maps the source sequence to a vector. Let hi be the current state of an 

encoder, the previous state of an encoder is hi-1, the weight between the current node and 

the previous state is Whh, the input state is xi, and the weight at the input node is Wxh. The 

current state hi can be calculated using the following equation.  

ℎ𝑖 = f(ℎ𝑖−1, 𝑥𝑖) 
2.10 

ℎ𝑖 = tanh⁡(𝑊ℎℎℎ𝑖−1 +𝑊𝑥ℎℎ𝑖) 
2.11 

𝑣 = ℎ𝑖 2.12 

where v is the final hidden state at the encoder. This network represents the input of a 

simple RNN where appropriate weights are applied to the previous hidden state h(i-1) and 

the input vector xi. We can see that the last hidden state v is a vector that is produced at the 

encoder part of the model. This is computed using the formula above. v captures the 

information for the input elements to help the decoder provide correct predictions. This 

vector feeds the initial hidden state to the decoder part in the model. 

Decoder 

A decoder comprises a collection of units of a RNN where each unit predicts an output ym 

at a time step m. Each unit receives information on a hidden state from the previous unit 

and generates its own hidden state and the output. The output sequence is a set of words in 

summary. Let ym be an output element or word where m is the position of the element in 

the summary output. The state of the decoder is computed using the following formula: 

𝑠𝑚 = g(𝑠𝑚−1|𝑦𝑚−1, 𝑣|) 2.13 

As we can see, the previous hidden state is used to compute the next state. 

Prediction 

The next target element is predicted using the following formula: 

𝑝(𝑦1, … , 𝑦𝑚|𝑥1, … , 𝑥𝑛)=SoftMax (𝑊𝑦𝑠𝑠𝑚 + 𝑏) 2.14 

where output ym at time step m and W is the learnable weight parameter. 
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2.3.6. Attention Model 

A potential challenge in this encoder-decoder sequential method is that all the words in the 

source sentence need to be encoded into the vector with a fixed length. This method faces 

challenges handling the long sentences in the NN. To address this challenge, an extension 

to the encoder decoder model is introduced which learns the summary output and the 

alignments between the input and output elements jointly [78]. This model searches (soft) 

a set of positions in a source sentence to capture the important information for a generated 

output element of each state at the decoder. During this process, a context vector is 

constructed which captures the association of the source positions for the output target 

element of a current state and all the histories of the generated target words in the previous 

states at the decoder. This model predicts a target output element based on the context 

vector. Compared to the basic encoder–decoder sequence model, this model does not 

require the input sentence to be decoded entirely into a single vector with a fixed-length. 

Rather, the input sentence is encoded into a sequence of vectors and a subset of the vectors 

is chosen during the generation of the output element for each state at the decoder. Figure 

2.7 shows the architecture of the RNN-based sequential attention model. 

 

Figure 2.7: Architecture of the attention model. 

c= {c1, c2,} represent the context vector for each state at the decoder.  
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Attention Distribution 

The weighted parameters are learnt and should find the most relevant encoder positions. 

The attention of j input of the encoder to the i state of the decoder, αij is computed by the 

following equation. 

𝛼𝑖𝑗 =
exp⁡(𝑠𝑖𝑚(ℎ𝑖 , 𝑠𝑗−1)

∑ exp⁡(𝑠𝑖𝑚(ℎ𝑖́, 𝑠𝑗−1)
𝐼
𝑖́=1

 
2.15 

𝑠𝑖𝑚(ℎ𝑖, 𝑠𝑗) = 𝑊𝑇tanh⁡(𝑤ℎℎ𝑖 +𝑊𝑠𝑠𝑗) 2.16 

The encoder states are weighted to obtain the representation relevant to the decoder state.  

Context Vector  

The context vector c = {c1, c2, …, cn} where cj is computed using the above attention αij as 

a weighted sum of these annotations hi.  

𝑐𝑗 =∑𝛼𝑖𝑗ℎ𝑖

𝐼

𝑖=1

 2.17 

2.3.7. Convolutional Neural Network 

A convolutional neural network (CNN) [75] contains layers based on a feedforward neural 

network. The potential of a CNN appears from the base block structure called a 

convolutional layer. CNN consists of a number of layers that are stacked on top of each 

other. This layer is able to capture the long-range dependencies in large text. The utilization 

of convolutional layers in a CNN depicts the morphology of part of the human brain visual 

cortex where a series of layers is processed into an approaching vision and obtains highly 

complex features. 

Convolutional Neural Network Design 

The architecture of a CNN consists of multiple layers based on feedforward neural 

networks built by piling up a large number of hidden layers in a sequence. CNN is able to 

learn the hierarchical features through this sequential network. The activation layers are 

dependent on the hidden layers and the pooling layers are dependent on a hidden layer. 
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Yann [79] proposed the CNN-based model to help understand the fundamental concept of 

CNN, called LeNet which is able to recognize handwritten characters. Figure 2.8 illustrates 

the architecture of the CNN model for LeNet. 

 
Figure 2.8: Convolutional neural network design architecture 

Definition of CNN Elements for ATS 

Abstractive text summarization employs convolutional layers to embed input elements, 

then a one-dimensional CNN, pooling layer and finally, the output layer to predict the 

output element.  

• Convolutional Layer 

A convolutional layer is a kind of unit of the convolutional structure to build a CNN. A 

convolutional layer is presented using convolutional k kernels which probe the text and 

anticipate the patterns in the sequence of text. When a sequence of the text matches the 

pattern of a kernel, the kernel is assigned a positive value, and when there is no match, the 

kernel is assigned a zero or a negative value. 

• Pooling Layer 

The pooling layer reduces the dimensional size of the representation to decrease the 

required amount of computation and the parameters in the network.  
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• Fully Connected Layer 

In CNN, the fully connected layer means the inputs of the lower layer are connected to the 

next top layer. This consists of a series of fully connected layers and represents the 

hierarchical representation of the text using the fully connected layer. Thus, the output of 

the fully connected layer represents the high-level dependencies in the large text. The fully 

connected layer helps to map the representation between the input and the output. Each 

convolutional layer learns the dependencies of the text to its immediate bottom layer and 

the fully connected layer learns the high-level dependencies in the text. 

 

Figure 2.9: Architecture of the convolutional sequence network.  

The encoder embeds the source text (top) and measures the attention weight (center). The contextual 

representation decoder (bottom left) and encoder are used to compute the attentions via their dot product. C is 

the conditional inputs which are computed using the attention (center right) to the decoder states to estimate the 

target output element (bottom right). The gated linear units (GLU) contain sigmoid and multiplicative boxes. 

2.3.8. Convolutional Sequence-to-Sequence Learning  

This is an architecture for sequence modeling based on a convolutional neural network. 

We call this the convolutional sequence network (CSN) [80]. CSN utilizes the gated linear 
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units (GLU) and residual connections. Figure 2.9 shows the CSN model. A convolutional 

neural network (CNN) is used to compute the transitional states of the encoder and decoder.  

Position Embeddings 

Position embeddings encode the absolute position of each source word within a sentence. 

Let document d be represented as a sequence of words (w1, w2, …, wn) with a total of n 

words. The input elements are embedded with n words into distributional space x ∈ {x1, x2, 

…, xn} where wj ∈ Rf is the row in an embedding matrix M ϵ RVxf (V is the size of the 

vocabulary) and f is the dimension of a word vector in the embedding matrix.  The absolute 

position of the input elements is embedded in document p= (p1, …, pn) to preserve the 

sequence order where pi is the position embedding of word wi at position i in the input 

sequence. Finally, we represent the input elements along e = (e1, e2, …, en) by combining 

word and position embedding, e=w1+p1, …, wn+pn. Similarly, the output elements with m 

word generated by the decoder are represented along g = (g1, …, gm) and are fed to the next 

step. 

Convolutional Structure 

A simple layer is shared at the encoder and decoder networks to compute their intermediate 

states through an absolute size of input elements. Let the output of the l-th layer be dl = 

(dl
1, …, dl

n) and el = (el
1, . . ., e

l
m) for the decoder and encoder network respectively.  Each 

layer consists of a convolution unit and a non-linearity. k elements are presented through 

kernel width k in a single layer of CSN.  Each decoder state dl
i represents the number of 

input elements in a state by stacking several k-input element layers on top of each other. 

For example, 5 layers with k = 4 in a decoder state represents 16 input elements. i.e., 16 

input elements are dependent on each output.  Non-linearities help the CSN to use all the 

input elements or to attend to specific elements when required. Let W ∈ R2d×kd and bw ∈ 

R2d be the parameters, d dimensions, and input x∈ Rk×d is an accumulation of the k input 

elements for each convolutional kernel. Then, all the convolutional kernels are mapped to 

a single output element y ∈ R2d. The k elements of a layer are operated over successive and 

precedent layers. Gated linear units are used as non-linearity in CSN to implement a simple 

gating mechanism over y = [A B] ∈ R2d: 
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v ([A; B]) = A⦻∂(B) 2.18 

where the inputs to non-linearity are defined as A, B ∈ Rd, ⦻ is the point-wise 

multiplication. The relevance of inputs A in the current context are supervised via gates ∂ 

(B). Oord [81] introduced a similar nonlinearity where the tanh function is applied to A, 

however, Dauphin [82] proved that the context of language modelling achieves better 

results by utilizing GLU. A residual connection is added from the input of each convolution 

to the output of the layer to enable the deep convolutional networks. 

 
𝑑𝑖
𝑙 = 𝑔(𝑊𝑙 [𝑑𝑖−𝑘

2

𝑙−1, … , 𝑑𝑖+𝑘
2

𝑙−1] + 𝑏𝑤
𝑙 ) + 𝑑𝑖

𝑙−1 
2.19 

where g is the function composition operator. Finally, a probability distribution over the k 

possible next target elements yi+1 is computed by providing the top output di
L of decoder 

via a linear layer with weights WY and bias by to a SoftMax classifier: 

𝑝(𝑦𝑖+1|𝑦1, … , 𝑦𝑖𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑌ℎ𝑖
𝐿 + 𝑏𝑌) ∈ 𝑅𝑇 2.20 

Multi-step Attention 

A separate attention mechanism is used to perform multiple attention “hops” per time step 

and provide access to previously attended words. The decoder attention is computed using 

the following formula which combines the current decoder state hl
i with a previous target 

element embedding qi: 

𝑑𝑖
𝑙 = 𝑊𝑑

𝑙ℎ𝑖
𝑙 + 𝑏𝑑

𝑙 + 𝑞𝑖 2.21 

Weight matrix Wl
d ϵ Rdxd and bias bl

d ϵ Rd are the learnable parameters. Let αl
ij be the 

attention weight of decoder state i and source input element j and zuo
j the output of the last 

encoder block uo. The weights are computed as a dot product of dl
i and zuo

j, namely, 

𝛼𝑖𝑗
𝑙 =

exp⁡(𝑑𝑖
𝑙.⁡⁡𝑧𝑗

𝑢𝑜)

∑ exp⁡(𝑑𝑖
𝑙.⁡⁡𝑧𝑡

𝑢𝑜)𝑚
𝑡=1

 2.22 

The conditional input cl
iϵ Rd of the current decoder state is calculated as 

 𝑐𝑖
𝑙 =∑𝛼𝑖𝑗

𝑙 (𝑧𝑗
𝑢0 + 𝑒𝑗)

𝑚

𝑗=1

 2.23 
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where the embedding of the input elements is ej which provides order information about a 

particular input element. When cl
i is obtained, it is fed to the output of the corresponding 

decoder state hl
i and serves as a part of the input to hl+1

i. 

2.4. Summary 

Text summarization is classified into two approaches: extractive text summarization (ETS) 

and abstractive text summarization (ATS). Extensive research has been conducted on these 

two summarization approaches. ETS selects important chunks or phrases of the original 

sentences using scores which are computed by either linguistic or statistical features. When 

writing a document summary, humans may include new words, phrase or sentences which 

are not in the original text.  ETS has a limited ability to generate new keywords, phrases 

and sentences in summaries, so a summary generated by ETS is quite different to one 

produced by a human.  whereas ATS produces a brief version of the document by 

generating new phrases with words that may not come from the original text. ATS aims to 

produce short and concise summaries that capture the salient information and overall 

meaning of the document which helps to generate human-like summaries. ATS generates 

better results than ETS since an ATS-generated summary is comparatively close to human-

written summaries, which makes the summaries more meaningful [142]. A reasonable ATS 

should maintains the sequence of the main theme and concepts presented in the document, 

minimize repetition, ensure sentences consistent and coherent, and capture the meaning of 

the text, even for long documents.  Moreover, the generated summary needs to be brief 

while conveying the salient information of the main text [143]. Therefore, recently, ATS 

has become a popular research topic and has achieved excellent progress using advanced 

machine learning techniques. Deep learning approaches were applied in the ATS for the 

first time in 2015 [144] which was the encoder-decoder architecture-based ATS model. 

Deep learning approaches have made significant advances in the research on ATS and have 

been extensively utilized in recent years. 

The attention mechanism has been proposed to improve the basic RNN seq2seq [145] and 

so the application of this attention based RNN seq2seq model to ATS has become standard 

architecture (Nallapati 2016 [36]; See, Liu, and Manning 2017 [42]; Cohan et al. 2018 
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[146]; Lin and Ng 2019 [10]). The attention mechanism learns the importance of words at 

each state of the decoder for a given input sequence at the encoder. In addition, these modes 

have been utilized to handle the issue of unseen words in the training dataset using a pointer 

generator network [36] [42]. Moreover, See, Liu, and Manning [42] introduce an attention 

with a coverage mechanism to avoid the duplication of words in the summary. Also, Lin 

et al. (2018) [117] propose an extensive encoding model to resolve the issue of copying. 

The encoder-decoder architecture based on a transformer using an attention mechanism 

and a model for extracting salient information to create summaries, is introduced in Devlin 

et al. (2019) [43]. Recently, the transformer-based pretrained model and the transformer 

itself have become dominant approaches in ATS because these models incorporate self-

attention to reduce the computational cost by parallelizing the computations in the training 

step (Vaswani et al. 2017 [39]; Zhang, Xu, and Wang 2019 [147]; Devlin 2019, [42], Xu 

et al. 2020 [134]; Pilault et al. 2020 [30]). The limitation of these architectures is that the 

maximum-likelihood loss function is minimized whereas the evaluation of ATS is mostly 

ROUGES metrics-based. 

In general, several ATS approaches have been presented which evolved with different 

architectures, such as the attention mechanism, transformer-based, reinforcement learning 

(RL) and sequential learning. Moreover, evaluations have been performed regarding 

processing, embedding, validation and training. However, there are a limited number of 

approaches which are able to obtain knowledge of the document to understand the 

document and identify topic information using that knowledge. Shi et al. [116] surveyed 

various ATS models, which are based on convolutional and RNN sequence-to-sequence 

encoder-decoder architecture, the main purpose being to examine network infrastructure, 

training techniques and the algorithms utilized to generate a summary. The basic form of 

the RNN-based ATS model suffers due to dropping the dependencies of the long-range 

sequence called gradient vanish, whereas LSTM-based ATS models are able to resolve this 

problem by utilizing the gate mechanism to learn which information to forget from the 

history and which new information to remember from the current state. But the RNN-based 

ATS has limitations in parallel computation since each state is required to wait for the 

previous state’s computation. Furthermore, RNN-based models are still constrained when 

handling very long sequences (length > 200) Compared to RNN, the infrastructure of the 
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CNN enables the ATS model to explore the hierarchical structure in sequences more easily. 

Convolutional networks do not depend on the computations of the previous time step. 

Consequently, this allows parallelization over every element in a sequence and has a 

shorter path to capture long-range dependencies.  

However, the weakness of these approaches is that they do not utilize high-level attention 

to capture the salient information of the document which makes it difficult to generate an 

abstractive summary which is near to a human-written summary. There are a limited 

number of approaches to capture topic information using a high-level attention mechanism 

[3] [113]. Generating abstractive summaries requires factual knowledge to understand the 

document and salient semantic information to capture the topic information. Advanced 

natural language processing (NLP) can help to understand the content while extracting the 

background information from the knowledge base.  But the aforementioned models do not 

consider the important background knowledge of the document and may capture irrelevant 

information as topic information in the generated summaries.   

In this chapter, we discussed the works related to our proposed system, the tools which are 

useful for implementing our work, and the recent progress in the field of knowledge 

extraction, topic modeling and abstractive text summarization. In knowledge 

representation, we first explain the reason for focusing on natural language representation, 

then we define the machine-readable knowledge base used to represent the knowledge. 

After this, we discuss some widely known effective knowledge base systems such as 

DBpedia, ConceptNet and so on. Next, we describe the functionality of natural language 

processing and the contribution of NLP tools to natural language representation. We also 

discuss the SPARQL query to retrieve information from an ontology-based knowledge 

base. Finally, we present our previous work, the NLIKR scheme, which we utilize to build 

our OMRKBS. We also explain the classic LDA model which has recently been proven 

effective for use as a base model to improve the topic model. We use the LDA model to 

improve our topic model using background knowledge. We describe the preprocessing of 

text, the mechanisms, and the algorithms of the LDA model. We discuss the Gibbs 

sampling technique to sample, assign and compute the information of a topic.  Finally, we 

provide examples of the LDA technique to illustrate the model. We describe some 
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fundamental information and the background of word embedding, neural networks, and the 

deep learning architecture. Finally, we discuss the recent developments in the ATS 

approach, such as recurrent neural networks, the encoder-decoder sequential-to-sequence 

network and the attention-based ATS approach, highlighting their effectiveness and 

drawbacks. We detail the fundamentals of convolutional neural networks which is related 

our work. We discuss the background of convolutional sequence networks since we use 

this as the base model to improve the summarization model.  
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Chapter 3.  

 

Problem Definitions 

Although there has been significant progress in deep learning-based ATS models in 

relation to summarizing documents, it is still challenging to produce human-like and high-

quality abstractive summaries since machines have a limited ability to understand the 

meaning of content and a limited capability to highlight topic concepts while generating 

summaries. Moreover, the generated summaries often do not have an appropriate syntactic 

or semantic structure. Therefore, developing an automatic text summarization system by 

resolving these challenges to generate human-like summaries is the target of this thesis. 

The problem to be addressed is how can a machine interpret and understand a document, 

identify the topic using background knowledge and generate summaries by associating this 

relevant topic information while maintaining a syntactic and semantic structure that is close 

to human-written summaries.  To address this problem, we present a complete deep 

learning-based abstractive text summarization system called Joint Knowledge-based Topic 

Level Attention for a Convolutional Sequence Text Summarization System using Natural 

Language Representation (KTSNR) which is able to produce coherent and meaningful 

summaries similar to the ones written by human beings.   

3.1. Building the KTSNR System 

We built a system using a three-step approach as follows: i) we construct an ontology-

based machine-readable knowledge base system (OMRKBS) to provide semantic and 

informative background knowledge about text that helps the system to understand the text; 

ii) we construct a topic knowledge base (TKB) to provide topic information based on the 

knowledge background of the source text (which is retrieved from the first step) to the 

system so that it can learn the salient and relevant information of the source text. We refer 

to this topic information as knowledge-powered topic information; iii) we develop a 

convolutional sequence network-based text summarization model with high-level topic 

attention that incorporates the knowledge-powered topic information (called KTOPAS) to 
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produce coherent, concise and human-like summaries with word diversity. Each approach 

will be explained step-by-step in the following sections.  

3.1.1. OMRKBS 

This is a knowledge base system which enables the system to understand the text by 

providing the background knowledge of the text. We propose a framework to construct an 

OMRKBS that comprises extraction, preprocessing, and mapping processes. Extraction 

retrieves the external information or background knowledge in a textual data format from 

various trusted sources such as DBpedia [49], ConceptNet [50] and WordNet [66].  

Preprocessing transforms the textual data into meaningful, informative, structural, and 

individual features so that the system can interpret and read the information. We call these 

features rich structured information (RSI).  Obtaining RSI is still a challenging task while 

constructing OMRKBS. We propose algorithms and rules to handle these challenges.  

Finally, the last step is mapping the process-built RSI into the OMRKBS system. One of 

the issues in constructing OMRKBS is to map the RSI in OMRKBS in a way that machines 

can read the information from OMRKBS.  The mapping process utilizes a Natural 

Language Independent Knowledge Representation (NLIKR) scheme to map the RSI of 

human knowledge in OMRKBS. This scheme represents a word as a concept and define a 

concept by its relations with other concepts. To map each word as a concept and the 

relationships among concepts in the RSI, we develop formulas to discover concepts and 

their relationship in OMRKBS. After discovering the concepts and relations in RSI, we 

propose an algorithm to map the RSI using the concepts and their relations in OMRKBS. 

Since each word is mapped as a concept and RSI is defined by relating their concepts in 

RSI, machines can read each concept and interpret their relations in a straightforward 

manner. Therefore, OMRKBS is capable of generating machine-readable information 

about a term.   

3.1.2. TKB 

This is a knowledge base which provides knowledge-powered topic information based on 

the source text.  We propose a framework to construct a topic knowledge base that 



49 

comprises conceptualization, a knowledge-powered topic model (KPTopicM) and learning 

the KPTopicM.  The conceptualization algorithm is proposed to derive the concept 

distribution for each word in the text. We retrieve the background knowledge or concepts 

using OMRKBS [83], ConceptNet [50] and Probase [51]. KPTopicM is a topic model 

which incorporates background knowledge to determine topic information using the 

distribution information. This model interrelates the topic information and background 

knowledge of the document to handle the challenges in obtaining relevant and salient 

information due to the lack of background knowledge. Classic LDA is three-layer 

hierarchical model where topic information is associated with words directly but does not 

consider background knowledge. The KPTopicM model includes one extra layer compared 

to the LDA statistical topic model which allows the direct association of background 

knowledge or concepts and the indirect association of words in the topic information. 

Therefore, this model is able to generate coherent and informative salient information. 

Finally, we train the KP-Topic model using the dataset and use the learned data as TKB.   

3.1.3. KTOPAS 

KTOPAS is a convolutional sequence network-based text summarization model which 

incorporates knowledge-powered topic information to generate abstractive and coherent 

summaries. This model comprises three CSNs: word, knowledge, and topic-level CSNs, a 

tri-attention channel, and final probability generation and learning. The word and topic-

level CSN encoders associate input elements and knowledge-powered topic elements with 

the summary elements that predict whether the summary element captures the input 

element or topic element. The knowledge-level CSN encoder associates elements with 

decoded knowledge-powered topic elements to obtain the coherence of topic information 

in relation to the source text. The tri-attention channel first measures the attentions from 

three aspects of the CSN level and then combines them using the SoftMax function to 

jointly learn the attention from the three aspects of CSN.  The final probability generation 

produces the probability distributions to predict the next target element in the output 

summary at the decoder of the word and topic-level CSN. Finally, the KTOPAS model is 

learned using the mixed training objective function [45] to maximize the model. The 

KTOPAS model handles one of the major challenges in generating coherent, relevant, and 
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meaningful concise summaries due to the gap in providing salient background knowledge 

to the ATS model.   

3.2. Generating Summaries using KTSNR  

Once the KTSNR is constructed, it performs the following tasks while generating 

summaries or training the KTSNR. First, KTSNR preprocesses the source text using 

natural language processing and retrieves the background knowledge from the knowledge 

base system. Then, it retrieves the background knowledge from the knowledge bases, such 

as OMRKBS, ConceptNet or Probase. Next, we obtain the topic information using the 

background knowledge from TKB. Finally, we incorporate the topic information into the 

KTOPAS model. Figure 3.1 illustrates the complete system of the deep learning-based text 

summarization model.  

 

 

 

 

 

 

 

 

Figure 3.1: Architecture of the KTSNR System.  

KTSNR is our proposed CSN based ATS system which use a joint knowledge-based topic level and natural 

language representation. OMRKBS is ontology-based knowledge-based system, TKB is a repository of learned 

topic model that serve as knowledge base. KTOPAS is CSN based text summarization model to generate 

summary. a→b indicates that a is the input and b is the output of a process. Each blue rectangle defines a process.   

 

This system resolves the challenges of generating summaries in a human-like manner, that 

is understand the content, identify the topic information, and generate summaries. The 

KTOPAS model is able to generate abstractive, coherent and human-like summaries with 

large word diversity without losing the original intent of the article.  This system assists 

users to learn the essence of the original document without reading the entire article which 

saves the user a lot of time and effort.  This system helps the search engine to find the 

KTOPAS TKB 

Preprocessed Source Text 

Source Text 

Background Knowledge 
Topic Information 

Generated Summary 

Knowledge Base 
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required information from the summaries instead of the source document in less time. This 

is an effective system which is able to generate important information from the original 

text and produce a significantly shorter version than the original text. We can use this 

summarization system for massive information in the areas of health, finance, research, 

new articles etc., to obtain topics, search engines, business analysis, and market reviews of 

products and services. 
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Chapter 4.  

 

Comprehensive Structured Knowledge Base System 

Construction with Natural Language Presentation 

Constructing an ontology-based machine-readable knowledge base system from different 

sources with minimum human intervention, also known as ontology-based machine-

readable knowledge base construction (OMRKBC), has been a long-term outstanding 

problem. One of the issues is how to build a large-scale OMRKBC process with appropriate 

structural information. To address this issue, we propose Natural Language Independent 

Knowledge Representation (NLIKR), a method which regards each word as a concept 

which should be defined by its relations with other concepts. Using NLIKR, we propose a 

framework for the OMRKBC process to automatically develop a comprehensive ontology-

based machine-readable knowledge base system (OMRKBS) using well-built structural 

information. Firstly, as part of this framework, we propose formulas to discover concepts 

and their relations in the OMRKBS. Secondly, the challenges in obtaining rich structured 

information are resolved through the development of algorithms and rules. Finally, rich 

structured information is built in the OMRKBS. OMRKBC allows the efficient search of 

words and supports word queries with a specific attribute. We conduct experiments and 

analyze the results of relational information extraction, with the results showing that 

OMRKBS had an accuracy of 84% which was higher than the other knowledge base 

systems, namely ConceptNet, DBpedia and WordNet. 

 

4.1. Introduction 

Machine readable knowledge bases are used to store datasets so that these datasets can be 

accessible through systems. Machine-readable knowledge base construction involves the 

automated extraction and integration of data from different sources and generating 

meaningful information with interoperable knowledge [49]. There is a large body of 

research on the automatic extraction of information for MRKBC. Initially, the research 

focused on syntactic information extraction [61][84], but more recently, the extraction of 
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lexical semantic information has received more interest from the research community [62-

63]. Knowledge base systems (KBS) which use traditional databases are not effective due 

to the limited operational and analytical workload and latency for retrieval [64]. On the 

other hand, ontologies which provide descriptions of terms important to a specific domain 

[63] are often used as a resource and have become an alternative to KBS in applications 

where elements are defined using the relations between concepts [69]. The mechanism of 

building an ontology-based machine-readable knowledge base system, also known as 

ontology-based machine-readable knowledge base construction (OMRKBC) is gaining 

more attention from the research community. While developing this process, most research 

studies include defining the ontological elements in a machine-readable way [64-65], 

providing descriptions of concepts using the relations between concepts [4] [60] and a more 

enriched meaning [52][68]. The attributes or descriptions are from sources that are publicly 

available but are difficult to obtain and structure into a single KBS [65]. There are several 

publicly available knowledge bases that are extremely reliable and commonly used such as 

DBpedia [49], ConceptNet [50], FrameNet [53] and WordNet [66]. Reusing these reliable 

knowledge bases is one way to facilitate the assignment of meaning to the terms of a 

domain [85]. However, the construction of ontologies is time-consuming and requires a 

thorough knowledge of the domain [86]. Furthermore, building an appropriate structure 

that represents information about terms is not a trivial task [87]. Additionally, some 

approaches are restricted to a single domain, hence they are not applicable to other 

domains.  

The main objective of OMRKBC is to obtain knowledge about each term from different 

sources through appropriate structured information and by representing the information to 

be queried in a meaningful and logical way. When terms and definitions are mapped to an 

ontology, they are often richly structured with different relations, attributes and simple 

relationships between concepts. Well-structured information or definitions support the 

efficient access of data from our OMRKBS which returns meaningful results. Before such 

a system can be used, an ontology needs to be created based on the existing data. For this 

purpose, first, we manually build a base ontology from two sources: BioPortal [47] and 

CRISP [48]. Then, we automatically build OMRKBS based on this base ontology from 

three reliable KBS: DBpedia [49], ConceptNet [50] and Word-Net [66]. This research 
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focuses on automating OMRKBC to obtain high-quality data and increase its effectiveness. 

We present a method to obtain a base ontology with important concepts. Once the 

important concepts are established in a base ontology, they can be used to define more 

complex concepts automatically from sources. 

More broadly, with purpose of representing the knowledge as machine interpretable 

individual feature, this section proposes Natural Language Independent Knowledge 

Representation (NLIKR), a scheme for an ontology based KBS. This scheme represents 

each English word as a concept in KBS. A word or concept is defined by its properties (i.e., 

its relationships with other concepts). The characteristics of a concept are indicated by its 

relationship with other concepts. As a result, a concept definition can go beyond human 

language since every word is a concept and is defined by another concept.  For example, 

‘earthquake shake the surface’ is one feature of earthquake, the association between 

‘earthquake’ and other concepts (i.e., ‘shake’, ‘surface’) in the feature represents the 

properties of ‘earthquake’ such as <earthquake, shake, surface>. In the associations, 

‘shake’, ‘surface’ are all concepts. A concept inherits the properties of its super concepts. 

For instance, ‘earthquake’ is a sub-concept of natural disaster. Therefore, earthquake shares 

the characteristics ‘natural disaster’. Therefore, earthquake shares the characteristics of 

natural disaster, such as ‘causes great damage or loss of life’. Our research develops a 

program for an ontology based KBS where the definitions or features of concepts are 

structured so they can be entered into the ontology using the NLIKR scheme.  

We observe that the process of OMRKBC is iterative: enriching the knowledge base by 

importing concepts, instances and relations and defining concepts from various sources. 

This motivated us to develop a program to automatically import data from different 

sources. In one part of the program, we import instance datasets which are available in 

CSV format from DBpedia. However, several problematic issues were identified while 

importing CSV instances into an ontology, such as its time-consuming nature and it 

consumes a large amount of space. We propose several algorithms and techniques to 

resolve these issues. The program performs the following operation to import instances by 

resolving the issues. First, a pre-processing algorithm is executed to process the large data 

file of instances and then a mapping algorithm is executed to automatically create the 
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mapping expression to embed the instances in OMRKBS. Finally, a program loads the 

instances with a mapping expression and embeds the instances in the system using OWL 

API. In the other part, we import a definition for each concept in OMRKBS. First, this 

program pre-processes a definition to turn the long text into features using the OpenIE [70] 

and some rules. Then, the program discovers each word in the text as a concept in the 

system and creates a mapping expression to embed the features. Finally, the features are 

implanted using a mapping expression in OMRKBS. 

Our primary improvements to the program are defining each concept with a description, 

features and instances through appropriately structured information. These features and 

instances of concepts are richly structured due to the advantages obtained by using NLIKR. 

This advantage implies that the features of a concept are structured in such way that each 

word in the structure of a feature is a concept and all concepts in the structure are linked as 

stated in the feature. We identified individual or unique features from the definition. Then, 

we embedded each feature in the system by its interrelationships with other concepts, 

relations and attributes as these features would be inherited to subclasses of the concept 

and the concept itself. These individual features with relations and/or attributes that are 

embedded in the system are called rich structured information (RSI). Consequently, each 

feature is machine interpretable since machines can discover each concept and find the 

interrelationship of concepts through the structure of features. Next, we concentrated on 

the retrieval and presentation of information of the concept being queried using simple 

SPARQL [71] queries which is mentioned next section.  

Our major contributions are as follows: 

A. We propose Natural Language Independent Knowledge Representation (NLIKR), 

a method which regards each word as a concept which should be defined by its 

relations with other concepts to represent the information or knowledge as machine 

interpretable features.   

B. Using NLIKR, we propose a framework for the OMRKBC process to automatically 

develop a comprehensive ontology-based machine-readable knowledge base 

system (OMRKBS) using well-built structural information to provide machine 
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interpretable, individual, meaningful, and salient features with a diverse range of 

vocabulary.  

C. We extract useful and common-sense information and relations from knowledge 

bases such as DBpedia and ConceptNet, transform this into rich structured 

information (RSI) based on the NLIKR method and incorporate RSI into the 

OMRKBS. OMRKBS is able to effectively search for a term and queries a term 

with a specific attribute. 

D. We present formulas and rules to discover concepts and their relations to documents 

and propose mapping algorithms to obtain RSI in the OMRKBS. RSI are the 

features of a concept where each feature is structured by associating concepts 

through relations and attributes which are machine interpretable.    

E. We present a SPARQL query to retrieve information about a term efficiently from 

our knowledge base OMRKBS. These queries retrieve information on a concept 

which shows the features not only of a concept class or instance (such ‘Barak 

Obama’) but also super classes of the concept or instances (such as ‘president’) 

from OMRKBS which relate to the concept. 

F. We also present a process query to allow users to ask a question about a word which 

has a specific property or attribute using two keywords.   

G. We evaluate the proposed OMRKBS, and the experiment results show that 

OMRKBS achieves better an accuracy (84%) than the other KBS, namely 

ConceptNet, DBpedia and WordNet. 

4.2. Related Work 

Recently, several approaches that reuse existing knowledge bases to automate ontology 

construction from unstructured text have been proposed [89-91]. The drawbacks of these 

approaches include labor costs to construct the dictionary, its domain-specific nature, and 

the limited number of patterns. Several approaches to ontology-based knowledge bases 

have been proposed to reformulate knowledge representation in ontologies [92-95]. 

However, semantic searches in knowledge bases still face difficulties, such as the lack of 

a detailed methodology that guides the ontology learning process from text. Portage [96] 
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supports plugins to import datasets from various sources to construct an ontology, however 

they are costly to assemble, and continuous human effort is needed to keep them up to date. 

 

Automatically constructing a KBS from sources is an important and challenging task. A 

large body of research exists on automatically obtaining large and quality (but textual) 

information from Wikipedia. The DBpedia [49] extracts structured information from 

Wikipedia covering many specific domains and general world knowledge [53]. But the 

extracted knowledge is mostly limited to named entities or concepts with proper names, 

such as cities, persons, species, movies, organizations etc. The linguistic relation between 

such concepts that are more relevant for ontology mappings is absent in DBpedia. YAGO 

[97] is identical to DBpedia in that each article in Wikipedia becomes an entity in YAGO. 

YAGO mainly extracts a smaller number of relations between concepts. Nevertheless, 

YAGO does not interrelate concepts if WordNet does not contain the concepts. BabelNet 

[68] is similar projects that collect crowd-sourced knowledge from similar sources. In these 

KBS, a large, structured, multilingual taxonomy is created from a combination of 

Wikipedia’s structured knowledge and WordNet [66]. However, a large amount of 

information is still being hidden in the text of the Wikipedia articles which is not covered 

in DBpedia, YAGO or BabelNet. The automatic extraction of semantic concept relations 

from raw text in KBC, even for concepts that are not yet listed in an existing repository 

such as WordNet, is a still challenging issue. 

 

Numerous research efforts aim at extracting knowledge from text corpora but research on 

the exact purpose of common sense knowledge (common sense knowledge presents facts 

or individual features about the concept, such as ‘Lemons are sour’) which is machine-

readable, is comparatively rare [98]. Automatically inferring missing facts from existing 

ones has thus become an increasingly important task. Cyc [99] is an AI platform with 

human reasoning, knowledge, and logic on an enterprise scale. To reason about text using 

Cyc, mapping the text into its proprietary logical representation is required using its own 

language Cyc. However, this mapping process is quite complex because the inherent 

ambiguity in natural language must be resolved to produce the unambiguous logical 

formulation required by Cyc. Wordnet [66] is an original and prominent linguistic resource. 

Words can point to one or several synsets and synsets can be referenced by one or several 
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words in WordNet. However, WordNet focuses on the formal taxonomies of words. In 

contrast, ConceptNet [50] which has been created from reliable sources, is a freely 

available large-scale commonsense knowledge base that focuses on a richer set of semantic 

relations between compound concepts and supports many practical textual reasoning tasks 

over real-world documents. ConceptNet can best be seen as a semantic resource whose 

scope of contents is general world knowledge in the same vein as Cyc. 

 

 

Figure 4.1: The proposed framework of OMRKBC.  

These KBs store common-sense facts in a machine-processable way and more recent work 

puts a focus on human interaction such as building question answering systems [88] [100]. 

However, facts can exhibit their properties in multiple aspects and fact expression has lost 

some properties or attributes through these KBSs. Moreover, not all the words in fact 

expression are interrelated in these KBSs, rather they present as a whole statement in KBSs. 

Therefore, these KBSs are not fully machine interpretable. Currently, knowledge base 

construction solutions have focused on obtaining rich structured information from text 

[101-106]. These KBCs already support a broad range of downstream applications such as 

information retrieval, question answering and medical diagnosis. However, the essence of 
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the information (individual features) remains latent in knowledge representation, where 

relations and attributes are expressed via combinations of textual and structural 

information. Moreover, the entities extracted by these systems have not been integrated 

into a single homogenous ontology. In this chapter, we design an OMRKBC process that 

defines concepts automatically with definitions and instances from reliable sources to build 

a comprehensive OMRKBS. Our approach acknowledges the facility of three reliable 

KBSs: Dapedia, ConcpetNet and WordNet and integrates various types of knowledge such 

as features and instances from these resources into OMRKBS through rich structured 

information that helps to define the object from various perspectives. Concepts are linked 

with attributes and relations in the rich structured information. The features of the concepts 

are built through rich structured information so that the system can return logical, 

meaningful, and informative results to the user’s query. We construct an ontology as a 

whole KBS, not as a domain, which facilitates the process of defining words and represents 

the query data in an informative way. 

4.3. Definition of NLIKR 

We propose NLIKR scheme where each existence is a concept. For instance, ‘water,’ 

‘liquid,’ ‘president,’ ‘politician’ and ‘war’ are all concepts. The set of all concepts is the 

CS which is a huge hierarchical structure formed by concepts being bound in two types of 

relations: inheritance and association. 

Definition 1. In NLIKR, each existence (physical or abstract) is a concept (denoted as c). 

All concepts form a set. The set is named CS. CS = {c1, c2, …, cn} (n is a finite integer and 

n > 0). Each concept is an element of the CS. The CS has a finite number of elements. 

Definition 2. Let c1 and c2 be two concepts in CS. c1 is defined as a sub-concept 

(descendant) of c2 (denoted as c1 ⊆ c2) if c1 is a type of c2, in which case, c2 is called a 

super-concept (ancestor) of c1. For instance, ‘water’ is a sub-concept (descendant) of 

‘liquid’ and ‘drink.’ ‘liquid’ is the super-concept (ancestor) of ‘water’ and ‘drink’. A 

concept inherits properties of its super concepts. The CS is unique in terms of its 

hierarchical structure. The inclusion operator ⊆ is transitive. That is, for concepts c1, c2 and 
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c ∈ CS, c1 ⊆ c2 and c2 ⊆ c infers c1 ⊆ c. Being a sub-concept of c2, c1 possesses (inherits) 

properties/characteristics of c2. This means that ∀d and e ∈ CS if c1 ⊆ c2 and there is an 

association then the association also exists. Therefore ‘water’ exhibits characteristics of 

‘liquid.’ Suppose the definition of liquid is “liquid has no shape”: <liquid, no, 

shape>. Since water is subclass of liquid, water will have the characteristic as well such as 

<water, no, shape>. Also, it is the relations between ‘water’ and ‘liquid’ is ’transparent’ (in 

color) and ‘tasteless’ (in taste), etc., define characteristics of ‘water.’ As a result, the 

definition of ‘water’ can be expressed as a set of relations without the involvement of a 

human language. For example, <water, no, shape><water, color, transparent><water, no, 

taste>. It is obvious that ⊆ is an order on CS, hence is an ordered set [15]. We will now 

closely examine the structure of the CS and the two types of relations: inheritance and 

association. 

4.3.1. Inheritance creation of the hierarchical structure 

Inheritance reflects the “…is a…” relation. It refers to the phenomenon that an association 

possessed by the super-concept is also possessed by the sub-concept. Inheritance can be 

multi-dimensional. This refers to the fact that a concept can be divided in different ways. 

For instance, the ‘liquid’ concept can have sub-concepts such as ‘water,’, ‘milk’, ‘blood,’ 

‘gasoline,’ ‘wine’ and ‘urine’ which divide the ‘water’ concept based on taste or element. 

It can also have the sub-concepts ‘drink’ and ‘non drink’ which split the concept into two 

distinctive categories.  

4.3.2. Association Establishment of Properties 

An association between concepts reflects a property/characteristic of the concepts. For 

instance, ‘water’ is associated with ‘transparent’ through ‘color.’ The triple <water, color, 

transparent> forms an association and this association reflects a characteristic of ‘water.’ 

Of course, it also reveals a characteristic of ‘color’ and ‘transparent.’ Each concept may 

have associations with millions of concepts. These associations describe the concept and 

establish the properties of the concept. For example, ‘<water, color, transparent>’ and 

‘<water, taste, tasteless>’ define the physical properties of ‘water.’ As a result, an 
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application can refer to these associations when processing a text that contains the string 

‘water.’ Consequently, the application’s understanding of ‘water’ is far beyond the simple 

string W-A-T-E-R. Not only is the application aware of the physical and chemical 

properties of ‘water,’ it also possesses information about the sources, usages and 

applications of the concept. Ultimately, we let concepts describe/define each other in a 

machine language 

4.3.3. End Concepts  

At this stage, a question arises: if we expect concepts to define each other, in which way 

can precise values be obtained? For instance, the association ‘’ defines the color of water, 

which is ‘transparent.’ But precisely, what is ‘transparent’? In which way should 

‘transparent’ be represented? ‘transparent’ as a color can be represented precisely as a triple 

(0, 0, 0) in the CS. Each number represents the level of ‘red,’ ‘green’ or ‘blue’ components. 

‘transparent’ is named an end concept.  

Definition 3. A concept that can be defined by a set of values and that does not have any 

sub concept is an end concept. Also referred to as a terminal concept in ontology, an end 

concept can be precisely defined by a value or a sequence of values. End concepts play a 

vital role in concept definition. This is because by simply letting concepts define concepts 

without any quantified information, the definitions may become a set of definition loops. 

Such definitions may not be valuable.  

4.3.4. Abstract Concepts  

A concept can be abstract. An abstract concept does not have a model in the real world. 

Instead, it represents a collection of concepts. In CS, an abstract concept normally acts as 

a placeholder to represent a type of concepts. For example, ‘taste’ is an abstract 

concept. taste is not an object in the real world. Meanwhile, the existence of ‘taste’ in CS 

is important. It acts as the parent of edible things, and it has its own characteristics. The 

question now becomes, how many concepts and how many associations should be included 

in CS? The answer is all concepts, and their associations should be included. Only in this 

way, human knowledge about things can be completely translated into machine knowledge. 
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4.4. The Framework of OMRKBC 

We propose a framework to build the OMRKBC process efficiently. First, we create the 

base ontology manually from existing ontologies such as CRISP [48].  Then, we extract 

information about concepts from DBpedia, WordNet and ConcpetNet and design a 

program to build the OMRKBC system with this information. A description of how the 

OMRKBC system is built is given in “Building the OMRKBC system” section and we 

represent the search results using efficient queries from our KBS in “System output” 

section. Figure 4.1 shows an overview of the framework of OMRKBC. The main purpose 

of OMRKBC is to define the concepts of the base ontology automatically from various 

types of structured information such as descriptions, instances, and relations. In Dbpedia 

and ConceptNet, such information is available in CSV format. We extract information from 

these large sources and turn this information into a knowledge base. For this, we propose 

a program to build the OMRKBC process in three phases: extracting resources, addressing 

the challenges, and embedding information in OMRKBS. Each phase is defined as follows. 

4.4.1. Extracting Resources 

The abstract (DBpedia provides a short abstract for each article, and we used this abstract 

 as definition in OMRKBC) and instances corresponding to concepts are extracted from 

DBpedia. Also, we extract relations and their corresponding data associated with concepts 

from ConceptNet. Some descriptions of concepts are extracted from CRISP. 

4.4.2. Addressing the Challenges 

In this process, the abstract or a description of a concept is turned into a set of individual 

features, and instances are converted into general information with attributes. We call this 

rich structured information. We focus on three challenges in relation to processing the 

information into RSI (rich structured information). Firstly, data must be pre-processed 

before being converting into RSI. Then, each word is discovered or allocated as a concept 
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and possible groups words/ phrases are discovered as relations in the OMRKBC system. 

Thirdly, data are mapped to convert into RSI. Finally, the well-structured information is 

ready to be entered into the ontology.  Table 4.1 show the example of the structural 

information from the knowledge base for the concept ‘Bara Obama’. 

Table 4.1:  Examples of rich structured information for various knowledges of a concepts.  

Example 1: Take as an example the word ‘‘water’ which is described as follows: “H2O, tasteless, colorless, 

odorless compound present in all tissues, and the most universal of solvents. The density of water is 1”.  

Structured information input: ‘<water, H20><water, no, taste><water, no, color><water, no, odor><water, 

compound, present in, organic, tissue><water, solvent><water, density, 1> 

Example 2: An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth 

resulting from a sudden release of energy. 

Structured information input: <earthquake, known as, quake><earthquake, known as, tremor ><earthquake, 

shake, surface><earthquake, resulting from, sudden release of energy 

Example 3: Barack Obama is an American politician who is the 44th President of the United States. He is the 

first African American president born in Honolulu, Hawaii. 

Structured information input: <Barack Obama, American politician><Barack Obama, first African American 

president> < Barack Obama, born in, Hawaii><Barack Obama, 44th president of the United States> 

Example 4: Barack Obama’s birthplace and spouse name are USA and Michelle Robinson respectively. 

Structured information input: <Barack Obama, birthplace, USA> < Barack Obama, spouse name, Michelle 

Robinson> 

The birthplace and spouse name are referred to as attributes. This information is imported through the following structure. We 

found some individual features of concept from this sentence of corresponding examples. 

 

4.4.3. OMRKBC with Information 

We design a program to build the RSI in OMRKBC. Individual features or characteristics 

of concepts and general information on concepts associated with attributes are embedded 

in RSI. Therefore, rich structured individual features and general information with 

attributes are built in OMRKBC. After importing the short abstract or the description, the 

ontology is enriched with new concepts, relations, or attributes. 

https://en.wikipedia.org/wiki/Michelle_Robinson
https://en.wikipedia.org/wiki/Michelle_Robinson
https://en.wikipedia.org/wiki/Michelle_Robinson
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Figure 4.2: An example of a class ‘water’ defined by the proposed ontology OMRKBC.  

The words in the grey circles are concepts and the root is denoted by the orange circle. The different colored 

dashed arrows indicate the relationship between concepts according to the features of the concept ‘water’ i.e., 

<water, no, taste><water, no, color> while the solid arrows indicate the subclasses. 

4.5. The OMRKBC System 

We describe how OMRKBC is built. Firstly, we construct the base ontology manually. 

Then, we introduce methods to discover the concepts and relations. Next, we develop a 

standard procedure to define the concepts through RSI. 

4.5.1. Constructing Base Ontology   

Concepts are classified and stored in a hierarchical structure in an ontology. Three majors 

domains: ’existence’, ’science’, and ’part of speech (POS)’ are the top of the structure in 

OMRKBC. These top three domains will be the basic class labels in the ontology, which 

means all the concepts will be assigned under these three classes. These basic class labels 

are built in the ontology manually. We illustrate these three class labels as follows. 

‘existence’ is one root class of the hierarchical structure which is divided into 

‘physicalExistence’, ‘abstractExistence’, ‘entity’. ‘physicalExistence’ can be 

‘lifeExistence’ and ‘nonLifeExistence’. ‘entity’ is something that exists apart from the 
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other things, having neither an abstract or physical existence, having its own independent 

existence (e.g. ‘weather’). 

 

Figure 4.3: Segment of science and existence domains.  

Concepts marked with the symbol ⊖ are subclasses of the concepts marked with the symbol ⊕. The concepts 

denoted by the color orange are discovered by OMRKBS. 

The ‘attribute’ and ‘relation’ class are added in the ‘abstractExistence’ class. Important 

phrases (e.g., ‘perform in’, ‘capable of’) are added in the relation class and important 

attributes (e.g., color, size) are added in the attributes class. The ‘generalAttributes’ class, 

which is a subclass of attributes, contains general properties of the class and the 

corresponding instances. Another top class is ‘science’ which has eight domains. 
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Figure 4.4: Segment of relation and attribute domains 

 

These domains are related to eight major science disciplines: ‘behavior’ or ‘social science’, 

‘biology’, ‘chemical’, ‘physical’, ‘food’, ‘medicine’, ‘diseases’, ‘technology’ that are 

mostly imported from CRISP [48]. These domains contain concept which are related to 

their topics. ‘parts of speech’ is one more top class, and some general words are added here 

such as verbs, prepositions, adjectives, adverbs and articles. An ontology with these basic 

classes is called the base ontology. Some important domains are extracted from BioPortal 

[47], EVS [107] and DBpedia [49] repository. For example, various types of important 

attributes (e.g., ‘shape’, ‘depth’, ‘speed’) from the ‘attributes’ domain of a thesaurus 

ontology in EVS and the ‘organization’, ‘place’, ‘creative work’, ‘entity’ and ‘action’ 

domains from the ontologies (e.g., schema, entity) in BioPortal and DBpedia are extracted 

and then these domains are placed under the base ontology. We take the example of water 

which are given as definition 1in Table 4.1. Figure 4.2 shows how “water’ can be defined 

by the proposed ontology OMRKBC. Figure 4.3 shows segments of the ‘existence’ and 

‘science’ domains. We extend the base ontology to enrich the domain so that various types 

of concepts can be assigned under the base ontology. Figure 4.4 shows the segments of 

relation and attributes that are discovered by OMRKBC system. 
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4.5.2.  Discovering Concepts 

In OMRKBC, each word is assigned as a concept and each concept can be defined by its 

relationships with other concepts. This section explains how each word is discovered or 

allocated as a concept in an ontology. First, the existence of the word is checked in the 

OMRKBC system. A concept is discovered when the word exists as a concept in the 

ontology. Otherwise, the word should be assigned into the ontology. Assigning a word as 

a concept is as follows: 

 

 

Figure 4.5: Flowchart to discover a concept in OMRKBC. 

First, the word’s synonyms are found using WordNet. When the synonyms are found in 

the ontology, the word is added as same class as the synonym class. For example, the 

synonym of ‘undertaken’ using WordNet is ‘take’ which exists in our ontology under the 

class of ‘action’ as a verb. ‘undertaken’ is added to the ‘action’ class. If a synonym cannot 

be found in our ontology, the ontology should be checked to find the hypernym of the word. 

If a hypernym is found, the word is added under the hypernym class. For instance, when 

‘action’ is a hypernym of ‘perform’ in WordNet and ‘action’ exists in OMRKBC, 
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‘perform’ is added under the ‘action’ class. However, when a word does not exist in the 

ontology or it cannot be related to a concept using WordNet, then this word needs to be 

tagged as a part of speech and this word is added as an axiom under the part of speech 

class. For instance, ‘fresh’ cannot be found in our ontology. So, ‘fresh’ is tagged as an 

adjective and this word is added under the ‘adjective’ class in our ontology. Verbs which 

are considered as actions are assigned to the ‘action’ class. We used the Stanford NLP 

parser [108] to tag the POS. Figure 4.5 shows the flowchart to discover a concept. We use 

this method to discover concepts from various sources later. 

Table 4.2: Set of rules to discover relations from document. 

Rule 1   When a word which is a verb (V) or abstract noun (ABSN) or common noun (CN) or an adjective 

(ADJ) is followed by a preposition (P) in the information, the two consecutive words are counted as a 

relation. Example: power through (V, P), leader of (CN, P), good for (ADJ, P), respect for (ABSN, P) 

Rule 2 When a word is a verb but is acting as an adjective (VADJ) and is followed by a noun in the information, 

the two consecutive words are counted as a relation. Example: washing machine (VADJ, N). 

Rule 3 When a word is an adjective and is followed by a verb in the information, the two consecutive words 

are counted as relation. Example: dry cleaning (ADJ, V). 

4.5.3. Discovering Relations 

There are particular groups of words which are used often in sentences. These phrase words 

are discovered as concepts in an ontology. We call these groups of words ‘relation’ since 

they can be used to link words in sentences. The relation is governed by a few rules when 

parsing the information to discover the concept. Table 4.2 shows the rule to discover the 

relation from the sentences. Finally, these two consecutive words are joined together as 

one word (e.g., ‘powerThrough, leaderOf, goodFor, respectFor’) and are assigned as a 

concept in the subclass under the class ‘relation’. Instantly, each word in the relation is 

discovered or assigned as a concept using the method outlined in Discovering concepts. 

The reason for calling the relation word a concept is because the concept can be defined 

with other concepts. Next, when a concept is discovered as a subclass of a class in the 

‘attributes’ domain, the attribute is added to the concept. For example, the ‘American’ 

concept is subclass of the ‘nationality’ concept in ‘attribute’. When ‘American’ is 
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discovered in the structure, the ‘American’ concept is added to the ‘nationality’ class in the 

structure using ‘:’ (e.g., nationality: American). 

4.5.4. OMRKBC with Instances from DBpedia 

Importing instances from the spreadsheet data of DBpedia in OMRKBS (IISDBS) is one 

part of the proposed OMRKBC process. We provide the background on the functional 

procedure of IISDBS. We also discuss the challenges of the functional procedure which 

motivate us to design a program with algorithms and techniques for IISDBS. 

Extracting Instances 

The largest DBpedia KBS which is extracted from the English edition of Wikipedia 

consists of over 400 domains. Each domain has various properties known as attributes. The 

core DBpedia data in tabular form are available in CSV format in http://web.infor 

matik.uni-mannheim.de/DBpediaAsTables/. Each CSV file contains instances of one 

concept and corresponding instances of properties or attributes. 

 

Example 5: As shown in Figure 4.6, the first column in the CSV file of the ‘president’ domain contains 

the name of presidents as instances. In this file, ‘president’ has more than 90 properties i.e. ‘birthdate’, 

‘birthplace’, ‘spouse’... etc. and these property fields contain instances corresponding to each 

president’s name. 

Functional Procedure 

A functional procedure from the Protégé project available at https://github.com/protegepro 

ject/cellfie-plugin imports spreadsheet data into the ontology in three steps using Protégé 

[96]. Firstly, the contents of the Excel file are loaded using the Cellfile plugin. Cellfile is a 

plugin which supports the creation of OWL ontologies from spreadsheets through a flexible 

 

Figure 4.6: Example of instances of ‘president’ domain in DBpedia CSV format 

 

mapping expression which maps spreadsheet content to OWL ontologies. Next, a simple 

mapping rule or expression for the class declaration axiom is created. Finally, axioms are 
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imported into the ontology. We adopt the functional procedure to import instances from 

DBpedia data into our ontology. 

 

Addressing the Challenges of IISDBS 

There are several challenges when implementing this procedure. We focus on three 

challenges in building the IISDBS. The first challenge is pre-processing the extracted CSV 

data so that these data can be imported into OMRKBS efficiently. The next challenge is to 

discover or allocate each word in the data as a concept in the ontology. The last challenge 

is mapping the data to embed instances in OMRKBS. We develop algorithms to address 

the three challenges which are discussed in the following: 

a) Pre-processing the data: Protégé [96] or OWL API [109] only support Excel files with 

.xlsx extensions when importing spreadsheet data into an ontology. A CSV file contains 

many invalid characters which are not supported when being imported into an ontology, 

which results in many NULL values which consume a lot of space in an ontology. Also, 

large files take a long time to process and sometimes the process is terminated, which 

is another challenge. A lot of work has to be done manually before CSV data can be 

imported into an ontology. Therefore, CSV data should be pre-processed before being 

imported into our ontology. For this reason, we propose an algorithm for pre-processing 

the data from a CSV file. This algorithm converts all CSV files into Excel files and the 

file size is reduced by almost 68.4% for each file. All invalid characters are removed 
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from the CSV files and all null values are replaced with empty values. After this, the 

file size reduced by 93%. Excel files are split after each 3000 rows, resulting in 

thousands of Excel files which are only 716 KB in size for each file. The overviews of 

the algorithm for preprocessing the spreadsheet data are shown in Algorithm 1. Now, 

the system can load and process each file and embed the instances in OMRKBS. 

 

b) Discovering Concepts: The names of all attributes or properties are concepts in our 

ontology. The reason for adding attributes as concepts instead of object properties is 

because an attribute as a concept can be related to other concepts in the proposed 

ontology. Discovering each property’s name as a concept is one of the important points 

in the IISDBS procedure. This stage confirms that the names of all the properties in the 

CSV file are discovered or allocated as concepts. The names of the properties in a 

domain which are presented in the first row of the excel file are imported as concepts 

into the ontology. The properties of the concepts i.e., ‘birthdate’, ‘birthplace’ are 

imported as concepts under the ‘generalAttributes’ class. When importing the data into 

the ontology, it is important to check whether this concept already exists or not. 

Suppose the property name i.e., ‘spouse’ already exists in the ontology, this property 

name will not be imported into the ontology twice. Now each word in the property 

names is discovered or assigned using the method described in “Discovering concepts” 

section. For example, ‘birthdate’ contains two words birth and date. These words are 

assigned or discovered. 

 

c) Mapping: Mapping spreadsheet content to OWL ontologies is a great challenge in the 

process of IISDBS. There are more than 400 domains in DBpedia. Writing mapping 

expressions for each domain with properties is time consuming. Furthermore, some 

domains contain more than 700 properties. Manually writing mapping rules for a large 

number of properties in a domain is a tedious task. We notice that the mapping 

expressions [110] are the same for all domains except the properties and column names. 

We consider that these property names and columns are variables. Example 5 shows a 

part of the CSV file of the president domain where the president names exist in the first 

column ‘A’ i.e., ‘Barak Obama’ and the other columns i.e., ‘B’, ‘C’ and ‘D’ contain 

data on the corresponding properties i.e., ‘birthdate’, ‘birthplace’, ‘spouse’. 
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The mapping expression can be written automatically for each domain with only the 

property name P1, P2, P3 (‘birthdate’, ‘birthplace’, ‘spouse’) ...corresponding to the 

column name (‘A’, ‘B’, ‘C’...) needing to be changed. Otherwise, all terms in the 

expression are the same. Since all column names corresponding to the property names 

are listed in the file, we can write a fact expression programmatically. Therefore, a 

pseudocode is developed to create a mapping expression to map the spreadsheet data 

to the ontology. Firstly, the property names of a domain which are presented in the first 

row are extracted from the Excel file. After this, an array list is used to store the 

property names P1, P2, P3 . . . (i.e., ‘birthdate’, ‘birthplace’, ‘spouse’). Also, a function 

‘getNameFromNumber’ is devised to generate the column names (i.e., ‘A’, ‘B’, ‘C’) 

which correspond to the instances of a property or domain and return the column name 

in colname in Algorithm 2. For instance, ‘birthdate’ is a property of the president 

domain and instances of ‘birthdate’ are listed in column ‘B (see Figure. 4.5). The 

function will return the column name (e.g., ‘B’) of the property name (‘birthdate’). If 

properties exist as object properties in an ontology, we can write the mapping rule using 

the fact expression using a variable of the property name and the corresponding column 

name as follows. Here, instances of concept are imported from ‘A’ and corresponding 

properties P1, P2 . . . information is imported from ‘B’,’C’... using the mapping rule as 

follows. 

 

Individual: @ A∗ 
Types: Concept 
Facts: P1@B∗, P2@C∗, P3@D∗, . . . 

However, properties exist as concepts not as object properties in our ontology. So, 

before using a fact expression in the mapping rule, we create individuals or instances  

for properties or concepts using the mapping rule as follows. 

mapping_rule1 =⁡Individual:⁡@B∗⁡(Nm = P1#) 
Types: P1 
Individual:⁡@C∗⁡(Nm = P2#) 
Types: P2 

For example, ‘birthdate’, ‘birthplace’ are concepts in the ontology and the ‘B’ and ‘C’ 

columns in the CSV file contain all the instances of ‘birthdate’, ‘birthplace’ 

respectively. The instances of these properties are imported using the following 
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mapping expression mapping_rule1. The instances of properties or attributes P1, P2 are 

imported from column ‘B’,’C’.... Nm contains the string ‘mm:namespace’. We used 

the Nm variable which allows the ontology to have specific reference to properties. We 

used this reference to identify the instances of the attributes. After all the individuals 

corresponding to the concepts in the ontology are added, we relate the instances or 

individual concepts as properties to the domain or concept in the second phase. For 

instance, ‘birthdate’, ‘birthplace’ contain data on the corresponding president’s name 

in the CSV file. Instances of properties are related to the concept i.e., ‘president’ using 

the following mapping expression mapping_rule2. 

mapping_rule2 =⁡Individual:⁡@⁡A∗ 
Types: Concept 
Facts:⁡hasPropertyValue@B∗(Mp(P1#′′)),⁡hasPropertyValue 
@C∗(Mp(P2#)) . . . 

 

Here, column ‘A’ contains all the instances of the concept (i.e. president names) and 

‘hasPropertyValue’ is an object property which is used only to relate the instances of 

the other concepts or attributes P1, P2 . . . with instances of the main concept Concept i.e. 

the president’s name. Concept variables contain the name of main concept 

(‘president’). The instances of P1, P2 . . . lie in the CSV data in columns ‘B’, 

‘C’...respectively. Mp contains ‘mm.prepend’ which is used to prepend the properties’ 

names with each instance. 

In cases where the property name already exists as a concept, then this property name is 

declared to be an equivalent class as the existing concept. For example, “occupation’ 

attribute is an equivalent class to “occupation’. Now, when the instances of a class already 

exist as a concept in the OMRKBS, the existing classes are added as types of instances 

through the ‘types’ properties. For instance, businessman is an instance of “occupation’ 

and “lawyer’ also exists as a class under the “occupation’ class. So, the concept “lawyer’ 

is added as type to the “lawyer’ instances through the ‘types’ of property. Also, we see in 

Example 5 that some instances (e.g., the “occupation’ field) contain multiple values 

separated by ‘|’ where each value is another instance. We split the instances or axiom by 

‘|’ and consider each split value (e.g., lawyer, politician) as the instance corresponding to 

the concept (e.g. “occupation’). We add each split value separately corresponding to the 
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concept in OMRKBC. After that, we relate these instances of concepts to the main concept 

to be defined (e.g., “president’). Algorithm 2 shows the pseudocode for creating the 

mapping rules automatically. 

 

4.5.5. OMRKBC Program 

In this section, we explore how the IISDBS process is executed into a program efficiently. 

This is the main program where CSV content is imported into the ontology. Mapping 

master [44] is a source library which can be used to transform the content of spreadsheets 

to OWL ontologies. We use this library with OWL API in Java to convert the spreadsheet 

into ontologies [109]. The three algorithms proposed to address the challenges in IISDBS 

are called by the program in order. Primarily, CSV data are pre-processed, and large files 

are split into multiple files after being pre-processed. This code executes tasks for each file 

through a loop. First, each Excel file is loaded into the program. Next, the domain 

properties are discovered as concepts in the ontology. After this, the mapping expression 

algorithm is called, and the mapped master expression is returned to the node which 
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represents the expression. Then, the data is looped as specified by the Mapping Master 

expression. Finally, the OWL axioms rendered by the Mapping Master expression are 

added to the source ontology. Algorithm 3 shows the pseudocode for importing Excel data 

into the ontology using OWL API. In line 8, we can see that a Mapping Master expression 

is rendered over a range of cells in a sheet. A Mapping Master parser is created for the 

expression in line 10. The parser parses and returns a node representing the expression in 

line 11. In line 12, the cells are looped as specified by the Mapping Master expression. 

Line 14 shows that a Mapping Master expression is rendered in the context of a location in 

a spreadsheet. The OWL axioms are added which are rendered by the Mapping Master 

expression in line 20. The system takes an average of 20.1 min to embed the instances of 

each file of concepts after resolving the challenges. On the contrary, the large file could 

not be loaded and mapped into the system before resolving the challenges. In “Experiments 

and a comparison of the results” section, we discuss the details of the space reduction and 

the time consumed for this program. 

4.5.6. OMRKBC with ConceptNet Data 

This section explores how ConceptNet data are built in the OMRKBS. We discuss the 

challenges involved in importing data from ConceptNet into OMRKBC and discuss the 

solution. Then, we present a program to build the ConceptNet data in OMRKBC. 

Extracting the Data 

ConceptNet provides seven large CSV files as datasets which can be downloaded from 

https://github.com/commonsense/conceptnet5/wiki/Downloads. The important fields or 

columns in the CSV files are ‘relation’, ‘node at the start’ and ‘node at the end’. To better 

understand the ConceptNet dataset in CSV format, Example 6 is given ‘relation’, ‘node at 

the start’ and ‘node at the end’ are expressed by the edge: ‘/r/CapableOf’, ‘/c/en/ president’ 

and ‘/c/en/govern_a_nation respectively’. 

Example 6: As an example, the ‘president is capable of governing a nation’ appears in the ConceptNet 

dataset as follows: /r/ CapableOf /c/en/president /c/en/govern_a_nation /ctx/all “weight”: 1.0 
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Addressing the Challenges of Building RSI from ConceptNet 

We concentrate on importing the features of the concept associated with the relations from 

ConceptNet. The challenges in converting the data into RSI are discussed and resolved. 

a) Pre-processing the data: The ConceptNet CSV files are too large to open. Therefore, 

all the CSV files are imported into the MySQL database where relation, start node and 

end node’ are three fields in the table of the ConceptNet database. The data of ‘start 

node’ associate the ‘relation’ with ‘end node’. We can see from Example 6 that ‘start 

node’ contains ‘president’, ‘relation’ contains ‘capableOf’ and ‘end node’ contains 

‘govern a nation’ for the sentence ‘president is capable of governing a nation’. The 

information on each concept is queried with each relation where the concept is matched 

with the ‘start node’ or ‘end node’ field in the dataset. For instance, data are queried 

about a concept i.e., ‘president where the ‘start node’ or ‘end node’ field is like 

‘%president%’ and ‘relation’ is like ‘capableOf’. The query will return all data lying 

between ‘capableOf’ and ‘president’ which means the query will return all things a 

president is capable of (i.e., governing a nation). 

 

b) Discovering concepts and relations: This stage confirms that all the relations of 

ConceptNet are built in OMRKBC. Each concept is discovered here using the method 

described in “Discovering concepts” section. First, ConceptNet uses some important 

relations to represent concepts and these relations appear in the relation field of the 

dataset. They are ‘capable of’, ’used for’ etc. All relations are assigned under the 

‘relation’ class. After this, each word in the relation is discovered or assigned if the 

relation contains more than one word. Next, we split all the words in the statement or 

description (i.e., ‘governing a nation’) which results from the query and each word in 

the statement is discovered or assigned as a concept. In cases where any word group in 

a statement is identified as a relation according to the rule given in “Discovering 

relations” section, these word groups are assigned as concepts under the ‘relation’ 

class. 

c) Mapping:  The associations between statements and relations corresponding to a 

domain (i.e., ‘president’) are mapped in the OMRKBS. A mapping expression is given 

to build relations with the domain as shown in Example 6.  
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(govern and nation) and capableOf  is a superclass of president 

A synonym is also a relation in ConceptNet. The synonym of a word is expressed the 

same as other relations in OMRKBC. For example, in ConceptNet, the synonyms of 

‘president’ are ‘head of state’. This is shown by the following expression. 

(head and of and state) and synonym is a superclass of president 

OMRKBC Program 

We design a program to import the features of the concepts associated with the relations 

from ConceptNet. We use the procedures proposed to resolve the three challenges in 

converting the data into RSI. Then, the RSI is built in the OMRKBS using the proposed 

program. 

4.5.7. OMRKBC with a Description of Concepts 

Defining a concept with a description is an important part of the proposed OMRKBC 

process. We identify the challenges in converting a description to RSI and provide the 

formula to address the challenges. In this section, we explore how concepts are defined by 

a short abstract or description through RSI. Also, we define the instances with a description 

and the relation with meanings. 

Extracting the Description 

The DBpedia dataset provides a short abstract for each article and can be downloaded from 

(http://wiki.dbpedia.org/data-set-36). This abstract can be used as a definition or 

description of the concept. A short abstract from DBpedia is shown in Examples 7–9 from 

Table 4.3. Next, we extract the meaning of the concept as text from WordNet. Then, 

concepts are imported with a description or annotation from the existing ontologies (i.e.,  

CRISP, Schema) while constructing the base ontology.  The meaning of the relation is 

retrieved from the Oxford Dictionary [111] using API, which is available at https://devel 

oper.oxforddictionaries.com and the relation is defined with the meaning.  We take three 

examples from Examples 7 to 9 to illustrate the OMRKBC with definition and they are 



78 

‘politician’ domain, concept ‘president’ which is subclass of ‘politician and ‘Barak Obama’ 

which is instances of ‘president’. 

Table 4.3: Examples of short abstract which are used to describe to transform into RSI. 

Example 7: For instance, a short abstract of the “politician’ domain is written in the dataset as 

http://dbpedia.org/resource/politician “A politician is a person active in party politics, or a person holding or 

seeking office in government. In democratic countries, politicians seek elective positions within a government 

through elections. In non-democratic countries, they employ other means of reaching power through 

appointment, bribery, revolutions and intrigues. Politicians propose, support and create laws or policies that 

govern the land and, by extension, its people. Broadly speaking, a politician can be anyone who seeks to 

achieve political power in any bureaucratic institution”. 

Example 8: A short abstract of the ‘president’ concept is given as “A president is the leader of a country or a 

division or part of a country, typically a republic, a democracy, or a dictatorship. Among other things, President 

today is a common title for the heads of state of most republics, whether presidential republics, semi-

presidential republics or parliamentary republics”. 

Example 9: Take for example instance ‘Barak Obama of ‘president’. The short abstract of ‘Barak Obama’ is 

Barack Obama is an American politician who is the 44th President of the United States. He an American 

politician, author, and retired attorney. He is the first African American president born in Honolulu, Hawaii. He 

worked as a community organizer in Chicago. Obama signed landmark bills, the Affordable Care Act , 

the Dodd–Frank Wall Street Reform and Consumer Protection Act; and the Don't Ask, Don't Tell Repeal Act of 

2010 bills. 

Addressing Challenges in Building a Description in OMRKBC 

Our challenge is to learn how to process the text in the description into RSI. As discussed, 

there are three types of challenges which must be addressed: pre-processing content, 

mapping information and embedding information. 

a) Preprocessing: the content short abstracts or descriptions must be pre-processed 

because sentences in the short abstract may be too complex or too long to relate words 

in the sentence with concepts. As shown in Examples 7–9, the sentence is so complex 

that it is difficult to relate the words in the sentences directly with the concepts in the 

ontology. Therefore, the text in an abstract is reformed into RSI in three steps. Firstly, 

each complex or long sentence is split into several simple clauses. Open information 

extraction (Open IE) [106] which is part of the Stanford NLP parser [108] extracts 

simple clauses from sentences. 

https://en.wikipedia.org/wiki/Chicago
https://en.wikipedia.org/wiki/Affordable_Care_Act
https://en.wikipedia.org/wiki/Dodd%E2%80%93Frank_Wall_Street_Reform_and_Consumer_Protection_Act
https://en.wikipedia.org/wiki/Don%27t_Ask,_Don%27t_Tell_Repeal_Act_of_2010
https://en.wikipedia.org/wiki/Don%27t_Ask,_Don%27t_Tell_Repeal_Act_of_2010
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Table 4.4: Example of how sentences are formatted after split. 

Politician President 

1. <politician, create; laws><create policies> 1. <president, is the leader of, a country> 

2. <president, common title for, the heads of 

state of most republics> 

3. <president, is, common title> 

4. <president, is the leader of, division or 

part of a country>  

5. <president, is, leader> 

6. <president, is leader of, republic> 

7. <president, is leader of, democracy> 

8. <president, is leader of, dictatorship> 

2. <politician, propose, laws><propose, policies> 

3. <politician, seek elective positions within; a 

government> 

4. <politician, holding office in; a government> 

5. <politician, seek political power; to achieve, in any 

bureaucratic institution> 

6. <politician, reaching power through, bribery> 

7. <politician, reaching power through, revolutions> 

8. <politician, reaching power through, intrigues> 

9. <politician, seek elective positions at; times> 

10. <politician, is active person, in party politics> 

11. <politician, is, person active> 

Barak Obama 

1. <Barack Obama, American politician> 

2. <Barack Obama, first African American president>  

3. < Barack Obama, born in, Hawaii> 

4. <Barack Obama, 44th president of the United States> 

5. < Barack Obama, worked as, community organizer> 

6. <Barack Obama, is, Author> 

7. <Barack Obama, is, retired attorney> 

8. <Barack Obama, signed, landmark bill> 

9.  <Barack Obama, signed, the Affordable 

Care Act bill> 

10. <Barack Obama, signed, the Dodd–Frank 

Wall Street Reform and Consumer 

Protection Act bill> 

11. <Barack Obama, signed, the Don't Ask, 

Don't Tell Repeal Act of 2010 bill> 

Each simple sentence appears to be an individual feature of the concept and is presented 

as (subject; property; object). Table 4.4 shows examples of how sentences which are 

taken from Examples 7–9 are formatted after splitting. Secondly, we remove some 

sentences from a list of simple sentences before converting the structured input to 

reduce redundancy. First, we only take one sentence which contains the subject, object 

and predicate related to the concept to be defined. If a synonym or an equivalent of the 

concept exists as a subject or object, we consider the sentence also. Next, if there is 

more than one sentence which looks similar or almost similar, the most complete 

sentence is included in the structure. For example, between two statements: <politician, 

active person, in party politics><politician, is, person active>, the complete statement 



80 

is <politician, active person, in party politics>. We remove the other similar statement. 

Finally, the rest of the simple sentences are converted into structured information. 

Subject is the concept to be defined, and (predicate, object) are the characterization of 

the concept. The structures of the simple sentences are constituted from (predicate, 

object). Each predicate and object are parsed from each sentence and are turned into 

the structured input using a few rules. The structured input is presented with a series of 

arguments and each argument is separated with ‘,’. We present the rules to transform 

the definition into structured information input in Table 4.5. The features which were 

generated from the sentences in Examples 7–9 by splitting are structured with the rules 

shown in Table 4.6. Each sentence in the description has been formatted into structural 

information so that the structure of the sentences can be mapped easily to build RSI 

into the ontology. 

      Table 4.5: Set of rules to transform documents to structure information input. 

Rule 1 The verb to be in the predicate acts as simple present and will not be included in the 

structure. 

Rule 2 When a clause in the predicate or object contains ‘of’ or ‘by’, the clause is split into three 

parts: the first part is the words following ‘by’/’of’, the next part is ‘of’/‘by’ itself, and the last 

part is the words preceding ‘of’/‘by’. Each part is an argument in the structure. 

Rule 3 When a clause in the predicate or object can be declared as a relation using the method 

in “Discovering relations”, the relation word is an argument. 

Rule 4 if a verb is not included as a relation as in Rule 3, the verb is included in the structure in 

base form. 

Rule 5 
Adverbs located before verbs are removed in the structure. 

Rule 6 
Adjectives of the subject or object are removed in the structure. 

Rule 7 When the structure contains only the object with no prepositions (e.g., ‘of’) and a concept 

(e.g., ‘Author’) in the structure is discovered as a subclass of the attributes class (e.g., 

‘occupation’), the attribute class is included as an argument in the structure also. 

 

b) Discovering concepts and relations:  Here, each word is discovered using the method 

discussed in “Discovering concepts” section. After extracting the structure of sentences 

in the abstract, each word in the structure is discovered as a concept. Instantly, possible 

relations and attributes in the structure are identified according to the rule given in 

“Discovering relations” section. 
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Table 4.6: Examples of how rules structure the sentences about concepts. 

Politician 

<create; laws> <create, policies> [1] No rule 

<propose, laws><propose, policies> [2] No rule 

<seek elective, positionsWithin, a government> [3]  Rule 3 

<reach, powerThrough, bribery> [6] 

<reach, powerThrough, revolutions> [7] 

<reach, powerThrough, intrigues> [8] 

Rule 4 

<seek political power to, achieveIn, bureaucratic institution> Rule 3 and Rule 6 

<active person, in party politics> [10] Rule 1 

<hold office, in government> [4] Rule 4 

President 

<leaderOf, a country> [1] Rule 1 and Rule 3 

<title for, heads of state, of, republics> [2]  Rule 1 and Rule 2 and Rule 6 

<leaderOf, division or part, of, a country> [4]  Rule 1 and Rule 3 and Rule 2 

<leader> [5] Rule 1 

<leaderOf, republic> [6] 

<leaderOf, democracy> [7] 

<leaderOf, dictatorship> [8] 

Rule 1 and Rule 3 

Barak Obama 

<American politician> [1] 

<president> [2] 

<first, African, President> [2] 

< 44th president> [3] 

Rule 1 

< workedAs, community organizer>   Rule 1 and Rule 3 

<occupation, retired attorney > [5] 

<occupation, Author > [5] 

<nationality, American> [5] 

Rule 1 and Rule 7 

 

<bornin, Hawaii> [6] Rule 3 

<sign, landmark bill> 

<sign, the Affordable Care Act bill > 

< sign, Dodd–Frank Wall Street Reform and Consumer Protection Act bill> 

<sign, the Don't Ask, Don't Tell Repeal Act of 2010 bill> 

Rule 1 and Rule 2 

Bold face font are the concepts which define with examples. The features of concept are taken from Table 4.4. All 

these examples have moved to another concept, as indicated by the dark grey color Number in the bracket 

indicate the number of the feature, we mentioned in the Table 4.4 after split. 

 

 

c) Mapping: Each sentence in the description about a concept or instance are built into 

the ontology according to the structure of the sentences. For this, the relationship 

among the arguments in the structure are mapped using the following two phases. First, 

the relationships among the words in the arguments and the relationships among the 

arguments in the structure are made by joining the words with an ‘and’ expression. 

Then, this relation is declared as a superclass of concept or types of instances. 

Example 10:  As an illustration, we take some sentence structures about ‘politician’ from Table 4.6 

and map them using the following expression.  

https://en.wikipedia.org/wiki/Dodd%E2%80%93Frank_Wall_Street_Reform_and_Consumer_Protection_Act
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(create and law) is a superclass of president  

(reach and powerThrough) and bribery is superclass of president 

Example 11: As another example, ‘Barak Obama’ is an instance in OMRKBC and the expression 

for mapping is as follows: 

(bornIn and Hawaii) is types of Barak Obama 

(nationality and American) is types of Barak Obama 
 

The reason for declaring features as super-classes is because these features or 

characteristics are inherited by the concept and the subclasses of the concept. The 

features of the instances will be derived through property type. 

OMRKBC Program 

We designed a program to define the concept with a description through RSI. In this 

program, the text in the description or abstract is processed into structural information by 

resolving the challenges and the structural information is built in the OMRKBS. In 

conclusion, when any new word is added as a concept in the ontology, this new concept 

can be defined with the description and the data and instances and synonyms from DBpedia 

and ConceptNet. Thus, we can develop an independent ontology based KBS. 

4.6. System Output 

In this section, we show how information about a word is queried and represented in the 

OMRKBS. We use the SPARQL [71] language for the query and format the proposed 

ontology in the RDF format. We introduce three types of searches in the system and 

represent the information according to the search. In the following, we describe these three 

types of searches: concept search, instance search and process queries. Generally, when a 

word is searched in the system to retrieve information on this word, we call the word a 

‘query word’. We declared a few PREFIXs to reference IRIs where a nsf prefix is a source 

of OMRKBC. 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schem a#> 

PREFIX owl: <http://www.w3.org/2002/07/owl#> 

PREFIX nsf: http://www.seman ticweb.org/shirinkhan /2017/ 
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4.6.1. Concept Search 

A concept search is executed when a ‘query word’ exists as a concept in an ontology. First, 

we introduce the queries to return the information about the concept. After this, the 

resulting data for a concept is represented. There are two types of queries by which to 

extract information about the concept.  

 

Table 4.7: Queries for the concept search of ‘president’ 

No  Query 

1 select ?superclass where nsf:politician rdfs:subClassOf ?superclass. 

2 select ?entity ? type WHERE {?entity rdf:type ?type. ?type rdfs:subClassOf* nsf:president.} 

 

These queries extract features or characteristics, instances, and general attributes. Table 4.7 

shows the queries for the ‘president’ concept and the result of the queries. The query on 

the first row retrieved the features of the concept and the second row retrieved the instances 

of the concept. In this section, we explore how information is presented with these queries. 

 

Feature Representation 

Since features are considered to be a superclass of a concept, the extraction of a feature 

becomes easier. A simple SPARQL query syntax is written to retrieve all the super classes 

of a concept which represent the characteristics or features of a concept in an ontology. 

The query syntax and results of a query are in the first row of Table 4.7. All the features of 

a concept are combined from the resulting data and are then represented as the definition 

of the concept. The presentation of the resulting information replaces the ‘and’/’or’ 

expression’ with ‘,’ in the original result.  

 

Example 12:  We give examples of the representation of features as the definition of concept 

‘president’ as follows: 
President 

Leader 

Title for heads of state of republics 

Leader of:  

Country 

Division of a country 

Part of a country 

Republic, democracy, dictatorship 

Capable of: 

 Give a speech 

 Duck the issue 

 Govern a population 
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Because each feature appears individually, and the feature may be associated with 

attributes and relations in the result, the presentation of the results becomes more specific 

and meaningful. In Example 12, we understand from the result: who is the leader of 

country. Also, some important relations such as ‘leaderOf’ helps to separate some 

characteristics which specify the result. We consider a relation to be important if the 

relation has a connection with more than two features. 

 

Example 13:  For example, ‘president’ concept returns the list of president names in the following 

format. 
List of presidents 

Barack Obama 

Barak Obama 

Justin Trudeau 

Moon Jae-in 

.. 

.. 
 

Instance Representations 

The query in the second row of Table 4.7 returns the instances of the concept. Also, if the 

instances of a subclasses of a concept exist in an ontology, this query returns the instances 

of the subclasses with the subclasses name. We place ‘,’ between the names of the instances 

and the subclasses in the representation of the resulting data. Appending instances of the 

concept makes the output more informative. In conclusion, when a concept search is 

performed, the results of these two types of queries are represented in a bind.  Example 13 

is given to illustrate the instance representation. 

 

Table 4.8: Query for the instance search (i.e., ‘Barak Obama’) 

Query 

select distinct ?value ?generalAttributes ?Gtype ?GClass where { 

nsf: ‘Barak Obama’ ?property ?value. 

nsf:’Barak Obama’ rdf:type ?GClass. 

FILTER( ?GClass != owl:Class&& ?GClass != owl:NamedIndividual ) 

?value rdf:type ?GeneralAttributes. 

OPTIONAL 

?value rdfs:seeAlso ?label. 

?label rdf:type ? Gtype. FILTER( ? Gtype!= owl:Class&& ? Gtype!= owl:NamedIndividual ) 

filter ( ?property not in ( rdf:type ) ) 

FILTER( ? GeneralAttributes!= owl:Class&& ? GeneralAttributes!= owl:NamedIndividual )} 
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4.6.2. Instance Search 

When the ‘query word’ exists as an instance of a concept in OMRKBC, the system starts 

the instance search. This search returns the concept of the instance and the instances of the 

attributes corresponding to the instance. Table 4.8 shows the query for this search and 

Example 14 shows how the information on the instance ‘Barak Obama’ is represented. 

 
 

Example 14:  For example, ‘Barak Obama’ is queried in the system and the query returns information 

about ‘Barak Obama’ as shown in Table 4.8. The information means that ‘Barak Obama’ is an instance 

of the ‘president’ class. This president’s birthplace is the USA, and the USA is also a concept ‘country’ 

which is mentioned through ‘type’.” The results for the instances ‘Barak Obama’ are presented as 

follows. Also, the instance will have the same feature of concept. For example, ‘Barak Obama’ is an 

instance of the ‘president’ concept. Therefore, ‘Barak Obama’ has all the characteristics of a president. 

The features of a president which are inherited by instances are retrieved using a concept search. 

Thus, it is possible to vary the search scope in OMRKBS. 

Barak Obama 

President  

First African President 

American politician  

Author 

Retired Attorney 

44th President 

Born in Hawaii 

Sign bill 

Landmark bill 

The Affordable Care Act bill 

Dodd–Frank Wall Street Reform and Consumer 

Protection Act bill  

Don't Ask, Don't Tell Repeal Act of 2010 bill  

Birth Date: August 4, 1961 

Birthplace: USA 

Spouse: Michelle Robinson 

Nationality: American 

Occupation: Author, lawyer 

Start Year: 1976 

Political Party: Democratic 

Age: 72 

Start Year: January 20, 2009 

 

4.6.3. Process Queries 

Process queries allow the user to ask a question to find information about a word which 

has a specific property or attribute. This question is asked with two arguments where the 

first argument usually represents the main word that the user wants to know, and the second 

argument represents the property or attribute of a main word.  

https://en.wikipedia.org/wiki/Don%27t_Ask,_Don%27t_Tell_Repeal_Act_of_2010
https://en.wikipedia.org/wiki/Michelle_Obama
https://en.wikipedia.org/wiki/Democratic_Party_(United_States)
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Each argument is separated by ‘,’ in the question. The result of this search shows the 

relationship between the two arguments. Table 4.9 shows the query for a question 

(‘politician’, “policies’) with the result. First, the main word can be the concept in the 

question. Also, the property or attribute can be a concept which describes the main concept 

with other concepts. This search returns all the features of the main concept related to the 

property or attribute. It also filters all the inherited features of the main concept associated 

with the property. We have given Example 15 and 16 in Table 4.10 to explain for this 

query. Secondly, suppose a user wants information on an instance associated with a specific 

property. In this case, the main word is an instance and the property is a concept in the 

question. This query returns instances of a property associated with a main word instance. 

We give example 17 to explain this query. 

 

Table 4.9:  The query for an example question (‘politician’, ‘policies’) 

Query 

SELECT ?subClassOf WHERE { 

nsf:politician (rdfs:subClassOf| owl:equivalentClass) * ?subClassOf. 

?subClassOf owl:intersectionOf | owl:unionOf ?subClassOf_name. 

?subClassOf_name rdf:rest*/rdf:first* ?name. 

optional{ 

?name owl:intersectionOf | owl:unionOf ?subsubClassOf_name. 

?subsubClassOf_name rdf:rest*/rdf:first* ?subname.} 

filter(nsf:policies in (?name) | | nsf: policies in (?subname))} 

 

In short, a concept search finds the definition of a concept or word and an instance search 

returns information about an instance. Finally, a question can be asked about a word 

associated with a property, and the system will return data related to the word and the 

property. 

Table 4.10: Example we have used to explain process queries. 

Example 15  For example, ‘politician’ is the main concept and ‘policies’ is one property concept of ‘policies’. 

When the question (‘politician’, ‘policies’) is asked in the system, the results show all the 

features of the politician related to policies (e.g., politician create policies). 

Example 16 For example, ‘president’ is a subclass of ‘politician’ and ‘politician’ has been defined in the 

ontology as <politician create policies>. When (‘president’, ‘policies’) is queried, the results 

show <president create policies> as ‘president’ inherits the superclass features of ‘politician’. 

Example 17 For example, (‘Barak Obama’, ‘occupation’) or (‘Barak Obama’, ‘birthdate’) is queried in the 

system to retrieve information on the occupation or birthdate of ‘Barak Obama’, hence the 

query will return the result (Barak Obama’s occupation: author and birthdate: August 4, 

1961 ). 
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4.7. Characteristics Comparison of OMRKBS with other KBSs 

There are several fundamental qualities that facilitate efficient searches in the OMRKBS. 

First, every concept is defined by relating other concepts in the OMRKBS rather than by 

using annotation. The importance of the object and data properties is not significant, since 

each property is declared as a concept in OMRKBS. Then, OMRKBC supports various 

relations and attributes. Next, individual features are richly structured with relations and 

attributes and are called super classes of a concept in OMRKBS. The features are inherited 

by the concept and subclasses of the concept. Also, OMRKBS provides general 

information about concepts or instances (e.g., ‘birthdate’, ‘spouse’). These fundamental 

qualities enable different types of searches in OMRKBS and assist in returning specific, 

meaningful, and logical information for the search. 

 

Table 4.11: Comparison of the characteristics of OMRKBS with the existing KBSs 

Characteristic  DBPedia WordNet ConceptNet OMRKBC 

Individual features are presented  X X √ √ 

Each word is a concept X X X √ 

No specific data property X X X √ 

Limited object properties X X X √ 

Provides general information on an instance 

or concept 

√ X X √ 

Inherits the superclass features X √ X √ 

Individual feature is presented with attributes  X X X √ 

Individual feature is presented with relations X X √ √ 

Allows a question to be asked about a 

concept with a property 

√ X X √ 

 

In addition, as we see from Examples 15 to 17, OMRKBS enables questions to be asked 

with two arguments to understand the relation between these two arguments. The DBpedia 

system supports instance searches (e.g., ‘Barak Obama’, ‘occupation’) but not concept 

searches (‘politician’, ‘policies’). But other KBSs such as WordNet or ConceptNet do not 

support this type of query. Also, the individual features as defined will be inherited by the 

subclasses in response to the question. WordNet and our system have this functionality. 

‘president’ inherits all the features of ‘politician’ and answer the question (‘president’, 

‘policies’) that <president, create, policies>. Therefore, the system can answer logical 

questions. Table 4.11 compares the characteristics of OMRKBS with the other KBSs. 
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4.8. Experiments and a Comparison of the Results 

4.8.1. Implementation Setup 

We propose a standard implementation of our framework in Java for Windows, version 10 

and the experiments are performed on a PC with quad-core CPU (4 GHz) and 16 GB of 

RAM. The resources that were used in the development of OMRKBC are DBpedia, 

ConcpetNet 5 and WordNet. We used OWL API to import axioms as a subclass, superclass, 

or class in OMRKBC. The program uses the JWNL, which is an interface to the WordNet 

dataset. The synonymous terms and the considered hypernyms are retrieved from WordNet 

using this interface. We use the Mapping master source library to transform the content of 

the spreadsheets to OWL ontologies. We used Open IE and Stanford NLP parser library 

[108] sources to split the sentences. We connected the MySQL database with the MySQL 

JDBC driver to retrieve the ConceptNet data. We used the SPARQL query language to 

retrieve the data from our KBS.  

4.8.2. Datasets  

To evaluate OMRKBC, we created a KBS in English for the domain ‘agent’ (’person, 

artist, athlete, journalist, etc.), place (city, country, region, country), work, game (soccer, 

cricket, golf, etc.), organization, animal, educational institution (university), event, album, 

chemical. We grouped the results by dataset and analyzed the outcome of the structural 

information from different sources. The datasets are ConceptNet 5, WordNet 3.0 and 

DBpedia. To compare the results with our KBS, we used the abstract and instances with 

the properties from DBpedia, and the relation statement ‘capable of’, ‘used for’ and ‘type 

of’ from ConceptNet, and the meaning, hypernyms, and synonyms from WordNet. 

4.8.3. Evaluation Methods 

An evaluation team of 15 PhD students, all experienced in the field of information retrieval, 

was formed to assess the accuracy of the process queries, relation discovery and overall 

accuracy of OMRKBS. 

Accuracy=
|{relevant⁡results}∩{retrieved⁡results}|

|{retrieved⁡results}|
 4.1 
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We calculate overall accuracy of OMRKBS by the mean accuracy of these two searches 

using the following equation. 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙⁡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑛𝑐𝑒𝑝𝑡⁡𝑠𝑒𝑎𝑟𝑐ℎ⁡𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + ⁡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑠𝑒𝑎𝑟𝑐ℎ⁡𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

2
 4.2 

 

Table 4.12: The file size reduction for each domain after preprocessing algorithm step by step. 

Domain Original size Size after excel 

conversion 

Size after null and invalid 

values removed 

File size after 

split (KB) 

Agent 13 GB 5 GB (60%) 260 MB (98%) 800 

Animal 250 MB  61 MB (75%)  23 MB (91%)  820 

Chemical 15 MB  3.1 MB (79%)  1.7 MB (89%)  705 

Event 134 MB  44 MB (68%)  8.1 MB (94%)  718 

University 32 MB  7.5 MB (77%) 3.4 MB (89%)  690 

Game 1 MB  188 KB (82%)  132 KB (87%)  660 

Album 327 MB  116 MB (65%)  13 MB (96%)  650 

Organization 1.32 GB  564 MB (57%)  46 MB (96%)  680 

Place 4.43 GB  1.8 GB (60%)  125 MB (97%)  720 

Work 1.7 GB  663 MB (61%)  27 MB (98%)  710 

  68.4% 93.5% 716 

The second column shows the original size of the file.  Columns 3, 4 and 5 show the file size reduction after the program converts 

the file to Excel, removes the null and invalid values, and splits the file. The percentage of file reduction is given in parentheses. 

The bottom line indicates the average percentage of the file reduction of each step. 

4.8.4. Results Analysis 

First, we conduct an experiment to execute the program for IISDBS over the existing 

datasets. As part of the experiment for this program, we evaluate the space reduction of the 

file over the pre-processing algorithm and time consumption of the program of IISDBS. 

We can see from Table 4.12 that the average file reduction is 68.4% from the actual size 

after Excel conversion and 93.5% after the null and invalid values are removed over the 

pre-processing algorithm. The Excel files size is only 716 KB after each file is split. We 

embedded instances of one file for each domain. The execution times of the IISDBS 

program for each domain are shown in Figure 4.7. We can see from Figure 4.7 that the 

average execution time of each file is 20.14 min. This implies that the system can process 

the small size file and embed the data in the system after pre-processing the large file and 

creating an automatic mapping expression whereas the large file could not be loaded and 

mapped into the system before resolving these issues. 
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 Figure 4.7: Time consumption to execute the IISDBS program. 

Next, we evaluate the accuracy of the process queries, relation discovery and overall 

accuracy of OMRKBS over the selected datasets. We can see from Table 4.13 that the 

mean accuracy of the process queries is 93%. The accuracy of relation discovery is 

measured by the number of relations which are discovered correctly in system and the 

results shows a 100% accuracy. Finally, the evaluation team was asked to determine how 

well each statement in the results is expressed when a word is queried in the system. When 

a statement presents ambiguous, unrelated or unclear individual features, this information 

is regarded as being poorly expressed. On the other hand, when a statement presents 

relevant and correct individual features with attributes and relations, this information is 

regarded as being well expressed. The accuracy of the word query is calculated using the 

number of well-expressed features among the results. The evaluation team calculated the 

accuracy of the concept search and the instance search using equation (4.1). The results 

from each domain were averaged for the two searches as shown in Figure 4.8. We calculate 

the overall accuracy of OMRKBS by the mean accuracy of these two searches using 

equation (4.2) and present the overall accuracy in Figure 4.8. Observe that the accuracy of 

the instance search is slightly lower than the concept search. Interestingly the event and 
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organization domains have a higher overall accuracy whereas the chemical domain has the 

lowest accuracy. 

 

Figure 4.8:  Evaluation of accuracy of concept search and instance search of important domain in 

OMRKBS.  

The green line shows the overall accuracy of OMRKBC. 

 

Table 4.13: Evaluation of the accuracy of the process queries and relation discovery 

 

 

 

 

 

 

 

Now the accuracy of the KBSs: DBpedia, ConceptNet, WordNet and OMRKBS is 

evaluated using the same dataset. Figure 4.9 gives a breakdown of the results. In 

OMRKBS, each word is a concept, and each concept is defined with other concepts rather 

than with statement or a description. Therefore, it is feasible to represent the features of the 

concepts with attributes, relations, and related concepts in specific ways. OMRKBS 

Domain Process Queries Accuracy 

Agent 89% 100% 

Animal 93% 100% 

Chemical 96% 100% 

Event 97% 100% 

University 93% 100% 

Game 94% 100% 

Album 94% 100% 

Organization 91% 100% 

Place 90% 100% 

Work 94% 100% 

 93% 100% 
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supports many relations (i.e., ‘born in’, ‘capable of’) and attributes (‘nationality’, 

‘occupation’). In DBpedia and WordNet, the definitions (e.g., abstracts, meanings) are 

descriptive and presented in text format whereas ConceptNet and OMRKBC provide more 

specific or individual features with relations and attributes. ConceptNet has a higher 

accuracy of 77% in terms of the appearance of individual features than DBpedia and 

WordNet as ConceptNet gives specific information with relations. 

 

 

Figure 4.9: Comparison of the accuracy of OMRKBC with the existing KBSs over the same dataset. 

However, OMRKBC is one repository where concepts are interconnected with relations 

and attributes in various ways. Therefore, individual features are informative and 

meaningful. For example, when an instance such as president name (‘Barak Obama’) is 

queried, OMRKBC shows the president’s general information such as ‘birthdate’, 

‘birthplace’ etc., whereas ConceptNet mostly does not provide general information. 

Although DBpedia provides general information with attributes, it does not present 

individual features with relations (e.g., <Barak Obama, president of, USA>). Some 

properties of an object are lost or invisible when defining an object in ConceptNet. In 

contrast, concepts or instances can be represented with attributes in OMRKBC. For 

instance, Barak Obama is businessman who is represented in our ontology <Barak Obama, 

occupation, businessman>. ConceptNet may mention ‘Barak Obama’ is author, but the 

property of businessman is hidden. In this sense, the representation of data in OMRKBS is 
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more meaningful and tangible. OMRKBS has higher accuracy (84%) than the other KBSs 

for individual features. This result suggests that the individual features of concepts are 

well-structured in OMRKBS. 

4.9. Summary 

This chapter discussed the process of building an OMRKBS over the last few years and 

several issues relating to OMRKBC. We described the NLIKR scheme in which each 

concept, denoted by an English word or phrase, is defined by its relations with other 

concepts and its position in the concept space. We identified a key challenge, this being to 

convert the data into RSI using a classical technique to map information into the structure. 

However, the classical techniques are not effective on large datasets, hence, we used the 

NLIKR scheme to translate the information in OMRKBS. We applied rules, algorithms, 

and techniques to transform the data into RSI. As a result, the information is well structured 

with attributes and relations. This improves the effectiveness of the query results and has 

higher accuracy compared to the other KBSs. Though OMRKBC is not a fully independent 

KBS, it is partially developed and focuses on a specific domain. However, it is a proposed 

method, where the development of a complete large knowledge base repository is possible. 
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Chapter 5.  

 

Concept-based Topic Attention for a Convolutional 

Sequence Text Summarization Model 

Neural network-based text summarization often suffers from the problem of summarizing 

irrelevant topic content regarding the main idea. One of the main reasons leading to this 

problem is a lack of human commonsense knowledge which generates facts that are not 

decipherable. We propose a text summarization framework called CSN based Text 

Summarization with Concept-based Topic Triple Attention (TEXSCTTA). The framework 

incorporates concept-based topic information into a convolutional sequence text 

summarization model. We propose a concept-based topic model (CTM) to generate 

semantic topic information using conceptual information or knowledge which is retrieved 

from a knowledge base. We introduce a triple attention mechanism (TAM) to not only 

measure the importance of each topic concept and source element to the output elements 

but also the importance of the topic concept to the source element. TAM presents 

contextual information from three aspects and then combines them using a SoftMax 

activation to acquire the final probability distribution to enable the model to produce 

coherent and meaningful summaries with a wide range of rich vocabulary. The 

experimental evaluations which are conducted over the Gigaword and CNN/Daily Mail 

datasets reveal that TEXSCTTA surpasses the various widely recognized state of-the-art 

models (WSOTA) such as Seq2Seq, PGEN, CSM and TopicCSM. TEXSCTTA achieves 

competitive results by generating coherent and informative summaries. 

5.1. Introduction 

Text summarization is a mechanism to generate a brief statement for an original document 

that preserves the genuine meaning of the content. This is an important step in overcoming 

this task of summarization to understand natural language.  Moreover, a concise and 

meaningful summary of documents assist humans to comprehend the document well in a 

short time.  Text summarization is widely classified into two parts: extractive and 

abstractive based on the earlier research. Extractive summarization trims the important 
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chunk of the document to generate summaries and integrate them to produce a coherent 

summary. Abstractive summarization produces qualitatively more similar to human-

written summaries from scratch which does not comes from the phrases of the original text 

directly.  Extractive methods were firstly introduced to reproduce semantic information 

from the original document and summarize it.  

Table 5.1: An example of generated summary of our model. 

DOCUMENT: Barak Obama on Wednesday announced the closure of government schools with immediate 

effect as a military campaign against religious separatists escalated in the north of the country. 

SUMMARY: Barak Obama shutdown school because war escalated in the north of the country. 

Blue content” war” shows generated output element appeared from topic concepts. The topic concept” war” is the latent 

knowledge of the related words which are marked in red in the document. 

More recently, deep learning models have attracted great interest from the research 

community in relation to text summarization approaches as they are able to achieve good 

summary results [36][42][112].   Sequence-to-sequence models have been proposed to map 

an input sequence into another output sequence in the abstractive summarization approach. 

There are useful models for abstractive summarization based on sequence-to-sequence 

RNNs such as long short-term memory (LSTM) with the encoder-decoder model. This 

model works well for machine translation where input and output length do not vary much.  

However, the length of the summary should be short compared to the length of document. 

Therefore, the one of the main problems in text summarization is to shorten the original 

document so that the main concept in the original document is preserved. The interrelation 

between words and documents are captured on a large scale in CNN [80] compared to RNN 

[36] since input sequences are represented hierarchically in multi-layered structures. A 

sequence-to-sequence model based on CNN called the Convolutional Sequence Model [80] 

(CSM) has been used in the text summarization approach. However, due to a lack of 

background knowledge, these models have a tendency to include unnecessary and 

grammatically incorrect information in the summaries that originate from the source 

document. Furthermore, the main topic might be overlooked because of this when 

generating the summary. This may lead to unconcise summaries that focus on irrelevant 

topics. Incorporating latent topic information into a text summarization model can ensure 

the relevant theme is discovered from the source document which is useful for generating 

a meaningful summary.  
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A traditional Latent Dirichlet Allocation (LDA) topic model [28] has been proven to 

achieve high accuracy as a text summarization model to uncover latent topics from 

documents [3] [113]. However, obtaining novel topics with only statistical models is 

clearly not sufficient. Conceptual information is a kind of external knowledge generated 

from a concept-based knowledge base which captures the latent semantic information of 

the text and provides contextual information. Using conceptual information in topic models 

is a potential solution to enrich the novelty of topics. Currently, text summarization 

research based on conceptual information and deep learning is limited. One of the 

important problems is handling rare words. The importance of a rare word is undermined 

since the researcher observes the rare word by counting the occurrences of the word. This 

is because they have no knowledge about that word which results in the failure to determine 

the importance of that word. Another disadvantage of these models is the ability of 

obtaining the syntactic structure in topic keywords. A good summary always has a strong 

association with the topic, document and summary, therefore, determining the associations 

among them is very important. To resolve these challenges, in contrast to most of the 

summarization models based on the RNN Seq2Seq model with the attention mechanism, 

we focus on obtaining topics based on conceptual information, called topic concepts, with 

a strong association among topic, document and summary, and summarize the document 

by incorporating topic concepts into the CSM-based summarization model.  

 

In this chapter, we present a text summarization framework based on CSM with concept-

based topic attention called Convolutional Sequence Text summarization with Concept-

based Topic Triple Attention (TEXSCTTA). First, we generate topic concepts by 

incorporating conceptual information into the statistical topic models. Then, we 

incorporate topic concepts into CSM to map the salient knowledge and its alignment 

information by introducing TAM through contextual and topic concept attention. An 

example of the generated summary of a document by the TEXSCTTA model is shown in 

Table 5.1. 

Research in this chapter has achieved the following: 

• We propose a concept-based topic model (CTM) by integrating conceptual 

information into the LDA statistical topic models. This model generates salient 
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topic concepts efficiently which are more semantically relevant and informative for 

the input elements. 

• We propose a CSM-based text summarization framework with concept-based topic 

attention (TEXSCTTA). This framework incorporates topic concepts which are 

retrieved using CTM into CSM. This model produces concise and rich summaries 

with salient information for a document. 

• We introduce the triple attention mechanism (TAM) to measure the importance of 

each topic concept and source element to the output elements and the importance 

of each topic concept to the source elements which presents contextual information 

from three aspects and combines them using SoftMax activation to acquire the final 

probability distribution to assist the model to produce coherent and meaningful 

summaries with a wide range of rich vocabulary. 

• We evaluate our proposed framework on datasets and compare them with various 

WSOTA such as Seq2Seq [100], PGEN [42], CSM-ATS [114] and TopicCSM [3]. 

The experiment results show that our model achieves a consistently better 

performance than WSOTA.  

5.2. Related Work 

Text summarization has been widely investigated from extractive [52] to abstractive 

summarization using deep learning. Extractive summarization has a drawback in respect 

to coherence, readability and providing concise information. Deep learning-based 

approaches such as NLP, data mining, image processing or video streaming have been 

proven to be very useful techniques in various research studies [50]. Abstractive 

summarization is the part of NLP research where deep learning-based text summarization 

achieves better results compared to extractive methods. Rush [40] first introduced neural 

networks to the text summarization approach. Bahdanau [78] proposed an approach for 

contextual alignment for machine translation which is applied to the text summarization 

approach. Two datasets, Gigaword and the CNN/Daily Mail datasets, have been used 

extensively to evaluate the summarization model and have achieved good results.  Nallapati 

[36] proposed an RNN-based ses2seq+attention baseline text summarization model and 
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built the model based on the CNN/Dail Mail dataset which has been used as a base model 

of many summarization models to improve the existing models.  Paulus et al. [45] 

improved the text summarization model by introducing an improved attention mechanism 

and by training the model with a reinforcement learning approach. Pasunuru [115] 

proposed a reinforcement learning approach into the base seq2seq model and utilized the 

multiple reward methods to improve the performance of the model.  The base Seq2Seq 

RNN uses the soft attention mechanism to focus on the position of the important and 

relevant information segment of the document while generating summaries. The 

abstraction summarization model (ATM) generates semantically well-formed and human 

readable summaries. Most ATM models are built on the sequence-to-sequence framework 

(Seq2Seq) which maps the sequence of inputs to the sequence of outputs using RNN [36] 

[42] [112] [116]. Usually, this soft attention captures salient and relevant information from 

the document for each of the decoders in the generated summaries. In these types of 

models, the contextual information is captured at a syntactical level where the semantic-

level information has been ignored. This affects the performance of the summarization 

output due to the lack of semantic information. The main concept or original meaning of 

the document should not be overlooked while generating abstractive summaries. Therefore, 

incorporating topic information into the ATS model can be effective in terms of providing 

good summary results.  This is because the dependence of words and key information 

within the document are captured while generating the summaries.  Only a few studies have 

been conducted which incorporate topic information in the ATS model [3] [113].  

Gehring [5] first introduced CNN to the text summarization approach which has been 

successful in providing better results. Lin [117] utilized CNN to introduce a gated 

convolution unit to retrieve global information and reduce the chance of duplication.  This 

model enables the system to compute the operation and locate contextual information in 

document in parallel. Convolutional neural networks tackle the challenges of training speed 

by leveraging parallel computing and achieving document-level inference, abstraction and 

paraphrasing by capturing long dependencies between words. However, using only a 

convolutional sequence model (CSM) in the text summarization approach [36] has proven 

less effective while generating incoherent summaries due to the failure to identify a novel 

topic. This is because only word-level attention is considered but the high-level semantic 
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structure of the input elements such as the topic and knowledge background of the 

document is not considered. There are several models such as text summarization with pre-

trained encoders [43], BART [118], ProphetNet [119] and PEGASUS [120] based on 

pretrained objectives for abstractive text summarization and to evaluate datasets, however 

topic-based summarization where topics are retrieved using conceptual information has not 

been sufficiently investigated.  

 

However, most of these models do not utilize the concepts in the document which can 

provide meaningful and informative information. Limited research has been conducted to 

utilize the meaningful information as concepts in the summarization model and scant 

research has been conducted to justify the performance of the convolutional architecture in 

the summarization approach. Higher-level attention in terms of conceptual information or 

knowledge could facilitate a model to generate effective results such as Context-Relevant 

Knowledge which is introduced into CNNs for text classification [121]. So, we introduce 

the topic model to provide topic information based on concepts and incorporate this 

information into the ATS model to resolve this problem. The CTM provides topic 

information which has a string association with the documents. This ATS model considers 

the relevance of the summaries, the topic information, and the document jointly while 

generating summaries. Therefore, we incorporate topic concepts in CSM through high-

level attention. 

5.3. Base Model 

We use a base model Topic-CSM [3] to improve our TEXSCTTA model. In this section, 

we describe the mechanism of the base model Topic-CSM. This model is shown in Figure 

5.1. It uses word embedding with topic information, a multi-layer convolution structure 

and multi-hop attention to incorporate topic information into the CSN-based ATS model. 

Multi-layer convolution constructs a representation of the elements in a hierarchical order. 

Then, this model passes the output of the last layer to a SoftMax classifier to predict a 

probability distribution over the target elements in the summary. This model uses the LDA 

topic model to obtain and pass topic information from LDA to CSN as additional input.  
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Figure 5.1: Convolutional model for the topic summarization model. 

5.3.1. Words with Topic Embedding 

Document d is embedded into distributional space, x = (x1, . . ., xm) along with their absolute 

word positions in document p = (p1, . . ., pm) where (w1, . . ., wm) are the sequence of words 

in the document. The topic distribution of document d is denoted as td ϵ Rf′ and the topic 

distributions over words in the document is denoted as t՛ = t՛1, . . ., t՛m.  

This model incorporates topic information with the embedding of the word with its position 

via a representation e= {e1, e2, …, en} where ei  is as follows: 

𝑒𝑖 = [(𝑥𝑖 + 𝑝𝑖); (𝑡𝑖
′ ⊗ 𝑡𝐷)] ∈ ℝ𝑓+𝑓′ 5.1 

where ⊗ is the point-wise multiplication. ℝ𝑓+𝑓′is the total (f+f՛) real number which is the 

dimension of the embedding matrix. The representation of the decoder for the prediction 
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of the output element, g = (g1, . . ., gn) for the earlier predicted target elements (y՛1, y՛2, …,) 

and gi is computed as follows: 

𝑔𝑖 = [(𝑥𝑖
′ + 𝑝𝑖

′); 𝑡𝐷] ∈ ℝ𝑓+𝑓′ 
5.2 

where p՛ and x՛ are the embeddings of the word and position of the previously predicted 

element yi and td denotes the topic distribution of document d. 

5.3.2. Multi-Layer Structure 

The 𝑘 adjacent elements of the input are encoded to each convolution block and the 

concentration of the blocks represent the input  𝑥 ∈ ℝ𝑘×𝑑  which is embedded in a 𝑑 

dimensional space and an output element of each block is denoted as  𝑦 ∈ ℝ2𝑑 . Gated linear 

units are used on the output of the convolution to transform them to y. The 𝑘 output 

elements of the previous layer are operated through the successive layers and connect via 

residual connections which enable in depth hierarchical representation. The output of the 

ℓ-th layer is denoted as hℓ = (ℎ1
ℓ, … , ℎ𝑛

ℓ) and 𝐳ℓ = (𝑧1
ℓ, … , 𝑧𝑚

ℓ ) for the decoder and the 

encoder network, respectively. 

5.3.3. Multi-hop Attention  

Multi-hop attention for each state captures the important context of each block by attending 

to the representation at the decoder and passing the output to the next upper block which 

assists the model to remember the histories of the attention of words.  The attention 𝑎𝑖𝑗
ℓ  of 

state 𝑖 and source element 𝑗  is computed as: 

𝑎𝑖𝑗
ℓ =

exp⁡(𝑑𝑖
ℓ ⋅ 𝑧𝑗

𝑢)

∑  𝑚
𝑡=1  exp⁡(𝑑𝑖

ℓ ⋅ 𝑧𝑡
𝑢)

 
5.2 

where the decoder state using current decoder state ℎ𝑖
ℓ and the previous output element 

embedding 𝑔𝑖 is as follows:  𝑑𝑖
ℓ = 𝑊𝑑

ℓℎ𝑖
ℓ + 𝑏𝑖

ℓ + 𝑔𝑖. The output from the last encoder layer 

𝑢⁡is denoted as vector zu. The conditional input 𝑐𝑖
ℓ to the current decoder layer is computed 

as follows: 
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𝑐𝑖
ℓ =∑  

𝑚

𝑗=1

𝑎𝑖𝑗
ℓ (𝑧𝑗

𝑢 + 𝑒𝑗) 
5.3 

where 𝑒𝑗 is the input element embeddings.  This model incorporates the topic information 

through word embedding, does not utilize high-level topic attention and also does not 

consider concept information. We improve this model by introducing a high-level topic 

attention and utilize the concepts to capture the topic information while generating 

summaries.  

 

Figure 5.2: Architecture of the proposed TEXSCTTA model. Each subprocess is marked with a dashed 

line and a different color.  

When a subprocess is used in another process, that subprocess is filled marked in the same color. 

5.4. Architecture of TEXSCTTA 

In this section, we present the architecture of our TEXSCTTA model. Figure 5.2 shows the 

architecture of TEXSCTTA. This architecture comprises four subprocesses: generate 

meaningful information, CTM, topic concept generation and convolutional structure. The 
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subprocess generate meaningful information has two steps: preprocess and generate 

concepts from the knowledge base. We apply the rule and algorithm used in chapter 4 to 

transform information into meaningful and structural information. The subprocess generate 

meaningful information provides the informative features of the document as a concept set 

to CTM. The concept-based topic model (CTM) consists of two steps: conceptualization 

and learning concepts. CTM receives the concepts from the meaningful information 

process, uses the conceptualization algorithm to rank the top-N concepts related to the 

documents, and incorporates this information into the LDA topic model to obtain topic 

information based on the concepts in the document (also called learning topic concepts). 

The topic concept generation process produces topic concepts from the trained CTM 

model. This uses the subprocesses generate meaningful information and conceptualization 

to retrieve the top-N relevant concept set for the document and produces the topic concepts 

from the trained CTM model. The convolution structure is the architecture of the CSN 

model which consists of three steps: word embedding with their position, multi-layered 

structure and multi-hop attention. First, the input and output are embedded at the encoder 

and decoder of CSN with their position, then the multi-layer structure is applied to 

represent the input and output elements in the hierarchical structure, and finally multi-hop 

attention computes the state of the encoder and decoder with their attention in the CSN. 

We use the aforementioned subprocesses to build our proposed TEXSCTTA model. We 

generate the topic concept of the document using topic concept generation, we use the 

convolution structure to encode and decode the input and output elements and measure 

their attention, we introduce a tri-attention mechanism which utilizes the high-level topic 

attention to incorporate the topic concept into our model, we generate the final probability 

distribution to predict the next target element at the decoder of CSN, and finally, we use 

the reinforcement learning approach to maximize the performance of the model. 

5.5. Text summarization Model with Concept-based Topic Triple 

Attention (TEXSCTTA) 

In this section, we propose a text summarization framework, TEXSCTTA. This framework 

introduces an architecture based on CSM [80] with concept-based topic attention for a text 



104 

summarization model. This architecture consists of a convolutional structure, concept-

based topic generation and attention, a triple attention mechanism (TAM) and a probability 

generation and learning procedure. The graphical illustration of text summarization with 

concept-based topic attention is shown in Figure 5.3. 

 

 

Figure 5.3: Text summarization Model with Concept-based Topic Triple Attention (TEXSCTTA).  

The partial summary for the input segment of the source “Barak Obama on Wednesday ... separatists” is” Barak 

Obama shutdown school because” and the next target element that comes from the topic concepts in the output 

summary is” war”. 

5.5.1. Convolutional Structure 

We use the CSM architecture [80] as the base for our framework. We introduce word 

embedding and concept-based topic embedding and feed these embeddings into three CSM 

units in the architecture, along with position embedding, multilayer structure and multi-

hop attention. 
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Word Position Embedding 

We encode the absolute position of each word in the source document by adding position 

embeddings with word embeddings in the multilayer CNN architecture. Let document d be 

represented as a sequence of words d = (w1, w2, …, wn) with a total of n words. We embed 

the input elements into distributional space x ∈ {x1, x2…, xm}. M ∈ RV xd is an embedding 

matrix, xj ∈ RVxd is a row in M and vocabulary size is denoted as V. The absolute position 

p= (p1, …, pn) of the input elements in the document is embedded to preserve the order of 

the sequence. Finally, we represent the input elements along e = (e1, e2, …, en) by 

combining word and position embedding. That is ei = (wi; pi) (i = 1, 2, . . ., n). Similarly, 

the output elements with m words generated by the decoder are represented along q = (yi; 

𝑝̅i) (i = 1, 2, …, m) and leads to the next step. 

Multi-layered Structure 

CNN applies multiple layers as units on top of each other to build a multi-layered 

hierarchical representation over the document. We call this the multilayered convolutional 

structure (MCS). MCS is applied in both encoder and decoder networks in a model. The 

output of the lth layer is defined as dℓ = (dℓ
1, …, dℓ

n) at the decoder, and el = (el
1, …, el

m) at 

the encoder. In an encoder network, the state of a single block dl
i contains information over 

kernel (k) input elements. A concatenation of k adjacent elements in d dimension, x ∈ Rkd 

are provided in each convolution block using convolutional layers and these are mapped to 

an output element y ∈ R2d. Y is represented as [A B] ∈ R2d and Gated Linear Units are 

applied over output y as 

g ([A; B]) = A ⦻σ(B) 5.4 

In equation 5.4, the inputs to the non-linearity are denoted as A, B ∈ Rd, the sigmoid 

function as σ, point-wise multiplication as ⦻, and q ([A B]) ∈ Rd as the output. A residual 

connection is applied to compute convolution unit i on the l-th layer and an example for 

the decoder is given as follows. 

ℎ𝑖
𝑙 = 𝑔(𝑊𝑙 [ℎ𝑖−𝑘

2

𝑙−1, … , ℎ𝑖+𝑘
2

𝑙−1] + 𝑏𝑤
𝑙 ) + ℎ𝑖

𝑙−1 5.5 
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Here the learnable parameters, kernel matrix and bias term are denoted as Wl ∈ R(2dxkd) 

respectively and dl
i ∈ R. Finally, the last decoder output dL

i is used to compute the next 

target elements yi+1 for K possible outputs using a SoftMax classifier: 

𝑝(𝑦𝑖+1|𝑦1, … , 𝑦𝑖𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑌ℎ𝑖
𝐿 + 𝑏𝑌) ∈ 𝑅𝑇 5.6 

Multi-hop Attention 

First, we measure the attention of the source elements towards the output elements. We use 

a multiple hop attention per time step to access previously attended words in the encoder 

and decoder for the output summary. We compute the summary of decoder state zl
i to 

measure the attention as 

𝑧𝑖
𝑙 = 𝑊𝑑

𝑙ℎ𝑖
𝑙 + 𝑏𝑑

𝑙 + 𝑔𝑖 
 

5.7 

where the current decoder state is denoted as dl
i and the previous target element embedding 

is denoted as gi ∈ Rd. Weight matrix Wl
d ∈ Rdxd and bias bl

d ∈ Rd are the learnable 

parameters. Let vu0
j be the output from the last encoder layer u0 and ∆l

ij is the attention of 

state i and input element j. The attention is measured as 

∆𝑖𝑗
𝑙 =

exp⁡(𝑧𝑖
𝑙.⁡⁡𝑣𝑗

𝑢𝑜)

∑ exp⁡(𝑧𝑖
𝑙.⁡⁡𝑣𝑡

𝑢𝑜)𝑚
𝑡=1

 5.8 

The conditional input cl
i ∈ Rd to the present decoder layer is obtained as the sum of the 

output from the last encoder vu0
j and the input element embedding ej. 

𝑐𝑖
𝑙 =∑∆𝑖𝑗

𝑙 ⁡(𝑣𝑗
𝑢0 + 𝑒𝑗)

𝑚

𝑗=1

 
5.9 

Finally, we add cl
i, to the output of the corresponding decoder layer dl

i, delivered as part of 

the input to the next state dl+1
i in the decoder. 

5.5.2. Generating Meaningful Information with a Concept Set 

In this section, we retrieve meaningful information about a term as a concept set from 

knowledge bases such as our OMRKBS or ConceptNet to understand the document. We 

take the example in Table 5.1 “The Barak Obama on Wednesday ... country”. First, we 
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tokenize the document and identify the terms or word list defined as w = w1, w2, w3, …, 

such as (Barak Obama, announce, closure, military campaign, escalated, …) from the 

document. We extract information for each term from knowledge bases such as our 

OMRKBS or ConceptNet. We discussed in chapter 4 how information about terms is built 

in OMRKBS.  We use the same approach to transform the information into informative 

and meaningful features. First, we extract the information about a term from DBpedia, split 

the sentences, apply the rules, and build information about the term using the mapping 

algorithm.  For example, the information about ‘military campaign’ is extracted from 

DBpedia as follows:  

“A military campaign is a long-duration significant military strategy plans incorporating a series of 

interrelated military operations or battles forming a distinct part of a larger conflict often called a war.”   

Similarly, the information about ‘escalate’ is extracted from ConceptNet as follows: 

“intensify”, “war”, “extent”, scale, nuclear, and so on. 

After splitting the sentences and applying rules, the features of the military campaign are 

represented in OMRKBS using the mapping expression algorithm detailed in 4.4.7. This 

helps us to understand the document since this provides unique features, and structural and 

concept information. We retrieve information about the concepts ‘military campaign’ and 

‘escalate’ using the aforementioned steps as follows: 

Military campaign 

< military strategy, plans> 

<incorporate, military, operations > 

< incorporate, battles> 

<form, conflict> 

<war> 

Escalate 

            <intensify> 

            <war> 

            <extent> 

            <scale> 

            <nuclear> 

We generate a list of concepts c = (c1, c2, c3, …, cn) for each word wi in the document using 

the approach detailed in 5.3.2 from knowledge bases such as Dbpedia and ConceptNet. 

Figure 5.4 shows how the ‘military campaign’ concept is defined in OMRKBS. The 

generated concepts for each word using the approach in OMRKBS are as follows: (1) 
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Barak Obama (w1): country (c1), state (c2), ..., (2) announce (w2): declare (c1), advertise 

(c2), …, (4) closure (w4): shutdown, blockage, … (5) school (w5): education, organization, 

…, (6) military campaign (w6): war, campaign, entail war, ..., (7) against (w7): protest, 

opposition, …, (8) Tamil (w8): terrorist, human, .. (9) escalated (w9): intensify (c1), war 

(c2), …, and so on.  

 

Figure 5.4: An example of a concept (‘military campaign’) defined by the proposed OMRKBS.  

The words in the blue circles are concepts and the root is in the purple circle. The dashed arrows indicate the 

relationship between concepts according to the definition of a concept (‘military campaign) while the solid arrows 

indicate subclasses.  

5.5.3. Concept-based Topic Generation and Embedding 

In this section, we propose a concept-based topic model (CTM) to obtain topic concepts 

based on conceptual information. Then, we embed the topic concepts. 

Concept-based Topic Model (CTM) 

This model uses conceptual information to discover the salient topics of documents. This 

model consists of preprocessing which retrieves information from the knowledge base and 

converts it into informative concepts of the document, and conceptualization which 

retrieves conceptual information from the knowledge base and learns the topic concepts 
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using this conceptual information based on the LDA topic model to produce the relevant 

topic concepts. For example, this model generates the topic concept “war” which is the 

latent knowledge of related words such as ‘military campaign’, ‘separatists’ and ‘escalated’ 

in the document from the example in Table 5.1. 

 

a) Conceptualization:  We propose a conceptualization algorithm to derive the conceptual 

distribution for each word in the document using a conceptual knowledge base such as 

Probase [102], ConceptNet or DBpedia. Algorithm 1 shows the procedure of the 

proposed conceptualization to retrieve the conceptual information corresponding to 

each word in the document and to compute their distribution. We describe here how 

the algorithm works.  We use the inverted indexing technique [141] to map the words 

into corresponding weighted sequences. First, we calculate the probability of word w 

in the document corresponding to the concepts, denoted by P(c|w) using equation 

(5.10). 

𝑃(𝑐|𝑒) =
𝑐𝑜𝑢𝑛𝑡(𝑒, 𝑐)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑒, 𝑐)𝑐𝜖𝐶
 5.10 
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Then, the word vector range in the document is transformed to the concept range 

through weight vector wc which represents the original document in the conceptualized 

range. Let wc = (𝑤𝑐1, 𝑤𝑐2,.,  𝑤𝑐𝑘), where each 𝑤𝑐𝑖
 represents the weight of concept ci in 

the document, specifying the degree of the association of the concept and the document. 

This weight is measured using the following equation (5.11). 

𝑤𝑐𝑖
= 𝑙𝑜𝑔 ∑ 𝑄𝑖 × 𝑖𝐷𝑜𝑐𝑓𝑐(𝑒𝑖) × 𝑖𝐶𝑜𝑛𝑓(𝑐𝑖)

𝑒𝑖∈𝑇𝑖,𝑄𝑖∈𝑄𝑐𝑖 ⁡

 5.11 

𝑖𝐷𝑜𝑐𝑓𝑐(𝑒𝑖) = 𝑙𝑜𝑔
𝐶𝑛

𝑁(𝑒𝑖) + 1
 5.12 

𝑖𝐶𝑜𝑛𝑓(𝑐𝑖) = 𝑙𝑜𝑔
𝐶𝑛

𝑁(𝑐𝑖) + 1
 5.13 

 

where Qi is the probability of being mapped to word wi by concept ci; in other words, 

it is a set of the probability of relevant concepts which represent a word. The inverse 

document frequency iDocfc expresses the passive existence of the word in the concept 

and the inverse concept frequency iConf expresses the attention of the concept in the 

concept set, and we compute these using equations (5.12) and (5.13) respectively. We 

choose the N-highest concepts with a weight score for each document. We can see that 

’military campaign’, ’escalated’, and ’terrorist’ are related to the concept ’war’. The 

war concept is one topic information for this document. 

 

  

5.5(a): Classic LDA-based topic model 5.5(b): Concept-based topic model 

Figure 5.5: Comparison of the LDA and Concept-based topic model 

 

b) Learn Topic Concepts: After conceptualization, we train the topic concepts from the 

conceptualization information using the LDA technique [28]. The statistical classic 
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LDA method obtains topics based on the source word of the document. We propose 

the CTM method to obtain topic-based concepts of the source documents. Figures 

5.5(a) and 5.5(b) compare the classic LDA and our CTM model. We see from the figure 

that LDA determines the topics using word distribution per topic whereas our CTM 

determines the topics using concept distribution per topic. We retrieve these concepts 

using our conceptualization algorithm. LDA and CTM follow the same procedure to 

determine the topic distribution per document.   

 

We used the Gibbs sampling technique to train our CTM model. 

 

𝑝(𝑧𝑑 = t ∣ 𝑧−𝑑, c, 𝛼, 𝜆)⁡𝛼
𝑛𝑑,𝑡 + 𝛼𝑘

∑𝑖
𝑇  𝑛𝑑,𝑖 + 𝛼𝑖

𝑠𝑡,c + 𝛽c
∑𝑖  𝑠𝑡,𝑖 + 𝛽𝑖

 5.14 
 

where n(d,t) denotes the number of times topic t is used to present document d, and s(t,c) 

denotes the number of times concept c is used to represent topic t. This equation is used 

to find the best match for the concept set for each topic t and topic set for each document 

jointly. The first part of the equation finds the association between each topic in a 

document and the second part finds the association between each concept in a topic 

jointly. These topic concepts are used as prior topic knowledge and incorporated 

through a topic attention channel into CSM for our framework. 

Dataflow of CTM 

In this section, we describe how our CTM model works. Figure 5.6 shows the dataflow of 

the CTM model. The classic LDA model obtains vocabulary such as “Barak Obama”, 

“Wednesday”, “country”. Assume we have z topics; m documents and each topic contain 

k words. First, words from the vocabulary are assigned to each topic.  The association 

between words in the topic and the association between topics in the document are 

measured using the first and second part of equation 2.2. After N iterations, the LDA topic 

is able to find the best match of word set for each topic and topic set for each document. 

However, our CTM model uses a more relevant concept set of the document rather than 

the word set when determining topics. For the example detailed in Table 5.1, CTM first 

retrieves the top n concept set using the conceptualization algorithm: war, shutdown, 

campaign, entail war, protest, opposition, terrorist, intensify, country, declare, and so on 
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and obtains the concept vocabulary.  Assume we have z topics; m documents and each 

topic contain k concepts. Then, we assign k concepts to each topic to represent a topic from 

the concept vocabulary. Next, we find the association between the concepts and the topic 

using the second part of equation 5.14 and the association between the topic and the 

document using the first part of equation 5.14 and maximize the association jointly using 

equation 5.14. A concept such as ’war’ which is more relevant to the words in the document 

is one of the topic concepts. 

  

Figure 5.6: Dataflow of the CTM model. 

Topic Concept Embedding 

The conceptual information is retrieved from the knowledge bases for the given input 

elements. We obtain the topic concepts from this conceptual information using prior topic 

knowledge. The top m concepts are selected for each topic based on the highest probability 

words in the topic and these are embedded into the topic concept in the topic vocabulary. 

Given a concept set c of size m denoted as (c1, …, cm) where ci is the i-th concept vector, 

we aim to produce its vector representation topic embedding matrix Ptopic. V is the 

vocabulary of the document and T is the vocabulary of the prior topic knowledge. A topic 

concept ci ∈ Rd is embedded as a row in the topic embedding matrix Ptopic ∈ RKxd when ci 
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∈ T. We embed the position of topic concepts and join these with the topic concepts 

elements at encoder nt and decoder tt to obtain a topic embedding respectively. After 

obtaining word and topic concept embedding, we compute the attention of these over the 

summary elements. 

5.5.4. Triple Attention Mechanism (TAM) 

We introduce a triple attention mechanism (TAM) to decide how much attention to pay to 

words and the corresponding topic concept of documents jointly at each decoder step. TAM 

jointly computes attention from three aspects: input words over summary elements, input 

words over topic concepts and summary elements over topic elements. Similar to 5.4, we 

compute convolution unit i on the lth layer in the decoder at the topic level for the output 

summary. The current decoder state, al
i of the topic concept measure is embedded as 𝑧̂𝑖

𝑙. 

𝑧̂𝑖
𝑙 = 𝑊𝑑

𝑙𝑎𝑖
𝑙 + 𝑏̂𝑎

𝑙 + 𝑡𝑖 5.15 

where ti ∈ Rd denotes the topic concept embedding of the previous decoded element. 𝑊𝑑
𝑙 

and 𝑏̂𝑎
𝑙  are the learning parameters. Then, we use a similar method to measure ∆̂𝑖𝑗

𝑙  which is 

the attention of the topic concept j to the output decoder state i for a l layer using the multi-

hop approach in equation 5.8. 

∆̂𝑖𝑗
𝑙 =

exp⁡(𝑧̂𝑖
𝑙. 𝑣𝑗

𝑢𝑡)

∑ exp⁡(𝑧̂𝑡
𝑙. 𝑣𝑡

𝑢𝑡)𝑚
𝑡=1

 5.16 

where 𝑣𝑗
𝑢𝑡 is the output from the last encoder layer ut and  𝑧̂𝑖

𝑙 is the embedding of the current 

decoder state, al
i of the topic concept. We obtain the topic concept embedding kt at the 

decoder state. 𝑧𝑖̅
𝑙 denotes the current decoder state of the topic concept measure and is 

embedded as 

𝑧𝑖̅
𝑙 = 𝑊ℎ

𝑙ℎ𝑖
𝑙 + 𝑏̅ℎ

𝑙 + 𝑘𝑖 5.17 

where ki ∈ Rd denotes the topic concept embedding of the previous decoded element. 

Weight matrix Wl
h and bias 𝑏̅ℎ

𝑙 ∈ Rd are learnable parameters. First, we incorporate topic 

concepts into CSM using the dual attention mechanism. The dual attention, Δ̅𝑖𝑗
𝑙  denotes the 
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weight of attention from ith source elements and topic concepts to the summary j element 

at l-th state and is measured by the following equation. 

Δ̅𝑖𝑗
𝑙 =

exp(𝑧𝑖̅
𝑙 ⋅ 𝑣̅𝑗

𝑢𝑠 + 𝑧𝑖̅
𝑙 ⋅ 𝑣̅𝑗

𝑢0)

∑  𝑚
𝑡=1 exp⁡ (𝑧𝑖̅

𝑙 ⋅ 𝑣̅𝑡
𝑢𝑠 + 𝑧𝑖̅

𝑙 ⋅ 𝑣̅𝑗
𝑢0)

 5.18 

We call this CSM model with topic knowledge dual attention DTopicCSM where we 

incorporate topic concept information into CSM. This model attends to the topic concepts 

and input elements jointly over the output target elements to present more relevant topics 

for document summarization. However, this dual attention does not consider the relevance 

of the topics over the input elements. Therefore, we improved our TEXSCTTA model by 

introducing TAM. TAM adds one more attention to choose more relevant topics for the 

input elements. In TEXSCTTA, topic concepts are chosen over the output elements and 

the input elements while in DTopicCSM, topic concepts are chosen over the output 

elements only.  

For this, instead of measuring dual attention Δ̅𝑖𝑗
𝑙  using equation 5.18, we measure the 

attention of the topic concepts over the source elements. We denote this attention as Δ̅𝑖𝑗
𝑙  

which is the weight of attention from the i-th topic concepts to the j input elements at lth 

state. We compute attention weights Δ̅𝑖𝑗
𝑙  which measure a weighted sum of the concept 

vectors to the source elements and derive a semantic vector that represents the concepts. A 

larger Δ̅𝑖𝑗
𝑙  indicates the i-th concept is more semantically like the document. 

Δ̅𝑖𝑗
𝑙 =

exp(𝑧𝑖̅
𝑙 ⋅ 𝑣̅𝑗

𝑢𝑠)

∑  𝑚
𝑡=1 exp⁡(𝑧𝑖̅

𝑙 ⋅ 𝑣̅𝑡
𝑢𝑠)

 5.19 

𝑐𝑖̅
𝑙 =∑  

𝑚

𝑗=1

Δ̅𝑖𝑗
𝑙 (𝑧𝑗̅

𝑢𝑠 + 𝑟𝑗) 5.20 

𝑣̅𝑗
𝑢𝑠 denotes the output from the last encoder layer 𝑢𝑠 for topic concepts. rj denotes the 

embedding of the source elements to the topic concepts. 𝑐𝑖̅
𝑙  indicates the conditional topic 

concepts at the current decoder state. nj is topic concept embedding. The topic concepts are 

incorporated into the model through a TAM. The triple attention weight is computed by 
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𝜌 =
exp(𝛼Δ𝑖

𝑙 + 𝛽Δ̅𝑖 + 𝛾Δ̂𝑖)

∑  𝑚
𝑡=1 exp⁡(𝛼Δ𝑖

𝑙 + 𝛽Δ̅𝑖 + 𝛾Δ̂𝑖)
 5.21 

The embedding matrix Ptopic is normalized from the final attention weights for each topic 

concept c: 

𝑃 =∑  

𝑀

𝑖=1

𝜌̅𝑖𝑐𝑖 5.22 

The conditional input is computed as 

𝑐̂𝑖
𝑙 =∑  

𝑚

𝑗=1

𝜌𝑖𝑗
𝑙 (𝑣𝑗

𝑢𝑡 + 𝑛𝑗) 5.23 

Finally, the three conditional inputs 𝑐𝑖
𝑙,⁡𝑐𝑖̅

𝑙 and 𝑐̂𝑖
𝑙 are joined to the output of the 

corresponding decoder layer al and are fed back as input to al+1 

5.5.5. Final Probability Generation 

To derive the final probability distribution, first we transform the outputs of the top decoder 

for word portion, 𝑑𝐿0  and topic portion, 𝑎𝐿𝑡  via a linear 𝜔(. ); which is computed by 

𝜔(𝑑) = 𝜑(𝑊0𝑑 + 𝑏0) 
5.24 

where W0 ∈ RTxd and b0 ∈ RT are the learning parameters. Then, we generate the final 

distribution using the following equation. 

𝑝final (𝑦̃) =
1

𝑍
[exp⁡ (𝜔(𝑑𝑖

𝐿0)) + exp⁡ (𝜔(𝑎𝑖
𝐿𝑡))⊗ 𝐺{𝑤∈𝐾}] 5.25 

where Z denotes the normalizer, the outputs of the word and topic at the i-th top decoder 

are defined as 𝑑𝐿0 and  𝑎𝐿𝑡 , respectively, and G denotes the indicator vector of each 

candidate word or concept in yi+1. 

5.5.6. Learning 

We train the TEXSCTTA with respect to mixed training [45] which associates the original 

maximum likelihood Lml with policy learning Lrl. The mixed learning is computed using 

the parameter φ ϵ [0,1] as follows: 

𝐿𝑚𝑖𝑥 = 𝜑𝐿𝑟𝑙 + (1 − 𝜑)𝐿𝑚𝑙 5.26 
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We train α, β and γ using a neural network. We use the following formula to calculate α, 

β and γ using the sigmoid function 𝜎: 

[𝛼, 𝛽, 𝛾] = 𝜎(𝑊𝑡[Δ, Δ̅𝑖 , Δ̂] + 𝑏) 5.27 

5.5.7. Dataflow of the Model 

In this section, we describe the dataflow of the TEXSCTTA model. Figure 5.7 shows the 

dataflow of the model. We define three subprocesses to describe the dataflow: topic 

concept generation, multi-layer structures and multi-hop attention. Topic concept 

generation produces the topic concept from our trained CTM model. First, this model 

retrieves the related concept set for each word in the preprocessed document from the 

knowledge base, then ranks the top-N concepts from the concept set with the highest 

probabilities which are more relevant to the document, and then obtains the topic concepts 

from the learned CTM model with their probability information. Multi-layer structures 

embed the input and output elements in a hierarchical structure to represent the whole input 

elements of the encoder or decoder by stacking several blocks. First, each unit represents 

k elements of the input, then the GLU structure is applied to represent k elements of each 

unit as the single output. Finally, we stack all the units to represent all input elements. The 

process multi-hop attention is used to encode the input and output at the encoder and 

decoder state and measure the attention of the CSM. First, we compute each state of the 

encoder and decoder, measure the attention between the input and output elements using 

the state of the decoder and finally compute the conditional input of the encoder state. 

We describe how the source document is streamed through the process to train our model. 

First, we obtain the embedding of the elements of the source document which are defined 

as x= {x1, x2, …, xn} and the summary elements which are defined as y= {y1, y2, …, ym}. 

Next, we retrieve the topic concept using the topic concept generation process and obtain 

the embedding of the topic concepts of the document which are defined as {t1, t2, …, tm}. 

After this, we embed the source elements {x1, x2, …, xn} and summary elements {y1, y2, …, 

ym} at the encoder and decoder of a CSM, embed the source elements {x1, x2, …, xn} and 

topic concepts elements {t1, t2, …, tm} at the encoder and decoder of the second CSM, and 

embed the topic concepts elements {t1, t2, …, tm} and summary elements {y1 y2, …, ym} at 
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the encoder and decoder of the last CSM. Then, we apply the multi-layer structure to 

represent the embedding elements of each CSM in the hierarchical structure. 

 

Figure 5.7: Dataflow of our TEXSCTTA model.  

xi, yi, ti are the embedding of the source, topic knowledge and summary elements. 

Then, we measure the attention for a layer l of each CSM: Δ𝑖
𝑙 ,⁡attention of the source 

elements of the document {x1, x2, …, xn} over the summary elements {y1, y2, …, ym},  Δ̅𝑖, 

attention of the source elements of the document {x1, x2, …, xn} over the topic concepts 

elements {t1, t2, …, tm} and Δ̂𝑖, attention of the topic concepts elements {t1, t2, …, tm} over 

the summary elements {y1, y2, …, ym}.  The tri-attention mechanism combines all three 
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attentions Δ𝑖
𝑙 , Δ̅𝑖 and  Δ̂𝑖 for each layer and normalizes the attention using the SoftMax 

approach. The conditional input of each encoder state is computed for each CSM. Finally, 

the probability generation produces the probability distribution of the output elements at 

the decoder state of CSM to predict the next target element in the summary output. 

5.6. Experiment 

In this section, we describe the experiments on two datasets to assess the performance of 

TEXSCTTA. We describe the experiment setup including the datasets, the comparison 

model, parameters, and optimization, and compare our approach CTM and TEXSCTTA 

with the other methods LDA and WSOTA over the datasets. 

5.6.1. Datasets 

In the experiment, we use the Gigaword [123] and CNN/DM [42] datasets to evaluate 

TEXSCTTA and the various existing models in relation to the text summarization task. 

The Gigaword corpus is an English text summarization dataset where the summaries which 

are used for training are expressed along with the headline and the first sentence of the 

articles. We randomly split the Gigaword datasets into 95% training (380,0000), 4.95% 

validation (190,000) and .05 % (1951) test examples for assessment. The CNN/DM dataset 

comprises news stories from the CNN and Daily Mail websites and human written 

summaries, comprising more than 312,000 texts and corresponding summaries. This 

dataset is split into 90% training (280000), 9.5% validation (29650) and .5% (1560) test 

samples. 

5.6.2. Comparison Model 

We compare our proposed TEXSCTTA with the following WSOTA abstractive model: 

Seq2Seq [92] a neural sequence-to-sequence model with attention; and PGEN [42] a hybrid 

pointer generator model which can copy words from the source document. We compare 

our model step by step in the following order: CSM [80]: text summarization using a 

sequence model based on only a CSM [114]; TopicCSM [3]: a text summarization model 
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where topic information is incorporated into a CSM. The topic information in TopicCSM 

is obtained from the source document rather than conceptual information using the LDA 

technique. CSM+ Dual Attention (DTopicCSM): We proposed this DTopicCSM text 

summarization model in Section 5.5.4 which incorporates topic concepts through dual 

attention. CSM+ Triple Attention (TEXSCTTA): Our improved TEXSCTTA model 

measures attention jointly from three aspects: input elements and topic concepts over 

output elements, and topic concepts over input elements while DTopicCSM computes 

attention from two aspects: the attention of input elements and topic concepts over output 

elements. 

Table 5.2: Example of the topics learned by CTM. 

No Topic Words 

1 color, text, contrast, brightness, screen, sharp, resolution, image, picture 

2.  majority, victims, foreign family, politicians, committee, tactics 

3. reason, people, follow, belief, moral, simply, proof, sources 

4.  teams, looked, biased, member, biggest win, worst, losing scorers 

5. batteries, noticed outlets, detecting, screw, wires, existing, fail 

5.6.3. Evaluation Method 

We use topic coherence to evaluate topic results and measure topic coherence using the 

semantic coherence method introduced by Mimno [124]. ROUGE [125] is an evaluation 

method which is widely applied to summarization evaluation. This method measures the 

quality of the generated summary by comparing the summary against the reference 

summary. The comparison is performed by counting the number of overlapping unigrams, 

bi-grams and the longest common subsequences which are called ROUGE-1 (R1), 

ROUGE-2 (R2) and ROUGE-L (RL) respectively. In our experiment, we use different 

ROUGE metrics to evaluate our model using the pyrouge package.  

5.6.4. Parameter and Optimization 

To evaluate LDA and CTM, the number of iterations for each Gibbs sampler algorithm is 

set to 1000, and both the initial hyperparameters α and β to 0.01. We set the batch size to 

56. For Seq2Seq and PGEN, we set the dimensions of the hidden states and word 
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embeddings to 128 and the learning rate to 512 and .20 respectively. For our models, 

DTopicCSM and TopicCSM, the number of layers of the convolutional network is set to 

six for both the decoder and encoder and the dimensional word and position embeddings 

are set to 256. We set the learning rate to 0.25 and used the 256 dimensionalities for layer 

mapping between the hidden and embedding states. When the validation ROUGE score 

does not change or increase after each epoch, the learning rate is reduced by a decay rate 

of 0.1 for a more accurate score until the learning rate declines to 10-5. We set the scaling 

factor for mixed leaning λ to .9. All models are implemented with Python and trained on a 

GPU cluster. The concept based LDA topic model was trained on Gigaword datasets 

documents. A probability distribution over the topic concepts for each word is measured 

and 512 topics with the best results are obtained. 

Table 5.3: Topic coherence for a different number of words in topics.  

 CNN/Daily Mail Datasets Gigaword Datasets 

N 5  10  15 5 10 15 

LDA [28] -210.75 -960.69 -2488.65 -260.68 -1298.43 -3352.56 

CTM -172.52 -903.12 -2295.73 -201.23 -1148.30 -3174.63 

Higher scores are marked in bold. N represents the number of words in the topic. 

5.6.5. Topic Results on Datasets 

We measure the strength of the semantic similarity between words in the topic which is 

topic coherence. We compare the results of the topic coherence of our model with LDA. 

Table 5.3 shows the topic coherence score for the CNN/Daily mail and Gigaword datasets. 

We can see from the topic coherence results, our model CTM achieves a higher score than 

LDA which demonstrates the concepts or words in the topic are more semantically coherent 

than the tradition statistical LDA [28] topic. Table 5.2 shows an example of the topics 

learned by CTM. 

5.6.6. Summarization Results on Datasets 

In our experiments, we evaluated our model with WSOTA over two dataset and measured 

the R1, R2, and RL metrics. We systematically investigated the performance of our 

TEXSCTTA model step by step. Table 5.4 and Table 5.5 show the experiment results for 

the R1, R2, and R3 metrics over the CNN/DM and Gigaword datasets. First, we tested the  
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Table 5.4: R1, R2, and RL scores on the CNN/Daily datasets for various models and TEXSCTTA.  

Models ROUGE1 ROUGE2 ROUGEL 

Seq2Seq [36] 32.60  15.31  30.62 

PTGEN [42] 35.45  16.55  32.73 

ATS-CSM [114] 35.82  17. 51 33.26 

Topic-CSM [3] 36.42 17.61  33.35 

CSM+ Dual Attention (Our) 36.93 (1.4% ↑) 18.45 (7.7% ↑) 34.33 (1.3% ↑) 

CSM+ Triple Attention (Our imp.) 37.56 (𝟏. 𝟑% ↑) 18.92 (𝟐% ↑) 35.02 (𝟐. 𝟏% ↑) 

The best scores are marked in bold. 

Table 5.5:  R1, R2, and RL scores on the Gigaword datasets for various models and TEXSCTTA.  

Models ROUGE1 ROUGE2 ROUGEL 

Seq2Seq [36] 35.39  13.35  32.62 

PTGEN [42] 39.49  17.31  36.31 

ConvS2S [114] 39.80 17.23  36.62 

Topic-CSM [3] 40.29  17.61  37.12 

CSM+ Dual Attention (Our) 40.87 (1.7% ↑) 18.97 (4.5% ↑) 37.62 (3% ↑) 

CSM+ Triple Attention (Our imp.) 41.39 (𝟏. 𝟕% ↑) 19.34 (𝟐. 𝟓% ↑) 38.43  (𝟐% ↑) 

The best scores are marked in bold. 

 

base CSM structure and TopicCSM [52]. We can see from Table 5.4 and Table 5.5 that the 

TopicCSM method achieves better results for the R metrics score than CSM since 

TopicCSM incorporates topic information in the CSM model. However, TopicCSM does 

not consider the conceptual information to incorporate topics in the model. Then, we tested 

our model DTopicCSM (CSM + Dual Attention) which improves the results since 

DTopicCSM utilizes conceptual information while incorporating topics. This demonstrates 

that topics based on conceptual information produce better results since conceptual 

information provides latent knowledge about source documents which cannot be found in 

source documents. Lastly, we evaluated the performance of the proposed model 

TEXSCTTA (CSM+ Triple Attention) which uses TAM to incorporate more relevant topic 

concepts into the input elements. It is clear from Table 5.4 and Table 5.5 that our improved 

TEXSCTTA model achieves better results than DTopicCSM since DTopicCSM does not 

consider the relevancy of topic concepts over the input elements. 

We can see from these tables that TopicCSM which incorporates topic information only in 

the base CSM model improves the score of the R metrics more than CSM. Incorporating 

topic concepts in DTopicCSM achieves better results than TopicCSM. This demonstrates 
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that topics based on conceptual information produce better results since conceptual 

information provides latent knowledge about source documents which cannot be found in 

the source document. DTopicCSM joins the two multi-hop attentions which pay attention 

to the input elements and topic concepts at the encoder over the output elements at the 

decoder while TEXSCTTA has one more attention than DTopicCSM which enables it to 

generate more relevant topic concepts in terms of the input elements. We see from Table 

5.4 and Table 5.5 that the TEXSCTTA model achieves better scores for R1, R2 and RL 

than DTopicCSM since the DTopicCSM model does not consider the relevancy of topic 

concepts over input elements. This proves that incorporating more relevant topics in terms 

of source elements improves the performance of the summary results based on R metrics. 

We further evaluated the various summarization models against our proposed model. Table 

5.4 and Table 5.5 show the R1, R2 and RL scores of the PGEN, CSM, base TopicCSM and 

DTopicCSM over Gigawird and CNN/Daily Mail dataset. The results show that the 

concept-based topic attention and the mixed learning procedure improve the quality of text 

summarization in terms of accuracy. Moreover, the TEXSCTTA model achieves the best 

scores for R1, R2 and RL metrics. We compare the generated summaries with the reference 

summaries using CSM, TopicCSM and DTopicCSM. Examples are shown in Table 5.10. 

We can see that after the concept- based topic model is merged, some topic concepts which 

are not in the reference summaries, or the source document correctly appeared in the 

generated summaries. So, we can say that topic concepts using the triple attention passes 

more informative knowledge and increases the distinction and coherency of the 

summarization. 

5.6.7. Effect of Documents of Different Lengths 

We tested the performance of TEXSCTTA on the CNN/DM dataset for source documents 

of different lengths. We divided the test dataset into three groups in terms of the number 

of words in the document: short (<250 words), medium (251-400 words) and long (>400 

words). We can see from Figure 5.8 that TEXSCTTA achieves the best performance for 

documents which are short in length. This model achieves a better performance for short- 

and medium-length documents compared to long documents. 
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Figure 5.8: R1, R2 and RL scores of TEXSCTTA on CNN/DM datasets for documents of different 

lengths  

5.6.8. Effect of the Attention Mechanism 

TopicCSM incorporates topics in CSM however it does not utilize high-level attention 

whereas our DTopicCSM (CSM+Dual attention) model uses dual attention to integrate 

topic concepts which jointly pay attention to input elements and topic concepts at the 

encoder for the output elements at the decoder. We observe from Tables 4.4 and 4.5 that 

our model improves the results of the R1, R2 and RL score by 1.3/%, 7.7% and 1.3 % 

respectively compared to TopicCSM on the CNN/DM datasets. This implies that 

incorporating topic concepts using high-level attention is effective. Our improved model 

TEXSCTTA (CSM+Triple Attention) uses one more attention than the DTopicCSM model 

to produce more relevant topic concepts to the input elements. We can see that our 

TEXSCTTA improved the R1, R2 and RL scores by 1.7%, 2.5% and 2% respectively. This 

proves that incorporating more relevant topics in terms of source elements through TAM 

improves the performance of the summary results. 

5.6.9. Human Evaluation 

Evaluating the model only with an automatic method using the ROUGE score may provide 

a misleading justification of the model’s performance because this automatic method 
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assesses the summaries only in terms of the informative features, not the semantic features. 

Therefore, it is important to evaluate the summary output using human judgment. We first 

randomly selected 50 articles from the test dataset and asked five participants, all of whom 

are university students with expertise in computer science technology, to compare the 

summaries generated from RNN-S2S, PTGEN, ATS-CSM, and the human-written 

summaries referred to as gold summaries in relation to two aspects: I and F. I is the 

evaluation of the informativeness summaries (when the summary captures topic 

information from the document) and F is the evaluation of the fluency summaries (when 

the summary is coherent with a good syntactic structure).  

Table 5.6: Results of human evaluation over Gigaword datasets.  

Model I F 

Seq2Seq [36] 2.51 2.2 

PTGEN [42] 2.93 3.12 

ATS-CSM [114] 3.02 2.98 

Topic-CSM [3] 3.33 3.15 

DTopicCSM 3.55 3.40 

TEXSCTTA 3.72 3.65 

‘I’ indicates the score from the informative aspect and F indicates the score 

from the fluency aspect.    

 

Table 5.7 Results of human evaluation over CNN/DailyMail datasets.  

Model I F 

Seq2Seq [36] 2.75 2.82 

PTGEN [42] 3.11 3.22 

ATS-CSM [114] 3.15 3.25 

Topic-CSM [3] 3.42 3.39 

DTopicCSM 3.62 3.52 

TEXSCTTA 3.82 3.74 

‘I’ indicates the score from the informative aspect and F indicates the score 

from the fluency aspect. 

In relation to the I evaluation, the participants are asked to read the entire document and its 

summary carefully, understand the document, and highlight the important and salient 

information from the document. Then, we asked the participants to give a higher score to 

the summary output which contains similar salient information as the document. In relation 

to the F evaluation of the summaries, we asked the participants to give a lower score to the 

output summaries which are not readable or contain grammatical mistakes. The 

participants are asked to assign a mark to each summary for both informativeness and 

fluency ranging from 1 to 5: 1 (unsatisfactory), 2 (limited), 3 (satisfactory), 4 (good), and 
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5 (better).  Tables 5.6 and 5.7 show the results of the human evaluation for the summarized 

document for WSOTA and our model. We can see from the results that TEXSCTTA 

outperforms WSOTA in relation to both the I and F aspects, which shows that our model 

is able to capture salient and meaningful information from the document and produce high-

quality human-like summaries. 

5.7. Discussion 

In this section, we discuss the characteristics of the model and then compare the 

characteristics with the WSOTA. We utilize reinforcement approaches to maximize our 

learning, fine-tuning technique and the application of our model. 

5.7.1. Characteristics of Our Model 

We describe the individual attributes of our TEXSCTTA model. Table 5.8 shows the 

characteristics of our model.  The first characteristic of our model named “A” is that this 

model retrieves meaningful and informative features as concepts from the knowledge base. 

The next characteristic B is that our model uses a conceptualization algorithm to produce 

more relevant concepts related to the document to provide this information in the topic 

model.  Characteristic C generates topic information based on concepts by incorporating 

the concepts from characteristic B in the model to provide latent and important information 

in the topic information. Next, we use the convolution network in the summarization model 

instead of the RNN model to take the advantage of parallel computation and the large-scale 

representation of the input. Characteristic E is that our model incorporates the topic 

information in the summarization model to generate relevant summaries to the source 

document. Characteristic G enables our TEXSCTTA model to utilize the informative and 

meaningful information as a concept in the summarization model while identifying the 

topics in the generated summaries. Then, we use high-level topic attention to pay attention 

not only to the source word but also to the topic information. This characteristic helps the 

model to focus on topic elements while generating summaries. Our tri-attention channel 

combines the attention from three aspects to more closely associate the source and the topic 

elements to the summary. The concept-based topics are obtained using meaningful 
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information and knowledge and a conceptualization algorithm which assists the model to 

generate rich and meaningful relevant information in the summary. Finally, the 

combination of all the characteristics enables the model to produce coherent, meaningful, 

and human-like summaries. 

Table 5.8: Characteristics of the TEXSCTTA model.   

Name Characteristics of our model 

A Retrieve meaningful features from knowledge base 

B Produce more relevant concepts 

C Use this conceptual information in the topic model 

D Utilize CSM in the summarization model. 

E Incorporate topic information in the summarization model 

F Utilize conceptual information through the CTM model in the summarization 

model. 

G Use high-level attention 

H Introduce a tri-attention mechanism 

I Produce rich and meaningful relevant information in the generated summaries. 

J Generate coherent, meaningful, and human-like summaries. 

Each characteristic is referred to by the corresponding letter in the first column.   

5.7.2. Comparison of Our Model’s Characteristics with WSOTA 

In this section, we compare the characteristics of our model with WSOTA, as shown in 

Table 5.9.  We can see from the table that Seq2Seq does not support any individual 

characteristics of our model. Seq2Seq, which is based on RNN, does not utilize the 

conclusion structure, topic information, conceptual information from the knowledge base, 

or high-level topic attention which results in this model generating irrelevant and 

incoherent summaries. PTGEN utilizes characteristic G, high-level attention in terms of 

copying the word from the source document but does not have characteristics such as 

incorporating knowledge information in the topic information, taking advantage of the 

CSM and so on.  

ATS-CSM is a CSM-based summarization model which utilizes characteristic D to train 

the parallel model and capture the large-scale input range. However, this model does not  
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Table 5.9: Comparison of the characteristics of our model with WSOTA 

Model A B C D E F G H I J 

Seq2Seq [36] ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

PTGEN [42] ✕ ✕ ✕ ✕ ✕ ✕ ✓   ✕ ✕ ✕ 

ATS-CSM [114] ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ 

Topic-CSM [3] ✕ ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ 

Our model 

DTopicCSM ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✓ 

DOCSTTA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

✓ indicates that the model has the corresponding feature and ✕ indicates that the model does not contain the corresponding 

feature. The letters show the characteristics of our model as explained in section 5.5.1. 

incorporate topic information nor does it utilize high-level attention. Topic-CSM has D and 

E characteristics: it uses the CSM architecture and incorporates the topic model. However, 

this model only has these two characteristics, and it does not have other important 

characteristics such as utilizing high-level attention and concepts, nor does it associate the 

document, source and topic concepts well. DTopicCSM is our proposed model to 

incorporate topic information based on concept information with high-level topic attention. 

We can see from Table 5.9 that DTopicCSM has most of the characteristics of our model 

which helps the model to generate relevant summaries with rich information. This model 

also includes important relevant topic information in the summaries. However, this model 

does not utilize the tri-attention mechanism which associates the topic with the source well. 

As a result, this may sometimes result in failure to determine the most closely associated 

topic information with the document in the summaries. So, we improved our model by 

introducing the tri-attention channel which results in the model generating more relevant 

summaries for the document with large word diversity and which are close to human-

written summaries.  

5.7.3. Application of the Text Summarization Model 

Our summarization model can be applied in the field of data mining and analytics 

applications such as the retrieval and extraction of information or user queries etc. The 

TEXSCTTA model can be effectively utilized in the search engines while retrieving 

information techniques to improve the performance of the results of the user query.   There 

are various types of documents such as articles, books, news, blogs, emails, opinion  
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Table 5.10: Examples of the summaries generated by the CSM and TEXSCTTA models over the Gigaword 

datasets.  

Source Text: At least 100 people were killed when a Nigerian airways airliner crashed on landing 

Monday at Kaduna airport in the north of the country, airport officials said. 

Reference Summary: Nigerian plane crashes on landing killing at least hundred.  

TopicCSM: A number of people have been killed in a car crash in the republic of Ireland, officials 

say 

TEXSCTTA: Hundred people have been killed in a plane crash in northern Nigeria, officials have 

said 

Source Text: Greece said Thursday that it was monitoring the escalating hostilities between 

Israelis and Palestinians with particular concern and feared it could worsen. 

Reference Summary: Greece worried over escalation of Mideast hostilities 

TopicCSM: Greece extremely concerned for the future between Israelis and Palestinian 

TEXSCTTA: Greece worried as war escalation between Israelis and Palestinian  

Source Text: A 26-year-old man sustained facial injuries during the incident on a number 9A bus 

travelling on Paisley Road, Tradeston , towards Penilee. The disturbance happened at about 20:00 

on 20 December. Police described the man they are looking for as white, in his 50s , of heavy build. 

He has blotchy skin and a shaved head. He was wearing a hooded black body-warmer with a blue 

zip-top underneath. Officers have asked anyone who recognizes the man or has any further 

information to contact them. 

Reference Summary: Police have released CCTV images of a man they want to speak to following 

a racist assault on a Glasgow bus 

TopicCSM: Police have released CCTV images of a man they want to trace in connection with a 

serious assault in Edinburgh. 

TEXSCTTA: Police have released a cctv image of a man description to find the connection with a 

serious assault in paisley. 

Summary words which are in the same colour as the document words means that these summary words are 

generated from the topic concept and are retrieved using related document words. They do not come from the 

source text or the reference summary. 

reviews which combine text summarization with medical documents and legal documents, 

etc. Examples of different text summarization applications are given below. News or 

Article Summarization: We can apply our summarization model to summarize the news or 

articles which assist people to find the information they are looking for. Every day, search 

engines summarize the news and then cluster similar news from several news sites which 

the user looking at.  Sentiment analysis (SA) is the task of detecting, extracting and 

classifying opinions or emotions on products or events. Our summarization model can be 

used in sentiment analysis techniques by shortening the content and classifying the 

sentiment. Our model can be applied to email summarization from unstructured and spam 
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messages to classify them in terms of what type of email they are. We can apply our method 

to summarize medical data, legal documents and so on. 

5.8. Summary 

In this chapter, we dealt with the issue of irrelevant document topics in text summarization. 

We investigated this issue step by step from a convolutional sequence model to proposing 

a concept-based topic attention convolution sequence framework which borrows insights 

from concepts or knowledge for topic identification and incorporates this information 

through a systematic mechanism by introducing a triple attention among the source element 

to the topic concept, based on topic information and source/ target elements. Through an 

extensive set of experiments, we verify that our proposed mechanism advances some high-

level semantic information for summarization by capturing information on the local context 

in a way which surpasses the WSOTA. In this chapter, our focus was acknowledging the 

concept or knowledge of the words in the document while capturing topics in the 

abstractive summarization approach. In the future, we will focus on utilizing a pre-trained 

model such as BERT [43] in our model. 
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Chapter 6.  

 

Joint Knowledge-based Topic Level Attention to a 

Convolutional Text summarization Model  

Abstractive text summarization (ATS) often fails to capture salient information and 

preserve the original meaning of the content in the generated summaries due to a lack of 

background knowledge. In this chapter, we present a method to provide the topic 

information based on the background knowledge of documents to a deep learning-based 

summarization model. This method comprises a topic knowledge base (TKB) and 

convolutional sequence network-based text summarization model with knowledge-

powered topic level attention (KTOPAS). TKB employs conceptualization to retrieve the 

semantic salient knowledge of documents and the knowledge-powered topic model 

(KPTopicM) to generate coherent and meaningful topic information by utilizing the 

knowledge that represents the documents well. KTOPAS obtains knowledge-powered 

topic information (also called topic knowledge) from TKB and incorporates the topic 

knowledge into the convolutional sequence network through a high-level topic level 

attention to resolve the existing issues in ATS. KTOPAS introduces a tri-attention channel 

to jointly learn the attention of the source elements over the summary elements, the source 

elements over topic knowledge, and topic knowledge over the summary elements to present 

the contextual alignment information from three aspects and combine them using the 

SoftMax function to generate the final probability distribution which enables the model to 

produce coherent, concise, and human-like summaries with word diversity. By conducting 

experiments on datasets, namely CNN/Daily Mail and Gigaword, the results show that our 

proposed method consistently outperforms the competing baselines. Moreover, TKB 

improves the effectiveness of the resulting summaries by providing topic knowledge to 

KTOPAS and demonstrates the quality of the proposed method. 

6.1. Introduction 

Automatic text summarization is a process of producing a brief statement on an original 

text that retains the overall meaning of the content. The key challenges of this 
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summarization are to properly assess the content, identify the salient information, convey 

the intended meaning and generate a concise summary. Humans summarize text by reading 

it in entirety, developing an understanding of the meaning of the content and highlighting 

the main features. Since machines have a limited ability in terms of human knowledge and 

their ability to understand language, automatic summarization is very challenging. 

Generating a summary by interpreting and apprehending the content using background 

knowledge which is qualitatively close to human-written sentences motivates our interest 

in this research direction.  

 

Figure 6.1:  An example from our summarization result of the KTOPAS model.  

DOCUMENT: Barak Obama on Wednesday announced the closure of government schools with immediate 

effect as a military campaign against religious separatists escalated in the north of the country. 

SUMMARY: America shutdown school because war escalated in the north of the country. 

DOCUMENT: A fairly large earthquake measuring a magnitude of 6.7 on the Richter scale rocked wide areas 

of central and western Japan Sunday, followed by four aftershocks, the meteorological agency said 

SUMMARY: Powerful earthquake shakes the wide area of Japan. 

The colored concept 'shake' in the summary comes from the topic words that associate the latent knowledge of 

the words in the pink color in the document. 
 

Recently, deep learning-based algorithms [77-78] have received a high level of interest 

which has resulted in significant achievements in generating abstractive summaries. 

Sequence-based recurrent neural network (RNN) models with an attention mechanism 

[126] [112] [40] [38] [127] achieve effective results in summarization models. Compared 

to RNNs, the convolutional sequence network (CSN) [80]-based text summarization model 

captures the interrelation between words and text on a large scale. Although the recent 

progress in the neural-based text summarization model is promising, these models have a 

tendency to include unnecessary and unrelated content that originates from the source text 

and in doing so, the main theme of the source text is lost in its generated summary. This is 

because only word-level attention is utilized but high-level attention based on the topic of 

the document is not utilized in the summarization model. Incorporating latent topic 

information into summarization models which provide the relevant theme of the document 

could be effective in generating a meaningful summary. 
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The traditional latent Dirichlet allocation (LDA) [28] topic model has proven its accuracy 

in text summarization models to reveal the latent topics from the content [3][102]. 

However, obtaining novel topics which represent the document explicitly using only the 

statistical based-topic model is clearly not adequate. This may fail to produce coherent and 

semantically well-formed, meaningful summaries due to the lack of human-like context 

knowledge. Conceptual information is a kind of knowledge extracted from a concept-based 

knowledge base such as Probase [51] and ConceptNet [50] to capture the latent semantic 

information of the text. Developing a topic model using conceptual information or 

knowledge is a potential solution to identify and enrich the quality of the topic. The 

research direction of using a knowledge-powered topic in ATS has received scant attention. 

In this chapter, we present a text summarization scheme using knowledge-powered topic 

information based on a CSN [80]. The scheme consists of two stages. In the first stage, we 

construct a topic knowledge base (TKB) which contains knowledge-powered topic 

information which we call topic knowledge (topKs). For this, we first present a 

conceptualization algorithm to obtain conceptual information. We present a knowledge-

powered topic model (KPTopicM) to obtain the topKs using conceptual information. Then, 

we train datasets using the KPTopicM and use the learning data as prior TKB to provide 

topKs for the summarization model at a later stage. In the second stage, we propose 

knowledge-powered topic level attention for a text summarization model (KTOPAS) to 

incorporate the topKs into the CSN-based summarization model. Figure 6.1 shows an 

example of a summary generated by KTOPAS. 

In KPTopicM, we adopt the LDA three-layer hierarchical topic model: word, topic and 

document layer respectively using a bottom-up approach. We add an extra latent 

knowledge or concept layer in the model between the topic and word layer to enrich the 

background knowledge of the topics. We retrieve concept information and derive the 

concept distribution over words using a conceptualization algorithm. We use these concept 

assumptions to integrate the concept layer in KPTopicM to enrich the latent knowledge of 

the text. We present a KPTopicM algorithm to incorporate conceptual information in the 

topic model to generate meaningful topics called topKs. We first present a summarization 

model DTopCSN based on two CSNs: word and topic level CSNs. This model retrieves 
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the topKs from TKB and incorporates the topKs into DTopCSN. The word and topic level 

CSN encoders associate each source element and topK of the document with each decoded 

element in the summary that predicts whether the source word or topK represent the 

summary element. Here, we measure attention from two aspects: the word and topic level 

to measure the importance of the source elements and topKs to the output summary. 

However, this model does not observe the semantic coherence of the topic in relation to 

the source text. Therefore, we improve the DTopCSN model and propose our 

summarization model KTOPAS by adding another CSN knowledge level to increase the 

coherence of the topic in relation to the document and measure the attention from three 

aspects (word, topic and knowledge level). The knowledge-level CSN encoder associates 

each word in the source text with decoded topKs to obtain the coherence of topKs in 

relation to the source text. We incorporate topKs to CSN to map the salient knowledge and 

its contextual information in our summarization model through an attention channel. We 

introduce the tri-attention channel which jointly learns the attention of the words over the 

summary output, topKs over the summary output and words over the topKs in the KTOPAS 

model. We join three attention weights into one and produce the final attention weight. 

Then we produce the final probability of the next target element in the output summary at 

the decoder of the word and topic level CSN. In addition, we use mixed training objective 

function [45] to maximize our proposed model.  

 

The following has been achieved in the chapter. 

• Our conceptualization algorithm retrieves semantically relevant and salient background 

knowledge of the document. KPTopicM generates coherent and meaningful topic 

information (topKs) efficiently using latent salient knowledge that represents the document 

well. We train the KPTopicM model over the Gigaword and CNN/Daily Mail datasets and 

use this as an independent prior TKB to provide topic information to the summarization 

model. 

• Our proposed summary model KTOPAS incorporates topic information based on the 

background knowledge of the source text which is retrieved from TKB to provide salient 

topic knowledge while generating summaries. 
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• The tri-attention channel computes word, knowledge, and topic level attention jointly to 

provide contextual information from three observations. Then, a SoftMax activation 

function combines them to obtain the final probability distribution so that the model can 

generate semantically well-formed and coherent summaries. 

• We conduct the experiment using Gigawords and CNN/Daily Mail datasets to evaluate 

KPTopicM and KTOPAS. The KPTopicM model provides more semantically relevant 

topic information compared to the statistic topic model for KTOPAS which improves the 

accuracy of our summary model KTOPAS. The experiment results show that KTOPAS 

achieves more competitive results than baselines as it produces meaningful and coherent 

summaries with a large vocabulary range. 

The rest of the chapter is structured as follows. We discuss the recent related works in 

Section 2. The construction of the TKB is detailed in section 3. Section 4 presents the 

convolutional text summarization model with the knowledge powered topic level attention 

model (KTOPAS). TKB which is outlined in Section 3 is used to provide topKs to the 

summarization model which is detailed in Section 4. Our experiment evaluation is 

presented in Section 5. Finally, this chapter concludes with suggestions for further research 

in Section 6. 

 

 

Figure 6.2: Text summarization with a neural network.  

The orange box, x1, x2, …, xn, indicates the input elements and green box indicates the output elements, y1, y2, …, 

yn. 

6.2. Related Work 

In general, extractive and abstractive methods are the two methods used for automatic text 

summarization. Abstractive text summarization (ATS) generates summaries from the 

corpus with no constraints to use the available words from the original text using a deep 
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learning model or a neural network (NN) [126] whereas extraction [128] [38] generates 

summaries by selecting a part of the sentences in the source text. Compared to the 

extractive methods, the ATS model generates semantically well-formed and human 

readable summaries [129] [37]. Figure 6.2 illustrates an overview of summarization using 

NN. The NN model trains a large summarization dataset to predict the sequence of the 

output elements of the summary based on the sequence of the input element of the source 

text. During training, the sequence of the input elements is fed into the NN encoder to 

provide the sequence of the output as a summary to the decoder which is given in the 

dataset by adjusting the weighted parameter of each state of the encoder corresponding to 

the decoder in NN. These weighted parameter value predict the output element at decoder 

for each state of encoder. Once the network is trained based on a large dataset, ATS is able 

to predict the sequence of the output elements for the sequence of the input elements. 

 

More recently, the RNN-based sequence to sequence framework (RNN-Seq2Seq) [36] [77] 

has received increased research interest for application in developing ATS approaches 

because it is able to achieve good summary results. Rush [40] first introduced an attention 

mechanism to the RNN-Seq2Seq model for ATS. Then, Nallapati [36] learned the 

hierarchical representations of a document and identified important information from 

documents by applying attention RNN-Seq2Seq. A pointer-generator model (PTGN) [38] 

was proposed to determine whether to copy a word or phrase from the source text over a 

pointer or generate a word from the vocabulary of a dataset while producing summaries. 

Paulus [37] proposed a deep learning summary model (ML+RL) using bi-directional 

LTSM [35] for the encoder and decoder, and also a reinforcement learning approach. 

Keneshloo [45] enhanced reinforcement learning using a multi-reward approach. Recently, 

Chen and Bansal [130], Gehrmann [44] and Xu [131] proposed a hybrid extractive and 

abstractive model. Lu learned multitask network for the ATS model MAT [132] based on 

a bi- directional encoder and decoder shared network.  

 

The summarization model based on the convolutional sequence network (CSN) allows 

each state to be performed individually and therefore in parallel. The wide-range 

dependencies between the words in the document are captured and compared to the chain 

structure modeled by RNN. The ATS approach has been investigated based on CSN [114] 
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[133]. Recently, work was conducted on pretrained objective based ATS such as text 

summarization with a pre-trained encoder [43], BART [118], ProphetNet [119], discourse 

aware summarization model [134], PEGASUS [120], and multi-document based ATS such 

as hybrid multi-feature fusion [135], feature assessment [136] and post-Pareto analysis 

[137]. However, summarization models with topic level attention based on background 

knowledge have received scant investigation. Topic models are used to identify topics that 

best explain a set of documents. These topics are called latent because they only appear 

during the process of topic modeling.  A traditional LDA topic model [28] has a 

hierarchical structure with three layers. These layers are used to present the probability 

distribution of documents over topics, and the probability distribution of topics over words. 

This LDA topic model achieves effective results in the text summarization model to 

discover latent topics from documents [3] [102]. However, this model only uses a statistical 

approach to identify topics, but it does not capture the background knowledge of the 

document for the topics which might result in the failure to generate meaningful and 

coherent summaries. Incorporating topKs through higher-level attention in the model could 

produce effective results such as context-relevant knowledge which is introduced into 

CNNs for text classification [121]. Therefore, we incorporate topKs in CSN through high 

level attention. 

Humans are able to interpret documents and derive the main idea of the document due to 

certain background knowledge in the human brain, based on prior learning or past 

experiences. Referring to the example of the earthquake given in Figure 6.1, humans 

understand that an earthquake is an event that shakes the ground; it is not a person, place 

or thing. However, machines are unable to understand this by simply reading the document. 

A knowledge base (KB) is a kind of repository which provides information about a term 

[46]. A commonsense KB is a kind of repository which employs taxonomies and the 

relationships between concepts or knowledge to present information about a term. 

ConceptNet [50] is a common-sense KB which provides information about a term to help 

machines understand the meaning of the term similar to a human’s understanding. 

Machines can retrieve and read conceptual information from the ConceptNet KB and relate 

the document to the main topic using knowledge from conceptual information. For 

example, a machine retrieves information about the topic term ‘earthquake’ from 
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ConceptNet and understands that this is a phenomenon that shakes the ground. Therefore, 

we incorporate knowledge-powered topic information (topK) in KTOPAS. 

 

 

Figure 6.3: Overall scheme of topic knowledge base construction.  

The corresponding example of each step is shown with the arrow. Conceptualization retrieves the top K concepts 

with the highest probabilities. The knowledge-powered topic model (KPTopicM) generates topic knowledge 

(topKs), concept distribution over topKs and topKs distribution over documents. The topic knowledge base is 

constructed by training the datasets using KPTopicM which contains the topKs with their probability information. 
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6.3. Topic Knowledge Base Construction 

In this section, we propose a scheme to construct a TKB which contains topic information 

based on the background knowledge of documents. We refer to topic information as topic 

knowledge (topKs) in this chapter. This TKB is used as a prior knowledge base to provide 

the topKs in our summarization model. This scheme consists of a preprocessed document, 

conceptualization to obtain the conceptual information of the document from the KB as 

background knowledge, the KPTopicM to acquire the topKs using conceptual information, 

learning and inferring to train the data using the KPTopicM and we use this as prior 

knowledge for the TKB. For example, TKB produces the topK “shake” associated words 

in the document such as ’earthquake’, ‘aftershock’, ‘Richter scale’ and ’Japan’ which 

represent the document well. Figure 6.3 shows the scheme of the topic knowledge base 

construction. 

6.3.1. Preprocessing 

We preprocess the document before retrieving knowledge to remove the unnecessary and 

common text, and thus produce a normalized document. It has the following steps: 

 

• URL and Email Removal: We remove URLs and emails from the input text. 

• Lower Case: We convert the content of the input to lower case. 

• Stop-word Removal: Stop-words are removed from the dataset. 

• Tokenization: We tokenize each sentence in the input document. The sentences are 

transformed into list of words during tokenization. 

• Lemmatization: Words are reduced to their stems. 
 

 

We obtain the word vocabulary after preprocessing. To illustrate, the word list that was 

obtained from example 1 after preprocessing is as follows: ‘strong’, ‘earthquake’, 

‘measure’, ’magnitude’, ‘Richter scale’, ‘rock’, ‘wide’, ‘area’, ‘Japan’, ‘four’, ‘after’, 

‘shock’, ‘meteorological’, ‘agency’. We pre-process the text and obtain the vocabulary 

denoted as W=w1 (strong), w2 (earthquake), w3 (measure), . . ., so on. 
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6.3.2. Retrieve Informative Knowledge 

In this section, we retrieve the informative knowledge about a term from knowledge bases 

such as our OMRKBS or ConceptNet to understand the document. We take the example in 

Figure 6.1 “A fairly large earthquake measuring a magnitude …. agency said.”. First, we 

retrieve the information for each word in the document from knowledge bases such as our 

OMRKBS or ConceptNet. We transform the definition of the term into individual 

informative and meaningful features as knowledge using the same approach we used in 

chapter 4.  First, we extract the information about a term from DBpedia, split the text using 

the NLP technique, and apply a rule to transform information into informative knowledge.  

For example, the information about ‘earthquake’ is extracted from DBpedia as follows:  

“An earthquake is the shaking of the surface of the Earth resulting from a sudden release 

of energy in the Earth”   

Similarly, the information about ‘escalate’ is extracted from ConceptNet as follows. 

“earthquake”, “shake”, “shock”, “results”, “consequence”, and so on. 

After splitting the sentences and applying rules, the features of the military campaign are 

represented in OMRKBS using the mapping expression algorithm mentioned in 4.4.7. This 

helps us to understand the document since this provides unique features and structural and 

concept information. We retrieve information about the terms ‘earthquake’ and 

‘aftershock’ using the aforementioned steps as follows: 

Earthquake 

<shake, surface, earth> 

<results_from, energy, earth > 

Aftershock 

            <earthquake> 

            <shake> 

            <shock> 

            <consequence> 

            <results> 

We take the example from Figure 6.1 to explain that the machine can learn or know about 

words w ∈ W in the document such as ‘strong’, ‘earthquake’, and so on using ConceptNet. 

The generated concept set c ∈ C for the corresponding term w ∈ W is given as follows. We 
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generate a list of concepts c = c1, c2, c3, …, cn for each word wi in the document using the 

approach in 5.3.2 from knowledge bases such as Dbpedia and ConceptNet. Figure 6.4 

shows how ‘earthquake’ concept is defined in OMRKBS. The generated concepts for each 

word using the OMRKBS approach are as follows: 1. Strong (w1): powerful (c1), tough 

(c2), degree (c3), ...   2. earthquake (w2): shake (c1), natural disaster (c2), shock (c3), ... 3. 

rock (w3): stone (c1), natural disaster (c2), hard (c3), 4. Richter scale (w4): earthquake (c1), 

increase (c2), scale (c3), ... 5. wide (w5): thick (c1), comprehensive (c2), broad (c3), ...... 6. 

aftershock (w6): earthquake (c1), shake(c2), shock (c3), … 7. Japan (w7): country (c1), island 

(c2), tsunami (c3), ... and so on.  

 

Figure 6.4: An example of a concept (‘earthquake’) defined by the proposed OMRKBS.  

‘earthquake’ is defined as’<earthquake, shake, surface>. The words in the blue circle are concepts and the root 

is in the purple circle. The dashed arrows indicate the relationship between concepts according to the definition 

of a concept (‘earthquake’) while the solid arrows indicate subclasses.   

6.3.3. Conceptualization 

The appropriate background knowledge of the words in texts can be very informative and 

can reveal the latent relationships between them. This is important to retrieve relevant 

knowledge or concepts which are strongly associated with the text without including 

unnecessary information in the text. Conceptualization is the process of retrieving 

conceptual information for the document from the knowledge base. We propose a 
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conceptualization algorithm to obtain conceptual information using the ConceptNet KB 

which is relevant and well associated with the source document. First, we derive the 

concept distribution for each w ∈W in the document which we retrieve from the knowledge 

base as the informative knowledge. We compute two types of statistical conceptual 

information: knowledge or concept distributions which is the probability of a concept set 

belonging to a word or term in the text and word distributions which is the probability of 

the word set in the text belonging to a concept or knowledge corresponding to the text. 

Next, we measure the weight to present the association of each concept to the words in the 

text. Finally, we rank the top N concepts with highest weight which is strongly associated 

with the text. In this chapter, knowledge and concept as considered to be similar terms. 

 

Algorithm 6.1: Conceptualization 

1. Input: Input elements: (W=w1, w2, …, wn) 

2. Output: Top K concepts of input elements, W 

3. Begin 

4.        sample each word w from W 

5.        for each w ∈ W do 

6.            Retrieve related the concepts C= {c1, c2, …, cm} from ConceptNet 

7.                 for each c ∈ C, do 

8.                         Compute the probability of w under the concept c, P(c|w) 

9.                         Identify k concepts with highest probabilities from C 

10                        Compute weight kc ∈ Kw of the concept ci to measure  

                            the degree of the association between the concept ci towards w.  

11.               end for each 

12         end for each 

13. Rank the highest K weighted concepts (c1, c2, …, cK) associated with W                          

 

This algorithm consists of three steps: generate concept distribution over words and word 

distribution over concepts, measure the weight to associate a concept and word, and rank 

top k concepts. In the first step, we generate the concept probability distribution for the 

generated concept sets of the input elements which we retrieve from the knowledge base 

as informative knowledge. We apply an inverted indexing technique [138] to map the terms 

w ∈ W into the weighted set of related concepts. We compute the probability of concept set 
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c ∈ C which belongs to the source terms w ∈ W, defined as P(c|w), using the following 

equation: 

 
𝑃(𝑐|𝑤) =

𝑐𝑜𝑢𝑛𝑡(𝑤, 𝑐)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑤, 𝑐)𝑐𝜖𝐶
 6.1 

where the number of co-occurrences of term w and concept c is denoted as count (w, c). 

Then, we map the w ∈ W to the weight vector of the concept set, that is, KW = (kc1, kc2, ….) 

which represents the source text T in the conceptualized space. kc ∈ KW represents the 

weight of concept c in text T, indicating the strong association between the concept c and 

text. We calculate this using the following formula: 

 

 𝑘𝑐 = 𝑙𝑜𝑔 ∑ 𝑉𝑐 × 𝑖𝑑𝑓𝑐(𝑤) × 𝑖𝑐𝑓(𝑐)

𝑤∈𝑊,𝑉𝑖∈𝑃𝑐⁡

 6.2 

where Vc denotes the probability of a term w ∈ W to be mapped by concept c. idfc denotes 

the inverse document frequency which represents the identity of the term in the concept 

and icf denotes the inverse concept frequency which represents the importance of the 

knowledge in the whole concept set, and we calculate these using the following formula: 

 
𝑖𝑑𝑓𝑐(w) = 𝑙𝑜𝑔

𝐶𝑛
𝑁(𝑤) + 1

 6.3 

 
𝑖𝑐𝑓(𝑐) = 𝑙𝑜𝑔

𝐶𝑛
𝑁(c) + 1

 
6.4 

where Cn indicates the overall number of concepts in the concept set, N(w) indicates the 

number of times the term w co-occurs with concept c, and N(c) indicates the number of 

times concept ci appears in the entire word mappings. We mapped each sentence in the text 

or document to the concept set. In the last step, we rank the top K concepts’ weight in terms 

of each document. We can see that the words ’earthquake’, ’Richter scale’, ’aftershock’ 

and ’Japan’ are associated with some common concepts such as ’shake’, ’natural disaster’, 

’degree’, ’tsunami’, ’shock’ and so on. These types of latent concepts are the top K 

concepts for a document. 
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6.3.4. Knowledge-based Topic Model 

Informative and semantic latent knowledge helps to identify and describe the relevant, 

meaningful and coherent topics in a more extensive way.  We propose a knowledge-

powered topic model (KPTopicM) which employs informative knowledge to generate 

meaningful and coherent topics. This is a four-layer topic model that introduces a hidden 

knowledge layer within the topic and word of the three layers in the LDA topic model to  

 
 

  
(a) Four-layer hierarchical knowledge-powered topic 

modeling. 

(b) Graphical model for KPTopicM 

 

Figure 6.5: knowledge-powered topic model mechanism 

integrate conceptual information in the statistical topic model. First, we retrieve the top N 

concepts with their statistical conceptual information which are strongly associated with 

text using the conceptualization algorithm. The classic LDA deduces the topic distribution 

per word in the document. Then, apart from LDA, we deduce the topic distribution per 

concept followed by the concept distributions per word and observe the concepts through 
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the word distribution to integrate conceptual information and capture the word 

dependencies of the concept in the topic model. We use the Gibbs sampling technique to 

predict the concept and topic distribution. Figure 6.5(a) shows the four-layer hierarchical 

knowledge-powered topic model where we can see the indirect word dependencies through 

concepts and the direct concept dependencies in the topic distributions. The graphical 

model and the definition of notations in the KPTopicM model are depicted in Figure 6.5(b).  

Algorithm 6.2: Generative process for KPTopicM. 

Initial 

T: Total number of topics 

D: Total number of documents  

N: Number of words in d document   

1. For each t ∈ T: 

2.       Produce a word distribution φm ~Dir(β) 

3. End for each 

4. For each d ∈ D: 

5.       Produce a topic distribution θd ~Dir(α) 

6.       For w ∈ WN do 

7.             Produce a topic Gn ~Mult(θd) 

8.             Produce a concept cn ~ Mult (φGn) 

9.             Select a word wn for concept cn from λ, a probability distribution using ConceptNet. 

10.     End for each 

11.  End for each 

Let each document d ∈ D represent a group of words w ∈ W with a total of N words, the 

Dirichlet distribution is denoted as Dir and the multinomial distribution is denoted as 

MultD. The Dir parameter of the topic prior is denoted as α, and the MultD of the d 

document over topics is denoted as θd (topic distribution for a document). The parameter 

of the Dir of the knowledge prior is denoted as β and the MultD of the m-th topic is denoted 

as φm. We denote the knowledge distribution over words as λ which is obtained from 

conceptualization. wn is the nth word in doc d. We use cn to denote a concept of wn and Gn 

to denote the latent topic for cn. The algorithm shows the generative process of our 

KPTopicM. First, the concept distribution φ is sampled per topic from the Dir parameter 

of topic prior α (line 1 and 2). Then, the topic distribution, θ, is sampled per document 
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using the Dir parameter of the knowledge prior, β (lines 3 and 4). Lastly, by selecting a 

latent topic Gn from the topic distribution, MultD of θd, concept cn is generated from the 

topic distribution of the G topic, MultD of φz (lines 5 and 6). In lines 7 and 8, a word is 

selected from the corresponding word distribution λ for concept c. This model represents 

each document with various related topics and topKs are the concepts that represent topics. 

We obtain the top M concepts with the highest probabilities for each topic in the vocabulary 

of topic K. For example, KPTopicM produces topKs such as ’shake’ which was the 

background knowledge of the related words in the document such as ’earthquake’, 

’aftershock’, ’Richter scale’ and ’Japan’. This topK ’shake’ belongs to a topic that the 

document well that does not come from the source document.  

6.3.5. Learning and Inference 

The goal of the inference process is to predict parameters 𝜑̂𝑚 and 𝜃𝑚
𝑑  which can represent 

topics and documents well respectively. We predict these parameters using the Gibbs 

sampling [140] technique. We associate the concepts with words, topics with concepts, 

topics with documents and find their strongest association while generating topic 

distribution over documents θd and concept distribution over topics, φk. First, we mapped 

each word wn in n position in document d to a concept set using the concept distribution 

over words which is obtained from the conceptualization algorithm. The probability of a 

word w belonging to concept c which is retrieved from ConceptNet is defined as the 

conditional probability P(wn|cn) as follows: 

𝑃(𝑤|𝑐) =
P(w, c)⁡

𝑝(𝑐)
 6.5 

where P (w|c) is proportional to the co-occurrence of the word and concepts, and P (c) is 

approximately proportional to the observed frequency of c. Next, we assign M concepts to 

each concepts randomly from concept vocabulary and generate the concepts distribution 

per topics. Then, when a word wn is mapped to a concept set, we use the conditional 

probability of a concept cn belong town in document d that represent a topic Gn to integrate 

the concepts information in topic model and obtain the relevant concepts as topics. We 

compute this probability which is proportional to the weights from three aspect: topic 

distribution over document, concept distribution over topics and word distribution over 
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concepts to obtain the association words, concepts and documents to the topics for the 

given parameters α and β, and the observed words w using the following equation. 

 
𝑃(𝐺𝑛 = 𝑚, 𝑐𝑛 = 𝑘|𝑤, 𝑐−(𝑛), 𝐺−(𝑛); 𝛼, 𝛽)= 

𝛽𝑚,⁡𝑐𝑛+𝑠−(𝑛),𝑚
𝑐𝑛

∑ 𝛽𝑚,𝑥+𝑠−(𝑛),𝑚
(.)𝐸

𝑥=1

.
𝛼𝑚+𝑠−𝑛.𝑚

(𝑑)

∑ 𝛼𝑡+𝑠−(𝑛),.
(𝑑)𝐾

𝑡=1

𝑃(𝑤𝑛|𝑐𝑛)    

 

6.6 

where C is the knowledge vector corresponding to the word. G-n represents the whole topic 

distribution except topic of wn. The number of concepts in c is denoted as E. The number 

of concepts corresponding to topic m in document d except Gn is denoted 𝑠−(𝑛),𝑚
(.)

  and the 

total sum over that dimension is denoted as 𝑠−(𝑛),.
𝑑 .  The number of terms assigned to topic 

m is denoted 𝑠−(𝑛),𝑚
(𝑑)

 in the document d and 𝑠−(𝑛),𝑚
𝑐𝑛 is the count of cn in topic m except Gn.  

We can see that the equation has weights in relation to three aspects. In the first part, the 

weight indicates the association that expresses how much each topic is represented by a 

concept from the vocabulary and in the second part, the weight indicates the association 

that expresses how much a document is represented by a topic. The last part indicates how 

much a concept is represented by a word to the chosen topic Gn. We reassign concept cn to 

topic Gn which has highest probability. This process is iterated N times and then reaches a 

convergence state. After Gibbs sampling, we predict the probability of a topic m knowledge 

given a document d,.⁡𝜃𝑚
𝑑  and the probability of a concept given a topic, 𝜑̂𝑚 using the sample 

topic and knowledge. Lastly, we estimated the parameters using the following equation: 

 
𝜑̂𝑐,𝑚 =

𝑛𝑘
(𝑐)

+ 𝛽𝑚,𝑐

∑ 𝛽𝑚,𝑡
𝐾𝐸
𝑡=1 + 𝜌.,𝑚

(𝑐)
 

 

6.7 

 
𝜃𝑚
𝑑 =

𝑛𝑚
(𝑑)

+ 𝛼𝑚

∑ 𝛼𝑡
𝐸
𝑡=1 + 𝜌.,𝑚

(𝑑)
 6.8 

6.3.6. Dataflow of the Topic Knowledge Generation 

In this section, we describe the dataflow to generate the topic knowledge using KPTopicM. 

Figure 6.6 shows the flowchart to describe the process of constructing the topic knowledge 

base (TKB). This method comprises four steps: preprocessing, conceptualization, 

KPTopicM and learning. Preprocessing transforms the text into a word vocabulary by 
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removing unnecessary words or symbols from the text. The conceptualization process 

retrieves the most relevant background knowledge of the document from the knowledge 

base. First, this algorithm retrieves the related concept set for each word in the document 

from a knowledge base such as ConceptNet and computes the concept distribution per word 

measures the association of each concept to the words in the document. After measuring 

the weight for the association of concepts of each word in the document, we rank the top 

N related concepts with the highest weight of the concept associated with the words in the 

document. 

 

Figure 6.6: A flowchart to show the process of constructing the topic knowledge base (TKB).  

KPTopicM provides the concept distribution over topics where a concept has been 

observed through words and the topic distribution over documents where a topic has been 

observed through concepts. The Gibbs sampling technique is used to train the KPTopicM 

and find the best match for the concepts in a topic and the topics in a document with their 

association from three aspect: association of a concept and topic, a topic and document and 
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a word which belongs to a concept. We first randomly assign M concepts to each topic. 

Then, we choose a concept randomly and reassign the other topic which has best 

association from three aspect: association of a concept and topic, a topic and document and 

a word which belongs to a concept jointly.  After N iterations, topic distribution per 

document and concept distribution per topic has been learned. 

6.4. Convolutional Summarization Model with Knowledge based 

Topic Level Attention 

It is important to capture coherent and informative topic information to focus on relevant 

and main theme of the document while generating summaries. In this section, we propose 

the CSN-based summarization model with knowledge-powered topic level attention 

(KTOPAS) which incorporate topic information based on informative background 

knowledge to generate coherent, relevant and meaningful summaries with word diversity. 

We use the background knowledge of the document to bridge the gap between informative 

knowledge and topic information in capturing coherent, semantic and relevant topics in the 

generated summaries. This model comprises convolutional sequence architecture, topic 

knowledge generation and word and position embedding, a tri-attention attention 

mechanism, final probability generation to predict the target element in the output summary 

from topic or source elements, and a learning process to train the parameters and maximize 

the model performance. The graphical illustration of our summarization model KTOPAS 

is shown in Figure 6.7. 

6.4.1. Convolutional Sequence Architecture 

To utilize the advantage of the convolutional sequence architecture of CSN [9] which can 

capture long range dependencies of words in the large text and compute the operation fast, 

we use CSN in our model. We use convolutional sequence architecture for the text 

summarization model based on CSN. We add three CSNs: word, knowledge and topic level 

in the architecture which are paired with the input word and topK embeddings, input word 

and summary output, and topK and summary output respectively. We describe the word 

with the position embedding and hierarchical structure for this architecture. 



149 

 

 

Figure 6.7: Convolutional summarization mode with knowledge-powered topic level attention 

(KTOPAS).  

The Partial Summary is the produced summary elements at a decoder state for a sequence of source elements of 

documents at the encoder state. For example, given a sequence of input “Strong earthquake measuring on 

...aftershock”, the partial summary is “Powerful earthquake … “and the next target element for the output summary 

is “shake”. topKs which are the topic know ledge are retrieved using topic knowledge generation to feed itself to 

the topic level CSN in KTOPAS. 

Word and position embedding 

We embed the input and output elements with their relative position at the encoder and 

decoder of the word and knowledge level CSN, respectively. We add each element and its 

position in the source and encode these for the word and knowledge level CSN. First, we 

embed the n input elements W= (w1, w2, w3, ..., wn) of document d to vector representation 

e = (e1, e2, …, en). E ∈ RV xf is an embedding matrix where the rows are assigned with ej ∈ 

Rf and the vocabulary size is defined as V. We then embed the position embedding which 
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is the absolute position of the input element in the source text, defined as p = (p1, …, pn) to 

keep the order of the sequence of the input. For example, the position embedding for word 

wi at position i in the input sequence is pi. Finally, the input elements are represented as x 

= (x1, x2, …, xn) by joining the word and position embedding, x = (w1, p1), …, (wn, pn). 

Similarly, we represent the output elements with m word at the decoder as g = {(𝑦̂1, 𝑝̂1), 

…, (𝑦̂2, 𝑝̂2)}  where y is the output and p is the position embedding of the output. We apply 

a similar embedding at the decoder and encoder for the knowledge level as well. 

Hierarchical structure 

Multi-layer hierarchical structures are applied to three CSNs: word, knowledge, and topic 

level. The kernel width is denoted as k and the dimension of the word embedding as d. Let 

aℓ = (aℓ
1, . . ., a

ℓ
n) denote the output of the l-th layer at the decoder, and hℓ = (hℓ

1, . . ., h
ℓ
m) 

at the encoder. aℓ
i is the layer with kernel width k resulting state at an encoder network 

which contains information over k input elements. X ∈ Rkxd is fed into each convolution 

block. Convolution constructs an integration of k input elements in d dimension as X ∈ Rk 

xd by stacking blocks and maps them to a single output element Y ∈ R2d. Gated Linear Units 

[75] are applied on the output of convolution Y = [IJ] ∈ R2d. 

 

 g ([I; J]) =I⦻∂(J) 6.9 

where the inputs to the non-linearity are defined as (I; J) ∈ Rd, the sigmoid function is 

denoted as σ, the point-based multiplication is denoted as ⦻, and g ([I; J]) ∈ Rd is denoted 

as the output. The convolution unit i on the l-th layer is computed by the residual 

connection as 

 
𝑎𝑖
𝑙 = 𝑔(𝑊𝑙 [𝑎𝑖−𝑘

2

𝑙−1, … , 𝑎𝑖+𝑘
2

𝑙−1] + 𝑏𝑤
𝑙 ) + 𝑎𝑖

𝑙−1 
6.10 

where W and b are the parameters of each convolutional kernel, and g is the function 

composition operator. Finally, we compute a distribution over the K possible next target 

elements yi+1 by passing the top decoder output 𝑎𝑖
𝑙 ⁡via a linear layer with weight parameter 

WY and bias by to a SoftMax classifier: 

 𝑝(𝑦𝑖+1|𝑦1, … , 𝑦𝑖𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑌ℎ𝑖
𝐿 + 𝑏𝑌) ∈ 𝑅𝑇 6.11 
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6.4.2. Topic Knowledge Generation and Embedding 

We introduce process topic knowledge generation which retrieves coherent and relevant 

topic information based on informative and semantic latent knowledge (also called topKs) 

from the prior topic knowledge base (TKB) for the given input elements and embed the 

topKs at the encoder of the topic level CSN in KTOPAS. First, the top N concepts are 

chosen for each document using the conceptualization method detailed in section 4.1. Let 

a concept set C = (c1, …, cn) be found for the given input words. We obtain the probability 

of each concept or knowledge c ∈ C as the topics from TKB and chose M top topic 

knowledge from these concepts. We refer to this topic knowledge as topKs. We denote 

Qtopic ∈ RKxd as the topKs embedding matrix and topic vocabulary of the concepts as K ∈ V 

where V is the vocabulary of the document. We produce a vector representation t for the 

given topKs. It is assumed that t ∈ V. We identify a topK tc ∈ Rd for a concept c if c ∈ K 

and embed it as a row in the Qtopic. Similarly, we present the topKs embedding matrix at 

the decoder for the knowledge level and at the encoder for the topic level CSN as pc and rc 

respectively. 

6.4.3. Tri-attention Mechanism 

It is obvious that the strong association between the topic, summary and the source 

document can make the summary more relevant to the topic and source document. We 

introduce the tri-attention channel to generate a more relevant summary which has a strong 

association with the topic and source document. The tri-attention mechanism incorporates 

this topic information (topKs) which is generated from the topic knowledge generation in 

our model. The tri-attention mechanism comprises Input-summary (IS), Input-Topic 

knowledge (ITK), Topic Knowledge-summary (TS) attention channel and a tri attention 

channel. IS, TS and ITK are used to get attention into our model from three aspects: the 

word, knowledge, and topic level CSN respectively. IS and TS measure the attention 

weights of the topics and source elements respectively which are relevant to the summary 

elements and ITK measures the attention weights of the relevant topic elements to the 

source elements while generating summaries. We introduce the tri-attention channel which 

combines the three attentions into one to facilitate the model to generate more relevant and 
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coherent summaries. We describe each attention channel in the following sub-section. 

Figure 6.8 shows the mechanism of the tri-attention channels. 

IS Attention Channel 

We add an individual channel to pay attention to the source words for the summary outputs 

at the word level CSN to capture the important relevant source words while generating 

each target element of the summaries. We use the individual attention mechanism for each 

layer to perform multiple attention (“hop”) per time step and access the previously attended 

words [76]. The current decoder state al
i is embedded as vl

i by joining al
i with the previous 

target element embedding qi to measure attention: 

 
𝑣𝑖
𝑙 = 𝑊ℎ

𝑙ℎ𝑖
𝑙 + 𝑏𝑑

𝑙 + 𝑞𝑖 
6.12 

Let Wl a ∈ Rdxd be a weight matrix and bias bl
 a ∈ Rd is the learning parameter. We measure 

the attention weight Oisl
ij of the i state and j input element of the source text through dot 

product between vl
i and the output ue

j of the last encoder block eo as follows: 

 
𝜃𝑖𝑗
𝑙 =

exp⁡(𝑣𝑖
𝑙 .⁡⁡𝑢𝑗

𝑒𝑜)

∑ exp⁡(𝑣𝑖
𝑙.⁡⁡𝑢𝑡

𝑒𝑜)𝑛
𝑡=1

 6.13 

We compute the conditional input cl
i ∈ Rd of the current decoder layer as follows: 

 𝑂𝑖𝑠𝑖
𝑙 =∑𝛼𝑖𝑗

𝑙 (𝑢𝑗
𝑒0 + 𝑎𝑗)

𝑛

𝑗=1

 6.14 

where we denote xj as the input element embedding. After computing cl
i, this is joined to 

the output of the corresponding decoder layer al and serves as a part of the input to al+1
i. 

 
c𝑖
𝑙 =∑  

𝑛

𝑗=1

Ois𝑖𝑗
𝑙 ⁡(𝑢𝑗

𝑒0 + 𝑥𝑗) 
6.15 

TS Attention Channel 

In contrast to the base CSN, we include a high-level topic attention at the topic level CSN 

to focus on the important and informative relevant topics while generating summaries. We 

call this the TS attention channel. First, we embed current decoder state sl
i of the topic level 

for convolutional unit i on the l-th layer as vl
i using the following equation. 
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𝑣̈𝑖
𝑙 = 𝑊𝑠

𝑙𝑠𝑖
𝑙 + 𝑏̃𝑠

𝑙 + 𝑡𝑖 
6.16 

where ri is the previous target topic embedding. First, we compute attention for convolution 

unit i on the l-th layer at the decoder of the topic level over the summary output jointly 

using the following formula. 

 
𝑂𝑡𝑠𝑖𝑗

𝑙 =
exp⁡(𝑣̈𝑖

𝑙. 𝑢𝑗
𝑒0 + 𝑣̈𝑖

𝑙. 𝑢𝑗
𝑒𝑠)

∑ exp⁡(𝑣̈𝑖
𝑙. 𝑢𝑗

𝑒0 + 𝑣̈𝑖
𝑙 . 𝑢𝑡

𝑒𝑠)𝑛
𝑡=1

 
6.17 

 

Figure 6.8: Mechanism of the three attention channels: Input-Summary, Input-Topic Knowledge, Topic 

Knowledge-Summary attention channel. 

 

We call the topic knowledge-powered text summarization model with double attention 

channel (DTopCSN). DTopCSN measures attention from two aspects: the word and topic 

level CSN through the double attention channel. Then, the conditional input is computed 

by 
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𝑐̈𝑖
𝑙 =∑  

𝑛

𝑗=1

Ots𝑖𝑗
𝑙 ⁡(𝑢𝑗

𝑒𝑠 + 𝑡𝑗) 
6.18 

where ues is the output of the last topic level encoder block es and tj is the topic embedding 

at the encoder of the topic level CSN. The two-conditional input 𝑐𝑖
𝑙 and 𝑐̈𝑖

𝑙are joined to the 

output of the corresponding decoder layer 𝑠𝑖
𝑙 and are a part of the input to 𝑠𝑖

𝑙+1 for 

DTopCSN model. However, this model does not consider semantically relevant topics or 

coherence for the input elements. Therefore, we improve this model by adding one more 

attention channel (described in the next section) to provide more semantically relevant 

topKs in terms of source documents as the target summary output elements. For this, 

instead of using equation 6.17, we compute high-level topK attention for convolution unit 

i on the l-th layer in the decoder of the topic level over the summary output individually 

using the following formula similar to multi-hop attention. 

 

𝑂𝑡𝑠𝑖𝑗
𝑙 =

exp⁡(𝑣̈𝑖
𝑙. 𝑢𝑗

𝑒𝑠)

∑ exp⁡(𝑣̈𝑖
𝑙. 𝑢𝑡

𝑒𝑠)𝑛
𝑡=1

 
6.19 

Then, the conditional input 𝑐̈𝑖
𝑙is computed using the same equation 6.18 and will join with 

other conditional inputs in next section as the output of the corresponding decoder layer  

𝑠𝑖
𝑙. We use this attention to measure the importance of each topK in the summary output 

elements. 

ITK Attention Channel 

In the tri-attention mechanism, we add one more individual channel to pay attention to the 

topKs for the input sequences in the knowledge level CSN and drive the model to preserve 

the strong association of the topic information with the source text in the generated 

summaries. We use a hop method which is similar to one we used previously. Currently, 

the encoder state 𝑑𝑖
𝑙 is embedded as 𝑣𝑖𝑗

𝑙  to measure the attention using the following 

formula. 

 𝑣𝑖𝑗
𝑙 = 𝑊𝑑

𝑙𝑑𝑖
𝑙 + 𝑏𝑑

𝑙 + 𝑝𝑖 6.20 

where pi ∈ Rd is the previous decoded topic embedding at the knowledge level CSN and 

the weight parameter is denoted as Wl
d. Here the weight of attention is Oitkl

ij from the i-th 
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concept regarding the input elements j. A large value of Oitkl
ij means that the i-th concept 

is more semantically similar to the source element j. We measure Oitkl
ij through the dot 

product between vl
ij and the output uet

j of the last encoder block et and normalize the 

attention weight of the topKs as follows. 

 
𝑂𝑖𝑡𝑘𝑖𝑗

𝑙 =
exp⁡(𝑣𝑖𝑗

𝑙 . 𝑢𝑗
𝑒𝑡)

∑ exp⁡(𝑣𝑖𝑗
𝑙 .⁡⁡𝑢𝑡

𝑒𝑡)𝑛
𝑡=1

 
6.21 

This attention weight is used to get the coherence among topKs in terms of input. We 

compute the conditional input. 𝑐̈𝑖
𝑙 ∈ Rd of the current layer of the decoder as follows. 

 
𝑐𝑖
𝑙 =∑  

𝑚

𝑗=1

 Oitk 𝑖𝑗
𝑙 (𝑢𝑗

𝑒𝑡 + 𝑔𝑗) 
6.22 

where gi is the encoded input embedding at the knowledge-level CSN. After computing.⁡𝑐̈𝑖
𝑙 

this is joined to the output of the corresponding decoder layer 𝑑𝑖
𝑙 of knowledge-level CSN 

and serves as a part of the input to dl+1
i.  

Tri-Attention Channel 

Finally, we introduce a tri-attention channel which combines the above attention of the 

three channels to one to drive the model to produce more relevant and coherent summaries 

which can preserve the main the topics and meaning of the document. We joined the three 

Ois, Oitk and Ots attention weight to obtain one final attention weight of each concept. The 

final attention weight is computed by 

 
𝜋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼𝑂𝑖𝑠𝑖

𝑙 + ⁡𝛽𝑂𝑡𝑠𝑖
𝑙 + 𝛾𝑂𝑖𝑡𝑘𝑖

𝑙) 

=
exp⁡(𝛼𝑂𝑖𝑠𝑖

𝑙 + ⁡𝛽𝑂𝑡𝑠𝑖
𝑙 + 𝛾𝑂𝑖𝑡𝑘𝑖

𝑙)

∑ 𝛼𝑂𝑖𝑠𝑡
𝑙 + ⁡𝛽𝑂𝑡𝑠𝑡

𝑙 + 𝛾𝑂𝑖𝑡𝑘𝑡
𝑙)𝑚

𝑡=1

 

6.23 

where α, β, γ ∈ [0; 1] are the learnable parameters of the network to adjust the importance 

of the three attention weights jointly. The embedding matrix Qtopic which is normalized 

from the final attention weights is employed to compute a weighted sum of the concept 

vectors t to represent the concepts through semantic vectors. 

 

𝑄 =∑𝜋

𝑀

𝑖=1

𝑡𝑖 
6.24 



156 

We joined c𝑖
𝑙, 𝑐̈𝑖

𝑙 and 𝑐𝑖
𝑙 ⁡to the output of the corresponding decoder layer 𝑠𝑖

𝑙of topic level 

and are fed back as input to 𝑠𝑖
𝑙+1. KTOPAS capture the topKs attention over the summary 

elements and the source elements while DTopCSN capture the topKs attention over 

summary elements only. 

6.4.4. Final Probability Generation 

The probability distribution over every possible output element for the next target at time 

step t, 𝑦̂i+1ϵRT, is computed as follows. 

𝑝̅(𝑦𝑖+1) = 𝑝(𝑦̂𝑖+1|𝑦̂𝑖, … , 𝑦1, 𝑥) ∈ 𝑅𝑇 6.25 

We transform the last decoder outputs 𝑎𝑖
𝐿0 of the word level CSN and decoder outputs⁡𝑠𝑖

𝐿𝑡 

of the topic level CSN through a linear ∆(. ) using the following equation. 

∆(ℎ) = 𝑊ℎ + 𝑏 6.26 

where W and b are the learning parameters. Then the final probability distribution is 

generated by the following equation. 

𝑝̅(𝑦𝑖+1) =
1

𝑍
[𝑒𝑥𝑝 (∆(𝑎𝑖

𝐿0)) + 𝑒𝑥𝑝(∆(𝑠𝑖
𝐿𝑡)) ⊗ 𝐺{𝑤∈𝐾}] 6.27 

where the normalizer is denoted by Z and G is the indicator vector which expresses whether 

each candidate word w in yi+1 is a topK or not. If w is a topK, the generation distribution is 

biased through the topic information. Otherwise, the topic part is ignored. Figure 6.9 shows 

illustrates a flowchart to describe the sequence of process of our entire KTOPAS model. 

6.4.5. Dataflow of the KTOPAS Model 

In this section, we describe the dataflow of the model as shown in Figure 6.9. This method 

comprises several processes: multi-layer structure, topic knowledge generation, an 

attention mechanism, tri-attention channel and final probability distribution. The multi-

layer structure is the backbone of the CSN which represents a sequence of the entire text  
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Figure 6.9: A flowchart showing the dataflow of the KTOPAS model. 
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by piling the segments of text together. In the multiplayer structure, a convolutional block 

which acts as a unit represents k elements using word embeddings with their position, then 

GLU is applied to transform k elements of each block into a single output. After this, the 

entire text is represented by stacking one by one. Topic knowledge generation produces 

the knowledge-powered topic information (topKs) from the TKB. First, we retrieve the 

relevant and informative background knowledge using the conceptualization algorithm. 

Next, we produce the topKs using this knowledge information and obtain the embedding 

of the topKs. An attention mechanism is a method which represents three channels: IS, TS 

and ITK channel to compute each state of the encoder and decoder, measure the attention, 

compute the conditional input and finally feed the conditional input into the decoder state 

of the word, knowledge and topic level CSN respectively. The tri-attention channel 

combines the three attention models from the word, knowledge and topic level CSN using 

SoftMax.  

The final probability distribution produces the probability distribution of the next target 

element of the summary output at each state at the decoder of the word and topic level 

CSN.  xi; ti; yi are the embedding of the source, topKs and summary elements respectively. 

First, this model adds three CSN: word, knowledge and topic, embeds the source and 

summary, retrieves the topKs from the topic knowledge generation and embeds the topKs 

to the CSN. This includes the multi-layer structure and the attention channel with each 

CSN which measures attention jointly for each state and passes the attention information 

to the tri-attention channel, and finally generates the probability distribution to predict the 

next target element for each state. 

6.4.6. Learning 

We train the α, β and γ through the network jointly. We calculate α, β and γ using the 

following formula: 

𝜌 = 𝜎(𝑊𝑡[𝛼, 𝛽, 𝛾] + 𝑏) 6.28 

where 𝜎 is the sigmoid function. Once the final probability is computed, we train our model 

using three steps which is introduced by Paulus [37]. In the first step, we exploit the cross-
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entropy to minimize the objective function in our model. The standard maximum likelihood 

objective is obtained to minimize the loss in the training and defined as follows: 

𝐿𝑚𝑙 = −∑  

𝐿

𝑖=1

log⁡ 𝑝𝜃(𝐲𝑖
∗ ∣ 𝐲1

∗, 𝐲2
∗, … , 𝐲𝑖−1

∗ ) 6.29 

Then, reinforcement loss is minimized in the training using the reward r (𝑦́) and r (𝑦̂) as 

follows: 

ℒ𝑅𝐿 =∑  

𝑡

− log⁡ 𝑝𝜃
∗(𝑦𝑡 ∣ 𝑦𝑡−1

′ , 𝑠𝑡, 𝑐𝑡−1, 𝐗) ×

(𝑟(𝑦̂1,⋯ , 𝑦̂𝑇) − 𝑟(𝑦1
′ , ⋯ , 𝑦𝑇

′ ))

 6.30 

Finally, we define a mixed training objective Lmix [84] for further minimization by 

associating the policy learning objective function Lrl and the original maximum likelihood 

Lml which is given below. We tarin the KTOPAS with respect a mixed training objective 

Lmix with the parameter γϵ [0,1].  

𝐿𝑚𝑖𝑥𝑒𝑑 = 𝛾𝐿𝑟𝑙 + (1 − 𝛾)𝐿𝑚𝑙 6.31 

6.5.  System Evaluation 

We set up the implementation environment and develop our work in this environment. We 

implemented our proposed scheme on two datasets and evaluated the results with other 

baselines. First, we evaluate the accuracy of the generated topic information using 

KPTopicM. Then, we evaluate the accuracy of the generated results of our proposed 

summarization model KTOPAS. Next, we run an ablation study to learn the effect of  each 

contribution in the model KTOPAS and compare the computation cost with the baseline. 

Finally, we discuss the advantages, limitations, findings and novelty of our model. 

Table 6.1: Basic statistics of the CNN/Daily Mail and Gigaword dataset.  

Datasets 
CNN/Daily Mail Gigaword 

Train Valid Test Train Valid Test 

Documents 287 K 13 K 11 K 3.8 M 189 K 2 K 

Avg.Len.Doc. (word) 790 769 777 31 31 29 

Ave.Len.Ref. (word) 55 61 58 8 8 9 

Avg.Len.Doc. indicates that average number of words in a document. Avg.Len.Ref. indicates that average number 

of words in a reference summary. 
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6.5.1. Datasets 

Our experiments are conducted over two datasets: Gigaword [123] and CNN/Daily Mail 

[42] for our topic model KPTopicM and summarization KTOPAS. In the Gigaword 

datasets, summaries are generated by combining the first sentence of each source article 

and its headline. This dataset has 3.8M training samples, 400k validation samples, and 

400k test samples. CNN/Daily Mail contains news articles and the corresponding human-

written summaries and has 287K training samples, 13K validation samples, and 11K test 

samples. Table 6.1 show the basic statistic of the dataset we used for our experiments. 

6.5.2. Automatic Evaluation Methods 

We describe the evaluation method used to measure the performance of the proposed model 

KPTopicM and KTOPAS. 

Perplexity: We evaluate the results of our proposed KPTopicM with LDA by comparing 

the performance using perplexity. A lower score of perplexity indicates better performance 

in generalization. We compute perplexity using the following equation: 

perplexity = exp⁡ {−
∑  𝑀
𝑑=1 log⁡ 𝑝(𝐰𝑑|𝜑, 𝛼)

𝑐𝑜𝑢𝑛𝑡⁡𝑜𝑓⁡𝑡𝑜𝑘𝑒𝑛
} 

6.32 

where w denotes the words in document d for the given topics 𝜑 and the hyperparameter 

𝛼 for topic-distribution θd of documents. 

Topic Coherence. We evaluate our KPTopicM with LDA using topic coherence [90]. We 

compute the topic coherence score for given a topic t of top m words (z1, z2, . . ., zm) with 

the highest probabilities P(w|t) as follows: 

𝐶(𝑡; 𝑍(𝑡)) = ∑  

𝑀

𝑚=2

∑  

𝑚−1

𝑙=1

log⁡
𝑓(𝑧𝑚

(𝑡)
, 𝑧𝑙

(𝑡)
) + 1

𝑓(𝑧𝑙
(𝑡)
)

 

6.33 

Let f (z) be the frequency of word t in the document and f (z, 𝑧́) is the number of documents 

where the words z and 𝑧́ co-occur. A higher coherence score indicates higher topic quality. 
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Table 6.2: Example of topic words for LDA [50], KB-LDA [105], KPTopicM trained over two datasets (TOP-10 

WORDS ARE SHOWN). 

LDA [50] KB-LDA [105] KPTopicM 

government, election, politics, 

leader, opposite, people, power, 

parliament, democrats, climate  

party, trump, poll, vote, 

election, debate, change, 

candidate, minister, state 

election, debate, candidate, 

campaign, majority, win, party, 

political, vote, president 

product, service, market, industry, 

farm, company, busy, corporation, 

fund, customer 

Executive. company, market, 

stock, research, corporation, 

profile, chief, quote, industry 

Investment, business, corporation, 

market, product, employee, 

management, farm, organization, 

profit 

military, time, government, security, 

troops, war, like, country, attack, 

right 

people, guns, force, 

government, article, military, 

know, weapons, war 

army, weapons, terrorist, war, 

violent, death, loss, country, military, 

escalate. 

patients, time, good, disease 

information, heading, people, think, 

medical, diagnosis 

patients, blood, good, 

disease diagnosis, medical, 

care, heart, physical, 

examination 

patient, history, treatment, disease, 

pain, examination, information, 

diagnosis, blood, care 

game    team think      time hockey 

play   players good    games   Friday 

game    team    article football 

play    league players good    

games   season 

Play, win, fun, score, sport, team, 

rule, football, loose, team 

Japan, us, plant, Korea, oil, deal, 

disaster, nuke, earthquake, radiation 

Japan, plant, disaster, nuke, 

crisis, power, oil, radiation, 

quake, nuclear, 

Japan, earthquake, tsunami, 

disaster, shake, loss, nuclear, crisis, 

radiation, Asia  

The incorrect topic words for each topic in table are marked in orange. 

 

ROUGE: We use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [87] 

metric to evaluate our summarization model. ROUGE(RG) is a set of metrics to compare 

the quality of the generated summary with reference (human-written) summaries. We 

compare the quality by counting the number of times a series of n-grams (mostly two and 

three) overlap the generated summaries with the reference summaries. The score is 

computed as: 

ROUGE − 𝑛 =
∑  𝑆∈Ref ∑  𝑔𝑟𝑎𝑚𝑛

 Count match (gram𝑛)

∑  𝑆∈ Ref ∑  gram 𝑛
 Count (gram𝑛)

 
6.34 

We measure several ROUGE scores ROURG-1 (RG1), ROURG-2 (RG2) and ROURG1 

(RGL) for unigram, bigram, and the longest common subsequence respectively. 

6.5.3. Baseline 

We evaluate the KPTopicM topic model with the KB-LDA [33] and LDA [28] model. KB-

LDA [33] is a simple knowledge-based LDA model which incorporates input elements 

represented by concepts in terms of the source document while our proposed model 

KPTopicM incorporates input elements represented by semantically relevant and coherent 
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concepts which are retrieved using the proposed conceptualization algorithm. We evaluate 

our model KTOPAS with different baselines which are described as follows. RNN-ATS 

[36] is an RNN-based ATS model with an attentive encoder and decoder. RNN- ATS+ [40] 

uses a further extension with additional features for the optimization of RNN-ATS. LEAD 

[38] is also an attention based RNN model proposed by Nallapati (2017) which achieves 

better results for a large vocabulary. Deep-RL [37] uses the policy gradient algorithm for 

ATS for learning by exploiting metric rewards at the sequence level. Deep-RL+ML [45] 

weight the mixed loss for stability and fluency of the summaries. PTGN [42] is a pointer 

generator method which allows words to be copied from the original document. SEASS 

[127] is the extension of the RNN sequence-to-sequence model for selective encoding. 

CSN-ATS [114] is a text summarization model based on a convolutional sequence neural 

network. Mats [33] is a multi-task learning approach for ATS. We then compare the 

improvement of our model step by step from the base line TopicCSN [3] to KTOPAS. We 

also evaluate our current model against our previous model TEXSCTTA discussed in 

Chapter 5.  

  

Figure 6.10: Perplexity of LDA and KPTopicM from 100 to 1000 topics over CNN/Daily Mail and 

Gigaword datasets. 

The lower the score, the better the topic quality. 

 

TopicCSN [3] is a summarization model which incorporates topic information using CNN. 

This model obtains topic from source documents using the LDA technique rather than 

background knowledge information. DTopCSN, described in section 4.3.2, measures 

attention from two aspects: word and topic level while our improved KTOPAS model 
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measures attention jointly from three aspects: word, knowledge, and topic level through 

the tri-attention channel to generate more coherent summaries. 

6.5.4. Implementation Setup 

We implemented our scheme using PyTorch and Fairseq in the Python 3.7 environment on 

a university GPU Linux cluster. We use the Stanford core NLP package NLTK1 to 

preprocess the text and pyrouge2 to compute the ROUGE score. We use ConceptNet [50] 

to retrieve the concept or knowledge for conceptualization. We extract the top 50 concepts 

per document to choose the topic information using KPTopicM. We set both Dirichlet prior 

α and β to .01. For the Gib sampler, the number of iterations is set to 500. We chose 5 to 

50 topK for each topic. We obtained 512 topics based on topKs. We initialize the dimension 

of the word embedding to 256. The dimension of the GRU hidden states for both the 

encoder and decoder is set to 512. We limit the size of the input and output vocabulary to 

110,000. For training, the initial learning rate is set to 0.001 utilizing Adadelta. The batch 

size is set to 50 and the training data are randomly shuffled at every epoch. The scaling 

factor is set to 0.1. The Gensim package is used for measuring the perplexity and coherence 

of the topic models. 

Table 6.3: Topic coherence of various size of topics (N) over CNN/Daily and Gigaword datasets.  

 CNN/Daily Mail Datasets Gigaword Datasets 

N 5  10  15 5 10 15 

LDA [28] -210.75 -960.69 -2488.65 -260.68 -1298.43 -3352.56 

KP-LDA [33] -180.65 -920.42 -2375.85 -230.74 -1206.22 -3211.58 

KP-TopicM -172.52 -903.12 -2295.73 -201.23 -1148.30 -3174.63 

The more relevant topics achieve a higher score. The best scores are expressed as boldface. 

6.5.5. Analysis of Experiment Topic Results 

Daily and Gigaword datasets. We obtain the top 50 concepts for each topic with the highest 

probabilities. We compute the perplexity of the two models (KPTopicM and LDA) over 

the datasets from 100 to 1000 number of topics. The curve in Figure 6.10 represents the 

value of perplexity over the number of topics for the two models. We can see that perplexity 

declines as the number of topics in both datasets increases. The value of perplexity in 

KPTopicM is much smaller than LDA, which indicates that KPTopicM performs 
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significantly better than LDA. KPTopicM provides semantically well-formed and relevant 

topics to the KTOPAS summarization model to facilitate the generation of meaningful and 

informative summaries which is discussed in the next section. Table 6.2 shows examples 

of topics with 10 words sets obtained by the LDA, KB-LDA and KPTopicM techniques. 

We then compute the topic coherence for KPTopicM, KBLDA and LDA and compare the 

results. Table 6.3 illustrates the topic coherence score for a different number of words in 

topics over the CNN/Daily Mail and Gigaword datasets. A higher topic coherence score 

implies more coherent and consistent topic words in the topic. We can see from Table 6.2 

that our model achieves higher quality results than the KBLDA and LDA model in terms 

of coherence score. This is expected because this model incorporates the latent knowledge 

of the document and captures its semantic relevance to the document. We can see from 

Table 6.1 that KPTopicM topics are more consistent and coherent than the other 

techniques. 

 
 

Figure 6.11: ROUGE 1 results score of KTOPAS over the number of topics on two different datasets.  

The blue curve indicates the increase of the ROUGE score while the red curve indicates the decline of the 

ROUGE score. 

6.5.6. Analysis of Experimental Summary Results 

We evaluate the summary results of the KTOPAS using the following steps. First, we 

evaluate the summary results on a different number of topic knowledge sets for a topic 

reflected by the RG1 score. Then, we analyze the effect of topic knowledge in KTOPAS. 

Finally, we compare the summary results of our model KTOPAS with baselines. 
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Results on Different Size of Topic 

In this section, we evaluate the accuracy of the generated summaries in relation to topic 

size. Topic size means the number of word or concepts in a topic. We compute the 

ROUGE-1(RG1) score of different baselines and KOPAS for topic sizes ranging from 5 to 

10. Figure 6.11 shows the results of the RG1 score for the different sized topics for the 

Gigaword and CNN datasets. We can see that KTOPAS achieves a higher score when the 

topic information has been incorporated than when no topic words have been incorporated. 

The RG score of the summary results increases consistently with an increase in topic size 

and reaches the highest score for a topic size of 10. Then, RG score begins to decline after 

this until topic size of 35, but this score still higher than KTOPAS obtained when no topic 

information is incorporated. After that, RG score dropped to same level as it was for the 

model with no topic at topic size 40. We see that the most accurate summary results are 

obtained when topic size is 10. Therefore, we chose a word set of 10 to train the parameters.  

Table 6.4: RG-1, RG-2, and RG-L metric over the CNN/Daily corpus for different approach of text 

summarization. 

Methods RG-1 RG-2 RG-L 

RNN-ATS [36] 

RNN-ATS+ [40] 

LEADS [38] 

Deep-RL [37] 

Deep+RL+ML [45] 

PTGN+ [42] 

CNN-ATS [114] 

SLASS [127] 

Mats [132] 

29.56 

29.78 

35.32 

35.80 

35.17 

33.44 

35.88  

35.93 

35.54  

11.31 

11.88 

0 

16.62 

16.76 

16.1 

17.48  

17.51 

17.09  

26.41 

26.94 

0 

32.44 

32.46 

31.45 

33.29 

33.35 

32.93 

LDA-ConvTSM  

KB-LDA-ConvTSM  

TEXSCTTA 

KBTOPAS  

36.38 

36.57 

37.56 

37.85 

17.48 

18.50 

18.62 

18.71 

33.40 

33.92 

33.93 

33.96 

Higher score is displayed in boldface. 

Compare Results with Baselines  

We analyzed the performance of our KTOPAS over the CNN/Daily Mail and Gigaword 

datasets. First, we measured the RG1, RG2, and RGL metrics of different state-of-the-art 

methods. Then, we measure the RG metrics of our approach in the way that has been 

extended: TopicCSN [52], DTopCSN and our proposed model KTOPAS. Table 6.4 and 

6.5 shows the RG metrics of the different approach for the CNN/Daily Mail and Gigaword 

datasets. The results show that TopicCSN has a better RG metrics score than CSN-ATS 
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[55] which demonstrates that topic information helps to produce a better summary. 

Incorporating topKs in DTopCSN improves the results more than TopicCSN. This 

demonstrates that coherent and meaningful topics based on conceptual information 

contribute to better results since the conceptualization algorithm provides coherent and 

informative knowledge of concepts for the document which cannot be found in the source 

document and the KPTopicM algorithm provides quality topic information using 

conceptual information. 

Table 6.5: RG-1, RG-2, and RG-L metric over the Gigaword corpus for different approach of text 

summarization. 

Methods RG-1 RG-2 RG-L 

RNN-ATS [36] 

RNN-ATS+ [40] 

LEADS [38] 

Deep-RL [37] 

Deep+RL+ML [45] 

PTGN+ [42] 

CSN-ATS [114 

Mats [132] 

35.45 

35.61 

39.15 

40.95 

40.09 

39.55 

39.86  

40.71  

13.31 

13.83 

15.65 

15.83 

15.84 

17.18 

17.25 

18.12  

32.71 

35.48 

35.56 

36.35 

36.52 

36.65 

36.63 

36.73 

LDA-ConvTSM  

KB-LDA-ConvTSM  

TEXSCTTA 

KBTOPAS  

40.38 

41.54 

41.39 

42.10 

18.82 

19.50 

19.34 

20.01 

36.64 

37.92 

38.43 

38.45 

Higher score is displayed in boldface. 

KTOPAS which uses the tri-attention channel achieves higher scores for the RG metrics 

than DTopCSN since the DTopCSN model does not observe the relevancy of the topKs 

over the input elements. This shows that the incorporation of more relevant topics in terms 

of source elements improves the performance of the summary results based on R metrics. 

It can be seen that the RG scores increase gradually in each step by enriching topics with 

coherent latent knowledge in KTOPAS. The words in blue in the KTOPAS summary are 

captured from the topic information and are associated with the pink words in the 

corresponding source document. We further evaluated KTOPAS against the other 

baselines and the ROUGE scores are shown in Table 6.4 and 6.5. The results show that the 

topKs, knowledge-powered topic level attention, tri-attention channel and the mixed 

learning procedure improve the quality of text summarization in terms of accuracy. The 

results in the that tables show that our KTOPAS model achieves the highest ROUGE scores 

and outperform the various baselines. Examples of the generated summaries of the various 
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models are shown in Table 6.7. We can see from the examples that some of the topK words 

appear correctly in the generated summaries after the topic information from TKB are 

merged in our model. These words do not come from the reference summaries or the source 

document. So, we can say that the tri-attention channel with a pre-trained TKB provides 

informative knowledge as the topic and improves the coherency of the summaries. 

KPTopicM provides the topic information to construct TKB and it also improves the 

effectiveness in terms of the accuracy of KTOPAS by generating meaningful topics. The 

results show our current model KTOPAS improves the performance compared to our 

previously proposed model TEXSCTTA, discussed in Chapter 5. This demonstrates that 

our extension of this model improves the results. 

6.5.7. Ablation Study 

In this section, we describe the ablation studies to investigate which of our individual 

improvements in the model contribute to the performance of the ATS in achieving better 

results. This study removes our individual contribution to the model and evaluates these 

ablations against each other. CSN+LDA (TopicCSN) [3] integrates the topic information 

into a CSN where the topics are retrieved using the statistic LDA topic model only. We 

retrieve the background knowledge using our proposed conceptualization algorithm for all 

ablations. We use five ablation models for the analysis. CSN + Concept-LDA: CSN with 

topic information based on the background knowledge instead of based on source words 

using the statistical LDA model. CSN+TKB: Utilizes our pretrained improved KPTopicM 

model (TKB) to obtain and incorporate the topic information based on background 

knowledge to a CSN model. CSN+ TKB + Dual Attention: Applying a dual high-level 

attention to the CSN+TKB model. CSN+TKB+Tri-Attention: Adding one more refined 

attention to the model for relevant topics to the source text. CSN+TKB+Tri-Attention+RL: 

Full model with knowledge--powered high-level topic attention cooperating with the RL 

objective. We also evaluate these ablations with RNN and CSN based baselines. Table 6.6 

shows the results of each ablation and baseline based on the RG metrics on the validation 

set of the CNN/Daily Mail dataset. We observe from Table 6.6 that our base model: CSN-

based ATS 
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Table 6.6: Ablation experiments investigating the effectiveness of topic information and the attention 

mechanism on the CSN model over the CNN/Daily Mail dataset.  

No Models RG1 RG2 RGL 𝑇𝑡 

RNN based ATS method  

1 RNN-ATS [36] 35.61 13.83 35.48 12 

2 PTGEN [42] 39.55 17.18 36.65 6.5 

CNN based ATS method  

3 CSN-ATS [114] 39.86 17.25 36.63  

Our Ablations 

9 CSN+ Tri Attention + TKB+RL 𝟒𝟐. 𝟏𝟎 𝟐𝟎. 𝟎𝟏 𝟑𝟖. 𝟒𝟓 𝟐. 𝟑 

8 CSN + Tri Attention + TKB 41.96(↓ .33%) 19.88(↓ .65%) 38.33(↓ .31%) 3.9 

7 CSN + Dual Attention+ TKB 
41.54 

(↓ 1.01%) 
19.65 

(↓ 1.17%) 
37.92 

(↓ 1.08%) 
3.6 

6 CSN+TKB 41.32(↓ .53%) 19.49(↓ .82%) 37.69(↓ .61%) 3.0 

5 CSN+ Concept-LDA 
40.88 

(↓ 1.42%) 
19.29 

(↓ 1.04%) 
37.13 

(↓ 1.51%) 
3.0 

4 CSN+LDA [3] (base model) 
40.38 

(↓ 1.24%) 
18.82 

(↓ 2.5%) 
36.71 

(↓ 1.06%) 
2.9 

Rows 1-2 and 3-4 of the table are the results of the other proposed sequential RNN and CSN based ATS models, 

respectively. Next, we show each improvement of the model and the effectiveness of the improvements step by 

step, indicating the decrease in percentage of the results score for each ablation of our model. The best results 

are shown in boldface for our proposed model improvements steps (rows 5-9). Tt is the training times (in hours) 

per epoch for each method and ablation. 

(CSN-ATS) is more effective than RNN-based ATS. It is clear from the results that 

incorporating topic information in the model TopicCSN (CSN+LDA) provides better 

accuracy than the baselines. Now, we evaluate our five ablation models for the analysis. 

We see that our full model (CSN+ TKB+ Tri-Attention + RL) beats the novelty baseline. 

Then we compare the full model with CSN+ TKB+ Tri-Attention stage ablation and see a 

decrease in the performance of the results in terms of RG metrics when we remove the 

reinforcement learning approach from our model. Then, we evaluated the influence of 

additional attention by removing it from the CSN+ TKB+ Tri-Attention model. The results 

show that the performance of the model (CSN+TKB+Dual-Attention) drops by 1.08%, 

1.17% and 1.08% for RG1, RG2 and RGL scores respectively. This indicates that utilizing 

the tri-attention channel drives the model to be more effective than the dual attention-based 

model. Next, we eliminate the high-level dual topic attention from the CSN+TKB+Dual- 
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Attention model and we observe a decrease in the performance of the model CSN+TKB, 

suggesting that high-level topic attention makes the model more effective.  At a later stage, 

we drop the incorporation of topic information from our pretrained proposed KPTopicM 

model (TKB) and incorporate topic information based on knowledge using the LDA topic 

model into a CSN instead. 

We observe that the performance of the model dropped by 1.24%, 2.5% and 1.06% for 

RG1, RG2 and RGL scores respectively when we do not merge the topic information from 

our TKB. Finally, we remove the use of background knowledge entirely while capturing 

topic information from the model. The results show that the performance of the model 

CSN-LDA (which incorporates topic information based on source words only) reduces by 

1.24%, 2.5 % and 1.06% in terms of RG1, RG2 and RGL scores, respectively. This proves 

that utilizing the background knowledge from our conceptualization algorithm to capture 

topic information in the generated summaries is effective. The ablation study demonstrates 

that each contribution is important for our complete model, and the improvements are 

statistically significant on all metrics. 

 

Figure 6.12: Statistical test on the sample of the CNN/DailyMail datasets reflected by the R1 score. 
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6.5.8. Computation Cost 

We compute the time consumption of the training of our model and baselines. The training 

time of each model is shown per epoch and hour in the columns of Table 6.6 as Tt. It is 

clear from Table 6.6 that RNN-based ATS consumed much higher time to train the data 

than CSN-based ATS. The base CSN-ATS is 5.2 times faster than the base RNN-ATS 

model and 3 times faster than the PTGEN model. We can see from the results that the 

computation cost increases gradually from the base (CSN-LDA) model to the KTOPAS 

(CSN+Tri Attention+ TKB+ RL) due to the improvement in our model. However, the cost 

is still much lower than the base RNN (around three times) and PTGEN (around 1.6 times) 

model. This is because we use the CSN model for our ATS approach which supports the 

parallel computations while training. 

6.5.9. Statistical Test 

We run a statistical test over the CNN/Daily mail dataset to ensure the superiority of the 

proposed approach as reflected by the R1 score.  We randomly sample 100 source 

documents each time and run the test 20 times on the test set and measure the R1 score for 

each sample. Our standard variance is 2.5 and p value <.006. We compare our results with 

the baseline mats [33] which have the highest scores compared to the other baselines we 

used for our evaluation. Figure 6.12 show the confidence interval is 95% of the R1 scores 

for each sample over the CNN/Daily mail datasets. Our hypothesis null testing shows the 

statistical significance of our model with respect to the baseline model mats [105] as given 

by the 95% confidence interval in the R1 score. 

6.5.10. Discussions 

TopicCSN is our base model which does not utilize background knowledge and high-level 

attention while generating summaries. The main advantage of our model is that we employ 

background knowledge in capturing topic information while generating summaries. We 

use our conceptualization algorithm to retrieve semantically relevant and salient 

background knowledge and obtain topic information based on the knowledge of document 
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using the three-layer LDA model (also called Concept-LDA). We can see from Figure 6.13 

that when topic information is incorporated from Concept-LDA into CSN, the accuracy of 

the model CSN+Concept-LDA improves the performance as reflected by the RG scores 

(i.e., RG2 scores are increased by 2.5%) compared to base TopicCSN. This implies that 

our conceptualization algorithm supports our model to improve the performance by 

providing coherent and informative background knowledge to capture topic information in 

the summaries. 

 

Figure 6.13: Analysis of the effect of topic knowledge and the attention mechanism on the improvement 

of our model from TopicCSN to KTOPAS over the CNN/Daily mail and Gigaword Datasets. 

 →indicates an increase in the percentage of the results compared to the base model TopicCSN. 

After this, we improved the topic model with a four-layer architecture (also called 

KPTopicM) which not only captures the direct dependencies of the background knowledge 

or concepts, it also captures the indirect dependencies of words in the topic information 

through the conceptual information so that the model is able to generate more coherent and 

relevant topic information of the source document, whereas Concept-LDA only captures 

the direct dependencies of concepts in the topic information. When we incorporate topic 

information from the TKB (pre-trained KPTopicM) into a CSN, the performance of our 

improved model (CSN+TKB) increases (i.e., RG2 score improves by 3.6% as shown in 

Figure 6.13) which shows that our prior TKB is more efficient in providing coherent and 
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relevant topics in generated summaries since this trained model acknowledges the 

dependencies of the source words in conceptual information as well.  

 

 

Figure 6.14: Learning curve of our model corresponding to average R1, R2 and RL scores over 

CNN/Daily Mail dataset with 40 epochs. 

The next advantage of the model is that we utilize the high-level topic attention level to 

incorporate topKs into CSN+TKB. First, we use two CSNs: the word and topic level CSN 

in our model DTopCSN to capture the information of the attention of source elements and 

topic elements to summary elements respectively from two aspects jointly through a high-

level dual topic attention mechanism while generating summaries. We see from Figure 

6.13 that the performance of the model DTopCSN improves for RG metrics (i.e., RG2 

scores increase to 4.4% compared to the base model TopicCSN). However, this model does 

not acknowledge the attention of topic knowledge over the source elements in the model 

which may lead to unconcise summaries that focus on topics which are irrelevant to the 

source text. Next, our improved model KTOPAS uses an additional knowledge level CSN 

in the model which learns the contextual information of the topic elements (topKs) in terms 

of source elements, learns the attention of the three CSNs jointly and introduces a tri-

attention channel which combines these attentions using the softmax function. It is clear 

from Figure 6.13 that KTOPAS achieves higher RG1, RG2 and RGL results by up to 

4.25%, 6.26% and 6.45% respectively than the base TopicCSN. This implies that using the 
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tri-attention channel enables the model to produce coherent and semantic topics in the 

summaries in terms of the source text. 

Table 6.7:  Summarization examples of source texts for various modes and KTOPAS.  

Source Text Hong Kong signed a breakthrough air services agreement with the United States on Friday 

that will allow U.S. airlines to carry freight to Asian destinations via the territory. 

Reference Hong Kong us sign breakthrough aviation pact 

TopicCSN The United States and Hong Kong have agreed on a deal to buy the territory of the United 

States. 

DTopCSN The United States and Hong Kong have signed a new deal. 

KTOPAS Hong Kong signs new deal over airline transportation. 

Source Text: Canada 's government is investigating a decision by the U.S.-owned Walmart retail chain to 

pull pajamas from its Canadian stores, international trade minister Art Eagleton said 

Wednesday. 

Reference: Walmart being probed by Canada for withdrawing Cuban goods.  

TopicCSN The Canadian government has announced that it is shutting up trade with Walmart. 

DTopCSN The world 's largest shopping retailer Walmart has been closed to the public in Canada. 

KTOPAS Canadian is investigating a decision by Walmart to withdraw trousers from their market. 

Source Text A fairly strong earthquake measuring a magnitude of 6.7 on the Richter scale rocked wide 

areas of central and western Japan Sunday, followed by four aftershocks, the 

meteorological agency said. 

Reference Earthquake shakes wide areas in Japan. 

TopicCSN The international space agency said it is very concerned about ongoing major earthquakes 

in Japan. 

DTopCSN Japan has been hit by a strong earthquake. 

KTOPAS Powerful earthquake shakes a wide area of Japan. 

Source Text Malaysian experts say they may have discovered a new species of <unk>, the world 's 

largest flower which is famous for its putrid smell, according to a report Thursday. 

Reference Malaysia probes possible new species of world's largest flower. 

TopicCSN One of the world 's most famous world, Malaysian, has been found dead in a lake in the 

Swiss city of famous. 

DTopCSN One of the world 's largest flowers has been found in Malaysian. 

KTOPAS Malaysia finds new species one of the worlds 's largest flower. 

The words in blue in the KTOPAS summary are captured from the topic information and are associated with the 

yellow words in the corresponding source document. This topic information is generated from the latent know 

edge of the words in pink in the source document using the proposed topic model KPTopicM. 

We observe that limiting the source document to less than 350 tokens (about 15 sentences) 

help the model to achieve significantly higher ROUGE scores than limiting the document 

to less than 700 tokens. This proves that our model achieves around three times faster 

training computation time than the RNN-based ATS model since the CSN-based model 

allows each state to be performed in parallel. Due to the limited resources in our 

experiments, we have not utilized pre-trained models such as BERT. To take advantage of 

our model, we specify the length of the summary is less than 100 during testing. We also 

see that topics with 10 words helps the model to perform better than topics with more than 
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10 words. We can see from Figure 6.14 that our model converges in 20 epochs on the 

CNN/Daily dataset. Furthermore, after applying reinforcement learning, our full model 

performs better than the baselines and our previously improved model.  

In this chapter, we provided a thorough assessment of the evaluation in our summarization 

model KTOPAS over the datasets. We deduce that our conceptualization algorithm 

improves the performance of the topic results by providing coherent and informative 

background knowledge of the document. Also, the strong association of the background 

knowledge in the document in addition to the association of the background knowledge in 

the topic helps our KPTopicM topic model generate more coherent and consistent topics 

than the base topic models, such as LDA and KB-LDA. We reveal the importance of 

background knowledge in capturing topic information in the generated summaries. We 

train KPTopicM and used this learned data as a prior repository called TKB. It is clear from 

our results that the topic information from TKB assists the model to achieve higher 

accuracy. The experiment results show that utilizing the high- level topic dual attention in 

the model to measure the attention from the word and topic level CSN jointly (CSN +TKB+ 

dual attention) performs better than one attention mechanism such as TopicCSN. This 

demonstrates the effect of the high-level topic attention mechanism in our model. When 

we introduce a tri-attention channel which measures the attention of the word, topic and 

knowledge level CSN jointly in the model to help the model provide coherent, syntactic 

and semantic topic information in the generated summaries. It is proven that the CSN+ 

TKB+ tri-attention model achieves higher ac curacy than the model with dual attention 

(CSN+TKB+ dual attention). We generate a probability distribution to provide the 

information of a target element of the summary at the decoder state of the word and topic 

level CSN. Moreover, employing reinforcement learning based on the mixed training 

objective function shows the improvement in the performance of our model. 

 

We find there is a research gap in utilizing background knowledge in capturing topic 

information while generating summaries. We propose a conceptualization algorithm to 

retrieve semantic and informative background knowledge, and KPTopicM to obtain 

coherent and consistent topic information using this knowledge. We construct a prior topic 

knowledge base (TKB) using the pre-trained KPTopicM model to provide coherent 
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knowledge-powered topic information to our ATS model. We highlighted the strong 

features in CSN-based abstractive summarization compared to RNN which reduces the 

computation cost and improves the performance of the ATS model in terms of accuracy. 

We explored the advantage of proposing an abstractive text summarization model which 

follows the same procedure as humans do and finds the challenges for this by identifying 

topics using background knowledge to generate human-like summaries using topic, 

contextual and semantic information. We introduce a high-level tri-attention mechanism to 

increase the chance of capturing more relevant latent semantic and contextual salient 

information from the source document in the generated summaries and also to produce 

coherent and semantically well-formed summaries. Moreover, we use a final probability 

distribution to predict the target element in the summary and reinforcement learning as a 

mixed training objective function to maximize our model. After utilizing our 

conceptualization algorithm, TKB, three level CSNs, the high-level tri-attention channel, 

probability distribution and reinforcement learning, our full model KTOPAS is able to 

generate coherent, concise and relevant summaries with word diversity and outperforms 

the novel baselines and the preceding improvements of our model. 

6.6. Summary 

In this work, we investigated the challenges of abstractive text summarization in 

identifying the salient and meaningful information from the document while generating a 

summary. We improve the summarization model so that it can handle these challenges 

from an attention-based CSN to a tri-attention based CSN by incorporating topics based on 

the semantic knowledge of the text. In particular, we proposed a topic model to provide 

knowledge-powered topic information to ATS and proposed a CSN-based summarization 

model to incorporate this topic information via the tri attention channel. Our experiment 

results demonstrate its superior performance over various baselines. We also shed light on 

how the model performance is affected by important topic and background knowledge of 

textual data. For future work, it would be interesting to further improve the summarization 

performance by developing a topic model using more structured conceptual information 

and test its robustness. (CSN+Tri Attention+ TKB+ RL) due to the improvement in our 

model. However, the computation cost of our model is three times lower than the base 
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RNN-S2S model and 1.6 times lower than PTGEN model. This is because, we use the CSN 

model for our ATS approach which support the parallel computations while training. 
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Chapter 7.  

 

Conclusions and Further Research Directions 

In this research, we have discussed the need for an automatic text summarization method 

due to the exponential growth in information on the Internet. We also investigated the 

issues and challenges in the existing methods and the strategies to handle them in the text 

summarization research fields. During the research, we identified the research gap of 

utilizing background knowledge in capturing topic information while generating 

summaries. We highlighted the strong features in abstractive summarization compared to 

extractive summarization which results in significant progress and improvement in the 

research on automatic text summarization.  We explore the advantage of constructing an 

abstractive text summarization system which follows the same procedure as humans and 

identifies the challenges from the three aspects of the research in building this system.  The 

three challenges are: i) representation of knowledge to enable the system to understand the 

text, ii) generation of relevant and coherent topic information of the source text using the 

knowledge to be included in the generated summaries, iii) the incorporation of topic 

information into the ATS approach to allow the system to generate meaningful and human-

like summaries. The main goal of this thesis is to enable a system to summarize documents 

by tackling the challenges. We built a complete ATS system based on deep learning to 

summarize the document in a way that resembles human-written summaries which resolves 

the aforementioned three challenges step-by-step using our proposed tasks.  

7.1. Representation of Knowledge 

Machines have a limited understanding of text as they do not have the knowledge that 

humans have. Knowledge base systems such as DBpedia, WordNet and ConceptNet can 

provide knowledge of a term to machines. However, most of the information as knowledge 

from these sources is not fully machine interpretable or informative. Hence, this is 

important to represent knowledge so that machines can read and apprehend the knowledge 

of text. Our main objective in addressing this challenge is to build a knowledge base system 

which can provide fully machine interpretable and meaningful information. In chapter 3, 
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we constructed an ontology-based knowledge-based system (OMRKBS) to handle the 

challenges in representing machine-readable information. To do this, we first extract 

knowledge from various sources and obtain the representation of knowledge as rich 

structured information (RSI). We use NLP techniques to preprocess the information to RSI. 

We then map this RSI into OMRBS by utilizing the natural language independent 

knowledge representation (NLIKR) scheme. NLIKR regards each word as a concept and 

each concept is defined by relating it with other concepts.  So, we first discover each word 

in the RSI as a concept and its relationship in the RSI, and then the RSI is mapped as their 

relationship among concepts in OMRKBS. We use the mapping expression to map the RSI 

information in OMRKBS. Finally, OMRKBS enables the system to read and apprehend 

the knowledge about text by providing important features, and machine readable and 

informative information. 

7.2. Topic Generation 

Systems often have difficulty generating coherent and meaningful topic information 

because they focus on irrelevant information on the source text. Recently, the classic LDA 

topic model based on source words of the document has been a very popular topic model 

which can provide topic information on the source text. However, this information is still 

inconsistent in terms of the source text. This model considers only the words in the source 

text but does not consider background knowledge while identifying the topic information. 

Our main goal to address this issue is to incorporate the background knowledge into the 

statistical topic model so that the machine can fill the gap in the background knowledge in 

topic information. We retrieve the background knowledge from knowledge bases such as 

OMRKBS, ConceptNet and Probase. We introduce the conceptualization algorithm to 

compute the distribution of background knowledge as concepts of the text. In chapter 4, 

we use the statistical LDA model to generate topic information based on background 

knowledge instead of words in the source text. However, this approach does not 

acknowledge the word dependencies in the background knowledge while generating topics 

which may result in inconsistency in the topic information. Therefore, in chapter 5, we 

extend our research and propose the knowledge-powered topic model (KPTopicM) which 

incorporates the distributional information of background knowledge into the statistical 
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topic model to generate coherent and consistent topic information. This model 

acknowledges the word dependency in the background knowledge. We then use the 

pretrained data based on LDA (based on background knowledge) or KPTopicM as a prior 

topic knowledge base (also called TKB) to provide the topic information for our proposed 

ATS model. 

7.3. Future Work 

The research presented in this thesis can provide interesting directions for further research 

as follows. 

• In chapter 4, a machine-readable knowledge base system is presented where we 

define concepts and their relationship. However, we only consider the structural 

information using NLP to enable the machine to read the information. We consider 

only concept-level similarity but have not considered sentence-level similarity or 

information while mapping the information in OMRKBS to find the connection 

among the terms in OMRKBS.    We can utilize sentence-level similarity to capture 

and preserve the semantic information in OMRKBS. 

• We proposed a deep learning based ATS system called a Joint Knowledge-based 

Topic Level Attention for a Convolutional Sequence Text Summarization System 

using Natural Language Representation (KTSNR). However, this model only uses 

word-level embedding and does not utilize sentence-level embedding using 

pretrained models such as BERT, the universal sentence encoder and so on. We can 

utilize pretrained sentence-level embedding to embed sentences of the source and 

summarization outputs. 

• In chapters 4 and 5, we identify topic information based on the background 

knowledge of the source text. Instead of using the background knowledge of the 

source text to determine the topic, we can use the background knowledge of widely 

used pretrained summary models such as XSUM, PTGEN or BERTSUMEXT. 

• Our pretrained KTOPAS model can be used to improve the classification and 

clustering problem in the NLP research area.  
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• Our system summarizes single documents but not multiple documents. In the 

future, we can focus on summarizing multiple documents to address the research 

gap on background knowledge. 

• Our research has high time complexity to train our system. In the future, we will 

focus on improving the time complexity. 

• In this research, we focus on text summarization using background knowledge, 

however, we can move our research direction to text generation using background 

knowledge and topic information. 

• In this research, we only use the CSN advantage for our summarization model. In 

the future, we will try to utilize the advantage of the LTSM-based RNN by 

combining this with the CSN model to measure the inter-attention in the source text 

while generating summaries.  

7.4. Abstractive Text Summarization 

Systems face challenges in generating concise and coherent summaries because of their 

failure to identify coherent and relevant latent topic information. Recently, a deep learning 

based ATS has attracted much research interest because of its significant achievements in 

ATS. However, most approaches do not utilize background knowledge in their models 

which results in the failure to understand the text and identify topic information while 

generating summaries.  Our main objective is to resolve these challenges in incorporating 

topic information based on background knowledge to bridge the gap between the topic 

information and background knowledge of the document in the summary. We use machine 

readable knowledge base systems such as OMRKBS, Probase, ConcpetNet and TKB to 

learn about the text and obtain topic information on the source text. In chapter 4, we 

propose a convolutional-based ATS model with high-level topic attention where we use a 

pretrained LDA topic model based on background knowledge as TKB to retrieve the topic 

information.  However, due to the inconsistency in the topic information in the generated 

summaries, we extend our research in chapter 5. In this chapter, we use the pretrained 

KPTopicM as TKB to retrieve the topic information for the knowledge. We introduce a 

high-level topic attention based on background knowledge to incorporate topic 
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information. A convolutional sequence network (CSN) has some advantage over the 

recurrent sequence network. We use CSN for our proposed ATS model. We call this 

convolutional sequence based ATS with high-level topic attention (KTOPAS) which 

enables the system to provide coherent and meaningful summaries. 
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Appendix A. 

 

Experiment Source Code 

Here, we provide implementation details to build the ‘KTSNR’ system such as platform, 

app or package requirements to develop each model. We also provide some important the 

source code of our system ‘KTSNR’. First, MMExample.java is the source code for the 

mapping algorithm to construct OMRKBS, NLP.py source code preprocesses the content 

to identify the topic information. Conceptualization.java and RunConceptualization.java 

are the source code for conceptualization algorithm.  MultiDomainTask.java source code 

identifies the topic information in the text summarization model. 

 

OMRKBS Development 

Platform: JAVA Platform 

Requirements 

i) Dataset: DBpedia and ConceptNet dataset  

ii) Install protégé to see the ontology structure 

iii) OWL API and mapping parser package to import data in the ontology.  

iv) NLTK tool: import stanford-corenlp-3.9.2.jar library 

vi) Install MySQL: to import dataset into MySQL database and retrieve the 

information from database 

vii) Import Jena lib to use SPRQL query to retrieve the OMRKBS  

 

Topic Modeling and Conceptualization  

Platform: Python and JAVA Platform 

Requirements 

i) Dataset: Gigaword and CNN/DailyMail dataset 

ii) Python package: Nltk and Genism package to preprocess the document from the 

dataset 
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iii) Install Mallet package to convert the dataset into vocabulary and index of the 

document. 

iv) MySQL: use to retrieve the concept from the database which we imported from 

ConceptNet  

v) Import MySQL connector jar file in the project 

vi) Use Genism lib for topic modeling. 

 

Summarization model 

Platform: Python environment and University GPU Cluster 

i) NVIDIA GPU and NCCL 

ii) Dataset: Gigaword and CNN/DailyMail dataset 

iii) Anaconda, CUDA 10.1 and Cundnn above 7 

iv) Numpy and Pytorch package to embed matrix and vector operation, 

reinforcement learning, and preprocessing. 

v) Gensim package to handle the topic information. 

vi) Fairseq Package: to implement the convolutional sequence network and 

attention mechanism. 
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MMExample.java 
 

package org.mm.example; 

 

import org.apache.poi.openxml4j.exceptions.InvalidFormatException; 

import org.apache.poi.ss.usermodel.Workbook; 

import org.apache.poi.ss.usermodel.WorkbookFactory; 

import org.mm.core.OWLAPIOntology; 

import org.mm.core.OWLOntologySource; 

import org.mm.core.TransformationRule; 

import org.mm.core.settings.ReferenceSettings; 

import org.mm.parser.ASTExpression; 

import org.mm.parser.MappingMasterParser; 

import org.mm.parser.ParseException; 

import org.mm.parser.node.ExpressionNode; 

import org.mm.parser.node.MMExpressionNode; 

import org.mm.renderer.owlapi.OWLRenderer; 

import org.mm.rendering.owlapi.OWLRendering; 

import org.mm.ss.SpreadSheetDataSource; 

import org.mm.ss.SpreadsheetLocation; 

import org.semanticweb.owlapi.apibinding.OWLManager; 

import org.semanticweb.owlapi.model.OWLAxiom; 

import org.semanticweb.owlapi.model.OWLOntology; 

import org.semanticweb.owlapi.model.OWLOntologyCreationException; 

import org.semanticweb.owlapi.model.OWLOntologyManager; 

import org.semanticweb.owlapi.model.OWLOntologyStorageException; 

import java.io.ByteArrayInputStream; 

import java.io.File; 

import java.io.IOException; 

import java.util.Optional; 

import java.util.Set; 

 

import static org.mm.ss.SpreadSheetUtil.columnNumber2Name; 

 

public class MMExample 

{ 

  public static void main(String[] args) 

  { 

    try { 

      File owlFile = new File("D:/test.owl"); 

      File spreadsheetFile = new File( 

        

MMExample.class.getClassLoader().getResource("Actor.xlsx").getFile()); 

 

      // Create an OWL ontology using the OWLAPI 

      OWLOntologyManager ontologyManager = 

OWLManager.createOWLOntologyManager(); 

      OWLOntology ontology = 

ontologyManager.loadOntologyFromOntologyDocument(owlFile); 

 

      // Create a workbook using POI 

      Workbook workbook = WorkbookFactory.create(spreadsheetFile); 

 

      // Create an ontology source and a spreadsheet source (which wrap 

an OWLAPI OWL ontology and a POI workbook, respectively) 

      OWLOntologySource ontologySource = new OWLAPIOntology(ontology); 
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      SpreadSheetDataSource spreadsheetSource = new 

SpreadSheetDataSource(workbook); 

 

      // Create a Mapping Master expression. A Mapping Master 

expression is rendered over a range of cells in a sheet. 

      final String sheetName = "Actor"; 

      final Integer startColumnNumber = 1, finishColumnNumber = 1, 

startRowNumber = 1, finishRowNumber = 3000; 

      TransformationRule mmExpression = new 

TransformationRule(sheetName, columnNumber2Name(startColumnNumber), 

        columnNumber2Name(finishColumnNumber), 

startRowNumber.toString(), finishRowNumber.toString(), 

        "Creating actor instances", "Individual: @B* Types: Actor 

Facts: hasPropertyValue 

@C*(mm:prepend(\"activeYearsEndYear@\")),hasPropertyValue 

@D*(mm:prepend(\"activeYearsStartYear@\")), hasPropertyValue @E* 

(mm:prepend(\"alias@\")),hasPropertyValue 

@F*(mm:prepend(\"almaMater@\")), hasPropertyValue 

@H*(mm:prepend(\"associatedAct@\")),hasPropertyValue 

@K*(mm:prepend(\"award@\")),hasPropertyValue 

@L*(mm:prepend(\"birthDate@\")),hasPropertyValue 

@M*(mm:prepend(\"birthName@\")),hasPropertyValue 

@N*(mm:prepend(\"birthPlace@\")), hasPropertyValue 

@P*(mm:prepend(\"birthYear@\")),hasPropertyValue 

@Q*(mm:prepend(\"child@\")),hasPropertyValue 

@S*(mm:prepend(\"citizenship@\")),hasPropertyValue 

@U*(mm:prepend(\"country@\")),hasPropertyValue 

@X*(mm:prepend(\"deathCause@\")),hasPropertyValue 

@Y*(mm:prepend(\"deathDate@\")),hasPropertyValue @Z*(mm:prepend 

(\"deathPlace@\")),hasPropertyValue @AB*(mm:prepend 

(\"deathYear@\")),hasPropertyValue 

@AC*(mm:prepend(\"education@\")),hasPropertyValue 

@AE*(mm:prepend(\"employer@\")),hasPropertyValue @AG* (mm:prepend 

(\"ethnicity@\")),hasPropertyValue 

@AI*(mm:prepend(\"field@\")),hasPropertyValue 

@AK*(mm:prepend(\"genre@\")),hasPropertyValue @AM* 

(mm:prepend(\"height@\")),hasPropertyValue 

@AN*(mm:prepend(\"hometown@\")),hasPropertyValue 

@AP*(mm:prepend(\"imdbId@\")),hasPropertyValue 

@AQ*(mm:prepend(\"individualisedGnd@\")),hasPropertyValue 

@AR*(mm:prepend(\"influenced@\")),hasPropertyValue 

@AT*(mm:prepend(\"influencedBy@\")),hasPropertyValue 

@AV*(mm:prepend(\"instrument@\")),hasPropertyValue 

@AX*(mm:prepend(\"knownFor@\")),hasPropertyValue @AZ*(mm:prepend 

(\"movement@\")),hasPropertyValue 

@BB*(mm:prepend(\"nationality@\")),hasPropertyValue @BD*(mm:prepend 

(\"numberOfFilms@\")),hasPropertyValue 

@BE*(mm:prepend(\"occupation@\")),hasPropertyValue @BG* 

(mm:prepend(\"parent@\")),hasPropertyValue @BI*(mm:prepend 

(\"partner@\")),hasPropertyValue 

@BK*(mm:prepend(\"recordLabel@\")),hasPropertyValue 

@BM*(mm:prepend(\"relation@\")),hasPropertyValue @BO* (mm:prepend 

(\"relative@\")),hasPropertyValue 

@BQ*(mm:prepend(\"religion@\")),hasPropertyValue 

@BS*(mm:prepend(\"residence@\")),hasPropertyValue 

@BU*(mm:prepend(\"restingPlace@\")),hasPropertyValue 

@BX*(mm:prepend(\"soundRecording@\")),hasPropertyValue 
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@BY*(mm:prepend(\"spouse@\")),hasPropertyValue @CA*(mm:prepend 

(\"stateOfOrigin@\"))"); 

         

 

      // Create a Mapping Master parser for the expression, parse it, 

and return an AST node representing the expression 

      MappingMasterParser parser = new MappingMasterParser( 

        new 

ByteArrayInputStream(mmExpression.getRuleString().getBytes()), new 

ReferenceSettings(), -1); 

      MMExpressionNode mmExpressionNode = new 

ExpressionNode((ASTExpression)parser.expression()).getMMExpressionNode(

); 

 

      // Create an OWL renderer and supply it with an ontology and a 

spreadsheet. An OWL renderer renders a set of OWLAPI-based OWL axioms. 

      OWLRenderer owlRenderer = new OWLRenderer(ontologySource, 

spreadsheetSource); 

 

      // Loop through the cells specified by the Mapping Master 

expression 

      for (int columnNumber = startColumnNumber; columnNumber <= 

finishColumnNumber; columnNumber++) { 

        for (int rowNumber = startRowNumber; rowNumber <= 

finishRowNumber; rowNumber++) { 

          // A Mapping Master expression is rendered in the context of 

a location in a spreadsheet 

          spreadsheetSource.setCurrentLocation(new 

SpreadsheetLocation(sheetName, columnNumber, rowNumber)); 

 

          // Render the Mapping Master expression as an OWL rendering 

(which will contain a set of OWLAPI-based OWL axioms) 

          Optional<OWLRendering> owlRendering = 

owlRenderer.render(mmExpressionNode); 

 

          // Display the OWL axioms rendered by the Mapping Master 

expression 

          if (owlRendering.isPresent()) 

            System.out.println("Rendered OWL axioms: " + 

owlRendering.get().getOWLAxioms()); 

          Set<OWLAxiom> renderedOWLAxioms = 

owlRendering.get().getOWLAxioms(); 

          ontologyManager.addAxioms(ontology, renderedOWLAxioms); 

        //   

          

        } 

      } 

  //     storer.storeOntology(ontology, new FileDocumentTarget(new 

File("D:/news.owl")), new FunctionalSyntaxDocumentFormat()); 

        ontologyManager.saveOntology(ontology); 

     

    } catch (OWLOntologyCreationException | RuntimeException | 

ParseException | InvalidFormatException | IOException e) { 

      System.err.println("Exception: " + e.getMessage()); 

      e.printStackTrace(); 

      System.exit(-1); 

    } 
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    catch (OWLOntologyStorageException e) { 

         System.err.println("Exception: " + e.getMessage()); 

        // TODO Auto-generated catch block 

        e.printStackTrace(); 

    } 

  } 

} 
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NLP.python 

from __future__ import print_function 

import re 

import numpy as np 

# Gensim 

import gensim 

import gensim.corpora as corpora 

from gensim.utils import simple_preprocess 

import nltk 

from nltk.tokenize import RegexpTokenizer 

from nltk.stem import WordNetLemmatizer,PorterStemmer 

from nltk.corpus import stopwords 

import re 

import numpy as np 

import pandas as pd 

import gensim 

from gensim.utils import simple_preprocess 

from gensim.parsing.preprocessing import STOPWORDS 

 

np.random.seed(400) 

lemmatizer = WordNetLemmatizer() 

stemmer = PorterStemmer()  

 

processed_docs=[] 

stem_words=[] 

 

np.random.seed(400) 

lemmatizer = WordNetLemmatizer() 

stemmer = PorterStemmer()  

# spacy for lemmatization 

import spacy 

 

# Plotting tools 

import pyLDAvis 

from IPython import get_ipython 

get_ipython().run_line_magic('matplotlib', 'inline') 

 

# Enable logging for gensim - optional 

import logging 

logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', 

level=logging.ERROR) 

 

import warnings 

warnings.filterwarnings("ignore",category=DeprecationWarning) 

 

from nltk.corpus import stopwords 

stop_words = stopwords.words('english') 

stop_words.extend(['from', 'subject', 're', 'edu', 

'use','like','think','tell', 'article','sure', 'said', 'know','call']) 

 

print(stop_words) 

  

with open('D:/topic_model/data/word.vocab', 'r') as myfile: 

     data = myfile.read() 

     #data = list(df.split("\n")) 
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stem_words=[] 

#pprint(data[:1]) 

 

def sent_to_words(sentence): 

         #print(sentence) 

         sentence=str(sentence) 

         sentence = sentence.lower() 

         sentence=sentence.replace('{html}',"")  

         cleanr = re.compile('<.*?>') 

         cleantext = re.sub(cleanr, '', sentence) 

         #print(cleantext) 

         rem_url=re.sub(r'http\S+', '',cleantext) 

         rem_num = re.sub('[0-9]+', '', rem_url) 

         tokenizer = RegexpTokenizer(r'\w+') 

         tokens = tokenizer.tokenize(rem_num)  

          

         return tokens; 

data_words = sent_to_words(data) 

# Build the bigram and trigram models 

bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100) 

# higher threshold fewer phrases. 

 

# Faster way to get a sentence clubbed as a trigram/bigram 

bigram_mod = gensim.models.phrases.Phraser(bigram) 

 

 

# See trigram example 

#print(trigram_mod[bigram_mod[data_words[0]]]) 

 

# Define functions for stopwords, bigrams, trigrams and lemmatization 

def remove_stopwords(texts): 

    return [[word for word in simple_preprocess(str(doc)) if word not 

in stop_words] for doc in texts] 

 

def make_bigrams(texts): 

    return [bigram_mod[doc] for doc in texts] 

 

def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 

'ADV']): 

    """https://spacy.io/api/annotation""" 

    texts_out = [] 

    for sent in texts: 

        doc = nlp(" ".join(sent))  

        for token in doc: 

         if token.pos_ in allowed_postags and len(token.lemma_)>3 and 

token.lemma_ not in gensim.parsing.preprocessing.STOPWORDS and 

token.lemma_ not in texts_out and token.lemma_ not in stop_words : 

          texts_out.append(token.lemma_) 

          #print(token.lemma_) 

        #texts_out.append([token.lemma_ for token in doc if token.pos_ 

in allowed_postags]) 

    return texts_out 

 

# Remove Stop Words 

data_words_nostops = remove_stopwords(data_words) 
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# Form Bigrams 

data_words_bigrams = make_bigrams(data_words_nostops) 

#print(data_words_bigrams) 

 

# Initialize spacy 'en' model, keeping only tagger component (for 

efficiency) 

# python3 -m spacy download en 

nlp = spacy.load('en_core_web_sm') 

 

# Do lemmatization keeping only noun, adj, vb, adv 

data_lemmatized = lemmatization(data_words_bigrams, 

allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']) 

#print(data_lemmatized) 

 

# Create Dictionary 

#id2word = corpora.Dictionary(data_lemmatized) 

 

# Create Corpus 

#texts = data_lemmatized 

i=0 

with open('D:/topic_model/data/inputs.vocab', 'w') as f: 

    for item in data_lemmatized: 

        print(item) 

        #print(i) 

        f.write("%d:%s\n" % (i, item)) 

        i=i+1 

 

myfile.close()     

f.close() 
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Conceptualization.java 

package conceptualization; 

 

import java.io.BufferedReader; 

import java.io.File; 

import java.io.FileInputStream; 

import java.io.IOException; 

import java.io.InputStreamReader; 

import java.sql.Connection; 

import java.sql.SQLException; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.HashSet; 

import java.util.List; 

import java.util.Map; 

import java.util.Set; 

 

import prior.Prior; 

import util.Corpus; 

import util.Probase; 

import util.ReadWriteFile; 

 

public class Conceptualization {  

     

    public static Map<String, Map<String, Double>> conceptualization( 

            String domain) throws IOException, SQLException { 

 

        List<String> vocab = 

Corpus.getVocab("/home/shirin/topic_model/data//" + domain 

                + ".vocab"); 

 

        int[][] docs = 

Corpus.getDocuments("/home/shirin/topic_model/data//" + domain 

                + ".docs"); 

 

        int line = 0; 

 

        StringBuilder sb = new StringBuilder(); 

 

        Connection conn = Probase.getConnectionMySql(); 

 

        Map<String, Map<String, Double>> entity_concept_rep = new 

HashMap<>(); 

 

        for (int[] doc : docs) { 

 

            List<String> entities = new ArrayList<>(); 

 

            for (int word : doc) { 

                entities.add(vocab.get(word)); 

            } 

 

            String conceptual = Prior.getConceptualiztion(entities, 

                    entity_concept_rep, conn); 
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            line++; 

            System.out.println(line + "\t" + conceptual); 

            sb.append(line + "\t" + conceptual + "\n"); 

 

        } 

        conn.close(); 

 

        String filename = "file//Conceptualization_" + domain 

            ".txt"; 

 

        ReadWriteFile.writeFile(filename, sb.toString()); 

 

        return entity_concept_rep; 

 

    } 

public static void conceptualizations(Connection conn) throws 

IOException, SQLException { 

 

        List<String> entities = new ArrayList<>(); 

            File f = new 

File("/home/shirin/topic_model/data/word.vocab"); 

                BufferedReader reader = new BufferedReader(new 

InputStreamReader( 

                                        new FileInputStream(f), "UTF-

8")); 

                    String line = ""; 

                        while ((line = reader.readLine()) != null) { 

                                    entities.add(line); 

                                            }    

                            Prior.getConceptualiztions(entities, conn); 

                                conn.close(); 

                                    reader.close(); 

} 

     

 

public static Set<String> getConceptualizationSet(String domain) 

            throws IOException { 

 

        String filename = "file//Conceptualization_" + domain 

                + "_NaiveBayes_0.8.txt"; 

        File f = new File(filename); 

        BufferedReader reader = new BufferedReader(new 

InputStreamReader( 

                new FileInputStream(f), "UTF-8")); 

        String line = ""; 

 

        Set<String> concept_set = new HashSet<>(); 

 

        while ((line = reader.readLine()) != null) { 

 

            String[] temp = line.trim().split("\t"); 

 

            for (int i = 0; i < temp.length; i++) { 

                if (i != 0 && i < 4) 

                    concept_set.add(temp[i]); 

            } 
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        } 

 

        reader.close(); 

 

        return concept_set; 

    } 

 

} 
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RunConceptualization.java 
 

package test; 

 

import java.sql.Connection; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.List; 

import java.util.Map; 

import java.util.Set; 

 

import net.sf.javaml.core.Dataset; 

import prior.Prior; 

import util.Probase; 

import util.ReadWriteFile; 

import conceptcluster.Kmedoids; 

import conceptualization.Conceptualization; 

 

public class RunConceptualization { 

 

    public static void main(String[] args) throws Exception { 

 

        List<String> entities = new ArrayList<String>(); 

 

        entities.add("bayes"); 

 

        entities.add("svm"); 

 

        Connection conn = Probase.getConnectionMySql(); // connnect 

with mYSQL Probase databse 

 

        Map<String, Map<String, Double>> entity_concept_rep = new 

HashMap<>(); 

 

    String domain = "input"; 

 

        // Mixture 

        Conceptualization.conceptualization(domain); 

 

        Set<String> concept_set = Conceptualization 

                .getConceptualizationSet(domain); 

 

        List<String> concepts = new ArrayList<>(concept_set); 

 

        Dataset data = 

Prior.getConceptEntityRepSparseDataSet(concepts); 

 

        int[] assignment = Kmedoids.RunKmedoidsCosine(data, 15); 

 

        StringBuilder sb = new StringBuilder(); 

 

        for (int i = 0; i < assignment.length; i++) { 

            System.out.println(concepts.get(i) + ":" + assignment[i] + 

"\n"); 

            sb.append(concepts.get(i) + ":" + assignment[i] + "\n"); 

        } 
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        String filename = "file//concept_cluster.txt"; 

 

        ReadWriteFile.writeFile(filename, sb.toString()); 

 

    } 

} 
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MultiDomainTask.java 
 

package test; 

 

import java.io.File; 

import java.io.IOException; 

import java.util.ArrayList; 

import java.util.List; 

import java.util.Map; 

 

import prior.Prior; 

import topic.LDA; 

import topic.PriorLDABurnLag; 

import util.Common; 

import util.Corpus; 

import util.ReadWriteFile; 

 

public class MultiDomainTask { 

 

    public static void main(String[] args) throws Exception { 

 

 

        File[] files = new 

File("/home/shirin/topic_model/data//input//").listFiles(); 

 

        List<String> domain_list = new ArrayList<String>(); 

 

        for (File f : files) { 

            System.out.println(f); 

            String file_path = f.toString(); 

            String domain = file_path.substring(file_path.indexOf("\\") 

+ 1, 

                    file_path.length()); 

 

            domain_list.add(domain); 

        } 

 

        double coherence = 0; 

 

        StringBuilder sb = new StringBuilder(); 

 

        for (String domain : domain_list) { 

                        

            double domain_coherence = runPriorLDA(domain); 

            coherence += domain_coherence; 

            sb.append(domain + "\t" + domain_coherence + "\n"); 

            System.out.println(domain + "\t" + domain_coherence + 

"\n"); 

        } 

 

        sb.append("average : " + coherence / domain_list.size() + 

"\n"); 

 

        String filename = "output//topic//concept.txt"; 

 

        ReadWriteFile.writeFile(filename, sb.toString()); 



211 

 

    } 

 

     

public static double runPriorTopic(String domain) throws Exception { 

 

        List<String> vocab = 

Corpus.getVocab("/home/shirin/topic_model/data/input.vocab"); 

 

        Map<String, Map<String, Double>> vocab_concept_map = Prior 

                .getVocabConceptMap(vocab); 

 

    int K = 15; 

        //stem.out.println(vocab_concept_map); 

 

        String filename = "output//topic//concept_cluster.txt"; 

 

        // ReadWriteFile.writeFile(filename, sb.toString()); 

 

        Map<String, Integer> concept_cluster = ReadWriteFile 

                .getConceptCluster(filename); 

        System.out.println("Concept Cluster"+concept_cluster); 

 

        int V = vocab.size(); 

 

        double[][] beta = Prior.getAsymmetricBeta(K, vocab, 

vocab_concept_map, 

                concept_cluster); 

 

        int[][] docs = 

Corpus.getDocuments("/home/shirin/topic_model/data/input.docs"); 

        System.out.println(docs); 

       

        double[][] alpha = Prior.getAsymmetricAlpha(docs, beta); 

 

       

        int iterations = 2000; 

 

        int top_word_count = 30; 

 

        PriorLDABurnLag plda = new PriorLDABurnLag(docs, V); 

 

        plda.markovChain(K, alpha, beta, iterations); 

 

        double[][] phi = plda.estimatePhi(); 

 

        double[][] phi_copy = Common.makeCopy(phi); 

 

         

        double[][] phi_for_write = Common.makeCopy(phi); 

 

        StringBuilder sb = new StringBuilder(); 

 

        for (double[] phi_t : phi_for_write) { 

 

            for (int i = 0; i < 10; i++) { 
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                int max_index = Common.maxIndex(phi_t); 

 

                sb.append(vocab.get(max_index) + "\t"); 

 

                phi_t[max_index] = 0; 

 

            } 

            sb.append("\n"); 

 

        } 

 

        filename = "file//input.txt"; 

 

        

        double average_coherence = Corpus.average_coherence(docs, 

phi_copy, 

                top_word_count); 

 

         

        sb.append("average coherence\t" + average_coherence); 

 

         ReadWriteFile.writeFile(filename, sb.toString()); 

 

        double[][] theta = plda.estimateTheta(); 

 

        // perplexity 

        double perplexity = Corpus.perplexity(theta, phi, docs); 

        System.out.println("perplexity : " + perplexity); 

 

        return average_coherence; 

 

    } 

     */ 

    public static double runTopicM(String domain) throws IOException { 

 

        List<String> vocab = Corpus.getVocab("data//" + domain + "//" + 

domain 

                + ".vocab"); 

 

        int[][] docs = Corpus.getDocuments("data//" + domain + "//" + 

domain 

                + ".docs"); 

 

        int K = 15; 

        double alpha = 1; 

        double beta = 0.1; 

        int iterations = 2000; 

 

        int top_word_count = 30; 

 

        LDA lda = new LDA(docs, vocab.size()); 

 

        lda.markovChain(K, alpha, beta, iterations); 

 

        double[][] phi = lda.estimatePhi(); 

 

        double[][] phi_copy = Common.makeCopy(phi); 
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        double average_coherence = Corpus.average_coherence(docs, 

phi_copy, 

                top_word_count); 

 

        System.out.println("average coherence : " + average_coherence); 

 

        double[][] theta = lda.estimateTheta(); 

 

        // perplexity 

        double perplexity = Corpus.perplexity(theta, phi, docs); 

        System.out.println("perplexity : " + perplexity); 

 

        return average_coherence; 

    } 

 

} 

 


