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ARTICLE INFO ABSTRACT

Keywords: The known effects of aging on the brain and behavior include impaired cognition, increases in anxiety and
Aging depressive-like behaviors, and reduced locomotor activity. Environmental exposures and interventions also in-
Brain fluence brain functions during aging. We investigated the effects of normal aging under controlled environ-
Behavior mental conditions and in the absence of external interventions on locomotor activity, cognition, anxiety and
SEE;ZZion depressive-like behaviors, immune function and hippocampal gene expression in C57BL/6 mice. Healthy mice at
Cognition 4, 9, and 14 months of age underwent behavioral testing using an established behavioral battery, followed by
Locomotor activity cellular and molecular analysis using flow cytometry, immunohistochemistry, and quantitative PCR. We found
Immune that 14-month-old mice showed significantly reduced baseline locomotion, increased anxiety, and impaired

Gene spatial memory compared to younger counterparts. However, no significant differences were observed for de-
pressive-like behavior in the forced-swim test. Microglia numbers in the dentate gyrus, as well as CD8 + memory
T cells increased towards late middle age. Aging processes exerted a significant effect on the expression of 43
genes of interest in the hippocampus. We conclude that aging is associated with specific changes in locomotor
activity, cognition, anxiety-like behaviors, neuroimmune responses and hippocampal gene expression.

alone is not the only risk factor and other extrinsic (e.g., air pollution,
psychological stress) and intrinsic (e.g., genetics, neurotransmitters)
factors may also play a role in the impairment of brain functions during
normal aging [20-24].

1. Introduction

Aging is a known risk factor for degenerative changes in various
brain regions [1,2], which, in turn, also results in functional loss, such

as progressive decline in learning, memory, and cognitive and motor
functions [3-10]. Studies in the past have shown a significant increase
in anxiety [11-14] and depressive-like [13,15] behaviors, and decline
in spatial learning and memory [11,16-19] and locomotion [12,13] in
aging C57BL/6 mice, particularly 12 month onwards. However, aging

Research has shown that several underlying molecular changes are
responsible for the change in behavior during normal aging. For ex-
ample, during aging microglia and astrocytes become increasingly
dysfunctional and lose neuroprotective properties [25-28]. The dys-
functional glial cells mediate immune reactivity and inflammation by
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expressing proinflammatory cytokines (e.g., TNF-a, IL-18, IL-6, IL-10,
interferons a, B, and y) and chemokines (e.g., Ccl2, Ccl5) in the aging
brain, particularly in the hippocampus, hypothalamus and cerebral
cortex regions [29,30]. The chronic pro-inflammatory environment
may predispose the brain to neurodegenerative disorders, such as Alz-
heimer’s disease (AD) and Parkinson’s disease (PD) [31-33].

Besides creating an inflammatory state, the dysregulated glial
functions and the overexpressed proinflammatory cytokines impair
serotoninergic and glutamatergic neurotransmission systems by acti-
vating the tryptophan- and serotonin-degrading enzyme indoleamine 2,
3-dioxygenase leading to increased consumption of serotonin and
tryptophan [27,29,34-36]. The decline in dopamine and serotonin le-
vels during normal aging has been shown to result in impaired cogni-
tive and motor performances [8,37], and dysregulated synaptic plasti-
city and neurogenesis [38]. This has also been shown to alter
hippocampal synaptic plasticity in aging rodents [39]. Indeed, there are
substantial evidence suggesting that hippocampus, especially the den-
tate gyrus region, play a vital role in the regulation of mood behaviors,
cognition and memory [40-47]. Dysregulated neurotransmission with
reduced synaptic plasticity and impaired neurogenesis during neuronal
aging are associated with various cognitive and affective disorders,
including major depressive disorder (MDD) [8,37,38]. Aging has also
been shown to impair growth hormones and glucose metabolism which
may result in cognitive impairment and white matter lesions [8,38,48].

The expression of various genes in the brain, particularly in the
hippocampus, also changes during aging. For example, the expression
of the BDNF gene, which is important for neuronal survival in the adult
brain and plays a role in the biology of mood disorders is reduced
during old age [49,50]. Similarly, the expression of the gene that en-
codes the transcription factor CREB1 has been shown to decrease in the
hippocampus of aging rats [51]. In contrast, the increased expression of
proinflammatory factors, such as NLRP3 inflammasomes, TNF-a and its
receptors Tnfrsfla and Tnfrsflb, and IL-6 also suggest that there is an
increase in the expression of Nlrp3, Tnf, Tnfrsfla, Tnfrsflb, and II-6
genes in the brain of aging rodents [52-54]. The increase in the number
of glial cells during normal aging is also due to the upregulation of
hippocampal and striatal genes expressed in reactive microglia and
astrocytes [25]. It is, therefore, possible that this downregulation of
protective genes and upregulation of harmful genes during normal
aging may be responsible for aging-related adverse effects on brain
functions.

Environmental exposures and interventions significantly influence
brain functions, and cellular and molecular mechanisms associated with
neuroplasticity during normal aging. Hostile factors, for example psy-
chological stress as mentioned previously, have been shown to generate
metabolic oxidative stress and result in cognitive deficits, including
memory loss, and behavioral impairments during old age [24,55]. On
the contrary, favorable external factors such as physical exercise and
enriched environment have been shown to stimulate a supportive im-
mune response and gene expression in the brain, and thereby help to
maintain brain homeostasis and in improving the brain functions
[56-77].

Hence, to the author’s knowledge, while there are a large number of
studies that have reported the correlation between the age-associated
change in brain functions, underlying molecular changes and external
environmental factors, the current literature lacks to explain the effects
of aging on brain functions in the absence of all external interventions.
During this study, we bred and housed C57BL/6 mice in an ambient
artificial environment devoid of all external interventions. We hy-
pothesized that normal aging in mice would result in impairment in
cognition, anxiety- and depressive-like behaviors, as well as a reduction
in locomotor activity, especially middle age (9 month) onwards. We
analyzed behavior using a standard behavioral battery designed to
minimize the potential effects of various confounding factors and to
ensure more accurate interpretations of behavioral phenotypes. Since
the sex of the animal may regulate various behaviors during aging [11],
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we also performed sex analysis for various behaviors. The dentate gyrus
region of the hippocampus was selected for immunohistochemistry
analysis due to its known role in the regulation of behavior and memory
as mentioned previously. Our results will help to understand the effects
of normal aging on mouse behavior and may find practical application
during the planning of future aging-related behavioral studies.

2. Methods
2.1. Animals

Wild-type (C57BL/6) mice (n = 46; 25 males and 21 females),
parental sub-strain Nhsd (derived from a colony from the National
Institutes of Health), were bred in-house in the laboratory animal ser-
vices facility at the University of Adelaide and maintained under con-
trolled conditions of temperature (22 = 1 °C), humidity (55 %) and a
12—12 -h dark-light cycle. The C57BL/6Nhsd line has inbred between
9-13 generations. Mice were housed in same-sex groups of 4-5 in in-
dividually ventilated cages (IVCs) of dimensions 37 cm X 20.5 cm x
13.5 cm and were given adequate bedding and ad libitum access to
standard laboratory food and water. The ethics approval for performing
experiments on C57BL/6 mice was received from the University of
Adelaide Animal Ethics Committee, and all guidelines as prescribed for
handling the experimental animals were followed during the study.

2.2. Experimental design

Once of the desired age, i.e., 3, 8 and 13 months of age, mice that
showed no signs of injury and sickness were randomly paired (males
and females paired separately) and distributed equally into open-top
cages for four weeks. The latter was provided to mice to allow them to
acclimatize to the environmental conditions outside IVCs. Behavioral
effects were determined at 4, 9, and 14 months of age. Each group had
12-19 (approximately 50 % male and 50 % female) mice per age group
(Table 1). Following behavioral analysis, mice were sacrificed for mo-
lecular analysis and were divided about equally to perform fluores-
cence-activated cell sorting (FACS) and real-time quantitative PCR (RT-
gqPCR), and immunohistochemistry (IHC) (Table 1).

The cages had the following dimensions: 48.5 cm X 15.5cm X 12
cm. Mice received no intervention and were provided with ample
bedding and ad libitum standard laboratory food pellets and water.
Mice were inspected daily but handled only once a week while trans-
ferring them to clean cages on every Friday morning, starting week 1.
Friday was selected for change of cages to allow mice to acclimatize to
the fresh bedding for two days before the Home Cage test was per-
formed after four weeks of treatment. At the same time, mice were also
weighed on a digital weighing scale. Mice were monitored for dom-
inancy throughout the experiments, and those found to be dominant
were segregated to prevent dominance effects on behavior and gene
expression.

2.3. Behavioral analysis

After four weeks of acclimatization in open-top cages, mice under-
took a behavioral battery following established procedures in the

Table 1
Mouse numbers for behavioral and molecular analysis at three age points.
Age Behavioral analysis FACS and RT-gPCR IHC
n (males: females) n n
4M 19 (10:9) 8 7
M 15 (9:6) 7 6
14M 12 (6:6) 6 6

M: month, FACS: fluorescence-activated cell sorting, RT-qPCR: real-time
quantitative PCR, IHC: immunohistochemistry.
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laboratory and as per the below schedule:

Week 1: Home Cage (Monday), Open Field (Tuesday)

Week 2: Elevated-Zero Maze (Monday)

Week 3: Barnes Maze (Monday to Friday)

Week 4: Forced-Swim Test (Monday)

The behavioral testing was done at each time point in order of the
least to most stressful tests. All trials were recorded by a ceiling-
mounted camera and analyzed using Any-maze software version 4.70
from Stoelting, USA. To remove the olfactory traces, F10SC veterinary
disinfectant was used to clean the testing area during and between
behavioral tests.

2.3.1. Locomotor and exploratory behaviour

a Home cage activity: The baseline locomotor activity of mice were
analyzed in home cages with 2-day old bedding under basal non-
stressful conditions according to previously published protocols
[78]. The total distance covered over five minutes was recorded as a
measure of baseline locomotor activity.

b Open Field: Another test used to analyze the locomotor activity of
mice was Open Field where mice were individually tested in a
brightly lit (approximately 680 1x) square arena of 40 cm x 40 cm,
with clear 35 cm high walls, according to previously published
protocols [78-80]. The floor was divided into inner (26.6 cm X 26.6
cm) and outer (13.4 cm X 13.4 cm) zones. Total distance traveled
over 5 min in Open Field was measured as an indication of loco-
motor activity and exploratory behavior.

2.3.2. Anxiety-like behaviour

a Elevated-zero maze: The elevated zero maze (EZM) is a round
maze, 105 cm diameter, with a 5 cm wide platform 40 cm above the
floor and divided into four equal quadrants [81]. Two quadrants
have 15 cm high walls (closed), and two are open in alternate order.
The EZM was placed in a brightly lit (approximately 175 1x) area
during the behavioral testing. The mouse was placed on the open
quadrant and allowed to explore for 5 min according to published
protocols [82]. The time spent by the mouse in closed and open
quadrants, and number of head dips were recorded as a measure of
anxiety in mice. Anxious mice tend to avoid exposure to open
quadrant, spend more time in quadrant with high walls and show a
lower number of head dips [83].

b Open Field: In the Open Field, time spent by mice in the inner and
outer zones over five minutes was recorded as a measure of anxiety-
like behavior. Anxious mice tend to spend less time in the inner zone
[78-80].

2.3.3. Spatial learning and memory

Barnes Maze: The Barnes maze, which is a circular grey platform
91 cm in diameter and 90 cm above the ground, with 20 holes on the
perimeter, one with a hidden escape box and the rest with false boxes,
was used to measure changes in spatial learning and retention of spatial
memory in mice at 4, 9 and 14 months of age. Since the false boxes are
too small to enter and looked the same as the target escape box to the
mouse, they removed visual cues that might be observed through an
open hole. Barnes Maze was placed in a brightly lit (approximately 230
Ix) area and the procedures were carried out according to published
protocols [78,84-87]. The mice were placed in the center of the maze
and were allowed to locate the escape box for three minutes. Three
trials separated by 15 min were performed for each mouse on a day.
Time to find the location of the escape box over four days of training
was recorded. Latency to find the location was used to assess the spatial
learning and visual memory of the mouse in the new environment [88].
On day 5, the position of escape box was changed from the original
training position (in NW quadrant) to the probe trial position (in NE
quadrant — at 90 degrees). Latency to find the location of the escape box
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in the NW quadrant was recorded to assess the retention of spatial
memory of the mouse in the new environment [88]. Latency to find the
location of the escape box in NE quadrant was recorded to assess cog-
nitive flexibility [88]. Since decreased drive to explore is a key factor
underlying many aspects of reduced behavioral performance, including
cognitive capacity during aging [12], we also statistically analyzed the
distances traveled by mice while finding the location of the escape box
on training days and during probe trial.

We also calculated the entry errors, i.e., searches of any holes that
did not contain the hidden escape box beneath it following the protocol
published by Nithianantharajah et al. [89]. This included nose pokes
and head deflections over a hole. Increased number of entry errors were
considered indices of spatial learning and memory impairment.

2.3.4. Depression-like behaviour

a Forced-swim test: Duration of immobility (when mice were floating
with no movement of limbs in any direction) in a 4 L circular con-
tainer, 20 cm in diameter and 45 cm high, filled 2/3rd with water at
23-24 degree Celsius and placed in a brightly lit (approximately 375
1x) area was recorded using a ceiling-mounted camera as a measure
of despair and depressive-like behavior [83,87,90-93]. One trial of
six minutes was conducted per animal to minimize distress asso-
ciated with repeated testing.

2.4. Molecular analysis

After the behavioral testing at each time point, mice were randomly
divided for FACS and RT-qPCR, and IHC analysis in numbers as men-
tioned before. Mice were terminally anesthetized with a lethal in-
traperitoneal dose of pentobarbital (60 mg/kg IP), and blood was col-
lected through cardiac puncture [94]. Animals utilized for IHC were
perfused via transcardiac injection with 10 % neutral buffered formalin,
with the brains rapidly removed and placed in 10 % formalin until the
further procedure. The other animals had cervical lymph nodes and
brains extracted for FACS and gene expression analysis, respectively.
The brains for gene expression analysis were stored in RNAlater (Am-
bion, Life Technologies) at -80 degrees C until further processing.

2.4.1. Peripheral T cell immunophenotyping

2.4.1.1. Fluorescence-activated cell sorting. FACS was applied for the
detection of T cell numbers and characterization of their phenotype in
the cervical lymph nodes of mice. This included CD4* and CD8™" T cell
subpopulations (Naive or Ty, Central memory or Tcy and Effector
memory or Tgy,), their phenotype (CD25* and CD69*) and CD4:CD8 T
cells ratio.

The cervical lymph nodes from each mouse were retrieved one day
after behavioral testing ended and collected in Roswell Park Memorial
Institute (RPMI+ ) medium. Lymph nodes were passed through a 0.1p
sieve (BD) using RPMI + and centrifuged to separate cells from tissue
debris. Retrieved lymph node cells were counted on a hemocytometer
and resuspended in PBS to a final concentration of 2 x 10° cells/ml.
250 pL of the cell solution was then washed once with FACS buffer (PBS
with 1 % heat-inactivated bovine serum albumin) and blocked with 10
uL 0.5 mg/mL Fc block. Eight color staining panel was used to char-
acterize the CD4 " and CD8™ T cells. Unstained cells were used to gate
out autofluorescent cells while single stained and fluorescence minus
one (FMO) stained cells were used to control for spectral overlap or
distinguishing between negative and positive cells respectively (non-
specific bindings). Cells were incubated for 30 min at room temperature
with the respective mAbs (as shown in Table 2) after which they were
washed twice before resuspension in 300 puL FACS buffer. Cells were
analyzed using the Gallios flow cytometer, and 100,000 events were
acquired. The data obtained were analyzed using FCS Express software
(version 4). Forward side scatter gating on acquired data distinguished
singlet from doublet cell populations from which CD45" cells were
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Table 2
Monoclonal antibodies used for FACS.
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mAb Clone Fluorochromes BD Biosciences catalog no. Conc. (mg/mL) Antigen Distribution/Function

CD3 145-2C11 FITC 553061 1.0 x 10° T-cell identification marker

CD45 30-F11 V500 561487 2.0 x 10° Nucleated hematopoietic cell lineage marker; common leukocyte antigen

CD4 GK1.5 APC-H7 560181 2.0 x 10* T helper cell co-receptor for MHC Il-restricted antigen induced T-cell activation
CD8 53-6.7 PerCP-Cy5.5 551162 2.0 x 10* Cytotoxic T-cell Co-receptor for MHC I restricted antigen induced T-cell activation
CD25 3C7 PE 561065 2.0 x 10° Early T-cell activation marker

CD44 M7 PerCy7 560569 5.0 x 10* Activation marker for effector or memory T-cells; attachment and rolling

CD62L MEL-14 V450 560507 5.0 x 10° T-cell homing receptor; transmigration

CD69 H1.2F3 APC 560689 2.0 x 10° Early T-cell activation marker

gated. Percentages of CD3* CD4* or CD3* CD8" positively gated cells
were used to calculate total cell numbers in combination with cell
counts. Gating on CD25%, CD44", CD62L*" and CD69* positive cell
populations enabled further phenotyping of T cells.

2.4.2. Glial cell inmunophenotyping

2.4.2.1. Immunohistochemistry. Brains preserved in formalin were cut
into five 3 mm coronal slices and following overnight treatment with
increasing concentrations and durations of ethanol, xylene and paraffin
baths, the sliced brain samples were embedded in paraffin wax. The
hippocampus was then serial sectioned, with six sections 150 pm apart.
Each section was 5 um thick.

For IHC, on day 1, sections were dewaxed and dehydrated in xylene
and ethanol, and endogenous peroxidase activity was blocked by in-
cubation with 0.5 % hydrogen peroxide in methanol for 30 min.
Antigen retrieval was performed by heating at close to boiling point for
10 min. in citrate buffer, and slides were then allowed to cool below 40
°C before further processing. The appropriate primary antibody IBA1
for microglia, 1: 10,000; GFAP for astrocytes 1: 40,000; Abcam was
applied to the slides which were then left to incubate overnight for
allowing primary antibodies to bind to the target antigen. On day 2, the
IgG biotinylated antibody of rabbit same as primary antibodies was
added and allowed to react with primary antibodies for 30 min. The
formed immune complex was then further amplified by incubating
slides with a biotin-binding protein, streptavidin-peroxidase conjugate,
for 60 min. The immune complex was then visualized with precipitation
of DAB in the presence of hydrogen peroxide. Slides were washed to
remove excess DAB and lightly counterstained with hematoxylin, de-
hydrated and mounted with DePeX.

All slides were digitally scanned (Nanozoomer, Hamamatsu City,
Japan) and then viewed with the associated software (NDP view ver-
sion 1.2.2.5). Immunopositive cells in the dentate gyrus region of the
hippocampus were counted manually for statistical analysis. Freehand
boxes were drawn to cover the entire dentate gyrus regions in the right
hemisphere of hippocampus of the six stained sections followed by
counting of the cells within the boxes. For each section, the total
number of cells was then divided with the area of the box (in mm?) to
get the number of cells/mm?. The average of six sections represented
the value for one mouse and was utilized during statistical analysis.

2.4.3. Gene expression analysis

2.4.3.1. Real-time quantitative PCR. Quantification of the levels of
mRNA of 43 genes of interest (GOI) across various cytokines,
monoamines, neurotrophins and other genes along with 4
endogeneous reference genes (Table 3) was performed using TagMan
assays (Life Technologies, ThermoFisher, Australia) in the high-
throughput qPCR system BioMarkHD™(Fluidigm Inc., USA). Briefly,
total RNA was extracted from HC tissues stored in RNA later (Ambion,
Life Technologies) using PureLink RNA mini extraction kit (Ambion)
following the manufacturer’s instructions. Total RNA was then
subjected to reverse transcription using the SuperScript III first-strand
cDNA synthesis system (Invitrogen, Australia) according to the
manufacturer’s instructions. The samples were then prepared for

High-throughput qPCR in BioMark HD™(Fluidigm Inc., USA) using a
single 14-cycle Pre-amplification consisting of 20 ng of each cDNA
samples mixed with pooled TagMan assays (47 assays listed in
supplementary material 1) and PreAmp Master Mix (Fluidigm Inc.,
USA).

RT-qPCR was performed for each TagMan assay for each sample in a
96.96 dynamic array nanofluidic chip (Fluidigm Inc., USA). A total of
47 x 48 (Assays x Samples in duplicates) PCR reactions were per-
formed. Cycle threshold (Ct) values were generated by Fluidigm Real-
time PCR analysis software (Fluidigm Inc., USA).

2.5. Statistical analysis

Statistical analyses of mouse body weights and behavioral data were
conducted using GraphPad Prism version 7.02 (GraphPad Software
Inc.). All data outliers were removed using the ROUT method, and
normality of data distribution was determined by visual inspection of
histograms. The two-way interaction between age and sex was de-
termined using two-way ANOVA. If the two-way interaction was non-
significant, a one-way ANOVA was conducted to determine the effects
of age on the dependent variable. If the two-way interaction was sig-
nificant, the data were entered in SPSS statistics version 25.0 (IBM
Corporation) and a one-way ANCOVA was conducted to control for sex
differences while determining the effects of age on the dependent
variable. Similarly, the behavioral data obtained during the four days of
training in the Barnes maze were statistically analyzed using three-way
ANOVA in SPSS statistics, followed by a two-way repeated-measures
ANOVA or two-way ANCOVA. The analysis of sex differences for mo-
lecular data was not possible due to the relatively smaller sample size
(n) compared to behavioral data. This also limits us from performing
the correlation analysis between behavioral and molecular data. Hence,
the analyses of data from immunohistochemistry and flow cytometry
were carried out using one-way ANOVA in GraphPad Prism to de-
termine the effects of age on the dependent variable. Post hoc analysis
was conducted using Tukey’s multiple comparison tests. Results are
presented as F-test, p values and mean *+ SEM for ANOVAs, and F-test,
p values and covariate-adjusted means (estimated marginal means,
EMM) = 2 SE for ANCOVAs. Differences were considered statistically
significant when p < .05.

Differentially expressed genes were identified by analysis of Ct data
measurements taken from the BioMarkHD arrays in R. Briefly, Input
expression values (Ct) of house-keeping genes (B2m, Gapdh, Gusb, and
Hprt) were compared across all samples to identify outlier samples.
Delta Ct values were normalized against the geometric mean of all
sample expression values. Linear Mixed-Effects Models were then used
to compare normalized expression between the groups and adjusted for
multiple comparisons using the R package multcomp [95]. Genes were
identified as differentially expressed when the adjusted p values
were < 0.05 with Z scores indicating the direction of expression
change. David (functional annotation clustering tool) and GeneMANIA
(Multiple Association Network Integration Algorithm) prediction ser-
vers were used to identify the molecular pathways modulated by the
differentially expressed genes at false discovery rate (FDR) < 0.05
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Table 3
Genes of Interest quantified using high-throughput qPCR.
Gene Gene Name TaqMan Assay ID
Symbol
Monoamine
Slc6a3 solute carrier family 6 (neurotransmitter Mm00438388_m1
transporter; dopamine); member 3
Slc6a4 solute carrier family 6 (neurotransmitter Mm00439391_m1
transporter; serotonin); member 4
Htrla 5-hydroxytryptamine (serotonin) receptor 1A~ MmO00434106_s1
Htrlb 5-hydroxytryptamine (serotonin) receptor 1B MmO00439377 s1
Htr2a 5-hydroxytryptamine (serotonin) receptor 2A MmO00555764_m1
Grin2a glutamate receptor; ionotropic; NMDA2A MmO00433802_m1

(epsilon 1)

Grial glutamate receptor; ionotropic; AMPA1
(alpha 1)

Gria2 glutamate receptor; ionotropic; AMPA2
(alpha 2)

Tph2 tryptophan hydroxylase 2

Growth factors

Bdnf brain-derived neurotrophic factor

Ntrk1 neurotrophic tyrosine kinase; receptor; type 1
Crebl cAMP responsive element binding protein 1
Ngf nerve growth factor

Igf1 insulin-like growth factor 1

Immune factors and receptors

I1r1 interleukin 1 receptor; type I

I1b interleukin 1 beta

Il6 interleukin 6

110 interleukin 10

I12a interleukin 12a

Tnf tumor necrosis factor

Tnfrsfla tumor necrosis factor receptor superfamily;
member 1la

Tnfrsf1b tumor necrosis factor receptor superfamily;
member 1b

Ifng interferon-gamma

Foxp3 forkhead box P3

Smad2 SMAD family member 2

Smad3 SMAD family member 3

Foxo3 forkhead box 03

Nirp3 NLR family; pyrin domain containing 3

Aif1 allograft inflammatory factor 1

Gfap glial fibrillary acidic protein

HPA axis/Stress response

Nr3cl nuclear receptor subfamily 3; group C;
member 1

Crhrl corticotropin-releasing hormone receptor 1

Crh corticotropin-releasing hormone

Mitochondrial function/ROS and Oxidation

Sirt1 silent mating type information regulation 2
homolog 1

Cs cytrate synthase

Ugqcrcl ubiquinol-cytochrome c reductase core
protein 1

Actb beta-actin

Sod1 superoxide dismutase 1

Sod2 superoxide dismutase 2

Gpx1 glutathione peroxidase

Cat catalase

Prkaal AMPK-activated protein kinase 1

Prkaa2 AMPK-activated protein kinase 2

Endogenous references

Gapdh glyceraldehyde-3-phosphate dehydrogenase

Hprt hypoxanthine-guanine phosphoribosyl
transferase

Gusb glucuronidase; beta

B2m Beta-2-Microglobulin

MmO00433753_m1
MmO00442822_m1

MmO00557715_m1

Mm04230607 s1

Mm01219406_m1
MmO00501607_m1
MmO00443039_m1
Mm00439560_m1

MmO00434237_m1
Mm00434228_m1
MmO00446190_m1
Mm01288386_m1
Mm00434169_m1
MmO00443258_m1
Mm00441883_g1

Mm00441889_m1

Mm01168134_m1
MmO00475162_m1
Mm00487530_m1
Mm01170760_m1
Mm01185722_m1
Mm00840904_m1
MmO00479862_g1
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Fig. 1. Body weights of male and female C57BL/6 mice at 4, 9, and 14 months
of age. Two-way ANOVA, n = 6-10 per group. All data represented as
mean * SEM. ** p < 0.01, *** p < 0.001, **** p < 0.0001.

[96,97].

3. Results
3.1. Body weights

Body weights at 4, 9 and 14 months of age were analyzed using a
two-way ANOVA. The interaction between age and sex was found to be
non-significant (F (5, 40y = 2.346, p = .109), but the simple main effects
of both age and sex were significant (F (2, 40y = 33.73, p < .0001 and F
@, 40) = 82.95, p < .0001). Simple comparisons revealed that the mean
body weights of 4-month-old male and female mice were significantly
lower than 9 and 14-month-old male (24.0 + .55 vs. 30.1 * .72 and
28.8 + 1.08, p < .0001) and female (20.0 = .39 vs. 23.3 + .42, p < .01
and 24.2 = .95, p < .001) cohorts (Fig. 1).

Further analysis was carried out in SPSS statistics to control for sex
differences. A one-way ANCOVA with sex as a covariate revealed the
main effect of age on body weights as still significant (F (o, 40y = 32.87,
p < .001; Fig. 2). The body weights of 4-month-old mice were sig-
nificantly less than those of 9- and 14-month-old mice (22.9 * 0.5 vs.
27.4 = 0.8 and 27.3 *+ 1.1, p < .001). No significant differences were
observed between the body weights of 9- and 14-month-old mice.

3.2. Behaviour

3.2.1. Locomotor activity

Baseline locomotor activity was measured in the home cage (Fig. 3).
Two-way ANOVA revealed a non-significant two-way interaction be-
tween age and sex for baseline locomotion (F (5, 40y = .11, p = .89).
Similarly, the main effect of sex was also non-significant (F 1, 40y = .98,
p = .327), but the main effect of age was significant (F (5, 40y = 3.76, p
= .032). Hence, further analysis was carried out using a one-way

30.00

20.00

10.00

EMM: Body weight (g)

.00

4M oM 14M

Fig. 2. Body weights of C57BL/6 mice at 4, 9, and 14 months of age. One-way
ANCOVA with sex used as a covariate at the following value: 1.48, n = 12-19
per group. All data represented as estimated marginal means (EMM) + 2 SE.
*% p < 001.
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Fig. 3. Baseline locomotor activity of C57BL/6 mice in the Home Cage at 4, 9,
and 14 months of age. All data represented as mean + SEM, n = 12-19 per
group. * p < .05.

ANOVA which showed that aging significantly affects baseline loco-
motion in the Home Cage (F (o, 43y = 3.84, p = 0.029). On post-hoc
analysis, significant differences were noted between the 4 month and
14-month age groups (11.9 = 0.7 vs. 8.8 = 0.9).

We also measured locomotion under the more stressful environment
of Open Field. Two-way ANOVA found a non-significant interaction
between age and sex (F (2, 400 = .13, p = .876), as well as non-sig-
nificant main effects of both age (F (2, 40) = .12, p = .871) and sex (F (3,
40) = 1.18, p = .283).

3.2.2. Anxiety-like behavior

Time spent in the open quadrant of the EZM is a measure of anxiety-
like behavior, with less anxious mice tending to spend more time in the
open quadrant. The interaction between age and sex was non-sig-
nificant in two-way ANOVA (F o, 33 = 2.00, p = .152). The main
effect of sex was also non-significant (F (1, 33y = .04, p = .844), but the
main effect of age was significant (F (3, 33y = 4.07, p = .026). Hence,
further analysis was carried out using a one-way ANOVA which showed
a significant effect of age on time spent in the open arm of EZM between
the three age groups (F (2, 36y = 4.13, p = 0.024; Fig. 4A). Post-hoc
analysis using Tukey’s multiple comparison test showed that 4-month-
old mice spent significantly more time in the open quadrant of EZM
than 14-month-old mice (45.8 + 3.7 vs. 27.7 = 5.9, p = 0.021).

The number of head dips along the open quadrant in EZM is a
measure of anxiety-like behavior, with less anxious mice show more
number of head dips. Two-way ANOVA found a non-significant inter-
action between age and sex (F (3, 39) = 2.44, p = .1). The main effect of
sex was also non-significant (F 4, 309y = 2.0, p = .167) but the main
effect of age was significant (F (o, 39y = 5.24, p = .001). Further ana-
lysis was carried out using a one-way ANOVA which showed a sig-
nificant effect of age on head dips in the EZM between the three age
groups (F 2, 42y = 4.97, p = 0.012; Fig. 4B). Post hoc analysis revealed
that 4-month-old mice showed a significantly higher number of head
dips than 14-month-old mice (26.2 = 1.5 vs. 15.9 = 3.4, p = 0.009).
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Fig. 5. Depressive-like behavior. Immobility time in FST. All data represented
as mean * SEM, n = 12-19 per group.

Time spent in the inner zone of the Open Field is a measure of an-
xiety-like behavior, with less anxious mice tend to spend more time in
the inner zone. Similar to EZM, two-way ANOVA found a non-sig-
nificant interaction between age and sex (F (5, 36y = 1.05, p = .36). The
main effect of sex was also non-significant (F ;, 36y = 1.08, p = .306),
however, the main effect of age was again found to be significant (F (o,
36) = 9.70, p < .001). Hence, further analysis was carried out using a
one-way ANOVA which showed a significant effect of age on time spent
in the inner zone of the Open Field between the three age groups (F (5,
390 = 6.88, p = 0.003; Fig. 4C). Post-hoc analysis using Tukey’s mul-
tiple comparison test showed that 9-month-old mice spent significantly
more time in the inner zone than 4-month-old mice (118.3 + 9.3 vs.
70.8 = 8.8, p = 0.002).

3.2.3. Depressive-like behaviour

Mice were tested for depressive-like behaviour in the forced-swim
test. Two-way ANOVA found non-significant interaction between age
and sex for immobility time (F (o, 39y = .24, p = .791), as well as non-
significant main effects of age (F (o, 30y = 1.48, p = .24) and sex (F (4,
39 = 1.01, p = .322). One-way ANOVA confirmed that age has no
significant effect on the immobility time in FST (F (o, 41y = 1.06, p =
.355; Fig. 5).

3.2.4. Spatial learning, retention of spatial memory and cognitive flexibility

Spatial learning in separate cohorts of mice of different ages was
tested by measuring the latency to find the escape box over four days of
training in Barnes maze. Three-way ANOVA in SPSS statistics found a
non-significant interaction between age and sex for latency to escape
over four days of training (F (3, 160y = 2.83, p = .062). The main effect
of sex was also non-significant (F (1, 160y = 2.47, p = .118) but the main
effect of age was significant (F (o, 160) = 16.54, p < .001). Hence,
further analysis was carried out using a two-way repeated-measures
ANOVA which confirmed the significant effect of age on spatial
learning duirng four days of training in Barnes maze (F (3, 43) = 6.30, p
= .004; Fig. 6A). Post hoc analysis revealed that 14-month-old mice
spent a significantly longer time to find the escape box than 4-month-
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Fig. 4. Anxiety-like behavior. (A) EZM: time in open arms, (B) EZM: number of head dips and (C) Open Field: Time in the inner zone. All data represented as

mean *+ SEM, n = 12-19 per group. * p < 0.05, ** p < 0.01.
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Fig. 6. Spatial learning: (A) Latency to find the escape box, (B) Distance traveled while locating the escape box, and (C) Entry errors over 4 days of training in Barnes
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old mice on days 1 (97.0 =122 vs. 46.8 =5.7, p <.001), 2
(58.6 £15.4 vs. 28.6 £59, p = .046) and 4 (46.6 = 12.7 vs.
16.4 + 4.2, p = .044) of traning (Fig. 6A). Likewise, 14-month-old
mice showed higher latency to escape than 9-month-old mice on day 3
(52.6 = 14.7 vs. 21.3 £ 7.1, p = .048) of traning. Also, although not
significant at p < .05, a trend at p < .1 of 14-month-old mice showing
significantly higher latency to escape than 4-month-old mice on days 3
(p = .062), and 9-month-old mice on days 4 (p = .056) of training was
also observed.

We also analyzed the distance of the path to the escape box over
four days of training in the Barnes maze. The three-way ANOVA
showed a non-significant interaction between age and sex (F (3, 160) =
.57, p = .565), as well as non-significant main effects of both age (F (o,
160) = 2.26, p = .108) and sex (F (1, 160y = 1.17, p = .282) for distance
traveled over four days of training. A two-way repeated-measures
ANOVA confirmed the non-significant effect of age on distance traveled
during four days of training in Barnes maze (F (3, 43y = 1.23, p = .303;
Fig. 6B).

Spatial learning in separate cohorts of mice of different ages was
also tested by measuring the number of entry errors in finding the es-
cape box over four days of training in Barnes maze. Three-way ANOVA
found a significant two-way interaction between age and sex (F (2,160,
= 5.32, p = .006) and main effect of age on entry errors (F (3160) =
11.14, p < 0.001), but the main effect of sex was non-significant (F
a,160) = 3.52, p = .062) over four days of training. Further analysis
using a two-way repeated-measures ANOVA showed that age sig-
nificantly affected the entry errors during four days of training in
Barnes maze (F (5, 43y = 4.62, p = .015; Fig. 6C). During post hoc
analysis, we observed that 9-month-old mice showed significantly less
entry errors than 4-month-old mice on day 3 (8.1 = 2.0 vs. 25.7 = 5.1,
p = .014) and 14-month-old mice on days 3 (8.1 = 2.0 vs. 24.7 * 4.6,
p = .046) and 4 (5.6 = 2.1 vs. 25.1 + 6.2, p = .015) of training in
Barnes maze (Fig. 5B).

After 4 days of training on Barnes maze, mice were tested for re-
tention of spatial memory and cognitive flexibility on day 5. Two-way
ANOVA found non-significant interaction between age and sex for la-
tency to escape in the original location (NW quadrant) of the escape box
(F (2,400 = .61, p = .551). The main effect of sex was also non-sig-
nificant (F (1 40y = 2.84, p = 0.099), but the main effect of age was
significant (F (2,409) = 7.59, p = 0.002). One-way ANOVA found sig-
nificant differences in latency to escape due to age effects (F (5,36) =
27.3, p < .0001; Fig. 7A). Post-hoc analysis using a Tukey’s multiple
comparison test showed that 14-month-old mice spent significantly
higher time than both 4- and 9-month-old mice to find the location of
the escape box in the NW quadrant of Barnes maze (110.5 = 21.6 vs.
3.7 £ 0.7 and 4.8 = 1.1, p < .0001).

Furthermore, a two-way ANOVA found non-significant interaction
between age and sex for latency to escape in the new location (NE
quadrant) of escape box (F (2,409) = 2.99, p = .062). The main effects of
sex and age were also non-significant (F (; 49y = 0.96, p = 0.333 and F
2400 = 1.56, p = 0.223). Since the interaction was significant at
p < .1, we conducted one-way ANOVA to analyze if age has any effect

on cognitive flexibility and observed significant differences ((F (2,40) =
3.83, p = .030; Fig. 7B). Post hoc analysis revealed that 14-month-old
mice took significantly longer to find the NE location of escape box than
9-month-old mice (77.7 + 20.1 vs. 30.8 = 6.1, p = .028).

For the analysis of distance traveled during probe trial, we con-
ducted a two-way ANOVA that showed non-significant interecation
between age and sex for distance traveled to find both the original (NW
quadrant) and new (NE quadrant) locations of the escape box (F (2 40) =
1.89,p = .164 and F (5 409) = .82, p = .447). Similarly, the main effect
of age and sex were also non-significant for distance traveled during the
probe trial of Barnes maze (p > .05), thereby suggesting non-significant
differences in the mobility of mice of the three age groups during
Barnes maze.

Mice were also tested for entry errors in the probe trial on Barnes
maze. Two-way ANOVA found a non-significant two-way interaction
between age and sex (F (3 40y = 2.33, p = .111). The main effects of age
was also non-significant (F (2 49y = 2.15, p = .130), but the main effect
of sex was significant (F 140y = 4.64, p = .037). However, simple
comparisons revealed no significant differences between males and
between females of the three age groups (p > .1; Fig. 8A). A one-way
ANCOVA after controlling for sex differences also showed non-sig-
nificant effects of age on entry errors in the probe trial of Barnes maze
(F 241y = 1.56, p = .223; Fig. 8B).

3.3. Molecular analyses

3.3.1. Alteration in the number of microglia and astrocytes within the
dentate gyrus in C57BL/6 mice with aging

The microglial response with age was measured by counting the
IBA1" cells in the dentate gyrus and statistically analyzing the data
using a one-way ANOVA. We observed a significant main effect of age
(F 216y = 6.98, p = .007, Fig. 9), with decrease in the number of
immunopositive microglia from 4 month to 9 month (71.6 = 4.9 vs
51.7 = 5.3, p = 0.036) followed by an increase from 9 month to 14
month of age (51.7 = 5.3 vs 78.7 £ 5.3, p = 0.007).

We also measured astrocytic response by counting the GFAP* cells
in the dentate gyrus and statistically analyzing using a one-way ANOVA
and observed non-significant effects of age (F 215y = 2.27, p = .138,
Fig. 10).

3.3.2. Immunophenotyping of T cells in the brain of C57BL/6 mice at 4, 9
and 14 months of age

There was no statistically significant effect of age on the proportion
of CD4" and CD8™ T cells (F (532 = .641, p = .533, Fig. 11A). The
proportion of the CD4™ T cell subsets, i.e., Ty, Tow and Tgy cells were
also not significantly different between the three age groups (F 4 49y =
.171, p = .952; Fig. 11B). However, the proportion of CD8" T cell
subsets were found to be significant among the three age groups (F 4 51)
= 4989, p = .002; Fig. 11C). Post hoc analysis revealed that the
proportion of the CD8* Ty cells was significantly higher in the 9-
month-old mice in comparison to 14-month-old mice (15.2 + 1.2 vs
10.2 +1.3, p = 0.018). Conversely, 14-month-old mice showed
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Fig. 7. Spatial memory. Latency to escape in probe trial in the (A) NW location and (B) NE location of Barnes maze on day 5. All data represented as mean = SEM, n

= 12-19 per group. * p < 0.05, **** p < 0.0001.

significantly higher proportion of CD8* Tgy cells than both 4-
(143+14 vs 96+1.2, p = 0.040) and 9-month-old mice
(14.3 £ 1.4 vs 8.2 = 1.2, p = 0.006). There was no significant differ-
ence in the proportion of CD8 ™ Tgy; cells between the three age groups.
Similarly, the proportion of CD4 and CD8 early activation CD25 marker
showed non-significant difference between the three age groups (F (2,14)
=.297,p = .748 and F (5 14) = .426, p = .661). The mean = SEM for T
cell subset counts in absolute numbers for the three age groups are
shown in Table 4.

3.3.3. Changes in the expression of 43 GOI in the hippocampus of C57BL/6
mice with aging

Real-time high-throughput qPCR was used to analyze changes in the
hippocampal expression of 43 target genes (Table 2) in response to
aging.

Differential expression analysis of the 43 genes between the three
age groups (i.e., 4, 9 and 14 months) identified 13, 21 and 21 GOI
differentially regulated in the hippocampus of C57BL/6 mice between 4
and 9, 4 and 14, and 9 and 14-month groups respectively in response to
only aging effects (see Table 5). We observed 2 GOI upregulated and 11
GOI downregulated in the 9-month-old mice when compared to 4-
month-old mice. On comparing 4-month-old mice with 14-month-old
mice, we observed 4 upregulated GOI, and 17 downregulated GOI in
the 14-month group. Similarly, the 14-month group showed 6 upre-
gulated GOI, and 15 downregulated GOI when compared to the 9-
month group.

4. Discussion

The study was conducted to understand the effects of normal aging
on behavior and the underlying molecular biology in the absence of all
external interventions. The effects of normal aging on behavior and
underlying molecular biology were determined at 4 (early), 9 (middle),
and 14 (late-middle) months of age in C57BL/6 mice. We observed that
there was a significant reduction in the baseline locomotion at 14
months when compared to 4 months in the home cage, but not within
the more stressful environment of an open field. Similarly, a significant
increase in anxiety-like behavior and a decrease in spatial memory was

observed in 14-month-old mice compared to 4-month-old mice, which
suggests that age is a controlling factor for the onset of anxiety and
memory impairment. Interestingly, we observed that depressive-like
behavior is independent of age. Normal aging also seems to affect
neuroimmune mechanisms as microglia numbers in the dentate gyrus,
as well as CD8* memory T cells increased in 14-month-old mice.
However, no significant change in astroglia numbers was observed
between the three age groups. Also, we observed that age significantly
affects the expression of hippocampal GOIs. To make the discussion
more structured, we will discuss these effects pointwise below.

4.1. Bodyweight increases significantly until middle age

The mean body weights of 9- and 14-month-old mice were sig-
nificantly more than 4-month-old mice, both in males and females. No
significant differences were observed between the mean body weights
of 9-month-old and 14-month-old mice. This is suggestive of the rapid
growth of mice until middle age which then slows down. We provided a
dietary intake without malnutrition. Mice were not provided with any
special diet, such as a high-fat diet as reported in other studies [98,99].
A highly significant increase in body weight has been reported in
C57BL/6 mice from 2 to 18 months of age [18]. Evidence suggests that
after an initial fast increase, growth continues but at a slower pace until
weight peaks at 15-20 months in C57BL/6 mice [12]. During our ex-
periments the bodyweight of mice peaked at nine months and then
remained steady until the end of our experiments, i.e., at fourteen
months. These variations in reported results for change in body weight
across studies likely reflect the fact that external environmental and
genetic factors also modulate growth during normal aging.

4.2. Locomotor activity reduces significantly at late-middle age under basal
conditions but not in a stressful environment

Our results also showed that during normal aging, there is a de-
crease in locomotor activity under basal conditions in home cage, and
the difference becomes significant by late-middle age. Conversely,
under challenging conditions of the Open Field, no difference in loco-
motion was observed between the three age groups. Another study has
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Fig. 8. Entry errors during probe trial in the Barnes maze. (A) Two-way ANOVA, n = 6-10 per group, all data represented as mean + SEM, and (B) one-way
ANCOVA with sex used as covariate at the following value: 1.4565, all data represented as estimated marginal means (EMM) *+ 2 SE. n = 12-19 per group.
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shown no loss of locomotion in the Open field until eight months of age,
but locomotion significantly reduced at 15 months, and this became
highly significant at 28 months of age in C57BL/6 mice [12]. Similarly,
no significant loss in locomotion was reported in 2- to 7-month-old
C57BL/6 mice when tested in the open field for 5 min [13]. However, 8-
to 12-month-old mice traveled significantly less distance. These results
are contrary to what we report here. It is important to note that the
Open Field test was conducted under an artificial light of approximately
680 Ix, hence, the test was more challenging for mice than when con-
ducted under basal conditions of home cage. It is not clear whether the
authors in the above-mentioned studies used artificial light or not
during the Open Field. It is possible that artificial light stimulates lo-
comotion in middle-aged mice. Indeed, a study showed no significant
difference in locomotion in 5, 13, and 15-month-old C57BL/6 mice in
the Open Field when the arena was illuminated by 300 Ix of light [17].
It is also important to note that we analyzed the effects of aging only
until late-middle age and hence cannot validate findings of a significant
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Fig. 9. Effects of aging on IBA1* cells in the dentate gyrus: (A)
Representative immunohistochemical images of the number of
IBA1™ cells in the dentate gyrus (black scale represents 50 um
length), and (B) Number of IBA1" cells/mm® One-way
ANOVA in GraphPad Prism. All data represented as
Mean + SEM, n = 6-7 per group. * p < 0.05, **p < 0.01.

decrease in locomotion at old age in Open Field as reported in another
study [100].

4.3. Normal aging causes a significant increase in anxiety-like behavior by
late-middle age

We observed an increase in the anxiety-like behavior from 4 to 14
months in C57BL/6 mice, as evident from reduced time in open quad-
rant and the number of head dips by 14 months mice in the EZM.
However, in the Open Field, 4-month-old mice spent significantly less
time in the inner zone compared to 9 months old mice, suggesting that
4-month-old mice were more anxious than 9-month-old mice. These
results comply closely with the published findings. Studies have shown
a significant increase in anxiety-like behavior in 12-17-month-old and
28-month-old [11-14], but not in 5 and 11-month-old [11,101] C57BL/
6 mice in the elevated-plus maze test. However, unlike a study that
reported an increase in anxiety-like behavior in 17-month female and

Fig. 10. Effects of aging on GFAP™ cells in the dentate gyrus:
(A) Representative immunohistochemical images of the
number of GFAP* cells in the dentate gyrus (black scale re-
presents 50 um length), and (B) Number of GFAP™ cells/mm?.
One-way ANOVA in GraphPad Prism. All data represented
mean * SEM, n = 6 per group.
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Fig. 11. T-cell subset composition. Proportions of (A) CD4* and CD8* T cells, (B) CD4 naive, central memory and effector/effector memory cell subsets and (C) CD8
naive, central memory and effector/effector memory cell subsets in the cervical lymph nodes of 4, 9 and 14-month old C57BL/6 mice. All data represented as
estimated marginal means of the proportion of cells, n = 5-8 per group. * p < 0.05, ** p < 0.01. N: naive, CM: central memory, EM: effector memory.

Table 4

T-cell subset composition. Mean count + SEM of (A) CD4* and CD8™ T cells, (B) CD4 naive, central memory and effector/effector memory cell subsets and (C) CD8
naive, central memory and effector/effector memory cell subsets in the cervical lymph nodes of 4, 9 and 14-month old C57BL/6 mice. n = 5-8 per group.

T cell type 4 months

9 months 14 months

CD4™ T cells
CD8™ T cells

9.7 * 10e5 * 1.0 * 10e5
14.2 * 10e5 * 1.6 * 10e5

CD4™" Ty cells
CD4™" Tey cells
CD4™" Tgy cells

8.5 *
5.5 *
2.8 *

10e4 + 9.1 * 10e3
10e4 + 1.3 * 10e4
10e4 + 4.7 * 10e3

CD8™ Ty cells
CD8™" Ty cells
CD8™" Tgy cells

1.9 * 10e5 * 2.5 * 10e4
1.4 * 10e5 * 1.4 * 10e4
2.3 * 10e4 = 6.9 * 10e3

8.9 * 10e5 + 1.4 * 10e5
17.2 = 10e5 * 1.7 * 10e5

9.1 *10e5 + 1.1 * 10e5
15.3 * 10e5 = 3.1 * 10e5

7.2 * 10e4 + 9.3 * 10e3 7.6 * 10e4 + 6.8 * 10e3
5.6 * 10e4 + 6.5 * 10e3 6.0 * 10e4 + 8.2 * 10e3
2.3 * 10e4 + 5.0 * 10e3 2.7 * 10e4 * 5.2 * 10e3
2.6 * 10e5 + 3.4 * 10e4 1.6 * 10e5 = 2.6 * 10e4
1.4 * 10e5 = 9.7 * 10e3 2.2 *10e5 + 1.2 * 10e4

2.2 *10e4 + 5.9 * 10e3 1.3 * 10e4 = 2.8 * 10e3

N: naive, CM: central memory, EM: effector memory.

not male mice [11], we observed no significant effect of sex on anxiety-
like behavior. Interestingly, there is also evidence for no significant
change in anxiety-like behavior of C57BL/6 mice from 3 to 18 months
of age [102]. The authors purchased mice two weeks before the ex-
periment from the supplier and tested mice on EZM during the dark
cycle. Our experiments differed in that we bred mice ourselves (sug-
gesting that we were in better control of the environmental conditions
of the mice), and we tested them on EZM during the light cycle. Our
findings from EZM, therefore, suggest that normal aging is directly
associated with the onset of anxiety-like behavior after middle age.
However, less time spent by 4-month-old mice in the inner zone of the
Open Field during our experiments contradicts findings from the EZM
and suggest that 4-month-old mice showed more anxiety-like behavior
than older mice. We believe that this could be attributed to the in-
creased exploration of outer zones by early age mice, and it may not
necessarily indicate anxiety-like behavior in 4-month-old mice. More
research is required to understand the reason for the observed differ-
ence in anxiety-like behavior between the EZM and Open Field tests.

4.4. Normal aging alone is not a controlling factor for depressive-like
behavior

No significant differences between any of the age groups for de-
pressive-like behavior suggest that aging is not a limiting factor for the
onset of depression in the absence of external stimulation. Studies in the
past have been varying on reporting depression-related behavior in
C57BL/6 mice, with some reporting no effects of aging on depressive-
like behavior [101,102] while others are suggesting that aging has a
significant effect on depressive-like behavior [13,15]. C57BL/6 mice,
11 and 18 months old, showed no differences in the parameters of
behavioral despair when evaluated against young mice (2 to 3-month-
old) in the FST [101,102]. On the contrary, significantly lower im-
mobility of 12-month-old C57BL/6 mice than their younger (2 to 3-
month-old) counterparts when tested in FST over a 10-min period has
been reported [13]. Similarly, a significant decrease in immobility time

10

has been reported for the 22-month-old C57BL/6 mice versus the 17-
month and 11-month-old mice [15]. It is possible that subtle environ-
mental factors may be responsible for the onset of depressive-like be-
havior in C57BL/6 mice until late-middle age and aging may play a
significant role only during old age. The differences in genetic strains,
behavioral test procedures and prior experience with stress may be
responsible for the discrepancy between studies [103]. Also, we con-
ducted FST towards the end of the behavioral testing schedule which
may have influenced results, since prior test experience and frequent
handling of mice has been reported to alter subsequent behavioral re-
sponses [104,105].

4.5. Normal aging causes a significant reduction in spatial learning and
memory by late-middle age when compared to early and middle age

During our experiments, 14-month-old mice showed significant
impairment of spatial learning on training days, and impaired retention
of spatial memory and cognitive flexibility during the probe trial when
compared to both 4 and 9-month-old mice. Over the four days of
training, the latency to escape was significantly high for 14-month-old
mice on days 1, 2 and 4 of training when compared to 4-month-old
mice, and on day 3 of training when compared to 9-month-old mice. No
significant differences were observed between the 4- and 9-month-old
mice on any training days. During the probe trial, 14-month-old mice
showed significantly higher latency to escape in the NW location when
compared to both 4- and 9-month-old mice, suggesting significantly
reduced retention of spatial memory at 14 months. The 14-month-old
mice also showed significantly higher latency to escape in the NE
quadrant during the probe trial when compared to 9-month-old mice,
indicating significantly less cognitive flexibility at the late-middle age.
Since the decreased drive to explore during aging could result in in-
creased latency to escape, we also statistically analyzed the distance
traveled by mice while locating the escape box. We observed no dif-
ferences in distance traveled between the three age groups, which
confirmed that the abovementioned higher latency at 14 months
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Table 5
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Differentially expressed genes between aging 4-, 9- and 14-month-old C57BL/6 mice (listed in order of increasing adjusted p values).

Groups compared Gene Estimates Std. Error Z p values Adj p Gene expression change
Gene expression in 9m compared to 4m

1 Uqcrcl —3.1544 0.1977 —15.9565 2.24E-10 8.74E-09 |
2 Gpx1 —2.3555 0.214 —11.0054 2.82E-08 5.49E-07 |
3 Tnfrsf1b -2.0717 0.3306 —6.2663 2.90E-05 0.0004 |
4 Htrla 1.1003 0.1889 5.8249 4.41E-05 0.0004 1
5 Tnfrsfla —1.4400 0.2736 —5.2635 0.0001 0.0009 |
6 Sod1 —0.6684 0.1379 —4.8455 0.0003 0.0017 |
7 Crh —1.5453 0.3603 —4.2885 0.0009 0.0049 |
8 I1r1 1.3243 0.3864 3.4274 0.0045 0.0219 1
9 Nr3cl —0.7425 0.2295 —3.2355 0.006 0.0259 |
10 Ntrk1 —4.1410 1.2475 —3.3196 0.0068 0.0267 |
11 Gfap —0.9865 0.3254 —3.032 0.009 0.0318 |
12 Crhrl —1.3608 0.4955 —2.7464 0.0158 0.0473 |
13 Nirp3 —1.0430 0.3747 —2.7837 0.0146 0.0473 |
Gene expression in 14m compared to 4m

1 Crebl —1.66754937 0.2035 —8.1924 1.04E-06 4.05E-05 |
2 Cs —-1.07619729 0.166 —6.4829 1.44E-05 0.0002 |
3 Prkaal —2.03602677 0.3079 —6.6125 1.17E-05 0.0002 |
4 Nr3cl1 —1.34313442 0.2407 —5.5804 0.0001 0.0007 |
5 Prkaa2 —1.79367949 0.3356 —5.3451 0.0001 0.0008 |
6 Htrlb —2.81806552 0.5681 —4.9603 0.0002 0.0014 |
7 Grin2a —1.74970485 0.3759 —4.6549 0.0004 0.0021 |
8 NIrp3 —1.70599891 0.393 —4.3412 0.0007 0.0033 |
9 Cat —0.47033557 0.1106 —4.2544 0.0008 0.0035 |
10 Ntrk1 —6.76684625 1.5045 —4.4978 0.0009 0.0035 |
11 Htr2a —1.88479928 0.4607 —4.0909 0.0011 0.0039 |
12 Crh —1.35166094 0.3763 —3.5915 0.0033 0.0107 |
13 Grial —0.93344729 0.2722 —3.4298 0.0041 0.0122 |
14 Bdnf 1.68989016 0.514 3.2876 0.0054 0.014 1
15 Sirt1 —0.91077276 0.2766 —3.2924 0.0053 0.014 |
16 Tnfrsf1b —1.17768109 0.3696 —3.1862 0.0072 0.0174 |
17 Ugcrel —-0.63917176 0.2073 —3.0828 0.0081 0.0186 |
18 Gfap 0.98439656 0.3413 2.8846 0.012 0.026 1
19 Aifl 0.52312261 0.1853 2.8226 0.0136 0.0264 1
20 Htrla 0.55928402 0.1981 2.8229 0.0136 0.0264 1
21 nir1 —1.08338084 0.432 —2.5079 0.0262 0.0487 |
Gene expression in 14m compared to 9m

1 Ugcrel 2.51524616 0.2073 12.1312 8.13E-09 3.17E-07 1
2 Crebl —2.04990498 0.2035 —10.0708 8.56E-08 1.67E-06 |
3 Gpx1 2.09978438 0.2245 9.354 2.12E-07 2.76E-06 1
4 Cs —1.29170572 0.166 —7.7811 1.89E-06 1.84E-05 |
5 Prkaal —2.05264222 0.3079 —6.6665 1.07E-05 6.94E-05 |
6 Sod1 0.97723091 0.1447 6.7549 9.25E-06 6.94E-05 1
7 Prkaa2 —2.03002306 0.3356 —6.0493 2.99E-05 0.0002 |
8 Gfap 1.97093737 0.3413 5.7754 4.81E-05 0.0002 1
9 Grin2a —2.04138052 0.3759 —5.4309 8.86E-05 0.0004 |
10 nir1 —2.40766579 0.432 —5.5734 9.02E-05 0.0004 |
11 Tnfrsfla 1.3490632 0.2869 4.7017 0.0003 0.0012 1
12 Aifl 0.83458187 0.1853 4.5032 0.0005 0.0016 1
13 Sirt1 —1.12800946 0.2766 —4.0777 0.0011 0.0034 |
14 Htr2a —1.76034264 0.4607 —3.8208 0.0019 0.0052 |
15 Grial —0.9200402 0.2722 —3.3806 0.0045 0.0117 |
16 Igf1 —1.21997698 0.3734 —3.2669 0.0056 0.0137 |
17 Gria2 —0.89922917 0.306 —2.9384 0.0108 0.0248 |
18 Smad2 —0.44499452 0.1609 —2.7648 0.0152 0.0329 |
19 Htrla —0.5410603 0.1981 —2.7309 0.0162 0.0333 |
20 Htrlb —1.45439309 0.5681 -2.56 0.0227 0.0442 |
21 Nr3cl —0.60063241 0.2407 —2.4955 0.0257 0.0477 |

Estimate: Regression coefficients for the effect of the independent variable (EE) on the dependent variable (Gene expression). Std. Error: Standard Error of the
difference between two means of the gene expression, i.e., means of the groups being compared. Z: Z-score: the number of standard deviations from the mean of all
the values within the same gene. Positive Z-score indicates upregulation of gene expression. Negative Z-score indicates downregulation of gene expression. Adj. p:

adjusted p-value.

indicates impaired spatial learning, memory, and cognitive flexibility.

As described previously [89], we also measured the number of entry
errors by 4-, 9- and 14-month-old mice during the Barnes maze test to
determine spatial learning and memory impairment with aging. The 14-
month-old mice again showed a significantly higher number of entry
errors than 9-month-old mice on days 3 and 4 of training, but not
during the probe trial. This again confirmed impaired spatial learning at
late-middle age. Furthermore, no significant differences in entry errors
between the three age groups during the probe trial suggested no
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change in drive to explore with age until the late-middle age. Inter-
estingly, we also observed a significantly higher number of entry errors
by 4-month-old mice compared to 9-month-old mice on day 3 of
training. However, in the absence of similar results on other training
days and during the probe trials, as well as after considering results for
latency to escape and distance traveled, we believe it would be in-
correct to conclude that the 4-month-old mice showed significantly
reduced spatial learning compared to 9-month-old mice.

We measure the effects of aging on cognition until late-middle age,
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and not old age, in C57BL/6 mice. Nonetheless, our results for age-
related effects on cognitive behavior are consistent with previously
reported findings. For example, significant impairment of spatial
memory in 17 and 25-month-old C57BL/6 mice in comparison to
younger (5-month-old) mice has been reported when tested on a Morris
water maze (MWM) [11]. The authors of the study also found that 17-
month-old female mice were significantly more impaired than 17-
month-old male mice, unlike our results which suggest no significant
effect of sex on spatial learning and memory in the Barnes maze until
late-middle age. In another study, 15 and 23-month-old C57BL/6 mice
showed significant spatial learning impairment relative to young con-
trols (5-month-old) in MWM [16]. Similar to MWM, a test on Barnes
maze has shown significant impairment of spatial memory and learning
in aged (23-month-old) mice when compared to young (3-month-old)
and middle age (11-month-old) C57BL/6 mice [17]. Like our findings,
the authors reported no significant differences between young and
middle age mice for spatial learning and memory. Significant impair-
ment in spatial learning and memory was also recorded in 18-month-
old C57BL/6 mice when compared with 2-month-old mice on Barnes
maze [18]. Evidence suggests that while the spatial learning and
memory functions significantly decline from 12 months of age [19], this
process starts as early as 8 months of age in C57BL/6 mice [13]. During
our study, however, while impaired cognition was observed at 14
months, no significant impairment in cognition was observed at 9
months of age.

4.6. Normal aging significantly affects microglial and not astrocyte numbers
in the dentate gyrus

The significant reduction in the expression of microglia in the
dentate gyrus from 4 to 9 months was followed by a significant increase
from 9 to 14 months. This suggests that aging is a controlling factor for
microglial number and may have significant implications in the mi-
croglia-mediated neuroimmune pathways. The quiescent forms of mi-
croglia in the CNS in early age assist in neuronal migration and repair,
recycling of neurotransmitters, regulating ion balance and buffering
pH, and maintaining neuronal homeostasis, however, they lack phe-
notypical markers required for antigen presentation [29]. During aging,
there is an increase in the expression of cellular senescence proteins.
This results in an increased expression of reactive microglia with age
[29], which quickly proliferate and express major histocompatibility
complex (MHC) class I and II proteins, receptors for various cytokines,
toll-like receptors, Nod-like receptors and antigens for T-cells subsets
essential to mounting an innate immune response. The increased pre-
sence of reactive microglia has been reported to be associated with
aging-related cognitive and memory impairment [26,106], depression
[107], and neurodegenerative diseases such as AD [32]. During our
work, we investigated mice aged from early to late-middle age, and not
old age, in a controlled and non-stressful environment. We labeled
microglia with IBA1 antibody that doesn’t differentiate between
quiescent or reactive forms. The observed significant decrease in mi-
croglia number from 4 to 9 months of age could be due to faster growth
rates, less presence of cellular products of senescence and the slow
transition of quiescent forms of microglia to reactive forms under
controlled environment conditions until middle age. Perhaps the in-
creased expression of senescence-associated proteins after middle age
resulted in increased conversion of quiescent to reactive forms and
proliferation of reactive microglia, which could also explain the in-
crease in anxiety-like behavior and impaired spatial memory at 14
months during our experiments. It is, however, interesting to note that
microglia-associated aging processes until late-middle age may not be
responsible for the onset of depressive-like behavior in the absence of
any external (e.g. stress) interventions.

Our results also suggest that aging is not a controlling factor for the
expression of astrocytes in the dentate gyrus until late-middle age,
hence may play little role in the astrocyte-mediated neuroimmune
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pathways. Astrocytes regulate the innate and adaptive immune re-
sponse in the developing and adult brain. They provide mechanical and
trophic support to neurons [108], mediate neural development
[109,110], function [111,112] and protection [113,114], as well as
neurotransmission and synaptic plasticity [8,34,37,38]. It has been
reported that during aging, in the presence of cellular products of se-
nescence, quiescent astrocytes reduce in number and turn into reactive
phenotype characteristic of neuroinflammatory reactive astrocytes
[25]. The reactive astrocytes, in turn, express proinflammatory cyto-
kines (e.g., TNF-a, IL-1f, IL-6, IL-10, interferons a, 3, and y) and che-
mokines (e.g., Ccl2, Ccl5), and mediate inflammation and immune re-
activity in the brain in association with microglia. We observed that
although there was a constant increase in astrocyte numbers, the dif-
ference was non-significant from early to late-middle age. We im-
munolabeled astrocytes with a GFAP antibody that doesn’t differentiate
between quiescent or reactive forms. Perhaps the increase in reactive
astrocytes, and hence astrocyte numbers, may become significant
during old age in the absence of any interventions. The results also
suggest that unlike microglia, astrocytes play no or minimal role in the
increase in anxiety-like behavior and cognitive impairment during late-
middle age in C57BL/6 mice.

4.7. Peripheral CD8+ naive T cells decreases and CD8 + central memory T
cells increase during normal aging

Total T cell counts, including CD4* (helper T cells) and CD8"
(cytotoxic T cell), and the counts of CD4 ™ and CD8* T cell subsets was
determined to understand the effects of aging on the cellular immune
response. It has been reported that early T cell activation markers de-
cline, and memory T cells gradually increase, during aging [115]. No
significant differences in the proportion of total CD4 and CD8 T cells,
and early activation marker CD25 during our study indicate that aging
alone does not induce proliferation of T cells or change in T cells
phenotype. It is possible that during old age and/or in the presence of
pathogenic stimuli, the results may differ. Furthermore, during normal
aging, there is a reduction in the number of naive T cells [116,117],
which, in turn, reduces the ability to establish immunological memory
in response to new antigens. Ty cells differentiate into Tcy or Tgy cells,
the two cells differing in the absence or presence of immediate effector
function [118,119]. We observed no change in the subsets of CD4* T
cells. This could be explained by the fact that mice were raised in a
pathogen and stress-free controlled environment during our study.
Hence activation of CD4" T cells was minimal. However, this also
suggests that aging alone has no significant effect on CD4* T cell
subsets until the late-middle age. A significant number of CD8 " Ty cells
changed their phenotype to CD8* Ty cells but not to Tgy cells at 14
months. It is possible that the cognate antigens encountered by CD8™*
Ty cells are the byproducts of cellular senescence. Indeed, a human
study has shown that aging is associated with a decrease in CD8* Ty
cells but not CD4™ Ty cells in the cervical lymph nodes [120]. Simi-
larly, the adverse effects of aging on the CD8* T cells receptor re-
pertoire diversity has also been reported in another study [121]. Our
results, therefore, suggest that normal aging has limited effects on the T
cell number and diversity until the late-middle age.

4.8. Normal aging significantly affects the expression of hippocampal genes

Aging has been shown to influence gene expression and gene-gene
interactions in the hippocampus regulating neuronal growth, structure,
and functions [101]. Altered expression of hippocampal genes involved
in the inflammatory response, neuronal structure and signaling, neu-
ropeptide metabolism, amyloid precursor protein processing, and neu-
ronal apoptosis, have been associated with aging-related memory def-
icits and neurodegenerative diseases in old C57BL/6 and BALB/c mice
[122,123]. In humans, the changes in gene expression in the brain have
been linked to psychiatric disorders associated with early
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developmental stages and aging, such as autism and aging-related
neurodegenerative disorders [124-129]. In this context, we analyzed
the effects of aging on changes in the expression of hippocampal genes
associated with immune, monoamine, transcription, growth metabo-
lism, and HPA-axis activity. We found significant differences in the
expression of 29 genes out of 43 GOI between the three age groups at
adjusted p < 0.05.

We observed a non-significant increase in the expression of Bdnf
gene from 4 to 9 months. However, it became significant at 14 months
when compared to 4 months, which may be indicative of the constant
growth of the brain, and enhanced neural plasticity, until late-middle
age. BDNF protein is found in high concentrations in the hippocampus
and is critical in memory formation. It has been reported that Bdnf gene
plays a role in the biology of mood disorders, and its expression is re-
duced during aging-related neurodegenerative disorders [130-132].
Also, previous studies have shown that the level of Bdnf mRNA in the
hippocampus across the life span may also depend on the external en-
vironmental conditions. For example, a decrease in the expression of
hippocampal Bdnf mRNA has been reported during late-middle age in
the presence of chronic stress [49] and brain pathology [50]. Con-
versely, the expression of the Bdnf gene within hippocampus has been
shown to increase after external interventions, such as physical activity
[72] and environmental enrichment [73]. We believe our study pro-
vides a more accurate representation of the effects of aging on the ex-
pression of Bdnf gene in the hippocampus since mice were housed in a
controlled environment in the absence of all external interventions.

Increase in mitochondrial cytopathies with age results in the pro-
duction of reactive oxygen species (ROS) leading to oxidative stress,
which plays a role in the development of aging-related chronic in-
flammatory diseases [133,134]. The diminished expression of Cat and
Nr3c1 genes, which provide defense against oxidative stress, and
mediates glucose metabolism, inflammatory responses, cellular pro-
liferation, and differentiation in target tissues respectively [135-138],
at 14 months suggests that oxidative and inflammatory stress increased
with age. GeneMANIA confirmed that the cellular response to ROS and
oxidative stress is affected at FDR < 0.05 through Cat-Nr3cl interac-
tion. This also explains the increase in anxiety-like behavior and spatial
learning and memory impairment, as well as little growth and differ-
entiation of CD8" T cells at 14 months. It is possible that the aging-
induced neuroinflammatory diseases are the result of a disturbed bal-
ance between the expressions of protective genes, such as Bdnf, Cat, and
Nr3cl, in the brain. Furthermore, the significantly upregulated ex-
pression of Aifl gene, which promotes macrophage activation and
phagocytosis, growth of T-lymphocytes, and peripheral inflammation
[139-141], at 14 months compared to its expression at both 4 and 9
months further points at a significant rise in inflammatory stress by
late-middle age. However, unlike Aifl gene, the expression of Nlrp3
gene decreased significantly between 4 and 9 months and non-sig-
nificantly between 9 and 14 months. Nlrp3 gene encodes NLRP3 in-
flammasomes that activate IL1 proinflammatory cytokines, thereby
playing a role in innate immunity and inflammation in response to
pathogens and products of cellular senescence [54]. Inflammasomes
activity increases with age. The decreased expression of Nlrp3 gene
indicates lowered expression of the proteins of cellular senescence at 9
months, although the levels of senescence proteins have been reported
to increase during normal aging [54]. We believe the controlled ex-
ternal environment for aging mice is responsible for the lowered ex-
pression of Nlrp3 gene during our experiments.

There were nine genes (Crebl, Cs, Prkaal, Prkaa2, Grin2a, Grial,
Htr1b, Htr2a and Sirt1) whose expression remained unchanged between
4 and 9 months but decreased significantly afterwards. The reduction in
the expression of these genes at 14 months suggests impaired energy
metabolism, neurotransmission, and cognition, learning and memory
during late-middle age [51,142-150]. When mapped in GeneMANIA,
there were 380 total links with the 20 most related genes to the nine
genes that were mapped, and the mapped genes were found to be
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statistically related to glutamate receptor activity, glucose homeostasis,
and learning and memory at FDR < 0.05. Furthermore, the expression
of five genes (Htrla, Ilirl, Igfl, Gria2, Smad2) that encode proteins
which mediate inhibitory and excitatory neurotransmission, in-
flammatory responses via cytokines IL-1a and IL-1f3, cell differentia-
tion, cell proliferation, and apoptosis, hence, are important for normal
growth and development during aging [147,148,151-156], increased
or stayed same at 9 months when compared to 4 months but decreased
from 9 to 14 months. This explains the normal increase in body weight
with age from 4 to 9 months and no adverse behavioral changes until
middle age that we have reported. The decrease in the expression of
these genes after middle age suggests that cellular senescence overtakes
growth rate after middle age and the detrimental effects of aging, such
as reduced cellular proliferation and growth rate, start appearing. This
also explains the increase in anxiety-like behavior and cognitive im-
pairment at 14 months of age during our experiments. The GeneMANIA
map showed 249 total links with the 20 most related genes to the five
genes that were mapped. The mapped genes were found to be asso-
ciated with T cell proliferation and activation, insulin-like growth factor
signaling pathway, cellular response to growth factor stimulus, and
response to interleukin-1 at FDR < 0.05.

In contrast to the above reported findings, the expression of Ugqcrc1
was downregulated significantly by 9 months when compared to 4
months and goes back up significantly at 14 months compared to 9
months but not the young mice levels. Likewise, the expression of Gpx1,
Sodl and Tnfrsfla reduced significantly from 4 to 9 months but in-
creased afterwards to the young mice levels at 14 months. The ex-
pression of Ntrkl, Crh, Crhrl and Tnfrsflb also reduced from 4 to 9
months but showed no further decrease afterwards until 14 months of
age (see Table 4). These results are suggestive of improved mitochon-
drial metabolism and response to psychological stress, and enhanced
pro-inflammatory and protective or apoptotic functions in the brain of
14-month-old mice [52,53,157-164]. However, when the genes were
mapped in GeneMANIA, we found that the association between these
genes was not high. The GeneMANIA map showed 72 total links with
the 20 most related genes to the nine genes that were mapped. The
mapped genes were found to be related to antioxidant activity at
FDR < 0.05. However, at FDR > 0.05 and < 0.1, apoptotic signaling
pathways and response to ROS were also affected. Together, the results
from our gene expression analysis suggest that the expression of genes
associated with inflammatory and oxidative changes is not high in a
controlled environment until the late-middle age and external en-
vironment may have a role to play in the adverse genetic changes as-
sociated with aging.

5. Limitations of our study

It is important to note that many studies have investigated C57BL/6
mice at different ages, after providing them with some form of external
interventions, for example, isolation, maternal separation, auditory or
olfactory exposure, physical exercise, environmental enrichment,
dietary supplements, and pharmacological drugs. Results from these
studies may not comply with our reported results for normal aging in
the absence of all external interventions. Similarly, the strain of animal
may also affect behavioral, molecular, and gene expression results.
These factors must be considered while utilizing our results as reference
points during research planning in future. Also, due to low sample size,
we could not perform sex differences analysis for molecular data.
Hence, a future research with greater sample size is recommended to
elucidate the sex differences for molecular changes in the brain of aging
mice. Furthermore, it must be noted that the stains that we used to
identify immunopositive microglia and astrocytes stained different
phenotypes of glial cells equally and hence it is not possible to make a
differential analysis of microglia and astrocytes phenotypes now. This is
the reason we have only analyzed the overall change in the number of
immunopositive glial cells at three age points and not mentioned about
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their activation states. However, since analyzing the activation state of
glial cells is very important to develop a more comprehensive under-
standing about the molecular changes in the brain that happen during
normal aging, we recommend it to be investigated in future research.

6. Conclusion

Most of the results in the present study were consistent with, and
extended, previously reported findings, for example, increase in an-
xiety-like behavior and cognitive impairment, and enhanced microglial
numbers at late-middle age, as well as a change in hippocampal gene
expression during aging. However, we report that depressive-like be-
havior is not affected significantly by aging in a controlled environment
until the late-middle age. This is an important finding but needs further
validation, perhaps through saccharin-preference test and novelty-
suppressed feeding. While there are many studies on the effects of aging
in the presence of external interventions, there are only a few that
specifically explore the effects of only aging on behavior and underlying
molecular biology.
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