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Abstract

This thesis studies the stochastic modelling and statistical analysis of spatial and long-

range dependent data. Temporal and spatial-dependent data are often encountered in

many areas such as cosmology, geoscience, finance, genomics, embryology, hydrology, etc.

It is important to study the long-range dependence and spatial dependence of such data

for time series and spatial analysis.

First, the multifractality of spherical random fields is studied with cosmological appli-

cations. The motivation of this study is to investigate the cosmic microwave background

radiation (CMB) data from the Planck mission. For random fields on the sphere, there are

three models in the literature where the Rényi function is known explicitly. In this study,

some new theoretical models and numerical multifractality studies are presented. Then,

the methodology based on computing the Rényi function and the multifractal spectrum

for different scenarios and actual CMB data is shown. The results suggest that a very

minor multifractality of the CMB data may exist.

Next, the multifractionality of spherical random fields is studied with cosmological

applications. The Hölder exponent is used to measure the roughness of random fields

in a rigorous mathematical way. The pointwise Hölder exponent values are estimated

for one- and two-dimensional sky regions using the HEALPix ring and nested orderings

respectively. The analysis suggests that the CMB data are multifractional. The developed

methodology is also used to detect anomalous regions in inpainted CMB maps.

Finally, simultaneous estimators of cyclic long-memory processes are studied. Spec-

tral singularities at non-zero frequencies play an important role in investigating cyclic or

seasonal time series. A wide class of semiparametric models with spectral singularities is

studied. The generalized filtered method of moments simultaneous estimators of singular-

ity location and long-memory parameters are considered. The results of the asymptotic

normality of several statistics are obtained. The methodology includes wavelet transfor-

mations as a particular case.
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Chapter 1

Introduction

This chapter presents the historical background and motivation for the research problems

considered in the thesis. This comprises the fundamental concepts, methods and results

in the literature related to multifractality and the Rényi function, long-range dependence,

multifractionality and the Hölder exponent, cyclic long-memory processes, wavelet-based

estimation of parameters of stochastic processes and cosmological background. Finally, Sec-

tion 1.8 provides a summary of the research problems, the main results and their novelty.
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1.1 Stochastic processes and spherical random fields

Many real-world phenomena exhibit random behaviour and they often evolve over space

and time in a random manner. Stochastic processes can be used as mathematical models

to investigate the random behaviour of these real-life occurrences. Stochastic processes

are widely used in many fields, for example, in cosmology, physics, meteorology, image

processing, biology, neuroscience, signal processing, computer science, chemistry, ecology,

cryptography, hydrology and many others, see Allen (2010), Bartlett (1955), Feller (1950),

Gallager (2013), Laing and Lord (2010), Todorovic (2012), Van Kampen (1992), Paul

and Baschnagel (1999) and the references therein. Stochastic models are essential for

understanding the complex nature of a wide range of data. The probability distributions

of the various outcomes can be estimated through the mechanism of stochastic modelling.

Thus, these models can be distinguished as models for the progression of a system over

time in which the random variable of interest undergoes some random changes according

to probabilistic laws.

The theory of stochastic processes originated from the early 20th century. The founda-

tion for the theory of probability was laid by Kolmogorov (1931) and Kolmogorov (1933).

The notion of a random function was introduced by Kolmogorov (1933) and subsequently,

the concept was further developed by Khintchine (1934). Other mathematicians who

contributed significantly to the theory of stochastic processes are William Feller, Joseph

Doob, Paul Lévy and Norbert Wiener. Joseph Doob pioneered the theory of stochastic

processes for the continuous parameter case in his paper Doob (1937). Then, from 1940

to 1950, he progressed the martingale theory. From 1940 onwards, Kiyosi ltô made a

significant contribution to the development of the stochastic calculus field, in particular,

stochastic differential equations. He proposed the stochastic integrals in his publication Itô

(1944). The results obtained by Paul Lévy were considered another important milestone

in stochastic process theory. The monograph by Doob (1953) greatly influenced the theory

of stochastic processes and focused on measure theory as the basis for probability theory.

The classical monographs by Gikhman and Skorokhod (2004a), Gikhman and Skorokhod

(2004b) and Gikhman and Skorokhod (2007) include a comprehensive discussion on the

theory and applications of stochastic processes.

In statistics and probability theory, a stochastic process is a collection of random

variables X(t), t ∈ T , where for each t, X(t) is a random variable and t varies in the

12



parameter space T . The state space consists of possible values of X(t). A stochastic

process can be considered as a random function. Based on the parameter space and the

state space, one-dimensional stochastic processes can be classified as stochastic processes

with discrete parameter and discrete state space, continuous parameter and continuous

state space, discrete parameter and continuous state space and continuous parameter

and discrete state space (Cox and Miller (1977)). Stochastic processes are classified as

discrete-time and continuous-time stochastic processes. For example, if the parameter

space T = {0, 1, 2, ...}, the resulting stochastic process is a discrete-time stochastic process.

In general, it is denoted by X(n), n ∈ N . If the parameter space is defined by T = [0,∞),

the resulting process is a continuous-time stochastic process denoted by X(t), t ≥ 0.

Traditionally, the observations are assumed to be independent in the theory of statis-

tics. However, this assumption is too strong and not valid for real data. Thus, random

processes with temporal and spatial-dependent observations became popular along with

the availability of temporal and spatial data from diverse disciplines such as astronomy,

finance, forestry, geology, telecommunications and many others. Accordingly, statistical

methods were developed to accommodate such dependent data, see Appel and Pebesma

(2020), Christakos (2017), Dehling and Philipp (2002), Emery and Porcu (2019), Emery

et al. (2019), Jeong et al. (2017), Porcu et al. (2018) and the references therein for more

details. Geostatistics is established on dependent random processes, see Cressie (1989).

The covariance and spectral functions play a key role in describing the dependence prop-

erties of stochastic processes. Different types of stochastic processes were introduced to

study the dependence structure. This thesis mainly deals with short-range and long-range

dependent stochastic processes.

The short-range dependent processes are also known as weakly dependent or short-

memory dependent processes. A stochastic process is said to be weakly dependent if its

covariance function decays rapidly to zero. The spectral densities of such processes are

bounded at the origin. Also, the autocovariance functions of short-range dependent pro-

cesses are absolutely summable. In the literature, different types of weak dependence

were introduced. Some examples are association, m-dependence, mixingales and near

epoch dependence, quasi-association and strong mixing, see Dedecker et al. (2007), Nze

and Doukhan (2004) and Spodarev (2013). Some typical examples for weakly depen-

dent processes are autoregressive–moving-average models, Brownian motion, Markovian

models, etc. The mixing conditions are a major tool in describing weak dependence, see

13



Bradley (2007), Doukhan (1994), Doukhan et al. (2009) and Rio (2017) for more details.

The strong mixing coefficients were first introduced by Murray Rosenblatt in 1956 (Rosen-

blatt (1956)). For stationary stochastic processes, a modern notion of weak dependence

was presented in Doukhan and Louhichi (1999). The presence of a strong mixing condition

for a stochastic process suggests that it is short-range dependent (Rosenblatt (2015)).

The long-range dependent processes are also called strongly dependent or long-memory

dependent processes. In the literature, multiple definitions for these processes exist, see Be-

ran (1994), Beran et al. (2013), Doukhan et al. (2003), Ivanov and Leonenko (1989), Leo-

nenko (1999), Samorodnitsky (2007) and Pipiras and Taqqu (2017). A stochastic process

is said to be strongly dependent if it possesses a slowly decaying covariance function,

see Section 1.3 for more details. The autocovariance functions of long-range dependent

processes are not integrable or absolutely summable. With respect to the spectral do-

main, their spectral densities are unbounded at the origin or another point. Moreover,

the limiting distributions of functionals of the strongly dependent processes are likely to

be non-Gaussian. Chapter 5 deals with long-range dependent stochastic processes.

The one-dimensional stochastic processes are inadequate for modelling numerous types

of spatial data. A random field is defined as a generalized form of a stochastic process in

which the underlying parameter is a multidimensional vector. Thus, the outcome can be

seen as a random multivariate function or as a random surface. In the one-dimensional

case, the resulting random field is a stochastic process. In real-world applications, the

values of random fields are dependent as the observations are spatially correlated with one

another. An extensive discussion on the theory of random fields can be found in Hernàndez

(1995), Ivanov and Leonenko (1989), Leonenko (1999) and Yadrenko (1983). Some other

models of random fields in Physics, specifically for continuum mechanics were considered

by Martin Ostoja-Starzewski and his co-authors , see Malyarenko and Ostoja-Starzewski

(2019) and Malyarenko et al. (2020). In particular, the tensor-valued random fields un-

derlying the stochastic continuum theories were studied.

There are certain real-life applications that cannot be modelled by random fields de-

fined on classical Euclidean geometries. In such cases, it is vital to deal with the random

fields specified on manifolds. In recent years, enormous attention has been given to re-

search on spherical random fields with the growing need for their applications in many

fields such as astrophysics, climatology, cosmology, geology, geophysics, medical imag-

ing, oceanography and many others, see Appel and Pebesma (2020), Christakos (2017),
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Cressie (1993), Fisher et al. (1993), Jeong et al. (2017), Marinucci and Peccati (2011) and

the references therein. The monographs by Christakos (2017) and Fisher et al. (1993)

demonstrated numerous statistical methods for spherical and spatiotemporal data. Over

recent years, various mathematical and statistical software, particularly R packages such

as geoR (Ribeiro Jr et al. (2020)) and rcosmo (Fryer and Olenko (2019) and Fryer et al.

(2020)) and Python packages such as astropy (Price-Whelan et al. (2018)) and healpy

(Zonca et al. (2019)) were developed to analyze spatial and HEALPix data.

In the literature, random fields defined on the sphere are used as the standard stochas-

tic model, describing various astrophysical, cosmological and environmental data. In this

thesis, we mainly consider spherical random fields defined on the unit sphere with cosmo-

logical applications. The spectral methods are of great importance in studying and inves-

tigating second order random fields with homogeneous and isotropic properties, see Ivanov

and Leonenko (1989), Leonenko (1999) and Yadrenko (1983) for more details. Initially, the

monograph by Yadrenko (1983) extended the spectral theory of one-dimensional random

processes to multidimensional spaces and spheres. It included a wide range of statisti-

cal problems that were addressed for spherical random fields such as linear forecasting,

extrapolation and optimal linear estimation.

The monograph by Marinucci and Peccati (2011) discussed the recent developments in

the theory and statistics of isotropic spherical random fields and stochastic modelling ap-

proaches with a focus on cosmological applications. It focused on harmonic analysis tools,

studied the properties of angular power spectra and polyspectra, addressed their statistical

estimation and investigated the asymptotic properties of spherical needlets. In accordance

with the spectral representation of spherical random fields, they can be expanded in a series

of spherical harmonics. These series were extensively studied in several publications. For

example, Baldi and Marinucci (2007) provided elementary interpretations of the spherical

harmonic coefficients of isotropic spherical random fields. They proved that the associated

harmonic coefficients are uncorrelated and independent for isotropic Gaussian spherical

random fields and the converse remains true. Marinucci (2005) presented Gaussianity

tests for spherical random fields.

The angular power spectrum which is the Fourier transform of the covariance function

(second-order cumulant) plays an important role in determining the Gaussianity of spheri-

cal random fields. Analogously, the higher-order spectra/polyspectra result in the angular

bispectrum, trispectrum and so on. Their properties and statistical estimation have been
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extensively studied in Cammarota and Marinucci (2015), Durastanti et al. (2014), Mar-

inucci (2006), Marinucci (2008), Marinucci and Peccati (2010b), Marinucci and Peccati

(2010a) and Marinucci and Peccati (2011). Marinucci (2006) studied the asymptotic be-

haviour of the bispectrum using an analysis of Wigner coefficients and the obtained results

were utilized to develop non-Gaussianity tests for spherical random fields. These results

were improved in Marinucci (2008) where a multivariate central limit theorem was de-

rived for the bispectrum using the methods of moments and showed the procedure for

higher-order estimation.

In Marinucci and Peccati (2010b) and Marinucci and Peccati (2011), the correspond-

ing results were developed for higher-order moments of isotropic spherical random fields.

Marinucci and Peccati (2010b) and Marinucci and Peccati (2011) derived an expression

for the angular polyspectra of isotropic spherical random fields using the convolution of

Clebsch–Gordan and Wigner coefficients. Marinucci and Peccati (2010a) studied the high-

frequency asymptotics of isotropic spherical random fields with a focus on the association

between the conditions of ergodicity and asymptotic Gaussianity. Their results suggested

that the two conditions are equivalent in many cases. Also, the obtained results are useful

to understand the contribution of the cosmic variance problem in the analysis of CMB data.

Durastanti et al. (2014) considered the single realization of an isotropic Gaussian spherical

random field on the unit sphere and they probed its Gaussian semiparametric estimation,

specifically the asymptotic behaviour of their spectral parameter estimators. Cammarota

and Marinucci (2015) explored the stochastic behaviour of the isotropic Gaussian spheri-

cal random fields that are l1-regularized and showed that under such circumstances, their

properties such as isotropy and Gaussianity are not preserved.

Leonenko and Sakhno (2012) studied the spectral representation of vector- and tensor-

valued spherical random fields with the motivation of probing the CMB polarization

anisotropies. The spectral decomposition was obtained as a series of the generalized

spherical functions for random fields that are weak-isotropic and mean-square continu-

ous. Further, characterizations were obtained for the properties of the associated random

spherical harmonic coefficients. Ma (2016) derived the stochastic series representation

for an isotropic, mean-square continuous and a stationary vector-valued spherical ran-

dom field. The obtained infinite series representation was in terms of ultraspherical/Ge-

genbauer’s polynomials. Similar results were obtained by Ma (2017) for isotropic and

mean-square continuous vector-valued spherical random fields that are stationary on a
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temporal-domain. Inspired by the cosmological applications, Leonenko and Ruiz-Medina

(2018) considered the two scenarios of Gaussian and chi-squared spherical random fields

and obtained central and non-central limit theorems for their first Minkowski functionals.

Various numerical approximation aspects of spherical random fields have been method-

ically studied by the research group of Ian Sloan, see Hamann et al. (2021), Hesse et al.

(2017), Hesse et al. (2021), Le Gia et al. (2017), Le Gia et al. (2020), Sloan and Wom-

ersley (2000), Sloan and Wendland (2009), Wang and Sloan (2017), Wang et al. (2017)

and Wang et al. (2018). Stochastic partial differential equations (SPDEs) are a major tool

in the analysis of temporally evolving spatial data observed on the unit sphere or in the

three-dimensional space, see Anh et al. (2008), Broadbridge et al. (2019), Broadbridge

et al. (2020), Lang and Schwab (2015) and Ruiz-Medina et al. (2008). Lang and Schwab

(2015) studied isotropic spherical random fields and their sample regularity. They also

analyzed SPDEs on the unit sphere. They obtained the link between the angular power

spectrum decay and other properties of spherical random fields and their approximation.

These results formed a solid theoretical background and applied approximation method-

ology for the development of numeric methods and simulation techniques for spherical

random fields.

1.2 Multifractality and the Rényi function

The fractal structures are common in nature, and they were illustrated comprehensively

in Mandelbrot (1982). A fractal set has a fractal dimension and often has a pattern which

is infinitely scaled and repeats itself. The fractal dimension measures the complexity

of self-similar processes, i.e., their change in detail over the change in scale. Initially

in 1967, Benoit Mandelbrot discussed the concepts, self-similarity and fractal dimension

in his paper Mandelbrot (1967). Then, the results in Mandelbrot (1972) and Mandelbrot

(1974) further emphasized the usefulness of scaling relations in the setting of turbulence

modelling. For the first time in 1975, Benoit Mandelbrot defined the term fractal which

was later developed in Mandelbrot (1977).

The theory of multifractality was introduced as the generalization of fractal sets.

In 1982, Benoit Mandelbrot showed the importance of employing fractal theory to mea-

sures, see Mandelbrot (1982). Subsequently, the concept of multifractality was theoreti-

cally developed by various researchers, see Brown et al. (1992), Evertsz and Mandelbrot
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(1992), Falconer (1990), Jaffard (1997a), Jaffard (1997b), Olsen (1995), Muzy et al. (1993)

and Riedi (1995) for more details.

A multifractal pattern can be defined as a fractal pattern that scales with multiple

scaling rules/fractal dimensions as opposed to a monofractal pattern that scales with one

scaling rule/fractal dimension. In multifractal theory, the multifractal/singularity spec-

trum, also known as the curve of f(α(q)) vs. α(q), assesses the strength of the nonlinearity

of a fractal process, see Evertsz and Mandelbrot (1992) for more details. Here, α(q) de-

notes the singularity exponent and it determines the strength/order of singularity, where

q is the moment order/resolution. Thus, f(α(q)) indicates the local fractal dimensions at

different resolutions q. For example, the multifractal spectra of non-fractal and monofrac-

tal processes depict an almost constant or flatter behaviour. For multifractal processes,

their multifractal spectrum typically exhibits a concave down/parabolic behaviour and

the curvature increases with the singularity exponent where it reaches a maximum for the

most frequent fractal dimension.

With the initial applications to turbulence modelling (Benzi et al. (1984) and Chhabra

et al. (1989)), the multifractal theory has been widely applied in other fields such as cos-

mology (Coleman and Pietronero (1992), Diego et al. (1999), Leonenko and Shieh (2013)

and Mart̀ınez (1990)), geophysics (Mandelbrot (1989) and Parisi and Frisch (1985)), me-

teorology (Gupta and Waymire (1993)), financial time series (Evertsz (1995), Mandelbrot

(1997) and Muzy et al. (2001)), genomics (Arneodo et al. (1998) and Yu et al. (2001)),

image processing (Turiel and Parga (2000) and Véhel and Mignot (1994)), internet traf-

fic (Mannersalo et al. (2002), Riedi and Véhel (1997) and Véhel and Riedi (1997)), etc.

Mart̀ınez (1990) applied fractals and multifractals to interpret the distribution of large-

scale galaxies and showed how the universe conforms to fractal geometry in small scales

and collapses the scale invariance beyond a cut-off value. The results suggested that the

galaxy distributions adjust to fractal behaviour in some of the scaling regions and the

multifractal theory is more suitable to describe the structure of the universe.

When the probability distributions have singularities, the usual measures of location

and spread are not suitable to describe conventional probability distributions. There-

fore, in such cases, the multifractal measures play a key role. Of the various methods

of constructing random multifractal measures, simple binomial cascades, multiplicative

cascades and random branching processes were used, see Barral and Mandelbrot (2002),

Gupta and Waymire (1993), Falconer (1997), Kahane (1985), Kahane (1987), Molchan
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(1996) and Riedi (2002) for more details. Rhodes and Vargas (2010) introduced multi-

dimensional multifractal random measures as a generalization of the multifractal random

measures proposed by Bacry and Muzy (2003) for the one-dimensional case. Salat et al.

(2017) compared the major multifractal methodologies that are used in practice. They

mentioned that the moment method and the histogram method with a wide enough scaling

range are the most suitable ones for spatial data.

Multifractal analysis deals with measuring the complexity of patterns using fractal

dimensions and provides valuable information regarding the local and global complexities

of many natural phenomena. Multifractal analysis has been extensively applied to one-

dimensional time series data, but its applications in the multidimensional case are less

developed. In multifractal analysis, the Rényi function played a vital role (Anh et al.

(2008), Leonenko and Shieh (2013) and Mannersalo et al. (2002)). Further, wavelets were

also used as one of the main techniques to investigate multifractality, see Audit et al.

(2002), Gonçalvés and Riedi (2005), Jaffard (2004) and Riedi (2002) for more details.

The Rényi function (T (q)) is associated with the Rényi dimension which is also called

the generalized dimension (D(q)) by D(q) = T (q)/(q − 1), see Evertsz and Mandelbrot

(1992) and Harte (2001) for more details. D(0), D(1) and D(2) are called fractal, infor-

mation and correlation dimensions respectively (Jain et al. (1992) and Jizba and Arimitsu

(2004)). The Rényi dimensions emerged from information theory (Rényi (1959), Rényi

(1965) and Rényi (1970)). The concept of Rényi dimensions was developed from the

Rényi entropy first proposed by Alfréd Rényi (Rényi (1961)). Jizba and Arimitsu (2004)

demonstrated the relationship between the Rényi entropy and Rényi function. They also

showed the connection between the Rényi entropy and the multifractal spectrum and used

the Rényi entropy to study the statistical properties of multifractal processes. Further,

Harte (2001) indicated that the fractal dimension estimates in empirical investigations are

generally the estimates of Rényi dimensions.

In multifractal analysis, the Rényi function can be used to determine the multifractal

behaviour of stochastic processes and random fields. It quantifies the variation of surface

or trajectory characteristics along with the change in the box size of an image, resolution

or scale. It is also known by the terms, deterministic partition function, spectrum of

scaling exponents and moment-scaling function. Multifractal formalism was introduced

by Parisi and Frisch (1985). In multifractal formalism, the Rényi function is related

to the multifractal spectrum via a Legendre transformation (Evertsz and Mandelbrot
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(1992), Harte (2001) and Jizba and Arimitsu (2004)). The Rényi functions of multifractal

processes usually exhibit a non-linear/parabolic shape whereas those of non-fractal and

monofractal processes exhibit an almost constant or a linear behaviour (Grahovac and

Leonenko (2018)). Olsen (2002) considered self-similar multifractals and studied their

Rényi functions. To distinguish the multifractal behaviour of the infinite products of

homogeneous and isotropic random fields, Leonenko and Shieh (2013) determined the

Rényi function for three types of multifractal spherical random fields. They derived the

Rényi functions for the log-normal model, log-gamma model and log-negative-inverse-

gamma model.

Multifractal approaches have been applied widely, especially in physics. In the one-

dimensional time series case, Telesca et al. (2015) conducted a multifractal analysis of the

gravity time series of Earth by employing multifractal detrended fluctuation analysis and

power spectrum methods. Their results revealed a significant multifractality in the Earth’s

gravity time series which rely on long-range correlations. Caniego et al. (2005) investigated

the spatial variability of soil by utilizing the multifractal spectrum and the Rényi spectrum.

The results of both methods suggested monofractal and multifractal scaling behaviours

in two short and long transects respectively along which the soil properties are measured.

Ahmad et al. (2014) performed a multifractal analysis of nucleus collisions. The obtained

multifractal spectrum depicted a concave down behaviour and suggested the multifractal

presence in the multi-particle production in those collisions.

Multifractal stochastic processes were investigated by Calvet et al. (1997), Calvet and

Fisher (2002), Fisher et al. (1997) and Mandelbrot et al. (1997), where they defined the

scaling properties using process moments. Angulo and Esquivel (2015), Grahovac and

Leonenko (2014) and Grahovac and Leonenko (2018) studied the multifractal behaviour

of stochastic processes. Grahovac and Leonenko (2018) introduced some bounds for the

support of the spectrum of multifractalities. They emphasized that self-similar processes

could yield a multifractal spectrum because of the infinite order moments of a positive

kind. They showed that the partition function detects the divergence of moments which is

important in determining the multifractal spectrum. These results were used to introduce

a robust version of the partition function. Jaffard (1999) showed the multifractal nature of

Lévy processes apart from Brownian motion and Poisson processes which are considered

to be monofractals. Moreover, he demonstrated that the singularity spectrum of Lévy

processes exhibits a linear behaviour.
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The multifractal products of stochastic processes were extensively studied in the publi-

cations by Anh et al. (2008), Kahane (1985), Kahane (1987) and Mannersalo et al. (2002).

Mannersalo et al. (2002) studied the multifractal products of stochastic processes with

the motivation of exploring new teletraffic models. They introduced random multifractal

measure constructions established on a class of T -martingales and derived the Rényi func-

tions based on them. They mainly investigated some exponential classes of distributions

but their study was limited to one-dimensional processes. Then, Anh et al. (2008) studied

the multifractal products of geometric Ornstein–Uhlenbeck type stochastic processes that

are determined by the Lévy motion. For the background driving Lévy processes, they

utilized five distributions namely the gamma, variance gamma, inverse Gaussian, normal

inverse Gaussian and generalized-z (Meixner) that are infinitely divisible. They obtained

the limiting processes for exponents of these distributions and examined their dependence

structure. They derived Rényi functions and demonstrated the multifractal behaviour of

the resulting log-gamma, log-variance gamma, log-inverse Gaussian, log-normal inverse

Gaussian and log-generalized-z (log-Meixner) distributions.

Ruiz-Medina et al. (2008) established two classes of space-time random field models

correspondingly in continuous and discrete space time that exhibit multifractal behaviour

spatially. Further, they analyzed the spatial multifractal characteristics of the proposed

models. Koenig and Chainais (2008) proposed a spherical multifractal analysis using

the continuous spherical wavelet transforms to investigate the self-similar properties of

spherical data. They conducted a numerical spherical multifractal analysis and used a

multifractal spherical texture model to test their methodology.

1.3 Long-range dependence

The empirical phenomenon of long-range dependence was first observed by Hurst (1951)

in his studies of the hydrological characteristics of the Nile River. Hurst computed the

rescaled adjusted range (R/S) statistics of the Nile River data. He found that the empir-

ical growth rate of the R/S statistics is approximately nH where H = 0.72 and n is the

number of observations, known as the Hurst effect. However, his results disagreed with

short-range dependent stochastic processes based on iid Gaussian random variables as the

R/S statistics of those processes have the asymptotic behaviour similar to constant×n1/2.

The hydrological models contradicted the empirical verifications. Subsequently, in an at-
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tempt to find a suitable model for the Hurst effect, the notion of long-range dependence

was developed by Benoit Mandelbrot and his co-authors in their publications, Mandel-

brot (1965), Mandelbrot and Van Ness (1968) and Mandelbrot and Wallis (1968). They

introduced the concept of self-similar processes, fractional Brownian motion (FBM) and

fractional Gaussian noise (FGN). The self-similar processes exhibit similar statistical char-

acteristics on all scales. For a self-similar stochastic process X(t), it holds, X(ct) d= cHX(t)

where H, 0 < H < 1, is the self-similarity/Hurst parameter. The FBM is a self-similar,

continuous-time stochastic process and it is a generalized version of the ordinary Brow-

nian motion. Moreover, they showed that the FGN (the discrete increment process of

the FBM) with the Hurst parameter, H ∈ (1/2, 1) can be used to model the Hurst ef-

fect (Beran (1994)). These significant results were the foremost ones that modelled the

Hurst effect by using a stationary Gaussian stochastic process. For more details regarding

the chronological record of the phenomenon of long-range dependence, see Beran (1994),

Graves et al. (2017) and Samorodnitsky (2007).

In many natural phenomena, the independence assumption of observations is often an

approximation and the dependence between observations is inevitable due to the existence

of serial correlations that are slowly decaying. Thus, long-range dependent processes re-

ceived increasing attention in the last two decades. The long-range dependence is also

known as long-memory, long-term persistence and the correlation structure of the sin-

gularities. The correlation function of a process with long-range dependence typically

demonstrates a power-like decay and it is slower than an exponential decay. The Hurst

parameter, H is used to quantify the long-range dependence. For long-range dependent

processes H ∈ (1/2, 1). Traditionally, two parametric models were introduced to model

long-range dependent stochastic processes, namely, the FBM model and fractional au-

toregressive integrated moving average (fractional ARIMA/FARIMA) or ARFIMA model

suggested by Granger and Joyeux (1980) and Hosking (1981).

The phenomenon of long-range dependence was found in both time series and spa-

tial data and in numerous fields such as astronomy (Jeffreys (1939), Pearson (1902)),

agronomy (Smith (1938)), climatology (Franzke (2010)), cosmology (Anh et al. (2018)),

economics (Carlin and Dempster (1989)), geosciences (Montillet and Yu (2015)), hydrology

(Lawrance and Kottegoda (1977)), internet traffic modelling (Karagiannis et al. (2004))

and many others, see Beran et al. (2013), Doukhan et al. (2003) and the references therein.

Robinson (2020) discussed statistical inference methods and modelling approaches for spa-
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tial data that exhibit long-range dependence. The long-range behaviour of processes and

fields has been found to be associated with their fractal behaviour and the scaling prop-

erties. The concept of long-memory concerns spectral singularities of stochastic processes

and random fields, see Leonenko (1999).

There are several inequivalent definitions of long-range dependent processes, see Be-

ran (1994), Doukhan et al. (2003), Pipiras and Taqqu (2017) and Samorodnitsky (2007).

The majority of these definitions are established on the second-order characteristics of

stochastic processes and random fields, such as the asymptotic behaviour of the covari-

ance function at the infinity and spectral density at the origin or at another point or

variance of partial sums. In the literature, the most frequent definition of long-memory

is the existence of a hyperbolic-type decaying non-integrable covariance function. The

relationship between the properties of long-range dependent processes in temporal and

spectral domains is given by the well-known Tauberian and Abelian theorems. They link

the asymptotic behaviour of the covariance function at the infinity and the singularity

characteristics of the spectral density at zero, see Klykavka et al. (2012), Olenko (2006)

and Olenko (2013).

Various statistical methods and results have been established to address the problems

arising within the phenomenon of long-range dependence, see Beran (1992), Beran (1994),

Giraitis et al. (2012), Pipiras and Taqqu (2017) and Samorodnitsky (2007). Some of these

are: distinguishing the long-memory behaviour of data, the estimation of the Hurst pa-

rameter, the statistical inference of long-range dependence, the study of limit theorems of

long-range dependence, spectral estimation and simulating processes with long-range de-

pendence. Beran (1992) reviewed and addressed diverse statistical methods for long-range

dependent data. The monograph by Beran (1994) studied various methodologies for the

statistical inference of long-memory processes with real-life applications. He demonstrated

limit theorems for the statistical inference of long-memory processes, specifically those for

simple sums, quadratic forms and Fourier transforms. He also proposed three estima-

tion methods for the Hurst parameter: heuristic approaches, time domain and frequency

domain maximum likelihood estimation (MLE) techniques. The suggested heuristic ap-

proaches comprise the rescale range (R/S) statistics initially introduced by Hurst (1951),

variance plots, log-log correlogram, semivariogram and log-log plots. Moreover, the least

squares regression methods were proposed for the spectral domain as another important

heuristic approach. These heuristic approaches are best considered as exploratory tools
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and are less efficient for statistical inference compared to MLE methods. Also, deriving

simple confidence intervals for these methods is a difficult task. Other important problems

such as the robust estimation of location and scale parameters in long-memory, forecasting,

regression modelling and goodness of fit tests were also discussed in Beran (1994).

The estimation of the long-range dependence parameter, H, in the discrete setting

was of growing interest in the recent past. It was extensively studied by many authors

employing three major methodologies, namely the Gaussian parametric estimation/Gauss-

Whittle contrast function (Fox and Taqqu (1986), Gao and Anh (1999), Gao et al. (2001),

Heyde and Gay (1989), Heyde and Gay (1993) and Yajima (1985)), log-periodogram lin-

ear regression (Geweke and Porter-Hudak (1983), Hurvich and Beltrao (1993), Robinson

(1994c), Robinson (1994b) and Robinson (1995b)) and Gaussian semiparametric/local

Whittle estimation (Robinson (1995a)). The parametric estimation approach has draw-

backs as the misspecification of the parametric model can result in inconsistent estimators

of the location and memory parameters. Therefore, the latter two methods which are

semiparametric approaches are better in many circumstances though they have slower

convergence rates than the parametric ones. Yajima (1985) studied the parameter esti-

mation of long-memory time series models introduced by Granger and Joyeux (1980) and

Hosking (1981) by utilizing MLE and least squares estimation approaches.

Robinson (1995a) suggested a semiparametric Gaussian estimate for H. The proposed

estimator was consistent and asymptotically normal. However, all these techniques were

limited to the discrete case. Anh et al. (1999) introduced the fractional Riesz-Bessel motion

(FRBM) which is an extension and a stationary counterpart of the classical FBM to model

fractional random fields with long-range dependence. The FRBM models exhibited both

long-range dependence and second-order intermittency properties simultaneously. The

parameter estimation of FRBM models was studied in Gao et al. (2001). They proposed

a novel estimation method for the parameter estimation of long-range dependence and

second-order intermittency. For this, they utilized a continuous form of the Gauss-Whittle

contrast function. The suggested estimators were asymptotically normal and consistent.

In the statistical inference of long-range dependent processes, the minimum contrast

estimator (MCE) technique played an important role. Anh et al. (2004) studied statistical

inference based on the higher-order spectra of random fields with probable long-range de-

pendence in the frequency domain. They proposed a quasi-likelihood or, in other terms, an

MCE method that was established from the information associated with the spectral den-
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sities of higher order. They included data tapering into the estimation method to eliminate

possible bias caused by the edge effects and showed the consistency and the asymptotic

normality of the consequent estimators. Similar results were obtained by Anh et al. (2007a)

and Anh et al. (2007b). Anh et al. (2007a) examined the consistency and asymptotic nor-

mality of the proposed group of MCEs for short- and long-range dependent stochastic

processes that were based on cumulant spectra of second- and third-orders. Espejo et al.

(2015) introduced a class of spatial long-memory models and showed the consistency and

asymptotic normality of the suggested MCEs for the long-memory parameters of Gegen-

bauer random fields. Further information regarding the present status of the theory of

the MCE approach and its application for long-range dependent random processes can be

found in Alomari et al. (2017) and the references therein. The asymptotic properties of

long-range dependent random fields and their functionals have been extensively studied

by Alodat and Olenko (2018), Alodat and Olenko (2020) and Alodat et al. (2020).

Anh et al. (2019b) considered long-range dependent spherical random fields with in-

creasing radii and investigated the asymptotic behaviour of regression parameter estima-

tors involved in the least squares estimation method of linear regression. For the least

squares estimator, they derived the limiting distribution and its convergence rate and

verified the results obtained through simulation studies. Li et al. (2020b) extended the

framework of functional data analysis to processes with long-range dependence. For the

temporal sum of observations of functional long-range dependent time-series, they devel-

oped the central limit theorem. They also estimated the Hurst parameter by employing a

semiparametric R/S technique. Due to the slower convergence rates and lower efficiency

of the previous estimation method, Li et al. (2020a) extended the results by utilizing a

semiparametric local Whittle estimation procedure. They considered long-range depen-

dent functional time series that are stationary and studied the estimation of the associated

memory parameter. They demonstrated the consistency and the asymptotic normality of

the resultant estimator.

1.4 Multifractionality and the Hölder exponent

The notion of multifractionality originated from fractionality. Initially, Kolmogorov (1940)

presented the concept of the fractional Brownian motion (FBM) as a generalization of the

classical Brownian motion. Subsequently, the FBM was analytically defined by Mandelbrot
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and Van Ness (1968) and emphasized its importance in real-world problems. The FBM is

characterized by the Hurst parameter H where H ∈ (0, 1). The pointwise Hölder exponent

was used to determine the regularity of the paths of a stochastic process. The Hölder

regularity and correspondingly, the pointwise Hölder exponent of the FBM can be specified

by its Hurst parameter H (Ayache and Véhel (2004)). For the FBM, it is a constant so that

the regularity does not change along the paths. The FBM was considered a mathematical

model in applications related to fields such as hydrology, finance, image processing, internet

traffic modelling, physics, turbulence, to name a few. The monograph by Doukhan et al.

(2003) methodically investigated the FBM and its various applications. Biagini et al. (2008)

discussed the stochastic calculus theory for the FBM with applications. Cohen and Istas

(2013) provided an impressive deliberation on fractional Brownian fields.

However, the FBM processes had limited practical applications in many situations

since they didn’t conform to real data. In particular, the FBM was not suitable to model

natural phenomena that had variable Hölder exponents. Thus, the multifractional Brow-

nian motion (MBM) was proposed as an alternative flexible stochastic model to overcome

such limitations. The MBM is an extension of the FBM where the Hurst parameter H

changes over time. The pointwise Hölder exponent of the MBM can be specified by its

Hölder function H(t) (Ayache and Véhel (2004)). The MBM was defined in two dif-

ferent ways. Firstly, Peltier and Véhel (1995) presented the MBM by incorporating an

integral representation of the FBM in the time-domain whereas secondly, Benassi et al.

(1998a) illustrated the MBM by utilizing an integral representation of the FBM in the

frequency-domain. Stoev and Taqqu (2006) considered a family of MBM processes which

included these two representations and studied the connection between them. Multifrac-

tionality concerns the fractal properties of the process: self-similarity properties and the

roughness of the trajectories. The multifractional processes found ample applications in

modelling many complex phenomena, see Bianchi and Pianese (2007) and Sheng et al.

(2011). The classical monograph by Ayache (2018) provided a comprehensive discussion

on multifractional stochastic fields and their wavelet decompositions. It also provided ex-

cellent studies of the Hölder exponents that determine the roughness of paths in pointwise,

local and global settings.

The Hölder exponent is a numerical measure of roughness. It is used to distinguish

the Hölder regularity of erratic functions locally. It was defined as H, H ∈ (0, 1), through

a Hölder condition by Mallat (1998) and Muzy et al. (1994). As the value of H gets

26



closer to zero, the regularity of the function decreases. Conversely, the smoothness of the

process increases along with the increasing Hölder exponent. For continuous functions,

their family of pointwise Hölder exponents were thoroughly studied by Andersson (1997),

Daoudi et al. (1998) and Jaffard (1995). They demonstrated that this family is the same as

the lower limits of series of functions which are continuous and non-negative. Traditionally,

the quadratic variations approach was used frequently for the estimation of the pointwise

Hölder exponents, see Benassi et al. (1998a), Benassi et al. (1998b), Benassi et al. (2000),

Coeurjolly (2001), Istas and Lang (1997a), and Kent and Wood (1997).

Many research studies focused on the estimation of multifractional processes to com-

prehend and utilize them better. Benassi et al. (1998a) studied the estimation of the MBM

processes and obtained an estimator for the Hurst functions which are continuously differ-

entiable. They considered a local version of the global approach used for the estimation of

the FBM processes and proved the consistency of the proposed estimator. These results

were extended by Coeurjolly (2005) in which they studied the Hurst functions that are

Hölderian. They proposed a method of local quadratic variations for the estimation of the

MBM, in particular a moments approach and showed the asymptotic normality and the

consistency of the estimates. Benassi et al. (2000) and Ayache et al. (2005) investigated

the estimation of multifractional processes that possess discontinuous pointwise Hölder

exponents and used a generalized quadratic variations approach in each of these studies.

Benassi et al. (2000) studied the estimation of the step fractional Brownian motion. Ayache

et al. (2005) proposed a family of multifractional processes, generalized multifractional

Gaussian processes, and explored the estimation of the erratic multifractional function.

Ayache and Taqqu (2005) examined another development of the MBM, multifractional

processes with a random exponent, where a stochastic process was substituted for the

Hurst function. Loboda et al. (2021) studied the regularity properties of such multifrac-

tional processes with a random exponent using a probabilistic approach. The obtained

results were valid for a wide class of moving average processes, in particular for multifrac-

tional Matérn processes. Ayache and Jaffard (2010) considered discontinuous functions

and studied their family of pointwise Hölder exponents. They showed that these Hölder

exponents can also be stated in terms of the lim infs of series of continuous functions.

Bardet and Surgailis (2013) proposed a nonparametric local estimation method for mul-

tifractional Gaussian processes. They used the increment ratio statistic to estimate the

local Hurst function and developed the multidimensional asymptotic theory for the pro-
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posed estimator. Another global estimation methodology established on a ratio statistic

was presented by Lebovits and Podolskij (2017) for the global regularity of the MBM.

The MBM has a major drawback as it relies on the mandatory requirement of the

continuous Hölder regularity in their sample paths. In practice, the pointwise Hölder ex-

ponent changes extensively in many applications, for example in finance, medical imaging,

turbulence and in telecommunications. Therefore, when the Hölder function is irregular

over time, the generalized multifractional Brownian motion (GMBM) was employed as a

good candidate to model such processes, extending the FBM and MBM. The GMBM was

introduced by Ayache and Véhel (1999) and Ayache and Véhel (2000). It was characterized

by using a functional parameter H(t) which belonged to a wider class of Hölder functions.

It was shown in Ayache and Véhel (1999) and Ayache and Véhel (2000) that under some

mild conditions, the pointwise Hölder exponent of the GMBM coincided with its functional

Hurst parameter. One of the major advantages of the GMBM is that it can be used to

model processes which exhibit both long-range dependence and erratic behaviour.

The generalized multifractional field was introduced by Ayache (2002) to study the

GMBM. It was represented by using a wavelet series expansion. The paper derived some

important properties that enabled the GMBM to be examined, in particular to identify its

pointwise Hölder exponent. Ayache and Véhel (2004) considered the GMBM and studied

the estimation of its pointwise Hölder exponent. They utilized a generalized quadratic

variations approach and proposed two estimators for the pointwise Hölder exponent. Both

the estimators were strongly consistent. Chapter 4 of this thesis develops a suggested

estimation methodology for multifractional spherical random fields. Another methodology

which generalized the MBM to obtain a very irregular Hölder function was suggested

by Herbin (2006). He introduced two classes of multiparameter developments of the MBM:

multifractional Brownian field and multifractional Brownian sheet. It was shown that the

derived multifractional Brownian field coincided with the results of Benassi et al. (1997).

Over recent years, fractional and multifractional paradigms were developed in multi-

dimensional settings. Richard (2018) considered Hölder random fields that include frac-

tional Brownian fields and examined the directional properties of the Hölder regularity of

their trajectories. D’Ovidio et al. (2016) studied the fractional spherical stochastic fields:

spherical fields that are dependent on space-time locations and driven by various stochastic

differential equations. Anh et al. (2018) investigated the fractional SPDEs defined on the

unit sphere with cosmological applications. They examined the fractionality in the deriva-
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tives. The utilized fractional SPDE models showed long-range dependent behaviour. The

conceptual multifractional space-time models were examined by Calcagni et al. (2016) and

Calcagni (2019) in a detailed manner. They indicated that the expansion of the universe

corresponds to multifractional behaviour. Calcagni et al. (2016) considered the multi-

fractional models that possess q-derivatives and provided numerical studies using CMB

data from the Far Infrared Absolute Spectrophotometer and Planck mission. Calcagni

(2021) presented some theoretical perspectives of multifractional models and discussed

their applications in the fields of cosmology and quantum gravity.

1.5 Cyclic long-memory processes

In reality, numerous time series often exhibit fluctuations with periodic behaviour/sea-

sonal variation. The phenomenon of long-range dependence was also observed in such

cyclic and seasonal processes, see Hassler and Wolters (1995), Montanari et al. (2000),

Porter-Hudak (1990) and Ray (1993). Hence, research on cyclic long-memory processes

received enormous attention over the past years, see Arteche and Robinson (2000), Alo-

mari et al. (2017), del Barrio Castro and Rachinger (2021), Hidalgo and Soulier (2004),

Whitcher (2004) and the references therein. Arteche and Robinson (1999) presented an

excellent discussion on the application, estimation and statistical inference of seasonal and

cyclic long-memory processes. In the literature, long-memory processes with spectral sin-

gularities at the origin is a comprehensively studied research area, see Dahlhaus (1989),

Fox and Taqqu (1986), Giraitis and Surgailis (1990), Heyde and Gay (1993) and Yajima

(1985). However, spectral singularities at unknown poles that characterize cyclic and sea-

sonal long-memory processes are less studied. Traditionally, cyclic processes are modelled

by the two major models: an ARMA model that possesses a non-zero spectral peak and a

non-random trend with a stationary random noise. In the first case, the cyclical behaviour

fades with time whereas in the second case, the cyclical feature remains fixed with time.

Cyclic long-memory processes are an intermediate class that has a pole in their spectral

densities, see Arteche and Robinson (1999).

Various statistical approaches have been historically developed for cyclic long-memory

processes. Several parametric models for cyclic long-memory processes have been pro-

posed by Anděl (1986), Hosking (1984) and Gray et al. (1989). Gray et al. (1989) pro-

posed a stationary class of the long-memory processes which is a generalized version

29



of the FARIMA models. These models were referred to as the Gegenbauer autoregres-

sive moving-average (GARMA) models as they utilized the properties of the Gegenbauer

polynomials’ generating function in their construction. Porter-Hudak (1990) considered

seasonal auto-regressive fractionally integrated moving-average (SARFIMA) models, also

known as seasonal fractional ARIMA models, to study USA monetary aggregate data that

exhibited seasonal long-memory behaviour. Hassler (1994) proposed flexible ARFISMA

models. Chung (1996b) provided an in-depth analysis of the GARMA processes’ long-

memory characteristics. Woodward et al. (1998) suggested a k-factor GARMA model for

long-memory processes that have multiple spectral poles. For cyclic long-range dependent

random fields, the asymptotic properties of their functionals and the associated limit the-

orems were extensively studied by Espejo et al. (2014), Espejo et al. (2015), Ivanov et al.

(2013), Klykavka et al. (2012) and Olenko (2013).

In practice, the parameters of seasonal/cyclic long-memory processes were often esti-

mated in a two-step procedure. First, the spectral singularities were estimated and subse-

quently, a classical parametric method was employed to estimate the memory parameter.

For Gegenbauer processes, Yajima (1996) proposed the initial estimation of the singularity

parameter by the periodogram maximization. The statistical inference for the simulta-

neous estimation of the two parameters of cyclic long-range dependent time series is the

main interest of this thesis; see Chapter 5.

Over recent years, diverse strategies were developed for the parameter estimation of

cyclic-long memory processes with one non-zero spectral singularity. Chung (1996a) stud-

ied the parametric estimation of Gegenbauer processes with two parameters by employing

a conditional sum of squares estimation strategy in the time-domain. Giraitis et al. (2001)

introduced a parametric joint estimation method for the unknown spectral singularity and

memory parameters of cyclic long-memory processes in the frequency-domain. It utilized

a maximization of Whittle approximation of the Gaussian likelihood. They showed that

the asymptotic behaviour of the Whittle estimates remains the same, irrespective of the

knowledge of singularity location. Though they proved the consistency of the estimates

of singularity parameter, its asymptotic normality and the optimal rates of convergence

remained undetermined. In comparison, Hidalgo and Soulier (2004) studied the semipara-

metric estimation of the hidden location and memory parameters in a two-phase strategy

and showed that the convergence rates of the estimators are optimal. They utilized the

periodogram maximization technique of Yajima (1996) for the estimation of the location
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parameter and a modification of the GPH estimator of Geweke and Porter-Hudak (1983)

for the long-memory parameter. They also showed that the statistical properties of the

estimator of long-memory parameter are unaffected by the inadequate knowledge of the

location parameter.

Hidalgo (2005) considered a consistent nonparametric estimator of the location of the

spectral pole and its limiting behaviour was derived. He suggested a two-phase semipara-

metric estimator for the long-memory parameter and studied its asymptotic behaviour.

The results suggested that the convergence rate and the limiting distribution of the esti-

mate of the memory parameter were not affected by the singularity parameter estimation.

Artiach and Arteche (2011) proposed an iterative algorithm procedure established on the

periodogram maximizer method for the parameter estimation of the unknown non-zero

frequency of cyclic long-memory processes. It outperformed the traditional techniques

limited to Fourier frequencies, in particular to that of Hidalgo and Soulier (2004). The

obtained theoretical findings were demonstrated with applications to the famous sunspot

data and determination of the business cycle of the US unemployment increments. Dis-

sanayake et al. (2016) introduced a quasi-likelihood approach employing the Kalman filter

for the parameter estimation of Gegenbauer long-memory processes.

Although the parameter estimation of cyclic long-memory processes has resulted in a

proliferation of research, the simultaneous estimation of both long-memory and singular-

ity parameters is a challenging problem. Notably, less is known regarding the inferential

statistics of the proposed estimators. Alomari et al. (2020) considered Gegenbauer-type

cyclic long-memory processes. They proposed a semiparametric estimation method in

which novel simultaneous estimators were introduced for the long-memory and singularity

location parameters. For the estimation procedure, they utilized the generalized filtered

method of moments technique which was established on general filter transforms. Chap-

ter 5 of this thesis extends the results obtained by Alomari et al. (2020) and studies the

asymptotic properties of the introduced simultaneous estimators for cyclic long-memory

processes. Beaumont and Smallwood (2019) examined the asymptotic properties of the

time- and frequency-domain likelihood-based estimators of the Gegenbauer processes, cor-

respondingly conditional sum of squares and Whittle estimators. By utilizing a Monte

Carlo analysis, the substantial efficacy of the two types of estimators was demonstrated

and supported the distribution theory suggested by Chung (1996a) and Chung (1996b)

for the cycle length ruling parameter.
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Several researchers investigated cyclic long-memory processes with multiple spectral

singularities and developed parametric and semiparametric estimation techniques for them,

see Arteche and Robinson (2000), Arteche (2020), del Barrio Castro and Rachinger (2021),

Chan and Tsai (2012), Ferrara and Guégan (2001) Giraitis and Leipus (1995), Hunt et al.

(2021), Robinson (1994a) and Whitcher (2004). Arteche and Robinson (2000) introduced

seasonal or cyclic processes that consist of asymmetric long-memory characteristics. They

considered a semiparametric inference approach for cyclic long-memory processes with one

or more non-zero frequencies by extending the general semiparametric techniques such as

log-periodogram and Gaussian/Whittle estimation methods. Three semiparametric tests

of spectral symmetry were provided and empirical studies with application to UK infla-

tion data were presented. Arteche and Velasco (2005) extended the results of Arteche and

Robinson (2000) by considering the tapering and trimming of the proposed semiparamet-

ric estimates. They showed that data tapering diminishes the bias made by asymmetrical

spectral densities around cyclical frequencies.

Ferrara and Guégan (2001) studied the parameter estimation of k-factor Gegenbauer

processes. They presented two types of estimation techniques, namely a semiparametric

approach and a quasi-likelihood approach for the long-memory parameter of cyclic long-

memory processes. These techniques were established on the log-periodogram and the

Whittle-likelihood, respectively. The obtained results were demonstrated by applications

to Nikkei spot index data. Palma and Chan (2005) proved the asymptotic normality

and consistency of the exact MLE method for Gaussian seasonal long-memory processes

and demonstrated applications to internet traffic data that displayed multiple spectral

singularities. Chan and Tsai (2012) studied the asymptotic properties of an aggregated

SARFIMA process and the MLE method of its limiting spectral density. The obtained

results were demonstrated with application to internet traffic data that consisted of mul-

tiple spectral peaks in its periodogram. Arteche (2020) introduced a generalized form of

the exact local Whittle estimator suggested by Shimotsu and Phillips (2005) for the joint

estimation of the memory parameters in seasonal and cyclic long-memory processes with

multiple spectral poles. Hunt et al. (2021) suggested a novel estimation method for the

parameter estimation of k-factor Gegenbauer processes which was motivated by Whittle’s

methodology. It was established on a nonlinear least-squares regression method in the

frequency-domain.
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1.6 Wavelet-based estimation of parameters of stochastic

processes

Wavelets have been applied in the identification of abrupt changes and in the study of the

local behaviour of time series. The theory of wavelets emerged in the 1980s. Farge (1992),

Meyer (1992) and Meyer (1993) provide an extensive discussion on the history of wavelets,

wavelet transforms and their applications in cosmology, image processing, numerical anal-

ysis, signal processing, turbulence, to name a few. Fourier analysis is ideally suited to

stationary time series analysis. In contrast, wavelets are efficient, simpler and capable of

handling the non-stationarities in signals due to the fact that they are localized in time/s-

pace. Wavelets have enabled time series analysis both in scale and time. There are two main

classes of wavelet transforms used in the literature. They are continuous wavelet trans-

form (CWT) and discrete wavelet transform (DWT). A wavelet sequence is constructed by

means of dilations and translations of the mother wavelet. A plethora of mother wavelet

forms has been introduced such as Haar, Mexican hat, Meyer, Shannon and Morlet. Nu-

merous R packages have been developed to accommodate such wavelets, for instance,

MassSpecWavelet (Du et al. (2006)), mwaved (Wishart (2019)), Rwave (Carmona

and Torresani (2021)), waveslim (Whitcher (2020)) and wavethresh (Nason (2016)).

Wavelet analysis was well developed in recent years. It plays a key role in the spectral

analysis of time series and time-dependent data, see Beran and Shumeyko (2012), Cazelles

et al. (2007), Chesneau et al. (2019), Chiann and Morettin (1998), Cornish et al. (2006),

Nason and Sachs (1999), Percival and Walden (2000), Priestley (1996), Shirazi and Doosti

(2015) and the references therein. The monograph by Ogden (1997) provided the basic

theory of wavelets and addressed its statistical applications. For stationary discrete pro-

cesses, Chiann and Morettin (1998) developed the wavelet-based spectral analysis. They

introduced the wavelet spectrum and derived the large sample properties of the DWT of

sample values. The wavelet periodogram was utilized as the wavelet spectrum estimator.

The classical monograph by Percival and Walden (2000) introduced the wavelet approach

for the spectral analysis of time series. It was mainly focused on the DWT, the maximal

overlap DWT and the discrete wavelet packet transform with applications to real data. It

also discussed various facets of wavelet theory, in particular, wavelet variance, the study of

long-memory processes using wavelets and wavelet-based estimation of signals. Serroukh

et al. (2000) studied the time-scale characteristics of time series using a wavelet variance
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estimator. Cazelles et al. (2007) discussed the wavelet-based approach for the spectral

analysis of time-dependent time series from epidemiological studies. Guerrier et al. (2021)

proposed a robust wavelet-based approach for the statistical inference of latent time series

models. They utilized the generalized method of wavelet moments technique to derive the

asymptotic properties of the robust estimators.

In recent years, wavelet-based estimation techniques have been instrumental in the

parameter estimation of long-memory processes. This is due to the fact that the DWT

of long-memory time series results in wavelet coefficients that have almost no correla-

tion within and between each of the levels. Moulines et al. (2007) studied the estimation

of the memory parameter of long-memory time series models by employing a wavelet-

based semiparametric methodology. They used the log-regression estimation method pro-

posed by Abry and Veitch (1998). They considered observations in discrete-time and their

wavelet coefficients, derived their spectral density, and studied the asymptotic approxima-

tions. Another wavelet-based approach was considered by Moulines et al. (2008) for the

long-memory parameter estimation by utilizing a semiparametric local Whittle estimation

method. They derived the asymptotic normality of the estimator in the case of a Gaus-

sian process and its consistency and rate optimality under the condition that it’s a linear

process. For the trend-function estimation of long-range dependent time series models,

Beran and Shumeyko (2012) proposed a data-adaptive wavelet-based technique.

Whitcher (2004) considered stationary seasonal long-memory time series models with

one or more spectral singularities and investigated how wavelet transforms can be used

for their estimation. He studied the discrete wavelet packet transform and its maximal

overlap version for the analysis of seasonal long-memory time series. He proposed an ap-

proximate MLE approach which was established using the wavelets. The results suggested

that the performance of the wavelet-based method was similar to the Whittle likelihood

approach under the condition of a parametric-type spectrum for the likelihood construc-

tion. Similarly, an alternative wavelet-based approximate MLE method was presented by

Boubaker (2015) for the parameter estimation of stationary k-factor Gegenbauer processes.

According to the obtained results, the new estimator achieved an improved performance

in many settings compared to Whitcher (2004) and classical Whittle estimators. Then,

for non-stationary seasonal long-memory processes, Lu and Guegan (2011) proposed a

novel class of stochastic models, a k-factor Gegenbauer process that is locally station-

ary. They implemented a wavelet approach for the parameter estimation of time-varying
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memory parameters and proved the consistency of the parameter estimates. The pro-

posed wavelet algorithm was demonstrated with applications to Nikkei stock average data.

Analogously, Boubaker and Sghaier (2015) introduced a novel semiparametric family of

seasonal long-memory (SEMIGARMA) models extending the classical GARMA models.

The corresponding class of models permitted the simultaneous presence of a nonlinear

stochastic trend and seasonal time-dependence. They incorporated the wavelet-based es-

timation method suggested by Whitcher (2004) for the parameter estimation of the novel

k-factor GARMA-FIAPARCH model with applications to time series data from MENA

stock markets.

Wavelet-based estimation techniques have been popular among parameter estimation

strategies for different types of stochastic processes. For example, Abry and Didier (2018)

studied the wavelet analysis of the vector-valued counterpart of the FBM process: operator

FBM. They suggested a wavelet-based approach (wavelet spectrum eigenstructure) for the

parameter estimation of the matrix Hurst exponent of the bivariate operator FBM pro-

cess. In addition, Abry et al. (2019) examined the semiparametric two-phase estimation

of the Gaussian mixed fractional processes. They employed a wavelet-based methodol-

ogy for the estimation of memory parameters and the demixing matrix. In addition, the

asymptotic normality of the proposed estimators was derived in discrete-time as well as

in continuous-time. Boniece et al. (2021) considered a wavelet-based estimation tech-

nique for the parameter estimation of the tempered FBM. They used wavelets to develop

a computationally powerful hypothesis test to compare the FBM model with the alter-

native tempered FBM model. They also determined the asymptotic normality and the

consistency of the wavelet-based estimator.

Furthermore, wavelet methods played an important role in the study and series repre-

sentation of fractional and multifractional processes, see Ayache and Taqqu (2005), Ayache

et al. (2007), Ayache (2018), Ayache and Esmili (2020) and Ayache et al. (2020). Ayache

and Taqqu (2005) considered wavelet series expansions of multifractional processes with

a random exponent and investigated their self-similarity properties and Hölder regularity.

Ayache et al. (2007) studied the wavelet-based representation of the generalized multi-

fractional processes. The monograph by Ayache (2018) discussed the development of the

wavelet series expansion of the MBM. It also addressed the application of the wavelet

methodology in the path regularity identification of the multifractional stochastic fields.

Ayache and Esmili (2020) studied the generalized Rosenblatt process and its series repre-
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sentation using wavelets. Analogously, Ayache et al. (2020) established a wavelet approach

for the expansion of harmonizable fractional stable sheets.

1.7 Cosmological background

The universe originated about 14 billion years ago. The cosmic microwave background

radiation (CMB) eventuated about 380,000 years after the Big Bang. After its discovery

it was thought to be the remnant radiation from the Big Bang that fills the universe as

the background. Its unforeseen discovery was made by Arno Penzias and Robert Wilson

who were American radio astronomers. It was done in 1964 and they won the Nobel

prize in Physics in 1978, see Penzias and Wilson (1965). The CMB cannot be detected by

usual telescopes. Its temperature is approximately 2.73◦ above absolute zero (2.73 kelvin).

It consists of a temperature and an electromagnetic spectrum and is best observable in

the microwave part of the electromagnetic spectrum, see NASA (2021). The CMB is

detectable only through a far-infrared or a radio telescope. It is the primordial source of

information left to understand the origin of the early universe.

Earlier, the universe was in an extremely hot and dense state. During this time, the

universe comprised an opaque composition of a plasma/ionised gas. Therefore, the atoms

presented at that time couldn’t reconcile and were broken down into protons and electrons.

After the Big Bang, the universe underwent accelerated inflation and expansion and still

continues to expand at present. Along with the expansion, the universe started to cool

down. Thus, the recombination of atoms was possible about 380,000 years after the Big

Bang. The first hydrogen atoms were formed once the free electrons, scattered through the

universe, became trapped in the orbits of the atomic nuclei, making them stable. As the

electrons in high-energy levels started falling down on lower energy levels, photons were

emitted and the first light was radiated, see Castelvecchi (2019). This ancient light in the

cosmic history is termed as the CMB and this occurrence is known as the recombination/

epoch of re-ionization. After the recombination era, other atoms such as oxygen, carbon

and iron formed within the hearts of stars.

For the very first time, in the late 1940s, George Gamow, Ralph Alpher, and Robert

Herman suggested the presence of CMB in the midst of their studies investigating the

nucleosynthesis of light elements such as hydrogen, helium and lithium in the ancient uni-

verse (Alpher et al. (1948a) and Alpher et al. (1948b)). At this time, they understood that
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the universe must be hot for the combination of the nuclei of those light elements (Nasel-

sky et al. (2006)). Also, they perceived that the CMB would be able to be seen in the

present day with the spread of the residue radiation from the Big Bang throughout the

universe. The most historic measurements of the CMB were made by Arno Penzias and

Robert Wilson in 1964. At that time, although they verified the presence of the CMB,

they weren’t able to identify the CMB in a detailed manner.

Until now, the space missions, Cosmic Background Explorer (COBE), Wilkinson Mi-

crowave Anisotropy Probe (WMAP) and Planck have been voyaged to investigate the

CMB. In 1989, NASA launched its first mission on CMB, namely the COBE (Efstathiou

et al. (1992)). One of the major discoveries of the COBE mission was to verify that the

CMB spectrum conforms to a blackbody spectrum with 2.73 kelvin temperature radia-

tion (Smoot (2007)). Further, the COBE mission discovered that the CMB consists of

slight temperature variations across the sky. They are also known as CMB anisotropies.

In recognition of the significant explorations achieved by the COBE mission, John Mather

and George Smoot were awarded the Nobel prize in Physics in 2006. Then, in 2001, NASA

launched its second space mission on CMB, namely the WMAP (Spergel et al. (2003)).

The sensitivity of the CMB measurements taken by the WMAP mission is 45 times and

the angular resolution is 33 times that of the COBE mission (Smoot (2007)) which allowed

the small temperature fluctuations to be measured more precisely. The WMAP mission

resulted in the development of the standard cosmological model (Komatsu et al. (2009)).

The standard cosmological model is known as the ΛCDM (Lambda Cold Dark Mat-

ter) model (Robson (2019)). According to this model, the universe comprises two main

characteristics, homogeneity and isotropy on a large scale. The property of homogeneity

suggests that each part of the universe has approximately equivalent attributes and the

isotropy feature implies that the properties of the universe are independent of the spatial

directions. The standard cosmological model can be explained with a few parameters such

as dark matter and dark energy, the ordinary matter’s density, the universe geometry, the

Hubble constant, etc, see Bjorken (2003) and Robson (2019) for more details. The uni-

verse consists of 68% dark energy, 27% dark matter and 5% ordinary matter (Ade et al.

(2014) and NASA Science (2021)).

The Planck mission was launched in 2009 by the European Space Agency (Adam et al.

(2016b) and Planck Science Team (2021)) with the main objective of finding evidence

to validate and observe deviations from the established standard cosmological model.
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In 2013, they released the highest precision CMB map from Planck CMB data (Ade et al.

(2014)). The Planck mission captured the widest frequency range considering the CMB

anisotropies of far-infrared and microwave regions with higher resolution than the previous

space missions. The Planck CMB data have been observed at 5 arc minutes resolution

on the CMB sky (Smoot (2007)). Figure 1.1 shows fractional variations of the CMB

temperature that were observed by the Planck mission in 2009. It was obtained using the

R package rcosmo (Fryer et al. (2020) and Fryer et al. (2019)).

Figure 1.1: The CMB observed by the Planck mission

Planck enables astronomers to estimate the parameters that describe the early universe

by investigating the CMB and developing various models of its changes over billions of

years. Figure 1.2 depicts the CMB angular power spectrum distinguished by the Planck

mission (European Space Agency and the Planck Collaboration (2021)). It comprises

temperature fluctuations observed at different angular resolutions in decreasing order of

magnitude. The sample values based on the Planck CMB observations are shown by

the red dots. The optimum fit with the standard cosmological model is shown by the

green curve and the shaded region depicts the cosmic variance. It is clear from Figure 1.2

that the data points conform to the standard model of cosmology at very small angular

scales whereas they deviate from this in the large angular scales (say greater than 60

degrees). Also, a distinct outlier can be observed near the angular scales greater than

6 degrees which is an anomalous CMB observation. Thus, these findings question the

validity of the standard cosmological model and in particular, demonstrate the importance

of investigating the non-Gaussianity of the CMB data.

Several studies uncovered the new models underlying the CMB data, checked for the
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Figure 1.2: The CMB angular power spectrum observed by the Planck mission
(Image credits: European Space Agency and the Planck Collaboration (2021))

Gaussianity of the CMB data and explored the outer solar system based on the CMB

data. Hawking and Ellis (1968) investigated the presence of singularities in the universe,

regarding the radiation of cosmic black-bodies and discussed the phenomenon of space-

time singularities. They showed that under some specific assumptions, the existence of a

singularity in the universe is manifested by the black-body radiation of 3 kelvin. Leclercq

et al. (2014) showed the constraints on primitive non-Gaussianity with substantial exam-

ples from major analysis approaches applied to Planck 2013 data.

Traditionally, CMB data are modelled by the isotropic, Gaussian spherical random

fields under the assumptions of the standard cosmological model. However, there have

been issues and concerns regarding the statistical distribution of the CMB data, see Bar-

tolo et al. (2010) and Marinucci (2004) for a detailed discussion. Various methodologies

were used to investigate the non-Gaussianity of the CMB data and to identify departures

from the standard cosmological model. For example, they considered the angular power

spectrum (Durrer (2015)), bispectrum statistic (Ferreira et al. (1998), Hill (2018), Yadav

et al. (2007)), trispectrum statistic (Munshi et al. (2011), Smidt et al. (2010)), wavelets

(Barreiro et al. (2000), Cayón et al. (2001), Hobson et al. (1999), McEwen et al. (2005),

McEwen et al. (2006), Pando et al. (1998), Starck et al. (2004)), Minkowski functionals

(Buchert et al. (2017), Hikage et al. (2006), Hikage et al. (2008), Hikage et al. (2009),

Novikov et al. (2000)), fractal analysis (Coleman and Pietronero (1992), Diego et al.
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(1999), Leonenko and Shieh (2013)), hot and cold spot statistics (Chingangbam et al.

(2012), Cruz et al. (2005), Larson and Wandelt (2004)), principal component analysis

(Bromley and Tegmark (1999), Regan and Munshi (2015)) correlation functions (Kogut

et al. (1996)), entropy methods (Minkov et al. (2019)), etc.

Of these, Durrer (2015) considered the CMB angular power spectrum to investigate

the non-Gaussianity of the CMB. He explored the evolution of cosmological perturbations

and their impacts, such as polarization and temperature fluctuations on the CMB. He

mentioned that the oscillatory behaviour in the CMB angular power spectrum including

the acoustic peaks demonstrate the primordial density fluctuations that originated after

the Big Bang. These density fluctuations have been subjected to gravitational instabil-

ity and resulted in the formation of large-scale structures, such as galaxies and galaxy

clusters (de Bernardis et al. (2000)).

Bromley and Tegmark (1999) investigated the Gaussianity of the CMB data from

the COBE mission using an eigenmode analysis approach. The series of tests that were

conducted agreed with the Gaussianity of the CMB data. Further, they assessed the sig-

nificance of the non-Gaussianity detected using the bispectrum and fourth-order wavelet

statistics by Pando et al. (1998) and Ferreira et al. (1998). They stated that Gaussianity

cannot be completely rejected from COBE data, and the non-Gaussian fields should be

studied in a quantitative manner. Regan and Munshi (2015) performed a principal com-

ponent analysis (PCA) in the framework of a skew-spectrum statistic to investigate the

primary and secondary non-Gaussianities in the CMB data. They applied the techniques

to a Planck-like data set and highlighted the importance of PCA analysis in estimating

and distinguishing the different sources of non-Gaussianity.

Hobson et al. (1999) used wavelet transforms to detect the non-Gaussianity in CMB

maps. They considered non-Gaussian CMB maps that resulted from cosmic strings to-

gether with the superimposed Gaussian signals. Their results surpassed the ones obtained

by other techniques such as Minkowski functionals and methods based on quantifying tem-

perature distribution moments. Subsequently, Barreiro et al. (2000) used spherical Haar

wavelets and Cayón et al. (2001) utilized spherical Mexican Hat wavelets to investigate the

non-Gaussianity of the CMB data from the COBE mission. Both of their studies found

no strong evidence for the non-Gaussianity in the four-year COBE-DMR data.

Starck et al. (2004) employed multi-scale methods such as wavelet, curvelet and ridgelet

transforms to determine non-Gaussian indications in the CMB. They performed a multi-
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scale analysis of three anisotropic CMB maps generated by the Gaussian, cosmic strings

and the kinetic Sunyaev-Zel’dovich (SZ) effects where the latter two are non-Gaussian

consequences. The bi-wavelet transform was able to more strongly distinguish the non-

Gaussian signs of the CMB maps than the other two methods. Thus, the utilized tech-

niques are useful to detect the non-Gaussian signatures of CMB maps due to a mixture

of such effects.

McEwen et al. (2005) and McEwen et al. (2006) used directional spherical wavelets

to examine non-Gaussianity in the CMB data from the WMAP mission. McEwen et al.

(2005) detected significant departures from Gaussianity from the observed skewness and

kurtosis statistics in the coefficients of the real Morlet wavelet and spherical elliptical

Mexican hat wavelets. As the Bianchi correction in the WMAP maps removed many

detected anomalies from the previous studies, McEwen et al. (2006) conducted a further

analysis to confirm the results. The results confirmed the deviations from Gaussianity

observed via the skewness statistics of spherical wavelet coefficients while they rejected

the ones observed from the kurtosis statistic.

Amidst the employed multifractal methods, Diego et al. (1999) conducted a multi-

fractal analysis using a partition-function-based approach to investigate the fractal nature

and non-Gaussianity of the CMB data from the COBE mission. The results showed the

absence of a fractal nature with no evidence of non-Gaussianity. Further, Leonenko and

Shieh (2013) investigated the Rényi function which is an important technique in mutifrac-

tal analysis. They derived the Rényi functions for three multifractal models, namely the

log-normal model, log-gamma model and log-negative-inverse-gamma model which can be

used to study the non-Gaussianity of the CMB data.

Novikov et al. (2000) utilized Minkowski functionals and peak statistics to investigate

the non-Gaussianity of CMB data from the four-year COBE mission. They computed

the Minkowski functionals and peak statistics for a non-Gaussian model which is χ2 dis-

tributed, a Gaussian model and for COBE data and compared the results. The results

have been remarkably different with no significant evidence from COBE data that con-

firm either the Gaussian or non-Gaussian models. Similarly, Buchert et al. (2017) used

Minkowski functionals to study the non-Gaussianity in Planck 2015 CMB maps. They

performed comparisons using the Hermite and perturbative expansions for the Planck

CMB data and simulated maps with ΛCDM model. They also disclosed weak evidence

for non-Gaussianity in the Planck 2015 CMB data.
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Chingangbam et al. (2012) used hot and cold spot statistics to discriminate the different

types of non-Gaussian models. They considered simulated non-Gaussian models; one with

primordial non-Gaussianity and another with temperature fluctuations according to a

probability density function. They suggested that in addition to Minkowski functionals,

hot and cold spot statistics are probes of non-Gaussianity in distinguishing the different

types of non-Gaussianity in the CMB data.

Further, cosmic anomalies have been investigated as an indication of the non-Gaussian

CMB and ample discussions and research have been conducted regarding them, see Ad-

hikari et al. (2016), Copi et al. (2010), European Space Agency (2021c), Hamann et al.

(2021) and Muir et al. (2018). Cosmic anomalies are vague features observed at some

angular scales of the CMB sky sphere. It is difficult to explain the underlying reasons for

such anomalies from the standard cosmological model. It is a known fact that the interfer-

ence from the Milky Way obstructs the CMB near the galactic plane as the radio signals

emitted from Milky Way are noisier than the CMB. Nevertheless, as these radio wave

emissions have a predictable smooth spectrum, they can be deducted from the observed

CMB spectrum to create a precise CMB map, see Castelvecchi (2019).

Adhikari et al. (2016), Copi et al. (2010) and Muir et al. (2018) investigated the large-

scale anomalies in the CMB data. Of these, Adhikari et al. (2016) studied the expected

CMB power asymmetry under the non-Gaussianity of the primordial temperature fluctu-

ations. They considered the local non-Gaussianity and their numerical studies resulted

in weak confirmation for the large-scale non-Gaussianity in the CMB data from WMAP

and Planck missions. Hamann et al. (2021) proposed a direction-dependent probe (AC

discrepancy approach) to check the Gaussianity of the CMB data with applications to

Planck 2015 and 2018 data. They suggested that these probe coefficients should be in-

dependent Gaussian random variables for a given direction. They compared their results

with the simulated isotropic Gaussian CMB maps and observed significant departures

from Gaussianity for the inpainted Planck maps, particularly near the masked regions.

According to the latest findings of a study (Planck Collaboration et al. (2020)) which

analyzed CMB polarization data, the Planck mission reveals no advanced verification

for the underlying causes of the cosmic anomalies and still they remain an open problem.

Though these cosmic anomalies might be due to outliers in data or inappropriate statistical

methods, they may also be due to new physics. Therefore, astronomers hope to further

unveil the mystery behind these cosmic anomalies through the next generation missions.
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The next generation CMB missions, such as CMB-S4 (Abazajian et al. (2019)), COrE

(Collaboration et al. (2011)), Euclid (European Space Agency (2021a) and Racca et al.

(2016)), and LiteBIRD (Matsumura et al. (2014)) have been designed for more refined

measurements of the detailed structure of CMB and the universe. CMB-S4 is a ground-

based CMB mission which will observe the CMB with 21 telescopes physically located

at Atacama desert, Chile and South Pole. COrE is a full-sky satellite which will detect

microwave-band frequencies and will mainly focus on the CMB polarization. Euclid is a

European Space Agency based mission which will use a Korsch-type telescope to measure

the visible to near-infrared wavelengths. LiteBIRD is a satellite which will explore the

B-mode polarization patterns and cosmic inflation. They will investigate the CMB deeply

at narrower angles that will result in high resolution CMB maps. It is believed that the

CMB data from these missions will interpret the slight variations of the CMB temperature

and polarization with an unprecedented precision. Thus, giving hope to further unveil the

non-Gaussianity of the CMB data, these missions will hopefully discover the in-depth

details of dark matter, dark energy and the development of the cosmic structures.

1.8 Overview of the results

The main objective of this thesis is to study and develop stochastic models and statis-

tical methods for spatial and long-range dependent data. These data are modelled as

realizations of spherical random fields and functional time series. Also, it concerns the

investigation of non-Gaussianity in the CMB data from the Planck mission and develops

a methodology which is useful for investigating non-Gaussianity in future CMB missions.

First, the thesis studies the multifractal and multifractional behaviour of spherical

random fields. The contents of Chapters 3 and 4 focus on this context. Secondly, the thesis

studies the statistical inference of long-range dependent data with specific consideration to

cyclic long-memory processes. The content of Chapter 5 focuses on this study. The results

obtained in this thesis are novel and were derived considering rather general assumptions.

The concepts of multifractality and multifractionality play an important role in study-

ing the properties of the underlying random fields. Although multifractal and multifrac-

tional approaches have been extensively used in the one-dimensional case, their applica-

tions in the multi-dimensional case or on manifolds are less developed. This thesis extends

the applications of multifractal and multifractional theory to the case of spherical random
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fields. Next, developing inferential statistics for functional time series with spectral singu-

larities at non-zero frequencies make a significant contribution to the statistics of random

processes with long-range dependence. Numerical studies including Meyer, Shannon and

Mexican wavelets and extensive simulation studies were conducted to confirm the theo-

retical findings.

Chapter 2 presents the fundamental concepts, notations, definitions and auxiliary re-

sults related to the theory of stochastic processes, random fields and spherical random

fields. Further, it introduces the HEALPix ordering schemes employed in the CMB data

analysis, spherical harmonics and Hermite polynomials. Some of the definitions in this

chapter may reappear in Chapters 3, 4 and 5 as these chapters are the corresponding

published/submitted articles.

Chapter 3 is based on the paper published by Leonenko, N., Nanayakkara, R. and

Olenko, A. Analysis of spherical monofractal and multifractal random fields, Stochastic En-

vironmental Research and Risk Assessment, 35(3):681–701, (2021) (Leonenko et al. (2021)).

Chapter 4 is based on the paper submitted by Broadbridge, P., Nanayakkara, R. and

Olenko, A. On multifractionality of spherical random fields with cosmological applica-

tions (Broadbridge et al. (2021)).

Chapter 5 is based on the paper submitted by Ayache, A., Fradon, M., Nanayakkara, R.

and Olenko, A. Asymptotic normality of simultaneous estimators of cyclic long-memory

processes, which will appear in Electronic Journal of Statistics (Ayache et al. (2021)).

In Chapter 3, the Rényi function approach was used to examine the multifractality

of spherical random fields whereas in Chapter 4, the Hölder exponent approach was used

to probe the multifractionality of spherical random fields. Chapter 5 of this thesis proves

the asymptotic normality behaviour of the simultaneous estimators of parameters of cyclic

long-memory processes. Initially, we planned to develop the methodology for stochastic

processes and then to extend the results in Chapter 5 to the case of random fields. Due to

a lack of time and as the thesis was prolonged, the third research project was undertaken

only for the one-dimensional case. The results for random fields similar to Chapter 5 will

be finalized in future publications.

The computing techniques implemented for modelling purposes, to obtain results and

to uphold the theoretical findings in Chapters 3, 4 and 5 are correspondingly included

in Appendices A, B and C as source codes. As the serial computational methodology to

obtain many results, in particular, Figure 5.4, which is included in Appendix C is rather
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time consuming, its parallelized version is included in Appendix D. Appendix D provides a

detailed analysis of the performance of the parallelized code over the serial version. All the

numerical simulation studies were carried out using the high performance computer Gadi

of the NCI. The obtained results code and methodology can be applied to other spherical,

geoscience, environmental, medical imaging, embryology and functional time series data.

The main content of this thesis is based on three published or submitted articles. The

author made equal contributions in the process of developing the theoretical section, prov-

ing results, providing examples, composing the articles and preparing the final editions

of the articles for publication. The author made the main contribution in developing the

software code. In addition, the author conducted all the statistical simulation studies

specifically applying high performance computing techniques through the Linux compu-

tational cluster Gadi of the NCI.

The obtained research findings and results were presented at the Young Statisticians

Showcase 2019 of the Victorian branch of the Statistical Society of Australia, Young Statis-

ticians Conference 2019 Canberra, SEMS and SHE College Three Minute Thesis (3MT)

competition at La Trobe University, Virtual Poster Pitch Competition of the Statistical So-

ciety of Australia, Fourth Victorian Research Students’ Meeting in Probability and Statis-

tics 2020, AustMS 2020 Conference, Spatial and Temporal Statistics Symposium 2021 at

the University of Wollongong and Early-Career & Student Statisticians Conference 2021.
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Chapter 2

Definitions, notations and

auxiliary results

This chapter presents main concepts and notations relevant to the study. This includes the

mathematical notations related to d-dimensional Euclidean space, basic material related

to HEALPix ordering schemes, spherical harmonics, Hermite polynomials, probability

theory, stochastic processes, random fields and spherical random fields that will compose

the background of the study. Most of the materials included in this chapter are based on

Abramowitz and Stegun (1964), Bingham et al. (1989), Broadbridge et al. (2020), Florescu

(2014), Fryer and Olenko (2019), Fryer et al. (2020), Gorski et al. (2005), Hernàndez

(1995), Hivon (2021), Ivanov and Leonenko (1989), Lang and Schwab (2015), Leonenko

(1999), Leonenko and Olenko (2013), Leonenko and Shieh (2013), Leonenko and Olenko

(2014), Marinucci and Peccati (2011), Peccati and Taqqu (2011), Seneta (1976), Taqqu

(1975), Taqqu (1979) and Yadrenko (1983).
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2.1 Mathematical notations related to d-dimensional

Euclidean space

This section presents basic notations related to d-dimensional Euclidean space which are

being used through out this thesis.

Let Rd denote a real Euclidean space of dimension d ≥ 2. In what follows, | · | and

‖ · ‖ denote the Lebesgue measure and the Euclidean distance in Rd, respectively. Let

Rd+ =
{
x ∈ Rd : xi ≥ 0, i = 1, . . . , d

}
denote the non-negative octant of Rd. For X ⊆ Rm

we denote its Borel σ -algebra by B(X).

Let B(r) =
{
x ∈ Rd : ‖x‖ < r

}
and sd−1(r) =

{
x ∈ Rd : ‖x‖ = r

}
denote a d-dimensi-

onal ball and a (d − 1)-dimensional sphere in Rd having radius r > 0 and with center at

the origin. The SO(d) denotes the group of rotations in Rd. For d ≥ 2, the Lebesgue

measure/volume of the d-dimensional ball in Rd, is |B (r)| = π
d
2 Γ−1

(
d
2 + 1

)
rd and the

Lebesgue measure/surface area of the (d − 1)-dimensional sphere in Rd, is |sd−1(r)| =

2π d2 Γ−1
(
d
2

)
rd−1, where Γ(z) denotes the Gamma function.

The Cartesian coordinate system, x = (x1, x2, ..., xd) in Rd is related with the spherical

coordinate system, (r, φ), where the radius r ≥ 0 and φ = (φ1, . . . , φd−1) ∈ sd−1(1) and

0 ≤ φ1 < 2π, 0 ≤ φj < π, j = 2, . . . , d− 1, by the following formulae

x1 = r sin (φd−1) . . . sin (φ2) sin (φ1) , x2 = r sin (φd−1) . . . sin (φ2) cos (φ1)

x3 = r sin (φd−1) . . . sin (φ3) cos (φ2) , . . . , xd−1 = r sin (φd−1) cos (φd−2) , xd = r cos (φd−1)

Let dx = dx1 . . . dxd denote an element of the Lebesgue measure in Rd and dσ(x) =

rd−1 sind−2(φd−1) · · · sin(φ2)dφd−1 · · · dφ2dφ1 denote an element of the Lebesgue measure

on the (d− 1)-dimensional sphere sd−1(r).

Let the Kronecker delta function be defined by

δba =


0, if a 6= b,

1, if a = b.
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2.2 HEALPix ordering schemes

This section introduces basic material pertaining to the HEALPix ordering schemes.

HEALPix stands for the Hierarchical Equal Area isoLatitude Pixelisation which is a

uniform grid on the unit sphere s2(1). HEALPix is a spherical data representation method

which efficiently stores and organizes cosmic microwave background radiation (CMB) data

on the sphere. The stored CMB data using HEALPix format are available as flexible image

transport system (FITS) files. Each CMB pixel has a set of attributes such as distinct

location, temperature intensity and polarisation data.

In comparison with the other spherical data representation formats, HEALPix has

many advantages which make it applicable for high resolution data. They are,

• HEALPix has equal area pixels useful for equal area random sampling;

• HEALPix has hierarchical tessellations of the sphere useful for zooming in small

details quickly;

• HEALPix has iso-Latitude rings of pixels useful for computing fast spherical har-

monic transform.

The HEALPix structure initially divides the unit sphere s2(1) into 12 equiareal quadri-

lateral base pixels belonging to 3 rings. Figure 2.1 depicts the planar projection of the

HEALPix base pixel structure consisting of 12 squares for j = 0 where j is the resolution

parameter. Here, the pixel centers belong to an equatorial and two polar rings. Then,

for j > 0, each of these equiareal quadrilateral base pixels are further subdivided into

4-equiareal quadrilateral child pixels until the required resolution is achieved.

Figure 2.1: The planar projection of the HEALPix base pixel tessellation at j = 0

Let j denote the resolution parameter, Nside denote the grid resolution parameter

and Npix denote the total number of pixels on s2(1). They are related by the formulae,
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Nside = 2j and Npix = 12× (Nside)2 where j ≥ 0.

Let Φpix denote the area of a equiareal quadrilateral base pixel on s2(1). Then, Φpix =
π

(3× (Nside)2) .

Let Nring denote the total number of rings on s2(1) for given j ≥ 0. Then, Nring =

(4×Nside)− 1.

Remark 2.1. The geometrical properties of the HEALPix structure has divided the unit

sphere s2(1) in three parts: upper, middle and lower parts. The rings belonging to the

upper part are between the north pole and the upper boundary of the equatorial region

whereas the rings belonging to the lower part are between the lower boundary of the

equatorial region and the south pole. Each upper and lower part consists of (Nside − 1)

rings. There are ((2×Nside) + 1) rings in the middle part and all of them have an equal

number of pixels given by (4×Nside).

Example 2.1. Npix values and the corresponding Nring values for the first few j values

are

j = 1: Nside = 2, Npix = 48 and Nring = 7;

j = 2: Nside = 4, Npix = 192 and Nring = 15;

j = 3: Nside = 8, Npix = 768 and Nring = 31.

The HEALPix structure has two major ordering/numbering schemes. They are nested

ordering scheme and ring ordering scheme. According to the ring ordering scheme, pixel

indices are located in the anticlockwise direction in each ring winding down from the north

pole to the south pole. This has enabled to perform fast Fourier transform with spherical

harmonics. Figure 2.2 shows the planar projection of the HEALPix ring ordered structure

at j = 1 (Fryer and Olenko (2019)). It is clear from Figure 2.2 that the HEALPix indices

are increasing in the ascending order from left to right consecutively through the rings.

Next, according to the nested ordering scheme, pixel indices are located in a tree-like

structure which grows within the consecutively ordered branches. The roots of these or-

dered branches are the 12 equiareal quadrilateral base pixels. This ordering scheme has

facilitated efficient development of applications involving nearest-neighbour searches. Also,

it has enabled speedy computation of the fast Haar wavelet transform on the HEALPix

structure. Figure 2.3 depicts the planar projection of the HEALPix nested ordered struc-

ture at j = 1 (Fryer and Olenko (2019)).
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Figure 2.2: The planar projection of the HEALPix ring ordering scheme at j = 1

Figure 2.3: The planar projection of the HEALPix nested ordering scheme at j = 1

2.3 Spherical harmonics

This section presents basic notations and definitions related to spherical harmonics and

their properties. Spherical harmonics are special functions defined on the surface of the

sphere. Most of the materials included in this section are based on Ivanov and Leonenko

(1989) and Marinucci and Peccati (2011).

In this thesis, we consider the complex spherical harmonics for d = 3 in R3 as follows.

Definition 2.1. For every integer l = 0, 1, 2, . . ., and m = 0,±1, ...,±l, the spherical

harmonic function Y m
l (·) is defined as

Y m
l (θ, ϕ) = (−1)m

√
2l + 1

4π
(l −m)!
(l +m)!P

m
l (cos θ)eimϕ, (2.1)

where (θ, ϕ) ∈ [0, π] × [0, 2π) and Pml (·) is the associated Legendre polynomials having

degree l and order m.
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Definition 2.2. The associated Legendre functions of the first kind of degree l and order

m denoted by Pml (x), x ∈ [−1, 1] for l ≥ 0, m = 0, . . . , l are defined as

Pml (x) = (−1)m
(
1− x2

)m/2 dm

dxm
Pl(x),

where the l-th Legendre polynomials are Pl(x) = 1
2ll!

dl

dxl
(
x2 − 1

)l
.

The spherical harmonics have the following properties:

(i) Orthonormality: For all l, l′ ≥ 0, −l ≤ m ≤ l and l
′ ≤ m′ ≤ l′ ,

∫ π

0

∫ 2π

0
Y m
l (θ, ϕ)Y m′

l′ (θ, ϕ) sin θdθdϕ = δl
′
l δ

m′
m ,

(ii) Symmetry: Y m
l (θ, ϕ) = (−1)mY (−m)

l (θ, ϕ),

(iii) Addition formula: ∑l
m=−l Y

m
l (θ, ϕ)Y m

l (θ, ϕ) = 2l + 1
4π ,

(iv) Relation with Legendre polynomials: Y 0
l (θ, ϕ) =

√
2l + 1

4π Pl(cos θ),

(v) Y 0
l (0, 0) =

√
2l + 1

4π ,

(vi) Spatial inversion: Y m
l (π − θ, π + ϕ) = (−1)lY m

l (θ, ϕ).

Example 2.2. The first spherical harmonics are given as follows.

• For l = 0, Y 0
0 (θ, ϕ) = 1√

4π
;

• For l = 1, Y 0
1 (θ, ϕ) =

√
3

4π cos θ and Y 1
1 (θ, ϕ) = −

√
3

8π sin θeiϕ;

• For l = 2, Y 0
2 (θ, ϕ) = 1

2

√
5

4π
(
3 cos2 θ − 1

)
, Y 1

2 (θ, ϕ) = −
√

15
8π sin θ cos θeiϕ, and

Y 2
2 (θ, ϕ) = 1

4

√
15
2π sin2 θe2iϕ.

Theorem 2.1. (Peter-Weyl Theorem on the sphere)

Let f(·) be a square integrable function defined on s2(1). Then, it holds

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

aml Y
m
l (θ, ϕ),

where aml =
∫
s2(1) f(θ, ϕ)Y m

l (θ, ϕ) sin θdθdϕ, and the series converges in the square inte-

grable sense.
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2.4 Hermite polynomials

This section gives basic notations and definitions related to Hermite polynomials and

their properties. Hermite expansions are important in investigating the asymptotics of

nonlinear functionals of random fields. It is well known that their limiting distributions

are governed by the leading terms of Hermite expansions. Most of the materials included

in this section are based on Ivanov and Leonenko (1989), Leonenko and Olenko (2014)

and Taqqu (1975).

Definition 2.3. Let Hq(·), q ≥ 0, denote the qth order Hermite polynomials on R. Then

the Hermite polynomials are defined by the following relation.

Hq(x) = (−1)q exp
(
x2

2

)
dq

dxq
e−x

2/2, x ∈ R.

Next, we consider some examples of Hermite polynomials.

Example 2.3. The first few Hermite polynomials are given by the following expressions.

H0(x) = 1, H1(x) = x, H2(x) = x2−1, H3(x) = x3−3x, and H4(x) = x4−6x2+3.

The qth order Hermite polynomial is a polynomial of degree q. Now, we consider some

properties of Hermite polynomials.

Let L2(R, φ(x)dx) be a Hilbert space, where φ(x) = e−x
2/2

√
2π

, x ∈ R. The Hermite

polynomials have the following properties.

(i) Orthogonality: For all m, n ≥ 0,

∫ ∞
−∞

Hm(x)Hn(x)φ(x)dx = δnmm!,

(ii) Symmetry: Hn(−x) = (−1)nHn(x),

(iii) Recurrence relation: For n ≥ 1,

Hn+1(x) = xHn(x)− nHn−1(x) and H ′n(x) = nHn−1(x).
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(iv) Explicit expression: For n ≥ 0,

Hn(x) = n!
bn/2c∑
k=0

(−1)kxn−2k

k!2k(n− 2k)! ,

where b·c denotes the floor function.

Another important property of the Hermite polynomial is given by the following lemma.

Lemma 2.1. Let (X1, . . . , X2p) be a 2p-dimensional zero mean Gaussian vector such that

E(XjXk) =


1, if k = j;

rj , if k = j + p and 1 ≤ j ≤ p;

0, otherwise.

Then

E

 p∏
j=1

Hkj (Xj)Hmj (Xj+p)

 =
p∏
j=1

δ
mj
kj
kj !r

kj
j .

Let G(·) be an arbitrary function defined in L2(R, φ(x)dx). Then, the function G(·) can

be expressed in terms of Hermite polynomials for j ≥ 0 and it possesses the L2(R, φ(x)dx)

convergent expansion,

G(x) =
∞∑
n=0

CnHn(x)
n! , Cn =

∫
R
G(x)Hn(x)φ(x)dx.

Definition 2.4. Let the function G(x) be in L2(R, φ(x)dx) and suppose there exists an

integer κ ≥ 0 such that Cn = 0, for all 0 ≤ n ≤ (κ− 1), but Cκ 6= 0. The positive integer

κ is termed the Hermite rank of G(x) and is denoted by HrankG.

2.5 Probability theory

This section presents basic notations, definitions, propositions and theorems related to the

probability theory.

Definition 2.5. The ordered triple (Ω,F , P ) is called a probability space if

• Ω is a non-empty set (the space of outcomes),

• F is a σ-algebra of subsets of Ω (the family of events),

• P : F → [0, 1] is a probability measure.
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Definition 2.6. Given a probability triple (Ω,F , P ), a random variable is a function X

from Ω to the real numbers R, such that {ω ∈ Ω;X(w) ≤ x} ∈ F for all x ∈ R.

The cumulative distribution function (CDF) or simply distribution function of X is

given by FX(x) = P (X ≤ x). For a continuous random variable X, fX(·) is called the

probability density function (PDF) of the random variable X and it is related with the

CDF by FX(x) =
∫ x
−∞ fX(y)dy.

Definition 2.7. A random variable X has expectation if
∫
XdP is finite. The expected

value of X is then E(X) =
∫

ΩXdP . If X has a continuous density fX then, E (ϕ(X)) =∫+∞
−∞ ϕ(y)fX(y)dy.

We state X ∈ L1(Ω,F , P ), or X ∈ L1, if X has expected value. We say that X is

square integrable if X2 ∈ L1, and state X ∈ L2(Ω,F , P ), or X ∈ L2.

Definition 2.8. If X ∈ L2, its variance is defined by Var(X) = E(X − E(X))2.

Given X,Y ∈ L2, their inner product can be defined by 〈X,Y 〉 = E(XY ). The norm

of X ∈ L2 is ‖X‖ =
√
〈X,X〉.

Definition 2.9. For a given probability space (Ω,F , P ), an n-dimensional random vector

is a function X : Ω → Rn such that each Xi is a random variable. Here Xi is the ith

coordinate of X(ω) = (X1(ω), . . . , Xn(ω)) .

Definition 2.10. If the components X1, ..., Xn of a random vector X have expectation,

then we say that X ∈ L1 and E(X) = (E(X1), ...,E(Xn))T . When X ∈ L2 then each of

the expectations E(XiXj) exist. The covariance matrix of X is defined as

Cov(X) = E(X − E(X))(X − E(X))T .

Theorem 2.2. (Central Limit Theorem) If X1, ..., Xn ∈ L2 are iid with mean m and

variance σ2, then

lim
n→∞

P

(∑n
i=1Xi −m
σ/
√
n

≤ x
)

= 1√
2π

∫ x

−∞
e−y

2/2dy,

uniformly in x ∈ R.

Definition 2.11. Let f ∈ L1(R). Then

f̂(y) =
∫ ∞
−∞

e−2πixyf(x)dx,
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is called the Fourier transform of f .

2.6 Stochastic processes

This section gives basic results related to stochastic processes.

Let (Ω,F , P ) be a complete probability space. It will be always assumed that all

random elements are defined on this probability space.

Definition 2.12. A stochastic process X(t), t ∈ T , is a collection of random variables

defined on the probability space (Ω,F , P ). Sometimes, it will also be denoted as Xt.

The stochastic process X(t), t ∈ T , is called a discrete-time stochastic process if T =

{0, 1, 2, ...}. It is called a a continuous-time stochastic process if T = [0,∞).

Definition 2.13. The probability space (Ω,F , P ) is a filtered probability space if there

exist a sequence of σ-algebras {Ft}t∈T included in F such that it is an increasing collection,

that is, Fs ⊆ Ft for all s ≤ t, s, t ∈ T .

Definition 2.14. A stochastic process X(t), t ∈ T defined on a filtered probability space

(Ω,F , P, {Ft}) is called adapted if X(t) is Ft-measurable for any t ∈ T.

Let’s assume that a standard probability space is given where no filtration is defined

on the space. It means that for time t, all the information present is generated from the

stochastic process X(t) only. Then, the standard filtration originated from the stochastic

process X(t), t ∈ T , is given by Ft = σ({Xs : s ≤ t, s ∈ T}).

The Gaussian processes are an important class of stochastic processes. For these

stochastic processes X(t), all stochastic vectors (X(t1), ..., X(tn)) with (t1, ..., tn) ∈ T are

normally distributed.

Definition 2.15. For a stochastic process X(t), t ∈ T , the function m(t) = E(X(t)) is

called the mean value function and the function σ2(t) = Var(X(t)) is called the variance

function of the process. The function K(s, t) = Cov(X(s), X(t)) defined for s ∈ T and

t ∈ T is called a covariance function of the process.

Definition 2.16. A stochastic process X(t), t ∈ T is called stationary if the finite dimen-

sional distributions are translation invariant, i.e. the random vector (X(t1 + c), ..., X(tn +

c)) has the same distribution as the random vector (X(t1), ..., X(tn)) for all integer n, and

t1, ..., tn, c ∈ T .
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Definition 2.17. A stochastic process X(t) is said to be wide sense stationary or covari-

ance stationary if X(t) has finite second moments for any t and its covariance function

Cov(X(t), X(t+ h)) depends only on h ∈ T for all t ∈ T .

Definition 2.18. Let’s assume that T is totally ordered. A stochastic process X(t)

is said to have independent increments if the random variables (X(t2) − X(t1), X(t3) −

X(t2), ..., X(tn)−X(tn−1)) are independent for any integer n and any choice of the sequence

{t1, t2, ..., tn} in T with t1 < t2 < ... < tn.

Definition 2.19. A stochastic process X(t) is said to have stationary increments if the

distribution of the random variable X(t+ h)−X(t) depends only on h and not on t.

2.7 Random fields

This section demonstrates basic notations, definitions, propositions and theorems related

to random fields.

Let T ⊆ Rd be a multidimensional set. Then, for T ⊆ Rd, we denote the Borel

σ-algebra by B(T ).

Definition 2.20. A random field is defined as a function ξ(ω, x) : Ω × T → Rm such

that ξ(ω, x) is a random variable for each x ∈ T . A random field will also be denoted as

ξ(x), x ∈ Rd.

The random field ξ(x) is a random process when d = 1. The random field ξ(x) ∈ T

is called a scalar random field for d > 1 and m = 1. It is called a vector random field for

m > 1.

This thesis focuses on scalar random fields. The function ξ(x), x ∈ T , is termed as a

realization of the random field for fixed ω ∈ Ω.

Definition 2.21. A second order random field over T ⊂ Rd is a function ξ(x) : T →

L2(Ω,F , P ).

Definition 2.22. The finite dimensional distributions of the random field ξ(x), x ∈ T ,

are defined as a set of distributions P (ξ(xi) ∈ Bi, i = 1, ..., r) where Bi ∈ B, i = 1, . . . , r,

r ∈ N.

Definition 2.23. Two random fields ξ(x) and η(x), x ∈ T , are said to be stochastically

equivalent if the finite-dimensional distributions of the random fields ξ(x) and η(x) coin-

cide. It will be denoted by ξ(x) d= η(x), x ∈ T .
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Definition 2.24. A scalar random field ξ(x) ∈ T is called Gaussian if ξ(x) ∈ T is a

Gaussian system of random variables.

The finite-dimensional distributions of a Gaussian random field ξ(x), x ∈ T , are

determined by its mean and covariance functions. The mean function is defined by

E (ξ(x)) = µ(x), x ∈ T . The covariance function B(x, y) = Cov (ξ(x), ξ(y)) is defined

by B(x, y) = E ((ξ(x)− µ(x)) (ξ(y)− µ(y))) where x, y ∈ T . Here, when x = y, the

function B(x, x) = Var (ξ(x)) is known as the variance of the random field ξ(x), x ∈ T .

Definition 2.25. A real random field ξ(x), x ∈ T , with a finite second moment is said

to be mean-square continuous at point x0 if E |ξ(x) − ξ(x0)|2 → 0 as ||x − x0|| → 0. If

this relation holds for any x0 ∈ T , the random field ξ(x), x ∈ T , is called mean square

continuous on T .

A random field ξ(x), x ∈ T , satisfying the condition E
(
ξ2(x)

)
< ∞ is mean square

continuous if and only if the function Cov(ξ(x), ξ(y)) is continuous along the diagonal

{(x, y) ∈ T × T : x = y}.

Theorem 2.3. (Karhunen (1947))

Let ξ(x), x ∈ T ⊆ Rd be a random field with E (ξ(x)) = 0, E |ξ(x)|2 <∞. If its covariance

can be expressed as

B(x, y) = E (ξ(x)ξ(y)) =
∫

Λ
f(x, λ)f(y, λ)F (dλ), f(x, .) ∈ L2(Λ), x, y ∈ T,

then there exists an orthogonal complex-valued random measure Z on Λ with the control

measure F such that

ξ(x) =
∫

Λ
f(x, λ)Z(dλ), (2.2)

where E |Z(∆)|2 = F (∆), ∆ ∈ B(Λ), and the stochastic integral in (2.2) is viewed as an

L2(Λ) integral.

Next, we focus on the spectral theory of homogeneous and isotropic random fields.

Definition 2.26. A real random field ξ(x), x ∈ T , satisfying E
(
ξ2(x)

)
< ∞ is called

homogeneous in the wide sense if its mean function m(x) = E (ξ(x)) and the covariance

function B(x, y) = Cov(ξ(x), ξ(y)) are invariant with respect to the Abelian group G =

(Rd,+) of shifts in Rd. i.e. m(x) = m(x+ τ), B(x, y) = B(x+ τ, y+ τ) for any x, y, τ ∈ T .
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Definition 2.27. A random field ξ(x), x ∈ T , satisfying E
(
ξ2(x)

)
<∞ is called isotropic

in the wide sense if its mean function m(x) and the covariance function B(x, y) are invari-

ant with respect to the group of rotations SO(d). i.e. m(x) = m(gx), B(x, y) = B(gx, gy)

for any x, y ∈ T, g ∈ SO(d).

Remark 2.2. Let ξ(x), x ∈ T , be a homogeneous isotropic random field. Then its mean

function, E (ξ(x)) = const and the covariance function B(x, y), x, y ∈ T , depends only on

the Euclidean distance ‖x− y‖ between the points x and y. i.e. B(x, y) = B(‖x− y‖).

For ν > −1
2 , the Bessel function of the first kind of order ν is given by

Jν(z) =
∞∑
l=0

(−1)l
(
z

2

)2l+ν
[l!Γ(l + ν + 1)]−1, z > 0,

and the spherical Bessel function by

Y1(z) = cos z, Yd(z) = 2(d−2)/2Γ
(
d

2

)
J(d−2)/2(z)z(2−d)/2, z ≥ 0, d ≥ 2.

Let ξ(x), x ∈ Rd, be a measurable mean-square continuous zero-mean homogeneous

isotropic real-valued Gaussian random field. Then, the function B(r) is the covariance

function of this field if and only if there exists a finite measure G(·) on (R+, (B(R+)) such

that

B(r) = Cov(ξ(x), ξ(y)) =
∫ ∞

0
Yd(rz)G(dz), (2.3)

for r = ‖x− y‖, x, y ∈ Rd and z ≥ 0 with G(R+) = B(0) <∞. The function G(·) is called

the isotropic spectral measure.

Example 2.4. The covariance functions of the random fields in R2 and R3 are of great

importance. Therefore for d = 2, the equation (2.3) takes the form,

B(r) =
∫ ∞

0
J0(rz)G(dz),

and for d = 3, it takes the form,

B(r) =
∫ ∞

0

sin(rz)
rz

G(dz).

Definition 2.28. Let G(·) be the isotropic spectral measure of the random field ξ(x),

x ∈ Rd. The spectral measure G(·) is said to be absolutely continuous if there exists a
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function f(·) such that

G(z) = 2πd/2Γ−1
(
d

2

)∫ z

0
ud−1f(u)du, z ≥ 0, ud−1f(u) ∈ L1(R+)

where f(·) is called the isotropic spectral density of the field ξ(x), x ∈ Rd.

In this case, the covariance function can be represented by

B(r) = 2πd/2Γ−1
(
d

2

)∫ ∞
0

Yd(ru)ud−1f(u)du. (2.4)

Definition 2.29. The Gaussian random field ξ(x), x ∈ Rd, with an absolutely continuous

spectrum has the isonormal spectral representation given by

ξ(x) =
∫
Rd
ei(λ,x)

√
f(‖λ‖)W (dλ),

where W (·) is the complex Wiener white noise random measure on Rd.

In this thesis, we consider long-range dependent random processes and fields. In the

asymptotic theory of long-range dependent random fields, slowly varying functions play

an important role. They are used to represent fluctuations in the covariance and spectral

density functions.

Definition 2.30. A measurable function L : (0,∞) → (0,∞) is called slowly varying at

infinity if for all λ > 0,

lim
t→∞

L(λt)
L(t) = 1.

Each slowly varying function has the following representation (Karamata (1930)).

Theorem 2.4. (Representation Theorem)

Let L(·) be a slowly varying function. Then, for all t ≥ a, a > 0, L(·) can be represented

in the following form

L(t) = exp
(
ζ1(t) +

∫ t

a

ζ2(u)
u

du

)
,

where ζ1(·) and ζ2(·) are two bounded, measurable functions satisfying ζ1(t) → b, b ∈ R,

and ζ2(t)→ 0 as t→∞.

Example 2.5. The following functions are slowly varying for q1, q2, q3 > 0 and β ∈ R:

L(t) ≡ 1, L(t) = (log (q1 + t))q2 , L(t) = log log (t+ q1) ,
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L(t) = logβ t, L(t) = tq2q3

(q1 + tq2)q3 , L(t) = exp
(
(log t)

1
3 cos

(
(log t)

1
3
))
.

A slowly varying function L(·) holds the following important properties.

• For γ > 0, tγL(t)→∞ and t−γL(t)→ 0 as t→∞,

• log(L(t))
log(t) → 0 as t→∞,

• For every γ ∈ R, (L(t))γ is also a slowly varying function.

Definition 2.31. A random field ξ(x), x ∈ Rd, is said to be long-range dependent if its

covariance function B(·) is a non-integrable function such that

∫
Rd
|B(x)|dx =∞.

In most of the cases, we consider the covariance function B(·) that is a hyperbolically

decaying non-integrable function represented as B(x) = ‖x‖−αL(‖x‖), where L(·) is a

slowly varying function and α ∈ (0, d).

The isotropic spectral density function f(·) of a long-range dependent random field

takes the form

f(‖λ‖) = c0(d, α)‖λ‖α−dL(1/‖λ‖), ‖λ‖ → 0,

where c0(d, α) = Γ
(
d−α

2

)
/2απd/2Γ

(
α
2
)
.

The Abelian and Tauberian theorems are utilized in probability theory and statistics to

study and associate the asymptotic behaviour of the covariance function and the spectral

density, see, for example, Leonenko and Olenko (2013).

Let’s consider the isotropic spectral density function f(·) as the original function and

the covariance function B(·) as the transform T (·) of f(·) using (2.4). Then, a theorem

is of the Abelian type if it deduces the asymptotic behaviour of T (f) from the properties

of f(·) and a theorem is of the Tauberian type if it deduces the asymptotic behaviour of

f(·) using the properties of T (f).

More precisely, the Tauberian and Abelian theorems give the relationship between the

asymptotic behaviour of the covariance function B(·) at the infinity and the singularity

properties of the isotropic spectral density f(·) at zero as follows.

Theorem 2.5. Let L(·) be a slowly varying function. Suppose that there exists an isotropic

spectral density f(z), z ∈ [0,∞), such that f(z) is decreasing for all z ∈ (0, ε], ε > 0. Then

for 0 < α < d, the following statements are equivalent
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(a) rαB(r) ∼ L(r), r →∞;

(b) zd−αf(z) ∼ L
(

1
z

)
/c1(d, α), z → 0, where c1(d, α) =

2απd/2Γ
(
α
2
)

Γ
(
d−α

2

) .

For example, when d = 3, the constant c1(3, α) can be simplified to the form

c1(3, α) =
4πΓ(α) cos

(
απ
2
)

(1− α) .

Example 2.6. Consider the Bessel covariance function given by

B(r) = 1
(1 + r2)β/2

, β > 0, r ≥ 0.

Then, its isotropic spectral density is given by

f(z) =
(
πd/22(d+β−2)/2Γ

(
β

2

))−1
K(d−β)/2(z)z(β−d)/2, z ≥ 0,

where Kν(ζ) is the modified Bessel function of the second kind.

These functions satisfy the statements of Theorem 2.5.

2.8 Spherical random fields

This section discusses basic material related to the theory of spherical random fields.

Spherical random fields are the random fields defined on a sphere. This thesis mainly

considers random fields on the unit sphere. Therefore, in most of the cases r = 1 is used.

Most of the materials included in this section are based on Marinucci and Peccati (2011)

and Yadrenko (1983).

For two points, P = (θ1, ϕ1) and Q = (θ2, ϕ2) on the sphere s2(r), let Θ denote the

angle formed between them originating from the centre/origin of the sphere. Then we call,

Θ as the angular distance between the two points P and Q in s2(r).

Definition 2.32. A random function T̃ (ω, x), x ∈ s2(r), defined on a complete probability

space (Ω,F , P ) is called a spherical random field defined on the sphere s2(r),

T̃ (x) = T̃ (ω, x) = T (r, θ, ϕ), x ∈ s2(r), θ ∈ [0, π], ϕ ∈ [0, 2π), r > 0.

Here, the notation T̃ (x) = T (r, θ, ϕ), x ∈ R3 will be used to indicate the dependence

of the random field on Euclidean coordinates. In the following, we will consider a mean-
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square continuous, real-valued spherical random field T (r, θ, ϕ), with zero-mean and finite

second-order moments.

Definition 2.33. Let T̃ (x), x ∈ s2(r), be a real-valued spherical random field. The spher-

ical field T̃ (·) is called strongly isotropic if, for all k ∈ N, x1, . . . , xk ∈ s2(r) and g ∈ SO(3),

the joint distributions of the random variables T̃ (x1) , . . . , T̃ (xk) and T̃ (gx1) , . . . , T̃ (gxk)

possesses the same law.

Further, the spherical field T̃ (·) is called 2-weakly isotropic if for any rotation g ∈ SO(3)

and x, x1, x2 ∈ s2(r), the following holds

E
(
T̃ (x)

)
= E

(
T̃ (gx)

)
, E

(
T̃ (x1) T̃ (x2)

)
= E

(
T̃ (gx1) T̃ (gx2)

)
.

In other terms, we say that a real-valued spherical field T (r, θ, ϕ) with zero-mean is

isotropic, if the the covariance function E
(
T̃ (r, θ1, ϕ1)T̃ (r, θ2, ϕ2)

)
= B(cos Θ), depends

only on the angular distance Θ between two points.

An isotropic real-valued random field T̃ (·) with zero-mean can be expanded as a

Laplace series in the mean square sense. That is, T̃ (·) admits the following spectral

representation

T (r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

Y m
l (θ, ϕ)aml (r), (2.5)

where the functions Y m
l (θ, ϕ) represent the spherical harmonics defined in (2.1). The

random variables aml (r) are derived through the inversion arguments as the mean-square

stochastic integrals given by

aml (r) =
∫ π

0

∫ 2π

0
T (r, θ, ϕ)Y m

l (θ, ϕ)r2 sin θdθdϕ =
∫
s2(1)

T̃ (ru)Y m
l (u)σ1(du), (2.6)

where −l ≤ m ≤ l, l ∈ N0, u = x
‖x‖ ∈ s2(1) and r = ‖x‖.

Proposition 2.1. The spherical random field T (r, θ, ϕ) is isotropic if there exist a sequence

{Cl(r), l ∈ N0} of non-negative real functions such that

E

(
aml (r)am

′

l′
(r)
)

= δl
′

l δ
m
′

m Cl(r), E|aml (r)|2 = Cl(r), (2.7)

where −l ≤ m ≤ l, −l′ ≤ m′ ≤ l′ and l, l′ ∈ N.

The sequence {Cl(r), l ∈ N0} is called the angular power spectrum of the isotropic

random field T (r, θ, ϕ).
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Then, from the equations (2.5), (2.6), (2.7) and the addition theorem for spherical

harmonics

Cov(T (r, θ1, ϕ1), T (r, θ2, ϕ2)) = 1
4π

∞∑
l=0

(2l + 1)Cl(r)Pl(cos Θ),

where ∑∞l=0(2l + 1)Cl(r) <∞ for every fixed r > 0.

Then, a homogeneous, isotropic, mean-square continuous spherical random field with

zero-mean possesses the spectral representation given by

T̃ (x) = T (r, θ, ϕ) =
∞∑
l=1

l∑
m=−l

Y m
l (θ, ϕ)aml (r),

where

aml (r) =
√

2π
∫ ∞

0

Jl+ 1
2
(µr)√

(µr)
Zml (dµ).

Here, Zml , −l ≤ m ≤ l, l ∈ N, is a family of complex-valued random measures on

(R+, (B(R+)) satisfying

E (Zml (A)) = 0, E
(
Zml (A)Zm′l′ (B)

)
= δl

′
l δ

m′
m G(A ∩B).
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Chapter 3

Analysis of spherical monofractal

and multifractal random fields

This chapter is based on the article, Leonenko, N., Nanayakkara, R. and Olenko, A.

Analysis of spherical monofractal and multifractal random fields, which has been published

in Stochastic Environmental Research and Risk Assessment Journal, 35:681–701, (2021).

Due to artistic reasons, the format of this paper was changed in accordance with the

style of the thesis. This did not change the main contents of the paper, but gave rise to

slight changes in the paper layout.
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3.1 Introduction

Recent years have witnessed an enormous amount of attention, in the environmental,

earth science, biological and astrophysical literature, on investigating spherical random

fields. Excellent overviews of some novel geostatistics directions and applications can be

found in Christakos (2017), Jeong et al. (2017), Marinucci and Peccati (2011), Porcu et al.

(2018) and references therein. From a statistical point of view, random fields on Euclidean

spaces is a rather well studied area. However, the majority of available results is not

directly translatable to manifolds (where a sphere is an obvious first important candidate

for investigations) and requires new stochastic models and tools, see, for example, Emery

and Porcu (2019), Emery et al. (2019), Lang and Schwab (2015), Malyarenko (2012)

and Marinucci and Peccati (2011). This research investigates multifractal properties of

spherical random fields and provides practical methodology and examples of applications

to actual data.

The concept of multifractality initially emerged in the context of physics. B. Mandel-

brot showed the significance of scaling relations in turbulence modelling. Subsequently

this concept developed to mathematical models and examining their fine scale characteris-

tics. A multifractal pattern is a type of a fractal pattern that scales with multiple scaling

rules in contrast to monofractals that have only scaling rule. A fractal dimension explores

the change in characteristics with respect to the change in the scale used. In general, a

multifractal scheme is a fractal scheme where its dynamics cannot be explained by a single

fractal dimension. More details and references can be found in Harte (2001).

Multifractal structures are typical in nature. Multifractal models have been exten-

sively used in the fields of geophysics, genomics, image modelling, finance, hydrodynamic

turbulence, meteorology, internet traffic, etc., see references in Ruiz-Medina et al. (2008)

and Anh et al. (2008). Multifractal behaviour has been discovered in stochastic processes

as well, see Angulo and Esquivel (2015) and Grahovac and Leonenko (2014). Multifractal

products of stochastic processes have been investigated by Mannersalo et al. (2002) with

applications of time series in economics and teletraffic. New teletraffic models have been

explored and random multifractal measure constructions by considering the stationarity

of the processes’ increments were proposed. This methodology has been first introduced in

the groundwork Kahane (1987) on multiplicative chaos and T -martingales of positive type.

Jaffard (1999) has shown the multifractal nature of specific Lévy processes and demon-
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strated that the multifractal spectra of such processes depicts a linear pattern rather than

a concave pattern which has been noticed in the actual teletraffic data. Molchan (1996)

has studied the multifractal properties such as scaling exponents of the structure function

and the Rényi function of random cascade measures under various conditions. Multifrac-

tal analysis has been an important technique in the examination of singular measures and

the multifractal spectrum of the random measures based on self-similar processes (Fal-

coner (1994)). The main methods to construct random multifractal structures are based

on stochastic processes, branching processes and binomial cascades (Riedi (2002)). The

Rényi function plays an important role in the analysis of multifractal random fields. There

are several scenarios where the Rényi function was computed for the one-dimensional case

and time-series. However, there are very few multidimensional models where it is given

in an explicit form. Leonenko and Shieh (2013) computed the Rényi function for three

classes of multifractal random fields on the sphere. It showed some major schemes with

regard to the Rényi function which reveal the multifractality of random fields that are ho-

mogeneous and isotropic.

The cosmic microwave background radiation (CMB) is the radiation from the universe

since 380,000 years from the Big Bang. This elongated time period is very short compared

to the age of the universe which is of 14 billion years. The CMB is an electromagnetic

radiation residue from it’s earliest stage. The CMB depicts variations which corresponds

to different regions and represents the roots for all future formation including the solar

system, stars and galaxies. At the beginning, the universe was very hot and dense and

formation of atoms was impossible. The atoms were split as electrons and protons. That

time the universe constituted of a plasma or ionised gas. Then the universe started to

expand and cool down. Thus, it had been possible for the atoms to reconcile. This

phenomenon is known as “Epoch of combination” and since that time photons have been

able to move freely escaping from the opaque of the early universe. The first light which

eliminated from this process is termed as the cosmic microwave background, see Planck

Satellite (2021).

In 2009, the European Space Agency launched the mission Planck to study the CMB.

The frequency range captured by the Planck is much wider and its resolution is higher than

that of the previous space mission WMAP. The CMB’s slight variations were measured

with a high precision, see European Space Agency (2021b). One of the aims of the mission

Planck was to verify the standard model of cosmology using this achieved greater resolution

66



and to find out fluctuations from the specified standard model of cosmology. According to

the standard model of the CMB, the universe is homogeneous and isotropic. This means

that almost every part of the universe has very similar properties and that they do not

differ based on the direction of the space. However, various research argue that it’s not the

case, see Hill (2018), Kogut et al. (1996), Marinucci (2004), Minkov et al. (2019), Novikov

et al. (2000) and Starck et al. (2004). The motivation of this chapter is to develop several

multifractal models and the corresponding statistical methodology and use them and other

existing models to study whether the CMB data has a multifractal behaviour.

The aim of this chapter is to present and study three known multifractal models for

random fields defined on the sphere and suggest several simpler models for which the Rényi

function can be explicitly computed.

The first novelty of the obtained results is that for all these models, we derive singular-

ity spectrum and study dependence of their Rényi functions on the scaling parameter. We

provide several plots that illustrate typical multifractal behaviour of the models. Note,

that even for the three known models their singularity spectrum was not computed and

analysed before. Secondly, in Section 3.5 and the example in Section 3.7 we demonstrate

the direct probability approach that can be employed to check whether assumptions on

models’ parameters guarantee the form of the Rényi function. This approach is less general

than the one that is based on martingales for q ∈ [1, 2], see Leonenko and Shieh (2013) and

Mannersalo et al. (2002). The advantage is that the proposed methodology is simple and

can also be used for q > 2. Third, Section 3.7 suggests four simple new models, explicitly

computes their singularity spectrum and Rényi functions and investigates their properties.

Finally, we discuss the methodology of computing the Rényi functions and provide various

numerical studies of the actual CMB data.

The proposed models and methodology can find various applications to other spherical

data. The obtained results and discussion in the chapter provide detailed guidance how

the multifractal modelling and analysis can be done for general spherical data. It could be

very useful for various earth, environmental and image analysis problems. In particular,

the recent paper by Fryer and Olenko (2019) discusses methodology and provides R code

for transforming various spherical and directional data to the HEALPix format of the

CMB data. Then, the results of this research can be directly applied.

The plan of the chapter is as follows. Section 3.2 provides main notations and defi-

nitions related to the theory of random fields. Section 3.3 introduces spherical random
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fields. Section 3.4 gives results related to the theory of multifractality and the Rényi func-

tion. Section 3.5 describes the direct probability approach to get the conditions on the

limit random measure µ. Section 3.6 provides results for three known models of the Rényi

function for spherical random fields of the exponential type. Section 3.7 proposes new

models based on power transformations of Gaussian fields. Section 3.8 presents numerical

studies including computing and fitting the empirical Rényi functions for CMB data from

different sky windows and models. The conclusions and some new problems are given

in Section 3.9. Finally, proofs of all key results can be found in Section 3.10.

All numerical studies were conducted by using Maple 2019.0 and R 3.6.3 software, in

particular, the R packages ‘rcosmo’ (Fryer et al. (2020), Fryer et al. (2019)) and ‘Ran-

domFields’ (Schlather et al. (2019)). A reproducible version of the code in this chapter is

available in Appendix A.

3.2 Main notations and definitions

This section presents background materials in the random fields theory and multifractal

analysis methodology. Most of the material included in this and next two sections are

based on Lang and Schwab (2015), Leonenko (1999), Malyarenko (2012), Mannersalo

et al. (2002) and Marinucci and Peccati (2011).

Let S ⊂ Rn, n ∈ N, be a multidimensional set, ‖ · ‖ denote the Euclidean distance

in Rn, sn−1(1) = {u ∈ Rn : ‖u‖ = 1}, and SO(n) be the group of rotations in Rn. The

notation | · | will be used for the Lebesgue measure on Rn. {·} d= {·} will stand for the

equality of finite dimensional distributions.

The Kronecker delta is a function defined as:

δji =


0, if i 6= j,

1, if i = j.

For ν > −1
2 , we use the Bessel function of the first kind of order ν

Jν(z) =
∞∑
m=0

(−1)m
(
z

2

)2m+ν
[m!Γ(m+ ν + 1)]−1, z > 0,

where Γ(·) is the gamma function.

Definition 3.1. A random field is a function ξ(ω, x) : Ω× S → Rm such that ξ(ω, x) is a
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random vector for each x ∈ S. For simplicity it will also be denoted by ξ(x), x ∈ S.

When n = 1, ξ(x) is a random process. When S ⊆ Rn, n > 1, then ξ(x) is termed as a

random field. It is called a vector random field for m > 1. In this chapter, we concentrate

on scalar random fields ξ(x), x ∈ S, n > 1 and m = 1.

If {ξ(x1), ..., ξ(xN ), x1, ..., xN ∈ S} is a set of random variables belonging to a Gaussian

system for each N ≥ 1, then ξ(x), x ∈ S, is called Gaussian.

We assume that all random variables ξ(x) are defined on the same probability space

(Ω,F , P ).

Definition 3.2. A second order random field is a random function ξ : S → L2(Ω,F , P ),

S ⊂ Rn.

In other words, the random variables ξ(x), x ∈ S, satisfy E|ξ(x)|2 < +∞. Thus, a

second order random field over S is a family {ξ(x), x ∈ S} of square integrable random

variables.

Definition 3.3. A second order random field ξ(x), x ∈ Rn, is homogeneous (in the wide

sense) if its mathematical expectation m(x) = E[ξ(x)] and covariance function B(x, y) =

cov(ξ(x), ξ(y)) are invariant with respect to the Abelian group G = (Rn,+) of shifts in

Rn, that is

m(x) = m(x+ τ), B(x, y) = B(x+ τ, y + τ),

for any x, y, τ ∈ Rn.

That is, for homogeneous random fields E[ξ(x)] = const, and the covariance function

B(x, y) = B(x− y) depends only on the difference x− y.

The covariance function B(x − y) of a homogeneous random field is a non-negative

definite kernel on Rn × Rn, that is, for any r ≥ 1, x(j) ∈ Rn, zj ∈ C, j = 1, ..., r,

r∑
i,j=1

B(x(i) − x(j))ziz̄j ≥ 0.

If the covariance function B(x) is continuous at x = 0, then the field is mean-square

continuous for each x ∈ Rn and vice versa.

Definition 3.4. The second order random field ξ(x) is isotropic (in the wide sense) on

Rn if its mathematical expectation and covariance function are invariant with respect to
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the group of rotations on the sphere, i.e.

m(x) = m(gx), B(x, y) = B(gx, gy),

for every x, y, τ ∈ Rn and g ∈ SO(n).

In the following we will be considering real-valued second order random fields. It will

be also assumed that E[ξ(x)] = 0 without loss of generality.

If a real-valued second order random field ξ(x), x ∈ Rn is homogeneous and isotropic,

then its mathematical expectation and the covariance function depend only on the Eu-

clidean distance ρxy = ‖x−y‖ between x and y. It means that its mathematical expectation

m(x) and covariance function B(x, y) are invariant with respect to shifts, rotations and

reflections in Rn.

Definition 3.5. A stochastic process {X(t), t ≥ 0} is self-similar if for any non-random

constant a > 0, there exists non-random constant b > 0 such that {X(at)} d= {bX(t)}.

For self-similar, continuous at 0 and non-trivial X(t), the constant b must be equal

aH , a > 0, where H ≥ 0. Thus, {X(at)} d= {aHX(t)}. The constant H is known as

the Hurst parameter. The process {X(t), t ≥ 0} is called H-ss (self-similar) or H-sssi

(self-similar stationary increments) if its increments are stationary.

The concept of multifractal processes was motivated by establishing the following scal-

ing rule of self-similar processes.

Definition 3.6. A stochastic processX(t) is multifractal if it holds {X(ct)} d= {M(c)X(t)},

where M(c) is a random variable independent of X(t) for every c > 0 and the distribution

of M(c) does not depend on t.

The process is self-similar if M(c) is non-random for every c > 0 and M(c) = cH . The

scaling factor M(c) satisfies {M(ab)} d= {M1(a)M2(b)} for every selection of constants a

and b and random M1 and M2 that are independent copies of M . This establishes the

characteristic of the deterministic factor H-ss processes (ab)H = aHbH .

Another definition of multifractality is

Definition 3.7. A stochastic process X(t) is multifractal if there exist non-random func-

tions c(q) and τ(q) such that for all t, s ∈ T , q ∈ Q,

E|X(t)−X(s)|q = c(q)|t− s|τ(q),
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where T and Q are intervals on the real line with positive length and 0 ∈ T .

The function τ(q) is known as the scaling function. The intervalQmay include negative

values. Instead of the increments of the process, the definition can also be established on

the moments of the process. i.e. E|X(t)|q = c(q)tτ(q). Above definitions coincide if the

increments are stationary. If {X(t)} is H-sssi, then it holds that τ(q) = Hq.

3.3 Spherical random fields

This section introduces some basic notations of the theory of random fields on a sphere.

The sphere is a simplest case of a manifold in Rn. For simplicity, we consider only the

case n = 3.

Let us denote the 3-dimensional unit ball as B3 = {x ∈ R3 : ‖x‖ ≤ 1}. The spherical

surface in R3 with a given radius r > 0 is s2(r) = {x ∈ R3 : ‖x‖ = r}, with the correspond-

ing Lebesgue measure on the sphere σr(du) = σr(dθ · dϕ) = r2 sin θdθdϕ, (θ, ϕ) ∈ s2(1).

For two points on s2(r) we use Θ to denote the length of the angle formed between two

rays originating at the origin and pointing at these two points. Θ is called the angular

distance between these two points.

A spherical random field T = {T (r, θ, ϕ) : 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, r > 0} is a random

function, which is defined on the sphere s2(r). We deal with a spherical real-valued mean-

square continuous random field T with a constant mean and finite second order moments.

Definition 3.8. A real-valued second order random field T (x), x ∈ s2(r), with E[T (x)] =

0 is isotropic if E[T (x1)T (x2)] = B(cos Θ), x1, x2 ∈ s2(r), depends only on the angular

distance Θ between x1 and x2.

For the considered mean-square continuous isotropic random fields, the covariance

function B(cos Θ) is a continuous function on [0, π).

An isotropic spherical random field on s2(r) can be expanded in a Laplace series in

the mean-square sense.

T (r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

Y m
l (θ, ϕ)aml (r), (3.1)

where {Y m
l (θ, ϕ)} represents the spherical harmonics defined as

Y m
l (θ, ϕ) = cml exp (imϕ)Pml (cos θ), l = 0, 1, ..., m = 0,±1, ...,±l,
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with

cml = (−1)m
[2l + 1

4π
(l −m)!
(l +m)!

]1/2
,

the associated Legendre polynomials Pml (·) having degree l and order m

Pml (x) = (−1)m
(
1− x2

)m/2 dm

dxm
Pl(x),

and the l-th Legendre polynomials, see Leonenko and Shieh (2013),

Pl(x) = 1
2ll!

dl

dxl

(
x2 − 1

)l
.

The spherical harmonics have the following properties

∫ π

0

∫ 2π

0
Y m
l (θ, ϕ)Y m′

l′ (θ, ϕ) sin θdϕdθ = δl
′
l δ

m′
m ,

Y m
l (θ, ϕ) = (−1)mY (−m)

l (θ, ϕ).

The notation T̃ (x) = T (r, θ, ϕ), x ∈ R3, will be used to highlight the random field’s

dependence on Euclidean coordinates.

The random coefficients of the Laplace series can be computed as the mean-square

stochastic integrals via the inversion arguments as

aml (r) =
∫ π

0

∫ 2π

0
T (r, θ, ϕ)Y m

l (θ, ϕ)r2 sin θdθdϕ =
∫
s2(1)

T̃ (ru)Y m
l (u)σ1(du), (3.2)

where u = x
‖x‖ ∈ s2(1), r = ‖x‖.

The covariance functions E(T (r, θ, ϕ)T (r, θ′ , ϕ′)) of the isotropic random fields depend

only on the angular distance Θ = ΘPQ between the points P = (r, θ, ϕ) and Q = (r, θ′ , ϕ′).

For spherical isotropic random fields it possesses

Eaml (r)am
′

l′
(r) = δl

′

l δ
m
′

m Cl(r), E|aml (r)|2 = Cl(r), m = 0,±1, ...,±l. (3.3)

The angular power spectrum of the isotropic random field T (r, θ, ϕ) is defined as the

functional series {C0(r), C1(r), ..., Cl(r), ...}.

From (3.1) - (3.3) and the addition theorem for spherical harmonic functions we obtain

Cov(T (r, θ, ϕ), T (r, θ′ , ϕ′)) = 1
4π

∞∑
l=0

(2l + 1)Cl(r)Pl(cos Θ),
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where for every r > 0 it holds ∑∞l=0(2l + 1)Cl(r) <∞.

If T (r, θ, ϕ) is an isotropic Gaussian field defined on the sphere s2(r), then the coef-

ficients aml (r) are independent Gaussian random variables that are complex-valued with

Eaml (r) = 0.

For the homogeneous and isotropic random field T̃ (x), x ∈ R3, it holds (Marinucci and

Peccati (2011))

Eaml (r)am
′

l′
(s) = δl

′

l δ
m
′

m Cl(r, s), r > 0, s > 0,

where

Cl(r, s) = 2π2
∫ ∞

0

Jl+ 1
2
(µr)Jl+ 1

2
(µs)

(µr)1/2(µs)1/2 G(dµ), l = 0, 1, 2, ...,

and G(·) is a finite measure defined on the Borel sets of [0,∞) satisfying

σ2 = V ar{T̃ (x)} =
∫ ∞

0
G(dµ) <∞, x ∈ R3.

3.4 Rényi function and multifractal spectrum

This section introduces basic notations, definitions and concepts regarding the multifractal

theory and Rényi functions.

The Rényi function which is also known as the index of diversity is used in multifractal

analysis to assess the randomness of many natural phenomena. It can be used to detect

the multifractal behaviour of a given random process. The Rényi function computes

how the measure/mass/intensity on a surface varies with the resolution or the block size

of an image. That is, it calculates the change in detail of a pattern according to the

change in scale. The Rényi function characterises the distortion in the mean of a pattern’s

probability distribution of pixel values. Rényi functions of non-fractal and monofractal

processes exhibit a flatter curve than ones of multifractal processes. Rényi functions of

multifractal processes typically have quadratic shapes that suggest the presence of different

fractal dimensions.

Consider a random field Λ(x, ω), x ∈ R3, ω ∈ Ω, that is measurable, homogeneous and

isotropic (HIRF) on the 3-dimensional Euclidean space R3. It will be called the mother

field. For simplicity it will be denoted as Λ(x) = Λ(x, ω).
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Condition 3.1. Let a random field Λ(x), x ∈ R3, satisfy

E[Λ(x)] = 1, Λ(x) > 0, Cov(Λ(x),Λ(y)) = RΛ(‖x− y‖) = σ2
ΛρΛ(‖x− y‖),

where ρ(0) = 1 and σ2
Λ <∞.

Let Λ(i)(x), x ∈ R3, i = 0, 1, 2, ..., be a sequence of independent copies of the random

field Λ(·). We consider the re-scaling of Λ(·) defined as Λ(i)(bix), where b > 1 is a constant

called a scaling factor and bix is the product of a vector x by a scalar bi.

A finite-product field on B3 is defined by

Λk(x) =
k∏
i=0

Λ(i)(bix), k = 1, 2, ....

Then one can introduce the random measure µk(·) on the Borel σ-algebra B of a unit

ball B3 by

µk(A) =
∫
y∈A

Λk(y)dy, A ∈ B, k = 0, 1, 2, ....,

where µk(A) is defined in Lp sense (Denisov and Leonenko (2016)).

We denote by µk
d→ µ, k → ∞, the weak almost surely convergence of the measures

µk to some measure µ. It means that for all continuous functions g(y), y ∈ B3, it holds

with probability 1 that

∫
B3
g(y)µk(dy)→

∫
B3
g(y)µ(dy), k →∞,

where the integrals are defined in Lp sense (Denisov and Leonenko (2016)).

Remark 3.1. The weak almost surely convergence of random measures implies that for

a finite or countable family of sets Aj from B, with probability 1,

µk(Aj)→ µ(Aj), k → +∞,

for all j, see Kahane (1987) and Mannersalo et al. (2002). Moreover, it was shown in

Denisov and Leonenko (2016), Leonenko and Shieh (2013) and Mannersalo et al. (2002)

that for mother random fields with ρΛ(r) possessing an exponentially decaying bound, the

random variables µk(B3) converge to µ(B3) in L2 (and hence in Lq for q ∈ (0, 2]) when

k → +∞. In the following, for all models considered in this chapter, it will be assumed

that |ρΛ(r)| ≤ Ce−γr for some positive constants C, and γ.
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Definition 3.9. The Rényi function of a random measure µ is a non-random function

defined by

T (q) = lim inf
m→∞

log2E
∑
l µ(B(m)

l )q

log2 |B
(m)
l |

,

where {B(m)
l , l = 0, 1, ..., 2m − 1, m = 1, 2, ..., } denotes the mesh formed by the mth level

dyadic decomposition of the unit ball B3.

The key result about the form of the Rényi function is the following theorem.

Theorem 3.1. (Leonenko and Shieh (2013)) Suppose that Condition 3.1 holds.

(i) Assume that the correlation function ρΛ(‖x−y‖) = ρ(r) of the field Λ(·) satisfies the

following condition

|ρΛ(r)| ≤ Ce−γr, r > 0, (3.4)

for some positive constants C and γ. Then, for the scaling factor b > 3
√

1 + σ2
Λ, the

measures µk
d→ µ, k →∞, on B3.

(ii) If for some range q ∈ Q = [q−, q+], both EqΛ(0) < ∞ and Eµq(B3) < ∞, then the

Rényi function T (q) of µ is given by

T (q) = q − 1− 1
3 logbEΛq(0), q ∈ Q.

Similarly, for spherical random fields on s2(1), one can introduce an analogous approach.

Condition 3.2. Let the random field Λ̃(x), x ∈ s2(1), satisfy

EΛ̃(x) = 1, V arΛ̃(x) = σ2
Λ̃ <∞, Λ̃(x) > 0,

Cov(Λ̃(θ, ϕ), Λ̃(θ′ , ϕ′)) = 1
4π

∞∑
l=0

(2l + 1)ClPl(cos θ),
∞∑
l=0

(2l + 1)Cl <∞.

Let Λ̃(i)(x), x ∈ s2(1), i = 0, 1, 2, ..., be a sequence of independent copies of the field Λ̃(·).

Let us use the following spherical coordinate notations for points on s2(1) : x = (1, θ, ϕ) ∈

s2(1). Consider Λ̃(i)(bi × x), where b > 1 is a scaling factor, bi × x := (1, bi ×
π
θ, bi ×

2π
ϕ)

∈ s2(1), and the modulus algebra is used to compute the products bi ×
π
θ and bi ×

2π
ϕ.

Define the finite product fields on s2(1) by

Λ̃k(x) =
k∏
i=0

Λ̃(i)(bi × x), k = 1, 2, ....
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Let us introduce the random measure µk(·) on the Borel σ-algebra B of s2(1) as

µk(A) =
∫
A

Λ̃k(y)dy, k = 0, 1, 2, ..., A ∈ B, (3.5)

where µk(A) is defined in Lp sense (Denisov and Leonenko (2016)).

We denote by µk
d→ µ, k → ∞, the weak convergence of the measures µk to some

non-degenerate measure µ. It means that for all continuous functions g(y), y ∈ s2(1),

∫
s2(1)

g(y)µk(dy)→
∫
s2(1)

g(y)µ(dy), k →∞.

The Rényi function of the random measure µ defined on s2(1) is defined as

T (q) = lim inf
m→∞

log2E
∑
l µ(S(m)

l )q

log2 |S
(m)
l |

, (3.6)

where {S(m)
l , l = 0, 1, ..., 2m − 1} is the mesh constructed by mth level dyadic decomposi-

tion of the spherical surface of s2(1).

Theorem 3.2. (Leonenko and Shieh (2013)) Suppose that Condition 3.2 holds and the

isotropic random field Λ̃(·) is the restriction to the sphere s2(1) of the HIRF Λ(x), x ∈

R3, with the correlation function ρΛ(‖x − y‖) = ρ(r). Under similar assumptions to

Theorem 3.1, the Rényi function T (q) of the limit measure µ on s2(1) is given by

T (q) = q − 1− 1
2 logbEΛq(0), q ∈ Q.

Remark 3.2. If x and y are two locations on the unit sphere s2(1) and Θ is the angle

between them, then the Euclidean distance between these two points is 2 sin(Θ/2), which

gives a direct correspondence between the covariance function ρΛ(‖x−y‖) in the Euclidean

space and the covariance function ρ(cos Θ) = ρΛ(2 sin Θ/2) on the sphere. Thus, the

restriction of the HIRF Λ(x) to s2(1) is an isotropic spherical random field.

The multifractal or singularity spectrum is defined via the Legendre transform as

f(h) = inf
q

(hq − T (q)). (3.7)

and is used to describe local fractal dimensions of random fields.
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3.5 Conditions on measure µ

The random measure µ in the previous section was defined as a weak limit of the mea-

sures µk. Therefore, it would be difficult to check moment conditions on µ as its probabil-

ity distribution is not explicitly known. This section provides sufficient conditions on the

scaling factor b and the variance σ2
Λ that guarantee Eµq(B3) < ∞. The general method

to obtain such conditions for the range q ∈ [1, 2] uses martingale L2 convergence, see,

for example, Mannersalo et al. (2002). The proof of the main result of this section in

Section 3.10 demonstrates the direct probability approach, which is more elementary.

Theorem 3.3. Let the mother field Λ(x) > 0, x ∈ R3, satisfy the conditions

EΛ(x) = 1, V arΛ(x) = σ2
Λ < +∞, Cov(Λ(x),Λ(y)) = σ2

ΛρΛ(‖x− y‖),

|ρΛ(τ)| ≤ Ce−γτ , τ > 0,

and the scaling factor b > max( 3
√

1 + σ2
Λ, e

σ2
ΛC
3 ).

Then the measures µk
d→ µ, k →∞, and Eµq(B3) < +∞, for q ∈ [1, 2].

Remark 3.3. The direct probability approach can be used to obtain conditions on the

mother field that guarantee Eµqk(B3) < +∞, for q in the range [1, Q], where Q > 2.

For example, using the Lyapunov’s inequality for q ∈ [1, 4], see (Loéve, 1977, p.162),

Eµqk(B
3) ≤ (Eµ4

k(B3))q/4,

the conditions on b and σ2
λ that guarantee Eµ4

k(B3) < +∞ are also sufficient for Eµq(B3) <

+∞, q ∈ [1, 4]. Then, it follows from

Eµ4
k(B3) =

∫
B3

∫
B3

∫
B3

∫
B3

k∏
i=0

E

 4∏
j=1

Λ(i)(yibi)

 4∏
j=1

dyi,

that one can impose some additional assumptions on the fourth order moments

E(∏4
j=1 Λ(yjbi)) or cumulants of the mother field Λ(·). We will provide an example of

such conditions in Section 3.7 for Model 4.
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3.6 Rényi functions of exponential models

For the random fields on the sphere, there are three models where the Rényi function

is known explicitly, see Leonenko and Shieh (2013). These models were obtained for

exponential type spherical random fields. This section introduces these models, derives

their singularity spectrum and studies dependence of their Rényi functions on the scaling

parameter.

Model 1 Let the random field Λ(x) be given as

Λ(x) = exp

{
Y (x)− 1

2σ
2
Y

}
,

where Y (x), x ∈ R3, is a zero-mean Gaussian, measurable, separable random field with

the covariance function σ2
Y ρY (r), ρY (0) = 1.

The following result provides the conditions and the explicit form of the Rényi function

for Model 1.

Theorem 3.4. (Leonenko and Shieh (2013)) Let for Model 1 the correlation function

satisfy

0 < |ρY (r)| ≤ Ce−γr, r > 0,

for some positive C and γ and b > exp{σ
2
Y
3 }.

If Y (x), x ∈ s2(1), is a spherical isotropic random field that is a restriction of Y (x), x ∈

R3, on the sphere s2(1), then the random measures (3.5) generated by the spherical fields

Λ̃(x) = exp
{
Y (x)− 1

2σ
2
Y

}
, x ∈ s2(1), converge weakly to the random measure µ. The

corresponding Rényi function is

T (q) = q

(
1 + σ2

Y

4 ln b

)
− q2

(
σ2
Y

4 ln b

)
− 1, q ∈ [1, 2]. (3.8)

Remark 3.4. It’s easier to define the covariance structure of a random field on the whole

space R3 and then to consider it’s restriction to the sphere rather than directly defining

it and the corresponding covariances on the sphere.

Model 2 Let the random field Λ(x) be of the form

Λ(x) = exp {Z(x)− cZ} , cZ = − ln
(

1− 1
λ

)β
,
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where Z(x), x ∈ R3, is a gamma-correlated HIRF with the correlation function ρZ(r).

The field Z(x) has the marginal density

p(u) = λβ

Γ(β)u
β−1e−λu, u, λ, β ∈ (0,+∞), (3.9)

and the bivariate density

p0(u1, u2;α) = (u1u2/α)
β−1

2

Γ(β)(1− α) exp
{
−u1 + u2

1− α

}
Iβ−1

(
2
√
u1 · u2 · α
1− α

)
, (3.10)

where Iv(z) = ∑∞
k=0

(
z
2
)2k+v (k!Γ(k + v + 1))−1 is the modified Bessel function of the first

kind, α ∈ [0, 1], λ, β, and γ are constant parameters.

Then the covariance function of the mother random field is

ρΛ(r) =

 e−2cz(
1− 2

λ + 2
λ2 (1− ρZ(τ))

)β − 1


 e−2cz(

1− 1
λ

)β − 1


−1

.

The following result gives the Rényi function and the corresponding conditions for

Model 2.

Theorem 3.5. (Leonenko and Shieh (2013)) Suppose that for Model 2 the parameter

λ > 2 and the correlation function satisfies

0 < |ρZ(r)| ≤ Ce−γr, r > 0,

for some positive constants C and γ. Then, for the parameters (β, λ) from the set

Lβ,λ =

(β, λ) : b >
(

1 +
1
λ2

1− 2
λ

)β
2

, λ > 2, β > 0

 ,
the measures µk

d→ µ, k →∞. The Rényi function of µ is given by

T (q) = q

(
1− β

2 logb
(

1− 1
λ

))
+
(
β

2

)
logb

(
1− q

λ

)
− 1. (3.11)

where q ∈ Q = {0 < q < λ} ∩ [1, 2] ∩ Lβ,λ.
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Model 3 Let the mother random field be

Λ(x) = exp {U(x)− cU} , x ∈ R3,

where U(x) = −Z−1(x), and Z(x), x ∈ R3, is a gamma-correlated HIRF with the densities

given by (3.9) and (3.10) and the correlation function ρZ(r).

Theorem 3.6. (Leonenko and Shieh (2013)) Suppose that for Model 3 the correlation

function satisfies

0 < |ρZ(r)| ≤ Ce−γr, r > 0,

for some positive constants C and γ. Then, for any (β, λ) ∈ Lβ,λ and b >
(

Γ(β)2
β
2−1Kβ(2

√
2λ)

λβ/2[Kβ(2
√
λ)]2

) 1
2

the measures µk
d→ µ when k →∞. The Rényi function of measure µ is

T (q) = q

(
1 + cU

2 ln b

)
− 1

2 logb
(
qβ/2Kβ(2

√
qλ)

)
−
(

1 + 1
2logb

(
2λβ/2
Γ(β)

))
, (3.12)

where q ∈ Q = [1, 2] ∩ Lβ,λ, Kλ(x) is the modified Bessel function of the third kind and

cU = ln
(

2λβ/2Kβ(2
√
λ)

Γ(β)

)
.

Let α(q) denote the qth order singularity exponent and be defined by

α(q) = d

dq
T (q). (3.13)

Then the multifractal spectrum defined by (3.7) can be expressed as a function of α by

f(α(q)) = q · α(q)− T (q). (3.14)

For Model 1 it is easy to see from (3.8) that

α(q) = 1 + σ2
Y

4 ln(b) −
σ2
Y

2 ln(b)q,

f(α(q)) = 1− σ2
Y

4 ln(b)q
2, q ∈ [1, 2]. (3.15)

By (3.11) we obtain for Model 2

α(q) = 1− β

2 logb
(

1− 1
λ

)
+ β

2 ln(b)(q − λ) ,
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f(α(q)) = 1 + β

2

(
q

ln(b)(q − λ) − logb
(

1− q

λ

))
. (3.16)

For Model 3 it follows from (3.12) and Kβ
′(q) = −1

2 (Kβ−1(q) +Kβ+1(q)), see 9.6.26

in Abramowitz and Stegun (1964), that

α(q) = 1 + cU
2 ln(b) −

β

4 ln(b)q +
√
λ(Kβ−1(2

√
qλ) +Kβ+1(2

√
qλ))

2 ln(b)Kβ(2
√
qλ)√q

,

f(α(q)) = 1 + β

2 logb

(
2λβ/2
Γ(β)

)
− β

4 ln(b) + 1
2 logb(qβ/2Kβ(2

√
qλ))

+
√
qλ(Kβ−1(2

√
qλ) +Kβ+1(2

√
qλ))

2 ln(b)Kβ(2
√
qλ)

. (3.17)

Summarising the above results we obtain

Theorem 3.7. Let the corresponding conditions of Theorems 3.4, 3.5 and 3.6 are satisfied

for Models 1, 2 and 3. Then the multifractal spectra of these models are given by (3.15),

(3.16) and (3.17) respectively.

(a) Rényi function of Model 1 (b) Rényi function of Model 2 (c) Rényi function of Model 3

(d) Spectrum of Model 1 (e) Spectrum of Model 2 (f) Spectrum of Model 3

Figure 3.1: Examples of Rényi functions and multifractal spectra for Models 1, 2 and 3

The plots shown in Figure 3.1 illustrate behaviours of the Rényi functions and multi-
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fractal spectra for Models 1, 2 and 3. For these numerical examples, we used the following

values of the parameters: b = 2, σY = 1, λ = 3, and β = 2. Notice that these values of

b, λ and β satisfy the conditions in Lβ,λ. We also selected (0, 3) as the range of q values.

It is slightly wider than the range [1, 2] in the theorems and allows better visualisation of

T (q) and f(α), see Section 3.8.1 on the way to check its validity.

Figure 3.1 shows that the Rényi functions of the Models 1 and 2 have parabolic shapes

while the Rényi function of the Model 3 is closer to a linear shape on the interval (0, 3).

Also, comparing the plots for Models 1, 2 and 3, we can see that the Rényi functions

of Model 1 and 2 exhibit a concave down increasing and decreasing behaviour within

q ∈ (0, 3), whereas for Model 3 it increases. The multifractal spectra of Models 1, 2 and

3 show a concave down increasing behaviour within q ∈ (0, 3).

3.7 Models based on power transformations of Gaussian

fields

In the previous section, we considered three models based on an exponential transformation

of Gaussian or gamma-correlated HIRF. This section proposes few much simpler scenarios

where conditions of the theorems from Section 3.4 are satisfied.

First, note that the condition Λ(x) > 0 in Leonenko and Shieh (2013) can be relaxed

to Λ(x) > 0 almost sure.

Model 4 Let Λ(x) = Y 2(x), where Y (x), x ∈ R3, is a zero-mean unit variance Gaussian

HIRF with a covariance function ρY (τ), τ ≥ 0.

For this model we obtain the following result, see the proof in Section 3.10.

Theorem 3.8. Suppose that for Model 4, the correlation function of Y (x) satisfies |ρY (r)| ≤

Ce−γr, r > 0, γ > 0, and b > max( 3
√

1 + σ2
λ, e

σ2
ΛC/3).

Then the measures µk
d→ µ, k →∞, and the corresponding Rényi function is equal to

T (q) = q − 1− 1
2 logb

(
2qΓ(q + 1

2)
√
π

)
, q ∈ [1, 2]. (3.18)

Example 3.1. The approach developed in Section 3.5 can be used to obtain the moment

conditions for q ∈ [1, 4] in the case of Model 4. As it is shown in Section 3.10 it is enough

to require that b > e
6(max(σΛC,1))4

3 .
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Now we show that the assumption Λ(x) > 0 almost surely is indeed not restrictive and

it is easy to construct a modification of Model 4 with Λ(x) > 0.

Model 4’ Let

Λ(x) = Y 2(x) · (1− ε) + ε, ε ∈ (0, 1),

where Y (x), x ∈ R3, is a zero-mean unit variance Gaussian HIRF with a covariance

function ρY (τ), τ ≥ 0.

It is easy to see that

EΛ(x) = (1− ε)EY 2(x) + ε = 1, σ2
Λ = V arΛ(x) = 2(1− ε)2 < +∞,

Cov(Λ(x),Λ(y)) = 2(1− ε)2ρ2
Y (‖x− y‖).

Hence, Model 4’ satisfies Conditions 3.1 and 3.2 and |ρ(r)| ≤ Ce−γr, r > 0, γ > 0, if

|ρY (r)| ≤ C ′e−γ
′
r, r > 0, γ′ > 0.

Therefore, we obtain

Tε(q) = q − 1− 1
2 logbE((1− ε)Y 2(x) + ε)q

= q − 1− q

2 logb(1− ε)−
1
2 logbE

(
Y 2(x) + ε

1− ε

)q

and
lim
ε→0

Tε(q) = q − 1− 1
2 logbE(Y 2q(x)),

which coincides with (3.18).

The next model generalizes Model 4 to an arbitrary even power of a Gaussian random field.

Model 5 Let Λ(x) = Y 2k(x), k ∈ N, where Y (x), x ∈ R3, is a zero-mean Gaussian HIRF

with the variance σ2 =
( √

π

2kΓ(k+ 1
2 )

)− 1
k

and a covariance function ρY (r), r ≥ 0.

Theorem 3.9. Suppose that for Model 5 the correlation function of Y (x) satisfies |ρY (r)| ≤

Ce−γr, r > 0, γ > 0, and b > max
(

3
√

1 + σ2
Λ, e

σ2
ΛC
3

)
.

Then the measures µk
d→ µ, k →∞, and the Rényi function is given by

T (q) = q − 1− 1
2 logbEY 2kq(x) = q − 1− 1

2 logb

(
2kqΓ(kq + 1

2)
√
π

)
. (3.19)

for q ∈ [1, 2].

The following model shows how vector-valued random fields can be used to construct

mother fields. The chi-square random field Y (·), which is constructed from a vector Gaus-

sian random field will be used.
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Model 6 Let Λ(x) = 2
kY (x), k ∈ N, where Y (x) ∼ χ2(k), and the HIRF field Y (x), x ∈ R3,

has a covariance function ρY (r), r ≥ 0.

Theorem 3.10. Suppose that the correlation function in Model 6 satisfies the inequality

|ρY (r)| ≤ Ce−γr, r > 0, γ > 0, and b > max
(

3
√

1 + σ2
Λ, e

σ2
ΛC
3

)
.

Then the measures µk
d→ µ, k →∞, and for q ∈ [1, 2] the Rényi function is equal to

T (q) = q

(
1− 1

2 logb
(2
k

))
− 1− 1

2 logb

(
2q

Γ(q + k
2 )

Γ(k2 )

)
. (3.20)

Note that Γ′(x) = ψ(x)Γ(x), where ψ(x) is the digamma function defined by

ψ(x) =
∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt.

Then, it follows from (3.13), (3.14) and (3.18) that for Model 4

α(q) = 1− 1
2 logb 2−

ψ(q + 1
2)

2 ln 2 ,

f(α(q)) = 1 + 1
2 logb

(
Γ(q + 1

2)
√
π

)
−
qψ(q + 1

2)
2 ln 2 . (3.21)

Analogously, for Model 5 one gets from (3.19)

α(q) = 1− k

2 logb 2−
kψ(kq + 1

2)
2 ln 2 ,

f(α(q)) = 1 + 1
2 logb

(
Γ(kq + 1

2)
√
π

)
−
kqψ(kq + 1

2)
2 ln 2 . (3.22)

Finally, it follows from (3.20) that for Model 6

α(q) = 1− 1
2 logb

(2
k

)
− 1

2 logb 2−
ψ(q + k

2 )
2 ln 2 ,

f(α(q)) = 1 + 1
2 logb

(
Γ(q + k

2 )
Γ(k2 )

)
−
qψ(q + k

2 )
2 ln 2 . (3.23)

Summarising, we obtain

Theorem 3.11. Let the corresponding conditions of Theorems 3.8, 3.9 and 3.10 are sat-

isfied for Models 4, 5 and 6. Then the multifractal spectra of these models are given by

(3.21), (3.22) and (3.23) respectively.
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The plots in Figure 3.2 demonstrate the behaviours of the Rényi functions and mul-

tifractal spectra of Models 4, 5 and 6. To plot Figure 3.2 we used similar settings and

coordinate ranges as in Figure 3.1. The following values of parameters were chosen to

produce the plots: b = 2, k = 2 and σY = 1.

(a) Rényi function of Model 4 (b) Rényi function of Model 5 (c) Rényi function of Model 6

(d) Spectrum of Model 4 (e) Spectrum of Model 5 (f) Spectrum of Model 6

Figure 3.2: Examples of Rényi functions and multifractal spectra for Models 4, 5 and 6

Figure 3.2 shows that similar to Models 1 and 2, Models 4, 5 and 6 exhibit a parabolic-

type behaviour. The spread of T (q) values is wider for Model 5 when compared to Models 4

and 6 within q ∈ (0, 3). The Rényi functions of Models 4, 5 and 6 manifest a concave

down increasing and decreasing behaviour within q ∈ (0, 3). Similar to Models 1, 2 and 3,

the multifractal spectra of Models 4, 5 and 6 show a concave down increasing behaviour

within q ∈ (0, 3).

Finally, we illustrate the impact of parameter b on the Rényi function using Models

1, 2, 3, 4, 5 and 6. For Model 1, σY = 1 was selected. Then, for Models 2 and 3, the

parameters λ = 3 and β = 2 were used. The parameter k = 2 was chosen for Models 5

and 6. Figure 3.3 suggests that the Rényi functions for all the models exhibit a similar

pattern. It suggests that the Rényi functions for Models 1, 3 and 4 are more concave

than for other models for small values of b. The dispersion of T (q) values on the interval

(0, 3) is smallest for Model 3 and largest for Model 5. Concavities of the Rényi functions
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become smaller when b increases and the other functions have almost linear behaviours

for q ∈ (0, 3) for large values of b.

(a) Rényi functions of Model 1 (b) Rényi functions of Model 2 (c) Rényi functions of Model 3

(d) Rényi functions of Model 4 (e) Rényi functions of Model 5 (f) Rényi functions of Model 6
Figure 3.3: Dependence of the Rényi function on the parameter b

3.8 Numerical studies

3.8.1 Simulation methodology

There are numerous models for which explicit expressions for the Rényi function in terms

of elementary functions or even series are not available. Also, in the majority of cases

obtaining explicit mathematical formulae for Rényi functions is a difficult problem and

rigorous results were derived only for some ranges of the parameter q. For example, for

all models in Leonenko and Shieh (2013) and this chapter, T (q) was derived for q ∈

[1, 2] only. These results are also likely to be true for wider ranges of q, but showing it

requires new proof strategies, see Section 3.5 and the example in Section 3.7. For such

difficult cases, random field simulations can be used to obtain realizations of random fields

from theoretical models and compute empirical Rényi functions. These empirical Rényi

functions can be used as a substitute for exact mathematical functions when verifying

whether or not real data are consistent with considered theoretical models.

The R package RandomFields provides a wide range of simulation techniques and

algorithms for random fields, see Schlather et al. (2019) for more details. The function
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First 40 realizations Yi(bix), i = 1, ..., 40, were simulated on a sphere by the pack-

age RandomFields. Then the finite-product field Λ40(x) was computed by transforming

the simulated values according to the formula exp(∑40
i=1 Yi(bix) − 40). The dot plot of

the empirical Rényi function is shown in Figure 3.4b. The solid straight line is used as a

reference to see departures from the fitted Model 1. It is clear that the empirical Rényi

function and the theoretical one from (3.8) are very close on an interval that is wider than

[1, 2]. Figure 3.4c shows the spread of the multifractal spectrum.

The simulation studies suggest that the theoretical results from previous sections also

hold for intervals wider than in the theorems.

3.8.2 Computing the Rényi function for CMB data

In this section, empirical Rényi functions were calculated for real cosmological data ob-

tained from the NASA/IPAC Infrared Science Archive (IRSA (2021)). Figure 3.5 gives

examples of sky windows CMB data from which were used to get empirical Rényi functions

in the following examples.

(a) Large window (b) Medium window (c) Small and very small windows

Figure 3.5: Different sky windows of CMB data

Extensive numerical studies were conducted for different windows in various sky loca-

tions. As in all cases we obtained rather similar results, we restrict our presentation only

to few typical examples. The R package rcosmo was used for computations and visualiza-

tions, see Fryer et al. (2020) and Fryer et al. (2019) for more details. For small windows,

the function fRen was slightly modified to change the support of the measure µ from the

whole sky to the selected window.

First the Rényi function was computed for the whole sky. The obtained sample Rényi

function is shown in Figure 3.6a by dots. The straight line in the Figure 3.6a was drawn

to assess departures of the sample Rényi function from a linear behaviour. The difference

of the sample Rényi function and the linear function that connects the points (1,0) and
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As the Rényi function of the log-normal model is specified by (3.8), substituting a =
σ2
Y

4 ln b , results in the form T (q) = a(−q2 + q) + q − 1. Then the R function “lm” was used

for a simple linear regression fit with the intercept 0 to T (q) − q + 1. The values of the

parameter a and the root mean square error for deviations of Model 1 from the empirical

Rényi function are given in Table 3.1.

Observation
window [αmin, αmax] αmax - αmin a RMSE

Whole Sky [0.9916, 1.0165] 0.024917 0.000513 1.3602 · 10−6

Large [0.9908, 1.0167] 0.025846 0.000555 1.3590 · 10−6

Medium [0.9893, 1.0159] 0.026620 0.000629 1.1033 · 10−6

Small [0.9867, 1.0170] 0.030219 0.000745 7.9095 · 10−7

Very Small [0.9842, 1.0543] 0.070150 0.001500 1.3949 · 10−5

Table 3.1: Analysis of different sky windows data with Model 1

Figure 3.6e demonstrates the fit of the log-normal model (shown in the red colour)

to the empirical Rényi function. As this plot is rather similar for all other models and

windows, we present only the plots of residuals in Figure 3.6f, Figure 3.7c, Figure 3.7f and

Figure 3.8.
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(a) Difference with Model 2
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(b) Difference with Model 3
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(c) Difference with Model 4
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(d) Difference with Model 5
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(e) Difference with Model 6

Figure 3.8: Differences between the sample Rényi function and the fitted model
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As the estimated value of a is close to zero, the fit of Model 1 gives an almost degen-

erated case, when either σ2
Y is very small or b is very large, which is consistent with the

plot in Figure 3.3. The results in Table 3.1 also confirm that multifractality is very small

as for all observation windows a is almost zero and αmax − αmin is very small.

Next, for the log-gamma model specified by (3.11), we used the reparameterisation

A = 2
β ln(b), B = λ−1 and considered the non-linear model T (q)−q+1 = A−1(ln(1−Bx)−

x ln(1 − B)). The command “nlsLM” from the R package minpack.lm with appropriate

initial values was used to fit the model to the sample values of T̂ (q)− q+ 1. The values of

estimated parameters were Â = 0.029407 and B̂ = 0.005469 with RMSE = 1.7198×10−6.

The corresponding values of b, λ and β satisfy the assumptions of Theorem 3.5.

For the log-negative-inverse-gamma model given by (3.12), the reparameterisation

A = 2 ln(b), B = β, C =
√
λ and application of “nlsLM” resulted in Â = 0.254719,

B̂ = 5.695755, Ĉ = 0.386207 and RMSE = 2.6201 × 10−10. Note that the obtained Ĉ

corresponds to λ that is outside of Lβ,λ in Theorem 3.6. For parameters satisfying the

conditions of Theorem 3.6, RMSE is substantially larger. As the results in Theorem 3.6

might be also true for other parameters (see the discussion in Section 3.8.1), we used the

obtained value of Ĉ.

Model 4 was fitted by using a linear regression model with the parameter A = − 1
2 log2 b

.

The estimated parameter Â was −0.000667 and RMSE = 2.56533× 10−5. For Models 5

and 6 the non-linear regression approach and the R function “nls” were used. For Model

5 the estimates were found as Â = −0.000762, k̂ ≈ 1 and RMSE = 1.6347 × 10−5.

Finally, for Model 6 the estimated parameters were Â = 0.000269, k̂ = 1 and RMSE =

1.8393× 10−4.

Figure 3.7c and Figure 3.8 demonstrate that departures of the fitted models from

the empirical Rényi function are very small, but have different patterns. The numerical

studies suggested that Models 2 and 3 are more flexible than the other models. However,

to fit these models one has to very carefully choose initial values of the parameters for

the nls estimation. Different initial values can lead to different results which can be a

potential issue for data which, similarly to CMB, show minor multifractality. Also, nls

method’s rates of convergence for Models 2 and 3 are very slow. Models 1, 4, 5 and 6 have

less parameters and are less flexible than Models 2 and 3. However, in many cases they

give a reasonable fit very quickly, are robust to the choice of initial values and are more

computationally efficient.
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All models gave a good fit to the empirical Rényi functions. The analysis in this section

suggests no significant or very small multifractality for the currently available resolution

of CMB measurements.

3.9 Conclusion

This chapter investigates the multifractal behaviour of spherical random fields and some

applications to cosmological data from the mission Planck. The aim of this chapter is to

introduce several multifractal models for random fields on a sphere and to propose simpler

models where the Rényi function can be computed explicitly. All Rényi functions for the

specified models exhibit either parabolic or approximately linear behaviours. We present

the Rényi function computations for different CMB sky windows located at different places

of the sphere. Finally, we fit the specified models to actual CMB data. All models fit to

the data. The analysis suggests that there may exist a very minor multifractality of the

CMB data for the currently available resolution.

Some related problems and extensions of the current research that would be interesting

for future studies:

• Develop statistical tests for different types of Rényi functions;

• Prove that the theoretical results and the formulae for the Rényi functions are also

valid for the values of q outside the interval [1, 2], see Denisov and Leonenko (2016);

• Study other models based on vector random fields (similar to Model 6), where the

Rényi functions can be computed explicitly;

• Develop some approaches to study rates of convergence for the obtained asymptotics,

that would serve as analogous of classical convergence rates in central and non-central

limit theorems, see Anh et al. (2015) and Anh et al. (2019a);

• Investigate changes of the Rényi functions depending on evolutions of random fields

driven by SPDEs on the sphere, see Anh et al. (2018), Broadbridge et al. (2019) and

Broadbridge et al. (2020);

• Apply the developed models and methodology to other spherical data, in particular,

to new high-resolution CMB data from future CMB-S4 surveys (Abazajian et al.

(2019)) which will be collecting 3D observations.
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This chapter studies data that are modelled as restrictions of 3D random fields to the unit

sphere. Compared to the available literature, this approach is more consistent with real

CMB observations that exist in R3, but are measured only on s2(1), see the discussions

in Anh et al. (2018), Broadbridge et al. (2019) and Broadbridge et al. (2020). For other

applications it would be important to develop similar results for the case of intrinsic

spherical random fields, i.e., random fields directly defined on s2(1), see the discussion

about differences of covariance models of random fields with supports in R3 and s2(1) in

Gneiting (2013).

3.10 Proofs

This section gives the proofs in this chapter. It specifically gives the proofs of Theorem 3.3,

Theorem 3.8, Example 3.1, Theorem 3.9 and Theorem 3.10.

Proof of Theorem 3.3. By Remark 3.1, from the weak convergence of the measures µk to µ

and the assumption of exponential boundedness of the covariance function of the mother

field, it follows that

Eµqk(B
3)→ Eµq(B3), k →∞.

By the Lyapunov’s inequality, see (Loéve, 1977, p.162),

Eµqk(B
3) ≤ (Eµ2

k(B3))q/2, for q ∈ [1, 2].

Therefore, to guarantee Eµq(B3) < +∞, q ∈ [1, 2], it is sufficient to provide such b

and σ2
Λ that

sup
k∈N

Eµ2
k(B3) < +∞.

By (3.4), the non-negativity of Λk(y) and independence of Λ(i) it holds

Eµ2
k(B3) = E

∫
B3

∫
B3

Λk(y)Λk(ỹ)dỹdy =
∫
B3

∫
B3
E[Λk(y)Λk(ỹ)]dỹdy

=
∫
B3

∫
B3
E

k∏
i=0

Λ(i)(ybi)Λ(i)(ỹbi)dỹdy =
∫
B3

∫
B3

k∏
i=0

EΛ(i)(ybi)Λ(i)(ỹbi)dỹdy

=
∫
B3

∫
B3

k∏
i=0

(
E(Λ(i)(ybi)− 1)(Λ(i)(ỹbi)− 1) + EΛ(i)(ybi) + EΛ(i)(ỹbi)− 1

)
dỹdy
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=
∫

B3

∫
B3

k∏
i=0

(Cov(Λ(ybi),Λ(ỹbi)) + 1)dỹdy =
∫

B3

∫
B3

k∏
i=0

(
1 + σ2

ΛρΛ(‖y − ỹ‖bi)
)
dỹdy

≤
∫
B3

∫
B3

k∏
i=0

(1 + σ2
ΛCe

−γ‖y−ỹ‖bi)dỹdy ≤
∫
B3

∫
B3

∞∏
i=0

(1 + σ2
ΛCe

−γ‖y−ỹ‖bi)dỹdy.

From the inequality 1 + a ≤ ea, it follows that

Eµ2
k(B3) ≤

∫
B3

∫
B3

∞∏
i=0

eσ
2
ΛCe

−γ‖y−ỹ‖bi
dỹdy.

Introducing the new variables z = y, z̃ = y − ỹ, one obtains

Eµ2
k(B3) ≤

∫
B3
dz

∫
B3−B3

∞∏
i=0

eσ
2
ΛCe

−γ‖z̃‖bi
dz̃,

where B3 −B3 = {z̃ : z̃ = y − ỹ, y, ỹ ∈ B3}.

Hence, by using the spherical change of variables,

Eµ2
k(B3) ≤ |B3|

∫ diam(B3)

0
r2
∞∏
i=0

eσ
2
ΛCe

−γrbi
dr

= |B
3|

γ3

∫ γdiam(B3)

0
r2
∞∏
i=0

eσ
2
ΛCe

−rbi
dτ.

As the exponent eσ2
ΛCe

−rbi is a decreasing function of r, selecting n(r) = max(0,−[logb(r)]),

r > 0, we obtain
∞∏
i=0

eσ
2
ΛCe

−rbi ≤
n(r)−1∏
i=0

eσ
2
ΛCe

−rbi
∞∏

i=n(r)
eσ

2
ΛCe

−rbi

≤ eσ2
ΛCn(r)

∞∏
i=0

eσ
2
ΛCe

−rbi+n(r)
≤ eσ2

ΛCn(r)
∞∏
i=0

eσ
2
ΛCe

−bi
.

Notice that
∞∏
i=0

eσ
2
ΛCe

−bi = eσ
2
ΛC
∑∞

i=0 e
−bi
≤ eσ

2
ΛC
∑∞

i=0 e
−(1+(b−1)i)

= e
σ2

ΛC
e

∑∞
i=0 e

−(b−1)i = e
σ2

ΛC
e

1
1−e−(b−1) < +∞.

Therefore,

Eµ2
k(B3) ≤ |B

3|
γ3 e

σ2
ΛC

e(1−e−(b−1))

∫ γdiam(B3)

0
z2eσ

2
ΛCn(z)dz

= |B
3|

γ3 e

σ2
ΛC

e(1−e−(b−1))

∫ γdiam(B3)

0
z2 max

(
1, z−

σ2
Λ

ln (b)

)
dz.
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The integral is finite if 2− σ2
ΛC

ln (b) > −1, i.e. b > e
σ2

ΛC
3 .

Proof of Theorem 3.8. By the definition of Model 4 it follows that

EΛ(x) = E(Y 2(x)) = ρY (0) = 1, σ2
Λ = V arΛ(x) = E(Y 4(x))− 1 = 2,

Cov(Λ(x),Λ(y)) = E(Y 2(x)− 1)(Y 2(y)− 1) = 2ρ2
Y (‖x− y‖).

To compute the covariance, we used the property

E(Hk(Y (x))Hl(Y (y))) = δlkk!ρkY (‖x− y‖), x, y ∈ R3, (3.24)

where Hk(u), k ≥ 0, u ∈ R, are the Hermite polynomials, see Peccati and Taqqu (2011).

For k = 2, the Hermite polynomial of order 2 is H2(u) = u2 − 1.

Thus, Model 4 satisfies Conditions 3.1 and 3.2.

Note that the condition |ρΛ(r)| ≤ Ce−γr, r > 0, γ > 0, is equivalent to

|ρY (r)| ≤ C ′e−γ
′
r, r > 0, γ′ > 0. (3.25)

So, if (3.25) is satisfied, then one can apply Theorems 3.1 and 3.2 and the Rényi

function of the limit measure equals to

T (q) = q − 1− 1
2 logbEY 2q(x).

Finally, noting that for p > −1 and Z ∼ N(µ, σ2)

E|Z − µ|p = σp
2p/2Γ(p+1

2 )
√
π

(3.26)

finalises the proof.

Proof of Example 3.1. By Remark 3.3, it is enough to check that

sup
k∈N

Eµ4
k(B3) = sup

k∈N

∫
B3

∫
B3

∫
B3

∫
B3

k∏
i=0

E

 4∏
j=1

Y 2(yjbi)

 4∏
j=1

dyj < +∞.
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Notice, that by Wick’s theorem

E

 4∏
j=1

Y 2(yjbi)

 =
∑
p∈P 2

4

∏
(j,j̃)∈p

Cov(Y (yjbi), Y (yj̃bi)), (3.27)

where the sum is over all parings p of {1, 1, 2, 2, 3, 3, 4, 4}, which are distinct ways of

partitioning {1, 1, 2, 2, 3, 3, 4, 4} into pairs (i, j). The product in (3.27) is over all pairs

contained in p, see Janson (1997).

Notice that for the pairing p∗ = {(1, 1), (2, 2), (3, 3), (4, 4)}.

∏
(j,j̃)∈p∗

Cov(Y (yjbi), Y (yj̃bi)) =
4∏
j=1

EY 2(yjbi) = 1.

In all other cases of pairing, there is at least one pair (j, j̃) such that j 6= j̃. Therefore,

the expectation E(∏4
j=1 Y

2(yjbi)) equals

1 +
∑
p∈P 2

4
p6=p∗

∏
(j,j̃)∈p

Cov(Y (yjbi), Y (yj̃bi)).

As, 1 + a < ea, it can be estimated by

exp

∑
p∈P 2

4
p6=p∗

∏
(j,j̃)∈p

Cov(Y (yjbi), Y (yj̃bi))

 .

As at least for one pairing (j, j̃) ∈ p 6= p∗ it holds that j 6= j̃, then one can use the upper

bound

|Cov(Y (yjbi), Y (yj̃bi))| ≤ σ2
Y Ce

−γ‖yj−yj̃‖bi ,

and the approach from the proof of Theorem 3.3.

Namely,

E

 4∏
j=1

Y 2(yjbi)

 ≤ e∑p∈p24

∏
(j,j̃)∈p σ

2
Y Ce

−γ‖yj−yj̃‖b
i

≤ e(max(σ2
ΛC,1))4

∑
1≤j≤j̃≤4 e

−γ‖yj−yj̃‖b
i

.

Hence,

sup
k∈N

∫
B3

∫
B3

∫
B3

∫
B3

k∏
i=0

E

 4∏
j=1

Y 2(yjbi)

 4∏
j=1

dyj
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≤
∫
B3

∫
B3

∫
B3

∫
B3

∞∏
i=0

e
(max(σ2

ΛC,1))4
∑

1≤j≤j̃≤4 e
−γ‖yj−yj̃‖b

i

≤

∫
B3

∫
B3

∫
B3

∫
B3

∞∏
i=0

e
6(max(σ2

ΛC,1))4
∑

1≤j≤j̃≤4 e
−γ‖yj−yj̃‖b

i 4∏
j=1

dyj

 ,
where the last inequality follows from the generalized Hölder’s inequality

∥∥∥∥∥
K∏
k=1

fk

∥∥∥∥∥
1

≤
K∏
k=1
‖fk‖pk ,

with ∑K
k=1 pk

−1 = 1. In our case K = 6 is the number of different j and j̃ satisfying

1 ≤ j ≤ j̃ ≤ 4.

Finally, similar to the proof of Theorem 3.3, from equation (3.18) we obtain the con-

dition b > e
6(max(σΛC,1))4

3 .

Proof of Theorem 3.9. It follows from (3.26) that

EΛ(x) = EY 2k(x) = σ2k 2kΓ(k + 1
2)

√
π

= 1,

σ2
Λ = V arΛ(x) = E(Y 4k)− 1 =

( √
π

2kΓ(k + 1
2)

)2 22kΓ(2k + 1
2)

π
− 1

=
√
πΓ(2k + 1

2)
Γ2(k + 1

2)
− 1 < +∞.

To compute the covariance function we use (3.24) and the following Hermite expansion

(Abramowitz and Stegun, 1964, page 775)

z2k = (2k)!
k∑
i=0

H2k−2i(z)
2ii!(2k − 2i)! .

Therefore,

Cov(Λ(x),Λ(y)) = E(Y 2k(x)− 1)(Y 2k(y)− 1) = πE(Ỹ 2k(x)Ỹ 2k(y))
22kΓ2(k + 1

2)
− 1

= ((2k)!)2 π

22kΓ2(k + 1
2)

k∑
i=0

E[H2k−2i(Ỹ (x))H2k−2i(Ỹ (y))]
22i(i!)2((2k − 2i)!)2 − 1

= ((2k)!)2 π

22kΓ2(k + 1
2)

k∑
i=0

ρ̃2k−2i(‖x− y‖)
22i(i!)2(2k − 2i)! − 1, (3.28)

where Ỹ (x) = Y (x)/
( √

π

2kΓ(k+ 1
2 )

)1/2k
is a zero-mean unit variance Gaussian HIRF with
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the covariance function

ρ̃(‖x− y‖) =
(

2kΓ(k + 1
2)

√
π

)1/k

ρY (‖x− y‖).

Notice, that for i = k in (3.28) by the Legendre duplication formula

((2k)!)2π

22kΓ2(k + 1
2)22k(k!)2 = Γ2(2k + 1)π

24kΓ2(k + 1
2)k2Γ2(k)

= (2k)2Γ2(2k)π
24kk222−4kπΓ2(2k) = 1.

Hence,

Cov(Λ(x),Λ(y)) = ((2k)!)2π

22kΓ2(k + 1
2)

k−1∑
i=0

(2kΓ(k + 1
2))2+ 2i

k

22i(i!)2(2k − 2i)!π1/2k ρ̃
2k−2i(‖x− y‖).

Therefore, if |ρ̃(r)| ≤ C
′
e−γ

′
r, r > 0, γ′ > 0, then the covariance function of Model 5

satisfies the condition |ρΛ(r)| ≤ Ce−γr, r > 0, γ > 0, and the Rényi function equals

T (q) = q − 1− 1
2 logbEY 2kq(x) = q − 1− 1

2 logb

(
2kqΓ(kq + 1

2)
√
π

)
.

Proof of Theorem 3.10. By properties of the chi-square distribution, it follows that

EΛ(x) = 2
k
EY (x) = 1, V arΛ(x) = 4

k2V arY (x) = 2
k
< +∞,

Cov(Λ(x),Λ(y)) = 4
k2 ρY (‖x− y‖).

Notice that if Y (x) = 1
2(Z2

1 (x) + ... + Z2
k(x)), x ∈ R3, where Zi(x), i = 1, ..., k, are

independent zero-mean unit variance components of k-dimensional vector Gaussian HIRF

with a covariance function ρZ(r), r ≥ 0 of each component, then

Cov(Λ(x),Λ(y)) = 4
k2 ·

k

2ρ
2
Z(‖x− y‖) = 2

k
ρ2
Z(‖x− y‖).

Therefore, Model 6 satisfies Conditions 3.1 and 3.2 and |ρΛ(r)| ≤ Ce−γr, r > 0, γ > 0, if

|ρY (r)| ≤ C ′e−γ
′
r or |ρZ(r)| ≤ C ′e−γ

′
r, r ≥ 0, γ′ > 0.

Then, the corresponding Rényi function is given by (3.20).
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Chapter 4

On multifractionality of spherical

random fields with cosmological

applications

This chapter is based on the article, Broadbridge, P., Nanayakkara, R., and Olenko, A.

On multifractionality of spherical random fields with cosmological applications, which has

been submitted for publication.

Due to artistic reasons, the format of this paper was changed in accordance with the

style of the thesis. This did not change the main contents of the paper, but gave rise to

slight changes in the paper layout.
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4.1 Introduction

The notion of fractional Brownian motion (FBM) was introduced by B. Mandelbrot and

Van Ness in 1968. The FBM depends on the Hurst parameter H, where H ∈ (0, 1). The

Hurst parameter can be used to define the Hölder regularity of FBM. The multifractional

Brownian motion (MBM) was first considered by Péltier and Lévy Véhel in 1995 extend-

ing the FBM, see Ayache and Véhel (2004). The concept of multifractionality induces

from fractionality allowing local properties to depend on space-time locations. The Hurst

parameter H of FBM is replaced by H(t) in MBM. The MBM was proposed to model

data that cannot be described by standard processes with stationary increments since their

pointwise smoothness changes from point to point.

Multifractional processes were used to study complex stochastic systems which exhibit

nonlinear behaviour in space and time. Multifractional behaviour of data has been found

in many applications such as, image processing, stock price movements, signal processing,

see Ayache and Véhel (2004), Bianchi and Pianese (2007) and Sheng et al. (2011). Mul-

tifractional processes are more flexible in comparison to FBM and can be non-stationary.

Multifractional Gaussian processes were studied in Benassi et al. (1998a) where a method

to evaluate the multifractionality using discrete observations of a process’s single sample

path was proposed.

The generalized multifractional Brownian motion (GMBM) is a continuous Gaussian

process that was introduced by generalizing the traditional FBM and MBM, see Ayache

and Véhel (2004). Comparing to MBM, the Hölder regularity of GMBM can substantially

vary. For example, GMBM can allow discontinuous Hölder exponents. This has been

an advantage to applications, specifically, medical image modelling, telecommunication,

turbulence and finance where the pointwise Hölder exponent can change rapidly. A Fourier

spectrum’s low frequencies control the long-range dependence of a stochastic process while

the higher frequencies control the Hölder regularity. Therefore, GMBM can be used to

model processes that exhibit erratic behaviour of the local Hölder exponent and long-range

dependence, see Ayache and Véhel (2004).

This chapter deals with cosmological applications. The universe originated about 14

billion years ago and had extremely high temperature. The atoms were broken down

into electrons and protons. The universe started to cool down and hydrogen atoms were

formed 380,000 years after the Big Bang. As a result, photons were emitted and started
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moving without any restriction. This utmost ancient glow of light which is the leftover

radiation after the Big Bang is called the cosmic microwave background radiation (CMB),

see Planck Satellite (2021). The CMB which dates back to nearly 400,000 years from the

Big Bang was first discovered by Arno Pensiaz and Robert Wilson in 1964. The CMB

is an electromagnetic radiation caused by the thermal movement of particles left in the

universe. In the microwave region, the CMB spectrum closely follows that of a black

body at equilibrium temperature 2.735K, tracing back to a plasma temperature of around

4000K at a time corresponding to redshift z=1500 at 50% atomic combination.

Although the equilibrium spectrum is important, there are important departures from

equilibrium that give information on the state of the early universe, see for example Pietroni

(2009). Relative anisotropic variations of spectral intensity from that of a black body are

of the order of 10−4. Calculations by Khatri and Sunyaev (Khatri and Sunyaev (2012))

showed that outside of a relatively small range of redshifts, external energy inputs from

sources such as massive particle decay, would dissipate by Compton and double Compton

scattering and other relaxation processes to affect the signal by several lower orders of mag-

nitude. The primary sources of anisotropy were large-scale acoustic waves whose compres-

sions in the plasma universe were associated with raised temperatures. Using the current

angular widths of anisotropies in the CMB, the current standard model ΛCDM (cold dark

matter plus dark energy) affords an estimate of the Hubble constant at H0 = 67.4 ± 1.4

km/s/MPc (Aghanim et al. (2020)). This agrees well with data from the POLARBEAR

Antarctica telescope that give H0 = 67.2±0.57 km/s/MPc (Adachi et al. (2020)). However

estimates from more recent emissions from closer galaxies using both cepheid variables and

type Ia supervovae as distance markers, give H0 = 74.03 ± 1.42 km/s/MPc (Riess et al.

(2019)). This unexplained discrepancy will eventually be resolved by newly found errors

in the methodology of one or both of the competing large-z and small-z measurements, or

in new physical processes that are currently unidentified.

Within a turbulent plasma, there are electrodynamical processes that are far more com-

plicated than the large-scale acoustic waves. When radiation by plasma waves is taken into

account, useful kinetic equations and spectral functions can no longer be constructed by

Bogoliubov’s approach of closing the moment equations for electron distribution functions,

see Chapter 5 in Klimontovich (1967). Even in controlled tokomak devices, the dynamical

description of magnetic field lines has fractal attracting sets (Viana et al. (2011)) and

charged particle trajectories may have fractal attractors under the influence of multiple
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magnetic drift waves (Mathias et al. (2017)). At CMB frequencies below 3 GHz (i.e. wave-

lengths larger than 10 cm), there have been indications of spectral intensities much higher

than that of a 2.7 K black body (Baiesi et al. (2020)). Although there is a high level of

confidence in measuring the universe’s expansion factor from CMB since the decoupling

of photons from charged particles, the level of complexity of magnetohydrodynamics in

plasma suggests that this subject might not be a closed book. Multi-fractal analysis is

a tool that might contribute to understanding the multi-scale data that are becoming

successively more fine-grained with each generation of radio telescope.

The space missions that have studied the CMB so far are Cosmic Background Explorer,

Wilkinson Microwave Anisotropy Probe and Planck. The Planck mission was launched

in 2009 to measure the CMB with an extraordinary accuracy over a wide spectrum of

infrared wavelengths. The Planck mission traced the CMB anisotropies at narrow angles

with a high resolution and sensitivity. The measured temperature intensities from the

Planck mission together with the polarisation data can be used to check for the existence

of anomalies within the CMB data. The CMB data can be utilized to understand how

the early universe originated and to find out the key parameters of the Big Bang model,

see European Space Agency (2021b). One of the key assumptions of the modern cosmology

is that the universe looks the same in any direction. It has been in debate for several years

by using the CMB data. Numerous research suggested that the CMB data are either

non-Gaussian or cannot be accurately described by statistical or mathematical models

with few constant parameters, see Ade et al. (2016), Hill (2018), Leonenko et al. (2021),

Marinucci (2004), Minkov et al. (2019) and Starck et al. (2004). The classical book by

Weinberg (Weinberg (2008)) explained that this anisotropy in the plasma universe was

significant enough to produce anisotropy in current galaxy distributions. For some recent

results and discussion of fundamental cosmological models of the universe, see Broadbridge

and Deutscher (2020). To detect departures from the isotropic model in actual CMB data

several statistical approaches can be employed, see, for example, Leonenko et al. (2021)

and Hamann et al. (2021). Different approaches can result in different results and suggest

to cosmologists sky regions for further investigations. The motivation of this chapter is to

check for multifractionality of the CMB data from the Planck mission.

Theoretical multifractional space-time models which differ from the standard cosmo-

logical model have been studied by Calcagni (2019) and Calcagni et al. (2016). They

proposed several theoretical advancements using multifractional space-time that change
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its properties from place to place. It was suggested that the universe is not expand-

ing monotonically which produces multifractional behaviour. In Calcagni et al. (2016),

the CMB data from Planck mission and Far Infrared Absolute Spectrophotometer were

used to establish speculative constraints on multifractional space-time expansion scenarios.

Further, fractional SPDEs were employed to model the CMB data from Planck mission

and study their changes, see Anh et al. (2018). The considered fractional SPDE models

exhibited long-range dependence.

This chapter uses the theory of multifractional random fields and develops methodology

to investigate fractional properties of random fields on the unit sphere. The presented

detailed analysis of actual CMB data suggests the presence of multifractionality.

The developed methodology was also used to detect anomalies in CMB maps. The

obtained results were compared with a different method from Hamann et al. (2021). It

was demonstrated that the both methods can find same anomalies, but each method also

can detect its own CMB regions of unusual behaviour. It was shown that applications of

the developed methodology resulted in spatial clusters with high values of the proposed

discrepancy statistics. The clusters matched very well with the TMASK of unreliable

CMB intensities.

The structure of the chapter is as follows. Section 4.2 provides main notations and def-

initions related to the theory of random fields. Section 4.3 introduces the concept of multi-

fractionality and discusses the GMBM. Section 4.4 presents results on the estimation of the

pointwise Hölder exponent by using quadratic variations of random fields. Section 4.5 dis-

cusses the suggested estimation methodology. Numerical studies including computing the

estimates of pointwise Hölder exponents for different one- and two-dimensional regions of

the CMB sky sphere are given in Section 4.6. This section also demonstrates an application

of the developed methodology to detect regions with anomalies in the cleaned CMB maps.

Finally, the conclusions and some future research directions are presented in Section 4.7.

All numerical studies were carried out by using the software Python version 3.9.4 and

R version 4.0.3, specifically, the R package rcosmo (Fryer et al. (2020) , Fryer et al.

(2019)). A reproducible version of the code in this chapter is available in Appendix B.
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4.2 Main notations and definitions

This section presents background material in the theory of random fields, fractional spher-

ical fields and fractional processes. Most of the material included in this section are based

on Ayache (2018), Garćıa-Ancona et al. (2020), Herbin (2006), Lang and Schwab (2015),

Malyarenko (2012) and Marinucci and Peccati (2011).

Let R3 be the real 3-dimensional Euclidean space and s2(1) be the unit sphere defined

in R3. That is, s2(1) =
{
x ∈ R3, ‖x‖ = 1

}
where ‖ · ‖ represents the Euclidean distance in

R3. Let SO(3) denote the group of rotations on R3.

Let (Ω,F , P ) be a probability space. The symbol d= denotes the equality in the sense

of the finite-dimensional distributions.

Definition 4.1. A function T (ω, x) : Ω × s2(1) → R is called a real-valued random field

defined on the unit sphere. For simplicity, it will also be denoted by T (x), x ∈ s2(1).

Definition 4.2. The random field T (x) is called strongly isotropic if for all k ∈ N,

x1, . . . , xk ∈ s2(1) and g ∈ SO(3), the joint distributions of the random variables T (x1),

. . ., T (xk) and T (gx1) , . . . , T (gxk) have the same law.

It is called 2-weakly isotropic (in the following, it will be just called isotropic) if the

second moment of T (x) is finite, i.e. if E
(
|T (x)|2

)
< +∞ for all x ∈ s2(1) and if for all

pairs of points x1, x2 ∈ s2(1), and for any rotation, g ∈ SO(3), it holds

E
(
T (x)

)
= E

(
T (gx)

)
, E

(
T (x1)T (x2)

)
= E

(
T (gx1)T (gx2)

)
.

Definition 4.3. T (x) is called Gaussian if for all k ∈ N and x1, . . . , xk ∈ s2(1) the random

variables T (x1) , . . . , T (xk) are multivariate Gaussian distributed; that is, ∑k
i=1 aiT (xi) is

a normally distributed random variable for all ai ∈ R, i = 1, . . . , k, such that ∑k
i=1 a

2
i 6= 0.

Let T = {T (r, θ, ϕ) : 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, r > 0} be a spherical random field that has

zero-mean, finite variance and is mean-square continuous. Let the corresponding Lebesgue

measure on the unit sphere be σ1(du) = σ1(dθ · dϕ) = sin θdθdϕ, u = (θ, ϕ) ∈ s2(1). For

two points on s2(1), we use Θ to denote the angle formed between two rays originating

at the origin and pointing at these two points. Θ is called the angular distance between

these two points. To emphasize that a random field depends on Euclidean coordinates,

the notation T̃ (x) = T (r, θ, ϕ), x ∈ R3, will be used.
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Remark 4.1. A real-valued second order random field T̃ (x), x ∈ s2(1), with E
(
T̃ (x)

)
= 0

is isotropic if E
(
T̃ (x1)T̃ (x2)

)
= B(cos Θ), x1, x2 ∈ s2(1), depends only on the angular

distance Θ between x1 and x2.

The spherical harmonics are defined by

Y m
l (θ, ϕ) = cml exp (imϕ)Pml (cos θ), l = 0, 1, ..., m = 0,±1, ...,±l,

with
cml = (−1)m

(2l + 1
4π

(l −m)!
(l +m)!

)1/2
,

and the Legendre polynomials Pml (cos θ) having degree l and order m.

Then the following spectral representation of spherical random fields holds in the mean-

square sense:

T (r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

Y m
l (θ, ϕ)aml (r),

where aml (r) is a set of random coefficients defined by

aml (r) =
∫ π

0

∫ 2π

0
T (r, θ, ϕ)Y m

l (θ, ϕ)r2 sin θdθdϕ =
∫
s2(1)

T̃ (ru)Y m
l (u)σ1(du),

where u = x
‖x‖ ∈ s2(1), r = ‖x‖.

Definition 4.4. A real-valued random field T̃ (x), x ∈ R3, is with stationary increments

if the equality
T̃ (x+ x′)− T̃ (x′) d= T̃ (x)− T̃ (0), x ∈ R3,

holds, for all x′ ∈ R3.

Remark 4.2. When T̃ (x), x ∈ R3, is a second order random field with stationary incre-

ments, then one has,

E
(
T̃ (x+ x′)− T̃ (x′)

)2
= VT̃ (x), for every (x, x′) ∈ R3 × R3,

where VT̃ is called the variogram of the field T̃ .

Definition 4.5. A real-valued random field T̃ (x), x ∈ R3, is said to be globally self-

similar, if for some fixed positive real number H and for each positive real number a, it

satisfies

a−H T̃ (ax) d= T̃ (x), x ∈ R3. (4.1)

Remark 4.3. Beside the degenerate case, the scale invariance property (4.1) holds only

for a unique H which we declare as the global self-similarity exponent.

106



Definition 4.6. (Ayache (2018)) For each fixed H ∈ (0, 1), there exists a real-valued glob-

ally H-self-similar isotropic centered Gaussian field with stationary increments. Up to a

multiplicative constant, this field is unique in distribution. It is called fractional Brownian

field (FBF) of Hurst parameter H, and denoted by BH(t), t ∈ R3. The corresponding

covariance function, is given, for all (t′, t′′) ∈ R3 × R3, by

E
(
BH

(
t′
)
BH

(
t′′
) )

= 2−1 Var (BH (e0))
(∥∥t′∥∥2H +

∥∥t′′∥∥2H −
∥∥t′ − t′′∥∥2H

)
,

where e0 denotes an arbitrary vector of the unit sphere s2(1).

Remark 4.4. In the particular case where H = 1/2, FBF is denoted by B(t), t ∈ R3,

and called Lévy Brownian Motion.

Similarly, one can introduce a H-self-similar process in the one-dimensional case. We

also denote it by BH(t), t ≥ 0. It will be called the fractional Brownian motion (FBM).

Definition 4.7. (Peltier and Véhel (1995)) The FBM with Hurst index H(0 < H < 1) is

defined as the stochastic integral

BH(t) = 1
Γ(H + 1/2)

{∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dW (s) +

∫ t

0
(t− s)H−1/2dW (s)

}
,

where t ≥ 0 and W (·) denotes a Wiener process on (−∞,∞).

The Hurst index H is also known as the Hurst parameter which specifies the degree of

self-similarity. WhenH = 0.5, FBM reduces to the standard Brownian motion. In contrast

to the Brownian motion, the increments of FBM are correlated. The FBM process BH(t)

has the covariance function

Cov
(
BH(s), BH(t)

)
= σ2

2
(
|t|2H + |s|2H − |t− s|2H

)
.

The mean value of FBM is E
(
BH(t)

)
= 0 and the variance function of FBM is

V ar
(
BH(t)

)
= σ2|t|2H/2. The FBM has the following properties,

(i) Stationary increments: BH(t)−BH(s) d= BH(t− s).

(ii) Long-range dependence of increments: ∑∞n=1E
(
BH(1)(BH(n + 1) − BH(n))

)
=∞,

H > 1/2.

(iii) Self-similarity: BH(at) d= |a|HBH(t).
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4.3 Multifractional processes

This section provides definitions and theorems related to multifractional processes. Most

of the material presented in this section is based on Benassi et al. (1998a), Ayache (2018),

Peltier and Véhel (1995), Ayache (2013) and Benassi et al. (1997).

Let C1 be the class of continuously differentiable functions and C2 be the class of

functions where both first and second derivatives exist and are continuous.

First, we introduce multifractional processes in the one-dimensional case. They will

be used to analyse CMB data using the ring ordering HEALPix scheme.

Definition 4.8. (Benassi et al. (1998a)) Multifractional Gaussian processes (MGP) X(t),

t ∈ [0, 1], are real Gaussian processes whose covariance function C(t, s) is of the form

C(t, s) =
∫
R
f(t, λ)f(s, λ)dλ,

where
f(t, λ) =

(
eitλ − 1

)
a(t, λ)

|λ|1/2+α(t) .

The smoothness of the process is determined by the function α(·) which is from C1

with 0 < α(t) < 1, t ∈ [0, 1]. The modulation of the process is determined by the function

a(t, λ) which is defined on [0, 1]×R and satisfies a(t, λ) = a∞(t) +R(t, λ), where a∞(·) is

C1([0, 1]) with, a∞(t) 6= 0 for all t ∈ [0, 1], and R(·, ·) ∈ C1,2([0, 1]× R) is such that there

exists some η > 0 that for i = 0, 1 and j = 0, 2 it holds

∣∣∣∣∣ ∂i+j∂ti∂λj
R(t, λ)

∣∣∣∣∣ 6 C

|λ|η+j .

Definition 4.9. (Peltier and Véhel (1995)) The multifractional Brownian motion (MBM)

is given by

BH(t)(t) = σ

Γ(H(t) + 1/2)

{∫ 0

−∞

(
(t− s)H(t)−1/2 − (−s)H(t)−1/2

)
dB(s)

+
∫ t

0
(t− s)H(t)−1/2dB(s)

}
,

where B(s) is the standard Brownian motion and σ2 = V ar
(
BH(t)(t)

)
|t=1.

For the MBM, E
(
BH(t)(t)

)
= 0 and V ar

(
BH(t)(t)

)
= σ2|t|2H(t)/2. The FBM is a

special case of the MBM where the local Hölder exponent H(t) is a constant, namely,

H(t) = H. The MBM which is a non-stationary Gaussian process does not have indepen-
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dent stationary increments in contrast to the FBM.

Definition 4.10. A function H(·) : R → R is a (β, c)-Hölder function, β > 0 and c > 0,

if |H (t1)−H (t2)| 6 c |t1 − t2|β , for all t1, t2 satisfying |t1 − t2| < 1.

The MBM admits the following harmonizable representation, see Benassi et al. (1997).

If H(·) : R→ [a, b] ⊂ (0, 1) is a β-Hölder function satisfying the assumption supH(t) < β,

then the MBM with functional parameterH(·) can be written as Re
(∫

R
(eitξ−1)
‖ξ‖H(t)+1/2 dW̃ (ξ)

)
,

where W̃ (·) is the complex isotropic random measure that satisfies dW̃ (·) = dW1(·) +

idW2(·). Here, W1(·) and W2(·) are independent real-valued Brownian measures.

Now we introduce the concept of the generalized multifractional Brownian motion

(GMBM). The GMBM is an extension of the FBM and MBM. The GMBM was introduced

to overcome the limitations existed in applying the MBM to model data whose pointwise

Hölder exponent has an irregular behaviour.

The following definitions will be used to analyse the CMB data using the ring and

nested ordering HEALPix schemes for d = 1, 2 respectively.

Definition 4.11. (Ayache and Véhel (2004)) Let [a, b] ⊂ (0, 1) be an arbitrary fixed

interval. An admissible sequence (Hn(·))n∈N is a sequence of Lipschitz functions defined

on [0, 1] and taking values in [a, b] with Lipschitz constants δn such that δn 6 c12nα, for

all n ∈ N, where c1 > 0 and α ∈ (0, a) are constants.

Definition 4.12. (Ayache and Véhel (2004)) Let (Hn(·))n∈N be an admissible sequence.

The generalized multifractional field (GMF) with the parameter sequence (Hn(·))n∈N is

the continuous Gaussian field Y (x, y), (x, y) ∈ [0, 1]d × [0, 1]d defined for all (x, y) as

Y (x, y) = Re

∫
Rd

 ∞∑
n=0

(
cixξ − 1

)
‖ξ‖Hn(y)+1/2 f̂n−1(ξ)

dW̃ (ξ)

 ,
where W̃ (·) is the stochastic measure defined previously.

The GMBM with the parameter sequence (Hn(·))n∈N is the continuous Gaussian pro-

cess X(t), t ∈ [0, 1]d defined as the restriction of Y (x, y), (x, y) ∈ [0, 1]d × [0, 1]d to the

diagonal: X(t) = Y (t, t).

Compared to the FBM and MBM, one of the major advantages of the GMBM is that

its pointwise Hölder exponent can be defined through the parameter (Hn(·))n∈N. For every

t ∈ R2, almost surely,

αX(t) = H(t) = lim inf
n→∞

Hn(t).
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4.4 The Hölder exponent

This section presents basic notations, definitions and theorems associated with the point-

wise Hölder exponent, see Ayache and Véhel (2004), Benassi et al. (1998a), and Istas and

Lang (1997a) for additional details. The pointwise Hölder exponent determines the reg-

ularity of a stochastic process. It describes local scaling properties of random fields and

can be used to detect multifractionality.

Definition 4.13. The pointwise Hölder exponent of a stochastic process X(t), t ∈ R,

whose trajectories are continuous, is the stochastic process αX(t), t ∈ R, defined by

αX(t) = sup
{
α : lim sup

h→0

|X(t+ h)−X(t)|
|h|α

= 0
}
.

The Hölder regularity of FBM can be specified at any given point t, almost surely

and αBH (t) = H is constant for FBM. The pointwise Hölder regularity of MBM can

be determined by its functional parameter similar to FBM where αX(t) is the pointwise

Hölder exponent. Particularly, for every t ∈ R, almost surely, αX(t) = H(t).

In the literature, the method of quadratic variations is a frequently used technique to

estimate the Hölder exponent, see Benassi et al. (1998a) and Istas and Lang (1997a). The

following definition is used to compute the total increment in the one-dimensional case

and will be applied for the ring ordering scheme of HEALPix points.

Definition 4.14. Let t ∈ [0, 1]. For every integer N ≥ 2, the generalized quadratic

variation V
(1)
N (t) around t is defined by

V
(1)
N (t) =

∑
p∈vN (t)

∑
k∈F

ekX

(
p+ k

N

)2

, (4.2)

where F = {0, 1, 2}, e0 = 1, e1 = −2 and e2 = 1 and vN (t) =
{
p ∈ N : 0 6 p 6 N − 2 and

|t− p/N | 6 N−γ
}
.

The following definition is used to compute the total increment in the two-dimensional

case and will be used for the nested ordering scheme of HEALPix points.

Definition 4.15. Let t = (t1, t2) ∈ [0, 1]2. For every integer N ≥ 2, the generalized

quadratic variation V
(2)
N (t) around t is defined by

V
(2)
N (t) =

∑
p∈vN (t)

∑
k∈F

dkX

(
p+ k

N

)2

, (4.3)
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where p = (p1, p2), ε = (ε1, ε2) and (p+ ε)/N = ((p1 + ε1)/N, (p2 + ε2)/N), F = {0, 1, 2}2

and for all k = (k1, k2) ∈ F , dk = ∏2
l=1 ekl with e0 = 1, e1 = −2 and e2 = 1. Here,

vN (t) = v1
N (t1) × v2

N (t2) and for all i = 1, 2, viN (ti) =
{
pi ∈ N : 0 6 pi 6 N − 2 and

|ti − pi/N | 6 N−γ
}
.

The pointwise Hölder exponents are estimated for the one-dimensional ring ordering

and two-dimensional nested ordering of HEALPix points by considering sufficiently large

N and d = 1, 2 respectively in the following Theorem which is a specification of Theorem

2.2 in Ayache and Véhel (2004) with δ = 1.

Theorem 4.1. (Ayache and Véhel (2004)) Let X(t), t ∈ [0, 1]d, be a GMBM with an

admissible sequence (Hn(·))n∈N ranging in [a, b] ⊂ (0, 1 − 1/2d). Then, for a fixed γ ∈

(b, 1− 1/2d) and the sequence (Hn(t))n∈N convergent to H(t), it almost surely holds

H(t) = lim
N→∞

1
2

d(1− γ)−
log
(
V

(d)
N (t)

)
log(N)

 . (4.4)

4.5 Methodology

This section describes the suggested estimation methodology to study multifractionality

of the CMB data that is based on theoretical results from Section 4.4. This and the next

section also provide a detailed justification of this methodology and its assumptions and

required modifications of the formulas for the spherical case and CMB data.

For multifractional data, H(t) changes from location to location and H(t) 6≡ const,

where t ∈ s2(1). Several methods to estimate the local Hölder exponent are available

in the literature. Different methods often give different results, see, for example, discus-

sions in Bianchi (2005) and Struzik (2000) regarding inconsistent estimation results of the

Hölder exponent. Inconsistent results by different techniques are due to their different

assumptions, see Bianchi (2005). We propose an estimation method based on the general-

ized quadratic variations given by (4.2) and (4.3) and their asymptotic behaviour in (4.4).

The results of this method are also compared with another conventional method that uses

the rescale range (R/S) to estimate the Hölder exponent. This method is realized in the

R package fractal(Constantine and Percival (2017)).

Estimates of pointwise Hölder exponent values were computed using one- and two-

dimensional regions of the the CMB data and the HEALPix ring and nested order-
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ings (Gorski et al. (2005)). These HEALPix ordering schemes are shown in Figure 4.1.

For the both cases, the highest available resolution, Nside = 2048 was used.

(a) HEALPix ring ordering (b) HEALPix nested ordering

Figure 4.1: HEALPix ordering schemes

The CMB data exhibit variations of the temperature intensities at very small scales

(± 1.8557 × 10−3). To get reliable estimates of H(t), a large amount of observations in

neighbourhoods of each t is required. Thus, in this publication, we do not discuss the

preciseness of the local estimators of H(t), but only pay attention to differences in the

estimated values at different locations.

For computing purposes, the temperature intensities were scaled as

Scaled Intensity(t) = Intensity(t)
maxs∈s2(1) |Intensity(s)| .

It is clear from Definition 4.13 that this scaling does not change the values of αX(t).

Also, by (4.2) and (4.3) the generalized quadratic variation of the scaled process cX(t) is

c2V
(d)
N (t), d = 1, 2. By (4.4),

lim
N→∞

log
(
c2V

(d)
N (t)

)
log(N) = lim

N→∞

 log(c2)
log(N) +

log
(
V

(d)
N (t)

)
log(N)

 = lim
N→∞

log
(
V

(d)
N (t)

)
log(N) , (4.5)

which means that this scaling also does not affect H(t).

As it was mentioned before, for small values of log(N) the estimates of H(t) can be

biased, which is now evident by the term log(c2)
log(N) in (4.5). However, this bias is due to the

scaling effect only and is exactly the same for all values of t. Even if it might result in

some errors in estimates Ĥ(t), it will not effect the analysis of differences in H(t) values

for different locations, which is the main aim of this analysis.
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4.6 Numerical studies

This section presents numerical studies and applications of the estimation methodology

from Section 4.5 to CMB data. The pointwise Hölder exponent estimates Ĥ(t) are com-

puted and analysed for one- and two-dimensional regions of CMB data acquired from the

NASA/IPAC Infrared Science Archive (IRSA (2021)). The estimated Hölder exponents

are used to quantify roughness of the CMB data. The developed methodology is also

applied to detect possible anomalies in the CMB data.

4.6.1 Estimates of Hölder exponent for one-dimensional CMB regions

For the one-dimensional case, the HEALPix ring ordered CMB temperature intensities

were modelled by a stochastic process X(t). Their Hölder exponents H(t) were estimated

by using the expression from the equation (4.4) for the given large N with d = 1, where

V
(1)
N (t) was computed using the equation (4.2), which can be explicitly written as

V
(1)
N (t) =

N−2∑
p=0

(
X

(
p

N

)
− 2X

(
p+ 1
N

)
+X

(
p+ 2
N

))2
.

As pixels on relatively small ring segments can be considered lying on approximately

straight lines, the results from the case d = 1 can be used. The parameter N was chosen

to give approximately the number of pixels within a half ring of the CMB sky sphere.

The parameter r is the distance from a HEALPix point t that is the center of an interval

in which we compute the total increment V (1)
N (t). By the expression of vN (t) in Defini-

tion 4.14, the parameter γ was computed according to the formula, γ = − (log(r)/ log(N))

for selected values of N and r. Then, it was used in the equation (4.4) to compute the

estimated pointwise Hölder exponent values.

According to the HEALPix structure of the CMB data with the resolution Nside =

2048, there are 50331648 pixels on the CMB sky sphere. The HEALPix ring ordering

scheme results in 4×Nside − 1 rings, see Hivon (2021). That is, for Nside = 2048, the

CMB sky sphere consists of 8191 rings. Based on the HEALPix geometry, the number

of pixels in the upper part rings increase with the ring number, Ring = 1, ..., 2047, as

(4 × Ring). The (2Nside + 1) = 4097 set of rings in the middle part of the CMB sky

sphere have equal number of pixels which is 4 × Nside. The number of pixels in each of

the final (Nside − 1) = 2047 rings in the lower part decreases according to the formula

(4× (8191− Ring + 1)).
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For the one-dimensional case, the estimated pointwise Hölder exponent values Ĥ(t)

were computed as follows. First, a random CMB pixel was selected and its ring was

determined. Then pixels belonging to the half of that particular ring were selected. Then,

for each CMB pixel in this rim segment, the quadratic variation was computed by V (1)
N (t)

given in equation (4.2). When computing the generalized quadratic variation for a CMB

pixel, the pixels within a distance r = 0.08 from it were considered. For these pixels, the

squared increments were computed and used to obtain the total of increments. Finally,

the Hölder exponents were estimated by substituting the total of increments and the other

parameters in the equation (4.4).

First, three CMB pixels ‘552300’, ‘1533000’, ‘3253800’ located in the corresponding

upper part rings 525, 875 and 1275 were chosen. Then for each CMB pixel in these

half rings, their corresponding estimated Hölder exponents Ĥ(t) were computed. Next,

another three pixels ‘10047488’, ‘32575488’, ‘39948288’ were chosen in the middle part of

the CMB sky sphere. Their ring numbers were 2250, 5000 and 5900 respectively. Finally,

three CMB pixels ‘47656664’, ‘48651704’, ‘49375304’ belonging to the lower part rings,

7035, 7275 and 7500 were selected and the pointwise Hölder exponents of pixels in their

rim segments were estimated.

For example, Figure 4.2 shows the plots of the scaled intensities and the estimated

pointwise Hölder exponents of the rim segments of rings 1275 and 5900, which belong

to the upper and middle parts of the CMB sky sphere respectively. It can be seen from

Figures 4.2a and 4.2b that the majority of scaled intensities fall into the range [−0.2, 0.2]

and their fluctuations are random. Figures 4.2c and 4.2d exhibit that the Ĥ(t) values in

both rim sections are changing and the dispersion range for ring 1275 is wider than that

of ring 5900. Similar plots and results were also obtained for other rings.

Part of CMB sky Case Ring number γ [Ĥ(t)min, Ĥ(t)max] Ĥ(t)max-Ĥ(t)min Mean Ĥ(t)

Upper
part

1 525 0.3631 [0.5681, 0.6215] 0.0534 0.5960
2 875 0.3382 [0.5443, 0.5782] 0.0339 0.5605
3 1275 0.3220 [0.5059, 0.5727] 0.0668 0.5439

Middle
part

4 2250 0.3037 [0.4824, 0.5479] 0.0655 0.5137
5 5000 0.3037 [0.4372, 0.4847] 0.0475 0.4626
6 5900 0.3037 [0.4622, 0.5019] 0.0397 0.4835

Lower
part

7 7035 0.3260 [0.5067, 0.5384] 0.0317 0.5234
8 7275 0.3361 [0.5256, 0.5553] 0.0297 0.5410
9 7500 0.3492 [0.5548, 0.5896] 0.0348 0.5701

Table 4.1: Summary of Ĥ(t) values for pixels in different rings of the CMB sky sphere
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(a) Scaled intensities of ring 1275 (b) Scaled intensities of ring 5900

(c) Ĥ(t) values of ring 1275 (d) Ĥ(t) values of ring 5900

Figure 4.2: Examples of scaled intensities and Ĥ(t) values for one-dimensional CMB
regions

The summary of the estimated pointwise Hölder exponent values obtained by the dis-

cussed methodology is shown in Table 4.1. It is clear that the dispersion range of the Ĥ(t)

values and the mean Ĥ(t) value change with ring numbers. These results suggest that the

pointwise Hölder exponent values change from location to location. The summary of the

estimated pointwise Hölder exponent values obtained by the conventional (R/S) method

using the command “RoverS” from the R package fractal is given in Table 4.2. It can

be seen that the dispersion range and the mean Ĥ(t) value change with the spiraling ring

number. Similar results were also obtained for other available estimators of the Hölder ex-

ponent. Although these numerical values are inconsistent between different methods, they

all suggest that the pointwise Hölder exponent values change from location to location.

It is expected that temperature intensities are positively dependent/correlated in close
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Part of CMB sky Case Ring number [Ĥ(t)min, Ĥ(t)max] Ĥ(t)max-Ĥ(t)min Mean Ĥ(t)

Upper
part

1 525 [0.8106, 0.9035] 0.0929 0.8758
2 875 [0.8527, 0.9146] 0.0619 0.8867
3 1275 [0.8577, 0.9088] 0.0511 0.8898

Middle
part

4 2250 [0.8757, 0.9148] 0.0391 0.8975
5 5000 [0.8656, 0.9079] 0.0423 0.8883
6 5900 [0.8702, 0.9072] 0.0370 0.8926

Lower
part

7 7035 [0.8617, 0.9081] 0.0464 0.8889
8 7275 [0.8599, 0.9098] 0.0499 0.8897
9 7500 [0.8348, 0.9004] 0.0656 0.8714

Table 4.2: Summary of Ĥ(t) values for pixels in different rings of the CMB sky sphere
using the R/S method

regions, see the covariance analysis in Broadbridge et al. (2019). Therefore, running

standard equality of means tests under independence assumptions will provide even more

significant results if the hypothesis of equal means is rejected.

To prove that distributions of Ĥ(t) are statistically different between different sky

regions, we carried out several equality of means tests. Before that, the Shapiro test was

used to ensure that the Ĥ(t) values satisfy the normality assumption. For all the considered

cases in Table 4.1, their Ĥ(t) values failed the normality assumption. Since the CMB pixels

close to each other can be dependent, to get more reliable results we chose CMB pixels

at distance 50 apart on a ring. The Shapiro test confirmed that in all the considered

upper and lower part cases in Table 4.1, Ĥ(t) values at step 50 satisfied the normality

assumption, whereas the Ĥ(t) values in the middle part failed the normality assumption.

Figure 4.3: The distribution of Ĥ(t)
values of four rim segments

1275 3.048× 10−15

2250 7.939× 10−11 3.606× 10−12

7500 1.533× 10−8 4.605× 10−10 3.717× 10−13

525 1275 2250

Table 4.3: p-values for Wilcoxon tests between
different rings

Let µ1 and µ2 be the mean(Ĥ(t)) values of the rim segments of rings 525 and 1275

respectively. To test the hypothesis H0 : µ1 = µ2 vs. H1 : µ1 6= µ2 we carried out the

Wilcoxon test. The obtained p-value (3.048 × 10−15) is significantly less than 0.05 and

suggests that the means are different at 5% level of significance. Similar results were

obtained for the Wilcoxon tests between all pairs of the cases in Table 4.1. For example,

Table 4.3 shows Wilcoxon test results for selected four rings, two in the upper part, and
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the other two correspondingly in the middle and lower parts of the CMB sky sphere.

Figure 4.3 shows the distribution box plots of the Ĥ(t) values in the rim segments of rings

525, 1275, 2250 and 7500. It is clear from Figure 4.3 that the mean(Ĥ(t)) values are

different from each other in these cases.

Analogously to Table 4.3, for all carried out Wilcoxon tests between the rim sectors

in the upper, middle and lower parts, their p-values < 0.05. Therefore, there is enough

statistical evidence to suggest that the pointwise Hölder exponents change from location

to location. While we compared Hölder exponents for different rings, from Figure 4.2 it is

clear that Ĥ(t) is also changing for pixels within same rings.

4.6.2 Estimates of Hölder exponent for two-dimensional CMB regions

For two-dimensional sky regions, pointwise Hölder exponent values H(t) were estimated

according to the equation (4.4) with d = 2, where V (2)
N (t) was computed using the equation

(4.3). The equation (4.3) in Definition 4.15 can be written in the following explicit form

V
(2)
N (t) =

∑
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To compute quadratic increments of spherical random fields, relatively small parts of

the sphere can be approximately considered as regions of the plane and the above formula

can be applied. Note that the internal summation set
{(

p1+k1
N , p2+k2

N

)
: k1, k2 ∈ {0, 1, 2}

}
can be very efficiently represented by the HEALPix nested structure. Indeed, all pixels

have either 7 or 8 neighbours, see Figure 4.4. The 3× 3 configuration with 8 neighbours

perfectly matches the internal summation set and can be directly used in computations of

V 2
N (t). For the case of 7 neighbours, an additional 8th neighbour which intensity equals to

the one of its adjusted pixel was imputed. For the resolution Nside = 2048 only 24 out of

50331648 pixels have 7 neighbours. For such small number of pixels the imputation has a

negligible impact on the results.

Circular regions with radius R = 0.23 were used in this section computations. Let N

denote the number of pixels within such circular regions. Then, N ≈ 662700 pixels. To
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Figure 4.4: Examples of pixels with 7 and 8 neighbours for Nside = 4

reduce the computation time, we chose a grid of 1000 CMB pixels with the step 662 =

[662700/1000], where [·] denotes the integer part, over the total number of pixels. To

compute local estimators Ĥ(t), for each chosen CMB pixel, a circular window with radius

r = 0.01 was selected. The value of γ was computed as γ = −
(
log(
√
πr/2)/ log(

√
N)
)

for

given values of N and r. The factor
√
π/2 appeared as the number of pixels is proportional

to a window area. To match the number of pixels in circular window regions that were used

in computations and square regions used for summation in V
(2)
N (t), the length 2d0 of the

side of squares should satisfy the equation (2d0)2 = πr2. The obtained γ was substituted

in the equation (4.4) to compute the estimated pointwise Hölder exponent values. For

r = 0.01, there are approximately 2836 pixels in each specified window. For each of these

pixels, the squared increment was computed and the total of increments was obtained by

the expression for V (2)
N (t).

First, a circular CMB sky window of radius R = 0.23 from a warm area with the

majority of high temperature intensities was selected. The mean temperature intensity in

the selected CMB sky region covering the warm area was 5.97861× 10−5. The window is

shown in Figure 4.5a. The number of pixels in that specific window was 662685. Then,

different circular CMB sky windows having a radius of R = 0.23 covering cold, mixture

of warm and cold regions and having a borderline of warm and cold regions shown in

Figures 4.5b, 4.5c, and 4.5d were chosen. In each of the cold, mixture of warm and

cold and a borderline having warm and cold regions, the number of pixels were 662697,

662706 and 662725 respectively. The value of γ was computed as γ = 0.705 for each

CMB sky region. The corresponding mean temperature intensities were −8.34055× 10−5,

−1.74035× 10−5 and 7.59851× 10−6.

The plots of the estimated pointwise Hölder exponent values for each case are displayed

in Figures 4.6a, 4.6b, 4.6c and 4.6d. These Ĥ(t) values are mostly dispersed in the interval
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(a) A sky window from the warm re-
gion

(b) A sky window from the cold region

(c) A sky window with a mixture of
temperatures

(d) A sky window with the borderline
region

Figure 4.5: Sky windows used for computations

[0.36, 0.86]. Figures 4.6a, 4.6b, 4.6c and 4.6d show an erratic and an irregular behaviour

in the distribution of Ĥ(t) values. It can be noticed that the estimates in Figures 4.6a

and 4.6d with substantial warm temperatures have larger Ĥ(t) fluctuations than the Ĥ(t)

values for cold regions.

The summary of the estimated pointwise Hölder exponents for each selected region

is given in Table 4.4. It shows the mean CMB temperature intensities of each circular

window. Table 4.4 also presents the estimated minimum, maximum and mean Ĥ(t) values

computed by using the selected 1000 CMB pixels. It is clear from Table 4.4 that the mean

Ĥ(t) value from the warm region is the highest and it is the lowest for the borderline

region. The mean Ĥ(t) values of the cold region and mixture case lie in between them.

It is apparent from Table 4.4 that the range of the estimated pointwise Hölder exponent

values change with respect to the temperature of the chosen regions of the CMB sky sphere.

To further investigate the estimated pointwise Hölder exponents, they were computed

for 100 random CMB pixels in each of the considered regions. It was apparent that even if
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(a) Ĥ(t) values from the warm region (b) Ĥ(t) values from the cold region

(c) Ĥ(t) values from the region with
mixture of temperatures

(d) Ĥ(t) values from the borderline re-
gion

Figure 4.6: Local estimates Ĥ(t) for two-dimensional regions

one accounts for variation by considering these 100 CMB pixels, the Ĥ(t) values between

different regions are different. The analyses suggested that all Ĥ(t) values for 100 and 1000

CMB pixels are consistent. Therefore, the results suggest that the estimated pointwise

Hölder exponent values change from place to place.

Inspection
Window Mean Intensity [Ĥ(t)min, Ĥ(t)max] Ĥ(t)min-Ĥ(t)max Mean Ĥ(t)

Warm region 5.978 61 · 10−5 [0.5217, 0.7484] 0.2267 0.5994
Cold region −8.340 55 · 10−5 [0.4534, 0.7806] 0.3272 0.5151

Mixture case −1.740 35 · 10−5 [0.4302, 0.8592] 0.4290 0.5563
Borderline case 7.598 51 · 10−6 [0.3629, 0.5158] 0.1529 0.4407

Table 4.4: Analysis of CMB sky windows with different temperatures

To prove that Ĥ(t) is statistically different between different sky windows, we carried

out several equality of means tests. Initially, we carried out the Shapiro test to ensure

that the Ĥ(t) values satisfy the normality assumption. However, for all the considered

cases in Table 4.4, their Ĥ(t) values failed the normality assumption. Figure 4.7 displays
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the distribution box plots of the Ĥ(t) values in the CMB sky windows with warm, cold,

mixture of temperatures and having a borderline region. It can be noticed from Figure 4.7

that the Ĥ(t) distributions have extreme values in all the four cases. Thus, we present

only results from the Wilcoxon test as it is reliable amidst the non-normality of data and

in the presence of outliers.

Figure 4.7: The distribution of Ĥ(t)
values for chosen sky windows

cold < 2.2× 10−16

mixture < 2.2× 10−16 < 2.2× 10−16

borderline < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

warm cold mixture

Table 4.5: p-values for Wilcoxon tests between chosen
sky windows

Let µ1 and µ2 be the mean(Ĥ(t)) values in the sky windows with warm and cold

regions respectively. Testing the hypothesis H0 : µ1 = µ2 vs. H1 : µ1 6= µ2 by carrying

out the Wilcoxon test, we obtained a p-value (< 2.2×10−16) that is significantly less than

0.05. It suggests that the means are different at 5% level of significance. Similar results

were obtained for the Wilcoxon tests between all pairs of the cases and the corresponding

p-values are shown in Table 4.5. It suggests that the mean(Ĥ(t)) values are different from

each other in all the cases. Apart from variations between cases, it can be observed from

Figure 4.6 and Table 4.4 that the estimated Hölder exponents do change within individual

sky windows as well.

Therefore, there is enough statistical evidence to suggest that the pointwise Hölder

exponents change from location to location of the CMB sky sphere.

4.6.3 Analysis of CMB temperature anomalies

As previously discussed in Section 4.1, several missions have measured the CMB temper-

ature anisotropies gradually increasing their precision by using advanced radio telescopes.

This section discusses applications of the multifractional methodology to detect regions of

CMB maps with “anomalies”. In particular, it can help in evaluating various reconstruc-

tion methods for blocked regions with unavailable or too noisy data.

It is well known that the CMB maps are affected by the interference coming from the

Milky Way and radio signals emitting from our galaxy are much noisy than the CMB.

Thus, the Milky Way blocks the CMB near the galactic plane. However, the smooth
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and predictable nature of Milky Way’s radiation spectrum has enabled to disclose the

cosmological attributes by subtracting the spectrum from the initially observed intensi-

ties (Castelvecchi (2019)). From Planck 2015 results, the CMB maps have been cleaned

and reconstructed using different techniques namely, COMMANDER, NILC, SEVEM,

SMICA see Ade et al. (2016) and Adam et al. (2016a) for more information. We are using

the CMB map produced from the SMICA method (IRSA (2021)) with Nside = 2048.

To examine the random behaviour of isotropic Gaussian fields on the sphere, a di-

rection dependent novel mathematical tool has been proposed in Hamann et al. (2021).

They have applied their probe to investigate the CMB maps from Planck PR2 2015 and

PR3 2018 with specific consideration to cosmological data from the inpainted maps. To de-

tect departures from the traditional statistical model of the CMB data, they have utilized

the auto-correlation of the sequence of full-sky Fourier coefficients and have proposed an

“AC discrepancy” function on the sphere. For the inpainted Planck 2015 COMMANDER

map, Hamann et al. (2021) shows the maximum “AC discrepancy” for the galactic coor-

dinates1, (l, b) = (353.54, 1.79). Similarly, for the inpainted Planck COMMANDER 2018,

NILC 2018, SEVEM 2018 and SMICA 2018 with Nside = 1024, there are significant depar-

tures at the galactic coordinates (12.57, 0.11), (61.17,-30.73), (261.25,-2.99) and (261.34,-

2.99) respectively. A majority of these locations are the masked regions of the galactic

plane. The galactic coordinates corresponding to the largest deviations are different for

each map depicting the discrepancies in the underlying inpainting techniques.

The approach in Hamann et al. (2021) used directional dependencies in CMB data

on the unit sphere. The results below are based on a different approach that uses the

local roughness properties of these data. Therefore, the detected regions of high anoma-

lies can be different for these two methods as they reflect different physical anisotropic

properties of CMB, see, for example, Figure 4.10. The estimated local Hölder exponents

on one-dimensional rings can be considered as directional local probes of CMB anisotropy.

However, the estimates for two-dimensional regions are more complex and aggregate local

information about roughness in different directions.

In the following analysis, we use estimated values of the Hölder exponent to detect re-

gions of possible anomalies in CMB maps. Figure 4.8 shows the plots of scaled intensities

and estimated Hölder exponent values Ĥ(t) in one- and two-dimensional CMB regions of
1The galactic coordinate system with Sun as the center is used in astronomy to locate the relative

positions of objects and motions within the Milky Way Galaxy. It consists of galactic longitude l, 0 ≤ l < 2π
and galactic latitude b,−π/2 ≤ b ≤ π/2. They are related to the spherical coordinates by l = φ and
b = (π/2− θ).
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the great circle. It can be noticed from Figure 4.8a that there is an increase in the fluctu-

ations of the scaled intensity values between the HEALPix range [25163000, 25164000] of

the great circle ring. A low plateau of estimated Ĥ(t) values in Figure 4.8b corresponds to

that range of HEALPix values. The equator rim segment with the unusual plateau of Ĥ(t)

values has CMB pixel numbers ranging from 25163208 to 25163852. Their corresponding

galactic coordinates were found to be between, (65.02, 0.01) and (93.32, 0.01).

Similarly, this unusual behaviour of Ĥ(t) values was observed in the two-dimensional

CMB regions near the galactic plane. Figure 4.8c shows the plot of scaled intensities in

the two-dimensional space and a spike in intensities can be observed near the specified

range of HEALPix values. The corresponding lower valley of Ĥ(t) values can be seen in

Figure 4.8d. The four corners of the spherical region having unusual Ĥ(t) values have

HEALPix values 23404309, 23391936, 23564929 and 24158424. Their galactic coordinates

were found as (85.91,−1.66), (76.82,−1.66), (76.82, 4.05) and (85.91, 4.05) respectively.

Table 4.6 shows the summary of CMB intensities at these one- and two-dimensional

equatorial regions. The two-dimensional region around the unusual values was extracted as

a rectangular spherical region from the circular CMB window using the previously identi-

fied galactic coordinates to split them as the unusual and the remaining regions. It is clear

that the range of temperature intensities is wider in the one- and two-dimensional regions

around the unusual values than in the regions excluding them. Further, the variances of

intensities in the anomalous regions are larger than in the remaining regions. Moreover,

Table 4.6 confirms that the mean Ĥ(t) values in the anomalous regions are lower than in

the remaining regions.

Inspection
Window

[Imin,Imax]
(in 10−3)

Imax − Imin
(in 10−3)

Mean I
(in 10−5)

Variance I
(in 10−8) [Ĥ(t)min, Ĥ(t)max]Ĥ(t)min-Ĥ(t)max Mean Ĥ(t)

One-dimensional
region excluding

the region of
unusual values

[-0.3688,0.7578] 1.1266 1.4846 1.5654 [0.3351, 0.4411] 0.1060 0.4168

One-dimensional
region around
unusual values

[-0.8865,1.2851] 2.1716 -9.2156 4.9138 [0.3336, 0.3496] 0.0160 0.3384

Two-dimensional
region excluding

the region of
unusual values

[-0.3935,0.2721] 0.6656 -3.6390 1.1433 [0.4097, 0.7448] 0.3351 0.5489

Two-dimensional
region around
unusual values

[-0.7310,0.2751] 1.0061 -6.3779 3.6978 [0.3015, 0.5975] 0.2960 0.4398

Table 4.6: Analysis of CMB intensities near the equatorial region
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(a) Scaled intensities of great circle/ring
4096

(b) Ĥ(t) values of great circle/ring 4096

(c) Scaled intensities of equator region (d) Ĥ(t) values of equator region

Figure 4.8: Scaled intensities and estimated Ĥ(t) values in one- and two-dimensional
regions of the great circle

(a) The anomalous sky window (b) The enlarged anomalous sky window

Figure 4.9: SMICA 2015 map with TMASK and the region of anomalies
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Figure 4.9 shows the Planck 2015 map with blocked non-reliable CMB values. The

region where TMASK applied by the SMICA reconstruction technique is removed in Fig-

ure 4.9. The TMASK of the CMB intensities utilized by the SMICA method determines

the region where the inpainted CMB intensities in the galactic plane are considered to be

reliable. The rectangular window shows a possible region of anomalies detected by the

developed multifractional methodology.

Now we apply this approach and investigate Ĥ(t) for all t ∈ s2(1). First, the one-

dimensional methodology was used. Ĥ(t) was estimated using the CMB intensities on

rims, similar to the analysis in Figure 4.8a and 4.8b. The moving windows with 4096

consecutive pixels, which is approximately a half of a full ring, were used to obtain val-

ues of Ĥ(t). To clearly show local behaviours, after several trials, sets vN (t) with 61

HEALPix points, i.e. with the radius equals 30 pixels, were selected. The obtained re-

sults are shown in Figure 4.10a. To compare them with the AC discrepancy approach

in Hamann et al. (2021), Figure 4.10b shows the corresponding map obtained by applying

the direction-dependent probe. The code from Wang (2021) was used to compute values of

AC discrepancies for SMICA 2015 CMB intensities. The first map highlights Ĥ(t) values

below the 5th percentile. AC discrepancy values above the 95th percentile were used for the

second map. The both approaches detected the region of anomalies in Figure 4.9. How-

ever, from locations of other discrepancy values, it is clear that these approaches detect

different CMB anomalies.

(a) Hölder exponent approach (b) AC discrepancy approach

Figure 4.10: Discrepancy maps for CMB intensities from SMICA 2015

Very sharp changes in Ĥ(t) values in Figure 4.8b motivated the second method to

detect anomalies, which is based on increments of Ĥ(t) values. Figure 4.8b demonstrated

substantial changes of Ĥ(t) for nearby t locations. These changes are permanent as Ĥ(t)
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exhibits stable behaviour after a rapid “jump”. Such changes are different from noise or

outliers, when values in random distinct locations lay at an abnormal distance from other

values in their surrounding points.

To detect such rapid changes, we used the statistics Ĥ∆(t) = mint1∈∆(t) |Ĥ(t)−Ĥ(t1)|.

where t and t1 are indices of ring-ordered pixels and the set ∆(t) = {t+10, ..., t+20}. The

delay of 10 was selected to detect jumps that occur over short distances. The minimum

over the set of consecutive points ∆(t) was used to eliminate outliers or noise that can

result in distinct large differences |Ĥ(t)− Ĥ(t1)|.

Figure 4.11a shows the computed Ĥ∆(t) values for SMICA 2015 CMB intensities.

Ĥ∆(t) values above the 95th percentile are plotted.

(a) Ĥ∆ discrepancy map (b) Ĥ∆ discrepancies over TMASK

Figure 4.11: Ĥ∆ discrepancy maps for CMB intensities from SMICA 2015

In Figure 4.11b, 5% of largest Ĥ∆(t) values are shown on the TMASK map. It can be

seen that in most cases, clusters of largest Ĥ∆(t) values are within the TMASK. It seems

that Ĥ∆ statistics rather accurately detected many regions with unreliable CMB values.

Analysis of other CMB maps gave similar results.

Summarising, the implemented methodology to investigate multifractionality in CMB

data, could also serve as a mechanism to detect regions of anomalies in CMB maps.

4.7 Conclusion

This chapter examined multifractional spherical random fields and their applications to

analysis of cosmological data from the Planck mission. It estimated pointwise Hölder

exponent values for the actual CMB data and checked for the presence of multifractionality.

The estimators of pointwise Hölder exponents for one- and two-dimensional regions were

obtained by using the ring and nested orderings of the HEALPix visualization structure.
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The carried out analysis conveyed some multifractionality in the CMB data since the

computed pointwise Hölder exponent values do change from place to place in the CMB

sky sphere. The proposed approach was also applied to introduce statistics that were used

for detecting regions with anomalies in CMB data. The developed methodology can be

used for other spherical data.

Some numerical approaches that were used to speed up computations for big CMB

data sets will be reported in detail in future publications. In future studies, it would be

also interesting to:

• Develop the distribution theory for the estimators of H(t);

• Develop hypothesis tests of equality of the local Hölder exponents taking into account

the dependence structure of random fields;

• Investigate reliability and accuracy of various estimators of the Hölder exponent for

CMB data;

• Study rates of convergence in Theorem 4.1;

• Investigate changes of the Hölder exponents depending on evolutions of random fields

driven by SPDEs on the sphere, see Anh et al. (2018), Broadbridge et al. (2019),

Broadbridge et al. (2020) and Restrepo et al. (2021);

• Study directional changes of the Hölder exponent by extending the obtained results

for the conventional ring ordering to rings with arbitrary orientations;

• Apply the developed methodology to other spherical data, in particular, to new

high-resolution CMB data from future CMB-S4 surveys (Abazajian et al. (2019));

• Explore relations between the locations of the detected CMB anomalies and other

cosmic objects.
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Chapter 5

Asymptotic normality of

simultaneous estimators of cyclic

long-memory processes

This chapter is based on the article, Ayache, A., Fradon, M., Nanayakkara, R., and

Olenko, A. Asymptotic normality of simultaneous estimators of cyclic long-memory pro-

cesses, which will appear in Electronic Journal of Statistics.

Due to artistic reasons, the format of this paper was changed in accordance with the

style of the thesis. This did not change the main contents of the paper, but gave rise to

slight changes in the paper layout.
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5.1 Introduction

Time series with cyclic long-memory behaviours attracted increasing attention in recent

years, see Alomari et al. (2020), Arteche (2020), Arteche and Robinson (1999), Arteche

and Robinson (2000), del Barrio Castro and Rachinger (2021) and the references therein.

It was due to importance of such time series in finance, hydrology, cosmology, internet

modelling, and other applications to data with non-seasonal cyclicities, see Arteche (2020),

Arteche and Robinson (1999), Artiach and Arteche (2011), Boubaker and Sghaier (2015),

Ferrara and Guégan (2001) and Whitcher (2004). At the same time, various statistics of

cyclic long-memory processes have complex asymptotic behaviour that has not yet been

fully understood and investigated, see Hosoya (1997), Ivanov et al. (2013), Klykavka et al.

(2012) and Olenko (2013).

To link characterizations of the long-memory phenomena in temporal and spectral do-

mains researchers usually employ Abelian and Tauberian theorems. These results establish

connections between asymptotics of covariance functions at the infinity and singularities of

the corresponding spectral densities, see Klykavka et al. (2012) and Leonenko and Olenko

(2013). The most frequent definition of long-memory in the literature is a hyperbolic-type

decay of a non-integrable covariance function. While this classical long-memory depen-

dence is often related to unboundedness of spectral densities at the origin, spectral singu-

larities at nonzero frequencies can also result in hyperbolic-type oscillating non-integrable

covariance functions. Such spectral representations can be used to simultaneously model

cyclicity and long-memory.

Cyclical long-memory time series are much more difficult to investigate and there

were relatively few publications on this topic compared to classical models with the only

singularity at the origin. Several least squares and likelihood-based approaches have been

proposed to estimate parameters of singularity poles, see Arteche (2020), Arteche and

Robinson (1999), Arteche and Robinson (2000), Barboza and Viens (2017), Beran et al.

(2009), Espejo et al. (2015), Giraitis et al. (2001), Hidalgo (2005) and Tsai et al. (2015).

Unfortunately, for the majority of these approaches incorrect specifications of a statistical

model can result in inconsistent estimates of the parameters. The empirical studies in

Beaumont and Smallwood (2019) and Whitcher (2004) demonstrated various issues of the

traditional estimators and that wavelet-based approach can give results that are equivalent

to ordinary least squares and maximum likelihood estimates under the assumption of
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cates some cyclic behaviour. The wavelet coefficients of this time series are shown in the

fourth subplot. Unfortunately, contrary to perfect cyclic signals or spectral densities with

singularity at the origin, it is more difficult to use the wavelet approach for estimating

cyclicity and long-memory parameters simultaneously. An even more challenging problem

is a development of statistical inference for these parameters.

The publication Alomari et al. (2020) proposed a new methodology for simultaneous

estimation of cyclic and long-memory parameters. It used filter transformations of func-

tional time series. The approach included wavelet transformations as a particular case.

The strong consistency of the proposed estimators was proved.

This chapter further develops the approach from Alomari et al. (2020). Now we obtain

asymptotic normality of the proposed estimators. It requires very careful investigations

of quadratic functionals of filter coefficients and their increments. Obtaining asymptotic

properties of wavelet-based statistics is a difficult problem and there are only few general

results about their asymptotic normality. The developed methodology and the obtained

results can also find applications for other wavelet-based statistics.

In addition, for the case when empirical values of the statistics are outside the feasible

region, we propose new adjusted estimators and investigate their properties. It is shown

that these estimators have same asymptotic distributions as the corresponding ones in

Alomari et al. (2020), but are computationally simpler.

The chapter is organized as follows. Section 5.2 gives basic definitions and introduces

a semi-parametric model and filter transforms studied in this chapter. Various asymp-

totic properties of quadratic functionals of filter transforms are derived in Section 5.3.

Section 5.4 proves asymptotic normality of two auxiliary statistics of the semiparametric

model, which are based on quadratic functionals of filter transforms and their increments.

Section 5.5 proposes and investigates adjusted simultaneous estimators of the location

and long-memory parameters. Numerical studies to support the theoretical findings are

presented in Section 5.6.

All computations, plotting and simulations in this chapter were performed using the

software R version 4.0.3 and Maple 17, Maplesoft. In particular, the R packages waveslim

(Whitcher (2020)) and MassSpecWavelet (Du et al. (2006)) were used to simulate

realizations of cyclic long-memory processes and compute their wavelet transforms in the

numerical examples. A reproducible version of the code in this chapter is available in

Appendix C.
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5.2 Definitions and assumptions

This section introduces classes of functional time series and their filter transforms that

are used in the chapter. The notations are consistent with ones in Alomari et al. (2020),

where the authors proposed simultaneous filter estimators of parameters of cyclic long-

memory processes.

In the following {aj}j∈N denotes an arbitrary unboundedly strictly monotone increasing

sequence of positive real numbers. {mj}j∈N is a sequence of positive integers such that

limj→+∞mj = +∞. {bjk}(j,k)∈N×Z stands for an infinite array of real numbers.

The symbols a.s.−−→ and d→ will be used for almost sure convergence and convergence in

distribution respectively.

Let X(t), t ∈ R, be a measurable mean-square continuous real-valued stationary zero-

mean Gaussian stochastic process on a probability space (Ω,F , P ), with the covariance

function

B(r) := Cov(X(t), X(t′)) =
∫
R

eiu(t−t′)F (du), t, t′ ∈ R,

where r = t− t′ and F (·) is a non-negative finite measure on R.

Definition 5.1. The random process X(t), t ∈ R, possesses an absolutely continuous

spectrum if there exists a non-negative function f(·) ∈ L1(R) such that

F (u) =
∫ u

−∞
f(λ)dλ, u ∈ R.

The function f(·) is called the spectral density of the process X(t).

The process X(t), t ∈ R, with an absolutely continuous spectrum has the following

isonormal spectral representation

X(t) =
∫
R

eitλ
√
f(λ)dW (λ),

where W (·) is a complex-valued Gaussian orthogonal random measure on R.

For a real-valued stochastic process X(t) the function f(·) is even and the random

measure W (·) satisfies the condition W ([λ1, λ2]) = W ([−λ2,−λ1]) for any λ2 > λ1 > 0,

see (Taqqu, 1979, §6).

The following assumption in the spectral domain introduces the semiparametric model

investigated in this chapter.
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Assumption 5.1. Let the spectral density f(·) of X(t) admit the following representation

f(λ) = h(λ)
|λ2 − s2

0|2α
, λ ∈ R,

where s0 > 1, α ∈ (0, 1/2) and h(·) is an even non-negative bounded function that is four

times continuously differentiable. Its derivatives of order i satisfy h(i)(0) = 0, i = 1, 2, 3, 4.

Also, h(0) = 1, h(·) > 0 in some neighborhood of λ = ±s0, and for all ε > 0 it holds

∫
R

h(λ)
(1 + |λ|)εdλ <∞.

Stochastic processes with spectral densities satisfying Assumption 5.1 exhibit cyclic

long memory. The boundedness of h(·) guarantees that their spectral densities have sin-

gularities only at the locations±s0. Covariance functions of such processes are unintegrable

and have hyperbolically decaying oscillations when α ∈ (0, 1/2) , see Arteche and Robin-

son (1999). For example, the Gegenbauer random processes satisfy Assumption 5.1, see

Espejo et al. (2015).

Real-valued functions ψ(t) ∈ L1(R), t ∈ R, are used to introduce filter transforms of the

process X(t). The Fourier transform ψ̂ is defined, for each λ ∈ R, as ψ̂(λ) =
∫
R e
−iλtψ(t)dt.

It follows from properties of ψ(·) that ψ̂(·) is a bounded even function.

Assumption 5.2. Let supp ψ̂ ⊂ [−A,A], A > 0, and ψ̂(·) is of bounded variation

on [−A,A].

This assumption is technical and can be replaced by a sufficiently fast decay rate of

ψ̂(·) at infinity.

Definition 5.2. The filter transform of the process X(t) is the array of centred real-valued

Gaussian random variables {δjk}(j,k)∈N×Z defined as

δjk := 1
√
aj

∫
R
ψ

(
t− bjk
aj

)
X(t)dt = √aj

∫
R
eibjkξ

ψ̂(ajξ)
√
h(ξ)

|ξ2 − s2
0|α

dW (ξ). (5.1)

Definition 5.2 provides equivalent expressions of the filter transform in the spectral

and time domains.

It is easy to see that

Var(δjk) = aj

∫
R

∣∣ψ̂(ajξ)
∣∣2h(ξ)

|ξ2 − s2
0|2α

dξ. (5.2)
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To guarantee that at each level j ∈ N the sequence {bjk}k∈Z does not have concentra-

tion points and covers all spectral range the following assumption is rather standard in

the literature.

Assumption 5.3. For all j ∈ N and for every (k, l) ∈ Z2 it holds

|bjk − bjl| ≥ γj |k − l|, (5.3)

where {γj}j∈N is a sequence of positive real numbers.

To get exact asymptotic behaviours of the considered statistics few versions of this

assumption will be more precisely specified later.

A very detailed motivation, discussion, and various particular examples, that include

wavelet transforms and Gegenbauer processes as special important cases, can be found

in Alomari et al. (2020).

5.3 Preliminary results

This section derives some properties of the filter transforms and their variances that will

be used in the following sections to obtain the CLT for simultaneous estimators of cyclic

long-memory parameters.

Let

δ
(2,mj)
j :=

mj∑
k=1

δ2
jk, j ∈ N. (5.4)

Theorem 5.1. Assume that

lim
j→+∞

aj ln(mj)
γjm

1/2
j

= 0. (5.5)

Then, when j → +∞, the random variables

Yj :=
δ

(2,mj)
j − E(δ(2,mj)

j )√
Var(δ(2,mj)

j )
(5.6)

converge in distribution to a standard Gaussian random variable.

To derive Theorem 5.1 we will use the following three lemmas. The first lemma is

obtained by applying the Taylor-Lagrange formula, the second one is a rather known

result and the third statement was proved in Alomari et al. (2020).
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Let the function Iζ(·), ζ ∈ R, be defined for x ∈
[
− (2A)−1, (2A)−1] as

Iζ(x) :=
∫
R
eiζη
|ψ̂(η)|2h(xη)(
s2

0 − x2η2)2α dη. (5.7)

Lemma 5.1. If Assumptions 5.1 and 5.2 hold true, then Iζ(x) is four times continuously

differentiable with respect to x, and there is a finite constant c1 > 0 (not depending on ζ

and x) such that, for all ζ ∈ R and |x| ≤ (2A)−1, it holds

∣∣∣∣Iζ(x)− s−4α
0

∫
R
eiζη|ψ̂(η)|2 dη − 2αs−4α−2

0

∫
R
eiζηη2|ψ̂(η)|2 dη · x2

∣∣∣∣ ≤ c1 x
4. (5.8)

Proof of Lemma 5.1. Note that Iζ(·) is a real-valued function since ψ̂(·) and h(·) are even

real-valued functions. It follows from (5.7), Assumptions 5.1 and 5.2 that

Iζ(x) =
∫ A

−A
eiζη
|ψ̂(η)|2h(xη)(
s2

0 − x2η2)2α dη =
∫ A

−A
eiζη|ψ̂(η)|2f(ηx) dη.

To use the Taylor formula for Iζ(x) when x ∈
[
−(2A)−1, (2A)−1] one notes that

x ∈
[
−(2A)−1, (2A)−1] and η ∈ [−A,A] imply |ηx| ≤ 1/2 and s2

0 − η2x2 > 3/4 since

s0 > 1. As by Assumption 5.1 the function h(·) is four times continuously differentiable,

hence f(·) has four continuous derivatives with respect to x on
[
−(2A)−1, (2A)−1] for any

fixed η in [−A,A]. To prove that Iζ(·) is four times continuously differentiable, it is enough

to show that the corresponding integrand and its first four derivatives with respect to x

are dominated by integrable functions that do not depend on x.

First, for the integrand in (5.7) we get

∣∣∣eiζη|ψ̂(η)|2f(ηx)
∣∣∣ ≤ (4

3

)2α
|ψ̂(η)|2 sup

y∈[−1/2,1/2]
|h(y)|,

where the right hand side is bounded and therefore integrable on [−A,A].

The nth derivative of the function f(ηx) with respect to x satisfies

∣∣∣∣ ∂n∂xn f(ηx)
∣∣∣∣ =

∣∣∣∣∣
n∑
k=0

(
n

k

)
ηn−k h(n−k)(xη) ∂k

∂xk

(
(s2

0 − η2x2)−2α
)∣∣∣∣∣

≤
n∑
k=0

(
n

k

)
An−k sup

y∈[−1/2,1/2]

∣∣h(n−k)(y)
∣∣ ∣∣∣∣∣ ∂k∂xk

(
(s2

0 − η2x2)−2α
)∣∣∣∣∣ .

For k in {1, 2, 3, 4} we provide very simple convenient bounds for the derivatives in the
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last expression, which will be useful later:

∣∣∣∣ ∂∂x
(
(s2

0 − η2x2)−2α
)∣∣∣∣ =

∣∣∣∣∣ 4αη2x

(s2
0 − η2x2)2α+1

∣∣∣∣∣ ≤ 4αA2

(4
3

)2α+1
≤ 2A, (5.9)

∣∣∣∣∣ ∂2

∂x2

(
(s2

0 − η2x2)−2α
)∣∣∣∣∣ =

∣∣∣∣∣4αη2 (4α+ 1)η2x2 + s2
0

(s2
0 − η2x2)2α+2

∣∣∣∣∣
≤ 4αA2

(4
3

)2α+2 (4α+ 1
4 + s2

0

)
≤ 10A2s2

0, (5.10)

∣∣∣∣∣ ∂3

∂x3

(
(s2

0 − η2x2)−2α
)∣∣∣∣∣ =

∣∣∣∣∣8α(2α+ 1)η4x
(4α+ 1)η2x2 + 3s2

0
(s2

0 − η2x2)2α+3

∣∣∣∣∣ ≤ 4α(2α+ 1)A3

×
(4

3

)2α+3 (4α+ 1
4 + 3s2

0

)
≤ 4A3

(4
3

)4 (3
4 + 3s2

0

)
≤ 48A3s2

0, (5.11)

∣∣∣∣∣ ∂4

∂x4

(
(s2

0 − η2x2)−2α
)∣∣∣∣∣ =

∣∣∣∣∣(16α(α+ 1) + 3)η4x4 + 6(4α+ 3)s2
0η

2x2 + 3s4
0

(s2
0 − η2x2)2α+4

×8α(2α+ 1)η4
∣∣∣∣∣ ≤ 8α(2α+ 1)A4

(4
3

)2α+4 (16α(α+ 1) + 3
16 + 6(4α+ 3)

4 s2
0 + 3s4

0

)

≤ 8A4
(4

3

)5 (15
16 + 15

2 s
2
0 + 3s4

0

)
≤ 400A4s4

0. (5.12)

Therefore the function in the integral defining Iζ(·) and its first four derivatives are

dominated by an integrable function (|ψ̂|2 multiplied by a large enough constant). Thus

Iζ(·) is C4 ([−(2A)−1, (2A)−1]) and its derivatives can be computed by differentiation

under the integral sign. For n in {1, 2, 3, 4} it holds

dn

dxn
Iζ(x) =

n∑
k=0

(
n

k

)∫ A

−A
eiζη|ψ̂(η)|2 ηn−k h(n−k)(xη) ∂k

∂xk

(
(s2

0 − η2x2)−2α
)
dη (5.13)

and the Taylor-Lagrange expansion provides

∣∣∣∣Iζ(x)− Iζ(0)− I ′ζ(0)x− I ′′ζ (0)x
2

2! − I
(3)
ζ (0)x

3

3!

∣∣∣∣ ≤ sup
y∈[−(2A)−1,(2A)−1]

|I(4)
ζ (y)| x

4

4! , (5.14)

where

Iζ(0) = 1
s4α

0

∫ A

−A
eiζη|ψ̂(η)|2 dη,

since h(0) = 1.

By Assumptions 5.1 the derivatives h(l)(0) = 0 for l ∈ {1, 2, 3, 4}, thus

dn

dxn
Iζ(0) =

∫ A

−A
eiζη|ψ̂(η)|2 ∂n

∂xn

(
(s2

0 − η2x2)−2α
)∣∣∣∣∣
x=0

dη.
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By (5.9) and (5.11) for n = 1 and n = 3 the derivatives ∂n

∂xn
(
(s2

0 − η2x2)−2α) vanish at

x = 0. Moreover, the expression for the second derivative in the estimate (5.10) gives

d2

dx2Iζ(0) = 4α
s4α+2

0

∫ A

−A
eiζη|ψ̂(η)|2η2 dη.

It follows from the estimates (5.9)-(5.12) that for each k = 0, ..., 4 the derivative | ∂k
∂xk

(s2
0−

η2x2)−2α| is bounded by 400Aks4
0. Hence, by (5.13), for all x ∈ [−(2A)−1, (2A)−1]

∣∣∣∣∣ d4

dx4Iζ(x)
∣∣∣∣∣ ≤ sup

y∈[−1/2,1/2]
n∈{0,...,4}

|h(n)(y)|
4∑

k=0

(
4
k

)∫ A

−A
|ψ̂(η)|2An−k(400Aks4

0) dη

≤ 6400 s4
0A

4 sup
y∈[−1/2,1/2]
n∈{0,...,4}

|h(n)(y)|
∫ A

−A
|ψ̂(η)|2 dη =: c2.

Finally, the estimate (5.14) becomes

∣∣∣∣Iζ(x)− 1
s4α

0

∫ A

−A
eiζη|ψ̂(η)|2 dη − 4α

s4α+2
0

∫ A

−A
eiζη|ψ̂(η)|2 η2 dη · x

2

2!

∣∣∣∣ ≤ c2
4! · x

4,

which completes the proof.

The following lemma is an immediate corollary of the Gershgorin circle theorem (Li

and Zhang (2019)).

Lemma 5.2. Let U = (uij)1≤i,j≤n be a square matrix of order n with complex elements.

If ρ(U) is the spectral radius of U , that is

ρ(U) := max
{
|λ| : λ is an eigenvalue of U

}
,

then

ρ(U) ≤ min
{

max
1≤i≤n

n∑
j=1
|uij | , max

1≤j≤n

n∑
i=1
|uij |

}
.

Lemma 5.3. (Alomari et al. (2020)) Let Assumptions 5.1 hold true. Then there exists a

finite constant c3 such that, for every j ∈ N such that aj ≥ 2A and for all (k, l) ∈ Z2:

∣∣Cov(δjk, δjl)
∣∣ ≤ c3

(
1l{k=l} + 1l{k 6=l} aj |bjk − bjl|−1

)
. (5.15)

Proof of Theorem 5.1. Note that δ(2,mj)
j is the squared Euclidian norm of the centred

Gaussian vector ~δ (mj)
j := (δj1, . . . , δjmj ). Therefore, δ(2,mj)

j has the same distribution as
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∑mj
k=1 λjk ε

2
jk, where λj1, . . . , λjmj are the non-negative eigenvalues of the covariance matrix

of ~δ (mj)
j and εj1, . . . , εjmj are independent standard Gaussian random variables. Thus,

using a version of the Lindeberg condition (see for instance Csörgo and Révész (1981)

or Lemma 2 in Istas and Lang (1997b)), it turns out that for proving the theorem it is

enough to show that

lim
j→+∞

max1≤k≤mj λjk√
Var

(
δ

(2,mj)
j

) = 0. (5.16)

To derive (5.16) let us first prove that there is a positive constant c4 (not depending on j),

such that for all large enough j,

Var(δ(2,mj)
j ) ≥ c4mj . (5.17)

Using (5.4), (5.2) and the change of variable η = ajξ, one gets

Var(δ(2,mj)
j ) =

mj∑
k=1

mj∑
l=1

Cov(δ2
jk, δ

2
jl) = 2

mj∑
k=1

mj∑
l=1

Cov2(δjk, δjl) ≥ 2
mj∑
k=1

Var2(δjk) (5.18)

= 2mj

(
aj

∫
R

∣∣ψ̂(ajξ)
∣∣2h(ξ)

|ξ2 − s2
0|2α

dξ
)2

= 2mj

( ∫
R

∣∣ψ̂(η)
∣∣2h(a−1

j η)
|a−2
j η2 − s2

0|2α
dη
)2
. (5.19)

Moreover, it follows from (5.8) that

lim
j→+∞

∫
R

∣∣ψ̂(η)
∣∣2h(a−1

j η)
|a−2
j η2 − s2

0|2α
dη = s−4α

0

∫
R

∣∣ψ̂(η)
∣∣2 dη > 0. (5.20)

Then, (5.17) results from (5.19) and (5.20).

Next, by Lemma 5.2 for all j ∈ N it holds

max
1≤k≤mj

λjk ≤ max
1≤k≤mj

mj∑
l=1

∣∣Cov(δjk, δjl)
∣∣. (5.21)

Moreover, by (5.3) and (5.15), for each fixed large enough j and for every k ∈ {1, . . . ,mj},

one has
mj∑
l=1

∣∣Cov(δjk, δjl)
∣∣ ≤ c3

(
1 + aj

mj∑
l=1, l 6=k

|bjk − bjl|−1
)

≤ c3
(
1 + aj

γj

mj∑
l=1, l 6=k

|k − l|−1
)
≤ c3

(
1 + 2aj

γj

mj∑
l=1

l−1
)

≤ c3
(
1 + 2aj

γj
+ 2aj

γj

∫ mj

1
y−1 dy

)
≤ c3

(
1 +

2aj
(
1 + ln(mj)

)
γj

)
. (5.22)
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Recall that the constant c3 does not depend on (j, k, l). Finally, putting together (5.5),

(5.17), (5.21), (5.22), and the fact that limj→+∞mj = +∞, one gets (5.16).

To obtain the exact asymptotic variance of δ(2,mj)
j we specify asymptotic behaviours

of the increments of the sequences {bjk}(j,k)∈N×Z in Assumption 5.3.

Assumption 3’. For all j ∈ N and for every (k, l) ∈ Z2 it holds

bjk − bjl = γj(k − l),

where {γj}j∈N is a sequence of positive real numbers such that

lim
j→+∞

aj
γj

= c ∈ (0,+∞) and lim
j→+∞

m2
j

(
γj
aj
− 1
c

)
= 0.

Remark 5.1. For example, Assumption 3’ is satisfied for the sequence {γj}j∈N with

γj = aj for all j ≥ j0 ∈ N.

Lemma 5.4. Let Assumption 3’ hold true and

lim
j→+∞

mja
−8
j = 0. (5.23)

Then, the sequence of positive real numbers
{
Var(δ(2,mj)

j )/mj
}
j∈N converges to a finite and

strictly positive limit when j → +∞. More precisely,

lim
j→+∞

Var(δ(2,mj)
j )
mj

= V1 := 4cπs−8α
0

∫ cπ

−cπ

∣∣∣ ∑
n∈Z

∣∣ψ̂(η + 2ncπ)
∣∣2∣∣∣2 dη. (5.24)

Proof of Lemma 5.4. Using (5.1), (5.7), (5.18), Assumption 3’, and the change of variable

η = ajξ one obtains

Var(δ(2,mj)
j )
mj

= 2
mj

mj∑
k=1

mj∑
l=1
I2
γj(k−l)/aj (a

−1
j ), j ∈ N,

where I2
ζ (·) is the squared function Iζ(·) defined in (5.7).

Let us denote by Fj(·) a bounded function defined on [−πaj/γj , πaj/γj ] as

Fj(η) :=
∑
n∈Z

∣∣ψ̂(η + 2nπaj/γj)
∣∣2.

Let {µj(k)}k∈Z be the sequence of the Fourier coefficients of Fj . These coefficients are
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real-valued since ψ̂(·) is even. Using the fact that η 7→ eiγjkη/aj is, for each fixed k ∈ Z, a

2πaj/γj-periodic function of η and the dominated convergence theorem, one gets

µj(k) :=
∫ πaj/γj

−πaj/γj
eiγjkη/aj

(∑
n∈Z

∣∣ψ̂(η + 2nπaj/γj)
∣∣2) dη =

∫
R
eiγjkη/aj

∣∣ψ̂(η)
∣∣2 dη. (5.25)

Now, let us show that there is a finite constant c4 such that, for all j large enough, one

has

m
−1/2
j

∣∣∣∣( mj∑
k=1

mj∑
l=1
I2
γj(k−l)/aj (a

−1
j )
)1/2
−
( mj∑
k=1

mj∑
l=1

s−8α
0 µ2

j (k − l)
)1/2∣∣∣∣

≤ c4
(
mja

−8
j + a−4

j

)1/2
. (5.26)

By the triangle inequality it holds

∣∣∣∣( mj∑
k=1

mj∑
l=1
I2
γj(k−l)/aj (a

−1
j )
)1/2
−
( mj∑
k=1

mj∑
l=1

s−8α
0 µ2

j (k − l)
)1/2∣∣∣∣

≤
( mj∑
k=1

mj∑
l=1

∣∣Iγj(k−l)/aj (a−1
j )− s−4α

0 µj(k − l)
∣∣2)1/2

. (5.27)

Next, observe that it follows from (5.8), (5.25) and the inequalities 0 < α < 1/2 and

s0 > 1, that for all j large enough and for all (k, l) ∈ Z2 it holds

∣∣∣∣Iγj(k−l)/aj (a−1
j )− µj(k − l)

s4α
0

∣∣∣∣2 ≤
(∣∣∣∣Iγj(k−l)/aj (a−1

j )−
∫
R e

iγj(k−l)η/aj |ψ̂(η)|2 dη
s4α

0

− 2α
s4α−2

0

∫
R
eiγj(k−l)η/ajη2|ψ̂(η)|2 dη · a−2

j

∣∣∣∣+ ∣∣∣ ∫
R
eiγj(k−l)η/ajη2|ψ̂(η)|2 dη

∣∣∣a−2
j

)2

≤ 2
∣∣∣∣Iγj(k−l)/aj (a−1

j )− s−4α
0

∫
R
eiγj(k−l)η/aj |ψ̂(η)|2 dη − 2αs−4α−2

0 a−2
j

×
∫
R
eiγj(k−l)η/ajη2|ψ̂(η)|2 dη

∣∣∣∣2 + 2
∣∣∣ ∫

R
eiγj(k−l)η/ajη2|ψ̂(η)|2 dη

∣∣∣2a−4
j

≤ 2c2
1a
−8
j + 2

∣∣∣ ∫
R
eiγj(k−l)η/ajη2|ψ̂(η)|2 dη

∣∣∣2a−4
j , (5.28)

where c1 is the constant from (5.8).

By (5.27) and (5.28) to derive (5.26) it is sufficient to show that

∑
k∈Z

∣∣∣ ∫
R
eiγjkη/ajη2|ψ̂(η)|2 dη

∣∣∣2 =
∑
k∈Z

∣∣∣ ∫ πaj/γj

−πaj/γj
eiγjkη/aj

∑
n∈Z

(η + 2nπaj/γj)2
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×
∣∣ψ̂(η + 2nπaj/γj)

∣∣2 dη∣∣∣2 < +∞.

This inequality holds by Plancherel’s identity as
{ ∫

R e
iγjkη/ajη2|ψ̂(η)|2 dη

}
k∈Z

is the se-

quence of the Fourier coefficients of the bounded on [−πaj/γj , πaj/γj ] function ∑n∈Z(η+

2nπaj/γj)2∣∣ψ̂(η + 2nπaj/γj)
∣∣2.

Next, let us define F0(·) as

F0(η) :=
∑
n∈Z

∣∣ψ̂(η + 2ncπ)
∣∣2, η ∈ [−cπ, cπ], (5.29)

where c is the same positive constant as in Assumption 3’. F0(·) is a bounded function on

[−cπ, cπ].

Let us now show that

lim
j→+∞

1
mj

mj∑
k=1

mj∑
l=1

µ2
j (k − l) = 2cπ

∫ cπ

−cπ
|F0(η)|2 dη. (5.30)

Note that
1
mj

mj∑
k=1

mj∑
l=1

µ2
j (k − l) = 1

mj

mj∑
k=1

k−1∑
q=k−mj

µ2
j (q)

and for the sequence {µ0(k)}k∈Z of the Fourier coefficients of F0 it holds

1
mj

∣∣∣∣∣∣
mj∑
k=1

k−1∑
q=k−mj

µ2
j (q)−

mj∑
k=1

k−1∑
q=k−mj

µ2
0(q)

∣∣∣∣∣∣ ≤ C

mj

mj∑
k=1

k−1∑
q=k−mj

|µj(q)− µ0(q)| (5.31)

as µj(q) and µ0(q) are bounded by
∫
R
∣∣ψ̂(η)

∣∣2 dη.
Using the expressions for Fourier coefficients and Assumption 5.2, we get that for

k = 1, ...,mj

k−1∑
q=k−mj

|µj(q)− µ0(q)| ≤
k−1∑

q=k−mj

∫ A

−A

∣∣∣∣ei γjqηaj − ei
qη
c

∣∣∣∣ ∣∣ψ̂(η)
∣∣2 dη

≤ C ′
k−1∑

q=k−mj

∫ A

−A

∣∣∣∣∣sin
(
qη

2

(
γj
aj
− 1
c

))∣∣∣∣∣ dη
≤ C ′

mj∑
q=−mj

∫ A

−A

∣∣∣∣∣sin
(
qη

2

(
γj
aj
− 1
c

))∣∣∣∣∣ dη.
Hence, it follows from the inequality | sin(x)| ≤ |x| and Assumption 3’ that

k−1∑
q=k−mj

|µj(q)− µ0(q)| ≤ C ′′m2
j

∣∣∣∣∣γjaj − 1
c

∣∣∣∣∣→ 0, j → +∞. (5.32)
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Thus, by (5.31), (5.32) and the Cesàro mean convergence theorem one gets

1
mj

∣∣∣∣∣∣
mj∑
k=1

k−1∑
q=k−mj

µ2
j (q)−

mj∑
k=1

k−1∑
q=k−mj

µ2
0(q)

∣∣∣∣∣∣→ 0, j → 0. (5.33)

Now, by Plancherel’s identity

1
mj

mj∑
k=1

k−1∑
q=k−mj

µ2
0(q) =

+∞∑
q=−∞

µ2
0(q)− 1

mj

mj∑
k=1

+∞∑
q=k

µ2
0(q)− 1

mj

mj∑
k=1

k−mj−1∑
q=−∞

µ2
0(q)

= 2cπ
∫ cπ

−cπ
|F0(η)|2 dη − 1

mj

mj∑
k=1

+∞∑
q=k

µ2
0(q)− 1

mj

mj∑
k′=1

−k′∑
q=−∞

µ2
0(q). (5.34)

Next, observe that the sequence
{∑+∞

q=k µ
2
0(q)

}
k∈N converges to zero. Consequently by the

Cesàro mean convergence theorem one gets

lim
j→+∞

1
mj

mj∑
k=1

+∞∑
q=k

µ2
0(q) = 0. (5.35)

Using the same arguments, one obtains that

lim
j→+∞

1
mj

mj∑
k′=1

−k′∑
q=−∞

µ2
0(q) = 0. (5.36)

Putting together (5.33), (5.34), (5.35) and (5.36) it follows that (5.30) holds true.

Finally, combining (5.30) with (5.23), (5.26) and (5.29) one obtains (5.24).

5.4 Asymptotic normality of two auxiliary statistics

This section proves asymptotic normality of two auxiliary statistics of the semiparametric

model defined by Assumption 5.1. They are two functions of the parameters s0 and α.

The results will be used in the following sections to derive and investigate simultaneous

estimators of s0 and α.

Let us set

δ
(2,mj)
j :=

δ
(2,mj)
j

mj
= 1
mj

mj∑
k=1

δ2
jk, j ∈ N, (5.37)

where δjk is given in Definition 5.2.

The following theorem introduces the first statistics and derives its asymptotic normality.
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Theorem 5.2. Let the array {bjk}(j,k)∈N×Z satisfy Assumption 3’ and

lim
j→+∞

mja
−4
j = 0. (5.38)

Then, when j goes to +∞, the random variables

Y j := √mj

(
δ

(2,mj)
j − s−4α

0

∫
R
|ψ̂(η)|2 dη

)
(5.39)

converge in distribution to a centred Gaussian random variable Y with the variance Var(Y ) =

V1 given by (5.24).

Remark 5.2. If the array {bjk}(j,k)∈N×Z satisfies Assumption 3’, then the condition (5.5)

of Theorem 5.1 holds true for any {mj}j∈N.

Proof of Theorem 5.2. By Theorem 5.1, when j goes to +∞, the random variables
√
V1 Yj

converge in distribution to a centred Gaussian random variable Y whose variance equals

V1. Moreover, by (5.6) and (5.37) the random variable
√
V1 Yj equals

√
V1 Yj =

√√√√V1 ×
mj

Var
(
δ

(2,mj)
j

) √mj

(
δ

(2,mj)
j − E

(
δ

(2,mj)
j

) )
,

and, by Lemma 5.4, it holds

lim
j→+∞

√√√√V1 ×
mj

Var
(
δ

(2,mj)
j

) = 1.

Thus, when j goes to +∞, the random variables √mj

(
δ

(2,mj)
j − E

(
δ

(2,mj)
j

) )
converge

in distribution to Y . To show that the sequence
{
Y j
}
j∈N shares the same property, it is

enough to prove that

lim
j→+∞

√
mj

(
E
(
δ

(2,mj)
j

)
− s−4α

0

∫
R
|ψ̂(η)|2 dη

)
= 0. (5.40)

It follows from from (5.2), (5.7) and (5.37) that E
(
δ

(2,mj)
j

)
= I0(a−1

j ). Thus, using

Lemma 5.1 and (5.38) one obtains (5.40).

Let {Mj}j∈N be a sequence of positive integers defined as

Mj :=
[

mj

(a−2
j+1 − a

−2
j+2)2

]
, (5.41)

where [·] denotes the integer part function.
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Remark 5.3. By (5.41) the sequence {Mj}j∈N satisfies

Mj =
[
mj(aj+1aj+2)4

(a2
j+2 − a2

j+1)2

]
≥
[
mja

4
j+1

]
→ +∞ .

Assumption 3*. For all j ∈ N and for every (k, l) ∈ Z2 it holds

bjk − bjl = γj(k − l),

where {γj}j∈N is a sequence of positive real numbers such that

lim
j→+∞

aj
γj

= c ∈ (0,+∞) and lim
j→+∞

m2
ja

8
j

(
γj
aj
− 1
c

)
= 0.

Remark 5.4. For example, Assumption 3* is satisfied if for all j ≥ j0 ∈ N it holds γj = aj .

Now we introduce the second auxiliary statistics

∆δ(2,Mj)
j+1 :=

δ
(2,Mj)
j+1 − δ(2,Mj)

j+2

a−2
j+1 − a

−2
j+2

via increments of δ(2,Mj)
j and prove its asymptotic normality.

Theorem 5.3. Assume that the following conditions hold:

1. There exists B ∈ (0, A) such that ψ̂ vanishes on the interval [−B,B], that is

supp ψ̂ ⊆
{
ξ ∈ R : B ≤ |ξ| ≤ A

}
. (5.42)

2. Assumption 3* holds true and for some j0 ∈ N the sequence {aj}j∈N satisfies

aj+1
aj
≥ A

B
> 1 , for all j ≥ j0. (5.43)

3. The sequence {mj}j∈N satisfies (5.38).

Then, when j goes to +∞, the random variables

Zj := √mj

(
∆δ(2,Mj)

j+1 − 2αs−4α−2
0

∫
R
η2|ψ̂(η)|2 dη

)
(5.44)

converge in distribution to a centred Gaussian random variable Z with the variance

Var(Z) = 2V1.
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Remark 5.5. Notice that (5.42) and (5.43) imply that supp ψ̂(aj ·)
⋂ supp ψ̂(aj+1·) is a

Lebesgue negligible set for all sufficiently large j ∈ N.

Proof of Theorem 5.3. First notice that it follows from (5.1) and Remark 5.5 that

Cov(δ(j+1)k, δ(j+2)l) = 0 for all (k, l) ∈ {1, . . . ,Mj}2 and sufficiently large j ∈ N, which

means that the centred Gaussian vectors ~δ (Mj)
j+1 := (δ(j+1)1, . . . , δ(j+1)Mj

) and ~δ
(Mj)
j+2 :=

(δ(j+2)1, . . . , δ(j+2)Mj
) are independent. Therefore, the two random variables

δ
(2,Mj)
j+1 :=

Mj∑
k=1

δ2
(j+1)k and δ

(2,Mj)
j+2 :=

Mj∑
k=1

δ2
(j+2)k

are independent.

By Remark 5.3 the sequence {Mj}j∈N approaches +∞ when j increases. Hence, by

Assumption 3* condition (5.5) is satisfied if mj is replaced by Mj−1 or by Mj−2. Therefore,

by Theorem 5.1, when j goes to +∞, the random variables

Z1,j :=
δ

(2,Mj)
j+1 − E(δ(2,Mj)

j+1 )√
Var

(
δ

(2,Mj)
j+1

)
converge in distribution to a standard Gaussian random variable, and that the random

variables

Z2,j :=
δ

(2,Mj)
j+2 − E(δ(2,Mj)

j+2 )√
Var

(
δ

(2,Mj)
j+2

)
share the same property.

Next, using (5.38), (5.41) and (5.43), one gets that

lim
j→+∞

Mj

a8
j+1

= lim
j→+∞

 mj

a4
j+1
· (aj+2/aj+1)4(

(aj+2/aj+1)2 − 1
)2

 = 0

as the function x4

(x2−1)2 is bounded from above for x ∈ [A/B,+∞). The same is also true

for Mj/a
8
j+2 since aj+2 ≥ aj+1.

Therefore, by Lemma 5.4

lim
j→+∞

√
Var

(
δ

(2,Mj)
j+1

)
√
Mj

=
√
V1 and lim

j→+∞

√
Var

(
δ

(2,Mj)
j+2

)
√
Mj

=
√
V1.
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Thus, when j goes to +∞, the sequence

Z ′1,j :=

√
Var

(
δ

(2,Mj)
j+1

)
√
Mj

Z1,j =
δ

(2,Mj)
j+1 − E(δ(2,Mj)

j+1 )√
Mj

converges in distribution to a centred Gaussian random variable with variance V1, and the

sequence

Z ′2,j :=

√
Var

(
δ

(2,Mj)
j+2

)
√
Mj

Z2,j =
δ

(2,Mj)
j+2 − E(δ(2,Mj)

j+2 )√
Mj

shares the same property. Therefore, using the fact that for sufficiently large j these two

sequences are independent and the equalities E(δ(2,Mj)
j+1 ) = MjI0(a−1

j+1) and E(δ(2,Mj)
j+2 ) =

MjI0(a−1
j+2), one gets that the random variables

Z ′1,j − Z ′2,j =
δ

(2,Mj)
j+1 − δ(2,Mj)

j+2√
Mj

−
√
Mj
(
I0(a−1

j+1)− I0(a−1
j+2)

)
=

√
Mj

(
δ

(2,Mj)
j+1 − δ(2,Mj)

j+2 −
(
I0(a−1

j+1)− I0(a−1
j+2)

))

converge in distribution to a centred Gaussian random variable with the variance 2V1,

when j → +∞.

By (5.41) the sequence of

Z
′
j :=

√
mj
(
a−2
j+1 − a

−2
j+2)−1√

Mj

(
Z ′1,j − Z ′2,j

)
= √

mj

(
δ

(2,Mj)
j+1 − δ(2,Mj)

j+2

a−2
j+1 − a

−2
j+2

−
I0(a−1

j+1)− I0(a−1
j+2)

a−2
j+1 − a

−2
j+2

)

shares the same property.

Thus, it turns out that for deriving the theorem it is enough to show that

lim
j→+∞

√
mj

(
I0(a−1

j+1)− I0(a−1
j+2)

a−2
j+1 − a

−2
j+2

− 2αs−4α−2
0

∫
R
η2|ψ̂(η)|2 dη

)
= 0. (5.45)

Using Lemma 5.1 one gets that

∣∣∣∣I0(a−1
j+1)− I0(a−1

j+2)−
(
2αs−4α−2

0

∫
R
η2|ψ̂(η)|2 dη

)
(a−2
j+1 − a

−2
j+2)

∣∣∣∣
≤
∣∣∣∣I0(a−1

j+1)− s−4α
0

∫
R
|ψ̂(η)|2 dη −

(
2αs−4α−2

0

∫
R
η2|ψ̂(η)|2 dη

)
a−2
j+1

∣∣∣∣
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+
∣∣∣∣I0(a−1

j+2)− s−4α
0

∫
R
|ψ̂(η)|2 dη −

(
2αs−4α−2

0

∫
R
η2|ψ̂(η)|2 dη

)
a−2
j+2

∣∣∣∣
≤ c1

(
a−4
j+1 + a−4

j+2
)
,

where c1 is the constant in (5.8). Thus,

√
mj

∣∣∣∣I0(a−1
j+1)− I0(a−1

j+2)
a−2
j+1 − a

−2
j+2

− 2αs−4α−2
0

∫
R
η2|ψ̂(η)|2 dη

∣∣∣∣ ≤ c1
√
mj(a−4

j+1 + a−4
j+2)

a−2
j+1 − a

−2
j+2

. (5.46)

Finally, combining (5.38), (5.43) and (5.46) one gets

√
mj(a−4

j+1 + a−4
j+2)

a−2
j+1 − a

−2
j+2

=
√
mj

a2
j+1
· 1 + (aj+1/aj+2)4

1− (aj+1/aj+2)2 → 0, j → +∞,

which confirms (5.45) and finishes the proof.

Remark 5.6. For example, the sequence {aj}j∈N with aj = aj , j ∈ N, and a ≥ A/B

satisfies the assumptions of Theorem 5.3.

Note that under the conditions of Theorem 5.3, for sufficiently large j ∈ N, the random

variable Y j defined in (5.39) is independent of Zj defined by (5.44). It is easy to see as the

centred Gaussian random vectors ~δ (mj)
j := (δj1, . . . , δjmj ), ~δ

(Mj)
j+1 := (δ(j+1)1, . . . , δ(j+1)Mj

)

and ~δ
(Mj)
j+2 := (δ(j+2)1, . . . , δ(j+2)Mj

) are independent. Therefore, the following result fol-

lows from Theorems 5.2 and 5.3.

Corollary 1. When j goes to +∞, the random vectors (Y j , Zj) converge in distribution

to the random vector (Y , Z) with the bivariate centred Gaussian distribution

N


 0

0

 ,
 V1 0

0 2V1


 .

5.5 Asymptotic normality of adjusted estimators

In this section the axillary statistics δ(2,mj)
j and ∆δ(2,Mj)

j+1 are used for deriving adjusted

statistics to estimate the parameters of interest. The central limit theorem is proved for

the proposed adjusted statistics.

By (5.39), (5.44) and Corollary 1, under the assumptions of Theorem 5.3 one has

√
mj


δ

(2,mj)
j − s−4α

0
∫
R |ψ̂(η)|2 dη

∆δ(2,Mj)
j+1 − 2αs−4α−2

0
∫
R η

2|ψ̂(η)|2 dη


d−→N

0,

V1 0

0 2V1


 , (5.47)

when j → +∞.
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This two-dimensional central limit theorem gives the fluctuation rate for the corre-

sponding law of large number proven in Alomari et al. (2020)

 δ
(2,mj)
j∫

R |ψ̂(η)|2 dη
,

∆δ(2,Mj)
j+1

2
∫
R η

2|ψ̂(η)|2 dη

 a.s.−−→Φ(s0, α) :=
(
s−4α

0 , αs−4α−2
0

)
, (5.48)

when j → +∞.

Let us consider the function g : [−1,+∞) → [−1/e,+∞) defined as g(t) = tet. This

is an increasing continuous one-to-one function. Its inverse function is LambertW that is

continuous, defined on [−1/e,+∞) with values in [−1,+∞) and satisfies

LambertW(y) eLambertW(y) = y i.e. eLambertW(y) = y

LambertW(y) ,

with the convention that 0/0 = 1.

As stated in Alomari et al. (2020), the vector-valued function Φ : (1,+∞)× (0, 1/2)→

D defined in (5.48) is a continuous one-to-one function taking values in

D =
{

(y1, y2) ∈ R2 : 0 < y1 < 1 and 0 < y2 <
y2

1
2

}
.

Its inverse function Φ−1 : D → (1,+∞)× (0, 1/2) is continuous and given by

Φ−1(y1, y2) =
(

exp
(1

2LambertW
(
−y1 ln(y1)

2y2

))
,

y2
y1

exp
(

LambertW
(
−y1 ln(y1)

2y2

)))
.

Let us define the following continuous vector-valued truncating function T defined for

ε ∈ (0, 1), (y1, y2) ∈ R2, and taking values in D

T (y1, y2, ε) =
(
T1(y1, ε) , T2(y1, y2, ε)

)
∈ D,

where

T1(y1, ε) := max(ε,min(y1, 1− ε)) =



ε, if y1 ≤ ε,

y1, if ε ≤ y1 ≤ 1− ε,

1− ε, if y1 > 1− ε,
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compared to more complex reflections with respect to the boundary of D in Alomari et al.

(2020). Therefore, for small j the adjusted statistic (̂s0, α)j is computationally simpler

than the one in Alomari et al. (2020).

Now we are ready to formulate the main result.

Theorem 5.4. Under the conditions of Theorem 5.3, the adjusted statistic (̂s0, α)j is a

strongly consistent asymptotically normal estimator of the parameter (s0, α). When j goes

to +∞, the random vectors √mj

(
(̂s0, α)j − (s0, α)

)
have the asymptotic bivariate centred

Gaussian distribution N (0, Vs0,α) with the covariance matrix Vs0,α given by

Vs0,α :=
cπs2

0
∫ cπ
−cπ

∣∣∣∑n∈Z
∣∣ψ̂(η + 2ncπ)

∣∣2∣∣∣2 dη
4α2(1 + 2 ln s0)2

(Vs0,α)11 (Vs0,α)12

(Vs0,α)12 (Vs0,α)22

 , (5.49)

where

(Vs0,α)11 := (1− 4α ln s0)2(∫
R |ψ̂(η)|2 dη

)2 + 8s4
0(ln s0)2(∫

R η
2|ψ̂(η)|2 dη

)2 ,

(Vs0,α)12 := (1− 4α ln s0)α(4α+ 2)s−1
0(∫

R |ψ̂(η)|2 dη
)2 − 8αs3

0 ln s0(∫
R η

2|ψ̂(η)|2 dη
)2 ,

(Vs0,α)22 := α2(4α+ 2)2s−2
0(∫

R |ψ̂(η)|2 dη
)2 + 8α2s2

0(∫
R η

2|ψ̂(η)|2 dη
)2 .

Proof of Theorem 5.4. The feasible region D is an open set. Therefore, it follows from

(5.48) that, for any δ > 0 and for almost all ω ∈ Ω, there is J(ω, δ) large enough

such that for j ≥ J the random vector
(

δ
(2,mj)
j∫

R |ψ̂(η)|2 dη
,

∆δ
(2,Mj)
j+1

2
∫
R η

2|ψ̂(η)|2 dη

)
belongs to the δ-

neighbourhood of Φ(s0, α). Notice that 1/mj → 0 when j → +∞. Hence, for almost all

ω ∈ Ω there is J(ω) large enough such that for j ≥ J the image under T (·, 1/mj) of the

vector
(

δ
(2,mj)
j∫

R |ψ̂(η)|2 dη
,

∆δ
(2,Mj)
j+1

2
∫
R η

2|ψ̂(η)|2 dη

)
equals to the vector itself.

Thus, for j → +∞

√
mj

∣∣∣∣∣∣T
(

δ
(2,mj)
j∫

R |ψ̂(η)|2 dη
,

∆δ(2,Mj)
j+1

2
∫
R η

2|ψ̂(η)|2 dη
,

1
mj

)

−
(

δ
(2,mj)
j∫

R |ψ̂(η)|2 dη
,

∆δ(2,Mj)
j+1

2
∫
R η

2|ψ̂(η)|2 dη

)∣∣∣∣∣∣ a.s.−−→ 0, (5.50)

where | · | is the Euclidean norm on R2. Note that (5.50) holds for any norm and any

normalising factor, not only √mj , because the difference almost surely vanishes for j

larger than some random J.
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Hence, by (5.48) and (5.50)

T
(

δ
(2,mj)
j∫

R |ψ̂(η)|2 dη
,

∆δ(2,Mj)
j+1

2
∫
R η

2|ψ̂(η)|2 dη
,

1
mj

)
a.s.−−→Φ(s0, α), j → +∞,

which means that the vector T
(

δ
(2,mj)
j∫

R |ψ̂(η)|2 dη
,

∆δ
(2,Mj)
j+1

2
∫
R η

2|ψ̂(η)|2 dη
, 1
mj

)
is a strongly consistent

estimator of Φ(s0, α).

Moreover, by multivariate Slutsky’s lemma (Van der Vaart, 1998, Theorem 2.7(iv)) it

follows from (5.50) and the central limit theorem (5.47) that for j → +∞ it holds

√
mj

T ( δ
(2,mj)
j∫

R |ψ̂(η)|2 dη
,

∆δ(2,Mj)
j+1

2
∫
R η

2|ψ̂(η)|2 dη
,

1
mj

)
− Φ(s0, α)

 d−→N (0, VV1), (5.51)

where

VV1 := V1


1(∫

R |ψ̂(η)|2 dη
)2 0

0 1
2
(∫

R η
2|ψ̂(η)|2 dη

)2
 .

The continuity of Φ−1 implies that the estimator (̂s0, α)j is strongly consistent

(̂s0, α)j
a.s.−−→(s0, α), j → +∞.

As the central limit theorem in (5.51) can be rewritten as

√
mj

(
Φ
(
(̂s0, α)j

)
− Φ(s0, α)

)
d−−→N (0, VV1), j → +∞,

then to obtain the asymptotic distribution of the estimator (̂s0, α)j around the parameter

of interest (s0, α) one can use the delta method with the inverse function Φ−1.

To justify it one has to check that Φ−1 is differentiable at the point Φ(s0, α). By the

inverse function theorem, the derivative D(Φ−1)(Φ(s0, α)) exists if the Jacobian DΦ of the

function Φ(·, ·) at the point (s0, α) is invertible. In this case it holds D(Φ−1)(Φ(s0, α)) =

(DΦ(s0, α))−1 .

Notice that for any (s0, α) ∈ (1,+∞)× (0, 1/2) it holds

DΦ(s0, α) = s−4α−2
0

 −4αs0 −4s2
0 ln s0

α(−4α− 2)s−1
0 1− 4α ln s0

 . (5.52)
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Thus, since s0 > 1,

det (DΦ(s0, α)) = s−8α−4
0 (−4αs0 − 8αs0 ln s0) = −4αs−8α−3

0 (1 + 2 ln s0) 6= 0

and the Jacobian matrix is invertible.

Therefore, by the multivariate delta method (see, for example, (Van der Vaart, 1998,

Theorem 3.1))
√
mj

(
(̂s0, α)j

)
− (s0, α)

)
d−→N (0, Vs0,α), j → +∞,

where

Vs0,α := (DΦ(s0, α))−1 VV1

(
(DΦ(s0, α))−1

)T
. (5.53)

The covariance matrix given by (5.53) can be explicitly computed. It follows from

(5.52) that

(DΦ(s0, α))−1 = − s4α+1
0

4α(1 + 2 ln s0)

 1− 4α ln s0 4s2
0 ln s0

α(4α+ 2)s−1
0 −4αs0

 .
Hence,

Vs0,α = s8α+2
0 V1

16α2(1 + 2 ln s0)2

 1− 4α ln s0 4s2
0 ln s0

α(4α+ 2)s−1
0 −4αs0



×


1(∫

R |ψ̂(η)|2 dη
)2 0

0 1
2
(∫

R η
2|ψ̂(η)|2 dη

)2

1− 4α ln s0 α(4α+ 2)s−1

0

4s2
0 ln s0 −4αs0

 .
The straightforward matrix multiplication and application of (5.24) give (5.49), which

completes the proof.

5.6 Numerical examples

This section provides some numerical examples to illustrate and specify the general theo-

retical results from the previous sections.

The main theoretical results were obtained for general filter transforms and involve

some complex functionals of the filters. The following two examples demonstrate that these

results can be easily specialized for specific filters/wavelets and are feasibly computable.
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Example 5.1. Let us consider the Shannon father wavelet

ψf (t) = sinc(πt) :=


sin (πt)
πt , t 6= 0,

1, t = 0.

Its Fourier transform is

ψ̂f (η) = 1l[−π,π](η) :=


1, η ∈ [−π, π],

0, η /∈ [−π, π].

It is clear that Assumption 5.2 is satisfied. The corresponding integrals are

∫
R

∣∣∣ψ̂f (η)
∣∣∣2dη = 2π and

∫
R
η2
∣∣∣ψ̂f (η)

∣∣∣2dη = 2
3π

2.

Let I(c) denote the integral

I(c) :=
∫ cπ

−cπ

∣∣∣∣∣∑
n∈Z

∣∣∣ψ̂f (η + 2ncπ)
∣∣∣2∣∣∣∣∣

2

dη =
∫ cπ

−cπ

∣∣∣∣∣∑
n∈Z

1l[−π,π](η + 2ncπ)
∣∣∣∣∣
2

dη.

Then, for c ≥ 1 one gets I(c) = 2π.

If c < 1, by solving the inequality cπ + 2n∗cπ ≤ π we obtain n∗ =
[

1−c
2c

]
. Then, the

solution of η∗ + 2(n∗ + 1)cπ = π is η∗ = π
(
1− 2c

(
1 +

[
1−c
2c

]))
. Therefore, for η∗ < 0 it

holds

I(c) =
∫ −η∗
η∗

(2n∗ + 1)2dη + 2
∫ η∗

−cπ
(2n∗ + 2)2dη

= −2η∗(2n∗ + 1)2 + 2(cπ + η∗)(2n∗ + 2)2

and for η∗ ≥ 0

I(c) =
∫ η∗

−η∗
(2n∗ + 3)2dη + 2

∫ −η∗
−cπ

(2n∗ + 2)2dη

= 2η∗(2n∗ + 3)2 + 2(cπ − η∗)(2n∗ + 2)2.

Thus,

I(c) =


2π, c ≥ 1,

2 |η∗| (2n∗ + 2 + sign(η∗))2 + 2 (cπ − |η∗|) (2n∗ + 2)2, c < 1.

Hence, one can explicitly compute the covariance matrix Vs0,α in Theorem 5.4. For exam-
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ple, the correlation of the components of the asymptotic vector equals

ρ =
1

4π2s0
(1− 4α ln s0)α(4α+ 2)− 18

π4αs0
3 ln s0√(

1
4π2 (1− 4α ln s0)2 + 18

π4 s04(ln s0)2
)(

1
4π2s02α2(4α+ 2)2 + 18

π4α2s02
)

and is plotted in Figure 5.3a as a function of s0 and α. The plot shows that the components

are highly correlated if s0 is close to 1 and their correlation decreases as s0 increases.

(a) Shannon father wavelet case (b) Meyer father wavelet case

Figure 5.3: Asymptotic correlation of ŝ0 and α̂.

Example 5.2. Let us consider the Meyer father wavelet (Meyer (1992)). It satisfies

Assumption 5.2 as its Fourier transform equals

ψ̂f (η) =



1, |η| ≤ 2π
3 ,

cos
(
π
2 ν
(

3|η|
4π − 1

))
, 2π

3 ≤ |η| ≤
4π
3 ,

0, otherwise,

where the function ν(·) can be selected as

ν(x) =



0, x < 0,

x, x ∈ [0, 1],

1, x > 1.
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Its integrals are

∫
R

∣∣∣ψ̂f (η)
∣∣∣2dη = 2π and

∫
R
η2
∣∣∣ψ̂f (η)

∣∣∣2dη = 8
9π(π2 − 2). (5.54)

For example, for c > 4
3 one can easily compute that

I(c) =
∫ 4π/3

−4π/3

∣∣∣ψ̂f (η)
∣∣∣4dη = 11

6 π,

which with (5.54) completely specifies the covariance matrix Vs0,α. The corresponding

correlation is shown in Figure 5.3b as a function of s0 and α.

Comparing it with Figure 5.3a, one can conclude that filters from Examples 5.1 and 5.2

produce similar correlation structures of the components of the asymptotic bivariate vector

in Theorem 5.4. However, for the case of the Meyer father wavelet, the components exhibit

higher correlations than for the Shannon one.

The following example continues simulation studies from Alomari et al. (2020). Sim-

ulations in Alomari et al. (2020) demonstrated consistency of the filter-based estimators

of the cyclic and long-memory parameters. In Example 5.3, we examine their asymp-

totic normality.

Note that the results in this chapter were derived for functional time series with contin-

uous time. For computer simulations, one has to use discretized processes on finite grids.

In the available literature, it is usually assumed that the corresponding discretization er-

ror is negligible with respect to the estimation error. In many cases, it can be rigorously

proven, see for example, Alodat and Olenko (2020) and Ayache and Bertrand (2011).

Example 5.3. In this example the Mexican hat wavelet was used as a filter. This wavelet

and its Fourier transform are defined by, see Liu (2010),

ψ(t) = 2
√

3σπ 1
4

(
1−

(
t

σ

)2
)

e−
t2

2σ2 and ψ̂(η) =
√

8π 1
4σ

5
2

√
3

η2e−
σ2η2

2 .

The value σ = 1 was used for computations. The corresponding integrals are

∫
R

∣∣∣ψ̂(η)
∣∣∣2dη = 2 and

∫
R
η2
∣∣∣ψ̂(η)

∣∣∣2dη = 10.

The Fourier transform ψ̂(η) does not have a finite support, but has light tails that rapidly

approaches zero when η → +∞.
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As X(t), t ∈ Z, we selected the Gegenbauer random process, see Espejo et al. (2015).

This stochastic process is defined by the following difference equation

∆d
uX(t) = ε(t), |u| ≤ 1, 0 < d < 1/2,

where ε(t) is a zero-mean white noise with the common variance E(ε2(t)) = σ2
ε .

The fractional difference operator ∆d
u is given by

∆d
u = (1− 2uB +B2)d,

where B denotes the time backward-shift operator, i.e. BX(t) = X(t− 1).

To simulate realizations of X(t) we used truncated sums of the following infinite moving

average representation of the Gegenbauer random process

X(t) =
∞∑
n=0

C(d)
n (u)ε(t− n), t ∈ Z, (5.55)

with the coefficients given by the Gegenbauer polynomial

C(d)
n (u) =

[n/2]∑
k=0

(−1)k (2u)n−2kΓ(d− k + n)
k!(n− 2k)!Γ(d) ,

where [n/2] is the integer part of n/2, and Γ(·) is the gamma function.

The chosen for simulations parameters values d = 0.1 and u = 0.3 correspond to s0

and α inside of the admissible region D. The realizations of X(t) were approximated by

truncated sums with 100 terms in (5.55). To compute the statistics δ(2,mj)
j and ∆δ(2,Mj)

j+1

the values aj = j, bjk = k, γj = 1, and mj = a9
j , j = 1, ..., 7, were used. In Alomari et al.

(2020) these values were used to illustrate convergence of the estimates to the true values

of parameters.

For j = 7, the subplots in Figures 5.4a and 5.4b show Q-Q plots of the first two

normalised statistics

S1 := √mj

 δ
(2,mj)
j∫

R |ψ̂(η)|2 dη
− s−4α

0


and

S2 := √mj

 ∆δ(2,Mj)
j+1

2
∫
R η

2|ψ̂(η)|2 dη
− αs−4α−2

0

.
These plots demonstrate that these statistics have distributions close to Gaussian ones,
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(a) Q-Q plot of S1 (b) Q-Q plot of S2

(c) Density ellipsoid of (S1, S2) (d) Density ellipsoid of
√
mj

(
(̂s0, α)j − (s0, α)

)
Figure 5.4: Realizations of normalised statistics

which is also confirmed by the Shapiro-Wilk test for normality with the corresponding p-

values 0.613 and 0.262. Moreover, the estimated correlation matrix

 1 0.084

0.084 1

 of

these statistics and density ellipsoids in Figure 5.4c underpin the result in (5.47) about

asymptotically bivariate normal distribution with uncorrelated components. Finally, Fig-

ure 5.4d gives density ellipsoids and realizations of the random vector √mj

(
(̂s0, α)j − (s0, α)

)
which suggest an asymptotically bivariate normal distribution as in Theorem 5.4.

The simulation studies suggest that the theoretical results are likely valid for wider

classes of filters with light tails. They also demonstrate that the estimators exhibit ap-

proximately normal behaviour even for relatively small values of j. A separate publication

will be devoted to comprehensive numerical studies.
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5.7 Conclusion

The chapter developed statistical inference of semiparametric models of functional time

series. It was proved that the generalized filtered method-of-moment estimators of cyclic

long-memory models are consistent and asymptotically normal. New adjusted simultane-

ous statistics were suggested and investigated. A rather general semiparametric class of

models satisfies the assumptions of the theorems. In particular, Gegenbauer-type processes

belong to this class.

Some interesting areas for future investigations are:

– Applying the approach to the case of multiple singularities, see Arteche (2020) and

Klykavka et al. (2012);

– Adapting the methodology to models with other types of spectral singularities;

– Investigating discretization errors for the case when X(t) is observed on a finite grid,

see Ayache and Bertrand (2011) and Bardet and Bertrand (2010);

– Investigating the case of random fields, i.e. when the index set of X(t) is multidi-

mensional, see Ayache (2018), Espejo et al. (2015) and Klykavka et al. (2012);

– Continuing simulation studies to empirically compare the proposed approach with

least squares and likelihood-type methods, see Beaumont and Smallwood (2019),

Ferrara and Guégan (2001) and Whitcher (2004).
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Chapter 6

Conclusion

This chapter outlines the main contributions made by this thesis to the theory and statis-

tics of stochastic processes and spherical random fields. It also proposes some future

research problems that need consideration and are yet to be solved.
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6.1 Main contribution

This thesis studied the stochastic modelling and statistical analysis of spatial and long-

range dependent data, modelled by spherical random fields and functional time series.

The first and the second directions of research were carried out with the main mo-

tivation of checking the non-Gaussianity and other anomalies in the spatial data. The

implemented methodologies were applied to the cosmic microwave background radiation

(CMB) data from the Planck mission. First, the multifractal behaviour of spherical ran-

dom fields was studied. In this study, the existing multifractal models in the literature

were investigated and new theoretical models and formulas of multifractal spectra were

developed. Next, CMB data from different sky windows located at various places and

of different sizes were used to fit the multifractal models. Then, the thesis studied the

multifractionality of spherical random fields with cosmological applications and examined

probable CMB anomalies with the proposed multifractional approaches.

The third direction of research studied the asymptotic behaviour of simultaneous esti-

mators of cyclic long-memory processes considering a wide semiparametric class of models.

Numerical examinations for Meyer, Shannon and Mexican hat wavelets and substantial

simulation studies were carried out to exemplify the theoretical findings.

The obtained results and the developed computing techniques in this thesis are novel

for spatial and long-range dependent data. They may be applied to other spherical,

geoscience, directional, environmental and medical imaging data as well.

The synopsis of the main contributions and results of this thesis are as follows:

• Developing multifractal models for spherical random fields such that the Rényi func-

tions and the multifractal spectra can be computed explicitly;

• Deriving proofs to verify the convergence of the stochastic measure µk in the Rényi

function computations;

• Investigating the behaviour of the Rényi functions and multifractal spectra of the

considered models and the dependence of the Rényi functions on the scaling param-

eter of these models;

• Conducting extensive numerical studies of the Rényi function for CMB sky windows

of different sizes which are located at different places of the CMB sky sphere;
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• Simulating realizations of multifractal random fields and computing the empirical

Rényi functions to verify the consistency of the actual CMB data with the considered

theoretical models;

• Fitting the existing and the newly developed multifractal models to actual CMB

data to check the non-Gaussianity in the CMB data from the Planck mission;

• Confirming that the CMB data from the Planck mission has no significant or very

minor multifractality;

• Implementing the developed methodology as R programs to detect multifractality

in spherical random fields;

• Developing two approaches to investigate the multifractionality of spherical random

fields by using the HEALPix ring and nested ordering geometrical structure;

• Computing the pointwise Hölder exponent values for one- and two-dimensional re-

gions of the CMB data considering the HEALPix ring and nested ordering schemes

respectively;

• Employing the developed multifractional approaches for statistical analysis, detect-

ing potential CMB anomalies and comparing the obtained results with the other

methods available in the literature;

• Revealing that the CMB data from the Planck mission has some multifractionality;

• Implementing computing techniques via R codes to distinguish the multifractional

presence in spherical random fields;

• Advancing inferential statistics for semiparametric models of functional time series;

• Proving the asymptotic normality and consistency of the generalized filtered method-

of-moment estimators for cyclic long-memory models;

• Proposing novel adjusted simultaneous estimators for cyclic long-memory processes

and investigating their properties;

• Conducting extensive numerical and simulation studies to verify the theoretical find-

ings of the developed statistical inference procedure for semiparametric models.
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6.2 Directions for future research

In this thesis, multifractal and multifractional behaviours of spherical random fields were

investigated with specific applications to CMB data from the Planck mission. In future,

it would be interesting to apply and extend the developed computational methodologies

to new high resolution CMB data which will result from next generation CMB missions

such as CMB-S4 (Abazajian et al. (2019)), Euclid (European Space Agency (2021a) and

Racca et al. (2016)) and LiteBIRD (Matsumura et al. (2014)) to further investigate non-

Gaussianity and anomalies in the CMB data. Also, it would be important to discover

other approaches to detect the multifractality and multifractionality of spherical random

fields and to compare the efficiency of various techniques. For example, one can con-

sider the partition-function-based approach to develop computing techniques to examine

multifractal presence.

Chapters 3 and 4 show that most of the new models and results were derived consid-

ering scalar random fields. In this context, only CMB temperature measurements were

considered, but CMB also has polarization data. Therefore, real CMB data are vector

random fields on the sphere. Thus, in future, it would be interesting to investigate other

models based on vector random fields.

Further, in Chapter 3, the formulas of Rényi functions and theory behind them were

developed considering q ∈ [1, 2]. In future, it would be interesting to prove that the results

hold true for q 6∈ [1, 2], see Denisov and Leonenko (2016).

It is known that in many real applications, spherical random fields are evolving over

time. Stochastic partial differential equations (SPDEs) can be used to model such temporal

changes, see Anh et al. (2018), Broadbridge et al. (2019), Broadbridge et al. (2020) and

Restrepo et al. (2021) for more details. Therefore, in future, it would be interesting to

study the variations of Rényi functions and Hölder exponents for random fields driven by

the SPDEs on the sphere.

In Chapter 3, we examined the Rényi function to detect multifractality of spherical

random fields. In future, it would be important to implement statistical tests for various

types of Rényi functions. Another noteworthy query is to develop hypothesis tests to check

the equality of local Hölder exponent values considering the random field’s dependence

structure. Deriving the distribution theory for the Hölder exponent estimators is another

interesting problem.
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It is also important to develop methods for investigating convergence rates of the

asymptotics in Chapters 3 and 4 and to compare them with the classical convergence

rates in central and non-central limit theorems.

In Chapter 4, detailed discussions were carried out regarding various inconsistent es-

timators of Hölder exponent values. In future, it would be interesting to examine and

compare the reliability of different Hölder exponent estimators with applications in par-

ticular for CMB data.

Chapter 4 identified potential CMB anomalies which were consistent with the ones

encountered in the TMASK region using the developed multifractional approaches. It

would be interesting to further explore the corresponding cosmic objects and properties

of such anomalous CMB sky regions.

Chapter 5 of this thesis considered cyclic long-memory processes with spectral singular-

ities at non-zero frequencies. It would be interesting to extend the developed methodology

for the case of multiple singularities.

In Chapter 5, novel simultaneous estimators were proposed for cyclic long-memory

processes with Gegenbauer-type spectral densities. In future, it would be important to

modify the existing methodology to suit models with different types of spectral densities.

Also, it would be interesting to extend the developed methodology for the multidi-

mensional case considering random fields, see Ayache (2018), Espejo et al. (2015) and

Klykavka et al. (2012) for more details.
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Appendix A

Codes used to produce figures and

simulations in Chapter 3

A.1 Maple code used to produce Figure 3.1

The Maple code in this section was used to produce Figure 3.1 in Chapter 3. The code

in this section visualizes example Rényi functions and multifractal spectra for Models 1,

2 and 3 as shown in Chapter 3.

p l o t ( q∗ (1 + 1/ (4 ∗ ln (2 ) ) ) − qˆ2∗1/ (4 ∗ ln (2 ) ) − 1 , q = 0 .1 . . 3 ,
axe s f ont = [ ”Times New Roman” , ”ARIAL” , 1 2 ] , l a b e l s = [ ”q” , ”
T( q ) ” ] , t i t l e f o n t = [ ”Times New Roman” , 1 3 ] )

alpha := 1 + 1/ (4 ∗ ln (2 ) ) − q/ (2 ∗ ln (2 ) )

f a lpha := 1 − qˆ2∗1/ (4 ∗ ln (2 ) )

p l o t ( [ alpha , fa lpha , q = 0 .1 . . 3 ] , axe s f ont = [ ”Times New Roman
” , ”ARIAL” , 1 2 ] , l a b e l s = [ ’ alpha ’ , f ( ’ alpha ’ ) ] , t i t l e = ”
Model 1” , t i t l e f o n t = [ ”Times New Roman” , 1 3 ] )

p l o t ( q∗ (1 − l og [ 2 ] ( 1 − 1/ 3) ) + log [ 2 ] ( 1 − q/ 3) − 1 , q = 0 .1 . .
3 , axe s f ont = [ ”Times New Roman” , ”ARIAL” , 1 2 ] , l a b e l s = [ ”q”
, ”T( q ) ” ] , t i t l e f o n t = [ ”Times New Roman” , 1 3 ] )

alpha := 1 − l og [ 2 ] ( 1 − 1/ 3) + 1/ ( ( q − 3) ∗ ln (2 ) )

f a lpha := 1 + q/ ( ( q − 3) ∗ ln (2 ) ) − l og [ 2 ] ( 1 − q/ 3)

p l o t ( [ alpha , fa lpha , q = 0 .1 . . 2 . 6 ] , axe s f ont = [ ”Times New
Roman” , ”ARIAL” , 1 2 ] , l a b e l s = [ ’ alpha ’ , f ( ’ alpha ’ ) ] , t i t l e =

”Model 2” , t i t l e f o n t = [ ”Times New Roman” , 1 3 ] )

p l o t ( ( q∗ (1 − ln (GAMMA(2) / (2 ∗3∗ BesselK (2 , 2∗ s q r t (3 ) ) ) ) / (2 ∗ ln (2 ) ) )
−1/2∗ log [ 2 ] ( q∗ BesselK (2 , 2∗ s q r t (3 ∗q ) ) ) ) + (−1 − l og [ 2 ] ( 2 ∗3/

GAMMA(2) ) / 2) , q = 0 . 1 . . 3 , axe s f ont =[”Times New Roman” , ”ARIAL”
, 1 2 ] , l a b e l s =[”q” , ”T( q ) ” ] , t i t l e f o n t =[”Times New Roman” , 1 3 ] )
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alpha := 1 − ln (GAMMA(2) / (2 ∗3∗ BesselK (2 , 2∗ s q r t (3 ) ) ) ) / (2 ∗ ln (2 ) )
− 1/ (2 ∗ ln (2 ) ∗q ) + s q r t (3 ) /2∗ ( BesselK (3 , 2∗ s q r t (3 ∗q ) ) +
BesselK (1 , 2∗ s q r t (3 ∗q ) ) ) / (2 ∗ ln (2 ) ∗ BesselK (2 , 2∗ s q r t (3 ∗q ) ) ∗
s q r t ( q ) )

f a lpha := 1 + log [ 2 ] ( 2 ∗3/GAMMA(2) ) /2 − 1/ (2 ∗ ln (2 ) ) + log [ 2 ] ( q∗
BesselK (2 , 2∗ s q r t (3 ∗q ) ) ) /2 + s q r t (3 ∗q ) /2∗ ( BesselK (3 , 2∗ s q r t (3
∗q ) ) + BesselK (1 , 2∗ s q r t (3 ∗q ) ) ) / (2 ∗ ln (2 ) ∗ BesselK (2 , 2∗ s q r t (3 ∗
q ) ) )

p l o t ( [ alpha , fa lpha , q = 0 .1 . . 3 ] , axe s f ont = [ ”Times New Roman
” , ”ARIAL” , 1 2 ] , l a b e l s = [ ’ alpha ’ , f ( ’ alpha ’ ) ] , t i t l e = ”
Model 3” , t i t l e f o n t = [ ”Times New Roman” , 1 3 ] )

A.2 Maple code used to produce Figure 3.2

The Maple code in this section was used to produce Figure 3.2 in Chapter 3. The code

in this section visualizes example Rényi functions and multifractal spectra for Models 4, 5

and 6 as shown in Chapter 3.

p l o t ( q − 1 − 1/2∗ log [ 2 ] ( 2 ˆ q∗GAMMA( q + 1/ 2) / s q r t ( Pi ) ) , q = 0 .1 . .
3 , axe s f ont = [ ”Times New Roman” , ”ARIAL” , 1 2 ] , l a b e l s = [ ”q

” , ”T( q ) ” ] , t i t l e f o n t = [ ”Times New Roman” , 1 3 ] )

alpha := 1 − 1/2 − Psi ( q + 0 . 5 ) / (2 ∗ ln (2 ) )

f a lpha := 1 + 1/2∗ log [ 2 ] (GAMMA( q + 0 . 5 ) / s q r t ( Pi ) ) − q∗ Psi ( q +
0 . 5 ) / (2 ∗ ln (2 ) )

p l o t ( [ alpha , fa lpha , q = 0 .1 . . 3 ] , axe s f ont = [ ”Times New Roman
” , ”ARIAL” , 1 2 ] , l a b e l s = [ ’ alpha ’ , f ( ’ alpha ’ ) ] , t i t l e = ”
Model 4” , t i t l e f o n t = [ ”Times New Roman” , 1 3 ] )

p l o t ( q − 1 − 1/2∗ log [ 2 ] ( 2 ˆ ( 2 ∗q ) ∗GAMMA(2 ∗q + 1/ 2) / s q r t ( Pi ) ) , q =
0 .1 . . 3 , axe s f ont = [ ”Times New Roman” , ”ARIAL” , 1 2 ] , l a b e l s
= [ ”q” , ”T( q ) ” ] , t i t l e f o n t = [ ”Times New Roman” , 1 3 ] )

alpha := −Psi (2 ∗q + 0 . 5 ) / ln (2 )

fa lpha := 1 + 1/2∗ log [ 2 ] (GAMMA(2 ∗q + 0 . 5 ) / s q r t ( Pi ) ) − q∗ Psi (2 ∗q
+ 0 . 5 ) / ln (2 )

p l o t ( [ alpha , fa lpha , q = 0 .1 . . 3 ] , axe s f ont = [ ”Times New Roman
” , ”ARIAL” , 1 2 ] , l a b e l s = [ ’ alpha ’ , f ( ’ alpha ’ ) ] , t i t l e = ”
Model 5” , t i t l e f o n t = [ ”Times New Roman” , 1 3 ] )

p l o t ( q∗ (1 − 1/2∗ log [ 2 ] ( 2 / 2) ) − 1 − 1/2∗ log [ 2 ] ( 2 ˆ q∗GAMMA( q + 2/ 2)
/GAMMA(2 / 2) ) , q = 0 .1 . . 3 , axe s f ont = [ ”Times New Roman” , ”
ARIAL” , 1 2 ] , l a b e l s = [ ”q” , ”T( q ) ” ] , t i t l e f o n t = [ ”Times New
Roman” , 1 3 ] )

alpha := 1 − 1/2 − Psi ( q + 1) / (2 ∗ ln (2 ) )
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f a lpha := 1 + 1/2∗ log [ 2 ] (GAMMA( q + 1) ) − q∗ Psi ( q + 1) / (2 ∗ ln (2 ) )

p l o t ( [ alpha , fa lpha , q = 0 .1 . . 3 ] , axe s f ont = [ ”Times New Roman
” , ”ARIAL” , 1 2 ] , l a b e l s = [ ’ alpha ’ , f ( ’ alpha ’ ) ] , t i t l e = ”
Model 6” , t i t l e f o n t = [ ”Times New Roman” , 1 3 ] )

A.3 Maple code used to produce Figure 3.3

The Maple code in this section was used to produce Figure 3.3 in Chapter 3. The code in

this section visualizes dependence of the Rényi functions for Models 1, 2, 3, 4, 5 and 6 on

the parameter b as shown in Chapter 3.

p lot3d ( q∗ (1 + 1/ (4 ∗ ln (b) ) ) − qˆ2∗1/ (4 ∗ ln (b) ) − 1 , q = 0 .1 . . 3 ,
b = 1 .1 . . 10 , axe s f ont = [ ”Times New Roman” , ”ARIAL” , 1 2 ] ,
l a b e l s = [ ”q” , ”b” , ”T( q ) ” ] )

p lot3d ( q∗ (1 − l og [ b ] ( 1 − 1/ 3) ) + log [ b ] ( 1 − q/ 3) − 1 , q = 0 .1 . .
3 , b = 1 .1 . . 10 , axe s f ont = [ ”Times New Roman” , ”ARIAL” ,

1 2 ] , l a b e l s = [ ”q” , ”b” , ”T( q ) ” ] )

p lot3d ( ( q∗ (1 − ln (GAMMA(2) / (2 ∗3∗ BesselK (2 , 2∗ s q r t (3 ) ) ) ) / (2 ∗ ln (b)
) ) − 1/2∗ log [ b ] ( q∗ BesselK (2 , 2∗ s q r t (3 ∗q ) ) ) ) + (−1 − l og [ b ] ( 2 ∗
3/GAMMA(2) ) / 2) , q = 0 .1 . . 3 , b = 1 .1 . . 10 , l a b e l s = [ ”q” , ”
b” , ”T( q ) ” ] )

p lot3d ( q − 1 − 1/2∗ log [ b ] ( 2 ˆ q∗GAMMA( q + 1/ 2) / s q r t ( Pi ) ) , q = 0 .1
. . 3 , b = 1 .1 . . 10 , axe s f ont = [ ”Times New Roman” , ”ARIAL” ,
1 2 ] , l a b e l s = [ ”q” , ”b” , ”T( q ) ” ] )

p lot3d ( q − 1 − 1/2∗ log [ b ] ( 2 ˆ ( 2 ∗q ) ∗GAMMA(2 ∗q + 1/ 2) / s q r t ( Pi ) ) , q
= 0 .1 . . 3 , b = 1 .1 . . 10 , axe s f ont = [ ”Times New Roman” , ”
ARIAL” , 1 2 ] , l a b e l s = [ ”q” , ”b” , ”T( q ) ” ] )

p lot3d ( q (1 − 1/2∗ log [ b ] ( 1 ) ) − 1 − 1/2∗ log [ b ] ( 2 ˆ q∗GAMMA( q + 1) /
GAMMA(1) ) , q = 0 .1 . . 3 , b = 1 .1 . . 10 , axe s f ont = [ ”Times
New Roman” , ”ARIAL” , 1 2 ] , l a b e l s = [ ”q” , ”b” , ”T( q ) ” ] )

A.4 R code used to produce Figure 3.4

The R code in this section was used to produce Figure 3.4 in Chapter 3. The code in

this section visualizes a realization of a multifractal random field (Figure 3.4a), sample

Rényi function with the fitted log-normal model (Figure 3.4b) and the plot of f(α) versus

α (Figure 3.4c) as shown in Chapter 3.

l i b r a r y ( sp )
l i b r a r y ( RandomFieldsUti ls )
l i b r a r y ( RandomFields )
l i b r a r y ( s t a t s )
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l i b r a r y ( rcosmo )
l i b r a r y ( c o l f )

#The func t i on fRen computes the Renyi func t i on f o r a chosen
window o f sky data ( e . g .:− whole sky , l a rge , medium , e tc . )

fRen1 <− f unc t i on ( cmbdf , q . min = 1 .01 , q . max = 10 , N = 20 , k . box
= log2 ( ns ide ( cmbdf ) ) − 3 , i n t e n s i t i e s = ” I ” )
{
i f ( ! i s . CMBDataFrame( cmbdf ) )
{

stop ( ”Argument must be a CMBDataFrame” )
}
ns1 <− ns ide ( cmbdf )
p ix ind <− pix ( cmbdf )
nagrpix <− s e t d i f f ( 1 : ( 1 2 ∗ ns1 ˆ2) , p ix ind )
f i e l d . comp <− rep (0 , 12 ∗ ns1 ˆ2)
f i e l d . in <− cmbdf [ , ” I ” , drop = T]
f i e l d . in <− f i e l d . in − minint
f i e l d . f i n a l <− r e p l a c e ( f i e l d . comp , pixind , f i e l d . in )
r e s . max <− l og2 ( ns1 )
k . box <− l og2 ( ns ide ( cmbdf ) ) − 3
npix <− 12 ∗ 4ˆk . box
l ev . d i f f <− 4ˆ( r e s . max − k . box )
i f ( r e s . max − k . box > 0)
{

nagrpix <− unique ( ance s to r ( nagrpix , r e s . max − k . box ) )
}
agrp ix <− s e t d i f f ( ( 1 : npix ) , nagrpix )
mu <− vec to r (mode = ” numeric ” , l ength = length ( agrp ix ) )
f i e l d . t o t a l <− 0
i <− 1
f o r ( j in agrp ix )
{

pixd <− ( l ev . d i f f ∗ ( j − 1) + 1) : ( l ev . d i f f ∗ j )
f i e l d . t o t a l <− f i e l d . t o t a l + sum( f i e l d . f i n a l [ pixd ] )
mu[ i ] <− sum( f i e l d . f i n a l [ pixd ] )
i <− i + 1

}
mu <− mu/ f i e l d . t o t a l
Q <− seq ( q . min , q . max , l ength . out = N)
Tq <− vec to r (mode = ” numeric ” , l ength = N)
d e l t a <− (1 / l ength ( agrp ix ) )
r i <− 1
f o r ( q in Q)
{

Tq [ r i ] <− l og2 (sum(muˆq ) ) / log2 ( d e l t a )
r i <− r i + 1

}
Tqf <− data . frame ( q = Q, tq = Tq)
return ( Tqf )

}

alp1 <− f unc t i on ( cmbdf , q . min = 1 .01 , q . max = 10 , N = 20 , k . box
= log2 ( ns ide ( cmbdf ) ) − 3 , i n t e n s i t i e s = ” I ” )
{
i f ( ! i s . CMBDataFrame( cmbdf ) )
{

stop ( ”Argument must be a CMBDataFrame” )
}
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ns1 <− ns ide ( cmbdf )
p ix ind <− pix ( cmbdf )
nagrpix <− s e t d i f f ( 1 : ( 1 2 ∗ ns1 ˆ2) , p ix ind )
f i e l d . comp <− rep (0 , 12 ∗ ns1 ˆ2)
f i e l d . in <− cmbdf [ , ” I ” , drop = T]
f i e l d . in <− f i e l d . in − minint
f i e l d . f i n a l <− r e p l a c e ( f i e l d . comp , pixind , f i e l d . in )
r e s . max <− l og2 ( ns1 )
k . box <− l og2 ( ns ide ( cmbdf ) ) − 3
npix <− 12 ∗ 4ˆk . box
l ev . d i f f <− 4ˆ( r e s . max − k . box )
i f ( r e s . max − k . box > 0)
{

nagrpix <− unique ( ance s to r ( nagrpix , r e s . max − k . box ) )
}
agrp ix <− s e t d i f f ( ( 1 : npix ) , nagrpix )
mu <− vec to r (mode = ” numeric ” , l ength = length ( agrp ix ) )
f i e l d . t o t a l <− 0
i <− 1
f o r ( j in agrp ix )
{

pixd <− ( l ev . d i f f ∗ ( j − 1) + 1) : ( l ev . d i f f ∗ j )
f i e l d . t o t a l <− f i e l d . t o t a l + sum( f i e l d . f i n a l [ pixd ] )
mu[ i ] <− sum( f i e l d . f i n a l [ pixd ] )
i <− i + 1 }

mu <− mu/ f i e l d . t o t a l
Q <− seq ( q . min , q . max , l ength . out = N)
alp <− vec to r (mode = ” numeric ” , l ength = N)
d e l t a <− (1 / l ength ( agrp ix ) )
r i <− 1
f o r ( q in Q)
{

a lp [ r i ] <− sum ( (muˆq/sum(muˆq ) ) ∗ log2 (mu) ) / log2 ( d e l t a )
r i <− r i + 1

}
alp0 <− data . frame ( q = Q, tq = alp )
re turn ( a lp0 )

}

f a l p 1 <− f unc t i on ( cmbdf , q . min = 1 .01 , q . max = 10 , N = 20 , k . box
= log2 ( ns ide ( cmbdf ) ) − 3 , i n t e n s i t i e s = ” I ” )
{
i f ( ! i s . CMBDataFrame( cmbdf ) )
{

stop ( ”Argument must be a CMBDataFrame” )
}
ns1 <− ns ide ( cmbdf )
p ix ind <− pix ( cmbdf )
nagrpix <− s e t d i f f ( 1 : ( 1 2 ∗ ns1 ˆ2) , p ix ind )
f i e l d . comp <− rep (0 , 12 ∗ ns1 ˆ2)
f i e l d . in <− cmbdf [ , ” I ” , drop = T]
f i e l d . in <− f i e l d . in − minint
f i e l d . f i n a l <− r e p l a c e ( f i e l d . comp , pixind , f i e l d . in )
r e s . max <− l og2 ( ns1 )
k . box <− l og2 ( ns ide ( cmbdf ) ) − 3
npix <− 12 ∗ 4ˆk . box
l ev . d i f f <− 4ˆ( r e s . max − k . box )

i f ( r e s . max − k . box > 0)
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{
nagrpix <− unique ( ance s to r ( nagrpix , r e s . max − k . box ) )

}
agrp ix <− s e t d i f f ( ( 1 : npix ) , nagrpix )
mu <− vec to r (mode = ” numeric ” , l ength = length ( agrp ix ) )
f i e l d . t o t a l <− 0
i <− 1
f o r ( j in agrp ix )
{

pixd <− ( l ev . d i f f ∗ ( j − 1) + 1) : ( l ev . d i f f ∗ j )
f i e l d . t o t a l <− f i e l d . t o t a l + sum( f i e l d . f i n a l [ pixd ] )
mu[ i ] <− sum( f i e l d . f i n a l [ pixd ] )
i <− i + 1

}
mu <− mu/ f i e l d . t o t a l
Q <− seq ( q . min , q . max , l ength . out = N)
f a l p <− vec to r (mode = ” numeric ” , l ength = N)
d e l t a <− (1 / l ength ( agrp ix ) )
r i <− 1
f o r ( q in Q)
{

f a l p [ r i ] <− sum ( (muˆq/sum(muˆq ) ) ∗ log2 (muˆq/sum(muˆq ) ) )
/ log2 ( d e l t a )

r i <− r i + 1
}
f a l p 0 <− data . frame ( q = Q, tq = f a l p )
re turn ( f a l p 0 )

}

#Here , a r e a l i z a t i o n o f a m u l t i f r a c t a l random f i e l d i s s imulated
in a l a r g e s p h e r i c a l window us ing a Gaussian mother random

f i e l d $Y( x ) $ with the exponent i a l covar iance model

cmbdf <− CMBDataFrame( ns ide = 1024 , I = rep (0 , 12 ∗ 1024ˆ2) )

q . min <− 0 .5
q . max <− 3
N <− 40
win <− CMBWindow( theta = c (3 ∗ p i / 6 , 3 ∗ p i / 6 , p i / 4 , p i / 4) , phi

= c (0 , p i / 2 , p i / 2 , 0) )
cmbdf2 <− window ( cmbdf , new . window = win )
df2 <− coords ( cmbdf2 , new . coords = ” c a r t e s i a n ” )

K <− 40
f o r ( i in 0 :K)
{

model1 <− RMexp( var = 2 , s c a l e = (3ˆ i ) )
f 1 <− RFsimulate ( x = df2 $x , y = df2 $y , z = df2 $z , model =

model1 , spConform = FALSE)
cmbdf2$ I <− cmbdf2$ I + f1

}
save . image ( f i l e = ” SimMultField1 . RData” )
load ( ” SimMultField1 . RData” )
cmbdf2$ I <− exp ( cmbdf2$ I − K − 1)

#Figure 3 . 4 ( a )−This f i g u r e g i v e s the p l o t o f the s imulated
m u l t i f r a c t a l random f i e l d . The f i e l d i s r e s c a l e d to match
rcosmo co lour p a l l e t

cmbdf1 <− cmbdf2
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cmbdf1$ I <− ( cmbdf2$ I − mean( cmbdf2$ I ) ) ∗ 10ˆ{15.6}
p lo t ( cmbdf1 , back . c o l = ” white ” , ylab = ”” , xlab = ”” , z lab = ”” )

minint <− min ( cmbdf2$ I )
Tq <− fRen1 ( cmbdf2 , q . min , q . max , N)

#This f i g u r e p l o t s the sample Renyi func t i on with the l i n e a r
func t i on f o r the s imulated l a r g e window o f sky data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , main = ”Sample
Renyi func t i on and l i n e a r func t i on ” , pch = 20 , c o l = ” blue ” ,
cex . main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

segments (Tq [ 1 , 1 ] , Tq [ 1 , 2 ] , Tq [N, 1 ] , Tq [N, 2 ] , lwd = (2) , c o l
= ” red ” )

Tq [ , 3 ] <− (Tq [ , 1 ] ∗ (Tq [ 1 , 2 ] − Tq [N, 2 ] ) + Tq [N, 2 ] ∗ Tq [ 1 ,
1 ] − Tq[ 1 , 2 ] ∗ Tq [N, 1 ] ) / (Tq [ 1 , 1 ] − Tq [N, 1 ] )

#This f i g u r e p l o t s the d i f f e r e n c e between the sample Renyi
func t i on and the l i n e a r func t i on f o r the s imulated l a r g e
window o f sky data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] − Tq [ , 3 ] , y lab = ” d i f f e r e n c e ” , xlab = ”q”
, pch = 20 , c o l = ” blue ” )

x <− Tq [ , 1 ]
b <− rep (1 , 20)
y <− (Tq [ , 2 ] − x + b)
Ren1 <− data . frame (x , y )

QM1 <− c o l f n l s ( y˜0 + I (−(x ˆ2) + x ) , data = Ren1 , lower = c (0) )
c o e f (QM1)
Q11 <− ( f i t t e d (QM1) + x − 1)

#Figure 3 . 4 ( b)−This f i g u r e g i v e s the p l o t o f the sample Renyi
func t i on with the f i t t e d log−normal model f o r the s imulated
l a r g e window o f sky data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” )

l i n e s (Tq [ , 1 ] , Q11 , c o l = ” red ” , lwd = 2)

#This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e between the sample
Renyi func t i on and the f i t t e d log−normal model f o r the

s imulated l a r g e window o f sky data
p l o t (Tq [ , 1 ] , Q11 − Tq [ , 2 ] , y lab = ” d i f f e r e n c e ” , xlab = ”q” ,

pch = 20 , c o l = ” blue ” )
r e s i d u a l s <− Q11 − Tq [ , 2 ]
s q r t (mean( r e s i d u a l s ˆ2) )

q . min <− −10
q . max <− 10
#Computes the alpha func t i on f o r the s imulated l a r g e window o f

sky data
Alp <− alp1 ( cmbdf2 , q . min , q . max , N)
#This f i g u r e g i v e s the p l o t o f the func t i on alpha ver sus q f o r

the s imulated l a r g e window o f sky data
p l o t ( Alp [ , 1 ] , Alp [ , 2 ] , y lab = expr e s s i on ( paste ( alpha ( q ) ) ) ,

x lab = ”q” , main = expr e s s i on ( paste ( ”Sample ” , alpha , ”
ver sus ” , q ) ) , pch = 20 , c o l = ” blue ” , cex . main = 1 .25 , cex .
lab = 1 .25 , cex . a x i s = 1)

min ( Alp [ , 2 ] )
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max( Alp [ , 2 ] )
max( Alp [ , 2 ] ) − min ( Alp [ , 2 ] )

#Computes the fa lpha func t i on f o r the s imulated l a r g e window o f
sky data

Fq <− f a l p 1 ( cmbdf2 , q . min , q . max , N)
p l o t (Fq [ , 1 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f [ alpha ] ( q ) ) ) ,

x lab = ”q” , main = expr e s s i on ( paste ( ”Sample ” , f [ alpha ] , ”
func t i on ” ) ) , pch = 20 , c o l = ” blue ” , cex . main = 1 .25 , cex . lab
= 1 .25 , cex . a x i s = 1)

#Figure 3 . 4 ( c )−This f i g u r e g i v e s the p l o t o f f a lpha ver sus alpha
f o r the s imulated l a r g e window o f sky data

p l o t ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) , x lab
= expr e s s i on ( paste ( alpha ) ) , pch = 20 , c o l = ” red ” , cex . main

= 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1 , type = ” l ” )
po in t s ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) ,

x lab = expr e s s i on ( paste ( alpha ) ) , pch = 19 , c o l = ” blue ” , cex .
main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

A.5 R code used to produce Figure 3.5

The R code in this section was used to produce Figure 3.5 in Chapter 3. The code in

this section visualizes a large window of surface area 1.231, a medium window of surface

area 0.4056, a small window of surface area 0.0596 and a very small window of surface

area 0.0017 on the CMB sky sphere as shown in Chapter 3.

l i b r a r y ( s t a t s )
l i b r a r y ( rcosmo )

cmbdf <− CMBDataFrame( ”CMB map smica1024 . f i t s ” )
#Figure 3 . 5 ( a )−This f i g u r e g i v e s the p l o t o f a l a r g e window on

the CMB sky sphere
p l o t ( cmbdf , back . c o l=” white ” , ylab=”” , xlab=”” , z lab=”” )
win <− CMBWindow( theta = c (3 ∗ p i / 6 , 3 ∗ p i / 6 , p i / 4 , p i /

4) , phi = c (0 , p i / 2 , p i / 2 , 0) )
p l o t ( win , c o l = ” red ” , lwd = 3)

#Figure 3 . 5 ( b)−This f i g u r e g i v e s the p l o t o f a medium window on
the CMB sky sphere

p l o t ( cmbdf , back . c o l=” white ” , ylab=”” , xlab=”” , z lab=”” )
win <− CMBWindow( theta = c ( p i / 3 . 5 , p i / 3 . 5 , p i / 10 , p i / 10)

, phi = c (0 , p i / 2 , p i / 2 , 0) )
p l o t ( win , c o l = ” red ” , lwd = 3)

#Figure 3 . 5 ( c )−This f i g u r e g i v e s the p l o t o f a smal l and a very
smal l window on the CMB sky sphere

p l o t ( cmbdf , back . c o l=” white ” , ylab=”” , xlab=”” , z lab=”” )
win <− CMBWindow( theta = c ( p i / 6 , p i / 6 , p i / 12 , p i / 12) ,

phi = c (0 , p i / 5 , p i / 5 , 0) )
p l o t ( win , c o l = ” red ” , lwd = 3)
win <− CMBWindow( theta = c ( p i / 15 , p i / 15 , p i / 20 , p i / 20) ,

phi = c (0 , p i / 18 , p i / 18 , 0) )
p l o t ( win , c o l = ” red ” , lwd = 3)
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A.6 R code used to produce Figure 3.6

The R code in this section was used to produce Figure 3.6 and to obtain some values of

Table 3.1 in Chapter 3.

The following code was used to obtain Figure 3.6 and visualizes the plots obtained

with respect to the whole sky data analysis. It gives the plots of sample Rényi function

versus linear function (Figure 3.6a), difference of sample Rényi function and linear function

(Figure 3.6b), α(q) versus q (Figure 3.6c), f(α) versus α (Figure 3.6d), sample Rényi

function with the fitted log-normal model (Figure 3.6e) and difference between sample

Rényi function and the fitted log-normal model (Figure 3.6f) as shown in Chapter 3.

l i b r a r y ( s t a t s )
l i b r a r y ( rcosmo )
l i b r a r y ( sp )
l i b r a r y ( c o l f )

#For the whole sky
cmbdf <− CMBDataFrame( ”CMB map smica1024 . f i t s ” )
minint <− min ( cmbdf [ , ” I ” , drop = T] )
q . min <− 1 .01
q . max <− 2
N <− 20

# Figure 3 . 6 ( a )−This f i g u r e g i v e s the p l o t o f the sample Renyi
func t i on with the l i n e a r func t i on

Tq <− fRen1 ( cmbdf , q . min , q . max , N)
p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l

= ” blue ” , cex . main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)
segments (Tq [ 1 , 1 ] , Tq [ 1 , 2 ] , Tq [ 2 0 , 1 ] , Tq [ 2 0 , 2 ] , lwd = (2) ,

c o l = ” red ” )
Tq [ , 3 ] <− (Tq [ , 1 ] ∗ (Tq [ 1 , 2 ] − Tq [N, 2 ] ) + Tq [N, 2 ] ∗ Tq [ 1 ,

1 ] − Tq[ 1 , 2 ] ∗ Tq [N, 1 ] ) / (Tq [ 1 , 1 ] − Tq [N, 1 ] )

#Figure 3 . 6 ( b)−This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e
between the sample Renyi func t i on and the l i n e a r func t i on

p lo t (Tq [ , 1 ] , Tq [ , 2 ] − Tq [ , 3 ] , y lab = ” D i f f e r e n c e ” , xlab = ”q”
, pch = 20 , c o l = ” blue ” )

x <− Tq [ , 1 ]
b <− rep (1 , 20)
y <− (Tq [ , 2 ] − x + b)
Ren1 <− data . frame (x , y )

QM1 <− c o l f n l s ( y ˜ 0 + I (−(x ˆ2) + x ) , data = Ren1 , lower =c (0) )
c o e f (QM1)
Q11 <− ( f i t t e d (QM1) + x − 1)

#Figure 3 . 6 ( e )−This f i g u r e g i v e s the p l o t o f the sample Renyi
func t i on with the f i t t e d log−normal model

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” )

l i n e s (Tq [ , 1 ] , Q11 , c o l = ” red ” , lwd = 2)
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#Figure 3 . 6 ( f )−This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e
between the sample Renyi func t i on and the f i t t e d log−normal
model

p l o t (Tq [ , 1 ] , Q11 − Tq [ , 2 ] , y lab = ” D i f f e r e n c e ” , xlab = ”q” ,
pch = 20 , c o l = ” blue ” )

#Root Mean Square Error (RMSE)
r e s i d u a l s <− Q11 − Tq [ , 2 ]
s q r t (mean( r e s i d u a l s ˆ2) )

q . min <− −10
q . max <− 10

#Computes the alpha func t i on f o r whole sky data
Alp <− alp1 ( cmbdf , q . min , q . max , N)

#Figure 3 . 6 ( c )−This f i g u r e g i v e s the p l o t o f the func t i on alpha
ver sus q f o r whole sky data

p l o t ( Alp [ , 1 ] , Alp [ , 2 ] , y lab = expr e s s i on ( paste ( alpha ( q ) ) ) ,
x lab = ”q” , pch = 20 , c o l = ” red ” , cex . main = 1 .25 , cex . lab =

1 .25 , cex . a x i s = 1 , type = ” l ” )
po in t s ( Alp [ , 1 ] , Alp [ , 2 ] , y lab = expr e s s i on ( paste ( alpha ( q ) ) ) ,

x lab = ”q” , pch = 19 , c o l = ” blue ” , cex . main = 1 .25 , cex . lab
= 1 .25 , cex . a x i s = 1)

#alpha i n t e r v a l
min ( Alp [ , 2 ] )
max( Alp [ , 2 ] )
max( Alp [ , 2 ] ) − min ( Alp [ , 2 ] )

# Computes the fa lpha func t i on f o r whole sky data
Fq <− f a l p 1 ( cmbdf , q . min , q . max , N)
p l o t (Fq [ , 1 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f [ alpha ] ( q ) ) ) ,

x lab = ”q” , main = expr e s s i on ( paste ( ”Sample ” , f [ alpha ] , ”
func t i on ” ) ) , pch = 20 , c o l = ” blue ” , cex . main = 1 .25 , cex . lab
= 1 .25 , cex . a x i s = 1)

#Figure 3 . 6 ( d)−This f i g u r e g i v e s the p l o t o f the func t i on fa lpha
ver sus alpha f o r whole sky data

p l o t ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) , x lab
= expr e s s i on ( paste ( alpha ) ) , pch = 20 , c o l = ” red ” , cex . main

= 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1 , type = ” l ” )
po in t s ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) ,

x lab = expr e s s i on ( paste ( alpha ) ) , pch = 19 , c o l = ” blue ” , cex .
main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

A.7 R code used to produce Figure 3.7

The R code in this section was used to produce Figure 3.7 and to obtain some values of

Table 3.1 in Chapter 3.

The following code was used to obtain Figure 3.7 and visualizes the plots obtained

with respect to the large and small sky windows data analysis. It gives the plots of f(α)
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versus α for large window (Figure 3.7a), difference with linear function for large window

(Figure 3.7b), difference with Model 1 for large window (Figure 3.7c), f(α) versus α for

small window (Figure 3.7d), difference with linear function for small window (Figure 3.7e)

and difference with Model 1 for small window (Figure 3.7f) as shown in Chapter 3.

#For a l a r g e window near the po le o f the sphere
l i b r a r y ( s t a t s )
l i b r a r y ( rcosmo )
l i b r a r y ( sp )
l i b r a r y ( c o l f )

cmbdf <− CMBDataFrame( ”CMB map smica1024 . f i t s ” )
minint <− min ( cmbdf [ , ” I ” , drop = T] )
q . min <− 1 .01
q . max <− 2
N <− 20
#Choosing a l a r g e window o f CMB sky data
win <− CMBWindow( theta = c (3 ∗ p i / 6 , 3 ∗ p i / 6 , p i / 4 , p i / 4) , phi

= c (0 , p i / 2 , p i / 2 , 0) )
cmbdf1 <− window ( cmbdf , new . window = win )
Tq <− fRen1 ( cmbdf1 , q . min , q . max , N)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the l i n e a r func t i on f o r a l a r g e window o f sky data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” , cex . main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

segments (Tq [ 1 , 1 ] , Tq [ 1 , 2 ] , Tq [ 2 0 , 1 ] , Tq [ 2 0 , 2 ] , lwd = (2) ,
c o l = ” red ” )

Tq [ , 3 ] <− (Tq [ , 1 ] ∗ (Tq [ 1 , 2 ] − Tq [N, 2 ] ) + Tq [N, 2 ] ∗ Tq [ 1 ,
1 ] − Tq[ 1 , 2 ] ∗ Tq [N, 1 ] ) / (Tq [ 1 , 1 ] − Tq [N, 1 ] )

#Figure 3 . 7 ( b)−This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e
between the sample Renyi func t i on and the l i n e a r func t i on f o r

a l a r g e window o f sky data
p l o t (Tq [ , 1 ] , Tq [ , 2 ] − Tq [ , 3 ] , y lab = ” D i f f e r e n c e ” , xlab = ”q”

, pch = 20 , c o l = ” blue ” )

x <− Tq [ , 1 ]
b <− rep (1 , 20)
y <− (Tq [ , 2 ] − x + b)
Ren1 <− data . frame (x , y )
QM1 <− c o l f n l s ( y˜0 + I (−(x ˆ2) + x ) , data = Ren1 , lower = c (0) )
c o e f (QM1)
Q11 <− ( f i t t e d (QM1) + x − 1)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the f i t t e d log−normal model f o r a l a r g e window o f sky data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” )

l i n e s (Tq [ , 1 ] , Q11 , c o l = ” red ” , lwd = 2)

#Figure 3 . 7 ( c )−This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e
between the sample Renyi func t i on and the f i t t e d log−normal
model f o r a l a r g e window o f sky data

p l o t (Tq [ , 1 ] , Q11 − Tq [ , 2 ] , y lab = ” D i f f e r e n c e ” , xlab = ”q” ,
pch = 20 , c o l = ” blue ” )
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r e s i d u a l s <− Q11 − Tq [ , 2 ]
s q r t (mean( r e s i d u a l s ˆ2) )

q . min <− −10
q . max <− 10
#Computes the alpha func t i on f o r a l a r g e window o f sky data
Alp <− alp1 ( cmbdf1 , q . min , q . max , N)
#This f i g u r e g i v e s the p l o t o f the func t i on alpha ver sus q f o r a

l a r g e window o f sky data
p l o t ( Alp [ , 1 ] , Alp [ , 2 ] , y lab = expr e s s i on ( paste ( alpha ( q ) ) ) ,

x lab = ”q” , pch = 20 , c o l = ” blue ” , cex . main = 1 .25 , cex . lab
= 1 .25 , cex . a x i s = 1)

min ( Alp [ , 2 ] )
max( Alp [ , 2 ] )
max( Alp [ , 2 ] ) − min ( Alp [ , 2 ] )

#Computes the fa lpha func t i on f o r a l a r g e window o f sky data
Fq <− f a l p 1 ( cmbdf1 , q . min , q . max , N)
p l o t (Fq [ , 1 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f [ alpha ] ( q ) ) ) ,

x lab = ”q” , pch = 20 , c o l = ” blue ” , cex . main = 1 .25 , cex . lab
= 1 .25 , cex . a x i s = 1)

#Figure 3 . 7 ( a )−This f i g u r e g i v e s the p l o t o f the func t i on fa lpha
ver sus alpha f o r a l a r g e window o f sky data

p l o t ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) , x lab
= expr e s s i on ( paste ( alpha ) ) , pch = 20 , c o l = ” red ” , cex . main

= 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1 , type = ” l ” )
po in t s ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) ,

x lab = expr e s s i on ( paste ( alpha ) ) , pch = 19 , c o l = ” blue ” , cex .
main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

#For a smal l window near the po le o f the sphere
q . min <− 1 .01
q . max <− 2
N <− 20

#Choosing a smal l window o f CMB sky data
win <− CMBWindow( theta = c ( p i / 6 , p i / 6 , p i / 12 , p i / 12) , phi = c (0 ,

p i / 5 , p i / 5 , 0) )
cmbdf4 <− window ( cmbdf , new . window = win )
Tq <− fRen1 ( cmbdf4 , q . min , q . max , N)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the l i n e a r func t i on f o r a smal l window o f sky data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” , cex . main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

segments (Tq [ 1 , 1 ] , Tq [ 1 , 2 ] , Tq [ 2 0 , 1 ] , Tq [ 2 0 , 2 ] , lwd = (2) ,
c o l = ” red ” )

Tq [ , 3 ] <− (Tq [ , 1 ] ∗ (Tq [ 1 , 2 ] − Tq [N, 2 ] ) + Tq [N, 2 ] ∗ Tq [ 1 ,
1 ] − Tq[ 1 , 2 ] ∗ Tq [N, 1 ] ) / (Tq [ 1 , 1 ] − Tq [N, 1 ] )

#Figure 3 . 7 ( e )−This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e
between the sample Renyi func t i on and the l i n e a r func t i on f o r

a smal l window o f sky data
p l o t (Tq [ , 1 ] , Tq [ , 2 ] − Tq [ , 3 ] , y lab = ” D i f f e r e n c e ” , xlab = ”q”

, pch = 20 , c o l = ” blue ” )
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x <− Tq [ , 1 ]
b <− rep (1 , 20)
y <− (Tq [ , 2 ] − x + b)
Ren1 <− data . frame (x , y )

QM1 <− c o l f n l s ( y˜0 + I (−(x ˆ2) + x ) , data = Ren1 , lower = c (0) )
#Coef (QM1) g i v e s the est imated parameter a
c o e f (QM1)
Q11 <− ( f i t t e d (QM1) + x − 1)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the f i t t e d log−normal model f o r a smal l window o f sky data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” )

l i n e s (Tq [ , 1 ] , Q11 , c o l = ” red ” , lwd = 2)

#Figure 3 . 7 ( f )−This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e
between the sample Renyi func t i on and the f i t t e d log−normal
model f o r a smal l window o f sky data

p l o t (Tq [ , 1 ] , Q11 − Tq [ , 2 ] , y lab = ” D i f f e r e n c e ” , xlab = ”q” ,
pch = 20 , c o l = ” blue ” )

r e s i d u a l s <− Q11 − Tq [ , 2 ]
s q r t (mean( r e s i d u a l s ˆ2) )

q . min <− −10
q . max <− 10

#Computes the alpha func t i on f o r a smal l window o f sky data
Alp <− alp1 ( cmbdf4 , q . min , q . max , N)
#This f i g u r e g i v e s the p l o t o f the func t i on alpha ver sus q f o r a

smal l window o f sky data
p l o t ( Alp [ , 1 ] , Alp [ , 2 ] , y lab = expr e s s i on ( paste ( alpha ( q ) ) ) ,

x lab = ”q” , pch = 20 , c o l = ” blue ” , cex . main = 1 .25 , cex . lab
= 1 .25 , cex . a x i s = 1)

min ( Alp [ , 2 ] )
max( Alp [ , 2 ] )
max( Alp [ , 2 ] ) − min ( Alp [ , 2 ] )

#Computes the fa lpha func t i on f o r a smal l window o f sky data
Fq <− f a l p 1 ( cmbdf4 , q . min , q . max , N)
p l o t (Fq [ , 1 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f [ alpha ] ( q ) ) ) ,

x lab = ”q” , pch = 20 , c o l = ” blue ” , cex . main = 1 .25 , cex . lab
= 1 .25 , cex . a x i s = 1)

#Figure 3 . 7 ( d)−This f i g u r e g i v e s the p l o t o f the func t i on fa lpha
ver sus alpha f o r a smal l window o f sky data

p l o t ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) , x lab
= expr e s s i on ( paste ( alpha ) ) , pch = 20 , c o l = ” red ” , cex . main

= 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1 , type = ” l ” )
po in t s ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) ,

x lab = expr e s s i on ( paste ( alpha ) ) , pch = 19 , c o l = ” blue ” , cex .
main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

#For a medium window near the po le o f the sphere
q . min <− 1 .01
q . max <− 2
N <− 20
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#Choosing a medium window o f CMB sky data
win <− CMBWindow( theta = c ( p i / 3 . 5 , p i / 3 . 5 , p i / 10 , p i / 10) , phi =

c (0 , p i / 2 , p i / 2 , 0) )
cmbdf2 <− window ( cmbdf , new . window = win )
Tq <− fRen1 ( cmbdf2 , q . min , q . max , N)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the l i n e a r func t i on f o r a medium window o f sky data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” , cex . main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

segments (Tq [ 1 , 1 ] , Tq [ 1 , 2 ] , Tq [ 2 0 , 1 ] , Tq [ 2 0 , 2 ] , lwd = (2) ,
c o l = ” red ” )

Tq [ , 3 ] <− (Tq [ , 1 ] ∗ (Tq [ 1 , 2 ] − Tq [N, 2 ] ) + Tq [N, 2 ] ∗ Tq [ 1 ,
1 ] − Tq[ 1 , 2 ] ∗ Tq [N, 1 ] ) / (Tq [ 1 , 1 ] − Tq [N, 1 ] )

#This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e between the sample
Renyi func t i on and the l i n e a r func t i on f o r a medium window

o f sky data
p l o t (Tq [ , 1 ] , Tq [ , 2 ] − Tq [ , 3 ] , y lab = ” d i f f e r e n c e ” , xlab = ”q”

, pch = 20 , c o l = ” blue ” )

x <− Tq [ , 1 ]
b <− rep (1 , 20)
y <− (Tq [ , 2 ] − x + b)
Ren1 <− data . frame (x , y )

QM1 <− c o l f n l s ( y˜0 + I (−(x ˆ2) + x ) , data = Ren1 , lower = c (0) )
#Coef (QM1) g i v e s the est imated parameter a
c o e f (QM1)
Q11 <− ( f i t t e d (QM1) + x − 1)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the f i t t e d log−normal model f o r a medium window o f sky data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” )

l i n e s (Tq [ , 1 ] , Q11 , c o l = ” red ” , lwd = 2)

r e s i d u a l s <− Q11 − Tq [ , 2 ]
s q r t (mean( r e s i d u a l s ˆ2) )

q . min <− −10
q . max <− 10

#Computes the alpha func t i on f o r a medium window o f sky data
Alp <− alp1 ( cmbdf2 , q . min , q . max , N)
#This f i g u r e g i v e s the p l o t o f the func t i on alpha ver sus q f o r a

medium window o f sky data
p l o t ( Alp [ , 1 ] , Alp [ , 2 ] , y lab = expr e s s i on ( paste ( alpha ( q ) ) ) ,

x lab = ”q” , pch = 20 , c o l = ” blue ” , cex . main = 1 .25 , cex . lab
= 1 .25 , cex . a x i s = 1)

min ( Alp [ , 2 ] )
max( Alp [ , 2 ] )
max( Alp [ , 2 ] ) − min ( Alp [ , 2 ] )

#Computes the fa lpha func t i on f o r a medium window o f sky data
Fq <− f a l p 1 ( cmbdf2 , q . min , q . max , N)
p l o t (Fq [ , 1 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f [ alpha ] ( q ) ) ) ,
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xlab = ”q” , pch = 20 , c o l = ” blue ” , cex . main = 1 .25 , cex . lab
= 1 .25 , cex . a x i s = 1)

#This f i g u r e g i v e s the p l o t o f the func t i on fa lpha ver sus alpha
f o r a medium window o f sky data

p l o t ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) , x lab
= expr e s s i on ( paste ( alpha ) ) , pch = 20 , c o l = ” red ” , cex . main

= 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1 , type = ” l ” )
po in t s ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) ,

x lab = expr e s s i on ( paste ( alpha ) ) , pch = 19 , c o l = ” blue ” , cex .
main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

#For a very smal l window near the po le o f the sphere
q . min <− 1 .01
q . max <− 2
N <− 20

#Choosing a very smal l window o f CMB sky data
win <− CMBWindow( theta = c ( p i / 15 , p i / 15 , p i / 20 , p i / 20) , phi = c

(0 , p i / 18 , p i / 18 , 0) )
cmbdf9 <− window ( cmbdf , new . window = win )
Tq <− fRen1 ( cmbdf9 , q . min , q . max , N)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the l i n e a r func t i on f o r a very smal l window o f sky data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” , cex . main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

segments (Tq [ 1 , 1 ] , Tq [ 1 , 2 ] , Tq [ 2 0 , 1 ] , Tq [ 2 0 , 2 ] , lwd = (2) ,
c o l = ” red ” )

Tq [ , 3 ] <− (Tq [ , 1 ] ∗ (Tq [ 1 , 2 ] − Tq [N, 2 ] ) + Tq [N, 2 ] ∗ Tq [ 1 ,
1 ] − Tq[ 1 , 2 ] ∗ Tq [N, 1 ] ) / (Tq [ 1 , 1 ] − Tq [N, 1 ] )

#This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e between the sample
Renyi func t i on and the l i n e a r func t i on f o r a very smal l

window o f sky data
p l o t (Tq [ , 1 ] , Tq [ , 2 ] − Tq [ , 3 ] , y lab = ” d i f f e r e n c e ” , xlab = ”q”

, pch = 20 , c o l = ” blue ” )

x <− Tq [ , 1 ]
b <− rep (1 , 20)
y <− (Tq [ , 2 ] − x + b)
Ren1 <− data . frame (x , y )

QM1 <− c o l f n l s ( y˜0 + I (−(x ˆ2) + x ) , data = Ren1 , lower = c (0) )
#Coef (QM1) g i v e s the est imated parameter a
c o e f (QM1)
Q11 <− ( f i t t e d (QM1) + x − 1)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the f i t t e d log−normal model f o r a very smal l window o f sky
data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” )

l i n e s (Tq [ , 1 ] , Q11 , c o l = ” red ” , lwd = 2)

r e s i d u a l s <− Q11 − Tq [ , 2 ]
s q r t (mean( r e s i d u a l s ˆ2) )

q . min <− −10
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q . max <− 10

#Computes the alpha func t i on f o r a very smal l window o f sky data
Alp <− alp1 ( cmbdf9 , q . min , q . max , N)

#This f i g u r e g i v e s the p l o t o f the func t i on alpha ver sus q f o r a
very smal l window o f sky data

p l o t ( Alp [ , 1 ] , Alp [ , 2 ] , y lab = expr e s s i on ( paste ( alpha ( q ) ) ) ,
x lab = ”q” , pch = 20 , c o l = ” blue ” , cex . main = 1 .25 , cex . lab
= 1 .25 , cex . a x i s = 1)

min ( Alp [ , 2 ] )
max( Alp [ , 2 ] )
max( Alp [ , 2 ] ) − min ( Alp [ , 2 ] )

#Computes the fa lpha func t i on f o r a very smal l window o f sky
data

Fq <− f a l p 1 ( cmbdf9 , q . min , q . max , N)
p l o t (Fq [ , 1 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f [ alpha ] ( q ) ) ) ,

x lab = ”q” , pch = 20 , c o l = ” blue ” , cex . main = 1 .25 , cex . lab
= 1 .25 , cex . a x i s = 1)

#This f i g u r e g i v e s the p l o t o f the func t i on fa lpha ver sus alpha
f o r a very smal l window o f sky data

p l o t ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) , x lab
= expr e s s i on ( paste ( alpha ) ) , pch = 20 , c o l = ” red ” , cex . main

= 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1 , type = ” l ” )
po in t s ( Alp [ , 2 ] , Fq [ , 2 ] , y lab = expr e s s i on ( paste ( f ( alpha ) ) ) ,

x lab = expr e s s i on ( paste ( alpha ) ) , pch = 19 , c o l = ” blue ” , cex .
main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

A.8 R code used to produce Figure 3.8

The R code in this section was used to produce Figure 3.8 in Chapter 3. The following

code visualizes the plots of differences between the sample Rényi functions and the fitted

models 2, 3, 4, 5, and 6 correspondingly by Figures 3.8a, 3.8b, 3.8c, 3.8d and 3.8e as shown

in Chapter 3.

l i b r a r y ( s t a t s )
l i b r a r y ( rcosmo )
l i b r a r y ( sp )
l i b r a r y ( minpack . lm)

#Model 2 : l a r g e window near the po le o f the sphere
cmbdf <− CMBDataFrame( ”CMB map smica1024 . f i t s ” )
minint <− min ( cmbdf [ , ” I ” , drop = T] )
q . min <− 1 .01
q . max <− 2
N <− 20
win <− CMBWindow( theta = c (3 ∗ p i / 6 , 3 ∗ p i / 6 , p i / 4 , p i / 4) , phi

= c (0 , p i / 2 , p i / 2 , 0) )
cmbdf1 <− window ( cmbdf , new . window = win )
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Tq <− fRen1 ( cmbdf , q . min , q . max , N)
#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with

the l i n e a r func t i on f o r a l a r g e window o f sky data
p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l

= ” blue ” , cex . main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)
segments (Tq [ 1 , 1 ] , Tq [ 1 , 2 ] , Tq [ 2 0 , 1 ] , Tq [ 2 0 , 2 ] , lwd = (2) ,

c o l = ” red ” )

x <− Tq [ , 1 ]
b <− rep (1 , 20)
y <− (Tq [ , 2 ] − x + b)
Ren1 <− data . frame (x , y )

QM2 <− nlsLM ( y ˜ ( l og (1 − ( x ∗ B) ) − x ∗ log (1 − B) ) /A, s t a r t =
l i s t (A = 2 , B = 0 . 1 ) , data = Ren1 , t r a c e = TRUE, c o n t r o l =
n l s . c o n t r o l ( maxiter = 1000 , t o l = 0 .01 , pr intEva l = FALSE,
warnOnly = TRUE) )

#Coef (QM2) g i v e s the est imated parameters A and B
c o e f (QM2)

#Ver i f y i ng that the est imated parameters s a t i s f y the assumptions
o f Theorem 3 .5

#Evaluat ing b(L .H. S)
exp ( c o e f (QM2) [ 1 ] )
#Evaluat ing R.H. S
1 + c o e f (QM2) [ 2 ] ˆ 2 / (1 − 2 ∗ c o e f (QM2) [ 2 ] )

Q21 <− ( f i t t e d (QM2) + x − 1)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the f i t t e d Model 2

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” )

l i n e s (Tq [ , 1 ] , Q21 , c o l = ” red ” , lwd = 2)

#Figure 3 . 8 ( a )−This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e
between the sample Renyi func t i on and the f i t t e d Model 2

p l o t (Tq [ , 1 ] , Q21 − Tq [ , 2 ] , y lab = ” D i f f e r e n c e ” , xlab = ”q” ,
pch = 20 , c o l = ” blue ” )

r e s i d u a l s <− Q21 − Tq [ , 2 ]
s q r t (mean( r e s i d u a l s ˆ2) )

#Model 3 : l a r g e window near the po le o f the sphere
QM3 <− nlsLM ( y ˜ 1/A ∗ ( x ∗ log (2 ∗ (CˆB) ∗ besse lK (2 ∗ C, B,

expon . s c a l e d = FALSE) /gamma(B) ) − B ∗ log ( x ) /2 − l og ( besse lK
(2 ∗ C ∗ s q r t ( x ) , B, expon . s c a l e d = FALSE) ) − l og (2 ∗ CˆB/
gamma(B) ) ) , s t a r t = l i s t (A = 0 . 1 , B = 2 , C = 1 . 4 ) , data =
Ren1 , t r a c e = TRUE, lower = c ( 0 . 0 1 , 0 . 1 , 0 . 1 ) , upper = c (10 ,
10 , 10) , c o n t r o l = n l s . c o n t r o l ( maxiter = 1000 , t o l = 0 .01 ,
pr intEva l = FALSE) )

#Coef (QM3) g i v e s the est imated parameters A, B and C
c o e f (QM3)

#Ver i f y i ng that the est imated parameters s a t i s f y the assumptions
o f Theorem 3 .6

#Evaluat ing b(L .H. S)
exp ( ( c o e f (QM3) [ 1 ] ) / 2)
#Evaluat ing R.H. S
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s q r t ( (gamma( c o e f (QM3) [ 2 ] ) ∗ 2ˆ( ( c o e f (QM3) [ 2 ] / 2)−1)∗ besse lK (2 ∗ s q r t
(2 ) ∗ ( c o e f (QM3) [ 3 ] ) , c o e f (QM3) [ 2 ] , expon . s c a l e d = FALSE) ) / ( ( (
c o e f (QM3) [ 3 ] ) ˆ c o e f (QM3) [ 2 ] ) ∗ ( ( besse lK ( (2 ∗ ( c o e f (QM3) [ 3 ] ) ) ,
c o e f (QM3) [ 2 ] , expon . s c a l e d = FALSE) ) ˆ2) ) )

Q31 <− ( f i t t e d (QM3) + x − 1)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the f i t t e d Model 3

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” )

l i n e s (Tq [ , 1 ] , Q31 , c o l = ” red ” , lwd = 2)

#Figure 3 . 8 ( b)−This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e
between the sample Renyi func t i on and the f i t t e d Model 3

p l o t (Tq [ , 1 ] , Q31 − Tq [ , 2 ] , y lab = ” D i f f e r e n c e ” , xlab = ”q” ,
pch = 20 , c o l = ” blue ” )

r e s i d u a l s <− Q31 − Tq [ , 2 ]
s q r t (mean( r e s i d u a l s ˆ2) )

#Model 4 : l a r g e window near the po le o f the sphere
win <− CMBWindow( theta = c (3 ∗ p i / 6 , 3 ∗ p i / 6 , p i / 4 , p i / 4) , phi

= c (0 , p i / 2 , p i / 2 , 0) )
cmbdf1 <− window ( cmbdf , new . window = win )
Tq <− fRen1 ( cmbdf1 , q . min , q . max , N)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the l i n e a r func t i on f o r a l a r g e window o f sky data

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” , cex . main = 1 .25 , cex . lab = 1 .25 , cex . a x i s = 1)

segments (Tq [ 1 , 1 ] , Tq [ 1 , 2 ] , Tq [ 2 0 , 1 ] , Tq [ 2 0 , 2 ] , lwd = (2) ,
c o l = ” red ” )

x <− Tq [ , 1 ]
b <− rep (1 , 20)
y <− (Tq [ , 2 ] − x + b)
Ren1 <− data . frame (x , y )

QM4 <− n l s ( y ˜ A ∗ ( x + log2 (gamma( x + (1 / 2) ) ) − 0 .5 ∗ log2 ( p i ) )
, s t a r t = l i s t (A = 0 . 2 ) , data = Ren1 , c o n t r o l = n l s . c o n t r o l (
maxiter = 1000 , t o l = 0 .01 , minFactor = 1/ 1024 , pr intEva l =
FALSE, warnOnly = TRUE) , t r a c e = TRUE)

#Coef (QM4) g i v e s the est imated parameter A
c o e f (QM4)

Q14 <− ( f i t t e d (QM4) + x − 1)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the f i t t e d Model 4

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” )

l i n e s (Tq [ , 1 ] , Q14 , c o l = ” red ” , lwd = 2)

#Figure 3 . 8 ( c )−This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e
between the sample Renyi func t i on and the f i t t e d Model 4

p l o t (Tq [ , 1 ] , Q14 − Tq [ , 2 ] , y lab = ” D i f f e r e n c e ” , xlab = ”q” ,
pch = 20 , c o l = ” blue ” )

r e s i d u a l s <− Q14 − Tq [ , 2 ]
s q r t (mean( r e s i d u a l s ˆ2) )
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#Model 5 : l a r g e window near the po le o f the sphere
QM5 <− n l s ( y ˜ A ∗ (B ∗ x + log2 (gamma(B ∗ x + (1 / 2) ) ) − 0 .5 ∗

log2 ( p i ) ) , s t a r t = l i s t (A = 0 . 2 , B = 2) , data = Ren1 , c o n t r o l
= n l s . c o n t r o l ( maxiter = 1e+07, t o l = 0 .01 , minFactor = 1/

1024 , pr intEva l = FALSE, warnOnly = TRUE) , t r a c e = TRUE)
#Coef (QM5) g i v e s the est imated parameters A and B
c o e f (QM5)

Q15 <− ( f i t t e d (QM5) + x − 1)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the f i t t e d Model 5

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” )

l i n e s (Tq [ , 1 ] , Q15 , c o l = ” red ” , lwd = 2)

#Figure 3 . 8 ( d)−This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e
between the sample Renyi func t i on and the f i t t e d Model 5

p l o t (Tq [ , 1 ] , Q15 − Tq [ , 2 ] , y lab = ” D i f f e r e n c e ” , xlab = ”q” ,
pch = 20 , c o l = ” blue ” )

r e s i d u a l s <− Q15 − Tq [ , 2 ]
s q r t (mean( r e s i d u a l s ˆ2) )

#Model 6 : l a r g e window near the po le o f the sphere
QM6 <− n l s ( y ˜ A ∗ ( x ∗ log2 (B) − x − l og2 (gamma( x + B) ) + log2 (

gamma(B) ) ) , s t a r t = l i s t (A = 0 . 2 , B = 3) , data = Ren1 ,
c o n t r o l = n l s . c o n t r o l ( maxiter = 1e+07, t o l = 0 .01 , minFactor
= 1/ 1024 , pr intEva l = FALSE, warnOnly = TRUE) , t r a c e = TRUE,
a lgor i thm = ” port ” , lower = c (0 , 1) , upper = c (100 , 300) )

#Coef (QM6) g i v e s the est imated parameters A and B
c o e f (QM6)

Q16 <− ( f i t t e d (QM6) + x − 1)

#This f i g u r e g i v e s the p l o t o f the sample Renyi func t i on with
the f i t t e d Model 6

p l o t (Tq [ , 1 ] , Tq [ , 2 ] , y lab = ”T( q ) ” , xlab = ”q” , pch = 20 , c o l
= ” blue ” )

l i n e s (Tq [ , 1 ] , Q16 , c o l = ” red ” , lwd = 2)

#Figure 3 . 8 ( e )−This f i g u r e g i v e s the p l o t o f the d i f f e r e n c e
between the sample Renyi func t i on and the f i t t e d Model 6

p l o t (Tq [ , 1 ] , Q16 − Tq [ , 2 ] , y lab = ” D i f f e r e n c e ” , xlab = ”q” ,
pch = 20 , c o l = ” blue ” )

r e s i d u a l s <− Q16 − Tq [ , 2 ]
s q r t (mean( r e s i d u a l s ˆ2) )

182



Appendix B

Codes used to produce figures and

simulations in Chapter 4

B.1 R code used to produce Figure 4.1

The R code in this section was used to produce Figure 4.1 in Chapter 4. The code in this

section visualizes a HEALPix ring ordering scheme (Figure 4.1a) and a HEALPix nested

ordering scheme (Figure 4.1b) as shown in Chapter 4.

l i b r a r y ( rcosmo )
l i b r a r y ( r g l )

#Figure 4 . 1 ( a )−This f i g u r e g i v e s the p l o t o f the HEALPix r ing
orde r ing v i s u a l i z a t i o n

#Generating a CMB data frame with ns ide=8 and ” r ing ” orde r ing
cmbdf <− CMBDataFrame( ns ide = 8 , o rde r ing = ” r ing ” )
p l o t ( cmbdf , type = ” l ” , c o l = ” black ” , back . c o l = ” white ” , xlab

= ”” , ylab = ”” , z lab = ”” )

#Labe l ing the HEALPix va lues 1 , 100 :107 and 768
t o l a b e l <− c (1 , 100 :107 , 768)
p l o t ( cmbdf [ t o l a b e l , ] , l a b e l s = t o l a b e l , c o l = ” red ” , add = TRUE)

um <− matrix ( c (0 .8948848 , −0.4459228 , −0.01829224 , 0 , 0 .1114479 ,
0 .1835916 , 0 .97666484 , 0 , −0.4321588 , −0.8760409 ,

0 .21399030 , 0 , 0 , 0 , 0 , 1) , byrow = TRUE, nrow = 4 , nco l = 4)
view3d ( userMatr ix = um)
r g l . snapshot ( ” Figure41a . png” )

#Figure 4 . 1 ( b)−This f i g u r e g i v e s the p l o t o f the HEALPix nested
orde r ing v i s u a l i z a t i o n with ns ide=2

ns <− 256
rand <− rnorm (12 ∗ ns ˆ2)
cmbdf <− CMBDataFrame( ns ide = 64 , I = rnorm (12 ∗ 64 ˆ 2) ,

o rde r ing = ” nested ” )
w21 <− window (CMBDataFrame( ns ide = ns , I = rand , o rde r ing = ”

nested ” ) , in . p i x e l s = 1)
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d i sp l ayP ixe lBoundar i e s ( ns ide = 2 , o rde r ing = ” nested ” , i n c l .
l a b e l s = c (1 , 2 , 3 , 4) , nums . c o l = ” red ” , c o l = ” black ” )

p l o t (w21 , c o l = ” l i g h t blue ” , back . c o l = ” white ” , add = TRUE,
s i z e = 1 . 2 )

p l o t ( window ( cmbdf , in . p i x e l s = 2) , c o l = ” green ” , add = TRUE)
p lo t ( window ( cmbdf , in . p i x e l s = 4) , c o l = ” purple ” , add = TRUE)
p lo t ( window ( cmbdf , in . p i x e l s = 5) , c o l = ” orange ” , add = TRUE)
p lo t ( window ( cmbdf , in . p i x e l s = 6) , c o l = ” red ” , add = TRUE)
um <− matrix ( c (−0.6893843 , 0 .7242531 , −0.01436349 , 0 ,

−0.5146448 , −0.4757210 , 0 .71332407 , 0 , 0 .5097938 , 0 .4991464 ,
0 .70068759 , 0 , 0 , 0 , 0 , 1) , byrow = TRUE, nrow = 4 , nco l = 4)

view3d ( userMatr ix = um)
r g l . snapshot ( ” Figure41b . png” )

B.2 R code used to produce Figure 4.2 and results in

Tables 4.1 and 4.2

The R code in this section was used to produce Figure 4.2 and to obtain results in Tables 4.1

and 4.2 in Chapter 4. The code in this section visualizes examples of scaled intensities

and Ĥ(t) values for one-dimensional CMB regions. It was also used to obtain Ĥ(t) values

for pixels in different rings of the CMB sky sphere using the Hölder exponent approach

(Table 4.1) and R/S method (Table 4.2) as shown in Chapter 4.

l i b r a r y ( rcosmo )
l i b r a r y ( f r a c t a l )

#Link to download the CMB data s e t with r e s o l u t i o n 2048
#URL = ’ http : // i r s a . ipac . c a l t e c h . edu/ data /Planck / r e l e a s e 2/ a l l−

sky−maps/maps/component−maps/cmb/COM CMB IQU−smica−f i e l d −Int
2048 R2.01 f u l l . f i t s ’

#downloadCMBMap( foreground = ” smica ” , ns ide = 2048)

#Generating CMB data frame with ns ide =2048
cmbdf <− CMBDataFrame( ”CMB map smica2048 . f i t s ” , o rde r ing=” r ing ” )
df1 <− coords ( cmbdf , new . coords = ” s p h e r i c a l ” )
#CMB coord−coo rd ina t e s o f the CMB data
CMB coord <− data . frame ( cbind ( theta1 = df1 $ theta , phi1=df1 $ phi ) )

#Stor ing the i n t e n s i t i e s o f p i x e l s i n to a vec tor
Int1 <− cmbdf$ I
#Computing the s c a l e d CMB i n t e n s i t i e s
Sca l e <− max( abs ( Int1 − mean( Int1 ) ) )
Int1 <− Int1 / max( abs ( Int1 ) )

#d−dimension
d <− 1
N s i d e <− 2048

#Tot Ring i s the t o t a l number o f r i n g s having the N s i d e value
Tot Ring <− ( (4 ∗ (N s i d e ) ) − 1)
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#Tot RingP i s the t o t a l number o f p i x e l s in the CMB sky sphere
Tot RingP <− (12 ∗ (N s i d e ) ˆ2)

#Tot UPR i s the t o t a l number o f r i n g s in the upper part
Tot UPR <− (N s i d e − 1)

#Tot ULPRP i s the t o t a l number o f p i x e l s in the upper part =
l a s t p i x e l number o f the upper part = Total number o f p i x e l s
in the lower part

Tot ULPRP <− (2 ∗ (N s i d e ) ∗ (N s i d e − 1) )

#Tot MPR i s the t o t a l number o f r i n g s in the middle part
Tot MPR <− ( (2 ∗ N s i d e ) + 1)

#Tot UMPRP i s the t o t a l number o f p i x e l s in the upper and middle
par t s toge the r

Tot UMPRP <− ( ( Tot RingP ) − ( Tot ULPRP) )

#Tot LPR i s the t o t a l number o f r i n g s in the lower part
Tot LPR <− (N s i d e − 1)

#These f u n c t i o n s g ive the r ing number o f the s p e c i f i c p i x e l
#Upperpolar Ringno func t i on g i v e s the r ing number o f the p i x e l

i f the p i x e l be longs to the upper part
Upperpolar Ringno <− f unc t i on (CMB row ) {

U r ing <− 0
pp ix e l count <− 0
p i x e l r i n g count <− 0
f o r ( i in 1 : (N s i d e − 1) ) {

p i x e l r i n g count <− p i x e l r i n g count + 4
pp ixe l count <− pp ixe l count + p i x e l r i n g count
i f (CMB row <= pp ixe l count ) {

U r ing <− i
break

}
}
re turn (U r ing )

}

#Middlepolar Ringno func t i on g i v e s the r ing number o f the p i x e l
i f the p i x e l be longs to the middle part

Middlepolar Ringno <− f unc t i on (CMB row ) {
M ring <− as . i n t e g e r ( (CMB row − Tot ULPRP − 1) / (4 ∗ N s i d e ) )

+ N s i d e
re turn (M r ing )

}

#Lowerpolar Ringno func t i on g i v e s the r ing number o f the p i x e l
i f the p i x e l be longs to the lower part

#upCMB row i s the updated p i x e l number o f the lower part but in
r e v e r s e order

Lowerpolar Ringno <− f unc t i on (CMB row ) {
upCMB row <− ( Tot RingP − CMB row ) + 1
U r ing <− Upperpolar Ringno (upCMB row )
L r ing <− ( ( Tot Ring − (U r ing ) ) + 1)
re turn (L r ing )

}
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#These f u n c t i o n s f i n d the f i r s t and l a s t members o f the r ing and
get a l l t h e i r member p i x e l s i n to a vec to r

Upperpolar f i r s t l a s t <− f unc t i on ( Ring no ) {
f i r s t member <− (2 ∗ ( Ring no − 1) ∗ Ring no ) + 1
l a s t member <− (2 ∗ Ring no ∗ ( Ring no + 1) )
FL <− c ( f i r s t member , l a s t member)
re turn (FL)

}

Middlepolar f i r s t l a s t <− f unc t i on ( Ring no ) {
f i r s t member <− ( ( Tot ULPRP) + ( ( ( Ring no − N s i d e ) ∗ (4 ∗ N

s i d e ) ) + 1) )
l a s t member <− ( ( Tot ULPRP) + ( ( ( Ring no − N s i d e ) + 1) ∗ (4 ∗

N s i d e ) ) )
FL <− c ( f i r s t member , l a s t member)
re turn (FL)

}

Lowerpolar f i r s t l a s t <− f unc t i on ( Ring no ) {
f i r s t member <− Tot RingP − (2 ∗ ( Tot Ring − Ring no + 1) ∗ (
Tot Ring − Ring no + 2) ) + 1

l a s t member <− Tot RingP − ( (2 ∗ ( Tot Ring − Ring no ) ∗ ( Tot
Ring − Ring no + 1) ) + 1) + 1

FL <− c ( f i r s t member , l a s t member)
re turn (FL)

}

#Checking upper part r i n g s
#[ I ]−Checking the random p i x e l ”552300” , where r ing no=525
#The func t i on Ring pix g i v e s the r ing number , t o t a l number o f

p i x e l s and the member p i x e l s i n to which the g iven p i x e l
be longs

Ring pix <− f unc t i on (CMB row ) {
i f (CMB row <= Tot ULPRP) {

Ring no <− Upperpolar Ringno (CMB row )
Tot pixe lR <− (4 ∗ Ring no )
FLm <− c ( Upperpolar f i r s t l a s t ( Ring no ) )
MemberP <− c ( seq (FLm[ 1 ] , FLm[ 2 ] , 1) )
p r i n t ( ”Upper Polar ” )

} e l s e i f (CMB row > Tot UMPRP) {
Ring no <− Lowerpolar Ringno (CMB row )
Tot pixe lR <− (4 ∗ ( Tot Ring − Ring no + 1) )
FLm <− c ( Lowerpolar f i r s t l a s t ( Ring no ) )
MemberP <− c ( seq (FLm[ 1 ] , FLm[ 2 ] , 1) )
p r i n t ( ”Lower po la r ” )

} e l s e {
Ring no <− Middlepolar Ringno (CMB row )
Tot pixe lR <− (4 ∗ N s i d e )
FLm <− c ( Middlepolar f i r s t l a s t ( Ring no ) )
MemberP <− c ( seq (FLm[ 1 ] , FLm[ 2 ] , 1) )
p r i n t ( ” Middle part ” )

}
re turn ( cbind ( Ring no , Tot pixelR , MemberP) )

}
Ring i n f o <− data . frame ( Ring pix (552300) )
Ring no <− Ring i n f o $Ring no [ 1 ]
Tot pixe lR <− Ring i n f o $Tot pixe lR [ 1 ]
MemberP <− Ring i n f o $MemberP
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#Once we know the r ing number o f the g iven p ixe l , f i n d i n g the
rad iu s o f the r ing in to which the g iven p i x e l be longs

#Let Rd be the r ing dev i a t i on from cente r
Rd <− abs ( Ring no − (2 ∗ N s i d e ) )

#Let R be the un i t rad iu s o f the sphere
R <− 1

#Let Rp be the rad iu s o f the r ing in to which the g iven p i x e l
be longs

Rp <− (R ∗ cos ( ( p i / (4 ∗ N s i d e ) ) ∗ Rd) )

#Finding the number o f p i x e l s in the ha l f−c i r c l e
N1 <− round ( ( Tot pixe lR / (2 ) ) , 0)

#Let lp be the d i s t ance between two p i x e l s in t h i s i n t e r v a l
lp <− (1 / N1)

r <− 0 .08
gamma <− (−( l og ( r ) / l og (N1) ) )
Pix i n t <− as . i n t e g e r ( r / lp )
MemberP1 <− MemberP [ ( Pix i n t + 1) : ( ( Pix i n t ) + N1) ]
Int2 <− Int1 [ MemberP1 ]
df1 <− MemberP1 [ ( Pix i n t + 1) : ( N1 − ( Pix i n t ) ) ]
N2 <− l ength ( df1 )

HExp1D1 <− rep (0 , N2)
HExp1D1c <− rep (0 , N2)
l <− 1
f o r (CMB pix in 1 :N2) {

N <− l ength ( seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int
, 1) )

A <− seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int , 1)
to t <− 0
f o r ( j in 1 : (N − 2) ) {

Increment1 <− ( ( ( Int1 [ as . i n t e g e r (A[ j ] ) ] ) − 2 ∗ ( Int1 [ as .
i n t e g e r (A[ j + 1 ] ) ] ) + ( Int1 [ as . i n t e g e r (A[ j + 2 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp1D1 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N1) ) )
HExp1D1c [ l ] <− RoverS ( Int1 [A] )
l <− l + 1

}
HExp1D1
min (HExp1D1)
max(HExp1D1)
max(HExp1D1) − min (HExp1D1)
mean(HExp1D1)

HExp1D1c
min (HExp1D1c)
max(HExp1D1c)
max(HExp1D1c) − min (HExp1D1c)
mean(HExp1D1c)
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#This f i g u r e g i v e s the p l o t o f s c a l e d CMB i n t e n s i t i e s o f r i ng
525

p lo t ( x = MemberP1 , y = Int1 [ MemberP1 ] , x lab = ”CMB p i x e l ” , y lab
= ” I ” , type = ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 525
p lo t ( x = df1 , y = HExp1D1 , xlab = ”CMB p i x e l ” , ylab = ”H” , type

= ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 525 by R/S
method

p lo t ( x = df1 , y = HExp1D1c , xlab = ”CMB p i x e l ” , y lab = ”H” , type
= ” l ” , lwd = 1 , c o l = ” blue ” )

#[ I I ]−Checking the random p i x e l ”1533000” , where r ing no=875
Ring i n f o <− data . frame ( Ring pix (1533000) )
Ring no <− Ring i n f o $Ring no [ 1 ]
Tot pixe lR <− Ring i n f o $Tot pixe lR [ 1 ]
MemberP <− Ring i n f o $MemberP

Rd <− abs ( Ring no − (2 ∗ N s i d e ) )
R <− 1
Rp <− (R ∗ cos ( ( p i / (4 ∗ N s i d e ) ) ∗ Rd) )
N1 <− round ( ( Tot pixe lR / (2 ) ) , 0)
lp <− (1 / N1)
r <− 0 .08
gamma <− (−( l og ( r ) / l og (N1) ) )
Pix i n t <− as . i n t e g e r ( r / lp )
MemberP1 <− MemberP [ ( Pix i n t + 1) : ( ( Pix i n t ) + N1) ]
Int2 <− Int1 [ MemberP1 ]
df1 <− MemberP1 [ ( Pix i n t + 1) : ( N1 − ( Pix i n t ) ) ]
N2 <− l ength ( df1 )

HExp1D2 <− rep (0 , N2)
HExp1D2c <− rep (0 , N2)
l <− 1
f o r (CMB pix in 1 :N2) {

N <− l ength ( seq ( df1 [CMB pix ]−Pix int , df1 [CMB pix ]+Pix int , 1 ) )
A <− seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int , 1)
to t <− 0
f o r ( j in 1 : (N − 2) ) {

Increment1 <− ( ( ( Int1 [ as . i n t e g e r (A[ j ] ) ] ) − 2 ∗ ( Int1 [ as .
i n t e g e r (A[ j + 1 ] ) ] ) + ( Int1 [ as . i n t e g e r (A[ j + 2 ] ) ] ) ) ˆ2)
to t <− to t + Increment1 }

VNt <− to t
HExp1D2 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N1) ) )
HExp1D2c [ l ] <− RoverS ( Int1 [A] )
l <− l + 1 }

HExp1D2
min (HExp1D2)
max(HExp1D2)
max(HExp1D2) − min (HExp1D2)
mean(HExp1D2)

HExp1D2c
min (HExp1D2c)
max(HExp1D2c)
max(HExp1D2c) − min (HExp1D2c)
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mean(HExp1D2c)

#This f i g u r e g i v e s the p l o t o f s c a l e d CMB i n t e n s i t i e s o f r i ng
875

p lo t ( x = MemberP1 , y = Int1 [ MemberP1 ] , x lab = ”CMB p i x e l ” , y lab
= ” I ” , type = ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 875
p lo t ( x = df1 , y = HExp1D2 , xlab = ”CMB p i x e l ” , ylab = ”H” , type

= ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 875 by R/S
method

p lo t ( x = df1 , y = HExp1D2c , xlab = ”CMB p i x e l ” , y lab = ”H” , type
= ” l ” , lwd = 1 , c o l = ” blue ” )

#[ I I I ]−Checking the random p i x e l ”3253800” , where r ing no=1275
Ring i n f o <− data . frame ( Ring pix (3253800) )
Ring no <− Ring i n f o $Ring no [ 1 ]
Tot pixe lR <− Ring i n f o $Tot pixe lR [ 1 ]
MemberP <− Ring i n f o $MemberP

Rd <− abs ( Ring no − (2 ∗ N s i d e ) )
R <− 1
Rp <− (R ∗ cos ( ( p i / (4 ∗ N s i d e ) ) ∗ Rd) )
N1 <− round ( ( Tot pixe lR / (2 ) ) , 0)
lp <− (1 / N1)

r <− 0 .08
gamma <− (−( l og ( r ) / l og (N1) ) )
Pix i n t <− as . i n t e g e r ( r / lp )
MemberP1 <− MemberP [ ( Pix i n t + 1) : ( ( Pix i n t ) + N1) ]
Int2 <− Int1 [ MemberP1 ]
df1 <− MemberP1 [ ( Pix i n t + 1) : ( N1 − ( Pix i n t ) ) ]
N2 <− l ength ( df1 )

HExp1D3 <− rep (0 , N2)
HExp1D3c <− rep (0 , N2)
l <− 1
f o r (CMB pix in 1 :N2) {

N <− l ength ( seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int
, 1) )

A <− seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int , 1)
to t <− 0
f o r ( j in 1 : (N − 2) ) {

Increment1 <− ( ( ( Int1 [ as . i n t e g e r (A[ j ] ) ] ) − 2 ∗ ( Int1 [ as .
i n t e g e r (A[ j + 1 ] ) ] ) + ( Int1 [ as . i n t e g e r (A[ j + 2 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp1D3 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N1) ) )
HExp1D3c [ l ] <− RoverS ( Int1 [A] )
l <− l + 1

}
HExp1D3
min (HExp1D3)
max(HExp1D3)
max(HExp1D3) − min (HExp1D3)
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mean(HExp1D3)

HExp1D3c
min (HExp1D3c)
max(HExp1D3c)
max(HExp1D3c) − min (HExp1D3c)
mean(HExp1D3c)

#Figure 4 . 2 ( a )−This f i g u r e g i v e s the p l o t o f s c a l e d CMB
i n t e n s i t i e s o f r i ng 1275

p lo t ( x = MemberP1 , y = Int1 [ MemberP1 ] , x lab = ”CMB p i x e l ” , y lab
= ” I ” , type = ” l ” , lwd = 1 , c o l = ” blue ” )

#Figure 4 . 2 ( c )−This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng
1275

p lo t ( x = df1 , y = HExp1D3 , xlab = ”CMB p i x e l ” , ylab = ”H” , type
= ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 1275 by R/S
method

p lo t ( x = df1 , y = HExp1D3c , xlab = ”CMB p i x e l ” , y lab = ”H” , type
= ” l ” , lwd = 1 , c o l = ” blue ” )

#Checking middle part r i n g s
#[ IV]−Checking the random p i x e l ”10047488” , where r ing no=2250
Ring i n f o <− data . frame ( Ring pix (10047488) )
Ring no <− Ring i n f o $Ring no [ 1 ]
Tot pixe lR <− Ring i n f o $Tot pixe lR [ 1 ]
MemberP <− Ring i n f o $MemberP

Rd <− abs ( Ring no − (2 ∗ N s i d e ) )
R <− 1
Rp <− (R ∗ cos ( ( p i / (4 ∗ N s i d e ) ) ∗ Rd) )
N1 <− round ( ( Tot pixe lR / (2 ) ) , 0)
lp <− (1 / N1)

r <− 0 .08
gamma <− (−( l og ( r ) / l og (N1) ) )
Pix i n t <− as . i n t e g e r ( r / lp )
MemberP1 <− MemberP [ ( Pix i n t + 1) : ( ( Pix i n t ) + N1) ]
Int2 <− Int1 [ MemberP1 ]
df1 <− MemberP1 [ ( Pix i n t + 1) : ( N1 − ( Pix i n t ) ) ]
N2 <− l ength ( df1 )

HExp1D4 <− rep (0 , N2)
HExp1D4c <− rep (0 , N2)
l <− 1
f o r (CMB pix in 1 :N2) {

N <− l ength ( seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int
, 1) )

A <− seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int , 1)
to t <− 0
f o r ( j in 1 : (N − 2) ) {

Increment1 <− ( ( ( Int1 [ as . i n t e g e r (A[ j ] ) ] ) − 2 ∗ ( Int1 [ as .
i n t e g e r (A[ j + 1 ] ) ] ) + ( Int1 [ as . i n t e g e r (A[ j + 2 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
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HExp1D4 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (
N1) ) )

HExp1D4c [ l ] <− RoverS ( Int1 [A] )
l <− l + 1

}
HExp1D4
min (HExp1D4)
max(HExp1D4)
max(HExp1D4) − min (HExp1D4)
mean(HExp1D4)

HExp1D4c
min (HExp1D4c)
max(HExp1D4c)
max(HExp1D4c) − min (HExp1D4c)
mean(HExp1D4c)

#This f i g u r e g i v e s the p l o t o f s c a l e d CMB i n t e n s i t i e s o f r i ng
2250

p lo t ( x = MemberP1 , y = Int1 [ MemberP1 ] , x lab = ”CMB p i x e l ” , y lab
= ” I ” , type = ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 2250
p lo t ( x = df1 , y = HExp1D4 , xlab = ”CMB p i x e l ” , ylab = ”H” , type

= ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 2250 by R/S
method

p lo t ( x = df1 , y = HExp1D4c , xlab = ”CMB p i x e l ” , y lab = ”H” , type
= ” l ” , lwd = 1 , c o l = ” blue ” )

#[V]−Choosing a p i x e l near the equator / grea t c i r c l e , where r ing
no=5000

Ring i n f o <− data . frame ( Ring pix (32575488) )
Ring no <− Ring i n f o $Ring no [ 1 ]
Tot pixe lR <− Ring i n f o $Tot pixe lR [ 1 ]
MemberP <− Ring i n f o $MemberP

Rd <− abs ( Ring no − (2 ∗ N s i d e ) )
R <− 1
Rp <− (R ∗ cos ( ( p i / (4 ∗ N s i d e ) ) ∗ Rd) )
N1 <− round ( ( Tot pixe lR / (2 ) ) , 0)
lp <− (1 / N1)

r <− 0 .08
gamma <− (−( l og ( r ) / l og (N1) ) )
Pix i n t <− as . i n t e g e r ( r / lp )
MemberP1 <− MemberP [ ( Pix i n t + 1) : ( ( Pix i n t ) + N1) ]
Int2 <− Int1 [ MemberP1 ]
df1 <− MemberP1 [ ( Pix i n t + 1) : ( N1 − ( Pix i n t ) ) ]
N2 <− l ength ( df1 )

HExp1D5 <− rep (0 , N2)
HExp1D5c <− rep (0 , N2)
l <− 1
f o r (CMB pix in 1 :N2) {

N <− l ength ( seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int
, 1) )

A <− seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int , 1)
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to t <− 0
f o r ( j in 1 : (N − 2) ) {

Increment1 <− ( ( ( Int1 [ as . i n t e g e r (A[ j ] ) ] ) − 2 ∗ ( Int1 [ as .
i n t e g e r (A[ j + 1 ] ) ] ) + ( Int1 [ as . i n t e g e r (A[ j + 2 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp1D5 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N1) ) )
HExp1D5c [ l ] <− RoverS ( Int1 [A] )
l <− l + 1

}
HExp1D5
min (HExp1D5)
max(HExp1D5)
max(HExp1D5) − min (HExp1D5)
mean(HExp1D5)

HExp1D5c
min (HExp1D5c)
max(HExp1D5c)
max(HExp1D5c) − min (HExp1D5c)
mean(HExp1D5c)

#This f i g u r e g i v e s the p l o t o f s c a l e d CMB i n t e n s i t i e s o f r i ng
5000

p lo t ( x = MemberP1 , y = Int1 [ MemberP1 ] , x lab = ”CMB p i x e l ” , y lab
= ” I ” , type = ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 5000
p lo t ( x = df1 , y = HExp1D5 , xlab = ”CMB p i x e l ” , ylab = ”H” , type

= ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 5000 by R/S
method

p lo t ( x = df1 , y = HExp1D5c , xlab = ”CMB p i x e l ” , y lab = ”H” , type
= ” l ” , lwd = 1 , c o l = ” blue ” )

#[ VI]−Checking the random p i x e l ”39948288” , where r ing no=5900
Ring i n f o <− data . frame ( Ring pix (39948288) )
Ring no <− Ring i n f o $Ring no [ 1 ]
Tot pixe lR <− Ring i n f o $Tot pixe lR [ 1 ]
MemberP <− Ring i n f o $MemberP

Rd <− abs ( Ring no − (2 ∗ N s i d e ) )
R <− 1
Rp <− (R ∗ cos ( ( p i / (4 ∗ N s i d e ) ) ∗ Rd) )
N1 <− round ( ( Tot pixe lR / (2 ) ) , 0)
lp <− (1 / N1)

r <− 0 .08
gamma <− (−( l og ( r ) / l og (N1) ) )
Pix i n t <− as . i n t e g e r ( r / lp )
MemberP1 <− MemberP [ ( Pix i n t + 1) : ( ( Pix i n t ) + N1) ]
Int2 <− Int1 [ MemberP1 ]
df1 <− MemberP1 [ ( Pix i n t + 1) : ( N1 − ( Pix i n t ) ) ]
N2 <− l ength ( df1 )

HExp1D6 <− rep (0 , N2)
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HExp1D6c <− rep (0 , N2)
l <− 1
f o r (CMB pix in 1 :N2) {

N <− l ength ( seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int
, 1) )

A <− seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int , 1)
to t <− 0
f o r ( j in 1 : (N − 2) ) {

Increment1 <− ( ( ( Int1 [ as . i n t e g e r (A[ j ] ) ] ) − 2 ∗ ( Int1 [ as .
i n t e g e r (A[ j + 1 ] ) ] ) + ( Int1 [ as . i n t e g e r (A[ j + 2 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp1D6 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N1) ) )
HExp1D6c [ l ] <− RoverS ( Int1 [A] )
l <− l + 1

}
HExp1D6
min (HExp1D6)
max(HExp1D6)
max(HExp1D6) − min (HExp1D6)
mean(HExp1D6)

HExp1D6c
min (HExp1D6c)
max(HExp1D6c)
max(HExp1D6c) − min (HExp1D6c)
mean(HExp1D6c)

#Figure 4 . 2 ( b)−This f i g u r e g i v e s the p l o t o f s c a l e d CMB
i n t e n s i t i e s o f r i ng 5900

p lo t ( x = MemberP1 , y = Int1 [ MemberP1 ] , x lab = ”CMB p i x e l ” , y lab
= ” I ” , type = ” l ” , lwd = 1 , c o l = ” blue ” )

#Figure 4 . 2 ( d)−This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng
5900

p lo t ( x = df1 , y = HExp1D6 , xlab = ”CMB p i x e l ” , ylab = ”H” , type
= ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 5900 by R/S
method

p lo t ( x = df1 , y = HExp1D6c , xlab = ”CMB p i x e l ” , y lab = ”H” , type
= ” l ” , lwd = 1 , c o l = ” blue ” )

#Checking lower part r i n g s
#[ VII ]−Checking the random p i x e l ”47656664” , where r ing no=7035
Ring i n f o <− data . frame ( Ring pix (47656664) )
Ring no <− Ring i n f o $Ring no [ 1 ]
Tot pixe lR <− Ring i n f o $Tot pixe lR [ 1 ]
MemberP <− Ring i n f o $MemberP

Rd <− abs ( Ring no − (2 ∗ N s i d e ) )
R <− 1
Rp <− (R ∗ cos ( ( p i / (4 ∗ N s i d e ) ) ∗ Rd) )
N1 <− round ( ( Tot pixe lR / (2 ) ) , 0)
lp <− (1 / N1)

r <− 0 .08
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gamma <− (−( l og ( r ) / l og (N1) ) )
Pix i n t <− as . i n t e g e r ( r / lp )
MemberP1 <− MemberP [ ( Pix i n t + 1) : ( ( Pix i n t ) + N1) ]
Int2 <− Int1 [ MemberP1 ]
df1 <− MemberP1 [ ( Pix i n t + 1) : ( N1 − ( Pix i n t ) ) ]
N2 <− l ength ( df1 )

HExp1D7 <− rep (0 , N2)
HExp1D7c <− rep (0 , N2)
l <− 1
f o r (CMB pix in 1 :N2) {

N <− l ength ( seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int
, 1) )

A <− seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int , 1)
to t <− 0
f o r ( j in 1 : (N − 2) ) {

Increment1 <− ( ( ( Int1 [ as . i n t e g e r (A[ j ] ) ] ) − 2 ∗ ( Int1 [ as .
i n t e g e r (A[ j + 1 ] ) ] ) + ( Int1 [ as . i n t e g e r (A[ j + 2 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp1D7 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N1) ) )
HExp1D7c [ l ] <− RoverS ( Int1 [A] )
l <− l + 1

}
HExp1D7
min (HExp1D7)
max(HExp1D7)
max(HExp1D7) − min (HExp1D7)
mean(HExp1D7)

HExp1D7c
min (HExp1D7c)
max(HExp1D7c)
max(HExp1D7c) − min (HExp1D7c)
mean(HExp1D7c)

#This f i g u r e g i v e s the p l o t o f s c a l e d CMB i n t e n s i t i e s o f r i ng
7035

p lo t ( x = MemberP1 , y = Int1 [ MemberP1 ] , x lab = ”CMB p i x e l ” , y lab
= ” I ” , type = ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 7035
p lo t ( x = df1 , y = HExp1D7 , xlab = ”CMB p i x e l ” , ylab = ”H” , type

= ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 7035 by R/S
method

p lo t ( x = df1 , y = HExp1D7c , xlab = ”CMB p i x e l ” , y lab = ”H” , type
= ” l ” , lwd = 1 , c o l = ” blue ” )

#[ VIII ]−Checking the random p i x e l ”48651704 , where r ing no=7275”
Ring i n f o <− data . frame ( Ring pix (48651704) )
Ring no <− Ring i n f o $Ring no [ 1 ]
Tot pixe lR <− Ring i n f o $Tot pixe lR [ 1 ]
MemberP <− Ring i n f o $MemberP

Rd <− abs ( Ring no − (2 ∗ N s i d e ) )
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R <− 1
Rp <− (R ∗ cos ( ( p i / (4 ∗ N s i d e ) ) ∗ Rd) )
N1 <− round ( ( Tot pixe lR / (2 ) ) , 0)
lp <− (1 / N1)

r <− 0 .08
gamma <− (−( l og ( r ) / l og (N1) ) )
Pix i n t <− as . i n t e g e r ( r / lp )
MemberP1 <− MemberP [ ( Pix i n t + 1) : ( ( Pix i n t ) + N1) ]
Int2 <− Int1 [ MemberP1 ]
df1 <− MemberP1 [ ( Pix i n t + 1) : ( N1 − ( Pix i n t ) ) ]
N2 <− l ength ( df1 )

HExp1D8 <− rep (0 , N2)
HExp1D8c <− rep (0 , N2)
l <− 1
f o r (CMB pix in 1 :N2) {

N <− l ength ( seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int
, 1) )

A <− seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int , 1)
to t <− 0
f o r ( j in 1 : (N − 2) ) {

Increment1 <− ( ( ( Int1 [ as . i n t e g e r (A[ j ] ) ] ) − 2 ∗ ( Int1 [ as .
i n t e g e r (A[ j + 1 ] ) ] ) + ( Int1 [ as . i n t e g e r (A[ j + 2 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp1D8 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N1) ) )
HExp1D8c [ l ] <− RoverS ( Int1 [A] )
l <− l + 1

}
HExp1D8
min (HExp1D8)
max(HExp1D8)
max(HExp1D8) − min (HExp1D8)
mean(HExp1D8)

HExp1D8c
min (HExp1D8c)
max(HExp1D8c)
max(HExp1D8c) − min (HExp1D8c)
mean(HExp1D8c)

#This f i g u r e g i v e s the p l o t o f s c a l e d CMB i n t e n s i t i e s o f r i ng
7275

p lo t ( x = MemberP1 , y = Int1 [ MemberP1 ] , x lab = ”CMB p i x e l ” , y lab
= ” I ” , type = ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 7275
p lo t ( x = df1 , y = HExp1D8 , xlab = ”CMB p i x e l ” , ylab = ”H” , type

= ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 7275 by R/S
method

p lo t ( x = df1 , y = HExp1D8c , xlab = ”CMB p i x e l ” , y lab = ”H” , type
= ” l ” , lwd = 1 , c o l = ” blue ” )
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#[ XI]−Checking the random p i x e l ”49375304” , where r ing no=7500
Ring i n f o <− data . frame ( Ring pix (49375304) )
Ring no <− Ring i n f o $Ring no [ 1 ]
Tot pixe lR <− Ring i n f o $Tot pixe lR [ 1 ]
MemberP <− Ring i n f o $MemberP

Rd <− abs ( Ring no − (2 ∗ N s i d e ) )
R <− 1
Rp <− (R ∗ cos ( ( p i / (4 ∗ N s i d e ) ) ∗ Rd) )
N1 <− round ( ( Tot pixe lR / (2 ) ) , 0)
lp <− (1 / N1)

r <− 0 .08
gamma <− (−( l og ( r ) / l og (N1) ) )
Pix i n t <− as . i n t e g e r ( r / lp )
MemberP1 <− MemberP [ ( Pix i n t + 1) : ( ( Pix i n t ) + N1) ]
Int2 <− Int1 [ MemberP1 ]
df1 <− MemberP1 [ ( Pix i n t + 1) : ( N1 − ( Pix i n t ) ) ]
N2 <− l ength ( df1 )

HExp1D9 <− rep (0 , N2)
HExp1D9c <− rep (0 , N2)
l <− 1
f o r (CMB pix in 1 :N2) {

N <− l ength ( seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int
, 1) )

A <− seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int , 1)
to t <− 0
f o r ( j in 1 : (N − 2) ) {

Increment1 <− ( ( ( Int1 [ as . i n t e g e r (A[ j ] ) ] ) − 2 ∗ ( Int1 [ as .
i n t e g e r (A[ j + 1 ] ) ] ) + ( Int1 [ as . i n t e g e r (A[ j + 2 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp1D9 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N1) ) )
HExp1D9c [ l ] <− RoverS ( Int1 [A] )
l <− l + 1

}
HExp1D9
min (HExp1D9)
max(HExp1D9)
max(HExp1D9) − min (HExp1D9)
mean(HExp1D9)

HExp1D9c
min (HExp1D9c)
max(HExp1D9c)
max(HExp1D9c) − min (HExp1D9c)
mean(HExp1D9c)

#This f i g u r e g i v e s the p l o t o f s c a l e d CMB i n t e n s i t i e s o f r i ng
7500

p lo t ( x = MemberP1 , y = Int1 [ MemberP1 ] , x lab = ”CMB p i x e l ” , y lab
= ” I ” , type = ” l ” , lwd = 1 , c o l = ” blue ” )

#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 7500
p lo t ( x = df1 , y = HExp1D9 , xlab = ”CMB p i x e l ” , ylab = ”H” , type

= ” l ” , lwd = 1 , c o l = ” blue ” )
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#This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng 7500 by R/S
method

p lo t ( x = df1 , y = HExp1D9c , xlab = ”CMB p i x e l ” , y lab = ”H” , type
= ” l ” , lwd = 1 , c o l = ” blue ” )

save . image ( f i l e = ”HolderExponent1D 2048 .RData” )

B.3 R code used to produce Figure 4.3 and results in

Table 4.3

The R code in this section was used to produce Figure 4.3 and to obtain results in Table 4.3

in Chapter 4. The code in this section visualizes the distribution of Ĥ(t) values of four

rim segments. It was also used to obtain p-values for Wilcoxon tests between different

rings as shown in Table 4.3 of Chapter 4.

l i b r a r y ( ggp lot2 )
load ( ”HolderExponent1D 2048 .RData” )

Test1 <− cbind (R = rep (1 , l ength (HExp1D1) ) , H = HExp1D1)
Test3 <− cbind (R = rep (3 , l ength (HExp1D3) ) , H = HExp1D3)
Test4 <− cbind (R = rep (4 , l ength (HExp1D4) ) , H = HExp1D4)
Test9 <− cbind (R = rep (9 , l ength (HExp1D9) ) , H = HExp1D9)

Hexp1 <− data . frame ( rbind ( Test1 , Test3 , Test4 , Test9 ) )
Hexp1$R <− f a c t o r ( Hexp1$R, l e v e l s = c ( ”1” , ”3” , ”4” , ”9” ) ,

l a b e l s = c (525 , 1275 , 2250 , 7500) )

#Figure 4.3−This f i g u r e g i v e s the p l o t o f the d i s t r i b u t i o n o f $\
hat{H}( t ) $ va lue s o f f our rim segments

ggp lot (Hexp1 , aes ( x = R, y = H, f i l l = R) ) +
geom boxplot ( width = 0 .45 , p o s i t i o n = p o s i t i o n dodge ( width =

0 . 9 ) , f a t t e n = NULL) +
labs ( x = ”Ring no . ” , y = ”H( t ) ” ) +
s c a l e f i l l manual (name = ”Ring no . ” , l a b e l s = c ( ” 525 ” , ” 1275 ” ,

” 2250 ” , ” 7500 ” ) , va lue s = c ( ”#CC0033” , ”#FFCC33” , ”#00AFBB” ,
”#9933CC” ) ) +

s t a t summary( fun = mean , geom = ” e r ro rba r ” , aes (ymax = . . y . . ,
ymin = . . y . . ) , width = 0 .45 , l i n e t y p e = ” s o l i d ” , s i z e = 1) +

theme bw( )+theme ( legend . p o s i t i o n = ”none” )

#Checking f o r s t a t i s t i c a l s i g n i f i c a n c e in d i f f e r e n c e o f means
#[1]− D i f f e r e n c e between r i n g s 1 & 3
#Using the proposed H method and a l l H( t ) va lue s
t . t e s t (HExp1D1 , HExp1D3)
wi l cox . t e s t (HExp1D1 , HExp1D3 , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D1 [ seq (1 , l ength (HExp1D1) , by = 50) ] )
shap i ro . t e s t (HExp1D3 [ seq (1 , l ength (HExp1D3) , by = 50) ] )
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#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D1 [ seq (1 , l ength (HExp1D1) , by = 50) ] , HExp1D3 [ seq (1 ,
l ength (HExp1D3) , by = 50) ] )

wi l cox . t e s t (HExp1D1 [ seq (1 , l ength (HExp1D1) , by = 50) ] , HExp1D3 [
seq (1 , l ength (HExp1D3) , by = 50) ] , a l t e r n a t i v e = ”two . s ided ” )

#Using the R/S method and a l l H( t ) va lue s
t . t e s t (HExp1D1c , HExp1D3c)
wi l cox . t e s t (HExp1D1c , HExp1D3c , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D1c [ seq (1 , l ength (HExp1D1c) , by = 50) ] )
shap i ro . t e s t (HExp1D3c [ seq (1 , l ength (HExp1D3c) , by = 50) ] )

#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D1c [ seq (1 , l ength (HExp1D1c) , by = 50) ] , HExp1D3c [ seq
(1 , l ength (HExp1D3c) , by = 50) ] )

wi l cox . t e s t (HExp1D1c [ seq (1 , l ength (HExp1D1c) , by = 50) ] ,
HExp1D3c [ seq (1 , l ength (HExp1D3c) , by = 50) ] , a l t e r n a t i v e = ”
two . s ided ” )

#[2]− D i f f e r e n c e between r i n g s 1 & 4
#Using the proposed H method and a l l H( t ) va lue s
t . t e s t (HExp1D1 , HExp1D4)
wi l cox . t e s t (HExp1D1 , HExp1D4 , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D1 [ seq (1 , l ength (HExp1D1) , by = 50) ] )
shap i ro . t e s t (HExp1D4 [ seq (1 , l ength (HExp1D4) , by = 50) ] )

#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D1 [ seq (1 , l ength (HExp1D1) , by = 50) ] , HExp1D4 [ seq (1 ,
l ength (HExp1D4) , by = 50) ] )

wi l cox . t e s t (HExp1D1 [ seq (1 , l ength (HExp1D1) , by = 50) ] , HExp1D4 [
seq (1 , l ength (HExp1D4) , by = 50) ] , a l t e r n a t i v e = ”two . s ided ” )

#Using the R/S method and a l l H( t ) va lue s
t . t e s t (HExp1D1c , HExp1D4c)
wi l cox . t e s t (HExp1D1c , HExp1D4c , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D1c [ seq (1 , l ength (HExp1D1c) , by = 50) ] )
shap i ro . t e s t (HExp1D4c [ seq (1 , l ength (HExp1D4c) , by = 50) ] )

#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D1c [ seq (1 , l ength (HExp1D1c) , by = 50) ] , HExp1D4c [ seq
(1 , l ength (HExp1D4c) , by = 50) ] )

wi l cox . t e s t (HExp1D1c [ seq (1 , l ength (HExp1D1c) , by = 50) ] ,
HExp1D4c [ seq (1 , l ength (HExp1D4c) , by = 50) ] , a l t e r n a t i v e = ”
two . s ided ” )
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#[3]− D i f f e r e n c e between r i n g s 1 & 9
#Using the proposed H method and a l l H( t ) va lue s
t . t e s t (HExp1D1 , HExp1D9)
wi l cox . t e s t (HExp1D1 , HExp1D9 , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D1 [ seq (1 , l ength (HExp1D1) , by = 50) ] )
shap i ro . t e s t (HExp1D9 [ seq (1 , l ength (HExp1D9) , by = 50) ] )

#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D1 [ seq (1 , l ength (HExp1D1) , by = 50) ] , HExp1D9 [ seq (1 ,
l ength (HExp1D9) , by = 50) ] )

wi l cox . t e s t (HExp1D1 [ seq (1 , l ength (HExp1D1) , by = 50) ] , HExp1D9 [
seq (1 , l ength (HExp1D9) , by = 50) ] , a l t e r n a t i v e = ”two . s ided ” )

#Using the R/S method and a l l H( t ) va lue s
t . t e s t (HExp1D1c , HExp1D9c)
wi l cox . t e s t (HExp1D1c , HExp1D9c , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D1c [ seq (1 , l ength (HExp1D1c) , by = 50) ] )
shap i ro . t e s t (HExp1D9c [ seq (1 , l ength (HExp1D6c) , by = 50) ] )

#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D1c [ seq (1 , l ength (HExp1D1c) , by = 50) ] , HExp1D9c [ seq
(1 , l ength (HExp1D9c) , by = 50) ] )

wi l cox . t e s t (HExp1D1c [ seq (1 , l ength (HExp1D1c) , by = 50) ] ,
HExp1D9c [ seq (1 , l ength (HExp1D9c) , by = 50) ] , a l t e r n a t i v e = ”
two . s ided ” )

#[4]− D i f f e r e n c e between r i n g s 3 & 4
# Using the proposed H method and a l l H( t ) va lue s
t . t e s t (HExp1D3 , HExp1D4)
wi l cox . t e s t (HExp1D3 , HExp1D4 , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D3 [ seq (1 , l ength (HExp1D3) , by = 50) ] )
shap i ro . t e s t (HExp1D4 [ seq (1 , l ength (HExp1D4) , by = 50) ] )

#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D3 [ seq (1 , l ength (HExp1D3) , by = 50) ] , HExp1D4 [ seq (1 ,
l ength (HExp1D4) , by = 50) ] )

wi l cox . t e s t (HExp1D3 [ seq (1 , l ength (HExp1D3) , by = 50) ] , HExp1D4 [
seq (1 , l ength (HExp1D4) , by = 50) ] , a l t e r n a t i v e = ”two . s ided ” )

#Using the R/S method and a l l H( t ) va lue s
t . t e s t (HExp1D3c , HExp1D4c)
wi l cox . t e s t (HExp1D3c , HExp1D4c , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D3c [ seq (1 , l ength (HExp1D3c) , by = 50) ] )
shap i ro . t e s t (HExp1D4c [ seq (1 , l ength (HExp1D4c) , by = 50) ] )
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#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D3c [ seq (1 , l ength (HExp1D3c) , by = 50) ] , HExp1D4c [ seq
(1 , l ength (HExp1D4c) , by = 50) ] )

wi l cox . t e s t (HExp1D3c [ seq (1 , l ength (HExp1D3c) , by = 50) ] ,
HExp1D4c [ seq (1 , l ength (HExp1D4c) , by = 50) ] , a l t e r n a t i v e = ”
two . s ided ” )

#[5]− D i f f e r e n c e between r i n g s 3 & 9
# Using the proposed H method and a l l H( t ) va lue s
t . t e s t (HExp1D3 , HExp1D9)
wi l cox . t e s t (HExp1D3 , HExp1D9 , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D3 [ seq (1 , l ength (HExp1D3) , by = 50) ] )
shap i ro . t e s t (HExp1D9 [ seq (1 , l ength (HExp1D9) , by = 50) ] )

#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D3 [ seq (1 , l ength (HExp1D3) , by = 50) ] , HExp1D9 [ seq (1 ,
l ength (HExp1D9) , by = 50) ] )

wi l cox . t e s t (HExp1D3 [ seq (1 , l ength (HExp1D3) , by = 50) ] , HExp1D9 [
seq (1 , l ength (HExp1D9) , by = 50) ] , a l t e r n a t i v e = ”two . s ided ” )

#Using the R/S method and a l l H( t ) va lue s
t . t e s t (HExp1D3c , HExp1D9c)
wi l cox . t e s t (HExp1D3c , HExp1D9c , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D3c [ seq (1 , l ength (HExp1D3c) , by = 50) ] )
shap i ro . t e s t (HExp1D9c [ seq (1 , l ength (HExp1D9c) , by = 50) ] )

#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D3c [ seq (1 , l ength (HExp1D3c) , by = 50) ] , HExp1D9c [ seq
(1 , l ength (HExp1D9c) , by = 50) ] )

wi l cox . t e s t (HExp1D3c [ seq (1 , l ength (HExp1D3c) , by = 50) ] ,
HExp1D9c [ seq (1 , l ength (HExp1D9c) , by = 50) ] , a l t e r n a t i v e = ”
two . s ided ” )

#[6]− D i f f e r e n c e between r i n g s 4 & 9
#Using the proposed H method and a l l H( t ) va lue s
t . t e s t (HExp1D4 , HExp1D9)
wi l cox . t e s t (HExp1D4 , HExp1D9 , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D4 [ seq (1 , l ength (HExp1D4) , by = 50) ] )
shap i ro . t e s t (HExp1D9 [ seq (1 , l ength (HExp1D9) , by = 50) ] )

#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D4 [ seq (1 , l ength (HExp1D4) , by = 50) ] , HExp1D9 [ seq (1 ,
l ength (HExp1D9) , by = 50) ] )

wi l cox . t e s t (HExp1D4 [ seq (1 , l ength (HExp1D4) , by = 50) ] , HExp1D9 [
seq (1 , l ength (HExp1D9) , by = 50) ] , a l t e r n a t i v e = ”two . s ided ” )
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#Using the R/S method and a l l H( t ) va lue s
t . t e s t (HExp1D4c , HExp1D9c)
wi l cox . t e s t (HExp1D4c , HExp1D9c , a l t e r n a t i v e = ”two . s ided ” )

#Checking the normal i ty assumption ensur ing the independence o f
ob s e rva t i on s us ing H( t ) va lue s with step 50

shap i ro . t e s t (HExp1D4c [ seq (1 , l ength (HExp1D4c) , by = 50) ] )
shap i ro . t e s t (HExp1D9c [ seq (1 , l ength (HExp1D9c) , by = 50) ] )

#Carrying out the T−t e s t and Wilcoxon ’ s t e s t to check f o r
d i f f e r e n c e in means

t . t e s t (HExp1D4c [ seq (1 , l ength (HExp1D4c) , by = 50) ] , HExp1D9c [ seq
(1 , l ength (HExp1D9c) , by = 50) ] )

wi l cox . t e s t (HExp1D4c [ seq (1 , l ength (HExp1D4c) , by = 50) ] ,
HExp1D9c [ seq (1 , l ength (HExp1D9c) , by = 50) ] , a l t e r n a t i v e = ”
two . s ided ” )

B.4 R code used to produce Figure 4.4

The R code in this section was used to produce Figure 4.4 in Chapter 4. The code in this

section visualizes examples of pixels with 7 and 8 neighbours for Nside = 4 as shown in

Chapter 4.

l i b r a r y ( rcosmo )
l i b r a r y ( r g l )

#This func t i on p l o t s the ne ighbour ing p i x e l s f o r a g iven base
p i x e l

demoNeighbours <− f unc t i on (p , j , f c o l ) {
neighbours (p , j )
d i s p l a y P i x e l s (

boundary . j = j , j = j , p l o t . j = j + 3 ,
sp ix = neighbours (p , j ) ,
boundary . c o l = ” grey48 ” ,
boundary . lwd = 1 ,
i n c l . l a b e l s = neighbours (p , j ) ,
c o l = toS t r i ng ( f c o l ) ,
s i z e = 3

)
}

#Figure 4.4−This f i g u r e g i v e s the p l o t o f examples o f p i x e l s
with 7 and 8 ne ighbours f o r N s i d e=4

#Plo t t i ng the ne ighbour ing p i x e l s f o r p i x e l index 6 at N s i d e=4
demoNeighbours (6 , 2 , 3)
#Plo t t i ng the ne ighbour ing p i x e l s f o r p i x e l index 72 at N s i d e=4
demoNeighbours (72 , 2 , 4)
um <− matrix ( c (0 .7560294 , −0.6384937 , −0.1440324 , 0 , −0.1466970 ,

−0.3797444 , 0 .9133860 , 0 , −0.6378868 , −0.6694176 ,
−0.3807631 , 0 , 0 , 0 , 0 , 1) , byrow = TRUE, nrow = 4 , nco l = 4)

view3d ( userMatr ix = um)
c l i p p l a n e s 3 d (1 , 1 , 0 . 65 , d = 0 . 6 )
r g l . snapshot ( ” Figure44 . png” )
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#Generating CMB data frame with ns ide =2048
Nside <− 2048
df <− CMBDataFrame( ns ide = Nside , I = rep (0 , 12 ∗ Nside ˆ2) ,

o rde r ing = ” nested ” )
N <− 12 ∗ Nside ˆ2
j1 <− as . i n t e g e r ( l og ( Nside ) / l og (2 ) )

#This func t i on computes the number o f ne ighbour ing p i x e l s o f a
g iven p i x e l

f i n c r 2 d <− f unc t i on ( x ) {
l ength ( ne ighbours (x , j 1 ) )

}
#Vecto r i z i ng the ” f i n c r 2 d ” func t i on
f i n c r 2dv <− Vecto r i z e ( f i n c r 2 d )

#Computing the number o f ne ighbour ing p i x e l s o f a l l p i x e l
i n d i c e s

df $ I <− f i n c r 2dv ( 1 :N)

#Finding the number o f p i x e l s having 8 and 9 neighbours
r e s p e c t i v e l y

sum( df $ I == 8)
sum( df $ I == 9)

B.5 R code used to produce Figures 4.5, 4.6 and results in

Table 4.4

The R code in this section was used to produce Figures 4.5, 4.6 and to obtain results in

Table 4.4 in Chapter 4. The code in this section visualizes the sky windows used for com-

putations (Figure 4.5) and local estimates Ĥ(t) for two-dimensional regions (Figure 4.6).

It was also used to obtain Ĥ(t) values for pixels in different sky windows of the CMB sky

sphere as shown in Table 4.4 of Chapter 4.

l i b r a r y ( rcosmo )
l i b r a r y ( r g l )
l i b r a r y ( akima )

#Generating CMB data frame with ns ide =2048
cmbdf <− CMBDataFrame( ”CMB map smica2048 . f i t s ” )
df1 <− coords ( cmbdf , new . coords = ” c a r t e s i a n ” )

#CMB coord−coo rd ina t e s o f the CMB data
CMB coord <− data . frame ( cbind ( x = df1 $x , y = df1 $y , z = df1 $z ) )

#Stor ing the i n t e n s i t i e s o f p i x e l s i n to a vec tor
Int1 <− cmbdf$ I
# Computing the s c a l e d CMB i n t e n s i t i e s
Int1 <− Int1 / max( abs ( Int1 ) )

#k i s changing with ns ide . I f n s ide =2048=2ˆ(11)=2ˆ(k )
k <− 11
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#d−dimension
d <− 2

#N pix i s the no . o f p i x e l s in which we compute the Holder
exponent va lue s

N pix <− 1000

#For a warm reg i on
#Figure 4 . 5 ( a )−This f i g u r e g i v e s the p l o t o f a sky window from

the warm reg i on
p lo t ( cmbdf , back . c o l = ” white ” , ylab = ”” , xlab = ”” , z lab = ”” )
CMB row <− (29990264)
win <− CMBWindow( x = df1 [CMB row , ] $x , y = df1 [CMB row , ] $y , z =

df1 [CMB row , ] $z , r = 0 . 2 3 )
p l o t ( win , c o l = ” red ” , lwd = 3)

cmbdf11 <− window ( cmbdf , new . window = win )
l ength ( pix ( cmbdf11 ) )
min ( cmbdf11$ I )
max( cmbdf11$ I )
avg1 <− mean( cmbdf11$ I )
df11 <− coords ( cmbdf11 , new . coords = ” c a r t e s i a n ” )
df sample1 <− df11 [ seq (1 , l ength ( pix ( cmbdf11 ) ) , by = ( length ( pix

( cmbdf11 ) ) / N pix ) ) , ]
df12 <− coords ( df sample1 , new . coords = ” c a r t e s i a n ” )
df13 <− data . frame ( cbind ( x = df12 $x , y = df12 $y , z = df12 $z ) )

r <− 0 .01
N11 <− l ength ( pix ( cmbdf11 ) )
N12 <− s q r t (N11)
gamma <− (−( l og ( ( s q r t ( p i ) ∗ r ) / 2) / l og ( ( N12) ) ) )
HExp2D1 <− rep (0 , N pix )
l <− 1
f o r (CMB row in 1 :N pix ) {

win1 <− CMBWindow( x = df13 [CMB row , ] $x , y = df13 [CMB row , ] $y
, z = df13 [CMB row , ] $z , r = 0 . 0 1 )

cmbdf1 <− window ( cmbdf , new . window = win1 )
N <− l ength ( pix ( cmbdf1 ) )
Pix number <− as . i n t e g e r ( pix ( cmbdf1 ) )
to t <− 0
f o r ( i in 1 :N) {

A <− neighbours ( Pix number [ i ] , k )
B <− neighbours ( as . i n t e g e r (A[ 1 ] ) , k )
Increment1 <− ( ( ( Int1 [ as . i n t e g e r (B [ 1 ] ) ] ) − (2 ∗ Int1 [ as .

i n t e g e r (B [ 2 ] ) ] ) + ( Int1 [ as . i n t e g e r (B [ 3 ] ) ] ) −
(2 ∗ Int1 [ as . i n t e g e r (B [ 4 ] ) ] ) + ( Int1 [ as . i n t e g e r (B [ 5 ] ) ] ) −

(2 ∗ Int1 [ as . i n t e g e r (B [ 6 ] ) ] ) +
( Int1 [ as . i n t e g e r (B [ 7 ] ) ] ) − (2 ∗ Int1 [ as . i n t e g e r (B [ 8 ] ) ] ) +

(4 ∗ Int1 [ as . i n t e g e r (B [ 9 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp2D1 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N12) ) )
l <− l + 1

}
HExp2D1
min (HExp2D1)
max(HExp2D1)
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max(HExp2D1) − min (HExp2D1)
mean(HExp2D1)

df14 <− coords ( df sample1 , new . coords = ” s p h e r i c a l ” )
n i n t e r p o l a t i o n <− 500

x <− df14 $ theta
y <− df14 $ phi
z <− HExp2D1

s p l i n e i n t e r p o l a t e d <− i n t e r p (x , y , z , xo = seq ( min ( x ) , max( x ) ,
l ength = n i n t e r p o l a t i o n ) , yo = seq ( min ( y ) , max( y ) , l ength =
n i n t e r p o l a t i o n ) )

x . s i <− s p l i n e i n t e r p o l a t e d $x
y . s i <− s p l i n e i n t e r p o l a t e d $y
z . s i <− s p l i n e i n t e r p o l a t e d $z

nbcol <− 50
c o l o r <− rev ( rainbow ( nbcol , s t a r t = 0 , end = 1) )
z c o l <− cut ( z . s i , nbcol )

#Figure 4 . 6 ( a )−This f i g u r e g i v e s the p l o t o f $\hat{H}( t ) $ va lue s
from the warm reg i on

persp3d ( x . s i , y . s i , z . s i , x lab = expr e s s i on ( theta ) , y lab =
expr e s s i on ( varphi ) , z lab = ”H” , c o l = c o l o r [ z c o l ] )

# For a co ld r eg i on
# Figure 4 . 5 ( b)−This f i g u r e g i v e s the p l o t o f a sky window from

the co ld r eg i on
p lo t ( cmbdf , back . c o l = ” white ” , ylab = ”” , xlab = ”” , z lab = ”” )
CMB row <− (45045200)
win <− CMBWindow( x = df1 [CMB row , ] $x , y = df1 [CMB row , ] $y , z =

df1 [CMB row , ] $z , r = 0 . 2 3 )
p l o t ( win , c o l = ” red ” , lwd = 3)

cmbdf12 <− window ( cmbdf , new . window = win )
l ength ( pix ( cmbdf12 ) )
min ( cmbdf12$ I )
max( cmbdf12$ I )
avg2 <− mean( cmbdf12$ I )
df21 <− coords ( cmbdf12 , new . coords = ” c a r t e s i a n ” )
df sample2 <− df21 [ seq (1 , l ength ( pix ( cmbdf12 ) ) , by = ( length ( pix

( cmbdf12 ) ) / N pix ) ) , ]
df22 <− coords ( df sample2 , new . coords = ” c a r t e s i a n ” )
df23 <− data . frame ( cbind ( x = df22 $x , y = df22 $y , z = df22 $z ) )

r <− 0 .01
N21 <− l ength ( pix ( cmbdf12 ) )
N22 <− s q r t (N21)
gamma <− (−( l og ( ( s q r t ( p i ) ∗ r ) / 2) / l og ( ( N22) ) ) )
HExp2D2 <− rep (0 , N pix )
l <− 1
f o r (CMB row in 1 :N pix ) {

win1 <− CMBWindow( x = df23 [CMB row , ] $x , y = df23 [CMB row , ] $y
, z = df23 [CMB row , ] $z , r = 0 . 0 1 )

cmbdf1 <− window ( cmbdf , new . window = win1 )
N <− l ength ( pix ( cmbdf1 ) )
Pix number <− as . i n t e g e r ( pix ( cmbdf1 ) )
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to t <− 0
f o r ( i in 1 :N) {

A <− neighbours ( Pix number [ i ] , k )
B <− neighbours ( as . i n t e g e r (A[ 1 ] ) , k )
Increment1 <− ( ( ( Int1 [ as . i n t e g e r (B [ 1 ] ) ] ) − (2 ∗ Int1 [ as .

i n t e g e r (B [ 2 ] ) ] ) + ( Int1 [ as . i n t e g e r (B [ 3 ] ) ] ) −
(2 ∗ Int1 [ as . i n t e g e r (B [ 4 ] ) ] ) + ( Int1 [ as . i n t e g e r (B [ 5 ] ) ] ) −

(2 ∗ Int1 [ as . i n t e g e r (B [ 6 ] ) ] ) +
( Int1 [ as . i n t e g e r (B [ 7 ] ) ] ) − (2 ∗ Int1 [ as . i n t e g e r (B [ 8 ] ) ] ) +

(4 ∗ Int1 [ as . i n t e g e r (B [ 9 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp2D2 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N22) ) )
l <− l + 1

}
HExp2D2
min (HExp2D2)
max(HExp2D2)
max(HExp2D2) − min (HExp2D2)
mean(HExp2D2)

df24 <− coords ( df sample2 , new . coords = ” s p h e r i c a l ” )
n i n t e r p o l a t i o n <− 500

x <− df24 $ theta
y <− df24 $ phi
z <− HExp2D2

s p l i n e i n t e r p o l a t e d <− i n t e r p (x , y , z , xo = seq ( min ( x ) , max( x ) ,
l ength = n i n t e r p o l a t i o n ) , yo = seq ( min ( y ) , max( y ) , l ength =
n i n t e r p o l a t i o n ) )

x . s i <− s p l i n e i n t e r p o l a t e d $x
y . s i <− s p l i n e i n t e r p o l a t e d $y
z . s i <− s p l i n e i n t e r p o l a t e d $z

nbcol <− 50
c o l o r <− rev ( rainbow ( nbcol , s t a r t = 0 , end = 1) )
z c o l <− cut ( z . s i , nbcol )

#Figure 4 . 6 ( b)−This f i g u r e g i v e s the p l o t o f $\hat{H}( t ) $ va lue s
from the co ld r eg i on

persp3d ( x . s i , y . s i , z . s i , x lab = expr e s s i on ( theta ) , y lab =
expr e s s i on ( varphi ) , z lab = ”H” , c o l = c o l o r [ z c o l ] )

#For a mixture o f warm and co ld r e g i o n s
#Figure 4 . 5 ( c )−This f i g u r e g i v e s the p l o t o f a sky window from

the mixture r eg i on
p lo t ( cmbdf , back . c o l = ” white ” , ylab = ”” , xlab = ”” , z lab = ”” )
CMB row <− (25163208)
win <− CMBWindow( x = df1 [CMB row , ] $x , y = df1 [CMB row , ] $y , z =

df1 [CMB row , ] $z , r = 0 . 2 3 )
p l o t ( win , c o l = ” red ” , lwd = 3)

cmbdf13 <− window ( cmbdf , new . window = win )
l ength ( pix ( cmbdf13 ) )
min ( cmbdf13$ I )
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max( cmbdf13$ I )
avg3 <− mean( cmbdf13$ I )
df31 <− coords ( cmbdf13 , new . coords = ” c a r t e s i a n ” )
df sample3 <− df31 [ seq (1 , l ength ( pix ( cmbdf13 ) ) , by = ( length ( pix

( cmbdf13 ) ) / N pix ) ) , ]
df32 <− coords ( df sample3 , new . coords = ” c a r t e s i a n ” )
df33 <− data . frame ( cbind ( x = df32 $x , y = df32 $y , z = df32 $z ) )

r <− 0 .01
N31 <− l ength ( pix ( cmbdf13 ) )
N32 <− s q r t (N31)
gamma <− (−( l og ( ( s q r t ( p i ) ∗ r ) / 2) / l og ( ( N32) ) ) )
HExp2D3 <− rep (0 , N pix )
l <− 1
f o r (CMB row in 1 :N pix ) {

win1 <− CMBWindow( x = df33 [CMB row , ] $x , y = df33 [CMB row , ] $y
, z = df33 [CMB row , ] $z , r = 0 . 0 1 )

cmbdf1 <− window ( cmbdf , new . window = win1 )
N <− l ength ( pix ( cmbdf1 ) )
Pix number <− as . i n t e g e r ( pix ( cmbdf1 ) )
to t <− 0
f o r ( i in 1 :N) {

A <− neighbours ( Pix number [ i ] , k )
B <− neighbours ( as . i n t e g e r (A[ 1 ] ) , k )
Increment1 <− ( ( ( Int1 [ as . i n t e g e r (B [ 1 ] ) ] ) − (2 ∗ Int1 [ as .

i n t e g e r (B [ 2 ] ) ] ) + ( Int1 [ as . i n t e g e r (B [ 3 ] ) ] ) −
(2 ∗ Int1 [ as . i n t e g e r (B [ 4 ] ) ] ) + ( Int1 [ as . i n t e g e r (B [ 5 ] ) ] ) −

(2 ∗ Int1 [ as . i n t e g e r (B [ 6 ] ) ] ) +
( Int1 [ as . i n t e g e r (B [ 7 ] ) ] ) − (2 ∗ Int1 [ as . i n t e g e r (B [ 8 ] ) ] ) +

(4 ∗ Int1 [ as . i n t e g e r (B [ 9 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp2D3 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N32) ) )
l <− l + 1

}
HExp2D3
min (HExp2D3)
max(HExp2D3)
max(HExp2D3) − min (HExp2D3)
mean(HExp2D3)

df34 <− coords ( df sample3 , new . coords = ” s p h e r i c a l ” )
n i n t e r p o l a t i o n <− 500

x <− df34 $ theta
y <− df34 $ phi
z <− HExp2D3

s p l i n e i n t e r p o l a t e d <− i n t e r p (x , y , z , xo = seq ( min ( x ) , max( x ) ,
l ength = n i n t e r p o l a t i o n ) , yo = seq ( min ( y ) , max( y ) , l ength =
n i n t e r p o l a t i o n ) )

x . s i <− s p l i n e i n t e r p o l a t e d $x
y . s i <− s p l i n e i n t e r p o l a t e d $y
z . s i <− s p l i n e i n t e r p o l a t e d $z

nbcol <− 50
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c o l o r <− rev ( rainbow ( nbcol , s t a r t = 0 , end = 1) )
z c o l <− cut ( z . s i , nbcol )

#Figure 4 . 6 ( c )−This f i g u r e g i v e s the p l o t o f $\hat{H}( t ) $ va lue s
from the r eg i on with mixture o f temperatures

persp3d ( x . s i , y . s i , z . s i , x lab = expr e s s i on ( theta ) , y lab =
expr e s s i on ( varphi ) , z lab = ”H” , c o l = c o l o r [ z c o l ] )

#For a b o r d e r l i n e r eg i on
#Figure 4 . 5 ( d)−This f i g u r e g i v e s the p l o t o f a sky window from

the b o r d e r l i n e r eg i on
p lo t ( cmbdf , back . c o l = ” white ” , ylab = ”” , xlab = ”” , z lab = ”” )
CMB row <− (42662192)
win <− CMBWindow( x = df1 [CMB row , ] $x , y = df1 [CMB row , ] $y , z =

df1 [CMB row , ] $z , r = 0 . 2 3 )
p l o t ( win , c o l = ” red ” , lwd = 3)

cmbdf14 <− window ( cmbdf , new . window = win )
l ength ( pix ( cmbdf14 ) )
min ( cmbdf14$ I )
max( cmbdf14$ I )
avg4 <− mean( cmbdf14$ I )
df41 <− coords ( cmbdf14 , new . coords = ” c a r t e s i a n ” )
df sample4 <− df41 [ seq (1 , l ength ( pix ( cmbdf14 ) ) , by = ( length ( pix

( cmbdf14 ) ) / N pix ) ) , ]
df42 <− coords ( df sample4 , new . coords = ” c a r t e s i a n ” )
df43 <− data . frame ( cbind ( x = df42 $x , y = df42 $y , z = df42 $z ) )

r <− 0 .01
N41 <− l ength ( pix ( cmbdf14 ) )
N42 <− s q r t (N41)
gamma <− (−( l og ( ( s q r t ( p i ) ∗ r ) / 2) / l og ( ( N42) ) ) )
HExp2D4 <− rep (0 , N pix )
l <− 1
f o r (CMB row in 1 :N pix ) {

win1 <− CMBWindow( x = df43 [CMB row , ] $x , y = df43 [CMB row , ] $y
, z = df43 [CMB row , ] $z , r = 0 . 0 1 )

cmbdf1 <− window ( cmbdf , new . window = win1 )
N <− l ength ( pix ( cmbdf1 ) )
Pix number <− as . i n t e g e r ( pix ( cmbdf1 ) )
to t <− 0
f o r ( i in 1 :N) {

A <− neighbours ( Pix number [ i ] , k )
B <− neighbours ( as . i n t e g e r (A[ 1 ] ) , k )
Increment1 <− ( ( ( Int1 [ as . i n t e g e r (B [ 1 ] ) ] ) − (2 ∗ Int1 [ as .

i n t e g e r (B [ 2 ] ) ] ) + ( Int1 [ as . i n t e g e r (B [ 3 ] ) ] ) −
(2 ∗ Int1 [ as . i n t e g e r (B [ 4 ] ) ] ) + ( Int1 [ as . i n t e g e r (B [ 5 ] ) ] ) −

(2 ∗ Int1 [ as . i n t e g e r (B [ 6 ] ) ] ) +
( Int1 [ as . i n t e g e r (B [ 7 ] ) ] ) − (2 ∗ Int1 [ as . i n t e g e r (B [ 8 ] ) ] ) +

(4 ∗ Int1 [ as . i n t e g e r (B [ 9 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp2D4 [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N42) ) )
l <− l + 1

}
HExp2D4
min (HExp2D4)
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max(HExp2D4)
max(HExp2D4) − min (HExp2D4)
mean(HExp2D4)

df44 <− coords ( df sample4 , new . coords = ” s p h e r i c a l ” )
n i n t e r p o l a t i o n <− 500

x <− df44 $ theta
y <− df44 $ phi
z <− HExp2D4

s p l i n e i n t e r p o l a t e d <− i n t e r p (x , y , z , xo = seq ( min ( x ) , max( x ) ,
l ength = n i n t e r p o l a t i o n ) , yo = seq ( min ( y ) , max( y ) , l ength =
n i n t e r p o l a t i o n ) )

x . s i <− s p l i n e i n t e r p o l a t e d $x
y . s i <− s p l i n e i n t e r p o l a t e d $y
z . s i <− s p l i n e i n t e r p o l a t e d $z

nbcol <− 50
c o l o r <− rev ( rainbow ( nbcol , s t a r t = 0 , end = 1) )
z c o l <− cut ( z . s i , nbcol )

#Figure 4 . 6 ( d)−This f i g u r e g i v e s the p l o t o f $\hat{H}( t ) $ va lue s
from the b o r d e r l i n e r eg i on

persp3d ( x . s i , y . s i , z . s i , x lab = expr e s s i on ( theta ) , y lab =
expr e s s i on ( varphi ) , z lab = ”H” , c o l = c o l o r [ z c o l ] )

save . image ( f i l e = ” HolderExponent2Dall 2048 . RData” )

B.6 R code used to produce Figure 4.7 and results in

Table 4.5

The R code in this section was used to produce Figure 4.7 and to obtain results in Table 4.5

in Chapter 4. The code in this section visualizes the distribution of Ĥ(t) values for chosen

sky windows. It was also used to obtain p-values for Wilcoxon tests between chosen sky

windows as shown in Table 4.5 of Chapter 4.

l i b r a r y ( ggp lot2 )
load ( ” HolderExponent2Dall 2048 . RData” )

Test1 <− cbind (R = rep (1 , l ength (HExp2D1) ) , H = HExp2D1)
Test2 <− cbind (R = rep (2 , l ength (HExp2D2) ) , H = HExp2D2)
Test3 <− cbind (R = rep (3 , l ength (HExp2D3) ) , H = HExp2D3)
Test4 <− cbind (R = rep (4 , l ength (HExp2D4) ) , H = HExp2D4)
Hexp1 <− data . frame ( rbind ( Test1 , Test2 , Test3 , Test4 ) )
Hexp1$R <− f a c t o r ( Hexp1$R, l e v e l s = c ( ”1” , ”2” , ”3” , ”4” ) ,

l a b e l s = c ( ”warm” , ” co ld ” , ” mixture ” , ” b o r d e r l i n e ” ) )

#Figure 4.7−This f i g u r e g i v e s the p l o t o f the d i s t r i b u t i o n o f $\
hat{H}( t ) $ va lue s f o r chosen sky windows

ggp lot (Hexp1 , aes ( x = R, y = H, f i l l = R) ) + geom boxplot ( width
= 0 .45 , p o s i t i o n = p o s i t i o n dodge ( width = 0 . 9 ) , f a t t e n=NULL)
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+ labs ( x = ”Type o f sky window” , y = ”H” ) + s c a l e f i l l manual
(name = ”Type o f sky window” , l a b e l s = c ( ”warm” , ” co ld ” , ”
mixture ” , ” b o r d e r l i n e ” ) , va lue s = c ( ”#CC0033” , ”#FFCC33” , ”
#00AFBB” , ”#9933CC” ) ) + s t a t summary( fun = mean , geom = ”
e r ro rba r ” , aes (ymax = . . y . . , ymin = . . y . . ) , width = 0 .45 ,
l i n e t y p e = ” s o l i d ” , s i z e = 1) + theme bw( ) + theme ( legend .
p o s i t i o n = ”none” )

#Checking f o r s t a t i s t i c a l s i g n i f i c a n c e in d i f f e r e n c e o f means
#[1]− D i f f e r e n c e between warm and co ld r e g i o n s
#Checking the normal i ty assumption o f H( t ) va lue s
shap i ro . t e s t (HExp2D1)
shap i ro . t e s t (HExp2D2)

t . t e s t (HExp2D1 , HExp2D2)
wi l cox . t e s t (HExp2D1 , HExp2D2 , a l t e r n a t i v e = ”two . s ided ” )

#[2]− D i f f e r e n c e between warm and mixture r e g i o n s
#Checking the normal i ty assumption o f H( t ) va lue s
shap i ro . t e s t (HExp2D1)
shap i ro . t e s t (HExp2D3)

t . t e s t (HExp2D1 , HExp2D3)
wi l cox . t e s t (HExp2D1 , HExp2D3 , a l t e r n a t i v e = ”two . s ided ” )

#[3]− D i f f e r e n c e between warm and b o r d e r l i n e r e g i o n s
#Checking the normal i ty assumption o f H( t ) va lue s
shap i ro . t e s t (HExp2D1)
shap i ro . t e s t (HExp2D4)

t . t e s t (HExp2D1 , HExp2D4)
wi l cox . t e s t (HExp2D1 , HExp2D4 , a l t e r n a t i v e = ”two . s ided ” )

#[4]− D i f f e r e n c e between co ld and mixture r e g i o n s
#Checking the normal i ty assumption o f H( t ) va lue s
shap i ro . t e s t (HExp2D2)
shap i ro . t e s t (HExp2D3)

t . t e s t (HExp2D2 , HExp2D3)
wi l cox . t e s t (HExp2D2 , HExp2D3 , a l t e r n a t i v e = ”two . s ided ” )

#[5]− D i f f e r e n c e between co ld and b o r d e r l i n e r e g i o n s
#Checking the normal i ty assumption o f H( t ) va lue s
shap i ro . t e s t (HExp2D2)
shap i ro . t e s t (HExp2D4)

t . t e s t (HExp2D2 , HExp2D4)
wi l cox . t e s t (HExp2D2 , HExp2D4 , a l t e r n a t i v e = ”two . s ided ” )

#[6]− D i f f e r e n c e between mixture and b o r d e r l i n e r e g i o n s
#Checking the normal i ty assumption o f H( t ) va lue s
shap i ro . t e s t (HExp2D3)
shap i ro . t e s t (HExp2D4)

t . t e s t (HExp2D3 , HExp2D4)
wi l cox . t e s t (HExp2D3 , HExp2D4 , a l t e r n a t i v e = ”two . s ided ” )
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B.7 R code used to produce Figures 4.8a, 4.8b and results

in Table 4.6

The R code in this section was used to produce Figures 4.8a, 4.8b and to obtain results in

Table 4.6 in Chapter 4. The code in this section visualizes scaled intensities (Figure 4.8a)

and Ĥ(t) values (Figure 4.8b) of great circle/ring 4096. It was also used to obtain some

results in the analysis of CMB intensities near the equatorial region (Table 4.6) as shown

in Chapter 4.

l i b r a r y ( rcosmo )

#Generating CMB data frame with ns ide =2048
cmbdf <− CMBDataFrame( ”CMB map smica2048 . f i t s ” , o rde r ing=” r ing ” )
df1 <− coords ( cmbdf , new . coords = ” s p h e r i c a l ” )
#CMB coord−coo rd ina t e s o f the r e a l CMB data
CMB coord <− data . frame ( cbind ( theta1 = df1 $ theta , phi1=df1 $ phi ) )

#Stor ing the i n t e n s i t i e s o f p i x e l s i n to a vec tor
Int1 <− cmbdf$ I
Sca l e <− max( abs ( Int1 − mean( Int1 ) ) )
Int1 <− Int1 / max( abs ( Int1 ) )

#d−dimension
d <− 1
N s i d e <− 2048

#Equator r ing a n a l y s i s
#Checking the random p i x e l ”25161729” , where Ring no = 4096
#Equator r ing
CMB row <− (2 ∗ (N s i d e ) ∗ (N s i d e − 1) ) + (4 ∗ ( (N s i d e ) ˆ2) )+1

Ring i n f o <− data . frame ( Ring pix (25161729) )
Ring no <− Ring i n f o $Ring no [ 1 ]
Tot pixe lR <− Ring i n f o $Tot pixe lR [ 1 ]
MemberP <− Ring i n f o $MemberP
mean( cmbdf$ I [ MemberP ] )

#Once we know the r ing number o f the g iven p ixe l , f i n d i n g the
rad iu s o f the r ing in to which the g iven p i x e l be longs

#Let Rd be the r ing dev i a t i on from cente r
Rd <− abs ( Ring no − (2 ∗ N s i d e ) )

#Let R be the un i t rad iu s o f the sphere
R <− 1

#Let Rp be the rad iu s o f the r ing in to which the g iven p i x e l
be longs

Rp <− (R ∗ cos ( ( p i / (4 ∗ N s i d e ) ) ∗ Rd) )

#Finding the number o f p i x e l s in the ha l f−c i r c l e
N1 <− round ( ( Tot pixe lR / (2 ) ) , 0)

#Let lp be the d i s t ance between two p i x e l s in t h i s i n t e r v a l
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lp <− (1 / N1)

r <− 0 .08
gamma <− (−( l og ( r ) / l og (N1) ) )
Pix i n t <− as . i n t e g e r ( r / lp )
MemberP1 <− MemberP [ ( Pix i n t + 1) : ( ( Pix i n t ) + N1) ]
Int2 <− Int1 [ MemberP1 ]
df1 <− MemberP1 [ ( Pix i n t + 1) : ( N1 − ( Pix i n t ) ) ]
N2 <− l ength ( df1 )

HExp1De <− rep (0 , N2)
l <− 1
f o r (CMB pix in 1 :N2) {

N <− l ength ( seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int
, 1) )

A <− seq ( df1 [CMB pix ] − Pix int , df1 [CMB pix ] + Pix int , 1)
to t <− 0
f o r ( j in 1 : (N − 2) ) {

Increment1 <− ( ( ( Int1 [ as . i n t e g e r (A[ j ] ) ] ) − 2 ∗ ( Int1 [ as .
i n t e g e r (A[ j + 1 ] ) ] ) + ( Int1 [ as . i n t e g e r (A[ j + 2 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp1De [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N1) ) )
l <− l + 1

}
HExp1De
min (HExp1De)
max(HExp1De)
max(HExp1De) − min (HExp1De)
mean(HExp1De)

#Figure 4 . 8 ( a )−This f i g u r e g i v e s the p l o t o f s c a l e d CMB
i n t e n s i t i e s o f r i ng 4096

p lo t ( x = MemberP1 [ 7 2 1 : 3 7 6 9 ] , y = Int1 [ MemberP1 [ 7 2 1 : 3 7 6 9 ] ] , x lab
= ”CMB p i x e l ” , ylab = ” I ” , type = ” l ” , lwd = 1 , c o l = ” blue ” )

#Figure 4 . 8 ( b)−This f i g u r e g i v e s the p l o t o f H va lue s o f r i ng
4096

p lo t ( x = df1 [ 3 9 4 : 3 4 4 2 ] , y = HExp1De [ 3 9 4 : 3 4 4 2 ] , x lab = ”CMB p i x e l
” , y lab = ”H” , type = ” l ” , lwd = 1 , c o l = ” blue ” )

#The Holder exponent range which i s constant = HExp1De [ 8 2 6 : 1 4 7 0 ]
#The CMB p i x e l range in the o r i g i n a l f i l e = 25163208:25163852

#Table 4.6−This t a b l e g i v e s the a n a l y s i s o f CMB i n t e n s i t i e s near
the equator r eg i on

CMB coord abnormal <− CMB coord [25163208 :25163852 , ]
min ( cmbdf$ I [ 25163208 :25163852 ] )
max( cmbdf$ I [ 25163208 :25163852 ] )
max( cmbdf$ I [ 25163208 :25163852 ] ) − min ( Int1 [ 25163208 :25163852 ] )
mean( cmbdf$ I [ 25163208 :25163852 ] )
var ( cmbdf$ I [ 25163208 :25163852 ] )

min (HExp1De [ 8 2 6 : 1 4 7 0 ] )
max(HExp1De [ 8 2 6 : 1 4 7 0 ] )
max(HExp1De [ 8 2 6 : 1 4 7 0 ] ) − min (HExp1De [ 8 2 6 : 1 4 7 0 ] )
mean(HExp1De [ 8 2 6 : 1 4 7 0 ] )
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#Finding the g a l a c t i c coo rd ina t e s o f the unusual H range in one−
dimens iona l space

#Finding the f i r s t pa i r o f c oo rd ina t e s in the unusual H range
l 1 <− 65 .02
b1 <− (90 − 89 .99 )
#( l1 , b1 ) = ( 6 5 . 0 2 , 0 . 0 1 )

#Finding the l a s t pa i r o f c oo rd ina t e s in the unusual H range
l 2 <− 93 .32
b2 <− (90 − 89 .99 )
#( l2 , b2 ) = ( 9 3 . 3 2 , 0 . 0 1 )

#One−dimens iona l r eg i on exc lud ing the r eg i on o f unusual va lue s
Remain i n t <− c ( df1 [ 1 : 8 2 5 ] , df1 [ 1 4 7 1 : 3 4 4 2 ] )
min ( cmbdf$ I [ Remain i n t ] )
max( cmbdf$ I [ Remain i n t ] )
max( cmbdf$ I [ Remain i n t ] ) − min ( Int1 [ Remain i n t ] )
mean( cmbdf$ I [ Remain i n t ] )
var ( cmbdf$ I [ Remain i n t ] )

Remain H <− c (HExp1De [ 1 : 8 2 5 ] , HExp1De [ 1 4 7 1 : 3 4 4 2 ] )
min ( Remain H)
max( Remain H)
max( Remain H) − min ( Remain H)
mean( Remain H)
save . image ( f i l e = ” HolderExponent1De1 2048 .RData” )

B.8 R code used to produce Figures 4.8c, 4.8d and results

in Table 4.6

The R code in this section was used to produce Figures 4.8c, 4.8d and to obtain some

results in Table 4.6 in Chapter 4. The code in this section visualizes scaled intensities

(Figure 4.8c) and Ĥ(t) values (Figure 4.8d) of equator region. It was also used to obtain

some results in the analysis of CMB intensities near the equatorial region (Table 4.6) as

shown in Chapter 4.

l i b r a r y ( rcosmo )
l i b r a r y ( r g l )
l i b r a r y ( akima )

#Generating CMB data frame with ns ide =2048
cmbdf <− CMBDataFrame( ”CMB map smica2048 . f i t s ” )
df1 <− coords ( cmbdf , new . coords = ” c a r t e s i a n ” )
#CMB coord−coo rd ina t e s o f the r e a l CMB data
CMB coord <− data . frame ( cbind ( x = df1 $x , y = df1 $y , z = df1 $z ) )

#Stor ing the i n t e n s i t i e s o f p i x e l s i n to a vec tor
Int1 <− cmbdf$ I
Int1 <− Int1 / max( abs ( Int1 ) )

212



#k i s changing with ns ide . I f n s ide =2048=2ˆ(11)=2ˆ(k )
k <− 11

#d−dimension
d <− 2

#N pix i s the no . o f p i x e l s in which we compute the Holder
exponent va lue s

N pix <− 1000

#For the equator r eg i on
CMB row <− (23439718)
win <− CMBWindow( x = df1 [CMB row , ] $x , y = df1 [CMB row , ] $y , z =

df1 [CMB row , ] $z , r = 0 . 2 3 )
cmbdf11 <− window ( cmbdf , new . window = win )
l ength ( pix ( cmbdf11 ) )
min ( cmbdf11$ I )
max( cmbdf11$ I )
avg1 <− mean( cmbdf11$ I )
df11e <− coords ( cmbdf11 , new . coords = ” c a r t e s i a n ” )
df sample1e <− df11e [ seq (1 , l ength ( pix ( cmbdf11 ) ) , by = ( l ength (

pix ( cmbdf11 ) ) / N pix ) ) , ]
d f12e <− coords ( df sample1e , new . coords = ” c a r t e s i a n ” )
df13e <− data . frame ( cbind ( x = df12e $x , y = df12e $y , z=df12e $z ) )

r <− 0 .01
N11e <− l ength ( pix ( cmbdf11 ) )
N12e <− s q r t ( N11e )
gamma <− (−( l og ( ( s q r t ( p i ) ∗ r ) / 2) / l og ( ( N12e ) ) ) )
HExp2De <− rep (0 , N pix )
l <− 1
f o r (CMB row in 1 :N pix ) {

win1 <− CMBWindow( x = df13e [CMB row , ] $x , y = df13e [CMB row , ]
$y , z = df13e [CMB row , ] $z , r = 0 . 0 1 )

cmbdf1 <− window ( cmbdf , new . window = win1 )
N <− l ength ( pix ( cmbdf1 ) )
Pix number <− as . i n t e g e r ( pix ( cmbdf1 ) )
to t <− 0
f o r ( i in 1 :N) {

A <− neighbours ( Pix number [ i ] , k )
B <− neighbours ( as . i n t e g e r (A[ 1 ] ) , k )
Increment1 <− ( ( ( Int1 [ as . i n t e g e r (B [ 1 ] ) ] ) − (2 ∗ Int1 [ as .

i n t e g e r (B [ 2 ] ) ] ) + ( Int1 [ as . i n t e g e r (B [ 3 ] ) ] ) −
(2 ∗ Int1 [ as . i n t e g e r (B [ 4 ] ) ] ) + ( Int1 [ as . i n t e g e r (B [ 5 ] ) ] ) −

(2 ∗ Int1 [ as . i n t e g e r (B [ 6 ] ) ] ) +
( Int1 [ as . i n t e g e r (B [ 7 ] ) ] ) − (2 ∗ Int1 [ as . i n t e g e r (B [ 8 ] ) ] ) +

(4 ∗ Int1 [ as . i n t e g e r (B [ 9 ] ) ] ) ) ˆ2)
to t <− to t + Increment1

}
VNt <− to t
HExp2De [ l ] <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (VNt) / log (

N12e ) ) )
l <− l + 1

}
HExp2De
min (HExp2De)
max(HExp2De)
max(HExp2De) − min (HExp2De)
mean(HExp2De)
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df14e <− data . frame ( coords ( df sample1e , new . coords=” s p h e r i c a l ” ) )
n i n t e r p o l a t i o n <− 500

x <− df14e $ theta
y <− df14e $ phi
z <− HExp2De

s p l i n e i n t e r p o l a t e d <− i n t e r p (x , y , z , xo = seq ( min ( x ) , max( x ) ,
l ength = n i n t e r p o l a t i o n ) , yo = seq ( min ( y ) , max( y ) , l ength =
n i n t e r p o l a t i o n ) )

x . s i <− s p l i n e i n t e r p o l a t e d $x
y . s i <− s p l i n e i n t e r p o l a t e d $y
z . s i <− s p l i n e i n t e r p o l a t e d $z

nbcol <− 50
c o l o r <− rev ( rainbow ( nbcol , s t a r t = 0 , end = 1) )
z c o l <− cut ( z . s i , nbcol )

#Figure 4 . 8 ( d)−This f i g u r e g i v e s the p l o t o f $\hat{H}( t ) $ va lue s
from the equator r eg i on

persp3d ( x . s i , y . s i , z . s i , x lab = expr e s s i on ( theta ) , y lab =
expr e s s i on ( varphi ) , z lab = ”H” , c o l = c o l o r [ z c o l ] )

df sample2 <− df11e [ seq (1 , l ength ( pix ( cmbdf11 ) ) , by = ( l ength (
pix ( cmbdf11 ) ) / 100000) ) , ]

df15 <− data . frame ( coords ( df sample2 , new . coords = ” s p h e r i c a l ” ) )
n i n t e r p o l a t i o n <− 500

x <− df15 $ theta
y <− df15 $ phi
z <− df15 $ I / max( abs ( df15 $ I ) )

s p l i n e i n t e r p o l a t e d <− i n t e r p (x , y , z , xo = seq ( min ( x ) , max( x ) ,
l ength = n i n t e r p o l a t i o n ) , yo = seq ( min ( y ) , max( y ) , l ength =
n i n t e r p o l a t i o n ) )

x . s i <− s p l i n e i n t e r p o l a t e d $x
y . s i <− s p l i n e i n t e r p o l a t e d $y
z . s i <− s p l i n e i n t e r p o l a t e d $z

nbcol <− 50
c o l o r <− rev ( rainbow ( nbcol , s t a r t = 0 , end = 1) )
z c o l <− cut ( z . s i , nbcol )

#Figure 4 . 8 ( c )−This f i g u r e g i v e s the p l o t o f s c a l e d CMB
i n t e n s i t i e s o f the equator r eg i on

persp3d ( x . s i , y . s i , z . s i , x lab = expr e s s i on ( theta ) , y lab =
expr e s s i on ( varphi ) , z lab = ” I ” , c o l = c o l o r [ z c o l ] )

df16 <− coords ( cmbdf , new . coords = ” s p h e r i c a l ” )
df17 <− data . frame ( cbind ( theta1 = df16 $ theta , phi1 = df16 $ phi ) )
equ i r eg i on <− data . frame ( subset ( df17 , ( theta1 >1.50 & theta1

<1.60) & ( phi1 >1.34 & phi1 <1.50) , s e l e c t = c ( theta1 , phi1 ) ) )

min ( equi r eg i on $ phi1 )
max( equi r eg i on $ phi1 )
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min ( equi r eg i on $ theta1 )
max( equi r eg i on $ theta1 )

#Finding the g a l a c t i c coo rd ina t e s o f the unusual H range in two−
dimens iona l space

#Finding the f i r s t pa i r o f c oo rd ina t e s in the unusual H range o f
s p h e r i c a l su r face , theta1 =1.599772 , phi1 =1.499466

#Pix value = 23404309
l 1 <− 85 .91
b1 <− (90 − 91 .66 )
#( l1 , b1 ) = ( 8 5 . 9 1 , −1.66)

#Finding the second pa i r o f c oo rd ina t e s in the unusual H range
o f s p h e r i c a l su r face , theta1 =1.599772 , phi1 =1.340699

#Pix value = 23391936
l 2 <− 76 .82
b2 <− (90 − 91 .66 )
#( l2 , b2 ) = ( 7 6 . 8 2 , −1.66)

#Finding the th i r d pa i r o f c oo rd ina t e s in the unusual H range o f
s p h e r i c a l su r face , theta1 =1.500099 , phi1 =1.340699

#Pix value = 23564929
l 3 <− 76 .82
b3 <− (90 − 85 .95 )
#( l3 , b3 ) = ( 7 6 . 8 2 , 4 . 0 5 )

#Finding the f i n a l pa i r o f c oo rd ina t e s in the unusual H range o f
s p h e r i c a l su r face , theta1 =1.500099 , phi1 =1.499466

#Pix value = 24158424
l 4 <− 85 .91
b4 <− (90 − 85 .95 )
#( l4 , b4 ) = ( 8 5 . 9 1 , 4 . 0 5 )

#Table 4.6−This t a b l e g i v e s the a n a l y s i s o f CMB i n t e n s i t i e s near
the equator r eg i on

equidata t o t a l <− cbind ( coords ( df sample1e , new . coords = ”
s p h e r i c a l ” ) , H = HExp2De)

#Analys i s o f two−dimens iona l r eg i on around unusual va lue s
equidata unusual <− data . frame ( subset ( equidata to ta l , ( theta >

1 .50 & theta < 1 . 6 0 ) & ( phi > 1 .34 & phi < 1 . 5 0 ) , s e l e c t = c (
theta , phi , I , H) ) )

min ( equidata unusual $ I )
max( equidata unusual $ I )
max( equidata unusual $ I ) − min ( equidata unusual $ I )
avg eq <− mean( equidata unusual $ I )
var eq <− var ( equidata unusual $ I )

min ( equidata unusual $H)
max( equidata unusual $H)
max( equidata unusual $H) − min ( equidata unusual $H)
mean( equidata unusual $H)

#Analys i s o f two−dimens iona l r eg i on exc lud ing the r eg i on o f
unusual va lue s

win eq e x t e r i o r <− CMBWindow( theta = c (1 .599772 , 1 .599772 ,
1 .500099 , 1 .500099) , phi = c (1 .340699 , 1 .499466 , 1 .499466 ,
1 .340699) , s e t . minus = TRUE)
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CMB row <− (23439718)
win remain <− l i s t ( win eq e x t e r i o r , CMBWindow( x = df1 [CMB row , ]

$x , y = df1 [CMB row , ] $y , z = df1 [CMB row , ] $z , r = 0 . 2 3 ) )
cmbdf eqrem <− window ( cmbdf , new . window = win remain )
p l o t ( cmbdf eqrem )

equidata remain <− data . frame ( subset ( equidata to ta l , ! ( ( theta >
1 .50 & theta < 1 . 6 0 ) & ( phi > 1 .34 & phi < 1 . 5 0 ) ) , s e l e c t = c
( theta , phi , I , H) ) )

min ( equidata remain$ I )
max( equidata remain$ I )
max( equidata remain$ I ) − min ( equidata remain$ I )
avg eqr <− mean( equidata remain$ I )
var eqr <− var ( equidata remain$ I )

min ( equidata remain$H)
max( equidata remain$H)
max( equidata remain$H) − min ( equidata remain$H)
mean( equidata remain$H)
save . image ( f i l e = ”H−2Deqregion2−smica2048 . RData” )

B.9 R code used to produce Figure 4.9

The R code in this section was used to produce Figure 4.9 in Chapter 4. The code in this

section visualizes SMICA 2015 map with TMASK and the region of anomalies as shown

in Chapter 4.

l i b r a r y ( rcosmo )
l i b r a r y ( r g l )

cmbdf <− CMBDataFrame( ”CMB map smica2048 . f i t s ” , i n c lude . masks =
TRUE)

cmbdf$TMASK1 <− (1 − cmbdf$TMASK) + cmbdf$ I

#Figure 4 . 9 ( a )−This f i g u r e g i v e s the p l o t o f non−i npa in ted
Planck 2015 CMB map with the anomalous sky window

p lo t ( cmbdf , i n t e n s i t i e s = ”TMASK1” , back . c o l = ” white ” , ylab = ”
” , xlab = ”” , z lab = ”” )

win eq <− CMBWindow( theta = c (1 .599772 , 1 .599772 , 1 .500099 ,
1 .500099) , phi = c (1 .340699 , 1 .499466 , 1 .499466 , 1 .340699) )

p l o t ( win eq , c o l = ” white ” , lwd = 3)

cmbdf eq <− window ( cmbdf , new . window = win eq )
#Figure 4 . 9 ( b)−This f i g u r e g i v e s the p l o t o f the en larged

anomalous sky window
p lo t ( cmbdf eq , back . c o l = ” white ” , ylab=”” , xlab=”” , z lab=”” )
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B.10 R code used to produce Figure 4.10

The R code in this section was used to produce Figure 4.10 in Chapter 4. The code in this

section visualizes discrepancy maps using the Hölder exponent approach (Figure 4.10a)

and AC discrepancy approach (Figure 4.10b) for CMB intensities from SMICA 2015 as

shown in Chapter 4.

#Figure 4 . 1 0 ( b)
l i b r a r y ( rcosmo )
l i b r a r y (R. matlab )
l i b r a r y ( r g l )

CMB probe smica<−readMat ( ”ACDSMICA2015 L1500 HL1024 lag10 . mat” )
ACD smica <− CMB probe smica [ [ 1 ] ]
cmbdf <− CMBDataFrame( ns ide = 1024 , I = ACD smica [ 1 , ] , o rde r ing

= ” r ing ” )
cmbdf$ACD1 <− i f e l s e ( cmbdf$ I > q u a n t i l e ( cmbdf$ I , 0 . 9 5 ) , 1 , −1)

#Figure 4 . 1 0 ( b)−This f i g u r e g i v e s the p l o t o f the AC di sc repancy
map from SMICA 2015

p lo t ( cmbdf , i n t e n s i t i e s = ”ACD1” , back . c o l = ” white ” , ylab = ”” ,
xlab = ”” , z lab = ”” )

win eq <− CMBWindow( theta = c (1 .599772 , 1 .599772 , 1 .500099 ,
1 .500099) , phi = c (1 .340699 , 1 .499466 , 1 .499466 , 1 .340699) )

p l o t ( win eq , c o l = ” white ” , lwd = 3)

um <− matrix ( c (−0.98451775 , 0 .17489178 , −0.01173002 , 0 ,
−0.02096882 , −0.05107139 , 0 .99847484 , 0 , 0 .17402618 ,
0 .98326194 , 0 .05394801 , 0 , 0 , 0 , 0 , 1) , byrow = TRUE, nrow =
4 , nco l = 4)

view3d ( userMatr ix = um)
r g l . snapshot ( ” Figure410b . png” )

#Figure 10( a )
l i b r a r y ( rcosmo )
l i b r a r y ( r g l )
l i b r a r y ( RcppRoll )

#Generating CMB data frame with ns ide =2048
cmbdf <− CMBDataFrame( ”CMB map smica2048 . f i t s ” , o rde r ing=” r ing ” )

L <− l ength ( cmbdf$ I )
Int1 <− cmbdf$ I
Sca l e <− max( abs ( Int1 − mean( Int1 ) ) )
Int1 <− Int1 / max( abs ( Int1 ) )

N s i d e <− 2048
d <− 1
N1 <− 8192 / 2
#Let lp be the d i s t ance between two p i x e l s in t h i s i n t e r v a l
lp <− (1 / N1)

Pix i n t <− 30
r <− Pix i n t ∗ lp
gamma <− (−( l og ( r ) / l og (N1) ) )
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Increment1 <− rep (0 , L − 2)
Increment1 <− ( Int1 [ 1 : ( L−2) ] − 2 ∗ Int1 [ 2 : ( L−1) ] + Int1 [ 3 : L ] ) ˆ2

anomshi ft <− r o l l sum( Increment1 , 2 ∗ Pix i n t + 1)
anom <− rep (mean( anomshi ft ) , L)
anom <− rep (1 , L)
anom [ ( Pix i n t + 1) : ( L − 2 − ( Pix i n t ) ) ] <− anomshi ft

HExp1De <− rep (0 , L)
HExp1De <− (1 / 2) ∗ ( ( d ∗ (1 − gamma) ) − ( l og (anom) / log (N1) ) )
cmbdf$H <− HExp1De − mean(HExp1De)
cmbdf$H1 <− i f e l s e ( cmbdf$H < q u a n t i l e ( cmbdf$H, 0 . 0 5 ) , 1 , −1)

#Figure 4 . 1 0 ( a )−This f i g u r e g i v e s the p l o t o f the Holder
exponent map from SMICA 2015

p lo t ( cmbdf , i n t e n s i t i e s = ”H1” , back . c o l = ” white ” , ylab = ”” ,
xlab = ”” , z lab = ”” )

win eq <− CMBWindow( theta = c (1 .599772 , 1 .599772 , 1 .500099 ,
1 .500099) , phi = c (1 .340699 , 1 .499466 , 1 .499466 , 1 .340699) )

p l o t ( win eq , c o l = ” white ” , lwd = 3)

um <− matrix ( c (−0.98451775 , 0 .17489178 , −0.01173002 , 0 ,
−0.02096882 , −0.05107139 , 0 .99847484 , 0 , 0 .17402618 ,
0 .98326194 , 0 .05394801 , 0 , 0 , 0 , 0 , 1) , byrow = TRUE, nrow =
4 , nco l = 4)

view3d ( userMatr ix = um)
r g l . snapshot ( ” Figure410a . png” )

B.11 R code used to produce Figure 4.11

The R code in this section was used to produce Figure 4.11 in Chapter 4. The code in this

section visualizes Ĥ∆ discrepancy maps for CMB intensities from SMICA 2015 as shown

in Chapter 4.

l i b r a r y ( rcosmo )
l i b r a r y ( r g l )
l i b r a r y ( RcppRoll )

#Figure 4 . 1 1 ( a )
cmbdf$Had <− rep (0 , L)

cmbdf$Had [ 1 : ( L − 20) ] <− pmin (
abs ( cmbdf$H[ 1 : ( L − 20) ] − cmbdf$H[ 1 1 : ( L − 10) ] ) , abs ( cmbdf$H

[ 1 : ( L − 20) ] − cmbdf$H[ 1 2 : ( L − 9) ] ) , abs ( cmbdf$H[ 1 : ( L − 20) ]
− cmbdf$H[ 1 3 : ( L − 8) ] ) ,

abs ( cmbdf$H[ 1 : ( L − 20) ] − cmbdf$H[ 1 4 : ( L − 7) ] ) ,
abs ( cmbdf$H[ 1 : ( L − 20) ] − cmbdf$H[ 1 5 : ( L − 6) ] ) , abs ( cmbdf$H

[ 1 : ( L − 20) ] − cmbdf$H[ 1 6 : ( L − 5) ] ) ,
abs ( cmbdf$H[ 1 : ( L − 20) ] − cmbdf$H[ 1 7 : ( L − 4) ] ) ,
abs ( cmbdf$H[ 1 : ( L − 20) ] − cmbdf$H[ 1 8 : ( L − 3) ] ) , abs ( cmbdf$H

[ 1 : ( L − 20) ] − cmbdf$H[ 1 9 : ( L − 2) ] ) ,
abs ( cmbdf$H[ 1 : ( L − 20) ] − cmbdf$H[ 2 0 : ( L − 1) ] ) ,
abs ( cmbdf$H[ 1 : ( L − 20) ] − cmbdf$H[ 2 1 : ( L) ] ) )
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cmbdf$H2 <− i f e l s e ( cmbdf$Had > q u a n t i l e ( cmbdf$Had , 0 . 9 5 ) , 1 , −1)

#Figure 4 . 1 1 ( a )−This f i g u r e g i v e s the p l o t o f the ${\hat{H}} {\
Delta }$ d i sc repancy map from SMICA 2015

p lo t ( cmbdf , i n t e n s i t i e s = ”H2” , back . c o l = ” white ” , ylab = ”” ,
xlab = ”” , z lab = ”” )

win eq <− CMBWindow( theta = c (1 .599772 , 1 .599772 , 1 .500099 ,
1 .500099) , phi = c (1 .340699 , 1 .499466 , 1 .499466 , 1 .340699) )

p l o t ( win eq , c o l = ” white ” , lwd = 3)
view3d ( userMatr ix = um)
r g l . snapshot ( ” Figure411a . png” )

#Figure 4 . 1 1 ( b)
cmbdf1 <− CMBDataFrame( ”CMB map smica2048 . f i t s ” , i n c lude . masks =

TRUE, orde r ing = ” r ing ” )
cmbdf$H3 <− cmbdf$H2 ∗ pmax( cmbdf1$TMASK, cmbdf$H2)

#Figure 4 . 1 1 ( b)−This f i g u r e g i v e s the p l o t o f the ${\hat{H}} {\
Delta }$ d i s c r e p a n c i e s over TMASK from SMICA 2015

p lo t ( cmbdf , i n t e n s i t i e s = ”H3” , back . c o l = ” white ” , ylab = ”” ,
xlab = ”” , z lab = ”” )

win eq <− CMBWindow( theta = c (1 .599772 , 1 .599772 , 1 .500099 ,
1 .500099) , phi = c (1 .340699 , 1 .499466 , 1 .499466 , 1 .340699) )

p l o t ( win eq , c o l = ” black ” , lwd = 3)
view3d ( userMatr ix = um)
r g l . snapshot ( ” Figure411b . png” )
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Appendix C

Codes used to produce figures and

simulations in Chapter 5

C.1 R code used to produce Figure 5.1

The R code in this section was used to produce Figure 5.1 in Chapter 5. The code in this

section visualizes a realization of a cyclic long-memory time series (Figure 5.1a), plot of

its periodogram (Figure 5.1b), sample covariance function (Figure 5.1c) and the wavelet

coefficients (Figure 5.1d) as shown in Chapter 5.

pck <− c ( ” waveslim ” , ”wmtsa” , ” la tex2exp ” )
lapp ly ( pck , l i b r a r y , cha rac t e r . only = TRUE)

s e t . seed (654321)

Ts <− 1000
n0 <− min ( f l o o r (Ts/ 10) , 100)
n <− Ts + 2 ∗ n0

#The func t i on dwpt . sim s imu la t e s a s ea sona l p e r s i s t e n t p roce s s (
c y c l i c long−memory time s e r i e s ) us ing the d i s c r e t e wavelet
packet trans form (DWPT)

ts1 <− dwpt . sim (n , ”mb16” , 0 . 4 , 0 . 1 , e p s i l o n = 0 .001 )

#Figure 5 . 1 ( a )−This f i g u r e g i v e s the p l o t o f a r e a l i z a t i o n o f a
c y c l i c long−memory time s e r i e s

p l o t ( ts1 , type = ” l ” , xlab = ”Time” , ylab = ” Value ” )

#Figure 5 . 1 ( b)−This f i g u r e g i v e s the p l o t o f the periodogram
correspond ing to the s imulated c y c l i c long−memory time s e r i e s

p l o t ( 0 : ( n/ 2) /n , per ( t s1 ) , type = ” l ” , xlab = ” Frequency ” , ylab =
” Value ” )

#Figure 5 . 1 ( c )−This f i g u r e g i v e s the p l o t o f the sample
covar iance func t i on

ac f ( ts1 , l ag . max = 100 , ylim = c (−0.6 , 1) , main = ” ” )
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#The func t i on wavCWT( ) computes the cont inuous wavelet trans form
o f a time s e r i e s

t s1 . cwt <− wavCWT( ts1 )

#Figure 5 . 1 ( d) − This f i g u r e g i v e s the p l o t o f the wavelet
c o e f f i c i e n t s

p l o t ( t s1 . cwt )

C.2 Maple codes used in Section 5.6 of Chapter 5

The following code gives the Shannon father wavelet and the plot of the Shannon father

wavelet respectively.

sfw := p i e c e w i s e ( t \neq 0 , s i n ( Pi∗ t ) / ( Pi∗ t ) , t = 0 , 1)

p l o t s [ d i s p l a y ] ( p l o t ( sfw , t = −2∗Pi . . 2∗Pi ) , p l o t t o o l s [ l i n e ] ( [ 0 ,
0 ] , [ 0 , 1 ] ) , c o l o r = red )

The following code gives the Meyer father wavelet and the plot of the Meyer father

wavelet respectively.

Ps i fmf := p i e c e w i s e ( abs ( lambda ) <= (2 ∗Pi ) / 3 , 1 , (2 ∗Pi ) /3 <= abs
( lambda ) and abs ( lambda ) <= (4 ∗Pi ) / 3 , cos ( Pi/2∗ ( (3 ∗abs ( lambda
) ) / (2 ∗Pi ) − 1) ) , 0)

p l o t ( Ps i fmf )

The following code was used to evaluate the integrals in Example 5.2 of Chapter 5.

i n t (1 , lambda = (−2∗Pi ) /3 . . (2 ∗Pi ) / 3) + 2∗ i n t ( abs ( cos ( Pi/2∗ ( (3 ∗
abs ( lambda ) ) / (2 ∗Pi ) − 1) ) ) ˆ2 , lambda = (2 ∗Pi ) /3 . . (4 ∗Pi ) / 3)

i n t (2 ∗lambda ˆ2 , lambda = (−2∗Pi ) /3 . . (2 ∗Pi ) / 3) + 2∗ i n t (2 ∗lambda
ˆ2∗abs ( cos ( Pi/2∗ ( (3 ∗abs ( lambda ) ) / (2 ∗Pi ) − 1) ) ) ˆ2 , lambda = (2
∗Pi ) /3 . . (4 ∗Pi ) / 3)

i n t (1 , lambda = (−2∗Pi ) /3 . . (2 ∗Pi ) / 3) + 2∗ i n t ( abs ( cos ( Pi/2∗ ( (3 ∗
abs ( lambda ) ) / (2 ∗Pi ) − 1) ) ) ˆ4 , lambda = (2 ∗Pi ) /3 . . (4 ∗Pi ) / 3)

The following code gives the plot of the Mexican hat wavelet and the plot of the Fourier

transform of the Mexican hat wavelet respectively.

p l o t (2 ∗(−t ˆ2 + 1) ∗exp(−t ˆ2/ 2) / ( Pi ˆ0 .25 ∗ s q r t (3 ) ) , t = −6 . . 6)
p l o t ( s q r t (8 ) ∗Pi ˆ0 .25 ∗lambdaˆ2∗exp(−lambdaˆ2/ 2) / s q r t (3 ) , lambda =

−6 . . 6)
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The following code evaluates the values of the constants c2 and c3.

c2 := i n t ( abs ( s q r t (8 ) ∗Pi ˆ(−0.25) ∗lambdaˆ2∗exp(−lambdaˆ2/ 2) / s q r t
(3 ) ) ˆ2 , lambda = −10 . . 10)

c3 := i n t ( 2 . ∗lambdaˆ2∗abs ( s q r t (8 ) ∗Pi ˆ(−0.25) ∗lambdaˆ2∗exp(−
lambdaˆ2/ 2) / s q r t (3 ) ) ˆ2 , lambda = −10 . . 10)

C.3 R code used to produce Figure 5.3

The R code in this section was used to produce Figure 5.3 in Chapter 5. The code in this

section visualizes the plot of the asymptotic correlation of ŝ0 and α̂ based on the Shannon

father wavelet case (Figure 5.3a) and the plot of the asymptotic correlation of ŝ0 and α̂

based on the Meyer father wavelet case (Figure 5.3b) respectively.

#Figure 5 . 3 ( a )
l i b r a r y ( r g l )
l i b r a r y ( la tex2exp )

#Let s be the s e a s o n a l i t y parameter
s <− seq (1 , 2 , l ength . out = 100)

#Let a be the long−memory parameter
a <− seq ( 0 . 0 1 , 1/ 2 , l ength . out = 100)

#This func t i on computes the c o r r e l a t i o n o f the components o f the
asymptotic vec to r

zcoor <− f unc t i on ( s , a ) {
( ( ( ( 1 − (4 ∗ a ∗ log ( s ) ) ) ∗ a ∗ (4 ∗ a + 2) ∗ s ˆ(−1) ) / (4 ∗ (

p i ˆ2) ) ) − ( (18 ∗ a ∗ s ˆ3 ∗ log ( s ) ) / ( p i ˆ4) ) ) / ( s q r t ( ( ( ( ( 1 − (4
∗ a ∗ log ( s ) ) ) ˆ2) / (4 ∗ ( p i ˆ2) ) ) + ((18 ∗ ( s ˆ4) ∗ ( l og ( s ) ) ˆ2) /
( p i ˆ4) ) ) ∗ ( ( ( ( a ˆ2) ∗ ( (4 ∗ a + 2) ˆ2) ∗ ( s ˆ(−2) ) ) / (4 ∗ ( p i ˆ2)
) ) + ((18 ∗ ( a ˆ2) ∗ ( s ˆ2) ) / ( p i ˆ4) ) ) ) )

}

rho <− outer ( s , a , zcoor )

#This j e t . c o l o r s func t i on i n t e r p o l a t e s ’ red ’ and ’ yel low ’ c o l o r s
and c r e a t e s a new c o l o r p a l e t t e

j e t . c o l o r s <− colorRampPalette ( c ( ” red ” , ” ye l low ” ) )
pa l <− j e t . c o l o r s (100)
c o l . ind <− cut ( rho , 100)

um <− matrix ( c (−0.5988361 , 0 .8008499 , 0 .005933772 , 0 ,
−0.1430069 , −0.1142176 , 0 .983109236 , 0 , 0 .7880003 , 0 .5878722 ,
0 .182924747 , 0 , 0 , 0 , 0 , 1) , 4 , 4 , byrow = TRUE)

view3d ( userMatr ix = um)

#Figure 5 . 3 ( a ) − This f i g u r e g i v e s the p l o t o f the asymptotic
c o r r e l a t i o n o f hat{ s {0}} and hat {\ alpha } based on the
Shannon f a t h e r wavelet

persp3d ( s , a , rho , c o l = pal [ c o l . ind ] , box = FALSE, xlab = ” ” ,
ylab = ” ” , z lab = ” ” )
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#These commands add axes l a b e l s o f { s {0}} , {\ alpha } and {\ rho}
to t h e i r cor re spond ing axes

mtext3d (TeX( ” s 0” ) , ”x−+” , l i n e = 3)
mtext3d (TeX( ”$\\ alpha $” ) , ”y+−” , l i n e = 3)
mtext3d (TeX( ”$\\ rho$” ) , ” z+−” , l i n e = 3)

#This g i v e s Figure 5 . 3 ( a ) in the PNG format .
r g l . snapshot ( ” Fig53a . png” )

#Figure 5 . 3 ( b)
l i b r a r y ( r g l )
l i b r a r y ( la tex2exp )

#Let s be the s e a s o n a l i t y parameter
s <− seq (1 , 2 , l ength . out = 100)

#Let a be the long−memory parameter
a <− seq (0 , 1/ 2 , l ength . out = 100)

#This func t i on computes the c o r r e l a t i o n o f the components o f the
asymptotic vec to r

zcoor <− f unc t i on ( s , a ) {
( ( ( ( ( 1 − (4 ∗ a ∗ log ( s ) ) ) ∗ a ∗ (4 ∗ a + 2) ∗ ( s ˆ(−1) ) ) / (4

∗ ( p i ˆ2) ) ) − ( (8 ∗ a ∗ s ˆ3 ∗ log ( s ) ) / ( ( ( 8 ∗ p i ∗ ( p i ˆ2 − 2) ) /
9) ˆ2) ) ) / ( s q r t ( ( ( ( ( 1 − (4 ∗ a ∗ log ( s ) ) ) ˆ2) / (4 ∗ p i ˆ2) ) + ((8
∗ s ˆ4 ∗ ( l og ( s ) ) ˆ2) / ( ( ( 8 ∗ p i ∗ ( p i ˆ2 − 2) ) / 9) ˆ2) ) ) ∗ ( ( ( aˆ2
∗ ( (4 ∗ a + 2) ˆ2) ∗ ( s ˆ(−2) ) ) / (4 ∗ p i ˆ2) ) + ((8 ∗ aˆ2 ∗ s ˆ2) /
( ( ( 8 ∗ p i ∗ ( p i ˆ2 − 2) ) / 9) ˆ2) ) ) ) ) )

}

rho <− outer ( s , a , zcoor )

#This j e t . c o l o r s func t i on i n t e r p o l a t e s ’ red ’ and ’ yel low ’ c o l o r s
and c r e a t e s a new c o l o r p a l e t t e

j e t . c o l o r s <− colorRampPalette ( c ( ” red ” , ” ye l low ” ) )
pa l <− j e t . c o l o r s (100)
c o l . ind <− cut ( rho , 100)

um <− matrix ( c (−0.5988361 , 0 .8008499 , 0 .005933772 , 0 ,
−0.1430069 , −0.1142176 , 0 .983109236 , 0 , 0 .7880003 , 0 .5878722 ,
0 .182924747 , 0 , 0 , 0 , 0 , 1) , 4 , 4 , byrow = TRUE)

view3d ( userMatr ix = um)

#Figure 5 . 3 ( b) − This f i g u r e g i v e s the p l o t o f the asymptotic
c o r r e l a t i o n o f hat{ s {0}} and hat {\ alpha } based on the Meyer
f a t h e r wavelet

persp3d ( s , a , rho , c o l = pal [ c o l . ind ] , x lab = ” ” , box = FALSE,
ylab = ” ” , z lab = ” ” )

#These commands add axes l a b e l s o f { s {0}} , {\ alpha } and {\ rho}
to t h e i r cor re spond ing axes

mtext3d (TeX( ” s 0” ) , ”x−+” , l i n e = 3)
mtext3d (TeX( ”$\\ alpha $” ) , ”y+−” , l i n e = 3)
mtext3d (TeX( ”$\\ rho$” ) , ” z+−” , l i n e = 3)

#This g i v e s Figure 5 . 3 ( b) in the PNG format
r g l . snapshot ( ” Fig53b . png” )
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C.4 R code used to produce Figure 5.4

The R code in this section was used to obtain Figure 5.4 in Chapter 5. The code in this

section visualizes the Q-Q plots of the first two normalised statistics S1 (Figure 5.4a) and

S2 (Figure 5.4b) for j = 7, the plot of the density ellipsoids of (S1, S2) (Figure 5.4c) and the

plot of the density ellipsoids and realizations of the random vector√mj

(
(̂s0, α)j − (s0, α)

)
(Figure 5.4d).

i f ( ! requireNamespace ( ”BiocManager” , q u i e t l y = TRUE) ) {
i n s t a l l . packages ( ”BiocManager” )

}
BiocManager : : i n s t a l l ( ”MassSpecWavelet ” )
pck <− c ( ”polynom” , ” orthopolynom ” , ”pracma” , ”MassSpecWavelet ” ,

” qboxplot ” , ” la tex2exp ” , ” RcppRoll ” , ” ggp lot2 ” , ” dplyr ” , ”
ggpubr ” )

l app ly ( pck , l i b r a r y , cha rac t e r . only = TRUE)
s e t . seed (8654321)

M <− 10
k <− 100
fN <− 7

#Timing code
ptm <− proc . time ( )

de l t a1 mat1 <− matrix ( nco l = fN , nrow = k ∗ M)
de l ta2 mat1 <− matrix ( nco l = fN − 1 , nrow = k ∗ M)

c2 <− 6.283185
c3 <− 31.41593

f o r (m in 1 :M) {
pr in t (m)
#Values used f o r s imu la t i on s
Ts <− 1e+07
kt <− 100
k <− 100
n0 <− 100

#Parameters o f Gegenbauer time s e r i e s
u1 <− 0 .3
d1 <− 0 .1
alpha <− d1
s0 <− acos ( u1 )

#M u l t i p l i e r to normal ize h (0 )=1
A <− s q r t ( (2 ∗ p i ∗ 4ˆ(2 ∗ alpha ) ∗ ( s i n ( s0 / 2) ) ˆ(4 ∗ alpha ) )

/ ( s0 ˆ(4 ∗ alpha ) ) )

#Gegenbauer polynomial
g coe f <− f unc t i on ( i ) {

polynomial . va lue s ( gegenbauer . po lynomia ls ( i − 1 , d1 ) , u1 )
[ [ i ] ]
}
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gcoe f <− Vecto r i z e ( gcoe f )
c o e f <− seq ( n0 + 1)
c o e f <− gcoe f ( c o e f )
coe f 1 <− rev ( c o e f )
n <− Ts/ kt + 200 + n0

#Creat ing e p s i l o n :
e p s i l 0 <− rnorm (n , mean = 0 , sd = 1)

#Simulat ing Gengenbauer random proce s s
t s1 <− seq (Ts/ kt + 200)
t s1 <− A ∗ r o l l sum( e p s i l 0 , weights = coef1 , normal ize =

FALSE, a l i g n = ” l e f t ” )

#Range o f s c a l e s and the number o f s c a l e s
ns <− 11

#Ca l cu l a t ing the cont inuous wavelet trans form (CWT) o f
Gengenbauer random proce s s

t s1 . cwt <− cwt ( ts1 , s c a l e s = seq (1 , 11 , 1) , wavelet = ”mexh”
)
a1 <− as . matrix ( t s1 . cwt [ 1 0 1 : ( Ts/ kt + 100) ] )
a j <− seq (1 , 11 , 1)
squ a j <− ( a j ) ˆ(−2)

#Ca l cu l a t ing a j ˆ(−2)− a j +1ˆ(−2)
denominator <− squ a j [ 1 : ( fN − 1) ] − squ a j [ 2 : ( fN ) ]

de l t a1 mat <− matrix ( nco l = fN , nrow = k )
d e l t a 2 j <− rep (0 , fN )
de l t a2 mat <− matrix ( nco l = fN − 1 , nrow = k )

ts1cwtmatr <− matrix (0 , Ts − 100 , 11)
#Creat ing matrix with wavelet c o e f f i c i e n t s
t s10 <− seq (Ts/ kt + 100)
f o r (N in 1 : k ) {

e p s i l <− rnorm (Ts/ kt + 100 + n0 , mean = 0 , sd = 1)
ts10 <− A ∗ r o l l sum( e p s i l , we ights = coef1 , normal ize =

FALSE)
ts10 . cwt <− as . matrix ( cwt ( ts10 , s c a l e s = seq (1 , 11 , 1) ,

wavelet = ”mexh” ) )
ts1cwtmatr [ 1 : ( Ts/ kt − 100) , ] <− t s10 . cwt [ 1 0 1 : ( Ts/ kt ) , ]
t s1 <− t s10
f o r ( j in 1 : ( kt − 1) ) {

e p s i l <− c ( e p s i l [ ( l ength ( e p s i l ) − n0 + 1) : l ength (
e p s i l ) ] , rnorm (Ts/kt , mean = 0 , sd = 1) )

t s10 <− A ∗ r o l l sum( e p s i l , we ights = coef1 ,
normal ize = FALSE)

t s1 <− c ( t s1 [ ( l ength ( t s1 ) − 200 + 1) : l ength ( t s1 ) ] ,
t s10 [ 1 : ( Ts/ kt ) ] )

t s10 . cwt <− as . matrix ( cwt ( ts1 , s c a l e s = seq (1 , 11 ,
1) , wavelet = ”mexh” ) )

ts1cwtmatr [ ( Ts/ kt − 100 + 1 + ( j − 1) ∗ Ts/ kt ) : ( Ts/
kt − 100 + j ∗ Ts/ kt ) , ] <− t s10 . cwt [ 1 0 1 : ( Ts/ kt + 100) , ]

}
ts1cwtmatr <− ( ts1cwtmatr ∗ ts1cwtmatr )

#Ca l cu l a t ing d e l t a j ˆ (2)− d e l t a j +1ˆ(2)
f o r ( j in 1 : ( fN ) ) {
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d e l t a 2 j [ j ] <− round (mean( ts1cwtmatr [ 1 : min (Ts − 100 ,
200 ∗ ( j < 3) + ( a j [ j ] ) ˆ9) , j ] ) , 5)

}
de l ta1 mat [N, ] <− d e l t a 2 j
numerator <− d e l t a 2 j [ 1 : ( fN − 1) ] − d e l t a 2 j [ 2 : fN ]

#Ca l cu l a t ing Delta ( d e l t a j . ˆ ( 2 ) )
d e l a t r e s u l t <− numerator/ denominator
de l t a2 mat [N, ] <− d e l a t r e s u l t

de l t a1 mat1 [ ( 1 + k ∗ (m − 1) ) : (m ∗ k ) , ] <− de l ta1 mat
de l t a2 mat1 [ ( 1 + k ∗ (m − 1) ) : (m ∗ k ) , ] <− de l ta2 mat

}
rm( l i s t = s e t d i f f ( l s ( ) , c ( ”ptm” , ”m” , ”M” , ”k” , ” fN” , ” c2 ” ,

” c3 ” , ” de l t a1 mat1” , ” de l t a2 mat1” , ” s mat1” , ” alpha mat1” ) ) )
}

t imetaken1 <− ( proc . time ( ) − ptm) /60
save . image ( f i l e = ”Longmemory es t imate s1 . RData” )
load ( ”Longmemory es t imate s1 . RData” )

u1 <− 0 .3
d1 <− 0 .1
alpha <− d1
s0 <− acos ( u1 )
de l t a1 mat <− de l ta1 mat1
de l t a2 mat <− de l ta2 mat1

#Boxplots o f bar ( d e l t a ) j ˆ (2) , bar ( Delta ( d e l t a j . ˆ ( 2 ) ) ) , s ˆ hat 0 j
and alpha ˆ hat j

q1 <− 1

#Boxplot o f bar ( d e l t a ) j ˆ (2) f o r j =1 ,2 ,3 ,4 ,5 ,6 ,7
qboxplot ( data . frame ( de l t a1 mat [ , q1 : ( fN ) ] ) , probs = c ( 0 . 2 5 , 0 . 5 ,

0 . 7 5 ) , range = 0 , c o l = ” bisque ” , xaxt = ”n” , medcol = ”
bisque ” , main = TeX( ” Boxplot o f $\\bar {\\ d e l t a } { j \\ cdot
}ˆ{ (2) }$” ) )

m1 <− apply ( de l t a1 mat [ , q1 : ( fN ) ] , 2 , mean)
po in t s ( ( q1 : ( fN ) ) , m1, c o l = ” red ” , pch = 18)
a x i s (1 , at = ( q1 : ( fN ) ) , l a b e l s = ( q1 : ( fN ) ) )
a b l i n e (h = c2 ∗ s0 ˆ(−4 ∗ alpha ) , c o l = ” red ” , l t y = 3)

#Boxplot o f bar ( Delta ( d e l t a j . ˆ ( 2 ) ) ) f o r j =1 ,2 ,3 ,4 ,5 ,6
qboxplot ( data . frame ( de l t a2 mat [ , q1 : ( fN − 1) ] ) , probs = c ( 0 . 2 5 ,

0 . 5 , 0 . 7 5 ) , range = 0 , c o l = ” bi sque ” , xaxt = ”n” , medcol = ”
bisque ” , main = TeX( ” Boxplot o f $\\Delta \\bar {\\ d e l t a } { j \\
cdot }ˆ{ (2) }$” ) )

m1 <− apply ( de l t a2 mat [ , q1 : ( fN − 1) ] , 2 , mean)
po in t s ( ( q1 : ( fN − 1) ) , m1, c o l = ” red ” , pch = 18)
a x i s (1 , at = ( q1 : ( fN − 1) ) , l a b e l s = ( q1 : ( fN − 1) ) )
a b l i n e (h = c3 ∗ alpha ∗ s0 ˆ(−4 ∗ alpha − 2) , c o l = ” red ” , l t y =

3)

Ts <− 1e+07

shap i ro . t e s t ( s q r t (Ts − 100) ∗ ( ( de l t a1 mat1 [ , ( fN ) ] ) / c2 − mean ( (
de l t a1 mat1 [ , ( fN ) ] ) / c2 ) ) )

shap i ro . t e s t ( s q r t (Ts − 100) ∗ ( ( de l t a2 mat1 [ , ( fN − 1) ] ) / c3 −
mean ( ( de l t a2 mat1 [ , ( fN − 1) ] ) / c3 ) ) )
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#Figure 5 . 4 ( a ) − This f i g u r e g i v e s the Q−Q plo t o f S1
ggqqplot ( s q r t (Ts − 100) ∗ ( ( de l t a1 mat1 [ , ( fN ) ] ) / c2 − mean ( (

de l t a1 mat1 [ , ( fN ) ] ) / c2 ) ) )

#Figure 5 . 4 ( b) − This f i g u r e g i v e s the Q−Q plo t o f S2
ggqqplot ( s q r t (Ts − 100) ∗ ( ( de l t a2 mat1 [ , ( fN − 1) ] ) / c3 − mean ( (

de l t a2 mat1 [ , ( fN − 1) ] ) / c3 ) ) )

p <− cbind ( ( de l t a1 mat1 [ , ( fN − 3) ] ) /c2 , ( de l t a2 mat1 [ , ( fN − 1)
] ) / c3 )

sum(p [ , 2 ] > 0)
sum(p [ , 2 ] < 0 .5 ∗ p [ , 1 ] ˆ 2 )
sum(p [ , 1 ] > 0)
sum(p [ , 1 ] < 1)

p <− p [ p [ , 2 ] > 0 & p [ , 2 ] < 0 .5 ∗ p [ , 1 ] ˆ2 , ]

m10 <− mean(p [ , 1 ] )
m20 <− mean(p [ , 2 ] )

pnorm <− cbind ( s q r t (Ts − 100) ∗ (p [ , 1 ] − m10) , s q r t (Ts − 100) ∗
(p [ , 2 ] − m20) )

sigma <− cov (pnorm)

#Computing the c o r r e l a t i o n matrix
cor (pnorm)

sigma . inv <− s o l v e ( sigma , matrix ( c (1 , 0 , 0 , 1) , 2 , 2) )

e l l i p s e <− f unc t i on ( s , t ) {
u <− c ( s , t ) − c (0 , 0)
u %∗% sigma . inv %∗% u/2

}

#Figure 5 . 4 ( c ) − This f i g u r e g i v e s the dens i ty e l l i p s o i d o f ( S1 ,
S2 )

p l o t (pnorm , pch = 20 , xlab = TeX( ”$S 1$” ) , ylab = TeX( ”$S 2$” ) )
po in t s (0 , 0 , c o l = ” red ” , l t y = 2 , pch = 18 , cex = 3)

n <− 200
x <− seq (min (pnorm [ , 1 ] ) , max(pnorm [ , 1 ] ) , l ength . out = n)
y <− seq (min (pnorm [ , 2 ] ) , max(pnorm [ , 2 ] ) , l ength . out = n)
z <− mapply ( e l l i p s e , as . vec to r ( rep (x , n) ) , as . vec to r ( outer ( rep

(0 , n) , y , ‘+ ‘) ) )
contour (x , y , matrix ( z , n , n ) , l e v e l s = ( 0 : 1 0 ) , c o l = t e r r a i n .

c o l o r s (11) , add = TRUE)

q <− p [ , 2 ] /p [ , 1 ]

hat s 0 j <− exp ( 0 . 5 ∗ lambertWp ( log (1 /p [ , 1 ] ) / (2 ∗ q ) ) )
s t r ( hat s 0 j )

hat a lpha j <− q ∗ ( exp ( lambertWp ( log (1 /p [ , 1 ] ) / (2 ∗ q ) ) ) )
s t r ( hat a lpha j )

m30 <− mean( hat s 0 j )
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m40 <− mean( hat a lpha j )

pnorm1 <− cbind ( s q r t (Ts − 100) ∗ ( hat s 0 j − m30) , s q r t (Ts − 100)
∗ ( hat a lpha j − m40) )

sigma1 <− cov ( pnorm1 )
sigma . inv1 <− s o l v e ( sigma1 , matrix ( c (1 , 0 , 0 , 1) , 2 , 2) )

e l l i p s e <− f unc t i on ( s , t ) {
u <− c ( s , t ) − c (0 , 0)
u %∗% sigma . inv1 %∗% u/2

}

#Figure 5 . 4 ( d) − This f i g u r e g i v e s the dens i ty e l l i p s o i d o f s q r t
{m j } ( ( hat{ s 0 , alpha } j ) ( s 0 , alpha ) )

p l o t (pnorm1 , pch = 20 , xlab = TeX( ”$\\ s q r t {m j }(\\ hat{ s } {0 , j}−s
0) $” ) , y lab = TeX( ”$\\ s q r t {m j }(\\ hat {\\ alpha } j−\\alpha ) $” )

, mgp = c ( 2 . 6 , 1 , 0) )
po in t s (0 , 0 , c o l = ” red ” , l t y = 2 , pch = 18 , cex = 3)

n <− 200
x <− seq (min ( pnorm1 [ , 1 ] ) , max( pnorm1 [ , 1 ] ) , l ength . out = n)
y <− seq (min ( pnorm1 [ , 2 ] ) , max( pnorm1 [ , 2 ] ) , l ength . out = n)
z <− mapply ( e l l i p s e , as . vec to r ( rep (x , n) ) , as . vec to r ( outer ( rep

(0 , n) , y , ‘+ ‘) ) )
contour (x , y , matrix ( z , n , n ) , l e v e l s = ( 0 : 1 0 ) , c o l = t e r r a i n .

c o l o r s (11) , add = TRUE)
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Appendix D

Parallel computing using Gadi of

NCI

This appendix consists of the parallelized version of the R code which was used to ob-

tain Figure 5.4. The serial version of the code was parallelized using the R packages fore-

ach (Microsoft and Weston (2020)), parallel (R Core Team (2020)) and doParallel

(Microsoft Corporation and Weston (2020)). Parallel computing was done using the super

computer Gadi of National Computational Infrastructure (NCI). NCI is the major high

performance computing facility of Australia that has the largest highly-integrated super

computer and physically located in the Australian National University, Canberra. Gadi

is the latest most powerful super computer of NCI launched in November 2019, which fa-

cilitates parallel computing. Numerous simulation studies were carried out using Gadi by

setting the cluster size, ncpus (number of central processing units) = 1, 2, ..., 20 to observe

the improvement in the execution time of the code. The speedup coefficients were cal-

culated using the formula speedup = serial execution time/parallel execution time. The

Table D.1 shows a summary of the carried out simulations by increasing the ncpus.

Figure D.1 depicts the variation in the speedup coefficients with the increasing number

of cpus and it confirms that it follows Amdahl’s law (Gustafson (1988)). That is, the

speedup coefficient increases with the increasing number of cpus up to 10 and then it

stays approximately constant. Therefore, for simulations related to results in Figure 5.4,

it is enough to use ncpus=10.
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No. of cpus Elapsed time
(in hours)

Elapsed time
(in seconds) Speedup

1 07:03:55 2.5435 · 104 1.00
2 03:33:06 1.2786 · 104 1.99
3 02:51:56 1.0316 · 104 2.47
4 02:21:36 8.4960 · 103 2.99
5 01:29:46 5.3860 · 103 4.72
6 01:28:14 5.2940 · 103 4.80
7 01:32:12 5.5320 · 103 4.60
8 01:29:08 5.3480 · 103 4.76
9 01:26:15 5.1750 · 103 4.91
10 00:47:10 2.8300 · 103 8.99
11 00:47:34 2.8540 · 103 8.91
12 00:48:54 2.9340 · 103 8.67
13 00:43:45 2.6250 · 103 9.69
14 00:46:57 2.8170 · 103 9.03
15 00:45:12 2.7120 · 103 9.38
16 00:46:43 2.8030 · 103 9.07
17 00:45:50 2.7500 · 103 9.25
18 00:44:23 2.6630 · 103 9.55
19 00:44:06 2.6460 · 103 9.61
20 00:43:44 2.6240 · 103 9.69

Table D.1: Analysis of execution time over the number of cpus

Figure D.1: Improvement in the speed of execution with the number of cpus

#Using p a r a l l e l computation to run the loop where M= 1 , . . . , 1 0 .
pck <− c ( ”polynom” , ” orthopolynom ” , ”pracma” , ”MassSpecWavelet ” ,

” qboxplot ” , ” la tex2exp ” , ” RcppRoll ” , ” f o r each ” , ” p a r a l l e l ” , ”
d o P a r a l l e l ” )

l app ly ( pck , l i b r a r y , cha rac t e r . only = TRUE)

M <− 10
k <− 100
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fN <− 7

#Timing code
ptm <− proc . time ( )

de l t a1 mat1 <− matrix ( nco l = fN , nrow = k ∗ M)
de l ta2 mat1 <− matrix ( nco l = fN − 1 , nrow = k ∗ M)

c2 <− 6.283185
c3 <− 31.41593

#Ca l cu l a t ing the no . o f c o r e s
numCores <− detectCores ( )

#Creat ing a c l u s t e r o f 10
c l <− makeCluster (10)
d o P a r a l l e l : : r e g i s t e r D o P a r a l l e l ( c l )
s e t . seed (8654321 , kind = ”L ’ Ecuyer−CMRG” )

#Loading the l i b r a r i e s to each c l u s t e r
c lusterEvalQ ( c l , pck <− c ( ”polynom” , ” orthopolynom ” , ”pracma” , ”

MassSpecWavelet ” , ” qboxplot ” , ” la tex2exp ” , ” RcppRoll ” , ”
f o r each ” , ” p a r a l l e l ” , ” d o P a r a l l e l ” ) )

c lusterEvalQ ( c l , l app ly ( pck , l i b r a r y , cha rac t e r . only = TRUE) )

#Parameters o f Gegenbauer time s e r i e s
u1 <− 0 .3
d1 <− 0 .1
alpha <− d1
s0 <− acos ( u1 )

#Stor ing the parameter va lue s in each c l u s t e r
c lusterEvalQ ( c l , {

u1 <− 0 .3
d1 <− 0 .1
alpha <− d1
s0 <− acos ( u1 )

})

A <− s q r t ( (2 ∗ p i ∗ 4ˆ(2 ∗ alpha ) ∗ ( s i n ( s0 / 2) ) ˆ(4 ∗ alpha ) ) / ( s0
ˆ(4 ∗ alpha ) ) )

c lusterEvalQ ( c l , A <− s q r t ( (2 ∗ p i ∗ 4ˆ(2 ∗ alpha ) ∗ ( s i n ( s0 / 2) )
ˆ(4 ∗ alpha ) ) / ( s0 ˆ(4 ∗ alpha ) ) ) )

#Gegenbauer polynomial
c lusterEvalQ ( c l , g coe f <− f unc t i on ( i ) {

polynomial . va lue s ( gegenbauer . po lynomia ls ( i −1, d1 ) , u1 ) [ [ i ] ]
})

#Evaluat ing the func t i on on each c l u s t e r
c lusterEvalQ ( c l , g coe f <− Vecto r i z e ( gcoe f ) )

out <− f o r each (m = 1 :M, . combine = rbind ) %dopar% {
pr in t (m)
#Values used f o r s imu la t i on s
Ts <− 1e+07
kt <− 100
k <− 100
n0 <− 100
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A <− s q r t ( (2 ∗ p i ∗ 4ˆ(2 ∗ alpha ) ∗ ( s i n ( s0 / 2) ) ˆ(4 ∗ alpha ) )
/ ( s0 ˆ(4 ∗ alpha ) ) )

gcoe f <− f unc t i on ( i ) {
polynomial . va lue s ( gegenbauer . po lynomia ls ( i − 1 , d1 ) , u1 )

[ [ i ] ]
}
gcoe f <− Vecto r i z e ( gcoe f )
c o e f <− seq ( n0 + 1)
c o e f <− gcoe f ( c o e f )
coe f 1 <− rev ( c o e f )
n <− Ts/ kt + 200 + n0

#Creat ing e p s i l o n
e p s i l 0 <− rnorm (n , mean = 0 , sd = 1)

#Simulat ing Gengenbauer random proce s s
t s1 <− seq (Ts/ kt + 200)
t s1 <− A ∗ r o l l sum( e p s i l 0 , weights = coef1 , normal ize =

FALSE, a l i g n = ” l e f t ” )
ns <− 11

#Ca l cu l a t ing the cont inuous wavelet trans form (CWT) o f
Gengenbauer random proce s s

t s1 . cwt <− cwt ( ts1 , s c a l e s = seq (1 , 11 , 1) , wavelet = ”mexh”
)
a1 <− as . matrix ( t s1 . cwt [ 1 0 1 : ( Ts/ kt + 100) ] )
a j <− seq (1 , 11 , 1)
squ a j <− ( a j ) ˆ(−2)

denominator <− squ a j [ 1 : ( fN − 1) ] − squ a j [ 2 : ( fN ) ]
de l t a1 mat <− matrix ( nco l = fN , nrow = k )
d e l t a 2 j <− rep (0 , fN )
de l t a2 mat <− matrix ( nco l = fN − 1 , nrow = k )

ts1cwtmatr <− matrix (0 , Ts − 100 , 11)
t s10 <− seq (Ts/ kt + 100)
f o r (N in 1 : k ) {

e p s i l <− rnorm (Ts/ kt + 100 + n0 , mean = 0 , sd = 1)
ts10 <− A ∗ r o l l sum( e p s i l , we ights = coef1 , normal ize =

FALSE)
ts10 . cwt <− as . matrix ( cwt ( ts10 , s c a l e s = seq (1 , 11 , 1) ,

wavelet = ”mexh” ) )
ts1cwtmatr [ 1 : ( Ts/ kt − 100) , ] <− t s10 . cwt [ 1 0 1 : ( Ts/ kt ) , ]
t s1 <− t s10

f o r ( j in 1 : ( kt − 1) ) {
e p s i l <− c ( e p s i l [ ( l ength ( e p s i l ) − n0 + 1) : l ength (

e p s i l ) ] , rnorm (Ts/kt , mean = 0 , sd = 1) )
t s10 <− A ∗ r o l l sum( e p s i l , we ights = coef1 ,

normal ize = FALSE)
t s1 <− c ( t s1 [ ( l ength ( t s1 ) − 200 + 1) : l ength ( t s1 ) ] ,

t s10 [ 1 : ( Ts/ kt ) ] )
t s10 . cwt <− as . matrix ( cwt ( ts1 , s c a l e s = seq (1 , 11 ,

1) , wavelet = ”mexh” ) )
ts1cwtmatr [ ( Ts/ kt − 100 + 1 + ( j − 1) ∗ Ts/ kt ) : ( Ts/

kt − 100 + j ∗ Ts/ kt ) , ] <− t s10 . cwt [ 1 0 1 : ( Ts/ kt + 100) , ]
}
ts1cwtmatr <− ( ts1cwtmatr ∗ ts1cwtmatr )
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#Calcu l a t ing d e l t a j ˆ (2)− d e l t a j +1ˆ(2)
f o r ( j in 1 : ( fN ) ) {

d e l t a 2 j [ j ] <− round (mean( ts1cwtmatr [ 1 : min (Ts − 100 ,
200 ∗ ( j < 3) + ( a j [ j ] ) ˆ9) , j ] ) , 5)

}
de l ta1 mat [N, ] <− d e l t a 2 j
numerator <− d e l t a 2 j [ 1 : ( fN − 1) ] − d e l t a 2 j [ 2 : fN ]

#Ca l cu l a t ing Delta ( d e l t a j . ˆ ( 2 ) )
d e l a t r e s u l t <− numerator/ denominator
de l t a2 mat [N, ] <− d e l a t r e s u l t
de l t a1 mat1 [ ( 1 + k ∗ (m − 1) ) : (m ∗ k ) , ] <− de l ta1 mat
de l t a2 mat1 [ ( 1 + k ∗ (m − 1) ) : (m ∗ k ) , ] <− de l ta2 mat

}
rm( l i s t = s e t d i f f ( l s ( ) , c ( ”ptm” , ”m” , ”M” , ”k” , ” fN” , ” c2 ” ,

” c3 ” , ” de l t a1 mat1” , ” de l t a2 mat1” , ” s mat1” , ” alpha mat1” ) ) )
re turn ( cbind ( de l t a1 mat1 [ ( 1 + k ∗ (m − 1) ) : (m ∗ k ) , ] ,

d e l t a2 mat1 [ ( 1 + k ∗ (m − 1) ) : (m ∗ k ) , ] ) )
}

#S p l i t t i n g the two matr i ce s i n to de l t a1 mat1 and de l ta2 mat1
de l t a1 mat1 <− out [ , 1 : fN ]
de l t a2 mat1 <− out [ , ( fN + 1) : ( 2 ∗ fN − 1) ]

t imetaken1 <− ( proc . time ( ) − ptm) /60
save . image ( f i l e = ”Longmemory es t imates110 . RData” )

#Clos ing the c l u s t e r
p a r a l l e l : : s t opC lus t e r ( c l )
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Hölder index of a Gaussian process. Annales de l’Institut Henri Poincaré (B)
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