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Abstract
Context. Urinary nitrogen excretion by grazing cattle causes environmental pollution. Selecting for cows with a

lower concentration of urinary nitrogen excretion may reduce the environmental impact. While urinary nitrogen
excretion is difficult to measure, blood urea nitrogen (BUN), mid-infrared spectroscopy (MIR)-predicted BUN
(MBUN), which is predicted from MIR spectra measured on milk samples, and milk urea nitrogen (MUN) are
potential indicator traits. Australia and New Zealand have increasing datasets of cows with urea records, with 18 120
and 15 754 cows with urea records in Australia and New Zealand respectively. A collaboration between Australia and
New Zealand could further increase the size of the dataset by sharing data.

Aims.Our aims were to estimate genetic parameters for urea traits within country, and genetic correlations between
countries to gauge the benefit of having a joint reference population for genomic prediction of an indicator trait that is
potentially suitable for selection to reduce urinary nitrogen excretion for both countries.

Methods.Genetic parameters were estimated within country (Australia and New Zealand) in Holstein, Jersey and a
multibreed population, for BUN, MBUN and MUN in Australia and MUN in New Zealand, using high-density
genotypes. Genetic correlations were also estimated between the urea traits recorded in Australia and MUN in New
Zealand. Analyses used the first record available for each cow or within days-in-milk (DIM) intervals.

Key results.Heritabilities ranged from 0.08 to 0.32 for the various urea traits. Higher heritabilities were obtained for
Jersey than for Holstein, and for the New Zealand cows than for the Australian cows. While urea traits were highly
correlated within Australia (0.71–0.94), genetic correlations between Australia and New Zealand were small to
moderate (0.08–0.58).

Conclusions. Our results showed that the heritability for urea traits differs among trait, breed, and country. While
urea traits are highly correlated within country, genetic correlations between urea traits in Australia and MUN in New
Zealand were only low to moderate.

Implications. Further study is required to identify the underlying causes of the difference in heritabilities observed,
to compare the accuracies of different reference populations, and to estimate genetic correlations between urea traits and
other traits such as fertility and feed intake. Larger datasets may help estimate genetic correlations more accurately
between countries.
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Introduction

Urinary nitrogen excretion by grazing cattle causes nitrogen to
leach into the groundwater, resulting in environmental
pollution, such as deteriorating water quality (O’Callaghan
et al. 2019). One strategy to reduce the impact of cattle on the
environment could be to select for cows with a lower urinary
nitrogen excretion. While urinary nitrogen excretion is a

difficult trait to measure and therefore not likely to be
available on a large enough number of cows to implement
genomic prediction, milk urea nitrogen (MUN) and blood urea
nitrogen (BUN) have been considered as good indicators of
nitrogen utilisation and may be good alternatives. BUN and
MUN are highly related, because of the free diffusion of urea
from blood to milk (Gustafsson and Palmquist 1993). Several
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studies have shown a linear phenotypic relationship between
BUN and MUN and urine nitrogen excretion (Kauffman and
St-Pierre 2001; Kohn et al. 2002, 2005), and that increased
feed intake results in increased urea (measured as BUN, MUN
or urinary nitrogen excretion).

Both MUN (Beatson et al. 2019; Bobbo et al. 2020) and
BUN (Luke et al. 2019a; van den Berg et al. 2021) have low to
moderate heritabilities, ranging from 0.10 to 0.22, indicating
potential for use as criteria for genetic selection. Because
MUN is measured from a milk sample, it could potentially
be available on all cows with milk records. BUN requires a
more difficult and costly blood sample, which limits the
number of records. However, BUN can be accurately
predicted using mid-infrared spectroscopy of a milk sample
(Ho et al. 2021). Our previous study showed that mid-infrared
spectroscopy-predicted BUN (MBUN) and BUN are highly
correlated, with a genetic correlation close to 1 (van den Berg
et al. 2021), and may therefore be considered as the same trait.
Similar to MUN, MBUN could be available on all cows with
milk records.

Further increases in the size of the reference population
with urea records may be achieved by combining datasets of
multiple countries and breeds. Australia (AU) and New
Zealand (NZ) have increasing datasets of cows with urea
records, collected on Holstein, Jersey, and a substantial
number of crossbred cows. Combining all those records in
one large reference population will maximise the size of the
reference population and may lead to increases in prediction
accuracy. Haile-Mariam et al. (2020) showed that including
multi-breed AU cows to the multi-breed NZ reference
population increased prediction accuracy for production
traits of NZ validation bulls. However, previous studies
have shown that multi breed genomic prediction can be
challenging, because linkage disequilibrium is conserved
over shorter distances across breeds than within breeds
(Lund et al. 2016). Consequently, combining data from
multiple breeds in a joint reference population may be
beneficial only if populations are closely related.
Furthermore, the benefit of sharing data across countries,
even when the populations are highly related, may be
limited if traits are measured differently. In this context, an
estimation of genetic correlations of the same trait in different

populations is essential to assess the potential benefits of
sharing reference populations.

The objective of our study was to estimate genetic
parameters of BUN, MBUN and MUN in AU and of MUN
in NZ, and to estimate genetic correlations between MUN in
NZ and BUN, MBUN and MUN in AU to gauge the benefit of
having a joint reference population for genomic prediction of
an indicator trait that is suitable for selection to reduce urinary
nitrogen excretion for both countries.

Materials and methods

Phenotypes
Data used for our analyses contained dairy cows from AU and
NZ. The major breeds in the dataset were Holstein and Jersey,
although a large number of crossbred cows were also included.
In total, our dataset consisted of 18 120 AU cows (12 660
Holstein, 1857 Jersey and 3603 other breeds and crossbred)
and 24 437 NZ cows (3044 Holstein, 1946 Jersey and 19 426
other breeds and crossbred), with the exact number used in
each analysis varying per trait as reported in Table 1. The traits
analysed were concentration of BUN, MBUN, concentrations
of MUN, milk yield (MY), fat yield (FY), protein yield (PY),
fat percentage (F%) and protein percentage. Trait units were
mmol/L for BUN and MBUN, mg/dL for MUN and kg for
MY, FY and PY. Average values and standard errors within
country and breed are displayed in Table 2.

The AU data collection is described in more detail by van
den Berg et al. (2021), although since that study, a larger
number of records has become available and were used in the
current study. Blood and milk samples were used to obtain
BUN, MBUN and MUN. All procedures were conducted in
accordance with the Australian Code of Practice for the Care
and Use of Animals for Scientific Purposes. Approval to
proceed was granted by the Agricultural Research and
Extension Animal Ethics Committee of the Department of
Jobs, Precincts and Regions Animal Ethics Committee
(Attwood, Victoria, Australia), and the Tasmanian
Department of Primary Industries, Parks, Water and
Environment (Animal Biosecurity and Welfare Branch, New
Town, Tasmania, Australia). Prediction equations developed
by Luke et al. (2019b) and Ho et al. (2021) were used to

Table 1. Number of individuals with records for each trait
ALL, all breeds and crossbreds; HOL, Holstein; JER, Jersey; BUN, blood urea nitrogen; MBUN, blood urea nitrogen
estimated using mid-infrared spectroscopy; MUN, milk urea nitrogen; MY, milk yield; FY, fat yield; PY, protein

yield; F%, fat percentage; P%, protein percentage

Trait Australia New Zealand
ALL HOL JER ALL HOL JER

BUN 2098 1569 59A 0 0 0
MBUN 18 120 12 660 1857 0 0 0
MUN 18 120 12 660 1857 15 754 2259 1524
MY 15 697 11 003 1688 24 283 3046 1938
FY 15 692 10 998 1688 24 274 3044 1937
PY 15 696 11 002 1688 24 274 3044 1937
F% 15 692 10 998 1688 24 437 3065 1946
P% 15 696 11 002 1688 24 437 3065 1946

ANot analysed separately because of the small number of records.
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estimate MBUN, while MUN was derived using the
commercial prediction equation from Bentley Instruments.
Phenotypes for production traits were provided by
DataGene (Bundoora, Victoria, Australia).

A general description of NZ phenotype data has been
provided by Beatson et al. (2019). NZ records for MUN were
obtained from milk samples that were collected during routine
herd testing by CRVAmbreed. MUNwas derived using a FOSS
MilkOscan FT + analyser (FOSS, Hilleroed, Denmark).

The majority of cows in the dataset had multiple records.
However, we restricted our analyses to the first parity recorded
for each cow to reduce the computational demand. If a cow had
multiple records within a parity, we either used the earliest
record, or selected one record within a days-in-milk (DIM)
interval. DIM intervals used were less than 50 DIM, between
50 and 100 DIM, 100–150 DIM and more than 150
DIM. Table 3 shows the number of records available within
each DIM interval.

Genotypes
The majority of AU cows were genotyped on a variety of low-
to medium-density custom single-nucleotide polymorphism
(SNP) chips (with an overlap of ~7000 or more SNPs with
the Illumina Bovine 50K chip (50 K)), and 154 and 37 AU
cows were genotyped with the 50 K and Illumina Bovine HD
beadChip (HD) panel respectively. NZ cows were genotyped
on various low-density (~8500–25 000 SNP) chips. All
animals genotyped at a lower density were imputed to the
HD panel by using Fimpute v3 (Sargolzaei et al. 2014).
Imputation was performed in two steps. First, animals
genotyped with low density and custom chips were imputed
up to the 50 K chip. Subsequently, animals were imputed from
50 K to HD. More details on the genotyping and imputation
can be found in van den Berg et al. (2021).

Principal-component analyses and ADMIXTURE
For the multibreed analyses, three principal-component
analyses were performed using the AU dataset, the NZ
dataset and the joint AU–NZ dataset. We used GCTA
(Yang et al. 2011) to perform the principal-component
analyses, and used the first principal component (PC1) as
covariate in the multibreed analyses to account for the

proportion of Holstein and Jersey. To compare how well
PC1 accounted for the population structure, we used
ADMIXTURE (Alexander et al. 2009) to estimate ancestry
and test the number of discrete populations (between 1 and 4)
that resulted in the lowest cross-validation error. Subsequently,
we compared the ancestry results estimated with ADMIXTURE
with PC1.

Genetic parameters
Genetic parameters were estimated using AIREMLF90 (Misztal
et al. 2014b) for different subsets of the dataset in the following
analyses:

* WCWB = within country, within breed: AU Holstein,
AU Jersey, NZ Holstein and NZ Jerseys

* WCMB = within country, multi breed: all AU cows and all
NZ cows

* ACMB = across country, multi breed: all cows in the dataset

In the WCWB analyses, heritabilities of and genetic
correlations among all traits were estimated within breed,
using the first record available for each cow. WCMB analyses
estimated heritabilities of and genetic correlations among traits
using the first record for each cow, as well as heritabilities within
DIM intervals, and genetic correlations in the same trait
measured during different DIM intervals. ACMB analyses
were undertaken to estimate genetic correlations between urea
traits in AU and MUN in NZ, using either the first record
available or within DIM intervals.

Heritabilities and genetic correlations were estimated using
univariate and bivariate animal models respectively. All

Table 3. Number of individuals with records within days-in-milk
(DIM) intervals

BUN, blood urea nitrogen; MBUN, blood urea nitrogen estimated using
mid-infrared spectroscopy; MUN, milk urea nitrogen

DIM Australia Australia Australia New Zealand
BUN MBUN MUN MUN

<50 2098 10 379 10 379 4849
50–100 0 7538 7538 8402
100–150 0 5780 5780 8035
>150 0 9920 9920 13 485

Table 2. Mean and standard deviation within country and breed
BUN, blood urea nitrogen; MBUN, blood urea nitrogen estimated using mid-infrared spectroscopy; MUN, milk urea

nitrogen; MY, milk yield; FY, fat yield; PY, protein yield; F%, fat percentage; P%, protein percentage

Trait Unit Australia Australia New Zealand New Zealand
Holstein Jersey Holstein Jersey

BUN mmol/L 5.6 ± 2.1 4.2 ± 1.3 – –

MBUN mmol/L 4.9 ± 1.9 5.8 ± 1.6 – –

MUN mg/dL 6.5 ± 5.0 7.9 ± 4.9 10.8 ± 4.4 10.8 ± 4.4
MY kg 27.6 ± 9.3 21.0 ± 5.9 19.7 ± 8.9 13.2 ± 6.0
FY kg 1.0 ± 0.4 1.0 ± 0.3 0.8 ± 0.3 0.7 ± 0.3
PY kg 0.9 ± 0.3 0.8 ± 0.2 0.7 ± 0.3 0.6 ± 0.2
F% % 3.9 ± 0.9 4.6 ± 0.7 4.5 ± 1.0 6.1 ± 1.4
P% % 3.3 ± 0.4 3.7 ± 0.4 4.0 ± 0.5 4.6 ± 0.7
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models included a genomic relationship matrix constructed
following VanRaden Method 1 (VanRaden 2008) and fixed
effects of herd, test year, test month and linear covariates of
DIM, age and, in the multibreed analyses, PC1. Because of the
large number of records in the ACMB analyses using the first
record of each cow, the algorithm for proven and young was
used to reduce the computational demand (Misztal et al.
2014a), as implemented in the AIREMLF90 software. First,
we computed the number of individuals explaining 95% of the
variance of the genomic relationship matrix. Subsequently,
this number of individuals were randomly selected as core
animals.

Results

Differences among breeds and countries

Milk urea nitrogen was higher in NZ than in AU
(Table 2), with an average of 6.5, 7.9, 10.8 and 10.8 mg/dL
in AU Holstein, AU Jersey, NZ Holstein and NZ Jersey
respectively. While Holstein and Jersey had the same
average MUN in NZ, the average MUN was slightly higher
in AU Jersey than in AU Holstein. This was similar for
MBUN, while the average BUN was larger in AU Holstein
than in AU Jersey. While the average in AU is lower than
in NZ, some herd–test date averages in AU are similar to
those in NZ (Fig. 1).

PC1 separates Holstein and Jerseys, with crossbreds and
other breeds in between (Fig. 2). ADMIXTURE analyses
resulted in the lowest cross-validation error for two
populations (Fig. 3). Using two populations, the correlation
of the ancestry fractions estimated by ADMIXTURE had a
correlation of 0.9997 and –0.9997 with PC1 in AU and NZ
respectively.

Heritabilities

Table 4 shows heritabilities estimated for BUN, MBUN
and MUN, using the first record per cow. Heritabilities
varied from 0.08 for MBUN in AU_HOL, to 0.32 for MUN
in NZ_ALL. MUN was the only trait available in all six

populations, with heritability estimates varying between
0.10 for AU_ALL and AU_HOL to 0.32 in NZ_ALL. Both
the multibreed and within-breed heritabilities of MUN were
larger in NZ than in AU. A similar trend was observed for the
production traits (Table A1). BUN was mostly measured on
AU Holstein cows, with only a few AU non-Holstein cows
having BUN records. Heritability estimates for BUNwere 0.18
and 0.16 for AU_ALL and AU_HOL respectively, with large
standard errors (0.04 and 0.05). MBUN was available only on
the AU cows, with estimated heritabilities of 0.09 and 0.08 for
AU_ALL and AU_HOL respectively and a larger heritability
for AU_JER, with an estimate of 0.17. However, given the
large standard error of 0.04, this difference was not significant.
Similarly, the heritability of MUN was larger but not
significantly different for AU_JER (0.15 � 0.04) than for
AU_HOL (0.10 � 0.01) and AU_ALL (0.10 � 0.01).

Table 5 shows the heritability of MBUN and MUN for
different DIM intervals. For both traits, there was no consistent
increase or decrease in heritability over the course of lactation.
The heritability of MBUN varied from 0.07 for <50 DIM to
0.12 for >150 DIM. The heritability of MUN was higher in the
NZ population than in the AU population during all DIM
intervals, varying from 0.28 for <50 DIM to 0.32 for
100–150 DIM in NZ, and from 0.08 for >150 DIM to 0.12
for 100–150 DIM in AU.

Genetic correlations among traits

The three urea traits available on the AU cows (BUN, MBUN
and MUN) were highly correlated with each other
(Table 6). Genetic correlations between BUN and MBUN
were the strongest, with correlations of 0.94 and 0.90 for
AU_HOL and AU_ALL respectively. Correlations between
BUN and MUN and MBUN and MUN were lower than were
correlations between BUN and MBUN, ranging from 0.71 for
the correlation between BUN and MUN in AU_ALL to 0.94
for the correlation between MBUN and MUN in AU_JER.

Genetic correlations between production traits and urea
traits were small to moderate (Table 7). The strongest
correlations were found with FY, with correlations varying
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Table 4. Heritabilities and standard errors of blood urea nitrogen
(BUN), BUN predicted using mid-infrared spectroscopy (MBUN) and

milk urea nitrogen (MUN)
ALL, all breeds and crossbreds; HOL, Holstein; JER, Jersey

Country Population BUN MBUN MUN

Australia ALL 0.18 ± 0.04 0.09 ± 0.01 0.10 ± 0.01
Australia HOL 0.16 ± 0.05 0.08 ± 0.01 0.10 ± 0.01
Australia JER – 0.17 ± 0.04 0.15 ± 0.04
New Zealand ALL – – 0.32 ± 0.01
New Zealand HOL – – 0.28 ± 0.04
New Zealand JER – – 0.24 ± 0.05
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from 0.14 with MUN in NZ_ALL to 0.48 with MUN in
AU_ALL. Generally, genetic correlations between urea and
production traits were stronger in the AU dataset than in the
NZ data. For example, the correlation between MUN and F%
was 0.39 � 0.05 in AU_ALL and not significant in
NZ_ALL. In the AU data, correlations of the different urea
traits with MY traits showed variation, but in an inconsistent
manner and with large standard errors.

Genetic correlations among different DIM intervals

Genetic correlations among urea traits (Table 8) measured in
different DIM intervals were strong for adjacent intervals, and
weaker when the difference in DIM was larger. For example,
between <50 and 50–100 DIM, genetic correlations varied
between 0.94 and 1.00, while between <50 and >150 DIM,
genetic correlations were much smaller (0.23–0.70). Genetic
correlations were stronger in AU than in NZ for most DIM

intervals. For example, the genetic correlation between MUN
measured between 100–150 and >150 DIM was 0.85 in
AU_ALL and 0.63 in NZ_ALL.

Genetic correlations between AU and NZ

Table 9 shows genetic correlations between urea traits
measured in AU and MUN recorded in NZ. Correlations
between AU_ALL and NZ_ALL were strongest for
<50 DIM, with correlations of 0.43 and 0.45 for MBUN
and MUN respectively. The genetic correlations between
BUN in AUS_ALL and MUN in NZ_ALL were not
significantly different from zero. Correlations were lower
and mostly not significant for other DIM intervals, with
correlations up to 0.28 between MUN in AUS_ALL and
MUN in NZ_ALL for >150 DIM. Genetic correlations
between countries for production traits (Table A2) were low
to moderate for MY, FY and PY, and larger for F% and P%.

Discussion

In the present study, we estimated genetic parameters of
several indicator traits of nitrogen utilisation to assess the
potential of sharing urea data between AU and NZ. Generally,

Table 5. Heritability and standard errors of urea traits measured
during different days-in-milk (DIM) intervals

MBUN, mid-infrared spectroscopy (MIR)-predicted blood urea nitrogen;
MUN, milk urea nitrogen; AU, Australia; NZ, New Zealand

Trait Country <50 DIM 50–100 DIM 100–150 DIM >150 DIM

MBUN AU 0.07 ± 0.01 0.10 ± 0.02 0.08 ± 0.02 0.12 ± 0.01
MUN AU 0.11 ± 0.01 0.10 ± 0.02 0.12 ± 0.02 0.08 ± 0.01
MUN NZ 0.28 ± 0.03 0.30 ± 0.02 0.32 ± 0.02 0.30 ± 0.01

Table 6. Genetic correlations and standard errors among urea traits
BUN, blood urea nitrogen; MBUN, mid-infrared spectroscopy (MIR)-
predicted BUN; MUN, milk urea nitrogen; AU_ALL, Australian cows of
any breed and crossbreds; AU_HOL, Australian Holstein cows; AU_JER,

Australian Jersey cows

Trait 1 Trait 2 Population
AU_ALL AU_HOL AU_JER

BUN MBUN 0.90 ± 0.05 0.94 ± 0.05 –

BUN MUN 0.71 ± 0.09 0.77 ± 0.10 –

MBUN MUN 0.77 ± 0.03 0.77 ± 0.04 0.94 ± 0.05

Table 7. Genetic correlations and standard errors among urea and
production traits

BUN, blood urea nitrogen; MBUN, mid-infrared spectroscopy (MIR)-
predicted BUN; MUN, milk urea nitrogen; MY, milk yield; FY, fat yield;
PY, protein yield; F%, fat percentage; P%, protein percentage. Significant

correlations are highlighted in bold

Trait Australia Australia Australia New Zealand
BUN MBUN MUN MUN

MY 0.20 ± 0.11 –0.04 ± 0.06 0.10 ± 0.06 0.11 ± 0.03
FY 0.43 ± 0.11 0.28 ± 0.07 0.48 ± 0.06 0.14 ± 0.03
PY 0.28 ± 0.11 0.02 ± 0.07 0.14 ± 0.06 0.12 ± 0.03
F% 0.28 ± 0.11 0.35 ± 0.06 0.39 ± 0.05 –0.01 ± 0.03
P% 0.18 ± 0.10 0.12 ± 0.06 0.08 ± 0.06 –0.06 ± 0.03

Table 8. Genetic correlations and standard errors between days-in-
milk (DIM) intervals

DIM1,DIMinterval offirst trait;DIM2,DIMinterval of second trait;MBUN,
mid-infrared spectroscopy (MIR)-predictedBUN;MUN,milk urea nitrogen.

Significant correlations are highlighted in bold

DIM1 DIM2 Australia Australia New Zealand
MBUN MUN MUN

<50 50–100 1.00 ± 0.05 1.00 ± 0.00 0.94 ± 0.02
<50 100–150 0.82 ± 0.11 0.80 ± 0.07 0.80 ± 0.04
<50 >150 0.23 ± 0.10 0.70 ± 0.08 0.35 ± 0.05
50–100 100–150 1.00 ± 0.00 DNCA 0.89 ± 0.02
50–100 >150 0.67 ± 0.08 0.88 ± 0.07 0.51 ± 0.03
100–150 >150 0.91 ± 0.06 0.85 ± 0.08 0.63 ± 0.03

ADid not converge after >1000 iterations.

Table 9. Genetic correlations and standard errors between urea traits
in Australia and milk urea nitrogen (MUN) in New Zealand

BUN, blood urea nitrogen; MBUN, mid-infrared spectroscopy (MIR)-
predicted BUN; MUN, milk urea nitrogen; DIM, days-in-milk, analyses
were done either for<50DIM, 50–100DIM, 100–150DIM,>150DIMor the
first record per cow; ALL, all breeds and crossbreds; HOL, Holstein; JER,

Jersey. Significant correlations are highlighted in bold

DIM Population BUN MBUN MUN

<50 ALL 0.27 ± 0.19 0.43 ± 0.14 0.45 ± 0.12
50–100 ALL – 0.24 ± 0.12 0.23 ± 0.12
100–150 ALL – 0.08 ± 0.14 0.18 ± 0.12
>150 ALL – 0.23 ± 0.08 0.28 ± 0.10
First record ALL 0.38 ± 0.14 0.35 ± 0.07 0.27 ± 0.07
First record HOL 0.47 ± 0.25 0.43 ± 0.15 0.58 ± 0.13
First record JER – 0.19 ± 0.28 0.14 ± 0.30
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heritabilities varied per population and trait, and genetic
correlations between countries were moderate.

Heritabilities

Heritabilities for BUN and MBUN in AU Holstein were
similar to those previously reported on largely the same
dataset (Luke et al. 2019a; van den Berg et al. 2021), with
slight differences that may be due to the small dataset and,
consequently, large standard errors. Our previous study
focussed only on AU Holstein, while in the current study,
we estimated heritabilities not only for Holstein, but also for
Jersey and by using a multibreed dataset. Because of the small
number of records available for BUN in AU Jerseys,
heritabilities for AU Jersey were estimated only for MBUN
and MUN. While the heritability of MUN was larger in AU
Jersey (0.15) than in AU Holstein (0.10), the standard error of
the estimate in AU Jersey was 0.04; hence, the difference was
not significant.

Heritabilities for MUN varied between country and breed
and encompassed the range of previously published estimates
(Mitchell et al. 2005; Stoop et al. 2007; König et al. 2008;
Beatson et al. 2019; Bobbo et al. 2020). The heritability of
MUN was substantially larger in NZ than in AU, for all
populations. A similar trend was observed for the
production traits, with larger heritabilities in NZ than in
AU. The AU and NZ data differed in the DIM on which
they were measured. In AU, more records were available early
in lactation, while in NZ, the average DIM was larger. To
investigate whether the difference in DIM could explain the
observed difference in heritabilities for MUN between NZ and
AU, we estimated heritabilities for different DIM intervals.
However, we found only small, inconsistent differences in
heritabilities between DIM intervals, which agrees with the
results presented by Mucha and Strandberg (2011), showing
little change in the heritability of MUN during lactation.
Hence, the difference in DIM does not explain the larger
heritability obtained in NZ than in AU. Other potential
causes of this discrepancy could be differences in recording
system and differences in breed composition. Differences in
recording could be due to the use of different equipment to
obtain MUN. MUN in AU is derived using the commercial
prediction equation from Bentley Instruments, while MUN in
NZ is derived using the FOSS MilkOscan FT + analyser.

Differences in breed composition may also play a role in the
differences in heritability observed in AU and NZ. By using
PC1, that relates to the proportion of Holstein and Jersey, we
did not account for the effects of other breeds. To assess
whether PC1 adequately accounted for the breed effects in the
dataset, we used the cross-validation procedure implemented
in ADMIXTURE to estimate the number of populations. The
ADMIXTURE results seem to suggest that only accounting for
two populations (Holstein and Jersey) is appropriate for our
dataset.

Another factor that may influence our estimates and was not
included in our models is heterosis. Especially in NZ, with a
large number of crossbreds, heterosis may be an important
factor, and not including heterosis in the model may have
resulted in inflated heritabilities in NZ. However, in previous

analyses of MUN in NZ, heterosis between Holstein and Jersey
was not significant (P. R. Beatso,n unpubl. data, analyses
described by Beatson et al. (2019)); hence, we did not
include a heterosis term in our models. Heterosis due to
mixtures of other breeds may still be significant. For
example, the cows described as Holstein in our paper are a
mixture of Holstein and Friesian cattle. The NZ
Holstein–Friesian population was imported from the West
of the USA before the 1920s and remained small and
closed until 1960. The current NZ population has been
graded up from a Jersey base with extensive importation of
US genetics, especially in the 1990s (Harris and Kolver 2001).
However, in our study we did not have the data to distinguish
between strains of Holstein and Friesian, and were not able to
test whether heterosis between Holstein and Friesian was
significant.

Genetic correlations between urea traits in AU

Previously, we reported strong correlations (0.96–0.98)
between BUN and MBUN (van den Berg et al. 2021). In
our current study, correlations were slightly lower (0.90–0.94).
The slightly lower correlations could be due to differences in
DIM; all BUN records were measured less than 50 DIM, while
for MBUN, records later in lactation were also used in the
current study but not in that of van den Berg et al. (2021).
Correlations between MBUN recorded less than 50 DIM and
after 150 DIM are low (0.23); hence, including MBUN records
later in lactation is likely to have contributed to the slight
decrease in the genetic correlation with BUN measured less
than 50 DIM. Correlations between BUN and MUN and
MBUN and MUN were smaller than those between BUN
and MBUN, but still high (0.71–0.77), and either trait may
be useful to select for reduced urine nitrogen excretion
(Kauffman and St-Pierre 2001; Kohn et al. 2002, 2005).

Genetic correlations between urea traits in AU and NZ

Genetic correlations were low to moderate, indicating that urea
traits measured in AU are correlated with MUN in NZ, but
cannot be considered as the same trait. Genetic correlations
between countries for MY, FY and PY were substantially
lower than those reported by Haile-Mariam et al. (2020) and
Interbull (2018). Genetic correlations for urea traits were
larger in Holstein than in Jersey or the multibreed
population, and larger when restricted to records early in
lactation than when using the first record of each cow.
Hence, within-breed analyses restricted to records early in
lactation may be better than maximising the number of records
used in the analyses, if the selection target is early in lactation.
However, especially in NZ, the number of crossbred cows is
substantial, and further study is required to assess whether
within-breed or multi-breed prediction yield higher
accuracies. Furthermore, standard errors of the genetic
correlations between AU and NZ were very large, and
genetic correlations should be re-estimated once a larger
dataset is available to obtain more accurate estimates.

The motivation behind our study was to estimate genetic
correlations between urea traits in AU and NZ to gauge the
potential benefits of a joint AU–NZ reference population for
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genomic prediction of urea. The low genetic correlations
between AU and NZ appears to limit the potential to
increase the accuracy from having such a joint reference
population. However, even if a multi-population reference
population does not result in higher accuracies than does
within-population prediction, the joint dataset may still be
beneficial to identify quantitative trait loci associated with
urea in both countries. A multi-population genome-wide
association study may increase prediction and power
compared with within-population genome-wide association
study (van den Berg et al. 2016a, 2020), and including
sequence variants associated with quantitative trait loci can
increase prediction accuracy (Brøndum et al. 2015; van den
Berg et al. 2016b).

Genetic correlations between urea traits and other traits

Genetic correlations between urea traits and milk production
traits were mostly unfavourable, especially with FY and
PY. Reduced urea has been associated with reduced feed
intake (Spek et al. 2013), which may explain the
unfavourable genetic correlations between production traits
and urea traits in our study. König et al. (2008) reported
unfavourable genetic correlations between MUN and MY
and fertility traits. Hence, selecting for lower urea may
result in unfavourable correlated responses for other traits.
Genetic correlations among traits should be considered
when devising index weights to reduce urea while limiting
unfavourable correlated responses of other traits. Ariyarathne
et al. (2021) reported that selection for reduced MUN in the
NZ production system is likely to lead to minor improvements
at the whole-farm level and is negligible compared with other
factors such as stocking rate. Furthermore, their results showed
that including MUN in a selection index can have a negative
impact on farm profit.

Conclusions

Our results have shown that heritability for urea traits differs
among trait, breed and country. While urea traits are highly
correlated within country, genetic correlations between urea
traits in Australia and MUN in NZ were only low to moderate.
Further study is required to identify the underlying causes
of the difference in heritabilities observed and the biological
consequences of selection for reduced BUN or MUN. Larger
datasets may help estimate genetic correlations more
accurately among countries and between urea and traits of
economic interest such as MY and fertility. On the basis of our
current estimates, a shared cow reference population for urea
records between AU and NZ is likely to be more beneficial
when restricted to records obtained early in lactation.
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Appendix

Table A1. Heritabilities and standard errors of production traits in Australia and New Zealand
MY, milk yield; FY, fat yield; PY, protein yield; F%, fat percentage; P%, protein percentage; ALL, all breeds and crossbreds; HOL, Holstein; JER, Jersey

Country Population MY FY PY F% P%

Australia ALL 0.16 ± 0.01 0.12 ± 0.01 0.14 ± 0.01 0.19 ± 0.01 0.21 ± 0.01
Australia HOL 0.15 ± 0.01 0.11 ± 0.01 0.13 ± 0.01 0.16 ± 0.01 0.19 ± 0.01
Australia JER 0.15 ± 0.04 0.13 ± 0.04 0.16 ± 0.04 0.32 ± 0.05 0.34 ± 0.05
New Zealand ALL 0.34 ± 0.01 0.27 ± 0.01 0.32 ± 0.01 0.35 ± 0.01 0.41 ± 0.01
New Zealand HOL 0.46 ± 0.04 0.33 ± 0.03 0.45 ± 0.04 0.45 ± 0.04 0.42 ± 0.04
New Zealand JER 0.25 ± 0.04 0.20 ± 0.04 0.24 ± 0.04 0.27 ± 0.04 0.41 ± 0.04

Table A2. Genetic correlations and standard errors between production traits in Australia and New Zealand
MY, milk yield; FY, fat yield; PY, protein yield; F%, fat percentage; P%, protein percentage; DIM, days-in-milk, analyses were done either for <50 DIM,
50–100 DIM, 100–150 DIM, >150 DIM or the first record per cow; ALL, all breeds and crossbreds; HOL, Holstein; JER, Jersey. Significant correlations

are highlighted in bold

DIM Population MY FY PY F% P%

<50 ALL 0.25 ± 0.09 0.27 ± 0.11 0.18 ± 0.09 0.76 ± 0.08 0.76 ± 0.07
50–100 ALL 0.37 ± 0.08 0.28 ± 0.11 0.19 ± 0.09 0.77 ± 0.06 0.85 ± 0.04
100–150 ALL 0.42 ± 0.07 0.27 ± 0.11 0.29 ± 0.09 0.89 ± 0.05 0.80 ± 0.04
>150 ALL 0.51 ± 0.07 0.38 ± 0.09 0.45 ± 0.08 0.88 ± 0.04 0.83 ± 0.03
First record ALL 0.24 ± 0.05 0.19 ± 0.07 0.11 ± 0.06 0.81 ± 0.04 0.72 ± 0.04
First record HOL 0.18 ± 0.10 0.41 ± 0.12 0.15 ± 0.10 0.81 ± 0.07 0.80 ± 0.07
First record JER 0.95 ± 0.31 0.52 ± 0.35 0.63 ± 0.32 0.59 ± 0.18 0.59 ± 0.15
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