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Abstract
By breaking sensitive associations between attributes, database fragmentation can protect the privacy of outsourced data 
storage. Database fragmentation algorithms need prior knowledge of sensitive associations in the tackled database and set 
it as the optimization objective. Thus, the effectiveness of these algorithms is limited by prior knowledge. Inspired by the 
anonymity degree measurement in anonymity techniques such as k-anonymity, an anonymity-driven database fragmenta-
tion problem is defined in this paper. For this problem, a set-based adaptive distributed differential evolution (S-ADDE) 
algorithm is proposed. S-ADDE adopts an island model to maintain population diversity. Two set-based operators, i.e., set-
based mutation and set-based crossover, are designed in which the continuous domain in the traditional differential evolution 
is transferred to the discrete domain in the anonymity-driven database fragmentation problem. Moreover, in the set-based 
mutation operator, each individual’s mutation strategy is adaptively selected according to the performance. The experimental 
results demonstrate that the proposed S-ADDE is significantly better than the compared approaches. The effectiveness of 
the proposed operators is verified.

Keywords  Differential evolution · Database fragmentation · Data privacy

1  Introduction

Outsourced data storage has shown its advantages in scal-
ability and costs [13, 14, 33, 35]. Data security and privacy 
are still concerns when the organizations adopt the out-
sourced data storage [20, 26, 27, 30, 31]. In health indus-
try, such concerns are significant [5, 11, 21, 25]. Although 
database encryption [12, 28] can protect the database pri-
vacy, encryption and decryption reduce the query efficiency 
accordingly [17, 24, 32], which is also crucial in outsourced 
data storage. By dividing attributes of sensitive associations, 
separate data models can protect the database privacy while 
not requiring time-consuming data transformation.

Several algorithms have been proposed for privacy pro-
tection in database fragmentation [15, 34]. In [2], encrypted 
database fragmentation was proposed to break the sensi-
tive associations between attributes. Authors in [3] proved 
that the database fragmentation problem is NP-hard and 
proposed two heuristic strategies to achieve the optimal 
number of fragments. Then, a graph search algorithm [29] 
was proposed based on the confidentiality constraints. These 
algorithms are designed to address the database fragmenta-
tion problem with predefined privacy constraints. However, 
when it comes to the database fragmentation problem with-
out prior knowledge, these algorithms become inapplicable. 
On the other side, anonymity techniques [16, 23] are also 
effective in database privacy protection. In these techniques, 
the performance is evaluated by the anonymity degree. A 
database with a higher anonymity degree is more likely 
to protect its data privacy. Unlike the privacy constraints 
set in database fragmentation algorithms, the anonymity 
degree can be calculated in all kinds of databases and does 
not require any prior knowledge. If we set the anonymity 
degree as the optimization objective, the database frag-
mentation algorithm can be used in all kinds of databases, 
including those lacking prior knowledge. Based on the above 
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consideration, an anonymity-driven database fragmentation 
problem is defined.

For NP-hard optimization problems, various differential 
evolution (DE) algorithms have been proposed [7, 8, 18, 19]. 
They have shown the advantages in efficiency and reliability 
in optimization problems, including seismic inversion [6], 
microwave circuit design [36], and protein structure predic-
tion [38]. In DE, different mutation strategies can address 
search problems of different properties. A proper design of 
mutation and crossover operators helps achieve the trade-
off between exploration and exploitation. Considering the 
effectiveness of previous DE algorithms in the applications, 
it is worthy of applying the DE algorithm to the anonymity-
driven database fragmentation problem.

In this paper, a set-based adaptive distributed differen-
tial evolution (S-ADDE) algorithm is proposed to address 
the anonymity-driven database fragmentation problem. The 
individual in S-ADDE represents the database fragmenta-
tion solution, and the anonymity degree of each solution is 
set as the fitness value of the individual. The update of the 
individuals in S-ADDE reflects the increase in anonymity 
degree in database fragmentation. Moreover, the contribu-
tions of this paper are listed as follows: 

1.	 In order to maintain population diversity, we utilize an 
island model including four sub-populations;

2.	 Two set-based operators are proposed to transfer the 
continuous domain in traditional DE to discrete domain 
in the database fragmentation problem;

3.	 In the set-based mutation operator, each individual’s 
mutation strategy is adaptively selected according to 
the evolving performance.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the related work of database fragmentation 
for privacy protection, anonymity techniques, and recent 
DE applications. Afterward, the problem definition of the 
anonymity-driven database fragmentation problem is given 
in detail. In Sect. 4, a brief description of DE operators is 
given. Subsequently, we illustrate the proposed S-ADDE 
algorithm. In Sect. 6, extensive experiments and simula-
tions are carried out, and the results are analyzed. Finally, 
in Sect. 7, we summarize this paper.

2 � Related Work

Database fragmentation for data privacy protection was 
firstly proposed in [1]. In this work, all the database attrib-
utes are divided into two groups, which limits the perfor-
mance in complex problems. Encrypted database fragmenta-
tion was introduced in [2], which has shown its advantage 
in breaking the sensitive association between attributes. 

Authors in [3] proved that the database fragmentation prob-
lem is NP-hard. Furthermore, two heuristic strategies were 
proposed to achieve the optimal number of fragments. Based 
on the confidentiality constraints in database fragmentation, 
a graph-based algorithm was proposed in [29], in which the 
nodes in the graph represent the database fragmentation 
solutions. In [4], the authors investigated the effectiveness 
of loose association in database fragmentation. The evolu-
tionary algorithm was also utilized in database fragmenta-
tion. In [10], a distributed memetic algorithm was proposed 
to tackle the outsourced database fragmentation problem, 
in which the database privacy is satisfied, and the database 
utility is optimized. These algorithms are designed based 
on predefined privacy constraints. When facing a database 
fragmentation problem laking of prior knowledge, these 
approaches are inapplicable.

On the other side, various anonymity techniques involv-
ing k-anonymity [23], l-diversity [16] were proposed for 
protecting the database privacy. The performance of the 
anonymity techniques is measured by the anonymity degree. 
One advantage of anonymity degree measurement is it does 
not require prior knowledge of the tackled database. Based 
on this advantage, the anonymity degree measurement can 
also be utilized in the database fragmentation problem.

In the last decades, DE algorithms have been widely 
utilized in actual applications and have shown their effi-
ciency and reliability advantages. In [38], an underestima-
tion-assisted global-local cooperative DE was proposed to 
enhance the effectiveness and the efficiency in optimization. 
The proposed algorithm was utilized in protein structure pre-
diction and outperformed the competitors. Authors in [37] 
proposed a self-adaptive DE algorithm for addressing the 
batch-processing machine scheduling problem, in which the 
mutation operators and control parameter values are adap-
tively adjusted. In [22], a bi-objective elite DE was designed 
to optimize the multivalued logic networks. Two objective 
functions were used to simultaneously evaluate the fitness 
of the individuals in DE. In these applications, DE was rede-
signed according to the difficulty in the corresponding opti-
mization problems.

3 � Problem Definition

For a given relation schema R, a fragmentation F  is legal if: 

1.	 ∀r ∈ R ∶ ∃F ∈ F such that r ∈ F (a fragmentation cover 
all attributes)

2.	 ∀Fi,Fj ∈ F, i ≠ j ∶ Fi ∩ Fj = ∅ (fragments in the frag-
mentation do not have attributes in common)

For anonymity-driven database fragmentation, the objec-
tive is to identify a solution that can achieve the highest 
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anonymity degree for relation schema R. Anonymity degree 
of fragmentation is calculated as:

where anonymity(F) is the anonymity degree of fragmenta-
tion F  . Anonymity degree of fragmentation is decided by 
its fragment of lowest anonymity degree.

Suppose fragmentation F  is the optimal solution for R, it 
should meet the following conditions: 

1.	 ∀r ∈ R ∶ ∃F ∈ F such that r ∈ F

2.	 ∀Fi,Fj ∈ F, i ≠ j ∶ Fi ∩ Fj = ∅

3.	 ∀F≃ anonymity(F≃) ≤ anonymity(F)

which means fragmentation F  is of higher anonymity degree 
than all the other legal solution that can satisfy the first two 
conditions.

4 � Differential Evolution (DE)

DE process includes three operators, i.e., mutation, crosso-
ver, and selection. An elementary description of these three 
operators is given as follows.

4.1 � Mutation

The mutation operator utilizes the difference between indi-
viduals in the population to construct the mutant individu-
als. �g

i
 represents the ith mutant individual at generation g. 

Various mutation strategies have been proposed and listed 
as follows:

DE/rand/1

DE/current-to-best/1

DE/best/1

DE/best/2

DE/rand/2

where �g
best

 indicates the best individual at generation g; r1, 
r2, r3, r4, and r5 are indexes of five random individuals; F 
is the differential factor.
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4.2 � Crossover

In this process, the mutant individual �g
i
 exchanges evo-

lutionary information with the current individual �g
i
 and 

generates a trial individual �g
i
 , which is formulated as:

where rand(0, 1) is a random float number between 0 and 
1; jrand represents a random integer to guarantee at least one 
bit of �g

i
 comes from �g

i
 ; Cr represents the crossover rate.

4.3 � Selection

In this stage, the fitness values of the current individual 
and the trial individual are compared. The individual with 
higher fitness value is selected and kept. For a minimiza-
tion problem f(x), the selection process is formulated as 
follows:

where �g+1
i

 is the target individual at the next generation.
When utilizing DE to solve the database fragmentation 

problem, DE’s individuals can represent solutions of data-
base fragmentation. The fitness values of the individuals 
represent the anonymity degrees of database fragmentation 
solutions. Thus, the improvement of fitness values in DE 
can help achieve better database fragmentation.

5 � Set‑Based Adaptive Distributed 
Differential Evolution (S‑ADDE)

In this section, the proposed S-ADDE algorithm is 
described in detail. The representation manner of the 
S-ADDE algorithm is first introduced. Then, the island 
model of S-ADDE is introduced. Afterward, a set-based 
mutation operator, an adaptive strategy of mutation strat-
egy selection, and a set-based crossover operator are pro-
posed. Finally, to illustrate the overall S-ADDE process, 
the pseudo-code of S-ADDE is given and explained.

5.1 � Representation

In Fig. 1, a sample database is given, which contains nine 
attributes and six records. As shown in the figure, the data-
base is divided into three fragments. These three fragments 
make up a fragmentation solution shown at the bottom of 
the figure.
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Each individual in the proposed S-ADDE algorithm 
represents a database fragmentation solution. Accord-
ingly, each bit in the individual indicates one attribute in 
the database, and its value indicates which fragment the 
corresponding attribute is chosen for allocation.

5.2 � Island Model

DE algorithm with the distributed framework has shown 
its advantages in optimization performance and speed. One 
classic distributed framework of the DE algorithm is the 
island model. The DE algorithm population is divided into 

several sub-populations in the island model, and each sub-
population evolves independently. According to the com-
munication topology, sub-populations share their elite indi-
viduals with a given interval, which is referred to as the 
migration interval. Once one sub-population receives the 
migrated elite individuals, individuals in the current genera-
tion are randomly selected and replaced.

In the proposed S-ADDE algorithm, an island model with 
a ring communication topology is utilized. An example of 
the island model is given in Fig. 2. As shown in the example, 
each big circle indicates a sub-population. In the big circles, 
small triangles and circles represent the best individuals and 

Fig. 1   An example of the 
individual representation in the 
S-ADDE algorithm, in which 
the sample database is divided 
into three fragments
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the other sub-population individuals. The best individuals 
in sub-populations are sent to the neighborhood sub-popu-
lations on the communication topology with the predefined 
migration interval. Afterward, one individual in each sub-
population is chosen by random and replaced by the received 
elite individual.

By dividing the entire population of the DE algorithm 
into several sub-populations with independent evolution, the 
island model can help the S-ADDE algorithm maintain the 
population diversity. By migrating elite individuals in the 
sub-populations, the island model can enhance the S-ADDE 
algorithm’s population quality. If the migration operator is 
appropriately executed, the S-ADDE algorithm can achieve 
the trade-off between exploration and exploitation. Moreo-
ver, since each sub-population evolves independently, the 
island model can be directly implemented in a distributed 
manner, which is crucial for speedup in evolution.

5.3 � Set‑Based Mutation

As mentioned above, the traditional DE algorithm’s muta-
tion strategies are designed to optimize the continuous opti-
mization problems. In our tackled database fragmentation 
problem, the fragmentation solutions are of the discrete 
domain. One challenge of mutation strategy design is how to 
transfer the continuous domain in traditional mutation strat-
egies to the discrete domain in the database fragmentation 
problem. In the S-ADDE algorithm, a set-based mutation 
operator is proposed. To be specific, the fragment solution 
in the individual of S-ADDE is regarded as a set. Thus, the 
calculation between two individuals is transferred to the set 
calculation between two database fragmentation solutions. 
In DE mutation operators, two kinds of calculation rules are 
involved. The first part is to calculate the difference between 
two individuals. The second part is to calculate the sum of 
two individuals. When calculating the difference and the 
sum for each bit, if the values of two individuals are the 
same, the same value is kept. If the values of two individu-
als are different, both two values are kept as a set. With the 
help of the above calculation rules, all the existing mutation 
strategies can be utilized in discrete optimization problems.

As mentioned above, when tackling discrete optimization 
problems, traditional mutation strategies cannot be directly 
utilized. In the proposed set-based mutation operator, the 
calculation between two individuals is transferred to the set 
calculation between the elements in the individuals. When 
utilizing these two calculation rules in the traditional muta-
tion strategies, all the mutation strategies can be utilized. 
For instance, in DE/rand/1 mutation strategy, the difference 
between two randomly selected individuals is firstly calcu-
lated and then added to the third individual. Accordingly, 
the elements only contained by the first random individual 

are extracted and added to the fragments in the third random 
individual.

5.4 � Adaptive Mutation Strategy Selection

In the set-based mutation operator, the calculation between 
individuals in the mutation strategy is transferred to the 
set-based calculation between fragmentation solutions. 
The set-based calculation can fit all the mutation strategies 
and achieve its effect. Every mutation strategy has a unique 
effect on optimization. For example, DE/rand/1 strategy can 
enhance the population strategy and outperform the multi-
modal search problems. In contrast, the DE/best/1 strategy 
can enhance the DE algorithm’s exploitation ability and 
achieve high performance in single-modal search problems. 
An adaptive strategy for selecting a proper mutation strategy 
during the evolution is designed based on this background. 
All the chosen mutation strategies are inserted into a strat-
egy pool, and the mutation strategy of the each individual is 
adaptively selected.

At the beginning of the evolution, each individual chooses 
one mutation strategy from the strategy pool. After execut-
ing the chosen mutation strategy, if the generated individual 
is kept in the population, which indicates higher competi-
tiveness, the current mutation strategy will be utilized in the 
next generation. Otherwise, a mutation strategy is randomly 
chosen from the strategy pool, and the current mutation 
strategy is replaced.

If a mutation strategy can fit a search problem well, it 
is more likely to generate better individuals and of higher 
probability to be utilized. On the contrary, a mutation strat-
egy that cannot achieve ideal performance is less likely to 
be utilized. In various search problems, the probability of 
executing every mutation strategy is adaptively adjusted, 
which makes the proposed S-ADDE outperform.

5.5 � Set‑Based Crossover

After the set-based mutation operator, the chosen individu-
als’ evolutionary information is extracted and used to con-
struct a mutant individual. In the mutant individual, some 
bits may contain more than one element. According to the 
above problem definition, in a legal solution for database 
fragmentation, each element must be involved in one frag-
ment and only appear once, which indicates a fragmenta-
tion covering all attributes, and the fragments do not have 
attributes in common. To make the mutant individual from 
the set-based mutation operator legal, if one bit contains two 
or more elements, one element is chosen by random. After-
ward, the legal mutant individual �i exchanges the evolu-
tionary information with the current individual �i . For each 
element, with the crossover rate, it is assigned in the same 
fragment as individual �i.
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With the proposed set-based crossover operator’s help, 
fragmentation information from the mutant individual and 
the current individual is exchanged. Since the new indi-
vidual’s redundant elements are removed, for each element, 
it is only contained by one fragment and will not appear 
more than once in the generated individual. Randomly, an 
individual containing fragmentation information from two 
individuals is generated. If the generated individual is better 
than the current individual, it will be kept, and the competi-
tiveness of the entire population is improved. 

5.6 � Overall Process

The pseudo-code of S-ADDE is given in Algorithm 1. As 
shown in the pseudo-code, a master-slave model is utilized 
to implement the S-ADDE algorithm. At the master node, 
the entire population is divided into N sub-populations and 
sent to the corresponding N slave nodes. With the prede-
fined migration interval MI, the master node receives the 
migrated individuals from the slave nodes and sends these 
elite individuals to the corresponding slave nodes. The 
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the set-based mutation operator is firstly carried out, and 
the corresponding mutant individual is generated. Then, the 
mutant individual is transferred to be legal in the set-based 
crossover operator and exchanges the current individual’s 
evolutionary information. If the newly generated individual 
is more competitive, it is kept in the population, and the 
current mutation strategy is kept. Otherwise, the current 
individual in the population is kept, and a mutation strategy 
is randomly selected from the mutation strategy pool. With 
the given migration interval MI, the slave node sends its 
best individual to the master node and receives one elite 
individual from the master node. The migrated elite indi-
vidual replaces one randomly chosen individual in the cur-
rent population.

6 � Experimental Result

6.1 � Experimental Setup

In the experiments, 16 test cases are utilized to verify the 
effectiveness of the proposed S-ADDE algorithm in database 
fragmentation. These test cases are generated based on the 
public datasets of New York State Department of Health.1 
Table 1 outlines the properties of these test cases, which 
include numbers of records NR, numbers of sample records 
NSR, numbers of attributes NA, and numbers of sites NS.

In the proposed S-ADDE algorithm, the number of sub-
populations in S-ADDE is set as 4; the sub-population size 

Table 1   Properties of 16 test cases

Test cases NR NSR NA NS

T
1

100,000 1000 15 3
T
2

100,000 2000 15 3
T
3

100,000 3000 15 3
T
4

100,000 4000 15 3
T
5

200,000 1000 20 4
T
6

200,000 2000 20 4
T
7

200,000 3000 20 4
T
8

200,000 4000 20 4
T
9

300,000 1000 25 5
T
10

300,000 2000 25 5
T
11

300,000 3000 25 5
T
12

300,000 4000 25 5
T
13

400,000 1000 30 6
T
14

400,000 2000 30 6
T
15

400,000 3000 30 6
T
16

400,000 4000 30 6

Table 2   Comparisons with 
competitive approaches

Test cases HA DE S-DDE S-ADDE

Avg SD Avg SD Avg SD Avg SD

T
1

1.25E+00 1.68E−01 2.02E+00 3.01E−01 2.38E+00 9.26E−02 2.34E+00 1.18E−01
T
2

1.46E+00 2.83E−01 2.72E+00 3.78E−01 3.14E+00 9.89E−02 3.08E+00 2.17E−01
T
3

1.67E+00 3.30E−01 3.08E+00 4.71E−01 3.87E+00 1.75E−01 3.84E+00 1.54E−01
T
4

1.89E+00 4.75E−01 3.67E+00 5.52E−01 4.46E+00 2.70E−01 4.43E+00 2.07E−01
T
5

1.31E+00 2.32E−01 1.88E+00 1.87E−01 2.13E+00 2.60E−01 2.15E+00 2.45E−01
T
6

1.49E+00 2.74E−01 2.31E+00 3.07E−01 2.59E+00 4.32E−01 2.81E+00 4.13E−01
T
7

1.52E+00 3.43E−01 2.71E+00 5.21E−01 3.09E+00 4.42E−01 3.29E+00 4.59E−01
T
8

1.55E+00 3.81E−01 2.96E+00 4.94E−01 3.46E+00 4.84E−01 3.69E+00 7.01E−01
T
9

1.41E+00 3.22E−01 1.60E+00 1.34E−01 2.08E+00 3.12E−01 2.19E+00 2.92E−01
T
10

1.55E+00 3.48E−01 2.02E+00 3.35E−01 2.62E+00 4.50E−01 2.99E+00 5.24E−01
T
11

1.85E+00 3.98E−01 2.26E+00 2.80E−01 3.05E+00 4.79E−01 3.17E+00 5.00E−01
T
12

1.96E+00 6.20E−01 2.64E+00 4.62E−01 3.59E+00 5.45E−01 4.31E+00 9.20E−01
T
13

1.09E+00 6.37E−02 1.19E+00 2.97E−02 1.37E+00 1.28E−01 1.45E+00 1.26E−01
T
14

1.14E+00 8.38E−02 1.32E+00 6.93E−02 1.68E+00 2.33E−01 1.72E+00 2.48E−01
T
15

1.23E+00 1.28E−01 1.40E+00 1.37E−01 1.82E+00 3.43E−01 1.83E+00 2.71E−01
T
16

1.34E+00 1.59E−01 1.47E+00 1.41E−01 1.96E+00 3.56E−01 2.08E+00 2.78E−01

1  https://​health.​data.​ny.​gov/​Health/​Hospi​tal-​Inpat​ient-​Disch​arges-​
SPARCS-​De-​Ident​ified/​82xm-​y6g8.

migration process is executed until the terminal condition 
is satisfied. Finally, the fragmentation solutions of the sub-
populations are collected, and the best fragmentation solu-
tion is outputted.

At the slave node, each sub-population evolves indepen-
dently. At the beginning of the evolution, a mutation strategy 
is randomly selected from the mutation strategy pool for 
each individual. For each individual in the sub-population, 

https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/82xm-y6g8
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/82xm-y6g8
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SPS is set as 10; the migration interval MI is set as 10; the 
crossover rate Cr is set as 0.5. For all the algorithms, the 
maximum fitness evaluation number is set as NS × 103.

The island model of S-ADDE is implemented by the 
Message Passing Interface (MPI). Each sub-population is 
assigned to a computation core in the CPU. The communica-
tion between sub-populations is implemented by the mes-
sage passing between CPU cores.

6.2 � Comparisons with Competitive Approaches

To verify the effectiveness of the proposed S-ADDE algo-
rithm on test cases, two competitive approaches, i.e., heu-
ristic algorithm [3] and differential evolution [19], are com-
pared. The specific description of these two competitive 
approaches are listed as follows: 

1.	 HA [3]: This is a state-of-the-art heuristic algorithm for 
database fragmentation problem, in which two heuristic 

strategies are designed to achieve the optimal fragmenta-
tion.

2.	 DE [19]: This approach acts as a baseline algorithm. The 
differences between DE and S-ADDE in performance 
show the effectiveness of the proposed operators.

3.	 S-DDE [9]: In this algorithm, the database fragmentation 
problem is optimized by set-based mutation and crosso-
ver operators. Different from the proposed S-ADDE, its 
mutation strategy is not adaptively selected.

Furthermore, on each test case, the proposed S-ADDE and 
the compared approaches are performed in 25 independent 
runs.

The average and standard deviation values obtained by 
all the approaches are calculated and listed in Table 2. The 
best results are labeled in boldface. S-ADDE algorithm 
can outperform the other approaches on all the test cases. 
Due to the exploration ability, S-ADDE can achieve a bet-
ter performance than HA. In HA, the search direction is led 
by the predefined heuristic strategy and its search direction 

Fig. 3   Convergence curves of competitive approaches on four typical test cases
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is narrow. In the complex test cases such as T14 and T16 , 
S-ADDE is more likely to get trapped by the local optimum. 
Compared with DE’s results, we can verify the island model 
and proposed set-based operators are effective in S-ADDE. 
Firstly, the island model maintains the population diversity, 
which is helpful in complex test cases. Secondly, the indi-
viduals’ evolutionary information is effectively extracted by 
the set-based operators and used to reconstruct offsprings. 
When comparing with S-DDE, the advantage of the adaptive 
mutation strategy selection in S-ADDE is verified. With the 
help of the proposed adaptive strategy, S-ADDE can achieve 
a better balance between the exploratory and exploitative 
search. Therefore, S-ADDE can outperform S-DDE on 12 
out of 16 test cases.

The obtained convergence curves on four typical test 
cases are plotted in Fig. 3. Three lines indicate the conver-
gence curves obtained by HA, DE, and S-ADDE, respec-
tively. For each point, the value on the horizontal axis 
represents the number of fitness evaluations, while the 
vertical axis represents the average anonymity degrees 
obtained in 25 independent runs. In the beginning, all 
three algorithms converge rapidly. HA quickly gets trapped 
by the local optimum and stagnates. Thanks to the explo-
ration ability of DE and S-ADDE, they can continuously 
improve the anonymity degree during the search. The dif-
ferences between the green lines of S-ADDE and the red 
lines of DE verify the effectiveness of the island model 
and the proposed set-based operators in S-ADDE. Moreo-
ver, the proposed adaptive strategy can help accelerate the 
convergence speed of the proposed S-ADDE. Compared 
with S-DDE, we can find that S-ADDE can achieve higher 

values of anonymity degree during the entire optimization 
process. Overall, S-ADDE can achieve the highest conver-
gence speed due to the trade-off between exploration and 
exploitation.

Based on the definition of the database fragmentation 
problem, the time complexity of calculating the anonymity 
degree for a given fragmentation is O(NA × NR × logNR) . 
Thus, the time complexity of the proposed S-ADDE 
algor i thm is  O(NA × NR × logNR × NS) .  Accord-
ing to the original papers, the time complexity of HA is 
O(NA2 × NR × logNR) . The time complexity of DE and 
S-DDE is O(NA × NR × logNR × NS) , which is the same as 
S-ADDE. Overall, in terms of the time complexity, S-ADDE 
and all three compared algorithms do not show significant 
differences. Moreover, since S-DDE and S-ADDE are imple-
mented based on the distributed framework, the parallel 
computation can help reduce the running time.

6.3 � Effect of Adaptive Mutation Strategy Selection

In S-ADDE, the mutation strategy is adaptively selected. 
An experiment is carried out to verify its effect. Besides the 
proposed S-ADDE algorithms, three variants of S-ADDE 
adopting different mutation strategies are implemented and 
listed as follows: 

1.	 S-ADDE-rand This variant adopts DE/rand/1 as the 
mutation strategy. The mutation strategy is not changed 
during the entire evolution.

Table 3   Effectiveness of 
adaptive mutation strategy 
selection

Test cases S-ADDE-rand S-ADDE-current-to-
best

S-ADDE-best S-ADDE

Avg SD Avg SD Avg SD Avg SD

T
1

2.29E+00 1.81E−01 2.20E+00 2.18E−01 2.20E+00 2.27E−01 2.34E+00 1.18E−01
T
2

3.07E+00 1.72E−01 3.10E+00 1.71E−01 2.95E+00 2.91E−01 3.08E+00 2.17E−01
T
3

3.72E+00 3.14E−01 3.84E+00 2.06E−01 3.55E+00 3.76E−01 3.84E+00 1.54E−01
T
4

4.34E+00 2.71E−01 4.30E+00 4.45E−01 4.16E+00 4.64E−01 4.43E+00 2.07E−01
T
5

2.09E+00 2.50E−01 2.07E+00 2.32E−01 1.94E+00 2.61E−01 2.15E+00 2.45E−01
T
6

2.55E+00 3.19E−01 2.67E+00 4.23E−01 2.42E+00 3.13E−01 2.81E+00 4.13E−01
T
7

3.23E+00 5.08E−01 3.29E+00 4.53E−01 2.89E+00 4.78E−01 3.29E+00 4.59E−01
T
8

3.57E+00 5.97E−01 3.57E+00 5.66E−01 3.13E+00 5.73E−01 3.69E+00 7.01E−01
T
9

2.15E+00 3.03E−01 2.11E+00 1.88E−01 1.90E+00 2.97E−01 2.19E+00 2.92E−01
T
10

2.83E+00 5.26E−01 2.93E+00 5.49E−01 2.50E+00 4.04E−01 2.99E+00 5.24E−01
T
11

3.22E+00 4.90E−01 3.46E+00 6.15E−01 3.00E+00 5.92E−01 3.17E+00 5.00E−01
T
12

3.89E+00 7.25E−01 3.96E+00 8.01E−01 3.56E+00 6.24E−01 4.31E+00 9.20E−01
T
13

1.42E+00 1.02E−01 1.48E+00 1.20E−01 1.37E+00 1.08E−01 1.45E+00 1.26E−01
T
14

1.69E+00 2.34E−01 1.68E+00 2.70E−01 1.56E+00 1.47E−01 1.72E+00 2.48E−01
T
15

1.81E+00 2.29E−01 1.81E+00 2.31E−01 1.72E+00 2.55E−01 1.83E+00 2.71E−01
T
16

1.93E+00 2.10E−01 2.08E+00 3.72E−01 1.72E+00 2.33E−01 2.08E+00 2.78E−01
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2.	 S-ADDE-current-to-best This variant utilizes DE/cur-
rent-to-best/1 mutation strategy.

3.	 S-ADDE-best This variant adopts DE/best/1 as the muta-
tion strategy.

To be noted, except for the adaptive mutation strategy selec-
tion part, all the compared variants share the same distrib-
uted island model and operators as the original S-ADDE.

In Table 3, the average and standard deviation obtained 
by variants and the original S-ADDE are listed. The best 
results are labeled in boldface. In total, S-ADDE can 

outperform on 13 test cases; S-ADDE-current-to-best can 
outperform on 6 test cases; S-ADDE-rand and S-ADDE-
best cannot outperform on any test case. Compared with 
S-ADDE-current-to-best, although it can outperform 6 test 
cases, the proposed S-ADDE can achieve the same results 
on 3 test cases. Compared with the other two variants, i.e., 
S-ADDE-rand and S-ADDE-best, the proposed S-ADDE 
shows its advantages in all the test cases. Although these 
two variants do not outperform in the comparison, they 
are effective during the cooperation with other mutation 
strategies. This point can be verified by the performance 
of S-ADDE, which utilizes the adaptive mutation strategy 
selection.

6.4 � Effect of S‑ADDE Results on Original Datasets

In this section, the anonymity degrees of original data-
sets without database fragmentation and with database 
fragmentation are compared. As shown in Table 4, AD 
indicates the anonymity degree of each dataset. Values 
min(AD), avg(AD), and max(AD) represent the mini-
mal, average, and maximum values of anonymity degree 
obtained by the fragments in S-ADDE.

According to Table 4, it is clear that S-ADDE can afford 
significant enhancement to original datasets in anonymity. 
Without S-ADDE, the anonymity degree of original data-
sets is around 1, which means each record in the original 
datasets can be directly identified according to its charac-
teristics. With the help of the S-ADDE database fragmen-
tation result, the anonymity degree of the original dataset 
in each fragment increases. Focusing on the column of 
min(AD), which indicates the minimal anonymity degree 
obtained by all the fragments, it is obvious that the privacy 

Table 4   Effect of S-ADDE Results on Original Datasets

Test cases Without 
S-ADDE

With S-ADDE

AD min(AD) avg(AD) max(AD)

T
1

1.11 23.6 33.14 44.53
T
2

1.11 24.69 34.69 47.76
T
3

1.11 26.07 37.44 55.58
T
4

1.11 25.3 37.53 56.29
T
5

1.1 28.53 60.01 105.76
T
6

1.1 29.86 57.22 99.64
T
7

1.1 29.05 88.47 236.31
T
8

1.1 29.67 68.07 148.2
T
9

1.09 36.19 132.26 352.93
T
10

1.09 44.35 96.91 179.91
T
11

1.09 33.4 146.69 463.48
T
12

1.09 47.59 151.22 435.56
T
13

1 11.64 69.51 265.12
T
14

1 12.68 72.29 251.5
T
15

1 12.83 78.55 306.98
T
16

1 14.17 80.23 299.83

Fig. 4   Speedup ratios of S-ADDE on all test cases
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of records is protected. In T1 , the value of min(AD) is 23.6. 
This value means each record shares the same character-
istics with the other 22.6 records and cannot be directly 
identified. Thus, the privacy of datasets is guaranteed.

6.5 � Speedup Ratio

In the distributed algorithm, the speedup ratio is an impor-
tant indicator. It can reflect the computation efficiency of 
the distributed algorithm. The speedup ratio is calculated 
by dividing the running time taken by the distributed algo-
rithm into the sequential algorithm’s running time. A dis-
tributed algorithm with a higher speedup ratio can achieve 
higher distributed computation efficiency, which is crucial 
in maintaining the algorithm’s scalability.

In the proposed S-ADDE algorithm, each sub-popu-
lation is allocated to a single computation core, and each 
sub-population evolves independently. Thus, the number 
of sub-populations in S-ADDE directly reflects its parallel 
granularity. S-ADDE algorithms’ running time with differ-
ent numbers of sub-populations (1, 2, 4, 6) is measured. The 
S-ADDE algorithm with a single sub-population is regarded 
as the sequential algorithm, and the S-ADDE algorithms 
with multiple sub-populations are regarded as the distributed 
algorithms.

In Fig. 4, the speedup ratios of S-ADDE on 16 test cases 
are plotted. The speedup ratios significantly increase with 
the parallel granularity of S-ADDE increases from two to 
six. The speedup ratio curves in different test cases vary. 
This is because different test cases are of different complex-
ity and need different evaluation time. In general, the com-
munication time of S-ADDE on different test cases does not 
have a significant difference. Thus, a test case of higher eval-
uation time, such as T15 and T16 , can help achieve speedup 
ratios. When adopted in actual optimization problems, which 
contains higher complexity, the proposed S-ADDE algo-
rithm can further show its scalability and speed advantages.

7 � Conclusion

An anonymity-driven database fragmentation problem has 
been defined in this paper. To address this problem, we have 
proposed the S-ADDE algorithm. S-ADDE algorithm uti-
lizes an island model to improve the population diversity, 
which is crucial in complex search problems. Moreover, we 
have proposed two set-based operators, i.e., set-based muta-
tion operator with adaptive mutation strategy selection and 
set-based crossover operator. According to the analysis of 
the experimental results, the proposed S-ADDE algorithm 
is significantly better than the compared algorithms. The 

computation efficiency of S-ADDE has been investigated 
and the effectiveness of the proposed operators has been 
verified.

In this paper, the privacy issue (i.e., anonymity degree) 
of the database fragmentation is optimized. Furthermore, 
the utility issue (e.g., communication cost) of the database 
fragmentation can be further investigated and optimized in 
future work. In addition, considering the effectiveness of 
the proposed set-based operators and the adaptive selection 
strategy, we can further apply them in the other discrete opti-
mization problems, such as the database allocation problem.
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