
Received September 18, 2021, accepted October 2, 2021, date of publication October 8, 2021, date of current version October 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3119110

Shapley Values for Feature Selection:
The Good, the Bad, and the Axioms
DANIEL FRYER 1, INGA STRÜMKE2, AND HIEN NGUYEN 3
1School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD 4072, Australia
2SimulaMet, Simula Research Laboratory, 0164 Oslo, Norway
3Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC 3086, Australia

Corresponding author: Daniel Fryer (daniel.fryer@uq.edu.au)

ABSTRACT The Shapley value has become popular in the Explainable AI (XAI) literature, thanks, to a
large extent, to a solid theoretical foundation, including four ‘‘favourable and fair’’ axioms for attribution in
transferable utility games. The Shapley value is probably the only solution concept satisfying these axioms.
In this paper, we introduce the Shapley value and draw attention to its recent uses as a feature selection tool.
We call into question this use of the Shapley value, using simple, abstract ‘‘toy’’ counterexamples to illustrate
that the axioms may work against the goals of feature selection. From this, we develop a number of insights
that are then investigated in concrete simulation settings, with a variety of Shapley value formulations,
including SHapley Additive exPlanations (SHAP) and Shapley Additive Global importancE (SAGE). The
aim is not to encourage any use of the Shapley value for feature selection, but we aim to clarify various
limitations around their current use in the literature. In so doing, we hope to help demystify certain aspects
of the Shapley value axioms that are viewed as ‘‘favourable’’. In particular, we wish to highlight that the
favourability of the axioms depends non-trivially on the way in which the Shapley value is appropriated in
the XAI application.

INDEX TERMS Explainability, feature selection, interpretability, Shapley value, variable selection, XAI.

I. INTRODUCTION
The problem of feature selection in Machine Learning (ML)
constitutes selecting some subset S of a set F of |F | = d fea-
ture indices, such that the submodel formed from the features
indexed by S will maximise some evaluation functionC(S) of
the submodel, whileminimising a cost (or complexity), which
is increasing in |S|. The model chosen by this procedure is the
selected model.

A similar (and more general) problem – model
selection – has deep roots in computational statistics [1],
where attention is paid to inferential nuances like quan-
tification of uncertainty, significance testing, confounding
predictors, collinearity, and the design of experiments. It was
in this literature that the Shapley value was first applied to
linear regression models, with its own history of discourse
(see [2]–[7] and the more critical [8], which traces develop-
ment to [9]–[11], with reinventions by [12] and [13]).

The Shapley value has, over recent years, become a pop-
ular method for interpretable feature attribution in fitted
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ML models (cf. [6], [14]–[26]), holding promise for the
development of Explainable Artificial Intelligence (XAI).
Attribution (or credit allocation), here, is the determination
of the contribution by each feature to the performance of a
model – often the selected model. TheMLmethods that stand
out in terms of popularity are SHapley Additive exPlanations
(SHAP) [15], [17], Shapley Effects [6] and Shapley Additive
Global importancE (SAGE) [24], though the Shapley value
itself carries a rich history of investigation in the context of
game theory – Lloyd Shapley’s 1953 seminal paper [27] has
over 9000 citations, and the concept has attracted the attention
of various Nobel prize winning economists [28]–[34].

Particular praise is given, in both the game theory and ML
literature, to a small set of ‘‘favourable and fair’’ axioms,
commonly known as efficiency, null player, symmetry and
additivity, under which the Shapley value can be uniquely
defined. We will introduce these axioms in section II-B.
While much attention has been paid by game theorists and
economists to interpreting and reformulating the axioms,
and towards investigating axiom sets (and game formula-
tions) that lead to Shapley value alternatives [28], [29], [31],
we found comparatively little attention to these matters in
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ML [24], [35], [36]. There have, however, been a number of
recent criticisms of the Shapley value in ML [37]–[39], sug-
gesting to us that the Shapley value and its alternatives may
be further developed considerably over the coming years.

This paper is not an exhaustive theoretical or empirical
study of the worth of various Shapley value methods in
ML, neither in general nor for feature selection. Our goal
is to draw scrutiny towards the Shapley value axioms, and
attention towards the generality of the game theoretic for-
mulation. We do this in a specific sub-context of feature
selection (characterised by Algorithm 1), which we take to
be an archetype of the ‘‘naïve’’ application of Shapley values
to feature selection. In both academic and industrial settings,
we have encountered what we consider to be an over-reliance
on axiomatic ‘‘guarantees’’ (e.g., of ‘‘fairness’’) when appro-
priating Shapley based feature attributionmethods for feature
selection (see, e.g., [40]–[49]). Through the arguments in this
paper, we aim to convince the reader of two things:

• The axioms do not in general provide any guarantee that
the Shapley value is suited to feature selection, and may,
in some cases, imply the opposite.

• The relevance of the Shapley value to the feature selec-
tion task (indeed, to any ML task) is governed by the
specific game formulation, and the justification of this
relevance from the axioms is non-trivial.

In Section II, we introduce the Shapley value and game for-
mulation (Section II-A), the axioms (Section II-B), we give a
brief overview of feature selection in general (Section II-C),
and then a brief overview of Shapley value feature selection
(Section II-D). In Section III, we investigate the significance
of the Shapley value axioms in the context of feature selec-
tion, introducing general ‘‘toy’’ examples to illustrate. Then,
in Section IV we perform simulation studies on more con-
crete data sets, with various evaluation functions and game
formulations, including the popular mean absolute SHAP and
SAGE formulations.

‘‘Far better an approximate answer to the
right question, which is often vague, than an
exact answer to the wrong question. . . ’’ – John
Tukey [50].

II. BACKGROUND
A. THE SHAPLEY VALUE
In Definition 1, we define a Transferable Utility (TU) game.
This definition captures the general scenario where a set of
objects, denoted by F , has some associated evaluation, C(F),
and, for any subset S of F , the evaluation C(S) is also well-
defined. This captures a typical feature selection scenario,
in which F = {1, . . . , d} represents the indices of all features
in the full model of dimension d , S represents the indices
of features in some submodel of dimension |S|, and C may
represent a loss function, such as (5), (7) or (10), presented in
Section IV. In a TU game, we are guaranteed that the worth
of every submodel can be evaluated, as C(S).

In the following, we use 2F to denote the set of all possible
subsets of the objects F , which include F itself and the empty
set, denoted by ∅.
Definition 1 (TU Game): A TU game is a pair (F,C),

whereF = {1, . . . , d} is a set of indices called players and the
characteristic function C : 2F → R assigns a non-negative
real value C(S) to every coalition S ⊆ F . Furthermore, C
assigns the value zero to the empty coalition∅, i.e.C(∅) = 0.
For readability, we will often refer to C as an evaluation

function, since it evaluates the worth of each coalition, and
we will refer to the players as features. The specific choice of
evaluation function is responsible for much of the variation
in Shapley value based feature attribution methods, where
the popular examples SHAP and SAGE differ considerably
from, for example, Shapley regression (R2) values. Accurate
definitions of SHAP and SAGEmethods are very detailed and
subtle, so rather than reproducing them here, we encourage
the reader to access the primary texts: [17] (SHAP) and [49]
(SAGE). For Shapley regression values, we point the reader
to [26].

The Shapley value (Definition 3) is intuitively appealing
for feature selection. At first glance, it extracts (or com-
presses) information from the evaluation functionC , to assign
a single value ϕi representing the worth of each feature in the
modelling task. Here, the meaning of worth depends strongly
on the choice of evaluation function, and (less obviously) on
the manner in which features are understood to be removed
from the model (see [36] and [24, Section 4]). Generalising
the terminology in [36], we refer to these choices as the
Shapley value game formulation.
An attractive notion is that, with a suitable game formula-

tion, the Shapley value could guarantee a principled method
of feature selection. However, while such a method of fea-
ture selection is principled via the axioms that are discussed
in Section II-B, it is, as we will see, the principles (or axioms)
themselves that are not in general suited to feature selection,
and must be scrutinised in both the context of the specific
game formulation, and the context of the outcome that is
desired from the feature selection task.

Central to the definition of the Shapley value is the notion
of a marginal contribution, which can be understood as
the amount by which the evaluation of a given submodel
increases, upon introducing a given feature to the submodel.
Definition 2 (Marginal Contribution): The marginal con-

tribution of feature i to submodel S is defined as the difference
in evaluation when i is added to the submodel:

Mi(S) = C(S ∪ {i})− C(S).

Definition 3 (The Shapley Value): The Shapley value of
feature i is defined as a weighted average over all marginal
contributions by feature i. That is, overMi(S) for every subset
S of F that excludes i:

ϕi =
∑

S∈2F\{i}

ω(S)Mi(S), (1)
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whereω(S) = |S|!(|F |−|S|−1)!/|F |! are the specificweights
that define the Shapley value.

The formula for the Shapley value, or at least that for its
weights, may not immediately lend itself to intuition (though
it does have well known natural interpretations [28]). His-
torically, much attention has been paid instead to the small
set of axioms (in Section II-B) from which h Definition 3
can be uniquely derived. An axiom is a principle, usually
taken to be self-evident, from which other truths may be
derived. The simple and intuitive nature of the Shapley value
axioms encourages an assessment that the Shapley value is
an explainable or interpretable approach to computing the
importance of features. However, great caremust be exercised
in establishing the exact meaning of importance, both in the
general Shapley value context and in the specific contexts in
which the Shapley value is applied.

Note the exponential complexity of (1). Under certain
game formulations, there have been significant gains in this
area (see, e.g., the recent polynomial time algorithm in the
context of decision trees [15]). We do not, however, provide
an overview of the literature on efficiency, as we are primarily
concerned with interpretation and theoretical suitability.

B. THE SHAPLEY VALUE AXIOMS
In keeping with the machine learning literature, and as a
matter of preference, we present the following four axioms
as a unique characterisation of the Shapley value. However,
there are a number of alternative axiomatisations available
that may provide varying levels of insight [28].
Axiom 4 (Efficiency): In a TU game (C,F), the worth of

the full model C(F) is distributed in a lossless manner among
the features: ∑

i∈F

ϕi = C(F).

Axiom 5 (Null Player): In a TU game (C,F), if feature
i contributes nothing to each submodel it enters, then its
Shapley value is zero:

[(∀ S) C(S ∪ {i}) = C(S)] H⇒ ϕi = 0.

Axiom 6 (Symmetry): In a TU game (C,F), any two fea-
tures i, j that play equal roles have equal Shapley values:

[∀S | i, j /∈ S, C(S ∪ {i}) = C(S ∪ {j})] H⇒ ϕi = ϕj.

Axiom 7 (Additivity): Given twoTUgames (C,F), (K ,F),
the Shapley value of feature i preserves addition of the
evaluation functions:

ϕi(C + K ) = ϕi(C)+ ϕi(K ).

In Axiom 7, the notation ϕi(C) denotes the Shapley value
of player i using the evaluation functionC , and the addition of
two evaluation functions is defined as the natural (pointwise)
addition (C + K )(S) = C(S)+ K (S).

Axioms II-B–7 can be replaced (as in [34]) by the follow-
ing single axiom, which [33] named balanced contributions.

Axiom 8 (Balanced Contributions): Let Ci denote the
game produced by restricting the feature set F to F\{i}. Then,

ϕi(C)− ϕi(Cj) = ϕj(C)− ϕj(Ci).

To paraphrase [33], balanced contributions is a principle
of fairness in cooperation. It states that every pair of features
should share equally the gain (or loss) received from their
cooperation.

In a TU game, Axioms 4–7 are sufficient to uniquely
define the exact Shapley value. However, this value is only
unique up to the choice of characteristic function and game
formulation. Between such choices, the Shapley value will
vary greatly. Also, it should be noted that in many practical
settings, the Shapley value is only approximated, since the
complexity of (1) is exponential in the number of features
(see, e.g., [15] and [24, Section 6.2]).

In algorithmic feature selection the search space generally
involves 2d submodels. Existing feature selection methods all
take some approach to avoiding the exhaustive search of the
model space.

C. FEATURE SELECTION IN GENERAL
If an evaluation function C is used for feature selection,
it should correspond to a specific goal. Feature selection may
target a number of typically exclusive goals, between which
there is generally understood to be a trade-off in performance.
These goals include, but may not be limited to, succinctly
describing a data generating process; improving the predic-
tive performance of the model; maximising the overall sig-
nificance or power of the model, or of its parameters, with
respect to a hypothesis; and producing a more cost-effective
or computationally efficient predictor. There are two promi-
nent categories of feature selection techniques identified by
the surveys of [51], [52]:

• Wrapper methods evaluate a number of trained sub-
models selected via sequential (e.g., stepwise for-
ward/backward) elimination, or via a heuristic search
algorithm. While these model-driven evaluations are
extrinsic to the data, they are native to the specific
modelling task.

• Filter methods are general model-independent frame-
works that avoid the computational burden of model
training, present in wrapper methods. These meth-
ods rank features via empirical estimates of intrinsic
properties of the data, such as covariance or mutual
information.

Both of the above methods can be applied in the context of
Shapley values, given appropriate choices for the evaluation
function and game formulation (see Section II-D). Regardless
of the specific goal, the feature selection task is motivated by
the notion that a submodel exists that is of higher value than
the full model, in the sense of violating Definition 9.
Definition 9 (Monotonicity): In a TU game (F,C),

the evaluation function C : 2F → R is called monotonic
when C(S) does not decrease whenever new features are
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added to S.

(∀ S,T ⊆ F) S ⊂ T H⇒ C(S) ≤ C(T ).

Popular examples of non-monotonic evaluation functions
in feature selection are the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC), often used
in conjunctionwith a stepwise procedure [1]. In Section III-B,
we see that non-monotonic evaluation functions are related to
a major problem with respect to a naïve use of Shapley values
for feature selection.

D. SHAPLEY VALUES FOR FEATURE SELECTION
The following is among the simplest general Shapley value
feature selection procedures, and appears frequently in the
literature (as discussed below). We take this to be the general
form of the ‘‘naïve’’ application of Shapley values to feature
selection.We present it here because in the following sections
we aim to criticise the use of this algorithm, in the sequel.

Algorithm 1 Attribution Selection
1: Choose an objective function C .
2: Compute the Shapley value ϕi for all features i ∈ F .
3: Select the k highest ranking features, for k < d = |F |.

An alternative to the final step in Algorithm 1 is to select
features i for which ϕi lies above some threshold. Upon
review of the literature, we found a number of articles sug-
gesting to use a variant of Algorithm 1 [44], [45], [48], [49],
two completely applied uses of Algorithm 1 [46], [47], and
one paper critical of the algorithm [53].

Alternatives to Algorithm 1 are found in [40]–[43].
In [40], [41] the considered coalition sizes are restricted,
and a stepwise selection procedure is performed. A genetic
algorithm is described in [42]. In [43], the problem of model
averaging (see Section III-A) is discussed, and it is claimed
that themethod avoids the influence of unselected features via
a decomposition of the Shapley value into high-order interac-
tion components.We do not investigate thesemethods, but we
expect that controlling the coalition sizes may have a positive
impact, at least on the problem considered in Example 11
and Section IV-C.

III. THE MEANING OF THE AXIOMS
In this section we use ‘‘toy’’ examples to interrogate some
general consequences of the axioms, and to gain insight into
how feature selection may be impacted by them. The insights
discussed in this section are too general for drawing conclu-
sions about the value of any specific Shapley value feature
selection procedure, in practice.

A. THE MEANING OF MODEL AVERAGING
As a consequence of Axioms 4 and 7 (efficiency and additiv-
ity), Shapley values are a model averaging procedure, being
the weighted average (1) of marginal contributions. In statis-
tics, model averaging has been used to combine the strengths

of several candidate selected models [1]. These candidate
models may arise from perturbations, e.g., when the result
of a model selection procedure is recognised to be sensitive
to sample effects or other conditions, or in circumstances
where there is no clear optimum of the evaluation function.
In any case, model averaging procedures are traditionally not
used for feature selection, but to give a weighted average of
estimates or predictions associated with a number of different
models.

There is a compelling reason for caution around the direct
use of model averaging for feature selection: The average
performance of a feature across all submodels may not be
indicative of the particular performance of that feature in
the set of optimal submodels. Ideally, one would select all
features explicitly on the weight of their contribution to sub-
models that are optimal. We illustrate this with the following
example.
Example 10 (Taxicab Payoff): Consider a game with

d = 3 players and ‘‘taxicab’’ style payoff with characteristic
function given by

C(S) =


10, if 3 ∈ S,
7, if 3 6∈ S and 2 ∈ S,
3, if 2, 3 6∈ S and 1 ∈ S,
0, otherwise.

(2)

This game can be pictured as one taxicab ride, where the
homes of players 1 and 2 lie on route to the home of player 3.
From the driver’s perspective, themaximum profit is obtained
from player 3, regardless of any absence of players 1 or 2.
If this is a feature selection task, where all features have equal
cost, then the optimal model does not contain features 1 or 2.
From a model selection point of view, players 1 and 2 are
useless features. However, since the Shapley values are

ϕ = (ϕ1, ϕ2, ϕ3) = (1, 3, 6),

from a fairness point of view, in the sense of the Shapley
value, the players 1 and 2 are not worthless, since they add
value to at least one other set of players (at least to the empty
set, in the case of player 1).

In Example 10, players 1 and 2 are not ‘‘null players’’,
in the sense of the Axiom II-B, but they contribute nothing
to the optimal model. As the example demonstrates, perfor-
mance of features may increase within submodels due to an
interaction with a dominant feature. Averaging across all sub-
models takes these superfluous performances into account,
when ideally the presence of the dominant feature should be
fixed. Indeed, a possible solution to this problem may be to
identify and fix the presence of such dominating features,
prior to computing the Shapley value – though at this stage
feature selection may no longer be required. A concrete man-
ifestation of Example 10 is explored in Section IV-D.

B. THE MEANING OF EFFICIENCY
Axiom 4 (efficiency), states that the evaluation of the full
model, C(F), should be distributed losslessly amongst the
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features. This axiom narrows the scope of possible model
averaging procedures to those that treat the full model, not
the selected model, as the final outcome. When the objective
function is non-monotonic, this becomes especially distin-
guished from the problems discussed in Section III-A. Since
the full model is not generally the target, non-monotonic
evaluation functions imply that efficient payoffs may waste
value.

Non-monotonic evaluation functions (Definition 9) are
those that may decrease as the number of features increases,
i.e., there exist submodels T , S such that C(T ) < C(S)
for some T ⊃ S. This means, for example, that we may
have ∑

i∈F

ϕi = C(F) < C(S),

for some S ⊂ F . In this case, the Shapley values do not sum
to the maximum possible value of the feature set, over all
subsets of features. In other words, the Shapley values sum to
the payoff for the full model, but they don’t sum to a payoff
that is optimal.

Note that, at least for the exact Shapley value, evaluation
of all 2F submodels is an intermediate step in the calculation
(producing C(S), for all S ⊆ F). From these evaluations,
the optimal model can be computed directly, without the
Shapley value. Ideally, when the Shapley value is used as
an explanation tool, an optimal model would already be
chosen prior to computing the Shapley value, so that the
resulting Shapley value is efficient (in the sense of Axiom 4)
for the optimal model. In such an approach, feature selec-
tion would occur before calculating the Shapley value, not
after.

C. THE MEANING OF BALANCED CONTRIBUTIONS
Axiom 8 (balanced contributions), can be substituted for
Axioms II-B–7 (null player, symmetry and additivity).
Axiom 8 captures a notion of fairness in the rewards of
cooperation between players in a TU game. The symmetry
axiom alone may be undesirable in certain contexts. In the
case of two strongly correlated features, the symmetry axiom
dictates that both should receive approximately the same
attribution. However, in feature selection, the high correla-
tion implies that one of the two features is redundant. Here,
we regard a feature Xi as redundant in the presence other
features X =

{
Xj, j ∈ S

}
, if feature Xi is conditionally

independent of Y , conditional on X , for which we write
Y ⊥⊥ Xi|X . Redundancy is investigated in more precise
contexts in Section IV-A and IV-B.
A second consequence that may be attributed to Axiom 8,

is that the earnings received by a coalition, after discounting
the earnings of its subcoalitions, are shared equally amongst
the players in that coalition. To better understand this, see
the formulation of the Shapley value in terms of Harsanyi
dividends [28], which we do not enter into here. In particular,
from (1), a player’s contribution to teams of size k is averaged
across all

(d
k

)
teams of size k . For fixed d , this binomial

FIGURE 1. A diagram of the evaluation function with ‘‘secret holder’’ style
payoff described in Example 11.

coefficient decreases as k gets farther from d/2. So, a player’s
single contribution to a team, at the extremes of the spectrum
of team sizes, will be weighted higher than to team sizes close
to d/2. As a consequence, poor performance of a feature on
particularly small submodels, such as the singleton models,
may be weighted highly even if such small submodels are
not attractive for the model selection task. We illustrate this
in Example 11.
Example 11: One should be wary of deciding that the

features with high Shapley values are also the strongest con-
tributors to model performance. Consider the scenario with
d = 3 and a ‘‘secret holder’’ style payoff where player 1 is
alone worthless, but has the ‘‘secret’’ that endows any team
with the maximum possible payoff. Specifically, suppose we
have the payoff lattice in Figure 1.

The Shapley value vector is

ϕ = (ϕ1, ϕ2, ϕ3) = (2, 4, 4).

The players 2 and 3 are attributed with twice the value of
player 1, but if the submodel {2, 3} is selected, via a single
application of Algorithm 1 with k = 2, then performance will
be suboptimal. Furthermore, from the full model {1, 2, 3},
we would do well to discard player 2 or 3. This example is
investigated further in Section IV-C. This single application
of Algorithm 1with k = 2 can be seen as a mistaken appeal to
the vague notion that ‘‘the features with highest Shapley value
are the most important’’. This example highlights that (at the
very least) the TU game, algorithm, and objective, should
all be explicitly considered when interpreting the meaning of
‘‘most important’’.

IV. EXPERIMENTATION
In this section, where the Data Generating Process (DGP) is
known to us, we investigate, through simulation, a number of
situations in which the results produced by Algorithm 1 may
be undesirable. In Sections IV-A and IV-B, we reproduce the
results of [53, Theorem 8 and 9] and extend them via simu-
lation to include the SHAP FSelection formulation [48]
(i.e., feature selection by rankingmean absolute SHAP values
of model predictions), and the SAGE formulation.
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A. MARKOV BOUNDARY EXPERIMENT 1
In this experiment we consider a scenario where we
wish to predict a response variable Y from four features
X1,X2,X3,Z , with the following DGP suggested in [53, The-
orem 8],

X1, X2, X3 ∼ N (0, 4),

Y = X1 + X2 + X3 + ε,

Z = X1 + X2 + X3 + γ, (3)

where ε, γ ∼ N (0, 4) introduce irreducible uncertainty
into the relationships defining Y and Z , respectively, via
normal perturbations with means zero and variances 4. The
causal graph is shown in fig. 2, where X1,X2,X3 → Y
and X1,X2,X3 → Z . Regardless of any implied causal rela-
tionships, we can interpret it as a case where Z is separated
from Y via two terms of uncertainty (ε and γ ), while the set
{X1,X2,X3} is separated from Y by only one term of uncer-
tainty (ε). It follows that Y is conditionally independent of Z ,
given the values {X1,X2,X3}, but not vice versa. Furthermore,
{X1,X2,X3} is the minimal set with the property that the
remaining features are conditionally independent of Y . Thus,
X1,X2,X3 are referred to as Markov boundary members of
the DGP. However, as also shown by [53], when we employ
the R2 evaluation function, the Shapley values are

(φZ , φX1 , φX2 , φX3 ) = (0.26, 0.16, 0.16, 0.16),

The three features X1,X2,X3, the Markov boundary mem-
bers, all have smaller Shapley values than Z , the non-Markov
boundary member. This is not a peculiarity of that particular
game formulation. Simulating a data set with sample size
n = 106 from DGP (3), and training an XGBoost regression
model, the SHAP FSelection method sorts the features
as (Z ,X1,X2,X3) with corresponding mean absolute SHAP
values (1.4, 1.1, 1.1, 1.1). In both cases, a top-3 feature selec-
tion procedure will select (Z ,X1,X2), rather than the pre-
ferred triple (X1,X2,X3), thus introducing an unnecessary
term of uncertainty (γ ) into the model.
The SAGE values, on the other hand, which compute a

global Shapley value of model loss, representing the pre-
dictive power associated with each feature in a model, pro-
duce feature importance scores of (1, 4, 4, 4) for the features
(Z ,X1,X2,X3). Thus, while the SHAP FSelection and
R2 formulations produce poor results for model selection,
the SAGE values successfully highlight the appropriate fea-
tures in this scenario.

B. MARKOV BOUNDARY EXPERIMENT 2
We study a generalisation of a DGP suggested by
[53, Theorem 9], who consider the special case ` = 0.05.
First, we sample feature X1 uniformly from {1, 2, 3, 4}. Then,
X1,X2,X3 are sampled as follows.

P(X2 = 1|X1 = 1) = `, P(X2 = 1|X1 = 3)=1− `,

P(X2 = 1|X1 = 2) = `, P(X3 = 1|X1 = 2)=1− `,

P(X3 = 1|X1 = 1) = `, P(X2 = 1|X1 = 4)=1− `,

FIGURE 2. Causal graphs, where (a) corresponds to the DGP (3) and
(b) corresponds to (4).

P(X3 = 1|X1 = 3) = `, P(X3 = 1|X1 = 4)=1− `,

P(Y = 1|X2 = 0,X3 = 0) = 0.9,

P(Y = 1|X2 = 0,X3 = 1) = 0.05,

P(Y = 1|X2 = 1,X3 = 0) = 0.15,

P(Y = 1|X2 = 1,X3 = 1) = 0.9. (4)

Here, ` ∈ (0, 1). The causal graph is depicted in fig. 2b.
In [53], the evaluation function m is used, defined as,

m(S) =
∑
xS

P(XS = xS )V (S),

V (S) = max {P(Y = 1|XS = xs),P(Y = 0|XS = xs)}, (5)

whereXS is the vector of features indexed by S. The resulting
Shapley values, as given in [53], with ` = 0.05 are

(φX1 , φX2 , φX3 ) = (0.22, 0.09, 0.09).

Here, despite introducing unnecessary irreducible error
into the model (see Figure 2b), the non-Markov bound-
ary variable X1 is given the highest preference. Simulat-
ing a data set of sample size n = 106, and training
a simple XGBoost classification model, for ` = 0.05,
the SHAP FSelection method also sorts the features as
(X1,X2,X3), with respective mean absolute SHAP values
(1.43, 0.50, 0.40). On the other hand, SAGE sorts the features
as (X2,X3,X1) with values (0.0797, 0.0787, 0.0003). Thus,
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FIGURE 3. The (a) SAGE values for the DGP in (4) across a grid of
0.05 ≤ ` ≤ 0.95, (b) Shapley values for the mean absolute SHAP, SAGE
and m function formulations, for the difference ϕ1 − ϕ2 between
attribution to X1 and X2, across the same range of ` values. Similar
results were observed for the difference ϕ1 − ϕ3. Values ϕ1 − ϕ2 < 0
indicate regions of the parameter space for which model selection results
are inadequate.

as in Section IV-A, the SAGE values sidestep the issues
of the SHAP FSelection and m formulations, instead
producing a correct ranking for feature selection.

To determine the relationship of the parameter ` ∈ (0, 1)
to the pathology, we simulate 20 more data sets, equally
spaced on the grid 0.05 ≤ ` ≤ 0.95, and calculate SHAP
FSelection and SAGE values for each value of `. The
variation of the SAGE values with ` is shown in fig. 3.
Calculating the differences ϕ1 − ϕ2 in Shapley values of the
variables X1 and X2, for the SHAP, SAGE and m formu-
lations, yields fig. 3b. Similar behaviour is realised in the
differences ϕ1 − ϕ3. From this, we see that SAGE performs
admirably over the investigated parameter space, while the
SHAP and m formulations perform poorly for approximately
|`− 1/2| > 0.3.

C. A SECRET HOLDER EXPERIMENT
In this experiment we consider the DGP

Y =
3∑
i=1

βiXi +
3∑
i=1

3∑
j=1

βijXiXj + ε, (6)

FIGURE 4. Grid points (t1, t2) for −2 ≤ ti ≤ 2 at 0.05 increments, in the
parameter space for the DGP (6) described in Section IV-C. Points in
orange are where ϕi − ϕ1 > 0, as well as C({1, i })− C({2, 3}) > 0, for both
i = 2 and i = 3.

with ε ∼ N (0, 1) and, given parameters t1, t2 ∈ R, having
β1 = 0, β2 = β3 = t1 6= 0, β23 = 0, β12 = β13 = t2 6= 0.
The features Xi, i ∈ {1, 2, 3} are generated as independent
standard normal random variables.

From (6), we simulate a total of 6561 data sets of sample
size n = 1000, producing one data set for each position
on the 81 × 81 parameter grid (t1, t2) with −2 ≤ ti ≤ 2
and increments of length 0.05. On each data set we compute
Shapley values for the conditional log likelihood evaluation
function

L(S) = L(θ; x∅)− L(θ; xS ), (7)

where θ is estimated via least squares, using the closest
submodel of the true model (6), given the vector xS of fea-
tures indexed by S. In Figure 4 we present the results of
highlighting all (t1, t2) such that the characteristic function
is pathological in the sense of matching Example 11. From
this we see that pathologies occur at approximately t2 =
±(|t1| + α) for 0 < α < 0.4.

Choosing t1 = 2, t2 = 2.2, we compute the characteristic
function for (7):

C({1, 2, 3}) = 1.52,

C({1, 2}) = 0.34, C({1}) = 0.00,

C({2, 3}) = 0.27, C({2}) = 0.13,

C({1, 3}) = 0.34, C({3}) = 0.11,

which we compare to Figure 1. The Shapley values are

(ϕ1, ϕ2, ϕ3) = (0.5, 0.52, 0.51).

Thus, although the results are quite close, we see that X2
and X3 are favoured in feature selection, despite X1 being the
‘‘secret holder’’ and a member of both optimal submodels of
size 2.

The corresponding mean absolute SHAP values are
(0.97, 1.52, 1.48) and the SAGE values are (4.6, 5.8, 5.9).
SHAP and SAGE disagree regarding whether feature X2 or
X3 is themost important, but neither method gives precedence
to X1, which is in fact most important.
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D. A TAXICAB EXPERIMENT
The following scenario is a concrete realisation of Exam-
ple 10. Consider d variables generated as

Xi = N (0, 1)+ ai, (8)

where a1 < a2 < · · · < ad . The generative model is

Y = max{X1,X2, . . . ,Xd } + ε, (9)

where ε ∼ N (0, 1). The predictive model that we apply to
this data is the correct model, which is simply

Ŷ = max{X1,X2, . . . ,Xd }.

We evaluate this model using as evaluation function the
following difference between the mean squared errors

MSE(y, 0)−MSE(y, ŷ), (10)

and choosing d = 3 with (a1, a2, a3) = (5, 10, 20). The
characteristic function evaluates to

C({1, 2, 3}) = 546,

C({1, 2}) = 371, C({1}) = 210,

C({2, 3}) = 546, C({2}) = 371,

C({1, 3}) = 546, C({3}) = 546.

The resulting Shapley values are

(ϕ1, ϕ2, ϕ3) = (70, 151, 325).

We see that the scenario in Example 10 has been generated
in this more concrete setting.

V. DISCUSSION
Our investigations of the axioms in Section III prompted a
number of experiments on potentially pathological DGPs,
presented in Section IV. In each experiment, we were able to
define a reasonable evaluation function and game formulation
for which the Shapley value behaved in an undesirable way
for feature selection. When these experiments were applied
to the mean absolute SHAP (i.e., SHAP FSelect) and
SAGE formulations, the former performed poorly in all of the
three experiments (Sections IV-A to IV-C), while the latter
performed favourably in two out of those three experiments.

Our results confirm that the axioms do not in general pro-
vide any guarantee that the Shapley value is suited to feature
selection, and may in some cases imply the opposite. How-
ever, more importantly, the relevance of the Shapley value to
the feature selection task (indeed, to anyML task) is governed
by the specific game formulation, and the justification of this
relevance from the axioms is non-trivial. Crucially, it is the
authors’ perception that abstract general axioms presented as
‘‘favourable and fair’’ may introduce a significant potential
formagical thinking [54] in XAI. It is our intention to caution
against this, and to emphasize the nuance in any application
of Shapley values.

There are a large variety of alternatives to the Shapley
value provided in the literature on game theory [28]. As an

example, [28, p.55] suggests (under GameswithHierarchies),
an inessential player axiom, dictating that players that are not
essential should receive zero value.

Future work is needed to thoroughly explore the applica-
tion of game theoretic solution concepts to feature selection
and attribution. Extensive empirical studies are needed to
understand the game formulations and axioms that are suited
to the large variety of practical and frequently occurring
feature selection tasks in XAI and ML.

REFERENCES
[1] G. Claeskens and N. L. Hjort, Model Selection Model Averaging.

Cambridge, U.K.: Cambridge Univ. Press, 2008.
[2] F. Huettner and M. Sunder, ‘‘Axiomatic arguments for decomposing good-

ness of fit according to Shapley and Owen values,’’ Electron. J. Statist.,
vol. 6, pp. 1239–1250, Jan. 2012, doi: 10.1214/12-EJS710.

[3] A. B. Owen and C. Prieur, ‘‘On Shapley value for measuring importance of
dependent inputs,’’ SIAM/ASA J. Uncertainty Quantification, vol. 5, no. 1,
pp. 986–1002, 2017.

[4] A. B. Owen, ‘‘Sobol’ indices and Shapley value,’’ SIAM/ASA J. Uncer-
tainty Quantification, vol. 2, no. 1, pp. 245–251, Jan. 2014, doi:
10.1137/130936233.

[5] O. Israeli, ‘‘A Shapley-based decomposition of the R-square of a
linear regression,’’ J. Econ. Inequality, vol. 5, no. 2, pp. 199–212,
Mar. 2007.

[6] E. Song, B. L. Nelson, and J. Staum, ‘‘Shapley effects for global sensitivity
analysis: Theory and computation,’’ SIAM/ASA J. Uncertainty Quantifica-
tion, vol. 4, no. 1, pp. 1060–1083, Jan. 2016.

[7] D. Fryer, I. Strümke, and H. Nguyen, ‘‘Shapley value confidence intervals
for attributing variance explained,’’ Frontiers Appl. Math. Statist., vol. 6,
p. 58, Dec. 2020.

[8] U. Grömping and S. Landau, ‘‘Do not adjust coefficients in Shapley value
regression,’’ Appl. Stochastic Models Bus. Ind., vol. 26, no. 2, pp. 194–202,
Mar. 2010.

[9] R. H. Lindeman, ‘‘Introduction to bivariate and multivariate analysis,’’
Scott, Foresman, Glenview, Tech. Rep. 3, 1980.

[10] W. Kruskal, ‘‘Relative importance by averaging over orderings,’’ Amer.
Statistician, vol. 41, no. 1, pp. 6–10, Feb. 1987.

[11] W. Kruskal, ‘‘Correction to ‘relative importance by averaging over order-
ings,’’’ Amer. Statistician, vol. 41, no. 4, p. 341, 1987.

[12] S. Lipovetsky and M. Conklin, ‘‘Analysis of regression in game theory
approach,’’ Appl. Stochastic Models Bus. Ind., vol. 17, no. 4, pp. 319–330,
2001.

[13] D. V. Budescu, ‘‘Dominance analysis: A new approach to the problem of
relative importance of predictors in multiple regression,’’ Psychol. Bull.,
vol. 114, no. 3, p. 542, 1993.

[14] K. Aas, M. Jullum, and A. Løland, ‘‘Explaining individual predic-
tions when features are dependent: More accurate approximations to
Shapley values,’’ Artif. Intell., vol. 298, 2021, Art. no. 103502, doi:
10.1016/j.artint.2021.103502.

[15] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair,
R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, ‘‘From local explanations
to global understanding with explainable AI for trees,’’ Nature Mach.
Intell., vol. 2, no. 1, pp. 56–67, 2020.

[16] N. Sellereite andM. Jullum, ‘‘Shapr: AnR-package for explainingmachine
learning models with dependence-aware Shapley values,’’ J. Open Source
Softw., vol. 5, no. 46, p. 2027, Feb. 2019, doi: 10.21105/joss.02027.

[17] S. M. Lundberg and S.-I. Lee, ‘‘A unified approach to interpreting
model predictions,’’ in Proc. Adv. Neural Inf. Process. Syst., I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Red Hook, NY, USA: Curran Associates, 2017,
pp. 1–10.

[18] E. Štrumbelj and I. Kononenko, ‘‘Explaining prediction models and indi-
vidual predictions with feature contributions,’’ Knowl. Inf. Syst., vol. 41,
no. 3, pp. 647–665, Dec. 2014.

[19] E. Strumbelj and I. Kononenko, ‘‘An efficient explanation of individual
classifications using game theory,’’ J. Mach. Learn. Res., vol. 11, pp. 1–18,
Jan. 2010.

[20] S. M. Lundberg, G. G. Erion, and S.-I. Lee, ‘‘Consistent individualized
feature attribution for tree ensembles,’’ 2018, arXiv:1802.03888.

VOLUME 9, 2021 144359

http://dx.doi.org/10.1214/12-EJS710
http://dx.doi.org/10.1137/130936233
http://dx.doi.org/10.1016/j.artint.2021.103502
http://dx.doi.org/10.21105/joss.02027


D. Fryer et al.: Shapley Values for Feature Selection: Good, Bad, and Axioms

[21] A. Redelmeier, M. Jullum, and K. Aas, ‘‘Explaining predictive models
with mixed features using Shapley values and conditional inference trees,’’
in Proc. Int. Cross-Domain Conf. Mach. Learn. Knowl. Extraction, 2020,
pp. 117–137.

[22] Y. Kwon, M. A. Rivas, and J. Zou, ‘‘Efficient computation and analysis
of distributional Shapley values,’’ in Proc. Int. Conf. Artif. Intell. Statist.,
2021, pp. 793–801.

[23] N. Moehle, S. Boyd, and A. Ang, ‘‘Portfolio performance attribu-
tion via Shapley value,’’ 2021, arXiv:2102.05799. [Online]. Available:
https://arxiv.org/abs/2102.05799

[24] I. Covert, S. Lundberg, and S.-I. Lee, ‘‘Explaining by removing: A unified
framework for model explanation,’’ 2020, arXiv:2011.14878. [Online].
Available: https://arxiv.org/abs/2011.14878

[25] A. Keinan, B. Sandbank, C. Hilgetag, I. Meilijson, and E. Ruppin, ‘‘Fair
attribution of functional contribution in artificial and biological networks,’’
Neural Comput., vol. 16, no. 9, pp. 1887–1915, Sep. 2004.

[26] D. V. Fryer, I. Strümke, and H. Nguyen, ‘‘Explaining the data or explaining
a model? Shapley values that uncover non-linear dependencies,’’ 2020,
arXiv:2007.06011. [Online]. Available: http://arxiv.org/abs/2007.06011

[27] L. S. Shapley, ‘‘A value for N-person games,’’ in Contributions to Theory
Games (AM-28), vol. 2. San Rafael, CA, USA: Morgan & Claypool, 1953.

[28] E. Algaba, V. Fragnelli, and J. Sanchez-Soriano,Handbook Shapley Value.
Berlin, Germany: CRC Press, Dec. 2019.

[29] G. Chalkiadakis, E. Elkind, and M. Wooldridge, ‘‘Computational aspects
of cooperative game theory,’’ in Proc. KES Int. Symp. Agent Multi-Agent
Syst., Technol. Appl. (Lecture Notes in Computer Science), vol. 6682. San
Rafael, CA, USA: Morgan & Claypool, 2011, p. 1.

[30] A. Roth and L. S. Shapley, ‘‘The Shapley value: Essays in honor of Lloyd
S. Shapley,’’ Economica, vol. 101, p. 123, Mar. 1991.

[31] L. A. Kóczy, Partition Function Form Games—Coalitional Games With
Externalities. New York, NY, USA: Springer, 2018.

[32] R. Gilles, The Cooperative Game Theory of Networks and Hierarchies,
vol. 44. Berlin, Germany: Springer-Verlag, Jan. 2010.

[33] R. B. Myerson, ‘‘Conference structures and fair allocation rules,’’
Int. J. Game Theory, vol. 9, no. 3, pp. 169–182, Sep. 1980, doi:
10.1007/BF01781371.

[34] S. Hart and A. Mas-Colell, ‘‘Potential, value, and consistency,’’ Economet-
rica, vol. 57, no. 3, pp. 589–614, May 1989.

[35] C. Frye, C. Rowat, and I. Feige, ‘‘Asymmetric Shapley values: Incorpo-
rating causal knowledge into model-agnostic explainability,’’ in Advances
in Neural Information Processing Systems, vol. 33, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds. Red Hook, NY,
USA: Curran Associates, 2020, pp. 1229–1239. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/file/0d770c496aa3da6d2c3f
2bd19e7b9d6b-Paper.pdf

[36] L. Merrick and A. Taly, ‘‘The explanation game: Explaining machine
learningmodels using Shapley values,’’ 2019, arXiv:1909.08128. [Online].
Available: http://arxiv.org/abs/1909.08128

[37] I. E. Kumar, S. Venkatasubramanian, C. Scheidegger, and S. Friedler,
‘‘Problems with Shapley-value-based explanations as feature importance
measures,’’ in Proc. Int. Conf. Mach. Learn., 2020, pp. 5491–5500.

[38] M. Sundararajan and A. Najmi, ‘‘The many Shapley values for model
explanation,’’ in Proc. Int. Conf. Mach. Learn., 2020, pp. 9278–9629.

[39] U. Grömping, ‘‘Variable importance assessment in regression: Lin-
ear regression versus random forest,’’ Amer. Statist., vol. 63, no. 4,
pp. 308–319, 2012, doi: 10.1198/tast.2009.08199.

[40] S. Cohen, G. Dror, and E. Ruppin, ‘‘Feature selection via coalitional game
theory,’’ Neural Comput., vol. 19, no. 7, pp. 1939–1961, Jul. 2007.

[41] S. Cohen, E. Ruppin, and G. Dror, ‘‘Feature selection based on the Shapley
value,’’ in Proc. IJCAI, 2005, pp. 1–6.

[42] M. Zaeri-Amirani, F. Afghah, and S.Mousavi, ‘‘A feature selectionmethod
based on Shapley value to false alarm reduction in ICUs a genetic-
algorithm approach,’’ in Proc. 40th Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. (EMBC), Jul. 2018, pp. 319–323.

[43] C. C. F. Chu and D. P. K. Chan, ‘‘Feature selection using approximated
high-order interaction components of the Shapley value for boosted tree
classifier,’’ IEEE Access, vol. 8, pp. 112742–112750, 2020.

[44] S. Tripathi, N. Hemachandra, and P. Trivedi, ‘‘On feature interactions iden-
tified by Shapley values of binary classification games,’’ Stat, vol. 1050,
p. 12, 2020.

[45] S. Tripathi, N. Hemachandra, and P. Trivedi, ‘‘Interpretable feature subset
selection: A Shapley value based approach,’’ in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2020, pp. 5463–5472.

[46] R. Guha, A. H. Khan, P. K. Singh, R. Sarkar, and D. Bhattacharjee, ‘‘CGA:
A new feature selection model for visual human action recognition,’’
Neural Comput. Appl., vol. 33, no. 10, pp. 5267–5286, May 2021.

[47] N. Jothi, W. Husain, and N. A. Rashid, ‘‘Predicting generalized anx-
iety disorder among women using Shapley value,’’ J. Infection Pub-
lic Health, vol. 14, no. 1, pp. 103–108, Jan. 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1876034120304019

[48] W. E. Marcilio and D. M. Eler, ‘‘From explanations to feature selection:
Assessing SHAP values as feature selection mechanism,’’ in Proc. 33rd
SIBGRAPI Conf. Graph., Patterns Images (SIBGRAPI), Nov. 2020.

[49] I. Covert, S. Lundberg, and S.-I. Lee, ‘‘Understanding global feature con-
tributions with additive importance measures,’’ 2020, arXiv:2004.00668.
[Online]. Available: https://arxiv.org/abs/2004.00668

[50] J. W. Tukey, ‘‘The future of data analysis,’’ Ann. Math. Statist., vol. 33,
no. 1, pp. 1–67, 1962.

[51] G. Chandrashekar and F. Sahin, ‘‘A survey on feature selection
methods,’’ Comput. Elect. Eng., vol. 40, no. 1, pp. 16–28, Jan. 2014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0045790613003066

[52] H. Yin, P. Tino, E. Corchado, W. Byrne, and X. Yao, ‘‘Intelligent data
engineering and automated learning—IDEAL 2007,’’ in Proc. 8th Int.
Conf., Birmingham, U.K., Dec. 2007, pp. 16–19.

[53] S.Ma and R. Tourani, ‘‘Predictive and causal implications of using Shapley
value for model interpretation,’’ in Proc. KDD Workshop Causal Discov-
ery, PMLR, 2020, pp. 23–38.

[54] P. Diaconis, ‘‘Theories of data analysis: From magical thinking through
classical statistics,’’ in Exploring Data Tables, Trends, Shapes. Hoboken,
NJ, USA: Wiley, 2006, pp. 1–36.

144360 VOLUME 9, 2021

http://dx.doi.org/10.1007/BF01781371
http://dx.doi.org/10.1198/tast.2009.08199

