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Abstract: Predicting cancer cells’ response to a plant-derived agent is critical for the drug discovery
process. Recently transcriptomes advancements have provided an opportunity to identify regulatory
signatures to predict drug activity. Here in this study, a combination of meta-analysis and machine
learning models have been used to determine regulatory signatures focusing on differentially ex-
pressed transcription factors (TFs) of herbal components on cancer cells. In order to increase the size
of the dataset, six datasets were combined in a meta-analysis from studies that had evaluated the gene
expression in cancer cell lines before and after herbal extract treatments. Then, categorical feature
analysis based on the machine learning methods was applied to examine transcription factors in
order to find the best signature/pattern capable of discriminating between control and treated groups.
It was found that this integrative approach could recognize the combination of TFs as predictive
biomarkers. It was observed that the random forest (RF) model produced the best combination rules,
including AIP/TFE3/VGLL4/ID1 and AIP/ZNF7/DXO with the highest modulating capacity. As
the RF algorithm combines the output of many trees to set up an ultimate model, its predictive rules
are more accurate and reproducible than other trees. The discovered regulatory signature suggests
an effective procedure to figure out the efficacy of investigational herbal compounds on particular
cells in the drug discovery process.

Keywords: meta-analysis; supervised machine learning; decision tree; transcription factors; herbal
compound

1. Introduction

Plants are an important source of novel pharmacologically active compounds with
many novel drugs. Approximately 25% of natural-based medicines were directly or
indirectly derived from medicinal herbs [1]. For instance, it has been well documented that
natural compounds isolated from medicinal plants exhibit considerable anti-cancer activity
with low toxicity [2]. Therefore, developing new anti-cancer drugs based on plants is one
of the main strategies in the modern drug discovery era [1].

Detecting new and innovative drugs from natural resources remains a complicated,
time-consuming, and expensive project [3,4]. Recently, cancer cell line profiling and drug
sensitivity research revealed precious information about the therapeutic potential of drugs.
Discovering genomic and molecular features from cancer cell lines can help to predict their
sensitivity to drugs and provide valuable information about the possible mechanisms of
those drugs’ action [5].
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Among the genetic factors, TFs play a crucial role in several cellular functions, such
as cell growth and development, response to changes in their internal and external envi-
ronment, and control of cell cycle and carcinogenesis. TFs bind to the promoter region of
genes and regulate the transcription of DNA fragments to RNA messenger. Their primary
responsibility is governing gene expression in the correct cell at the precise time [6].

Regarding the cancer area, transcriptional dysregulation triggers many disorders
leading to tumor progression and drug resistance acquisition [7]. Such dysregulation
occurs through direct or indirect mechanisms, including point mutations, chromosomal
translocations, alteration of expression, gene amplification or deletion, non-coding DNA
mutations, DNA methylations, and histone modifications [8–10]. These genomic alterations
cause perturbations in gene expression, particularly silencing tumor-suppressive TFs and
activating oncogenic TFs [7,11]. For instance, function loss of P53, a tumor suppressor TF,
was observed in about 50% of cancers [12]. On the contrary, activating oncogenic TFs such
as NF-kB, STAT3, and AP1 regulates tumor initiation and progression [13]. Additionally,
recent studies have indicated that some of TFs can possess both tumor-suppressor and
oncogenic roles depending on the type of cancer [7]. Consequently, TFs play an important
role in cancers through modulating multiple downstream signaling pathways, and they
can be proposed as prominent predictive biomarkers candidates.

Effective computational methods and a substantial number of samples are required to
identify predictive biomarkers. Such biomarkers help to evaluate the drug effectiveness,
which in turn helps reduce time and money spent on curing diseases [14,15]. Advanced
methodologies in high-throughput transcriptomic data have generated large-scale public
datasets, which characterize cell response to a drug. These datasets offered an opportunity
to clarify diseases’ molecular mechanisms and presented significant awareness of the drug.
For example, the RNA-seq technique, as a powerful tool for genome-wide transcriptional
profiling, can offer comprehensive information on the cellular status and how this status
alters following various treatments or conditions [16].

However, exploring biomarker genes using individual transcriptomic studies is chal-
lenging due to low replications, low data repeatability, and significant prediction error.
Meta-analysis is a way to deal with these deficiencies by gathering as much relevant data
as possible from a range of available experiments [17]. Merging individual research out-
comes with almost similar objectives can improve the results’ generalizability and statistical
capability [18].

Additionally, the availability of transcriptomic datasets in gene expression databases
rendered a significant opportunity to apply machine learning models to predict drug
activity. Recently, supervised machine learning models are frequently being employed
on the omics data to identify ‘druggable’ genetic targets and drug response-predictive
biomarkers [14,19]. Supervised machine learning includes extracting implicit, previously
unexplored, and potentially valuable information from a given dataset. In other words,
it is a process for data analysis toward pattern recognition and regularities [20]. Pattern
recognition is the ability to recognize data arrangement and classification to provide insight
into a given system or dataset [21]. In addition, the capacity to concurrently analyze
numerical and categorical features is a prominent feature of supervised machine learning
models. Adding categorical variables to predictive models opens up the opportunity to
reduce the heterogeneity across different studies [22].

A decision tree is an efficient method for pattern discovery analysis in data mining
algorithms [23]. It creates a diagram for visualizing data [20]. The performance or accuracy
of trees in an unknown testing dataset is calculated after learning or training the prediction
models. High accuracy or performance shows that the data are properly trained and can
be applied for predicting future biomarkers [24].

In this study, machine learning methods, namely here decision tree (DT), gradient
boosted tree (GBT), and RF, have been applied to analyze multiple datasets, which are
combined in a meta-analysis from studies that evaluate gene expression in multiple cancer
cell lines before and after different herbal extract treatments, focusing on differentially
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expressed transcription factors in the meta-analysis. Transcription factors were then used
to train and build models to predict whether or not a sample belonged to the control
or the treated group and identify a signature/pattern of transcription factors capable of
discriminating between the groups.

2. Methods

The presented flowchart in Figure 1 illustrates the integrated method utilized in
this study.
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2.1. Data Collection

Three databases including SRA–NCBI (https://www.ncbi.nlm.nih.gov/sra accessed
on 1 May 2020), EMBL-EBI (https://www.ebi.ac.uk/ena accessed on 1 May 2020), and
DRA–DDBJ (https://www.ddbj.nig.ac.jp/dra/index-e.html accessed on 1 May 2020) were
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used as repositories of high-throughput expression. Datasets in connection with the effect
of herbal compounds on inhibiting cancer cells were gathered for meta-analysis. Our target
studies contained 88 samples: 36 control and 52 treated. Details of experiments are as
follows: PCa treated via Wedelia chinensis extract (WCE) (concentration: 10 mg/mL/kg,
incubation: 10 weeks) (GEO accession number GSE99820), HCT116, SW480, SW620, HT29,
and RKO cell lines treated via oligomeric proanthocyanidins (OPC) from grape seeds and
grape seed extract (GSE) (concentration: 100 ng/µL, incubation: 18 h) (GEO accession
number GSE109607), A549 cell line treated via jinfukang (JFK) (concentration: 30 µg/mL,
incubation: 48 h) (accession number ERP015444), MCF-7 cell line treated via compound
kushen injection (CKI) (concentration: 1 and 2 mg/mL, incubation: 24 and 48 h) (GEO
accession number GSE78512), LNCaP and PC-3 cell lines treated via Sulforaphane (SFN)
(concentration: 15 µM, incubation: 6 and 24 h) (GEO accession number GSE48812), SK-BR-3,
MCF-7, and MDA-MB-231 cell lines treated via shikonin (concentration: 10 µM, incubation:
6 h) (GEO accession number GSE100687). Other details about the collected datasets are
represented in Tables1 and S1.

Table 1. Studies and samples employed in this investigation to find a regulatory signature of transcription factors responding
to different herbal compounds in various carcinogenic cells.

Study Reference Accession of
Experiment

No. of
Arrays

(Control:
Treatment)

Organism Cell
Line(s)

Herbal
Treatment

Incubation
Time

Dose of
Compound Platform

1 PMC:5688072 GSE99820 6 (3:3) Homo
sapiens PCa

Wedelia
chinensis extract

(WCE)
10 weeks 10 mg/mL/kg Illumina

HiScanSQ

2 PMID:
29463813 GSE109607 30 (10:20) Homo

sapiens

HCT116,
SW480,
SW620,

HT29, RKO

Oligomeric
proanthocyani-

dins (OPC)
Grape seed

extract (GSE)

18 h 100 ng/µL Illumina HiSeq
2500

3 PMID:
27602759 GSE78512 24 (12:12) Homo

sapiens MCF-7
Compound

Kushen
Injection (CKI)

24 and 48 h
1 mg/mL

and
2 mg/mL

Illumina HiSeq
2500

(Homo sapiens)

4 PMID:
25044704 GSE48812 36 (12:24) Homo

sapiens
LNCaP,

PC3
Sulforaphane

(SFN) 6 and 24 h 15 µM Illumina HiSeq
2000

5 PMID:
28771580

ENA-
ERP010522 4 (2:2) Homo

sapiens A549 Jinfukang (JFK) 48 h 30 µg/mL Illumina HiSeq
2000

6 PMID:
29422643 GSE100687 6 (3:3) Homo

sapiens

MCF-7,
SK-BR-3,

MDA-
MB-231

shikonin 6 h 10 µM Illumina HiSeq
2500

There were seven different types of herbal compounds within the six studies. The
names and some details of them are as follows:

WCE is an extract of Wedelia chinensis herbal medicine. Several compounds including
flavonoids, diterpenes, triterpene saponins, and phytosteroids were reported in this extract.
Recently extensive studies have demonstrated the anti-cancer properties of WCE against
prostate, lung, breast, colon, glioblastoma, and pancreatic cancer cells [25].

GSE is an extract made from the seeds of grapes and is reported to exhibit anti-
cancer activity in several types of cancers. It contains a considerable amount of phenolic
compounds such as epicatechin, catechin, procyanidins, and proanthocyanidins. Thus, it
possesses excellent anti-oxidant properties [26].

OPC is abundantly found in grape seeds. OPC exhibited anti-proliferative activity
and pro-apoptotic effect on prostate cancer. In addition, it could suppress the formation of
tumors in colorectal cancer [27].

SFN is generally observed in numerous cruciferous vegetables, such as broccoli and
cabbages. Several biological activities including anti-oxidant, anti-inflammatory, and
anti-tumor actions have been reported for this [28,29].
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Shikonin has been applied for multiple inflammatory and infectious diseases. Shikonin
is a naphthoquinone extracted from the Lithospermum erythrorhizon, a Chinese medical herb.
The pharmacological properties of shikonin are anti-bacterial, anti-virus, anti-oxidant, and
anti-inflammatory activities. It has been illustrated that shikonin exerts anti-cancer effects
through diverse mechanisms on different mitochondrial pathways in prostate, leukemia,
and gastric cancers [30].

CKI is a classical medicine used in China for the clinical therapy of many kinds of
cancers. CKI is isolated from the Sophorae Flavescentis and Rhizoma smilacis Glabrae. The
biochemical analysis demonstrated that CKI comprises eight components, with primary
two significant quinolizidine alkaloid compounds, including Matrine and Oxymatrine [31].

JFK is a Chinese medicine consisting of 12 Chinese medicinal plants and is mainly
employed to treat lung cancer. The mechanisms of action of JFK are metastasis prevention
and tumor lesion stabilization [32].

2.2. Meta-Analysis

Here, we employed RNA-Seq datasets of 6 individual investigations that were differ-
ent in terms of extraction types, cancer types, incubation time, and also the dose of herbal
compound (see Table 1). Due to the deficiency of RNA-Seq research on the impacts of
herbal compounds against cancer cells, the studies were divided into 13 different levels.
Each level was considered as an independent experiment. (Tables 2 and S2).

Table 2. Six studies were divided into 13 different levels.

No. of Levels Study Cell Line Extract Time Concentration

1 1 PCa Wedelia Chinensis
Extract (WCE) 10 weeks 10 mg/mL/kg

2 2 HCT116, HT29,RKO,
SW480, SW620 Grape Seed Extract (GSE) 18 h 100 ng/µL

3 2 HCT116, HT29, RKO,
SW480,SW620

Oligomeric
Proanthocyanidins (OPC) 18 h 100 ng/µL

4 3 MCF-7 Compound Kushen
Injection (CKI) 24 h and 48 h 1 mg/mL

5 3 MCF-7 Compound Kushen
Injection (CKI) 24 h and 48 h 2 mg/mL

6 3 MCF-7 Compound Kushen
Injection (CKI) 24 h 1 and 2 mg/mL

7 3 MCF-7 Compound Kushen
Injection (CKI) 48 h 1 and 2 mg/mL

8 PC-3 Sulforaphane (SFN) 6 h and 24 h 15 µM
9 4 LNCAP Sulforaphane (SFN) 6 h and 24 h 15 µM

10 4 PC3, LNCAP Sulforaphane (SFN) 6 h 15 µM
11 4 PC3, LNCAP Sulforaphane (SFN) 24 h 15 µM
12 5 A549 Jinfukang (JFK) 48 h 30 µg/mL

13 6 MCF-7, SK-BR-3,
MBDA-MB-231 Shikonin 6 h 10 µM

FASTQ files of six RNA-Seq datasets were downloaded and analyzed using CLC ge-
nomics workbench software (version 11; CLC bio). Briefly, after finding the raw reads’ qual-
ity, those with low quality were trimmed off. Then, high-quality short reads were mapped
into the human reference genome (hg19) using the following criteria: mismatch cost = 2,
insertion cost = 3, deletion cost = 3, length fraction = 80%, and similarity fraction = 80%.
RPKM index (reads per kilobase of transcript per million mapped reads) was reported as
expression estimations for every gene and used as inputs for meta-analysis. Meta-analysis
was implemented in R program (version 3.6.0) using the Meta-Seq package (version 1.22.1).
This package uses NOISeq to detect genes that are differentially expressed. The number of
reads is often different depending on the studies, and this generally influences statistical
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tests. NOISeq is almost not affected by the number of reads and helps overcome the read
size effect bias [33].

Next, the overall statistical significance was calculated using Fisher’s probability test,
and the identified genes were named meta-genes.

The obtained meta-genes were classified based on their function (using Pathway
Studio Web Mammal, Elsevier, Amsterdam, The Netherlands). Finally, the TFs introduced
by meta-analysis (named as meta-TFs) were considered for the following analysis.

2.3. Gene Ontology Analysis of Transcription Factors

DAVID classification system (http://david.abcc.ncifcrf.gov/home.jsp accessed on
10 October 2020) was used to obtain a complete set of the biological importance of meta-TFs.
This database employs the p-value and Benjamini methods to determine the significance of
pathways of input TFs.

2.4. Categorical Feature Analysis by Decision Tree Algorithms

For categorical feature analysis, a dataset containing 479 features of treated and
control group was prepared. In this, RPKMs of meta-TFs were used as numerical features.
Additionally, we added type of extracts, type of cell lines, and incubation time to the dataset
as categorical features. Consequently, a dataset of 482 (479 RPKMs + type of extracts + type
of cell lines + incubation time) and 88 records (samples) belonging to treatment and control
categories (label variable) was prepared. Then, GBT, DT, and RF models were run on
the dataset by rapidminer software (RapidMiner 9.7). DT and RF models contained two
different criteria, including accuracy and gain ratio.

2.5. Validation and Comparison of Predictive Algorithms

In this study, trees were constructed using a ten-fold cross-validation algorithm to
assess the models’ performance for predicting the correct class. To conduct ten-fold cross-
validation, the dataset was partitioned into ten equal size sub-samples. The first nine
samples were used as training sub-samples, and the last one was employed as unseen
data. The cross-validation procedure was repeated ten times, and the average of the
series was computed by dividing the percentage of accurate predictions over the total
examples. Finally, accuracy, AUC, ROC, sensitivity, specificity, precision, recall, F measure,
and classification error of models were determined.

2.6. Meta-Analysis of Individual Signature Genes

Meta-analysis of individual signature genes was employed by combining the RPKM
index for each gene. Effect size (mean difference between the RPKM in the treated vs.
untreated control samples) was calculated separately for each of the 13 datasets. Fixed-effect
and random-effect models were applied to determine overexpression of biosignature TFs
in response to herbal compounds in carcinogenic cells. Additionally, the 95% confidence
intervals (CI) were estimated. Positive and negative mean difference values showed upper
and lower levels of gene expression. The forest plot was plotted to compare the mean
differences of predictive genes in each independent dataset and overall effects for the
selected genes. In addition, to determine whether prediction bias existed among different
datasets, both Begg and Mazumdar rank correlation test and Egger’s test of the intercept
were employed to examine the prediction bias on the summary estimates [34,35]. Non-
significant p-value presenting the absence of publication bias. All analyses were performed
with the Comprehensive Meta-Analysis 2.2 software.

2.7. External Validation for Effectiveness of the Predictive TFs on New Herbal Compound

For external validation to examine the effectiveness of the predictive TFs on the
new herbal-derived compound, independent samples of treated and non-traded from an
experiment with GEO accession of GSE40069 were selected. The original study was planned
to investigate the effect of genistein on hepcidin expression in human hepatocytes [36].

http://david.abcc.ncifcrf.gov/home.jsp
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Genistein is an isoflavone compound found in soy products. Many studies have proved its
role in proliferation inhibiting and apoptosis-inducing in several carcinogenic cell types [37].
In the selected study, HepG2 cells were administered with the genistein (10 µM) for 18 h.
In addition, samples with DMSO 1% were considered vehicle control. We selected three
treated samples (GEO accessions: GSM984644, GSM984645, GSM984646) and three non-
treated samples (GSM984647, GSM984648, and GSM984649) of this experiment. Raw SRA
files of the selected samples (100 bp, paired-end, Illumina Genome Analyzer II sequencing
technology) were downloaded and analyzed as described in Section 2.2. Finally, the
differentially expressed genes were obtained.

3. Results
3.1. Increasing the Size of Dataset by Meta-Analysis

There was limited research available that assessed the effects of herbal compounds
on cancer inhibition. Among the available datasets/data/studies in the transcriptomic
database, six RNA-Seq datasets were selected.

The samples of eligible datasets which were administrated only with the herbal com-
pound were allowed to be included in the meta-analysis. The total samples quantity
was 88, which contained 36 pre-administration (control) and 52 post-administration (treat-
ment) samples. Meta-analysis was implemented based on joining the RPKM index of
58,175 genes at 13 levels. As a result, 6992 meta-genes were upregulated differentially (one-
tailed, q < 0.005), while no significant down-regulated genes were detected. Interestingly,
6180 meta-genes never revealed a significant p-value in any original studies, possibly due to
the effect of inadequate replication on DEGs identification in single studies (see Table S3).

3.2. Classification of Meta-Genes

The meta-genes were classified into nine classes: ligand, non-coding, protein phos-
phatase, protein kinase, receptor, transcription factor, transporter, RNA transcript, and
pseudogenes (Table S4). A total of 479 TFs that had significantly been changed in expres-
sion profile in response to herbal compounds were identified by meta-analysis at a cut-off
p-value of 0.05. In comparison to the independent studies, the meta-analysis showed many
TFs (438) that only were significantly different following this approach (Figure 2).
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transcription factors identified by at least one study and the meta-analysis.

3.3. GO-Enrichment Analysis of Herbal-Induced TFs

All TFs were analyzed for their gene ontology (GO) terms and fold enrichment through
the DAVID classification system using Homo sapiens as a reference. GO terms for molecular
functions, biological processes, and cellular components were determined. In the biological
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process, transcription-DNA-templated, RNA polymerase II promoter and snRNA transcrip-
tion from RNA polymerase II promoter were abundantly enriched (Figure 3A). In terms of
molecular function, transcription factor activity, sequence-specific DNA binding, and other
DNA binding were significantly enriched (Figure 3B). Regarding the cellular component
class, genes were associated in response to the nucleus, nucleoplasm, transcription factor
TFIID complex and transcription factor complex (Figure 3C). (Supplementary Table S5).
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3.4. Discovery of Signature of Herbal Transcription Factors on Cancer Cells by Pattern Discovery

Five prediction algorithms (DT_gain ratio, DT_accuracy, GBT, RF_gain ratio, and
RF_accuracy) were run on the TF dataset. Among the trained models, only RF trees (gain
ratio and accuracy) could predict TF signatures correctly. The AUC, sensitivity, specificity,
accuracy, precision, recall, F measure, and classification error criteria for RF models are
presented below.

AUC

As presented in Figure 4, RF_accuracy showed AUC value 0.829, and RF_gain ratio
showed lower AUC values of 0.761 (Figure 4). RF_accuracy showed a higher AUC value,
meaning this model is able to distinguish the positive class values (treated samples) from
the negative class values (control samples) ideally.

Sensitivity

The sensitivity percentages of RF_accuracy and RF_gain ratio were 80 and 76.3,
respectively (Figure 4). This showed 80% and 76.3% of the positive class points are
classified correctly.
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Specificity

RF_Accuracy model showed higher specificity in comparison with RF_gain ratio
model. The specificity percentages of RF_Accuracy and RF_gain ratio were 85.7 and 76.3
respectively (Figure 4). This evaluation metric showed 85.7% and 76.3 % of the negative
class was correctly classified.
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Accuracy

The percentage of accuracy belonging to RF_accuracy was 81.8%, while the accuracy
computed for the RF_gain ratio was 76.1% (Figure 4). Therefore, RF_accuracy model with
an accuracy of 81.8% indicated that 72 out of 88 samples were correctly classified.

Precision

For TF prediction, the gained precisions of RF models were 79.9% and 74.27 %
(Figure 4). Then, 79.9% and 74.27% of positive class predictions were actually part of
the positive class.
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Recall

In the prediction of TFs, the percentage of recall for the RF_accuracy model was 93.97%
and for the RF_gain ratio was 86.85% (Figure 4). Based on the results of the recall metric,
93.97% and 86.85% positive class predictions were made out of all positive examples in
the dataset.

F Measure

The F measure criteria were 84.85% and 78.78 % for RF_accuracy and RF_gain ratio,
respectively (Figure 4). This is an appropriate criterion for assessing the accuracy of models
and considers both precision and recall in one number.

Classification Error

The classification errors for the RF_gain ratio and RF_accuracy were 25.3% and
18.17%. (Figure 4).

ROC

RF_accuracy showed the best area under ROC curve in predicting the true-positive
rate versus false-positive rate, supporting it as a strong model for TF signatures prediction
(Figure 4).

More details of different decision tree models in predicting transcription factor signa-
tures were presented in Supplementary File S1.

As shown in Figure 5, two rules were obtained based on the RF model. AIP/TFE3/
VGLL4/ID1 rule was observed in treated samples, and AIP/ZNF7/DXO rule was demon-
strated in control cases. The proportion test showed obtained rules were significantly
induced in each group (Figure 6). AIP is the most important feature setting at the top of
the tree. If TF values were greater than 24.772, the samples fell into the control group.
In contrast, samples fell into the treated category if the values were equal to or smaller
than 24.772. Therefore, this model becomes an excellent candidate to separate control and
treated samples and has the potential biomarker performance.
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3.5. Predictive Signature Genes between Treated and Control Samples Are Corroborated by
Individual Gene Meta-Analysis

Meta-analysis of AIP, TFE3, VGLL4, and ID1 RPKM was performed using thirteen
datasets (Table 2). According to the results, the fixed model indicated significant upregula-
tion for all genes (p < 0.001) (see Figure 7 for TFE3; the forest plot of AIP, VGLL4, and ID1
are presented in Supplementary Figures S1–S4). The Random model also was significant for
upregulation of all genes (p ≤ 0.01) except ID1 (p = 0.210). For most of the datasets, when
analyzed individually, the genes seem not to reach significant over-expression, but when
the meta-analysis of the datasets was performed, statistical significance was obtained. This
proves the meta-analysis’s power in providing statistically significant results. In addition,
Begg and Mazumdar rank correlation test and Egger’s test of the intercept showed that
no obvious prediction bias existed in the individual meta-analysis of genes (Table 3). It
indicates that the estimated effect size for significant expression of the signature genes in
treated samples was not affected by a dataset. These findings confirm the validity and
generalization of predicted genes.

Table 3. Prediction bias indices for each signature TFs.

Begg and Mazumdar Rank Correlation Egger’s Regression Intercept

TFs Tau z-Value for Tau p-Value
(1-Tailed)

p-Value
(2-Tailed) Intercept Standard Error p-Value

(1-Tailed)
p-Value

(2-Tailed)

AIP 0.25641 1.22018 0.11120 0.22240 −1.81915 1.72920 0.15766 0.31533
TFE3 0.02546 0.12202 0.45144 0.90288 1.30813 1.64424 0.22155 0.44311

VGLL4 0.10256 0.48807 0.31275 0.62550 1.6753 1.15997 0.16790 0.33579
ID1 0.28205 1.34220 0.08997 0.17953 −170452 0.98115 0.055511 0.11022

3.6. Eternal Validation of AIP, TFE3, VGLL4, and ID1

A dataset corresponding to purely one herbal compound that was not involved in
differential analysis and pattern recognition used to examine the effectiveness of the
predictive TFs on new herbal medicine. Results showed the regulatory signature, derived
from meta-analysis and machine learning combination, were repeatable when a new and
independent experiment was utilized for its validation (Table 4).
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Table 4. Differentially expression of AIP, VGLL4, TFE3, and ID1 in response to genistein in HepG2
cell line.

GeneID logFC logCPM F p-Value FDR

AIP 2.761854 6.441737 53.73853 2.31 × 10−13 1.08 × 10−11

VGLL4 0.868611 3.701739 5.621917 0.017739 0.065989
TFE3 1.695222 5.920831 22.33107 2.30 × 10−6 2.46 × 10−5

ID1 2.212446 7.433711 33.69819 6.45 × 10−9 1.22 × 10−7

4. Discussion

Considering the medicinal importance of plant-derived compounds, the development
of new anti-cancer drugs based on plants is still the primary strategy in the modern drug
discovery era [1]. Identifying potential genes that are targeted by plant compounds is
a critical step in the drug discovery process [38]. Recently, the accumulation of large-
scale NGS data has tailored computational methods such as machine learning and meta-
analysis to discover key genes and biomarkers which govern biological effects [39]. Thus,
this study was focused on detecting novel TFs as predictive biomarkers associated with
herbal components in cancer cell lines using a combination of meta-analysis and machine
learning models.

Meta-analysis is a way to combine the results of independent studies, which increases
the sample size and improves the results’ generalizability and statistical capability [18].
Additionally, supervised machine learning models can simultaneously analyze both cat-
egorical and numerical features, and therefore, they have brought in a good possibility
to discover patterns within any given datasets and predict many events out of available
data [17]. Adding categorical variables to predictive models reduced the heterogeneity
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across studies, in agreement with previous findings [23]. In this study, the type of extract,
type of cell line, and incubation times were considered as categorical features. Therefore,
the analysis includes treatment effect as well as cell type, extract type, and incubation times.
Adding more confounding factors as categorical variables contributes to increasing the
accuracy of models.

The meta-analysis was able to successfully identify 6992 upregulated DEGs which
included 479 TFs. Based on the biological process term from GO results, the identified
meta-TFs were significantly involved in regulating RNA polymerase II. As all meta-TFs
were upregulated during herbal-compound treatments, the expression of genes involved
in controlling transcription from RNA polymerase II promoter was required. In addition,
according to GO annotation for molecular function, a large number of meta-TFs classified
into the binding category, which is because of TFs’ ability in binding to the promoter region.

Based on categorical feature analysis, the best patterns were obtained through the
RF_accuracy model. The AIP/TFE3/VGLL4/ID1 pattern was upregulated in treated cases,
whereas AIP/ZNF7/DXO pattern was enhanced in control samples. Previous studies
showed that the RF model offers the most reliable accuracy in numerous scientific fields of
study in recent years [40]. That is because it uses the power of several trees (100 trees in this
study) for training data and making decisions. Each node in this model runs on a random
subset to compute the output. Finally, the outputs of all individual models are combined
to generate the overall outcome. In consequence, the random forest concludes the data
in a safer procedure. This randomized feature selection makes the random forest much
more accurate than other decision trees [41]. For this reason, the biomarkers introduced in
this study were highlighted as the ideal candidate to evaluate the effectiveness of herbal
compound on a particular cell.

In this study, AIP was identified as the most important biomarker. AIP is an immunophilin-
like protein ubiquitously expressed in the cytoplasm [42]. AIP contributes to cell growth
regulation by mediating cell-cycle factors including p27Kip1, p18Ink4c, and Rb. Raitila et al.
used murine models and in vitro studies to investigate the anti-tumor role of AIP. Based on
their results, the proliferation of pituitary cells was decreased in AIP overexpressed samples.
By contrast, in AIP knock-down samples, cell proliferation was increased [43]. These
findings confirmed the tumor suppressor action of AIP in pituitary adenomas. Moreover,
several types of research suggested that AIP can inhibit tumor formation via regulation of
cell division and cAMP signaling cascade [44,45]. Increasing cAMP signaling represents a
mitogenic signal for the somatotroph cell. AIP decreased the subcellular concentration of
cAMP, and its deficiency elevated the intracellular cAMP concentration in pituitary cell
lines. The results suggested that AIP might contribute to the tumor suppressor effects by
inhibiting the cAMP pathway [42,46]. It has also been suggested that AIP might regulate
the expression of p27, which is an important negative regulator of the cell cycle [42].

TFE3, the second gene belonging to the treated rule, is a master transcriptional regula-
tor of several biological processes, including autophagy, inflammatory process, and the
unfolded protein response [47]. Ample evidence showed TFE3 directly upregulates the
p53 tumor suppressor gene [48]. P53 is an essential regulator of the DNA damage response
and controls the transcription of many downstream genes involved in DNA repairing,
arresting the cell cycle, and inducing apoptosis. It has been shown that p53 activates TFE3
via its negative effects on mTORC1 action in response to DNA damage [48]. Through two
mechanisms, including feedback and feedforward controls, p53-dependent activation of
TFE3 promotes stabilization and protein levels of p53. Therefore, it is proposed that TFE3
facilitates apoptosis in response to prolonged DNA damage [48].

Another biomarker found by the treated rule was VGLL4. Vestigial like family mem-
ber 4 is a transcriptional cofactor from the VGLL family. In contrast to other VGLL family
members, VGLL4 works as a novel tumor suppressor through cooperating with TEAD
transcription factors [49]. A considerable number of works in literature have evidenced
that the expression of VGLL4 is significantly weaker compared to healthy tissues in many
kinds of cancers [50–56]. VGLL4 has a critical function in several signaling pathways.
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For example, in Salvador/Warts/Hippo (SWH) signaling pathway, there is competitive
interaction between VGLL4 and YAP in coupling with TEADs. The combination of YAP
and TEAD accelerates cell proliferation and inhibits apoptosis [49,57]. Conversely, binding
VGLL4 to TEADs suppresses the expression of the downstream oncogenes [56]. On the
other hand, VGLL4, via restricting β-catenin and T-cell factors, negatively control the
Wnt/β-catenin signaling pathway. VGLL4 can also overcome epithelial-mesenchymal
transition and commit to the apoptosis signaling pathway [52].

ID1 (Inhibitor of differentiation/DNA binding 1) is an oncogenic protein. However,
recently, it has been suggested that this gene may play a role in increasing drug sensitivity
of non-small cell lung cancer (NSCLC). Upregulation of ID1 was connected with helpful
prognoses for patients administered with adjuvant paclitaxel plus cisplatin after surgery.
Tan et al. used murine orthotropic lung carcinoma models with or without stable ID1
overexpression. The murine models were treated with gefitinib. The results showed that
upregulation of ID1 in gefitinib-treated NSCLC cells induced necroptosis. Hence, they
concluded that ID1 could elevate NSCLC cells’ sensitivity to gefitinib [58].

According to the obtained tree in Figure 5, ZNF7 and DXO were upregulated in the
control rule. Emerging studies have demonstrated that ZNF7 is critical for inhibiting
TNF-α-mediated apoptosis by A20 [59].

Few studies have investigated the biological role of DXO (Decapping and exoribonu-
clease protein) in cancers. DXO regulates several processes linked to mRNA 5′-end capping,
including decapping, pyrophosphohydrolase, deNADding, and 5′–3′ exoribonuclease ac-
tivities. It has been revealed that cell proliferation was increased by DXO downregulation
and destabilizing cyclin D1 mRNA in bladder cancer. However, genes controlled by this
transcription factor have not yet been identified, indicating that more research is required
to be performed [60].

There are some limitations in this study, including a limited number of available
studies on the effectiveness of plant-derived compounds on cancers. We employed an
integrated approach of meta-analysis and machine learning to aggregate the different
datasets from different cell lines. The following strategies were employed to minimize
the batch effects: (1) RPKM index was used as expression measurement of genes in meta-
analysis. RPKM normalizes the counts of the mapped reads to a gene in respect to the
transcript length and the sequencing depth. Consequently, expression measurements
across different genes and different experiments were comparable [61]. (2) All experiments
included in this study used the illuminia platform of sequencing (Table S1). (3) Meta-
analysis was conducted by the metaSeq package of R, which is a robust method against
read-size effect and also uses TMM normalization [33].

5. Conclusions

This study was designed to discover a core set of transcription factors responding to
different herbal compounds in various carcinogenic cells. First, 479 differentially upregu-
lated TFs were detected by meta-analysis. Then, the best combination of TFs/features that
accurately discriminated herbal-treated samples from untreated ones was determined via
categorical feature analysis. The results showed that the machine learning method com-
bined with meta-analysis successfully identified general TFs responding to herbal-derived
compounds. RF model with accuracy criterion performed better in mining important tran-
scription factors. This tree also provided a more effective and reproducible bio-signature.
The reason is that the RF algorithm merges the yield of various random trees to gener-
ate the final result. The ability of random feature selection makes RF considerably more
accurate in comparison to other models. As a result, the identified biomarkers in this
study might be ideal candidates to distinguish whether an investigational new herbal
compound is effective on a particular cell or not. In addition, reported results in this article
confirm machine-based prediction’s capability in finding the relation between important
transcription factors.
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