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Abstract 

This thesis focused on developing methods for the extraction of plant phenomics 

characteristics from high-resolution images of perennial ryegrass and the analysis of 

competition effects between plants with genomics enabled mixed linear models common in 

genomic selection. A first crucial step in digital phenotype development is the identification 

of regions of interest on the image (e.g., crop rows, individual plants). A template-free crop 

row detection algorithm was developed to identify perennial ryegrass plant rows in a field 

trial. The accuracy of the proposed algorithm was 87.5% and 84% for our field trial and a 

public data set, respectively. A subsequent study proposed a new method to extract of 

individual plant phenomics from images and validated the results by correlation to plant fresh 

biomass. Assuming that ryegrass plants were generally circular, the method identified the 

centre points and radii of individual plants to quantify plant areas and NDVI intensity. The 

Pearson correlation between plant area and fresh weights ranged between 0.63 to 0.75 

across four time points. Perennial ryegrass is grown in pastures where plants are in close 

proximity.  The impact of a plant on its neighbours has been shown to be partly influenced by 

genetics in other species but has not been investigated in pasture grasses.  Individual plant 

phenomics and genetic markers were used to determine whether these impacts were positive 

(beneficial) or negative (competitive) through the estimation of indirect genetic effects. Our 

investigation of four ryegrass populations across 9 time points indicated that indirect genetic 

effects were present and were negatively correlated with direct effects, showing that ryegrass 

plants do exhibit competitive behaviour.  The phenomics algorithms developed are general 

and applicable for the extraction of forage phenomics for other plant species. Our results on 



 

xiii 
 

ryegrass indirect genetic effects form a basis for understanding competition among forage 

plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

Statement of Original Authorship 

This thesis includes work by the author that has been published or accepted for publication 

as described in the text. Except where reference is made in the text of the thesis, this thesis 

contains no other material published elsewhere or extracted in whole or in part from a thesis 

accepted for the award of any other degree or diploma. No other person's work has been 

used without due acknowledgment in the main text of the thesis. This thesis has not been 

submitted for the award of any degree or diploma in any other tertiary institution. 

Saba Rabab 

22 July 2021 



xv 

Acknowledgements 

I would like to gratefully acknowledge the following people who helped me throughout my 

PhD. 

My supervisor, Prof Hans Daetwyler, I cannot express in words my respect and admiration for 

you as a supportive and understanding supervisor. Your kind nature and hardworking 

personality have always pushed me to work even harder throughout this journey. I will always 

cherish that I was fortunate enough to work under your supervision. 

My supervisors, Prof Phoebe Chen, and Dr Noel Cogan, thank you for sharing your in-depth 

knowledge and for being there in every milestone to support and encourage me. 

Computational biology group members, thank you for your help and support throughout my 

PhD journey. Dr Fan Shi and Dr Ed Breen, thank you for your corporation and guidance and 

providing me the data for analysis whenever I required. I would like to especially acknowledge 

Dr Youngjun Li for his continuous support and guidance. It would have been difficult without 

your corporation and thorough knowledge on quantitative genetic to finalize the statistical 

analysis on time. 

Staff of the Molecular Plant Breeding team at DJPR Hamilton, Dr Pieter Badenhorst, for 

providing the images of ryegrass and sharing the knowledge of pasture breeding. 

I am grateful to be blessed with best parents and siblings. The emotional support from my 

family kept me going. Finally, my life partner and son, your love and support have always 

uplifted my mood whenever I was stressed in my PhD Journey, and I will be forever grateful 

for having you in my life and I am certain that without my family I could not have make it 

happen. 



xvi 

I would also like to acknowledge La Trobe University; this work was supported by an 

Australian Government Research Training Program Scholarship and a La Trobe University 

Postgraduate Research Scholarship. 



 

1 
 

Chapter 1 

Introduction 

Saba Rabab1,2 

1School of Applied Systems Biology, La Trobe University, Bundoora, Australia 

2Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Australia. 

 

1.1. Background and motivations 

Genetic improvement of crops is based on the selection of plants with superior traits (yield, 

quality attributes, disease resistance and better tolerance to biotic and abiotic stress). The 

selection criteria have been and still are dependent generally on measuring phenotypic 

performance.  Conventional methods for the assessment of complete phenotypic profiles, 

specifically for perennial crops, require a lot of time and labour and are less precise, and 

destructive (e.g. forage biomass and quality).  The world population is increasing 

continuously, and it is expected to increase by 50% by 2050, consequently increasing food 

demand by 70%. Therefore, there is a need to find ways to optimize the food production [1]. 

To maintain sustainable agriculture, conventional breeding programmes have significantly 

evolved in the last decade resulting in increased producibility and profitability in crop plants 

[2-5].  

To overcome the challenges associated with the conventional methods, automation in 

agriculture is a necessity for smart farming to increase the overall genetic gain [6]. There are 

two main steps of automated phenotyping: image acquisition and image analysis. In order to 
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improve plant breeding programmes, accurately measured phenotypic data and genetic 

technology needs to be considered [7-8]. One such technology involves the selection of 

organisms’ favourable genes to improve qualities that increase crop yield and nutrient value 

while using less land and in a shorter amount of time [9-12]. Moreover, a lack of large datasets 

for genomic analysis of complex phenotypic traits have slowed genetic progress. These 

problems can be rectified to some extent by the accurate and precise phenotyping using 

phenomics of germplasm resources.  

1.2. Research problems 

Genomic selection has benefited applied plant breeding in a number of ways, such as 

improved and rapid selection of individuals of higher breeding values, shortening of breeding 

cycles, improved genetic gain per year on agronomic traits as compared to conventional 

breeding and overall, it is cost effective [13]. Further, to improve plant breeding programmes, 

accurately measured phenotypic data and genomics needs to be considered. There is a wealth 

of knowledge regarding the genomics of plants that has accumulated in the last decade. 

However, there is still a significant gap between this knowledge and its utilization due to the 

limited phenotypic descriptions of these genomes, especially at the single plant level. Novel 

technologies such as multi-spectral imaging of field trials can address this gap. With digital 

imaging, the process of extracting phenomics is automated and accuracy is much better [14]. 

The accurate phenomics then assist in increasing the genetic gain in classical breeding 

approaches. The research problems identified in this thesis are: 

1. Detection of crop field plots and rows: the accurate detection of crop plot and row 

in field trials along with extraction of associated data is a crucial step for phenotyping 

and then genomic selection. After detecting the rows, the extracted plant data from 
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rows can be used for downstream analysis. For example, plant physical 

characteristics or phenotypes can be associated with genetic markers in genome-

wide association studies and genomic selection. However, the accurate detection of 

crop rows is a difficult task with the presence of certain limitations such as variable 

outdoor environment conditions, confusion of crops with weeds, irregular shape of 

crops and curved and irregular paths.  

2. Extraction of accurate individual plant phenotypes: automated phenotyping 

technologies using digital imaging have helped to overcome the shortcomings of 

traditional manual phenotyping methods of plants. However, when plants overlap, 

it is difficult to extract accurate individual plant phenotypes such as normalized 

difference vegetation index and plant area from digital images. 

3. Genomic selection and competition effects among individual plants: after the 

development of novel forage phenomics pipelines for ryegrass, which reduces the 

genotype-phenotype gap, the next problem is genomic prediction of the overall plant 

performance using quantitative genetic techniques. Further, by including the 

competition effects in the genomic prediction model for predicting genomic 

breeding values, the goal is to understand how much phenotypic variation is 

explained by competition among individual plants. 

1.3. Research contributions and thesis outline 

The main contributions of this thesis to address the above-mentioned research problems are: 

Chapter 2: This chapter presents a brief literature background and review of the research 

problems discussed. 
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Chapter 3: This chapter presents a new crop row detection algorithm in high resolution field 

trial images that does not require any pre-known information such as crop row spacing, 

number of crop rows in the digital images to detect accurate crop rows.  The proposed 

algorithm is also effective in complex conditions such as presence of noise, weeds, irregular 

crop shapes, poor light, shadows and variable illumination.  

Chapter 4: This chapter proposes a new method for extracting individual plants’ phenomics 

such as plant area and normalized difference vegetation index from digital field trial images. 

The method focuses on both the extraction of these regions from a multispectral image taken 

by an un-crewed aerial vehicle and the linking of these regions with individual plant biomass. 

The utility of the approach is evaluated by correlating individual plant phenomic bio-

characteristics and plant biomass as estimated by fresh weight at harvest. 

Chapter 5: This chapter presents the genomic prediction and competition (indirect genetic) 

effects among individual ryegrass plants. The phenomics of area extracted through circular 

regions are first validated by examining the best linear unbiased prediction and Bayesian 

genomic prediction models. The competition effects are then analysed using genomic best 

linear unbiased prediction models with and without covariance between direct and indirect 

genetic effects.  

Chapter 6: This chapter discusses the research contributions and presents the future 

directions of this thesis. 

1.4. Acknowledgments 

The author thanks Prof. Hans Daetwyler for his valuable comments. 
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Genomic selection is a procedure that estimates genomic breeding values using genome wide 

marker information [1]. Genomic selection needs accurate and large-scale phenotyping of 

organisms to increase genetic gain. Therefore, phenotyping plays a key role in the success of 

standard phenotypic selection as well as genomic selection models. With high throughput 

phenomics techniques, the phenomic-genomic gap can be reduced to increase the overall 

productivity in terms of yield/biomass in forage crops, thereby increasing the profitability for 

farmers and the breeding companies.  

In the first section of this chapter, we present the brief overview of digital images and some 

of the basic operations associated with them. For a detailed reading on this subject, refer to 

[2]. Further, we will present a short review on crop row detection and extraction of phenomics 

from digital images. In the second section, we will present a brief review on the genomic 

selection and competition effects in various organisms. 

2.1. Phenotyping of organisms 

Phenotyping of organisms can be defined as a set of algorithms or methods used to quantify 

the physical traits such as growth, architecture and composition with a certain precision and 

accuracy. For individual plants, phenotyping is based on biochemical, physiological, 
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morphological, and molecular structures. The current manual phenotyping techniques are 

time consuming, slow, expensive, and prone to human error. These shortcomings can be 

overcome by employing automated phenotyping methods such as extraction from digital 

images which consists of two mains parts: image analysis and image acquisition. 

2.1.1. Image acquisition 

Image acquisition is the attainment of digital images from various electronic devices. Digital 

images may vary in sensor size, megapixel rating and bit rate. Each pixel captures light and 

translates it into a digital number. The size of the sensor influences the quality/accuracy of 

the digital number captured and the bit rate describes the number of tones available for a 

given colour e.g. an 8-bit image can describe a colour as 256 tonal values where a 16-bit image 

could describe the same colour as 65,536 tonal values. To standardise this variation in quality 

between different digital cameras, we can down-sample the data. The higher the resolution 

of an image, the more information it contains, and the more computational overhead is 

required to process it. 

2.1.2. What is a digital image? 

A digital image is a representation of a real image as a set of number elements that can be 

stored and processed by a digital computer. These number elements are called pixels 

organized in a rectangular grid. In a grey image, the numerical value of a pixel represents the 

light intensity at the pixel location; the higher the value of a pixel the brighter that location is 

and vice-versa. Usually, the pixel value of a grey image is between [0, 255]. The pixel value of 

255 represents the pure white pixel, the pixel value of 0 represents the pure black pixel and 

in between there are grey pixels. The width of a digital image is defined by the number of 

columns of pixels and the height of a digital image is defined by the number of rows of pixels. 
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Fig. 2.1. represents a grey image with 20 columns and 22 rows. Each pixel denoted as a square 

shaped represents the light intensity. The brighter pixels have the numerical values towards 

255 and darker pixels have the numerical values towards 0. 

2.1.3. Colour image 

A colour image is usually a collection of three grey images stitched together, with each grey 

image representing the intensity of a primary colour (either red, green or blue). Fig. 2.2(a) 

shows a colour Lena image [3]. Each colour pixel is a combination of three grey pixels with 

values between [0, 255]. Fig. 2.2(b) shows the red frame of Fig. 2.2(a). Each pixel in Fig. 2.2(b) 

represents the intensity of red colour in Fig. 2.2(a). The higher the value of a pixel the redder 

that location in Fig. 2.2(a) is and vice-versa. Similarly, Fig. 2.2(c) and Fig. 2.2(d) represent the 

green and blue grey frames, respectively. To emphasize this point, Fig. 2.3(a) shows a colour 

image and Fig. 2.3(b)-(d) show the red, green and blue frames of Fig. 2.3(a), respectively. It 

can be visualized that the red frame (Fig. 2.3(b)) has bright pixels demonstrating the maximum 

contribution of red colour in Fig. 2.3(a). On the other hand, the green (Fig. 2.3(c)) and blue 

(Fig. 2.3(d)) frames has dark pixels demonstrating the minimum contribution of green and 

blue colours respectively in Fig. 2.3(a). A similar kind of pattern can be found in Fig. 2.4(a)-(d) 

and Fig. 2.5(a)-(d) for green and blue colour images respectively. 

2.1.4. Colour to grey image 

A colour image can be converted into grey image reducing the size of the image, while 

retaining most of the visual information. In most of the applications, a grey image is enough 

to do many tasks so there is no need to use more complicated and harder-to-process colour 

images. There are many ways we can convert a colour image into grey depending upon the 

needs and requirements of the application. One way is to get individual frame (red, green or  
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Fig. 2.1. A grey image with 20 columns and 22 rows. Each pixel denoted as a square shaped represents 

the light intensity. The brighter pixels have the numerical values towards 255 and darker pixels have 

the numerical values towards 0. 

    

                    (a)                                         (b)                                          (c)                                     (d) 

Fig. 2.2. Lena colour image [2] with (a) red, (b) green and (c) blue frames. Each frame represents the 

intensity of the respective colour; white pixels show greater intensity of that colour and vice-versa. 

    

                    (a)                                         (b)                                          (c)                                     (d) 

Fig. 2.3. (a) Red colour image with (b) red, (c) green and (d) blue frames. The red frame (b) has bright 

pixels demonstrating the maximum contribution of red colour in Fig. 2.3(a). On the other hand, the 

green (c) and blue (d) frames has dark pixels demonstrating the minimum contribution of green and 

blue colours respectively in Fig. 2.3(a). 



Chapter 2                                                                                                                                    Literature Review 

11 
 

    

                    (a)                                         (b)                                          (c)                                     (d) 

Fig. 2.4. (a) Green colour image with (b) red, (c) green and (d) blue frames. The green frame (c) has 

bright pixels demonstrating the maximum contribution of green colour in Fig. 2.4(a). On the other 

hand, the red (b) and blue (d) frames has dark pixels demonstrating the minimum contribution of red 

and blue colours respectively in Fig. 2.4(a). 

    

                    (a)                                         (b)                                          (c)                                     (d) 

Fig. 2.5. (a) Blue colour image with (b) red, (c) green and (d) blue frames. The blue frame (d) has bright 

pixels demonstrating the maximum contribution of blue colour in Fig. 2.5(a). On the other hand, the 

red (b) and green (c) frames has dark pixels demonstrating the minimum contribution of red and green 

colours respectively in Fig. 2.5(a). 

blue) as grey image. The other method is to get the average of three frames. However, this 

method is not effective as human eyes are differently sensitive to the primary colours. The 

eyes are most sensitive to green light, less sensitive to red light, and least sensitive to blue 

light. The more effective method is to get the weighted average of these colours given as: 
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𝐺𝑟𝑒𝑦 =   0.299𝑅 +  0.587𝐺 +  0.114𝐵.                               (2.1) 

In plant phenomics applications, we are often interested in extracting the greenness of plants. 

One way is to get the green frame as it is, however, the green frame itself can give false band 

for the vegetation. A more suitable way to extract greenness is to use the Normalised 

Difference Vegetation Index (NDVI) [4]. NDVI is based on the red and near infrared bands. The 

NDVI value is always between -1 and 1. The NDVI value between -1 and 0 shows the plant is 

dead, whereas value towards 1 shows the healthy plant. Besides NDVI, there are other 

methods to extract the greenness, one such method is given by Burgos-Artizzu [5]: 

𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠 =   1.262𝐺 − 0.884𝑅 − 0.311𝐵.                                (2.2) 

2.1.5. Grey to binary image 

Converting grey to binary image is often required for many purposes; one such example is to 

extract the region of interest. Moreover, converting into binary significantly reduces the size 

and overhead of computation. The grey image can be converted into binary image with only 

two binary values ∈ [0,1]; white (binary value: 1), which represented the region of interest 

and black (binary value: 0), which represented the background. A grey image is converted into 

binary by thresholding the grey pixels to a certain threshold, given as: 

𝐵𝑖𝑛𝑎𝑟𝑦 =  {
1   𝑖𝑓 𝑔𝑟𝑒𝑦 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                          (2.3) 

The threshold value can be chosen based on the grey image to effectively extract the region 

of interest. Instead of manual thresholding, the Otsu binary thresholding [6] can be employed 

to automatically perform clustering-based image thresholding on a grey image returning a 

threshold value. This threshold can then be used to convert the grey image into binary. 
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2.1.6. Review of crop row detection 

In this section, the different methodologies for the crop row classification will be reviewed. A 

summary of the reviewed works is also given in Table 2.1. There are four columns; the first 

one represents the capability level to detect straight crop rows, with three possible values of 

poor, moderate and good. The second column shows whether the method can detect the 

curved crop rows or not. The ability to perform in complex conditions such as presence of 

weed and noise with three possible levels of poor, moderate and good is shown in column 3. 

Finally, whether the method needs initial information such as the number of crop rows and 

spacing between the crop rows before the detection of crop rows is represented in column 4. 

Hough transform methods 

To detect lines, circles and parametric curves, the Hough transform [7] was developed in 

1962. Later, it was applied to identify straight lines in digital images. A simple straight crop 

row detection algorithm for wheat crop fields was developed and presented in [8]. Basic 

image processing operations such as binarization and segmentation were used followed by 

Hough transform. The algorithm [8] showed good results on digital images where wheat 

growth was in early stages. However, the algorithm does not illustrate good performance in 

complex conditions. Further, the algorithm [8] required information about the crop field 

before its deployment making its application limited. To increase the computational efficiency 

of Hough transform, a modified version, the random Hough transform [9] was presented for 

the detection of crop field rows. The simulation scenarios presented were too simple 

containing digital images of a single crop row. Although, the computational speed is much 

faster than the original Hough transform, but the algorithm did not have the ability to perform 

in complex conditions. To get better results of crop row detection in the presence of weed,  



Chapter 2                                                                                                                                    Literature Review 

14 
 

Table 2.1. A summary of the reviewed works. 

Method Straight crop 

rows detection 

level  

Curved crop 

rows detection 

Effective in 

complex 

conditions 

Pre-known 

variables (crop 

numbers, crop 

spacing etc) 

Hough 

transform and 

vanishing point 

[8] 

Moderate No Poor Yes 

Random Hough 

transformation 

[9] 

Poor No Poor Yes 

Gabor filtering 

+ Hough 

transform [10] 

Good Yes Moderate No 

Hough 

transform [11] 

Moderate No Poor No 

Horizontal 

strips [12] 

Moderate No Poor Yes 

Horizontal 

bands [13] 

Good No Moderate Yes 

Linear 

regression [14] 

Good No Moderate Yes 
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Least squares 

linear 

regression [15] 

Good No Good Yes 

Heuristic 

algorithms [16] 

Good No Moderate Yes 

Stereovision-

based [17] 

Good No Moderate No 

K-Means 

clustering [20] 

Good No Moderate Yes 

Linear 

regression + 

multi-ROIs [21] 

Good No Good Yes 

Linear 

regression + 

multi-ROIs + 

Hough 

transform [22] 

Good Yes Good Yes 

Hough 

transform + 

filtering [23] 

Good No Poor No 

Convolutional 

neural network 

[24] 

Good No Good No 



Chapter 2                                                                                                                                    Literature Review 

16 
 

Global energy 

minimization 

[25] 

Good Yes Good No 

 

an algorithm [10] based on Hough transform and Gabor filtering was presented. An extension 

of Hough transform was developed which showed good performance in complex conditions 

without the need of any pre-information. Also, the extended version of Hough transform 

outperformed Gabor filtering. To detect weed between the crop rows, a machine-vision 

based system is developed employing Hough transform [11]. The spacing between the crop 

rows was first determined followed by the weed detection. The detected weed can then be 

destroyed automatically with the help of control spray saving a lot of time and labour. 

Exploration of horizontal strips 

A computer vision-based method for crop row detection algorithm reduced the 

computational burden by removing the image segmentation step [12]. The digital images 

were captured continuously from a colour camera installed on the computer vision-based 

system and forwarded for processing to the computer. The removal of image segmentation 

helped in real-time processing of the captured images by lowering the computational 

complexity of the overall algorithm. The algorithm for crop row detection was based on the 

lateral position and estimation of the orientation of centre lines of crop rows via weighted 

linear regression. To determine the accuracy, the position of a reference string was used to 

compare it with the calculated crop row centre line. To detect crop rows and weed 

automatically, another method [13] used the grey digital images obtained by the 

transformation from colour images. The crop row spacing was known before the deployment 
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of the algorithm, which divided the grey scale images into eight equal horizontal bands. The 

results achieved from the automated system correlated well with the manual assessment. 

Linear regression 

Linear regression can be used for the predictive analysis. A vision guidance system was 

developed based on linear regression to detect crop rows [14]. The digital images are divided 

into three segments, and, in each segment, a cost function and linear regression was used to 

identify crop rows. There was pre-known information in form of number of crop rows and 

spacing between crop rows. Further, the performance of the algorithm reduces in the 

presence of visual noise from weeds. Another method [15] also employed linear regression 

to detect crop rows in maize fields in the presence of high weed. The algorithm consisted of 

three main steps: image segmentation, thresholding, and crop row detection. Vegetation 

index was used for image segmentation, the crops and weeds were separated using 

thresholding and crop row detection used least squares linear regression to identify crop 

rows. A pre-generated template was used to identify crop rows which consisted of 

information such as number of crop rows to be detected, the location of crop rows and the 

area to be explored in digital images.  

Blob analysis and Stereo-based 

Blob (Binary Large OBject) analysis based on the analysis of consistent image regions is a 

fundamental technique of machine vision [16]. In digital images, blob analyses determine the 

regions of interest that have different properties as compared to the background. Based on 

blob analyses, a method for crop row detection was presented in [16]. Binarization was used 

to transform the digital image into binary followed by the image segmentation. The binary 

objects with less than 200 image pixels were discarded as they can represent noise and 
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background. Therefore, the objects with more than 200 pixels are merged together to make 

a potential crop row. The angles of the principal axes and locations for centre of gravity of all 

blob objects were then calculated to determine whether these blob objects belong to a crop 

row or not. The algorithm [16] demonstrated good results on laboratory images but 

performed poorly on real crop field images. Furthermore, the discontinuity within the crop 

rows impacted the accuracy of the algorithm. For straight and curved crop rows detection, an 

effective stereovision-based algorithm was presented [17]. The algorithm consisted of 

functions for elevation map creation, stereo-image processing, and navigation point 

discrimination. A three-dimensional crop elevation map was reconstructed first followed by 

the search for optimal search points. This method was deployed in a soya bean field for the 

testing of crop row detection [17] with promising results. The extensions of this work by the 

same authors are presented in [18, 19] for three-dimensional crop row structure mapping 

and guidance.  

Other methods 

A method based on K-Means clustering was used to aggregate similar image objects to detect 

straight crop rows [20]. A confusion matrix was used to test the performance with accuracy 

of over 90%. A crop row detection algorithm was presented based on multiple regions of 

interest [21]. Basic image processing operations such as colour to grey, binarization and 

segmentation were employed with the assumption that the spacing between crop rows was 

consistent. Accumulation of green image pixels was used to identify straight as well as curved 

crop rows in maize fields [22]. There were three main steps: image segmentation, 

identification of starting point for crop rows and detection of crop rows. The image 

segmentation consisted of extraction of regions of interest, identification of greenness, 
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binarization and morphological operations. The starting points for crop rows were identified 

using Hough transform. The image segmentation and acquisition were the same as applying 

Hough transform with the exception that the vertical projection was applied before Hough 

transform. Finally, the crop rows were detected using least squares regression analyses. 

Further, curved crop rows were identified with the help of polynomial equations. The 

algorithm [22] showed better results as compared to Hough transform when simulated on 

maize field images. An embedded guiding system for unmanned aerial vehicles (UAVs) was 

proposed along with the crop row detection algorithm and an algorithm for generating the 

necessary parameters to control the UAV [23]. The algorithm for crop row detection can be 

divided into two main steps: image segmentation and crop row detection. Image 

segmentation consisted of transformation from colour to grey images, binarization, edge 

detection and calculation of average edges. The crop row detection was done using Hough 

transform followed by line filtering and line follower. The accuracy claimed was 100% on the 

presented image dataset, however, the image dataset was simple to process and free of any 

noise. Using an UAV, another method [24] was proposed for machine-vision crop row 

detection system. The crop rows were identified using a deep learning approach, 

Convolutional Neural Networks (CNN). The algorithm [24] illustrated better accuracy results 

as compared to the other works, however, the computational complexity of CNN is very high 

making them unsuitable for real-time processing for crop row detection. Using global energy 

minimization, a crop row detection algorithm for straight and curved rows was developed 

[25]. Dynamic programming and perspective projection of crop rows were used to detect crop 

rows. The algorithm [25] was simulated on their own image dataset which consisted of various 

scenarios and showed excellent results. Further, the performance of the proposed algorithm 
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[25] outperformed other methods. The only downside was the usage of pre-generated 

template, which make it unsuitable for many use cases.  

In the above-mentioned proposals, one of the common drawbacks is the need for vital 

information such as number, spacing and location of crop rows before the deployment of crop 

row detection algorithms. Also, in some proposals, there is need for the pre-generated 

template for their implementation. These limitations imply that these proposals cannot be 

applied in wide range of field trials. In this thesis, a robust crop row detection algorithm was 

proposed that showed good results without the need of any template and any pre-

information except for weed intensity and therefore can be applied to a wider range of crop 

fields demonstrating the novelty of the work. The proposed work was robust in challenging 

conditions such as poor illumination, variable light, sudden shadows, presence of weeds and 

noise and irregular crop shape.  Various tests and analyses were performed to examine the 

strength of the proposed work and the Receiver Operating Characteristic graph has been 

applied for the first time in crop row detection algorithm testing to the best of authors’ 

knowledge. Lastly, the superiority of the proposed work was showed by comparing it with the 

several state-of-art methods.  

2.1.7. Review of single plant phenomics 

The application of machine vision for the extraction of plants phenomics such as NDVI started 

almost 30 years ago [26]. There has been huge advancement in monitoring large crop fields 

using sensor technologies. However, the extraction of phenomics for single plants was done 

primarily in controlled environments. For instance, in the previous proposals [27-33], the 

individual plants were captured in a very simplistic setting; either there were few plants in a 

digital image, or the individual plants were not merged into each other. 
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Most breeding programs concentrate on whole crop row or whole plot phenotypes, which is 

often enough. However, the phenotypes of individual plants are of importance to examine 

family or population uniformity in both in- and outbred species. Uniformity is important 

because growers desire high forage biomass with even growth throughout a paddock and it 

is also a characteristic for determining plant breeder’s rights. Moreover, as each plant is 

genetically unique, it may be of importance to observe the competition effects between the 

individual plants [34], that is the effect of individual plants on the neighbour plants. The 

uniformity and the overall biomass yield can be inferior in the paddock if the individual plants 

are overly competitive in a forage cultivar. The manual calculation of phenomics of individual 

plants can be time consuming, and therefore, the automated phenomic solutions are 

required. 

The objective of this thesis is to automatically extract accurate individual plants’ phenomics 

such as area and NDVI values from the TIFF file images of field trials. There are initial estimates 

of the individual plants’ regions in form of bounding boxes that assist in the extraction of the 

mentioned phenomics. However, there are certain problems with the rectangular shaped 

bounding boxes leading to identify circular bounding boxes for extraction of accurate area of 

individual plants.  

Circular Hough Transform (CHT) [35-36] is a popular approach to detect circles in digital 

images. It is very effective in detecting multiple circles with different radii in a digital image 

and even with somewhat irregular circular shapes. However, CHT does not perform good 

where the circles are overlapping and merged to each other, just as in case of our research 

problems. 
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The above-mentioned existing proposals are not effective for our research problems; 

therefore, a new and robust algorithm is developed for the extraction of individual plants’ 

phenomics from digital images. Further, most of the existing proposals work in a very 

controlled environment and for single plants per image. The proposed algorithm was 

implemented on a field trial image dataset taken from the top view. Each field trial image 

consisted of thousands of plants, and despite of overlapping of adjacent plants, the proposed 

work showed sufficient accuracy demonstrating the novelty and originality as compared to 

the previous works. 

2.2. Genomic selection 

Genomic selection (GS) is breeding using DNA information [1]. It increases the accuracy of 

selection and chooses the best candidates from each family including good performing 

individuals from families that perform poorly on average. In addition to increased precision 

when selecting breeding candidates, GS can potentially also reduce inbreeding as we can use 

individuals from many families, thereby increasing the genetic gain with GS. Though, in many 

breeding applications high selection intensity and rapid turn-over of generations often 

outweighs these reductions inbreeding per generation. In this section, we will briefly 

introduce the strategies leading to GS. 

2.2.1. Ryegrass selection strategies 

Several selection strategies have been applied in ryegrass breeding. One of the earliest  

methods used in conventional breeding is phenotypic selection. In this method, crop varieties 

are selected based on the experience of the breeder and observed phenotypes to achieve 

genetic gain of the target trait. However, this scheme requires a lot of time and labour for a 
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complete phenotypic profile. It requires that each line or population is phenotyped before 

selection decisions can be made.  

Furthermore, with the early advancements in the field of computer science, best linear 

unbiased prediction (BLUP) model was presented by Henderson in 1975 [37] and it became 

the most popular and standard method for genetic evaluation as it has good predictive 

accuracy for most traits and training populations. However, ryegrass is an outbreed pasture 

grass and its varieties are made up of multiple parents. Therefore, each parent contribution 

is unknown and thus it is difficult to capture accurate pedigree for the breeding values. Hence, 

incomplete pedigree limits the application of BLUP in many forage breeding programs. 

2.2.2. Marker assisted selection 

Marker assisted selection (MAS) uses genetic markers related to the specific trait of interest 

for early selection in animals and plants. Moreover, the DNA-based marker information can 

be exploited to improve the accuracy of estimated breeding values for traits whose 

phenotypes are hard to measure otherwise. The success of MAS is subject to adequate linkage 

disequilibrium between a marker and the phenotypic quantitative trait locus (QTL) and the 

QTL explaining the considerable proportion of the variation for the trait.  However, often the 

relationship among marker and QTL is not substantial, and hence rejected [38]. Existing MAS 

methods can be validated only for a few major effect genes as compared to many genes with 

small effects [39]. Since, forage agronomic traits have complex genetic architecture, where 

trait performance is determined by many genes with small effects. Thus, MAS technique may 

lack the ability to fully capture the genetic variance in such scenarios, hence this limits its 

application in forages. 
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2.2.3. Genomic selection and competition effects 

GS is estimating the genetic worth of the individual based on the whole genome rather than 

few markers, thus capturing all the diversity from that genome [40]. GS develops a prediction 

model that contain the phenotypic and genotypic data of training population, sufficient to 

estimate the genomic estimated breeding values (GEBVs) for all the individuals of the 

breeding population without the knowledge of specific gene location [41].  

GS together with high throughput phenotyping can help in selecting for ryegrass agronomic 

traits (dry matter yield, persistency), which are otherwise hard to measure or time consuming 

[40]. The accuracy of GS is highly dependent on reference population size, heritability values 

of the desired trait and the genetic diversity of breeding populations [42]. However, one of 

the technical challenges in implementing the GS in crop plants is to accurately measure the 

phenotypic data. The precise phenotypic data is crucial because it is used to train the GS 

model to exactly predict GEBVs of breeding population. Numerous papers have evaluated the 

possible utilization of GS in simulations and experimental investigations in some of the major 

crops [43-47]. The application of GS in perennial forage crops is appealing as it can 

significantly reduce the length of the breeding cycle [48]. The scenarios for GS in perennial 

forage crops such as grasses and legumes have been evaluated in [49-50]. In [49], the 

challenge of limited extent of linkage disequilibrium is addressed by presenting two schemes 

for the implementation of GS; the first one is slight modification of existing schemes that 

helped in the reduction of overall cost. The second scheme allows two rounds of selection 

within a time-period required previously for one round of selection resulting in potentially 

double the genetic gain. In [50], the benefits of GS such as reduce cycle time, increase 
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selection accuracy and reduce operational costs are presented by evaluating different 

methods. 

It is universally known that there is competitive interaction among most animals and plants 

within or across species [51-52].  Global diversity of ryegrass synthetic lines or populations is 

high and there is the potential for competition between individual plants or a population. 

Competition can affect the heritable components, consequently affecting the phenotype and 

their response to multilevel selection. The interaction among individuals can be social 

(performance, accommodation, behaviour) with higher organisms, or physical such as in 

plants due to limited basic survival resources (water, sunlight, space, nutrients). Reduction of 

such competitive interactions is crucial for improving overall animal wellbeing and increased 

productivity in plants. Therefore, it is vital to understand how competition effects selection 

and how to reduce negative competition interaction in artificial breeding programmes for 

overall increased genetic gain. 

In this thesis, I investigated the interaction among individual ryegrass plants by extracting 

individual plant phenomics together with Indirect genetic effect (IGE) models. The indirect 

genetic effect is defined as the interaction in which the genotype of an individual can 

influence the phenotypic trait value of its neighbours. The IGEs have already been studied for 

the trees in which the definition of accurate phenotype is comparatively easy as compared to 

ryegrass because individual trees are physically distant from each other. In case of ryegrass, 

individual plants often overlap hence the extraction of individual plant phenomics is not a 

straightforward task. In this thesis, I defined single plant phenotypes from images taken by an 

un-crewed aerial vehicle in row planted perennial ryegrass. I then used the single plant 

phenotypes to investigate genomic prediction accuracy and competition effects using IGE 
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models. This thesis provides the first application of IGE models in pasture grasses which is the 

novelty of this work.  

This thesis investigated the presence of IGE for individual ryegrass plants. It has been shown 

that individual ryegrass plant performance correlates poorly with the performance of multiple 

plants grown in swards or plots.  In this thesis, the field trial for ryegrass plants were designed 

with a significant gap of 60cm between the rows. Therefore, for the interactive behaviour 

study there were two neighbours in the row (top and bottom) per focal plant at distance 

allowing for overlap and competition of plants.  The results of this first study of IGEs in 

ryegrass will provide information on their importance in ryegrass breeding. 
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3.1. Abstract 

Due to the increase in the use of precision agriculture, field trials have increased in size to 

allow for genomic selection tool development by linking quantitative phenotypic traits to 

sequence variations in the DNA of various crops. Crop row detection is an important step to 

enable the development of an efficient downstream analysis pipeline for genomic selection. 

In this paper, an efficient crop row detection algorithm was proposed that detected crop rows 

in colour images without the use of templates and most other pre-information such as 

number of rows and spacing between rows. The method only requires input on field weed 

intensity. The algorithm was robust in challenging field trial conditions such as variable light, 

sudden shadows, poor illumination, presence of weeds and noise and irregular crop shape. 

The algorithm can be applied to crop images taken from the top and side views. The algorithm 

was tested on a public dataset with side view images of crop rows and on Genomic Sub-

Selection dataset in which images were taken from the top view. Different analyses were 

performed to check the robustness of the algorithm and to the best of authors’ knowledge, 

the Receiver Operating Characteristic graph has been applied for the first time in crop row 

detection algorithm testing. Lastly, comparing this algorithm with several state-of-the-art 

methods, it exhibited superior performance. 

Keywords: Crop row detection, perspective projection, triangular matrix, accuracy, 

complexity. 

3.2. Introduction 

Agriculture is the primary industry sector ensuring food security and underpinning economic 

growth. Agriculture contributes heavily to different aspects of the personal and collective 
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lives. It is the major source of income in developing countries with almost 70% of the 

population relying on agriculture [1]. Agriculture is the underpinning industry to feed a 

growing world population and the last billion-dollar industry to be digitized. The advent of 

newer technologies has led to the next “green” revolution in agriculture allowing for the use 

of digital technologies to enable genomic selection in outbreeding species, where large-scale 

phenotyping was a limiting factor. The large data volumes generated by these technologies 

pose new data analysis challenges. Data extraction requires the identification of crops from 

background in images, which then enables the application of data in downstream analysis.  

These processes also need to be implemented in an automated manner so that data 

processing is fast, accurate and user friendly.  The use of automation in agriculture has gained 

huge attention and has become very beneficial in the last three decades [2-3]. A more specific 

case of automation in agriculture is precision agriculture [4-5].  

Precision agriculture is a management strategy that analyses and processes temporal, spatial 

and individual data aiming to improve productivity and profitability, while sustaining the 

quality of the surrounding environment.  Machine vision can enhance precision agriculture 

through digital phenotyping, grading and sorting, machine guidance and livestock 

identification. The application of machine vision systems in agriculture is increasing over time. 

A few of the examples of its applications are real-time imaging of crops, management maps, 

automatic guidance and quality control. High resolution cameras fitted on satellites and 

drones can assist in detecting the in-field heterogeneous mix of crops, weeds and soil with 

high precision. They can also be used in weed infested areas of the field to apply herbicides 

in a targeted manner. Out of the numerous applications of precision agriculture, crop plot 

and row detection in field trials and extraction of associated data is an important research 

focus for phenotyping and then genomic selection as it is a crucial step in data extraction. It 
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has attracted numerous studies [6-13], which worked on different aspects of crop row and 

weed detection. After detecting the rows, the extracted plant data from rows can be used for 

downstream analysis. For example, plant physical characteristics or phenotypes can be 

associated with genetic markers in genome-wide association studies and genomic selection 

[14-15]. In turn, these analyses can be used to identify plants with an increased genetic 

potential for productivity and resource use efficiency. While there are several advantages to 

automatic crop row detection using machine vision, there are also certain challenges, 

including:  

• outdoor environment conditions: factors like variable light conditions, shadows, 

complex backgrounds, poor illumination can affect the image quality. 

• confusion of crops with weeds: regular plants and crops can be confused with high 

density weeds that have similar visual patterns. 

• irregular shape of crops: growth variation of plants and crops resulting in different 

plant shapes and volumes can lead to false detection. 

• curved and irregular paths: the crop rows can be curved or irregular in shape. Also, 

the movements of the vehicle in irregular terrain can affect the resulting captured 

images.  

The high-level description of a general crop row detection process is illustrated in Fig. 3.1. The 

third step is crop row classification. In the literature, the classification of crop rows often 

requires known input parameters such as number of rows, spacing between rows and 

intensity of weeds in a crop image. Furthermore, in some proposals, a template is generated 

first which is used in the main algorithm. This limits the level of automation and applicability 

to field trials where the input parameters are varied or unknown and fails when the number  
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Fig. 3.1. The high-level description of a general crop row detection process is illustrated. There are 

three major steps involved in crop row detection: image acquisition, image segmentation and crop 

row detection. 

of rows, spacing between rows or another parameter varied. Therefore, a robust crop row 

detection system is required that can be applied to a wide variety of field trials in an 

automated manner without the need for known input parameters enabling a crop row 

detection algorithm that caters for the described challenges mentioned above.  

The contributions and aims of this study were: 

1. A crop row detection algorithm that detects crop rows in colour images without the use 

of known input parameters relating to the images with an accuracy of over 90% in the 

Genomic Sub-Selection dataset. The proposed algorithm can thus be applied to a wide 

range of field trials. 

2. The algorithm is effective in challenging conditions such as variable light, shadows, poor 

illumination, presence of weed and noise and irregular shape of crops with an accuracy 

of 84% when applied to a challenging public dataset [16]. 

3. The algorithm can be applied to crop images which are taken from the top and side 

views.  
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4. A novel method of applying Receiver Operating Characteristic (ROC) curve for the first 

time (to the best of authors’ knowledge) in the testing of a crop row detection 

algorithm. ROC graphical plot demonstrates the diagnostic ability of a binary classifier 

system by plotting True Positive Rate versus False Positive Rate. 

3.3. Background 

In this section, the major steps of crop row detection will be described as shown in Fig. 3.1.  

3.3.1. Crop row classification 

The last and final step is the classification of crop rows. Given the binary image with low noise 

intensity, it is easy to draw lines on the remaining white pixels detecting the crop rows. 

However, the images are complex making this step not straightforward. In this section, the 

different methodologies for the crop row classification will be reviewed. 

Hough transform methods 

The Hough transform [17] was introduced in 1962 for detecting lines, parametric curves and 

circles. A decade later, it was used in digital images for detecting straight lines. A wheat crop 

row detecting algorithm applied the Hough transform to obtain straight lines from binary 

images after image acquisition and segmentation [12]. Vanishing points were used to finally 

extract the real wheat rows. A high detection rate of up to 90% was demonstrated for the 

early wheat growth stages. The algorithm [12] cannot detect crop rows in complex conditions, 

such as large amounts of weeds, sky, and end of crop rows. A modified version of Hough 

transform, the random Hough transform, was proposed to reduce computational complexity 

[7]. This algorithm was tested on three types of plant densities: sparse, general and intensive. 

The simulation results confirmed that the random Hough transform was adaptive to the 
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different length and volume of the plants as compared to simple Hough transform. However, 

the algorithm does not have the capacity to work in complex scenarios such as the presence 

of weeds. A comparative study on weed discrimination measured and compared the 

effectiveness of the developed algorithms [18].  It was concluded that the results obtained by 

the Hough transform were better as compared to Gabor filtering [18]. Furthermore, an 

extension of the Hough transform [18] was proposed based on the previous results applied 

on images with top view. The Hough transform has also been adapted for autonomous weed 

detection [19]. This method [19] was used to calculate the current pose and orientation 

between the crops. The simulations were conducted with greater than 50% success rate. All 

Hough Transform methods are limited to straight crop rows and perform poorly in curved 

rows. 

Exploration of horizontal strips 

A crop row detection algorithm which removed the image segmentation step significantly 

reduced the image processing computational burden [9]. Prior to the estimation of the row 

positions, several points indicating row centres were determined. These points were obtained 

by dividing the greyscale image resulting from colour combination into a number of horizontal 

strips and subsequently it estimated where the rows intersect each individual strip. The 

simulation results confirmed an accuracy within the range of ±6mm to ±12mm depending 

upon the plant development in the field. However, the algorithm [9] exhibited poor results if 

there was only one row per image. Moreover, the presence of weeds significantly decreased 

the accuracy of the algorithm [9]. Another method [20] of automated crop and weed 

monitoring in widely spaced cereal crops transforms the digital images from the camera from 

RGB to grey.  The original image was transformed to grey scale and then divided into eight 
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horizontal bands. The row spacing in image pixels can be calculated for each of the horizontal 

bands using a pinhole model of the camera optics. The results of the automated mapping 

appear to be consistent with manual assessment. 

Linear regression 

Linear regression is used for the predictive analysis. A study using linear regression has been 

used successfully for the development of a vision guidance system in agriculture [21] to detect 

crop rows. A major drawback of this system was that its insensitivity to additional visual noise 

from weeds. The crops are divided into three crop row segments and in each segment, they 

used linear regression and a cost function to outline the rows. In [6], linear regression was 

also applied for the automatic detection of crop rows in maize fields with high weed pressure. 

After image acquisition and segmentation using an excess green index, the third step was to 

apply linear regression to obtain the straight-line equations corresponding to the crop rows. 

However, some prior knowledge was required for crop row detection; the expected location 

of each row, the number of crop rows and area covered by the digital image. Crop row 

detection using linear regression without image segmentation can be done via image analysis. 

Blob analysis and Stereo-based 

Blob (Binary Large OBject) analysis based on the analysis of consistent image regions is a 

fundamental technique of machine vision [22]. Blob analysis identifies the regions of a digital 

image that have different properties such as colour or brightness compared to their 

surroundings. A method based on blob analysis for the development of line-detection 

algorithms for local positioning in densely seeded crops was presented by [22].  The digital 

images were first segmented and transformed into binary form. The blob objects with less 

than 200 pixels were ignored because they can represent noise in the crop rows and therefore 
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the objects with more than 200 pixels are gathered together to form a possible crop row. 

After the identification of all blobs, their locations for centre of gravity and angles of the 

principal axes were calculated. Stereo vision generally refers to the perception of depth and 

three-dimensional structure. The method [22] showed poor results when applied to real crop 

fields as compared to laboratory images due to less information in crop filed images then 

laboratory images. Furthermore, the discontinuity between the crop rows impacted the value 

of accuracy of the algorithm [22]. An effective and robust stereovision-based crop row 

detection method for tractor-automated guidance [23] encompasses stereo-image 

processing functions for elevation map creation and navigational point determination. From 

the digital image taken from a stereovision camera, a three-dimensional crop elevation map 

was generated first and then optimal navigation points from the map are generated. This 

method was deployed in a soya bean field for the testing of crop row detection [23] with 

promising results. The extensions of this work by the same authors are presented by [24-25] 

for three-dimensional crop row structure mapping and guidance.  

Other methods 

K-Means clustering for spectra (which was further improved by spatial methods) was used for 

the detection of crop rows [10]. A combination of clustering and linear regression methods 

[8] was used for the automatic detection of crop rows based on multiple regions of interest. 

Crop row detection has also been done with the help of accumulation of green image pixels 

[8]. Other than straight line rows, the proposed algorithm [8] can determine curved crop rows 

as well as irregular inter-row spaces. The simulations showed good results in terms of 

accuracy and computational complexity. Vertical projection in combination with Hough 

transform has been employed [8] for a machine vision-based crop rows detection. In this 
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algorithm, the first two steps of image acquisition and image segmentation were the same as 

performing a Hough transformation except for a vertical projection being applied before the 

use of the Hough transform for crop row detection. The algorithm [8] is only compared with 

the standard Hough transform and therefore it is difficult to comment on the superiority and 

effectiveness of the algorithm. An unmanned aerial vehicles guidance system using crop row 

detection and line follower algorithms was developed [26]. The algorithm has two parts; one 

for crop row detection, which is responsible for the correct identification of the crop rows 

and a second for Line Filter that is responsible for generating the driving parameters sent to 

the flight controller. It is claimed that that the crop row detection algorithm has an accuracy 

of 100%. However, the image data considered is simple to process and is essentially free of 

weeds. Another method for crop row detection in unmanned aerial vehicles images is 

developed [27]. The images are taken from the top view instead of side view. Convolution 

neural networks are employed to increase the accuracy rate of crop row detection. However, 

with these networks, the computation time is very high making them less suitable for real-

time applications. Crop row detection by global energy minimization is proposed [16]. 

Dynamic programming is employed to detect both straight and curved crop rows. Their 

experiments demonstrated that the proposed method [16] outperforms the other considered 

methods in straight crop row detection. However, a template is generated based on the pre-

information prior to the detection stage making it not suitable for all the crop fields. 

One of the common drawbacks in the above-mentioned methods is the need of important 

information such as number and spacing of rows prior to the implementation of crop row 

detection algorithms. Also, in some proposals a template is generated first to be used in crop 

row detection. This implies that there is no single algorithm that can be applied to each crop 

field. In this paper, a crop row detection algorithm is proposed that does not require the pre-
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information such as number and spacing of rows and therefore can be applied to a wider 

variety of crop fields.  

3.4. Methods 

The proposed algorithm was applied on a public data set [16]. The complete evaluation image 

set contained 281 images and is available from their web page [28]. The images contained a 

varied number of crop rows, varied spacing and varied weed intensity. The images were 

originally captured at resolution 2560 × 1920 pixels and then resized to 320 × 240 pixels. This 

subsampling reduced the required computation time without significant loss of information 

for the purposes of crop row detection. A small sample of six down-sized images of this 

dataset is shown in Fig. 3.2. In the next subsections, all the steps in the proposed crop row 

detection algorithm will be explained and the resulting images will be showed to aid the 

reader’s understanding of the process.  

3.4.1. Identification of greenness 

Let the original colour image be denoted as 𝐼𝑜 with 𝑋 number of image pixel rows, 𝑌 number 

of pixel columns and 𝑍 number of frames. Let 𝐼𝑜(𝑥, 𝑦, 𝑧) ∈ [0, 255] be a grey value of an 

image pixel of image 𝐼𝑜 at 𝑥𝑡ℎ  row, 𝑦𝑡ℎ column and 𝑧𝑡ℎ frame. There are three frames in a 

colour image; red, green and blue. Let 𝑅𝑓, 𝐺𝑓 and 𝐵𝑓 represents red, green and blue frames 

of 𝐼𝑜, respectively. Furthermore, 𝑅𝑓(𝑥, 𝑦), 𝐺𝑓(𝑥, 𝑦) and 𝐵𝑓(𝑥, 𝑦) represent the grey values of 

these individual frames respectively at the 𝑥𝑡ℎ  row and 𝑦𝑡ℎ column. The greenness in 𝐼𝑜 was 

identified using the following equation [29]: 

𝐼𝑔(𝑥, 𝑦) =  1.262 ∗ 𝐺𝑓(𝑥, 𝑦) − 0.884 ∗ 𝑅𝑓(𝑥, 𝑦) − 0.311 ∗ 𝐵𝑓(𝑥, 𝑦),   

 ∀𝑥 ∈ 𝜒, 𝜒 = [1, 𝑋], ∀𝑦 ∈ ƴ,ƴ = [1, 𝑌],                 (3.1)  



Chapter 3                                          A template-free machine vision-based crop row detection algorithm 

45 
 

    

                          (a)                                                      (b)                                                         (c) 

   

                            (d)                                                      (e)                                                         (f) 

Fig. 3.2. (a-f) A small sample of six images of the public dataset available at [16]. These images have a 

varied number of crop rows, varied spacing and varied weed intensities. The original resolution of 

images are 2560 × 1920 pixels and then resized to 320 × 240 pixels.  

where, 𝐼𝑔 is a grey image whose pixels with greater intensity represents the green pixels of 

𝐼𝑜. Fig. 3.3(a-f) illustrates the greenness of Fig. 3.2(a-f) when Eq. (3.1) is applied. 

3.4.2. Grey to binary 

The grey image whose values ∈ [0,255] highlighted the greenness can be converted into 

binary image with only two grey values ∈ [0,1]; white (binary value: 1), which represented 

the greenness and black (binary value: 0), which represented the background. The Otsu binary 

thresholding [30] was employed, which was used to automatically perform clustering-based 

image thresholding returning a value of threshold, 𝑡ℎ𝑂𝑡𝑠𝑢. The binary image 𝐼𝑏 was obtained 

using the following: 
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                         (a)                                                       (b)                                                         (c) 

   

                         (d)                                                      (e)                                                         (f) 

Fig. 3.3. (a-f) Identification of greenness using Eq. (3.1) applied on images shown in Fig. 3.2 (a-f). 

Degree of pixel whiteness indicates the level of greenness and black pixels represent the background. 

𝐼𝑏(𝑥, 𝑦) =  {
1       𝑖𝑓   𝐼𝑔(𝑥, 𝑦) > 𝑡ℎ𝑂𝑡𝑠𝑢,
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

    ∀𝑥 ∈ 𝜒, 𝜒 = [1, 𝑋], ∀𝑦 ∈ ƴ, ƴ = [1, 𝑌].       (3.2) 

The Otsu binary image thresholding was applied on Fig. 3.3(a-d) and results are shown in Fig. 

3.4(a-f).  

3.4.3. Removing smaller objects 

While the binary images successfully identified crop rows, weeds were also identified because 

of their green colour. Weeds should not be classified as crops and must be removed from the 

image before identifying rows. To do so, an algorithm was developed based on arithmetic 

operations. It was assumed that weeds are usually smaller binary objects compared to 

connected crop row binary objects. A binary object is shown in Fig. 3.5.        
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                            (a)                                                       (b)                                                         (c) 

   

                         (d)                                                       (e)                                                         (f) 

Fig. 3.4. (a-f) Binary images resulting Otsu binary thresholding on images shown in Fig. 3.3(a-f) 

respectively. The white pixels represent the greenness and black pixels represent the background. 

 

 

Fig. 3.5. A binary object which is a collection of white pixels connected with each other. The number 

of rows in 𝐵𝑖  is denoted as 𝑋𝑖  and number of columns is denoted as 𝑌𝑖 . 
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Let a binary object be denoted as 𝐵𝑖, ∀𝑖 ∈ Ǹ, Ǹ = [1, 2, … ,𝑁], where, 𝑁 was the total number 

of binary objects in an image. The number of rows in 𝐵𝑖 was denoted as 𝑋𝑖 and number of 

columns was denoted as 𝑌𝑖 . 

First, the mean of each binary object was calculated using following: 

𝐴𝑖 = ∑∑𝐼𝑏(𝑥, 𝑦)

𝑌𝑖

𝑦

𝑋𝑖

𝑥

,          ∀𝑖 ∈ Ǹ,                                     (3.3) 

where, 𝐴𝑖  was the area of binary object 𝐵𝑖. Then the mean size of all objects’ areas, 𝑀 was 

calculated as: 

𝑀 = 
∑ 𝐴𝑖
𝑁
𝑖

𝑁
.                                                               (3.4) 

The smaller binary objects can be eliminated if the area of the individual binary object was 

less than the half of the mean area across all objects, that is: 

𝐼𝑏(𝑥, 𝑦) = 0,         𝑖𝑓 𝐴𝑖 < 𝑀 2⁄ ,   

∀𝑥 ∈ 𝜒𝑖 , 𝜒𝑖 = [1, 𝑋𝑖], ∀𝑦 ∈  ƴ𝑖, ƴ𝑖 = [1, 𝑌𝑖], ∀𝑖 ∈ Ǹ, Ǹ = [1, 𝑁].                                             (3.5)  

The threshold of half of the mean was set based on the authors’ own testing on the observed 

database. It can be adjusted based on the intensity of weeds in a crop field. This is the only 

parameter that should be known prior to the implementation of the developed algorithm. 

The elimination of smaller binary objects is shown in Algorithm 3.1 and the resulting images 

of applying this process on images in Fig. 3.4 (a-f) are shown in Fig. 3.6 (a-f). Most of the 

smaller objects, which represent weeds (noise), have been eliminated and the larger binary 

objects remained primarily identified the crop rows. 
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Algorithm 3.1. The process of eliminating smaller binary objects from the binary image. 

Inputs: Binary image, 𝐼𝑏, binary objects, 𝐵𝑖, ∀𝑖 ∈ Ǹ, 𝑋𝑖, 𝑌𝑖. 

Outputs: Binary image with reduced smaller binary objects, 𝐼𝑏. 

1: 𝑓𝑜𝑟 𝑖 =  1: 𝑁 

2:          𝐴(𝑖)  =  𝐴𝑟𝑒𝑎(𝐼𝑖
𝑏) 

3: 𝑀 =  𝑚𝑒𝑎𝑛(𝐴) 

4: 𝑓𝑜𝑟 𝑖 =  1: 𝑁 

5:           𝑖𝑓 𝐴(𝑖) < 𝑀 2⁄  

6:                     𝑓𝑜𝑟 𝑥 =  1: 𝑋𝑖 

7:                           𝑓𝑜𝑟 𝑦 =  1: 𝑌𝑖  

8:                                 𝐼𝑏(𝑥, 𝑦) = 0 

 

   

                           (a)                                                        (b)                                                        (c) 

   

                         (d)                                                        (e)                                                        (f) 

Fig. 3.6. (a-f) Binary images with smaller binary objects removed using Algorithm 3.1.  
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3.4.4. Joining row objects 

Once smaller binary objects have been removed, the remaining binary objects belonging to 

the same crop row must be joined. To perform this step, it was important to understand the 

perspective projection of crop rows [12] shown in Fig. 3.7. The projection was from the side 

view of the crop field. The crop rows were straighter in the middle of the crop image and 

started tilting while moving towards the other side of the crop image. In other words, the 

angle of crop rows with respect to the centre of the crop image increased as moving away 

from the centre of the crop image. Furthermore, the spacing between the crop rows is at the 

maximum at the bottom of the crop image and decreased while moving upward. The 

following subsections will explain the systematic joining of binary crop row objects. 

Bounding box and columns point of row objects 

The first step was to identify the bounding box of each binary object (Fig. 3.8) with respect to 

original crop image dimensions and to identify its column and row points. In Fig. 3.8, 𝑐1 and 

𝑐2 represent the starting and ending column points of binary object, respectively and 𝑟1 and 

𝑟2 represent the starting and ending row points of binary object, respectively. In the same 

 

 

Fig. 3.7. The perspective projection of crop rows. The projection is from the side view of the crop field.  
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Fig. 3.8. The bounding box of a binary object.  

figure, 𝑝1 and 𝑝2 represent the starting column points of first and last row of the object 

respectively and 𝑝3 and 𝑝4 represent the ending column points of first and last row of the 

object, respectively. These points will assist in determining the location of the binary object 

with respect to the column position of the original crop image. 

Determining the side of the object 

Regarding the perspective projection of crop rows, the next step was to find the side of the 

binary object with respect to the centre column of the crop row image, that is, whether the 

object was left or right of centre in the crop row image. If the object did not overlap with the 

centre (i.e. it is full on one side), its location was clear (Fig. 3.9a+b). However, if the object 

overlapped the centre column then its location will be determined based on points 𝑝1, 𝑝2, 𝑝3 

and 𝑝4. If the binary object was tilted towards the right side of the crop image, or if the 

differences of both 𝑝1 and 𝑝2 and 𝑝3 and 𝑝4  were positive, then the object was declared to 

be on the left side as shown in Fig. 3.9(c) and vice versa for objects tilted towards the left of 

the centre (Fig. 3.9d). Furthermore, if the difference of 𝑝1 and 𝑝2 was positive and the 

difference of 𝑝3 and 𝑝4 was negative or vice-versa, then its location was based on the absolute 

value of the difference. If the absolute value of the difference between 𝑝1 and 𝑝2 was greater 
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than the absolute value of the difference between 𝑝3 and 𝑝4, then the location of the object 

was defined as left, otherwise right as shown in Fig. 3.9(e) and 3.9(f), respectively. Absolute 

values were taken to determine the width of image pixels. If the width of image pixels 

between the points 𝑝1 and 𝑝2 was greater than the width of image pixels between the points 

𝑝3 and 𝑝4 then the location of the object was defined as left, otherwise right. The process in 

form of an equation is given below: 

 

 

   

                            (a)                                                       (b)                                                       (c) 

     

                        (d)                                                         (e)                                                        (f) 

Fig. 3.9. Determination of the location of binary object with respect to the centre column of the crop 

image. (a)-(b) The objects are completely on one of either side. (c)-(f) The decision is based on points 

𝑝1, 𝑝2, 𝑝3 and 𝑝4. Based on the differences of 𝑝1 and 𝑝2 and 𝑝3 and 𝑝4, the side will be determined.  
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𝑆𝑖𝑑𝑒 =  

{
  
 

  
 
𝐿𝑒𝑓𝑡        𝑖𝑓 (𝑐1 < 𝑐𝑒𝑛𝑡𝑟𝑒 & 𝑐2 < 𝑐𝑒𝑛𝑡𝑟𝑒),

𝑅𝑖𝑔ℎ𝑡      𝑖𝑓 (𝑐1 > 𝑐𝑒𝑛𝑡𝑟𝑒 & 𝑐2 > 𝑐𝑒𝑛𝑡𝑟𝑒),

                

{
 

 
𝐿𝑒𝑓𝑡         𝑖𝑓 (𝑝1 − 𝑝2 > 0 & 𝑝3 − 𝑝4 > 0),

𝑅𝑖𝑔ℎ𝑡      𝑖𝑓 (𝑝1 − 𝑝2 < 0 & 𝑝3 − 𝑝4 < 0),

                 {
𝐿𝑒𝑓𝑡            𝑖𝑓 (|𝑝1 − 𝑝2| > |𝑝3 − 𝑝4|),

𝑅𝑖𝑔ℎ𝑡          𝑖𝑓 (|𝑝1 − 𝑝2| ≤ |𝑝3 − 𝑝4|),

                       (3.6) 

where, 𝑐𝑒𝑛𝑡𝑟𝑒 was the centre column of the crop image and & represented the logical AND 

operator.  

Creating a triangle matrix 

The objective was to connect binary objects that belonged to the same row. To achieve that, 

after determining the side, the next step was to create a triangular matrix of 1s. A triangular 

matrix was created based on respective location and size. The size was defined as a square 

matrix using the row position of the binary object (𝑟1). The size of the triangular matrix was 

greatest for an object located at the bottom of the crop image and decreased as the object’s 

position moved towards the top of the crop image. Specifically, the size, 𝑠𝑧 of the triangular 

matrix was determined as: 

𝑠𝑧 =  ⌈𝑠𝑚𝑖𝑛 + (
𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛
𝑋 − 1

) (𝑟1 − 1)⌉,                                          (3.7) 

where, 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥were the minimum and maximum sizes of the triangular matrix with 

𝑠𝑚𝑖𝑛 = 2 and 𝑠𝑚𝑎𝑥 ≈ 0.5 ∗ 𝑋, 𝑟1 represented the starting row point of binary object and ⌈. ⌉ 

was a ceiling function. Eq. (3.7) mapped the row range ∈ [1, 𝑋] to triangular matrix sizes ∈

[𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥]. The left matrix, 𝑚𝑎𝑡𝐿 was created as: 

𝑚𝑎𝑡𝐿(𝑎, 𝑏) =  {
0   𝑖𝑓 𝑎 + 𝑏 − 1 > 𝑠𝑧,
1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

     

∀𝑎, 𝑏 ∈ 𝑆, 𝑆 = [1, 𝑠𝑧].                                              (3.8) 

Similarly, the right matrix, 𝑚𝑎𝑡𝑅 was created as: 
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𝑚𝑎𝑡𝑅(𝑎, 𝑏) =  {
1   𝑓𝑜𝑟 𝑎 ≤ 𝑏,
0   𝑓𝑜𝑟 𝑎 > 𝑏,

  

∀𝑎, 𝑏 ∈ 𝑆, 𝑆 = [1, 𝑠𝑧].                                                   (3.9)                        

Joining objects 

The triangular matrix and binary object information was used to connect row binary objects. 

The principle is that if two binary objects (𝐵𝑖 and 𝐵𝑗) were close enough to potentially lie on 

the same crop row then these two binary objects should be joined. To see whether 𝐵𝑖 and 𝐵𝑗 

should be connected, first, the triangular matrix was placed on top of the binary object, 𝐵𝑖. 

For an object located at the left side of the crop image, the triangular matrix was placed at 

𝐼𝑏(𝑟1, 𝑝3) and for an object located at the right side of the crop image, the triangular matrix 

was placed at 𝐼𝑏(𝑟1, 𝑝1). As the binary object consisted of collection of 1s and so does the 

triangular matrix, this will temporarily create one big binary object. This big binary object for 

the left triangular matrix is given as: 

𝐼𝑏(𝑥′, 𝑦′) =  𝐼𝑏(𝑥, 𝑦)| 𝑚𝑎𝑡𝐿(𝑎, 𝑏), 

       𝑥′ ∈ 𝑋𝑖
′, 𝑋𝑖

′ = [𝑟1 − 𝑠𝑧 + 1, 𝑟2], 

𝑦′ ∈ 𝑌𝑖
′, 𝑌𝑖

′ = [𝑐1, 𝑝3 + 𝑠𝑧 − 1],                                            (3.10) 

where, | represented the logical OR operator. Similarly, the big binary object for the right 

triangular matrix is given as: 

𝐼𝑏(𝑥′, 𝑦′) =  𝐼𝑏(𝑥, 𝑦)| 𝑚𝑎𝑡𝑅(𝑎, 𝑏), 

       𝑥′ ∈ 𝑋𝑖
′, 𝑋𝑖

′ = [𝑟1 − 𝑠𝑧 + 1, 𝑟2], 

𝑦′ ∈ 𝑌𝑖
′, 𝑌𝑖

′ = [𝑝1 − 𝑠𝑧 + 1, 𝑐2].                                            (3.11) 

If this big binary object, 𝐼𝑏(𝑥′, 𝑦′), overlapped with any other binary object, let say 𝐵𝑗 then  
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                                    (a)                                                                                           (b)        

Fig. 3.10. Two examples of joining two binary objects with each other. (a) A binary object, 𝐵𝑖  placed 

at the left side of the centre of the column. A left triangular matrix of size 6 is placed at 𝐼𝑏(𝑟1, 𝑝3) 

which overlaps with the other binary object, 𝐵𝑗 results in joining 𝐵𝑖  and 𝐵𝑗. (b) A binary object, 𝐵𝑖  

placed at the right side of the centre of the column. A right triangular matrix of size 6 is placed at 

𝐼𝑏(𝑟1, 𝑝1) which overlaps with the other binary object, 𝐵𝑗 results in joining 𝐵𝑖  and 𝐵𝑗. 

the triangular matrix was removed and 𝐵𝑖 and 𝐵𝑗 were connected. Two examples of joining 

two binary objects with each other is shown in Fig. 3.10(a)-(b). The pseudo-code for joining 

row objects is shown in Algorithm 3.2. 

Images in Fig. 3.11 (a)-(f) demonstrated the joined objects. The images, however, were 

cropped from the top side as the crop rows were almost merged into each other and 

therefore it was unnecessary to detect crop rows at the top side. Moreover, once the crop 

rows were identified in the middle of the image, they can be extended towards the top and 

bottom of the image. Furthermore, for this step, the images were also cropped at the bottom 

to reduce the computational complexity and to increase the accuracy of the proposed 
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                          (a)                                                         (b)                                                        (c) 

     

                         (d)                                                         (e)                                                        (f) 

Fig. 3.11(a)-(f) The results of joining binary objects applied on the crop images illustrated in Fig. 3.6(a)-

(f). The images, however, are cropped from the top side and the bottom side to improve the efficiency 

and effectivity of the proposed algorithm. The effects of joining objects can be visualised in (a), (b), 

(d) and (e). The crop rows in (c) and (f) are already connected and therefore the impact of this step is 

not highlighted.  

Algorithm 3.2. The whole process of joining row objects in form of a pseudocode. 

Inputs: Binary image, 𝐼𝑏, binary objects with bounding boxes, 𝐵𝑖, 𝑝1, 𝑝2, 𝑝3, 

𝑝4, 𝑟1, 𝑟2, 𝑐1, 𝑐2 ∀𝑖 ∈ 𝑁, 𝑋𝑖, 𝑌𝑖, 𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥.  

Outputs: Binary image with connected binary objects, 𝐼𝑏. 

1: 𝑓𝑜𝑟 𝑖 =  1: 𝑁 

2:          𝑠𝑖𝑑𝑒 = 𝑠𝑖𝑑𝑒_𝑑𝑒𝑡(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑟1, 𝑟2, 𝑐1, 𝑐2) 

3:           𝑠𝑖𝑧𝑒 =  𝑠𝑖𝑧𝑒_𝑑𝑒𝑡(𝑟1, 𝑟2, 𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥) 

4:           𝑚𝑎𝑡𝑟𝑖𝑥 = 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟_𝑚𝑎𝑡𝑟𝑖𝑥(𝑠𝑖𝑑𝑒, 𝑠𝑖𝑧𝑒) 

5:           𝐼𝑏 = 𝑗𝑜𝑖𝑛𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡𝑠(𝐼𝑏 ,𝑚𝑎𝑡𝑟𝑖𝑥, 𝐵𝑖, 𝐵𝑗) 

 

algorithm. It is to be noted that the crop rows will always be straight at the bottom of the 

crop image irrespective of the fact that the crop rows are curved at the top. Therefore, 
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cropping images from the bottom will not introduce any error or false information. Binary 

objects were not joined if the distance between them was more than 𝑠𝑧, irrespective of the 

fact that both binary objects belonged to the same row. This situation could be seen in the 

sixth and seventh crop rows of Fig. 3.11(b), where binary objects of the same row cannot be 

joined as the distance between them was greater than 𝑠𝑧. 

3.4.5. Extending longer objects 

The next step was to extend those objects whose vertical length (number of pixel rows) was 

more than 70% of 𝑋, if objects beyond this threshold would all be crop rows. This step was 

applied to all binary objects except those that were full crop rows. A binary object was 

classified as a full crop row based on the following: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑟𝑜𝑤

= {
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒             𝑖𝑓 ((𝑟1 = 1 & 𝑟2 = 𝑋)|𝑟1 = 1 & 𝑐1 = 1|(𝑟1 = 1 & 𝑐2 = 𝑌)),
𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

              (3.12) 

The incomplete rows were extended by considering the bounding box of the binary object, 

where 𝑝1 represented the column of the first image pixel (white) of the first row and 𝑝3 

represented the column position of the last image pixel (white) of the first row. Applying this 

to the other rows, let 𝑙2
𝑖  represent the column position of the first image pixel (white) of the 

second row of 𝑖𝑡ℎ binary object and 𝑞2
𝑖  represent the column position of the last image pixel 

(white) of the second row of 𝑖𝑡ℎ binary object. For simplicity and clarity, write 𝑝1 as 𝑙1
𝑖  and 𝑝3 

as 𝑞1
𝑖 . Continuing this, consider a vector 𝐿𝑖, which consists of all the 𝑙𝑡

𝑖  values of all the rows 

of 𝑖𝑡ℎ binary object and consider a vector 𝑄𝑖, which consists of all the 𝑞𝑡
𝑖  values of all the rows 

of the 𝑖𝑡ℎ binary object, where, 𝑡 = [1, 𝑟2 − 𝑟1 + 1], such that, 𝐿𝑖 = [𝑙1
𝑖 , 𝑙2

𝑖 , … , 𝑙𝑟2−𝑟1+1
𝑖 ], 𝑄𝑖 =
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[𝑞1
𝑖 , 𝑞2

𝑖 , … , 𝑞𝑟2−𝑟1+1
𝑖 ]. The mean or the values of the middle columns of these vectors were 

placed in a vector, 𝑈 = [𝜇1, 𝜇1, … , 𝜇𝑟2−𝑟1+1] whose values were calculated as:  

𝜇𝑡 = ⌈
𝑙𝑡
𝑖 + 𝑞1

𝑖

2
⌉ , ∀𝑡 = [1, 𝑟2 − 𝑟1 + 1].                                     (3.13) 

Also, add 𝑟1, 𝑟2 into vector, 𝛾 = [𝑟1, 𝑟2]1×𝑟2−𝑟1+1. Fitting a polynomial of curve to the vector in 

a straight line with degree one;  

𝛽 = 𝑝𝑜𝑙𝑦𝑓𝑖𝑡(𝑈, 𝛾),                                                                 (3.14) 

where, 𝑝𝑜𝑙𝑦𝑓𝑖𝑡(. ) is a function requiring vectors U and y and return the slope, 𝑠𝑙 and y-

intercept, 𝑖𝑛𝑡 of a straight line. Using 𝛽, those objects can be extended whose length is more 

than 70% of 𝑋 as follows: 

{
𝑐𝑖
∗ = 𝑠𝑙 ∗ 𝑟𝑖

∗ + 𝑖𝑛𝑡, ∀𝑟𝑖
∗ = [1, 𝑟1], 𝑖𝑓 𝑟1 ≠ 1,                         3.15(𝑎)

𝑐𝑖
∗ = 𝑠𝑙 ∗ 𝑟𝑖

∗ + 𝑖𝑛𝑡, ∀𝑟𝑖
∗ = [𝑟2, 𝑋], 𝑖𝑓 𝑟2 ≠ 𝑋.                        3.15(𝑏)

 

{

𝐼𝑏(𝑟𝑖
∗, 𝑐𝑖

∗) = 1,         ∀𝑟𝑖
∗ = [1, 𝑟1],                                                 3.16(𝑎)

𝐼𝑏(𝑟𝑖
∗, 𝑐𝑖

∗ − 1) = 1, ∀𝑟𝑖
∗ = [1, 𝑟1],                                         3.16(𝑏)

𝐼𝑏(𝑟𝑖
∗, 𝑐𝑖

∗ + 1) = 1, ∀𝑟𝑖
∗ = [1, 𝑟1].                                         3.16(𝑐)

 

{

𝐼𝑏(𝑟𝑖
∗, 𝑐𝑖

∗) = 1,          ∀𝑟𝑖
∗ = [𝑟2, 𝑋],                                                3.17(𝑎)

𝐼𝑏(𝑟𝑖
∗, 𝑐𝑖

∗ − 1) = 1, ∀𝑟𝑖
∗ = [𝑟2, 𝑋],                                         3.17(𝑏)

𝐼𝑏(𝑟𝑖
∗, 𝑐𝑖

∗ + 1) = 1, ∀𝑟𝑖
∗ = [𝑟2, 𝑋].                                         3.17(𝑐)

 

3.4.6. Extending other row objects 

The last step was to extend the remaining objects if they belong to a crop row. The decision 

that these remaining objects belong to a row or not was based on the minimum distance of 

the columns between the objects considered as the full crop rows. A binary object as a full 

crop row is given in Eq. (3.12). Let say there were 𝑁∗ number of full rows in 𝐼𝑏. For each full 

row, first, the vectors, 𝐿𝑖  and 𝑄𝑖 were determined. Let put 𝐿𝑖  and 𝑄𝑖, ∀𝑖 ∈ [1, 𝑁∗] of all the 

full rows in a single matrix, L and Q. L and Q were two matrices whose columns correspond 
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to the individual values of 𝐿𝑖  and 𝑄𝑖 for each of the full row respectively. These matrices are 

given as:  

L =

[
 
 
 
𝑙1
1 𝑙1

2 … 𝑙1
𝑁∗

𝑙2
1 𝑙2

2 … 𝑙2
𝑁∗

⋮
𝑙𝑋
1

⋮
𝑙𝑋
2

⋱ ⋮
… 𝑙𝑋

𝑁∗]
 
 
 

𝑋×𝑁∗

,                                               (3.18) 

Q =

[
 
 
 
𝑞1
1 𝑞1

2 … 𝑞1
𝑁∗

𝑞2
1 𝑞2

2 … 𝑞2
𝑁∗

⋮
𝑞𝑋
1

⋮
𝑞𝑋
2

⋱ ⋮
… 𝑞𝑋

𝑁∗]
 
 
 

𝑋×𝑁∗

,                                              (3.19) 

where, 𝑋 was the length of each of the column of L and Q even though the individual length 

of these columns depended on the values of 𝑟1 and 𝑟2 of the individual binary objects. 

However, the actual values remained the same and the length was still 𝑟2 − 𝑟1 + 1 for the 

individual binary objects. The rest of the elements were assigned with the zero values.  

The next step was to determine the distance in terms of columns between two consecutive 

full crop rows for the whole image. This is illustrated in Fig. 3.12, in which there are 𝑁∗ = 3 

full crop rows and 6 image rows (this is a small example to explain the process, the public 

dataset [28] considered here has 240 image rows in each crop image).  The distance between 

two consecutive crop rows for all the full crop rows was determined and placed in a matrix, 

D and given as: 

D =

[
 
 
 
𝑙1
2 − 𝑞1

1 𝑙1
3 − 𝑞1

2 … 𝑙1
𝑁∗ − 𝑞1

𝑁∗−1

𝑙2
2 − 𝑞2

1 𝑙2
3 − 𝑞2

2 … 𝑙2
𝑁∗ − 𝑞2

𝑁∗−1

⋮
𝑙𝑋
2 − 𝑞𝑋

1
⋮

𝑙𝑋
3 − 𝑞𝑋

2
⋱ ⋮

… 𝑙𝑋
𝑁∗ − 𝑞𝑋

𝑁∗−1]
 
 
 

𝑋×𝑁∗−1

.                         (3.20)  

The next step was to find the minimum of distance of each row of D, as below: 

D𝑚𝑖𝑛 = [min (𝑙𝑡
2 − 𝑞𝑡

1, 𝑙𝑡
3 − 𝑞𝑡

2, … , 𝑙𝑡
𝑁∗ − 𝑞𝑡

𝑁∗−1)]
1×𝑋

, ∀𝑡 = [1, 𝑋].              (3.21) 
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Fig. 3.12. Distance in terms of columns between two consecutive full crop rows for all the full crop 

rows. In the image, there are 𝑁∗ = 3 full crop rows and 6 image rows. 

D𝑚𝑖𝑛 was a vector whose individual values, 𝑑𝑚𝑖𝑛
𝑡 , 𝑡 ∈ [1, 𝑋], were for all the image rows and 

corresponded to the minimum and standard distance between two consecutive crop rows.  

This D𝑚𝑖𝑛 was used in determining the other binary objects as the crop rows. This process 

was repeated for each binary object for the decision. If the difference between the distance 

and  D𝑚𝑖𝑛 was small enough, then the binary object was considered as the part of a potential 

crop row otherwise that binary object was deleted.  

Let say a binary object, 𝐵𝑗 has 𝐿𝑗 = [𝑙1
𝑗
, 𝑙2
𝑗
, … , 𝑙𝑟2−𝑟1+1

𝑗
] and let compare its distance with the 

next immediate full crop row which has 𝑄𝑖 = [𝑞1
𝑖 , 𝑞2

𝑖 , … , 𝑞𝑟2−𝑟1+1
𝑖 ]. The comparison will be 

between each element of 𝐿𝑗  and each element of 𝑄𝑖. A temporary variable was taken and 

initialized to zero, i.e. 𝑐𝑜𝑢𝑛𝑡 = 0. The comparison is given as: 

𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1,      𝑖𝑓 |𝑙𝑡
𝑗
− 𝑞𝑡

𝑖| < 𝑡ℎ𝑑𝑖𝑠 ∗ 𝑑𝑚𝑖𝑛
𝑡 , 

∀ 𝑡 ∈ [1, 𝑟2 − 𝑟1 + 1],                             (3.22) 

where, 𝑡ℎ𝑑𝑖𝑠 was the distance threshold or a percentage tolerance level. The accuracy or 

number of truly detected crop rows can be increased with the increase in 𝑡ℎ𝑑𝑖𝑠, but this would 
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also increase the falsely detected crop rows. Finally, the object was determined as a crop row 

based on the following check: 

𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑐𝑟𝑜𝑝 𝑟𝑜𝑤,    𝑖𝑓 𝑐𝑜𝑢𝑛𝑡 > 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 ∗ (𝑟2 − 𝑟1 + 1),               (3.23) 

where, 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 was the count threshold or a percentage tolerance level. If the 𝑐𝑜𝑢𝑛𝑡 was 

greater than a user defined fraction of the length of the binary object, then the binary object 

was considered as a potential part of a crop row otherwise this binary object would be 

deleted. The accuracy or number of truly detected crop rows can be increased with the 

decrease in 𝑡ℎ𝑐𝑜𝑢𝑛𝑡, however, at the same time, this would also increase the falsely detected 

crop rows. 

 

   

                         (a)                                                      (b)                                                        (c) 

   

                        (d)                                                      (e)                                                        (f) 

Fig. 3.13. (a)-(f) The results of extending binary objects applied on the crop images illustrated in Fig. 

3.11(a)-(f). The binary objects shown in these images only represent the completely detected crop 

rows. 
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Table 3.1. Values of the input parameters used for the experiments. 

Parameter Value Parameter Value 

𝑠𝑚𝑖𝑛 2 𝑡ℎ𝑑𝑖𝑠 0.30 

𝑠𝑚𝑎𝑥 20 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 0.50 

 

The results of this step applied on the images illustrated in Fig. 3.11(a)-(f) are shown in Fig. 3. 

13(a)-(f). Also, these images were extended to the bottom of the crop images to negate the 

effect of cropping done earlier.  

3.5. Results 

The proposed algorithm was applied on a public data set [16], which consisted of 281 images 

and can be downloaded from their web page [28]. The parameters used in these results are 

mentioned in Table 3.1. The values of 𝑡ℎ𝑑𝑖𝑠 and 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 are fixed and should remain same for 

testing on other image databases as well. However, to test the robustness of the developed 

algorithm, the values of these two thresholds can be tuned to see the values of False Positive 

Rates and True Positive Rates as explained later. Similarly, as mentioned earlier,  𝑠𝑚𝑖𝑛 = 2 

and 𝑠𝑚𝑎𝑥 ≈ 0.5 ∗ 𝑋. The value of 𝑠𝑚𝑎𝑥 considered for the observed image database is 20 and 

should be changed for other image databases depending upon the size of images. As an 

example, some of the results of the proposed algorithm on the images are shown in Fig. 3.14 

(a)-(o), in which crop rows are labelled as red. 

As is apparent from the figures, the proposed algorithm is robust and can detect any number 

of crop rows with any spacing between them. The rare limitation of the proposed algorithm 

is that it requires the spacing between the crop rows to be reasonably consistent. The effects 

of this limitation can be seen in Fig. 3.14(e), in which one row cannot be detected and in  
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                          (a)                                                         (b)                                                        (c) 

   

                         (d)                                                         (e)                                                         (f) 

   

                        (g)                                                         (h)                                                          (i) 

   

                        (j)                                                          (k)                                                          (l) 

   

                       (m)                                                        (n)                                                         (o) 

Fig. 3.14. (a)-(o) Few of the results of the proposed algorithm applied on the images of the dataset 

[16]. The images in Fig. 3.14(a)-(f) are the same considered in Fig. 3.13(a)-(f). 
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Fig. 3.14(f) where one false crop row is detected. 

3.5.1. Genomic Sub-Selection (GSS) dataset 

Beside the image dataset taken from the perspective projection, the algorithm was tested in 

the Genomic Sub-Selection (GSS) image dataset in which images were taken from the top 

view. The GSS trial contains 50 perennial ryegrass cultivars with an aim to enable genomic 

selection [14] analyses grown in replicated rows of 32 plants each.  The aims of these field 

trials were the development of phenomic processing pipelines to define novel traits, the 

estimation and prediction of hybrid vigour and inclusion of single plant competition effects in 

genomic selection. An example colour image of the GSS field trial is shown in Fig. 3.15(a) and 

a grey frame of a GSS image is shown in Fig. 3.15(b). Images were taken with a GoPro Hero 4 

(GoPro, San Mateo, CA, USA) deployed on a 3DR Solo quadcopter (3D Robotics, Berkeley, CA, 

USA).  

   

                                         (a)                                                                                      (b)        

Fig. 3.15. An example of GSS field trial in colour form is shown in (a) and a grey frame of a GSS image 

is shown in (b). The white pixels in (b) represent greenness in GSS image and black pixels represent 

background. In (b), there are 10 major crop rows and in each major crop row, there are 150 minor 

crop rows for a total of 1500 crop rows. 
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The proposed algorithm for crop row detection was modified to be applied on the GSS images.  

A geo-rectified ortho-mosaic image (Fig. 3.15(b)) was created with Pix4D (Pix4D SA, Prilly, 

Switzerland) software. The image was geo-rectified with the aid of 12 ground control points 

distributed across the GSS field trial. The ortho-mosaic was cropped and rotated.  For 

illustration purposes, only a subsection of the whole trial is shown in Fig. 3.16, but the 

algorithm was applied on the entire picture.  

The grey image was converted into binary using the same Otsu binary thresholding [30] 

mentioned earlier (Fig. 3.16(b)). The weeds or noise in these images was minimal and, 

therefore, the step of removing smaller objects could be ignored. However, some crop rows 

were overlapping as can be seen in the first major crop row of Fig. 3.16(b). To shrink or thin 

these overlapped crop rows, the binary image erosion was used [31]. Binary image erosion 

removes image pixels from the boundaries of the binary image with the help of a pre-defined 

structuring element. Let take 𝐼𝑏 as a binary image shown in Fig. 3.16(b). The image erosion 

applied on 𝐼𝑏 with the help of a structuring element 𝑠𝑡 is given as [31]: 

𝐼𝑏⊖ 𝑠𝑡 =  {𝑧|(𝑠𝑡)𝑧 ∩ 𝐼
𝑏𝑐 ≠ ∅},                                             (3.24) 

where, ⊖ was a binary image erosion of 𝑠𝑡 on 𝐼𝑏, 𝑧 was a translation vector (𝑧1, 𝑧2), (𝑠𝑡)𝑧 

was translation of 𝑠𝑡 by point 𝑧 = (𝑧1, 𝑧2), ∩ was an intersection or logical AND operator, (. )𝑐 

was a compliment or logical NOT operator and ∅ was an empty set. The Eq. (3.24) can also be 

stated as: 

𝐼𝑏⊖ 𝑠𝑡 =  ⋂ 𝐼𝑏−𝑧
𝑧∈𝑠𝑡

,                                                      (3.25) 

where, 𝐼𝑏−𝑧 represented the translation of 𝐼𝑏 by −𝑧. The structuring element 𝑠𝑡 used in this 

work is a square of 1s of size 4. 
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The result of binary erosion applied on Fig. 3.16(b) by 𝑠𝑡 is shown in Fig. 3.16(c) and the binary 

objects have been shrunk. 

Once the objects are eroded, the next step was to extend them using the process mentioned 

above. However, due to the image being taken in top view, the extension of the binary objects 

was best done by placing a rectangular shape object over the top of the binary objects. 

Furthermore, the crop rows are disconnected due to the major crop row sections. Thus, there 

are intended gaps between the major crop rows and must be classified before the crop row 

detection. The gaps were labelled as black rows identified with the help of following: 

𝑟𝑜𝑤𝑖 = 𝑏𝑙𝑎𝑐𝑘       𝑖𝑓 ∑𝐼𝑏(𝑖, 𝑗)

𝑌

𝑗=1

< 𝑡ℎ𝑟𝑜𝑤_𝑔𝑎𝑝 ∗ 𝑌,     ∀𝑖 ∈ [1, 𝑋]                    (3.26) 

where, 𝑡ℎ𝑟𝑜𝑤_𝑔𝑎𝑝 was a threshold for the row gaps.  The accuracy or number of truly detected 

crop rows can be increased with the increase in 𝑡ℎ𝑟𝑜𝑤_𝑔𝑎𝑝.  However, this will also increase 

the number of falsely detected rows. The gaps between the minor crop rows can be identified 

as black columns with the help of the following: 

𝑐𝑜𝑙𝑢𝑚𝑛𝑗 = 𝑏𝑙𝑎𝑐𝑘       𝑖𝑓 ∑𝐼𝑏(𝑖, 𝑗)

𝑋

𝑖=1

< 𝑡ℎ𝑐𝑜𝑙_𝑔𝑎𝑝 ∗ 𝑋,        ∀𝑗 ∈ [1, 𝑌]                (3.27) 

where, 𝑡ℎ𝑐𝑜𝑙_𝑔𝑎𝑝 was a threshold for the column gaps.  The accuracy or number of truly 

detected crop rows can be increased with the increase in 𝑡ℎ𝑐𝑜𝑙_𝑔𝑎𝑝.  However, at the same 

time, this will also increase the falsely detected crop rows. Once the black rows and columns 

were classified, the rest of the spaces belonged to the crop rows. These crop rows were 

labelled with the red marker depicting the detected crop rows as shown in Fig. 3.16(d). The 

values of both 𝑡ℎ𝑟𝑜𝑤_𝑔𝑎𝑝 and 𝑡ℎ𝑐𝑜𝑙_𝑔𝑎𝑝 in the experiments were set to 0.1. The accuracy 

achieved for GSS dataset is over 90%. 
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                                             (a)                                                                        (b)        

    

                                                (c)                                                                        (d)        

Fig. 3.16. (a) A sub-part of Fig. 3.15(b) which is cropped and rotated into a rectangular form. (b) The 

result of Otsu binary thresholding applied on (a). (c) The result of binary erosion applied on (b) by 𝑠𝑡 

in which the binary objects have been shrunk. (d) Detected crop rows marked in red. 
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3.5.2. Performance evaluation 

To evaluate the performance of the proposed algorithm, several parameters have been 

considered. To the best of the authors’ knowledge, one of them, the Receiver Operating 

Characteristic, was used for the very first time in assessing the performance of any crop row 

detection algorithm. These parameters are explained in accordance with the proposed 

algorithm as follows: 

Accuracy 

In crop row detection, accuracy is the measure of percentage of detected rows in a crop row 

field. To declare a detected crop row as an actual row, the detected crop row was compared 

with the crop row of the ground truth image. A ground truth image was created with the help 

of an expert who defines the actual crop rows in an image. The ground truth images can be 

created with the help of a software [16]; in that case, the expert defines two or more points 

lying on a crop row in a test image and the developed software automatically generates a 

smooth curve passing through these points. The same procedure was undertaken for the 

adjacent crop row in the image. According to these two curves representing midlines of two 

adjacent crop rows, the curves for the remaining crop rows in the image are reconstructed. 

Or, the ground truth images can be manually generated by the expert specifying all the crop 

rows.  

To check whether a detected row was the actual row or not, different parameters can be used 

for the validation of a crop row such as distance/deviation or the length of the detected row. 

In terms of distance, the difference between the position of the detected crop row and the 

actual crop row of the ground truth image should be less than the specified threshold to be 

accepted as an actual crop row. Furthermore, the detected row can be declared as the actual 
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row if the length of the detected row was close to the length of the actual crop row of the 

ground truth image.  

The proposed algorithm was applied with the input parameters mentioned in Table 3.1. As 

stated earlier, accuracy gives the percentage of detected crop rows in an image. For instance, 

in Fig. 3.17(a) which represented a crop image having eight crop rows, the algorithm detected 

seven crop rows and, therefore, the accuracy in this case was 7/8*100%=87.5%. For the public 

dataset [16], the accuracy of the proposed algorithm was nearly 84%.  

Drawback with accuracy 

Accuracy alone is not enough to test the robustness of the algorithm. For instance, in the 

same crop image shown in Fig. 3.17(a), if the algorithm has detected seven actual crop rows 

and one false row as shown in Fig. 3.17(b), the accuracy is still 87.5%.  Therefore, other 

parameters need to be considered to comment on the robustness of the crop row detection 

algorithm. 

 

  

                                        (a)                                                                                        (b)        

Fig. 3.17. (a) A crop image having eight crop rows (b) A crop row image with one false detected row 

(non-crop row). 
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Receiver Operating Characteristic (ROC) graph 

The problem with the accuracy mentioned before can be resolved with the ROC analysis. It 

has been applied in various applications, from medicine to computer science, in applications 

like face recognition, image hashing and many others. However, in crop row detection, to the 

best of the authors’ knowledge, ROC analysis has been applied here for the very first time.  

ROC has four parameters: 

True positive rate 

True positive rate (𝑇𝑃𝑅) is the number of correctly detected rows. It is equivalent to the 

accuracy mentioned earlier. In the example shown in Fig. 3.17(a), seven out of eight crop rows 

are detected and therefore, in this case, 𝑇𝑃𝑅 =  7/8. 

False negative rate 

False negative rate (𝐹𝑁𝑅) is the number of not correctly detected rows. In the same example 

shown in Fig. 3.17(a), one out of eight crop rows are not detected and therefore, in this case, 

𝐹𝑁𝑅 =  1/8. Also, 𝐹𝑁𝑅 =  1 − 𝑇𝑃𝑅. 

True negative rate 

True negative rate (𝑇𝑁𝑅) is the number of correctly detected non-crop rows. Let say, there 

are ten positions in a crop image where there is no crop row and if the algorithm detects eight 

positions as non-rows position, then 𝑇𝑁𝑅 =  8/10. 

False positive rate 

False positive rate (𝐹𝑃𝑅) is the number of not correctly detected non-crop rows. Let say, in 

the same example given in 𝑇𝑁𝑅 case, if the algorithm cannot detect two positions as non-

rows position, then 𝐹𝑃𝑅 =  2/10. Also, 𝐹𝑃𝑅 =  1 − 𝑇𝑁𝑅. 𝑇𝑃𝑅 and 𝐹𝑃𝑅  have been 
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considered to comment on the robustness of the crop row detection algorithm; the remaining 

two parameters are their reciprocal. For the public dataset [16], using the same input 

parameters mentioned in Table 3.1, the 𝑇𝑃𝑅 is about 84% and the 𝐹𝑃𝑅 is 6%. However, these 

values are just for the individual values of the input parameters. The interest is in observing 

the inclusive performance of the algorithm when certain input parameters, such as 𝑡ℎ𝑑𝑖𝑠 and 

𝑡ℎ𝑐𝑜𝑢𝑛𝑡 are varied from minimum to maximum values. Based on the overall performance of 

the algorithm one can set the appropriate input parameters which suit the real-time 

application.  

Sensitivity 

Sensitivity is the measure of the proportion of actual positives that were correctly identified. 

This is equivalent to the 𝑇𝑃𝑅 observed over a range of a certain input parameter. Fig. 3.18(a) 

shows the graph of sensitivity against the input parameter of 𝑡ℎ𝑔𝑎𝑝 for the range between 

10% (0.10) and 100% (1.00) keeping the other input parameters constant as mentioned in 

Table 3.1. The minimum accuracy is 80% at 𝑡ℎ𝑔𝑎𝑝 = 0.10 and starts to increase as 𝑡ℎ𝑔𝑎𝑝 

increases. Finally, the accuracy is at its maximum when 𝑡ℎ𝑔𝑎𝑝 = 1.00. Similarly, Fig. 3.18(b) 

shows the graph of sensitivity against the input parameter of 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 for the range between 

10% (0.10) and 100% (1.00) keeping the other input parameters constant as mentioned in 

Table 3.1. The minimum accuracy is 80.8% at 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 = 0.10 and starts to increase as 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 

increases. Finally, the accuracy is maximum at 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 = 1.00. By looking at these graphs, 

one can say that the values of 𝑡ℎ𝑔𝑎𝑝 and 𝑡ℎ𝑐𝑜𝑢𝑛𝑡  should be set to 1.00 to achieve the 

maximum accuracy.  However, at these values, the 𝐹𝑃𝑅 is also maximum, as explained in the 

next section. 

 



Chapter 3                                          A template-free machine vision-based crop row detection algorithm 

72 
 

Specificity 

Specificity is the measure of the proportion of actual negatives that are correctly identified. 

This is equivalent to the 𝑇𝑁𝑅 or 1 − 𝐹𝑃𝑅 observed over a range of a certain input parameter. 

The graphs of specificity can be shown to illustrate the actual negatives that are correctly  

 

                                          (a)                                                                                      (b)        

Fig. 3.18. The graph of sensitivity against the input parameter of 𝑡ℎ𝑔𝑎𝑝 for the range between 10% 

(0.10) and 100% (1.00) keeping the other input parameters constant mentioned in Table 3.1.  

 

                                        (a)                                                                                        (b)        

Fig. 3.19. The graph of 𝐹𝑃𝑅 against the input parameter of 𝑡ℎ𝑔𝑎𝑝 for the range between 10% (0.10) 

and 100% (1.00) keeping the other input parameters constant mentioned in Table 3.1. 
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identified or the actual negatives which are not correctly identified. Fig. 3.19(a) shows the 

graph of 1-specificity (𝐹𝑃𝑅) against the input parameter of 𝑡ℎ𝑔𝑎𝑝 for the range between 10% 

(0.10) and 100% (1.00) keeping the other input parameters constant as mentioned in Table 

3.1. The minimum value of 1-specificity (𝐹𝑃𝑅) is 6.7% at 𝑡ℎ𝑔𝑎𝑝 = 0.10 and increases as 𝑡ℎ𝑔𝑎𝑝 

increases. Finally, the value of 1-specificity (𝐹𝑃𝑅) is at its maximum (12%) when 𝑡ℎ𝑔𝑎𝑝 =

1.00. Similarly, Fig. 3.19(b) shows the graph of 1-specificity (𝐹𝑃𝑅) against the input parameter 

of 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 for the range between 10% (0.10) and 100% (1.00) keeping the other input 

parameters constant as mentioned in Table 3.1. The minimum value of 1-specificity (𝐹𝑃𝑅) is 

7.5% at 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 = 0.10 and starts to increase as 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 increases. Finally, the value of 1-

specificity (𝐹𝑃𝑅) is maximum (12%) at 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 = 1.00. By looking at these graphs, one can 

say that the values of 𝑡ℎ𝑔𝑎𝑝 and 𝑡ℎ𝑐𝑜𝑢𝑛𝑡 should be set to 0.10 to achieve the minimum 𝐹𝑃𝑅, 

however, at these values, the 𝑇𝑃𝑅 or accuracy is also minimum. There is a trade-off between 

𝑇𝑃𝑅 and 𝐹𝑃𝑅.  Therefore, one must set the appropriate values of these thresholds according 

to the requirement of the real time applications. To adopt the appropriate values of these 

thresholds, a comparison of TPR and FPR is given, in terms of a ROC graph, as explained in the 

next section. 

ROC graph 

A ROC graph can be used to see the relation between 𝑇𝑃𝑅 and 𝐹𝑃𝑅, to choose an appropriate 

value of the input threshold and to observe the robustness of the algorithm.  Fig. 3.20 (a) 

shows a ROC graph considering 𝑡ℎ𝑔𝑎𝑝. When 𝐹𝑃𝑅 is minimum (0-6.7%), the 𝑇𝑃𝑅 is 80% and 

then increases to a maximum (100%) when 𝐹𝑃𝑅 is 12%. In some applications, this can be an 

interesting point because the accuracy is at its maximum and 𝐹𝑃𝑅 is very low. However, in 

applications where t minimum 𝐹𝑃𝑅 is the priority, this point with a specific value of 𝑡ℎ𝑔𝑎𝑝  
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                                        (a)                                                                              (b)        

Fig. 3.20. (a) ROC graph considering 𝑡ℎ𝑔𝑎𝑝. The 𝐹𝑃𝑅 is plotted on the x-axis and 𝑇𝑃𝑅 is plotted on the 

y-axis. (b) ROC graph considering 𝑡ℎ𝑐𝑜𝑢𝑛𝑡. 

cannot be used. According to the need of the application, one can set an appropriate value of 

𝑡ℎ𝑔𝑎𝑝. To check the performance of the algorithm, the area under curve (AUC) of the ROC 

graph is calculated. In an ideal scenario, the AUC is 1 and the algorithm is considered as robust 

if AUC is close to 1. For Fig. 3.20(a), the value of AUC is 0.98125 demonstrating the robustness 

of the proposed algorithm. Similarly, Fig. 3.20 (b) shows a ROC graph considering 𝑡ℎ𝑐𝑜𝑢𝑛𝑡. 

When 𝐹𝑃𝑅 is minimum (0-7.5%), the 𝑇𝑃𝑅 is 80%. The 𝑇𝑃𝑅 starts to increase after that point 

and becomes a maximum (100%) when 𝐹𝑃𝑅 is 12%. The AUC of 0.98128 shows the 

robustness of the proposed algorithm. 

3.5.3. Comparison with other algorithms 

To compare the proposed algorithm, the parameter accuracy was sub-optimal, because it 

differs from study to study. Furthermore, the standards, environment and assumptions 

deployed in other studies differ from the current study. For instance, in other studies, the 

number and spacing of crop rows in an image were known, contrary to this investigation. 

Therefore, the accuracy of the results was compared with other studies considering the same 
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image database [28]. The other methods are Hough Transform [11], Hough transform with 

Template [11], Linear Regression [6] and Template Matching followed by Global Energy 

Minimization [16]. There were 34 images taken with straight crop rows as Hough Transform 

and Linear Regression can only detect straight rows. The results of accuracy of the proposed 

algorithm with comparisons to the other methods are shown in Table 3.2 depicting the 

superiority of the proposed work. Also, the computational time of algorithms was compared. 

As crop row detection may be applied in real time, computational time is very important. For 

example, the vision system deployed on a moving vehicle must process the captured images 

(or frames of video), show the resulting images and perform pre-defined tasks on them before 

capturing the next images. It was required that the computational time is less than or equal 

to the time spent between the acquisition of two (or set of) images to synchronize with the 

hardware platform. Fig. 3.21 shows the comparative results of computational time of the 

proposed algorithm and that of other studies. Metrics were normalized based on the system 

specifications and size of the images used in each study. It was shown that the proposed 

algorithm has faster performance than the other algorithms. 

 

Fig. 3.21. Computational time of algorithms.  
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Table 3.2. Comparative results of accuracy of the proposed algorithm with other published studies. 

Accuracy of other methods were directly taken from their respective publications. 

Methods Accuracy (%) 

Linear Regression [6] 57.2 

Hough Transform [11] 62.2 

Hough Transform with Template [11] 67.9 

Template Matching followed by Global Energy 

Minimization [16] 

73.7 

Proposed 84.0 

 

3.6. Conclusion 

This paper proposed a new crop row detection algorithm that does not require pre-

information such as number of crop rows and spacing between crop rows. The only 

information the algorithm needs is the approximate intensity of weeds. Furthermore, there 

is no need for template to be used in the detection stage. Therefore, the proposed algorithm 

can be applied to a wide variety of crop fields. The crop row detection phenotype data can be 

used for downstream analysis such as genomic selection or for the development of phenomic 

processing pipelines to define novel traits.  

The proposed algorithm of detecting crop rows involved various image processing operations, 

such as identification of greenness, binarization and binary image erosion. Besides these basic 

operations, the proposed algorithm utilized the perspective projection of crop rows to 

identify the row objects. These objects of a same row are then connected with each other 

and extended using the triangular matrices. The proposed algorithm can also be applied to 
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the images taken from the top view with some modifications. Like all new proposals, it is 

strongly encouraged to do the analysis of the algorithm before its immediate deployment. 

The algorithm could potentially be extended to identify weeds in crop fields. 
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4.1. Abstract 

The extraction of automated plant phenomics from digital images has advanced in recent 

years. However, the accuracy of extracted phenomics, especially for individual plants in a field 

environment, requires improvement. In this paper, a new and efficient method of extracting 

individual plant areas and their mean normalized difference vegetation index from high-

resolution digital images is proposed. The algorithm was applied on perennial ryegrass row 

field data multispectral images taken from the top view. First, the centre points of individual 

plants from digital images are located to exclude plant positions without plants. Second, the 

accurate area of each plant is extracted using its centre point and radius. Third, the accurate 

mean normalized difference vegetation index of each plant is extracted and adjusted for 

overlapping plants. The correlation between the extracted individual plant phenomics and 

fresh weight ranged between 0.63 and 0.75 across 4 time points. The methods proposed are 

applicable to other crops, where individual plant phenotypes are of interest. 

Keywords: Plant phenomics, image processing, area, centre points, and normalized difference 

vegetation index. 

4.2. Introduction 

Due to the exponentially increasing consumption of food, fuel, and feed by the burgeoning 

world population, global agricultural demand is growing. Global cereal grain production must 

increase by 70% by 2050 to meet food demand [1-2]. Forages are also an important feed 

source for animals that produce dairy, meat, and fibre products, and they play a crucial role 

in maintaining a good natural environment. In parallel, growing climate unpredictability is 
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shifting crop production onto marginal lands, intensification of existing agricultural practices, 

and displacement of natural ecosystems [3]. Conventional methods for plant breeding such 

as phenotypic and pedigree selection have significantly increased crop yields worldwide [4]. 

Nevertheless, these methods alone will not be enough to meet the projected global food 

demands [5, 6]. Moreover, these traditional methods are costly, require intensive labour 

resources, are lower throughput and time consuming. Genomic breeding approaches (e.g., 

genomic selection) will assist in increasing crop and pasture production [7, 8] and a wealth of 

plant genomic knowledge has been accumulated over the last decade [9-12]. However, 

genomic selection requires large training sets of lines that are well characterized with both 

genomics and phenotypes.  Traditional phenotyping methods are often too laborious and 

costly for large plant collections leading to a significant gap between genomic knowledge and 

its connection to phenotypes. These problems can be rectified to some extent by the accurate 

and precise phenotyping of germplasm with novel technologies.  

Phenotyping of organisms [13-16] can be defined as a set of protocols or methodologies 

applied to measure the physical characteristics such as architecture, growth and composition 

with a certain accuracy and precision. For plants, phenotyping is based on morphological, 

physiological, biochemical, and molecular structures.  Current phenotyping methods of plants 

is considered slow, expensive, sometimes destructive and can cause variations between 

observations due to human operator variability. This has led to a growth in automated 

phenotyping technologies that overcome these shortcomings. One such automated method 

relies on digital imaging, which contains two main steps: image acquisition and image analysis. 

Image acquisition is a process where a digital representation (image) of the crop field is 

obtained using an imaging sensor. Image acquisition can generally be classified into seven 
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groups with respect to plant phenotyping [16]: mono-RGB vision, multi- and hyperspectral 

cameras, stereo vision, LIDAR technology, fluorescence imaging, tomography imaging and 

thermography, and time of flight cameras. Image analysis on the other hand deals with the 

extraction of the useful information regarding plants from the digital images involving pre-

processing, segmentation, and feature extraction [17]. The pre-processing step can include 

operations such as image cropping, image rotation, contrast improvement, colour mapping, 

image, smoothing, and edge detection [18]. The applications of these methods for 

phenotyping depend upon the output requirements and several factors. Image 

segmentation’s main goal is to differentiate between the irrelevant or background objects 

and objects (segments) of interest using colour, texture and statistical measures. For example, 

Otsu binary thresholding [19] is a segmentation algorithm used to automatically perform 

clustering-based image segmentation returning a value of threshold. The threshold can then 

be used to discriminate between the background and foreground of a digital image using 

methods such as Watershed transformation [20]. Feature extraction is also an important 

factor in automated phenotyping using digital images. The measurements extracted from the 

image segments, such as area, normalized difference vegetation index (NDVI) is placed into 

feature vectors which summarize the physical characteristics of each plant or plant region 

identified. The digital information extracted from the images in the form of NDVI, surface 

area, width, height, and circular shape can be linked to the degree of greenness, fresh weight, 

and biomass of the plant. Phenomic bio-characteristics such as NDVI or plant area can be 

correlated or predictive of plant biomass yield, which is the main production phenotype in 

forage species and is a characteristic contributing to grain yield in other crops [21, 22]. Bio-

characteristics, if sufficiently correlated, can then be used as proxy phenotypes for biomass 

in genomic se-lection to select the best populations and generate genetic gain over 
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generations.  Furthermore, as image derived bio-characteristics are non-destructive, they can 

be collected at multiple time-points during the growth cycle of crops, giving rise to novel 

phenotypes for genomic selection and breeding purposes (e.g., change in biomass over time, 

growth, or senescence rate). 

Most plant breeding applications focus on plot or row phenotypes consisting of multiple 

plants, which is often sufficient.  However, individual plant phenotypes are of interest to 

investigate family or population uniformity in both in- and outbred species.  Uniformity is 

important because growers desire high forage biomass with even growth throughout a 

paddock and it is also a characteristic for determining plant breeder’s rights. Furthermore, in 

outbred species, it may be of interest to understand the effect of individual plants on plants 

in close proximity, so called competition effects [23], as each plant is genetically unique. If 

plants in a forage cultivar are overly competitive, overall biomass yield and uniformity is 

expected be suboptimal in the paddock. The manual collection of individual plant 

characteristics is especially laborious and automated phenomic solutions are required. 

We propose a new method for extracting the area of individual plants from digital field trial 

images. The method focuses on both the extraction of these regions from a multispectral 

image taken by an uncrewed aerial vehicle and the linking of these regions with individual 

plant biomass. The utility of the approach is evaluated by correlating individual plant 

phenomic bio-characteristics and plant biomass as estimated by fresh weight at harvest. The 

study is organized as follows: Section 2 provides the work problem statements, Section 3 

describes the proposed algorithm in detail, Section 4 explains the experimental results and 

comparative analysis on perennial ryegrass field data, and Section 5 outlines conclusions. 
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4.3. Problem Statements 

The proposed algorithm was applied to perennial ryegrass row field data for which images 

were taken from the top view. The field trial contained 50 perennial ryegrass cultivars grown 

in replicated rows of 32 plants per row. Perennial ryegrass is a diploid outbred species where 

each individual plant is genetically unique and each cultivar would have at least four parental 

cultivars, making them genetically diverse. Each replication was considered as a plot and 

contained three rows of 32 spaced plants each (i.e., 96 plants/plot). The experimental unit 

was, therefore, a plot of 8 × 1.8 m. The expected spacing between plants was 25 cm and 

between rows was 60 cm. The field trial contained a total of 48,000 individual plants in 10 

blocks. The total area of the field experiment was 8,100 m2. In part, the aims of these field 

trials were the development of phenomics processing pipelines to define novel traits for the 

estimation and prediction of plant performance (e.g., biomass yield, flowering time). Images 

were taken with a Parrot Sequoia (Parrot Drones S.A.S., Paris, France) multispectral camera 

deployed on a 3DR Solo quadcopter. The camera capture images simultaneously at four bands 

including green (530–570 nm), red (640–680 nm), red edge (730–740nm), and near-infrared 

(770–810 nm). It also has GPS and sensor and incident light sensors. The flight mission was 

planned by Tower Beta software. Aerial images were collected using the unmanned aerial 

system (UAS) on a weekly basis over the GS trial site, and data from four flight dates in 2017 

was used for this analysis. Imaging dates were synchronized with each harvest. Flight 

operations were conducted under bright, sunny weather conditions to minimize noise from 

environmental variation. The UAS flight altitude was set at 20 m above ground level, and the 

flight speed was 6 m/s with 75% side and forward overlap of images. At this flight altitude and  
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(a)                                                                               (b) 

Fig. 4.1. (a) An example of field trial in RGB form and (b) a grey scale image of the perennial ryegrass 

field trial stitched together from aerial images. 

speed, the spatial resolution of the images was 2 cm/pixel. The same flight path was followed 

on each date. Image reflectance was corrected using Airinov calibration plates with known 

reflectance values (MicaSense Inc., Seattle, WA, USA). An example colour image of the field 

trial is shown in Fig. 4.1(a) and a grey scale image of the field trial area is shown in Fig. 4.1(b). 

The white pixels (NDVI TIFF image) in Fig. 4.1(b) mostly represent greenness in the trial image 

and black pixels represent background. In Fig. 4.1(b), there are 10 blocks, and in each block, 

there are 150 plant-rows for a total of 1500 crop rows. Furthermore, in each plant-row, there 

are 32 plants resulting in 48,000 plants in each field-trial image. 

The goal is to automatically extract phenomic traits such as area and NDVI value of each plant 

from each field trial’s TIFF file image. In principle, other vegetation indexes such as Green 

Normalized Difference Vegetation Index, RedEdge Normalized Difference Vegetation Index, 

Soil Adjusted Vegetation Index and Enhanced Vegetation Index could also be used. The 

extraction of these traits makes use of the experimental field trial design specifying the layout 
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of plant-rows and the plants within each row to help define the boundary or bounding boxes 

for plant-rows and initial estimates of the individual plant regions. The row polygons of row-

plants are identified using projection methods, as outlined in [22], followed by the 

identification of centre-points of individual plants. These centre-points then assist in 

identifying the individual plant polygons. Fig. 4.2(a) shows the layout of bounding boxes for 

several row polygons and Fig. 4.2(b) shows the bounding boxes for individual plant polygons. 

These bounding boxes assist in extracting phenomics traits of interest. For instance, the 

bounding box region can be cropped, and the area can be calculated by multiplying the 

number of non-zero pixels with the area of one pixel in cm2. Further, the mean NDVI value is 

calculated by taking the mean of NDVI values of all non-zero pixels within that region. 

In images where there is moderate plant growth (Fig. 4.2), the extraction of phenomics is 

relatively simple. The plants are almost entirely confined in their individual bounding boxes  

          

(a)                                                     (b) 

Fig. 4.2. Bounding Boxes of (a) 3 plant-row boxes and (b) their individual plant boxes. 
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Fig. 4.3. A bounding box without a plant, but due to the overlapping of the top plant, the bounding 

box have some image pixels that are erroneously classified as plant. 

referred to as plant boxes, and therefore the area and mean NDVI value can be calculated 

easily. However, there are bounding boxes where plants have not grown at all, but due to 

encroachment of adjacent plants, their bounding boxes have some image pixels that show 

NDVI signals as shown in Fig. 4.3. These NDVI values can be mistaken for the plant in the box, 

which has died or not grown at all when it was in fact the neighboring plant. Also, the plants 

can overgrow and overlap into adjacent plants (Fig 4.4(a)). In such case calculating the area 

by counting the number of non-zero pixels in that bounding box (Fig. 4.4(b)) will not be 

accurate. Therefore, a possibly more accurate area is hypothesized in Fig. 4.4(c) of the same 

plant by highlighting a circular plant region. In summary, these problems are the main 

objectives of our work to identify the accurate area of individual plants, and includes the 

following sub-objectives: 

1. To identify bounding boxes with no plants. 

2. To calculate accurate individual plant areas despite overlapping of adjacent 

plants. 

3. To calculate accurate individual plant NDVI values despite overlapping of adjacent 

plants. 
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Fig 4.4. (a) Plants overgrow from their bounding boxes and overlapping to adjacent plants. (b) 

Rectangular bounding box of a plant; the area equal to the bounding box is not accurate as plant is 

overgrown form the bounding box. (c) A potentially more accurate representation of area is illustrated 

with a circular plant region. 

4.4. Methods 

The use of machine vision in phenotyping started almost three decades ago for the extraction 

of NDVI values [24]. Since then, there has been huge progress in monitoring large fields using 

sensor technologies. However, the applications involved simple digital data, which is usually 

extracted in controlled environments. In the previous proposals [25-31], the examined plants 

were captured in very controlled and simplistic environment; either there was only one plant 

per digital image, or the plants were not overlapping.  

To detect circles in images, Circular Hough Transform (CHT) [32] and its variants [33] have 

become common methods in numerous image processing applications. CHT is very effective 

in detecting circles in digital images, even with somewhat irregular circular shapes. However,  
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                          (a)                                   (b)                                      (c)                                      (d) 

Fig. 4.5. (a)-(d) A small set of different crop rows extracted from four field trial images taken on (a) 

9th May 2017, (b) 5th July 2017, (c) 11th September 2017 and (d) 20th November 2017. Note that the 

rows at different time points are not exactly the same length as pixel size varied slightly from expected 

2cm. Values were converted to metric to standardize between capture dates. 

it performs poorly when circles are merged and overlapping to each other, just as in case of 

our research problems.  

These existing works do not provide solutions relevant to our mentioned problems; therefore, 

we have developed a new and effective image-based phenotyping method. The proposed 
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algorithm was developed and implemented on field trial image dataset in which images were 

taken from the top view. A sample of a single crop row image from the field trial, taken at 

four time points, is shown in Fig. 4.5 (a)-(d). We have employed MATLAB version R2019a for 

the simulations and analyses of our work. In the next subsections, the proposed algorithm is 

explained, and images are shown to aid the reader’s understanding. 

4.4.1. Background correction 

Let 𝑰 be the two-dimensional matrix for a single plant box image with size 𝒓, 𝒄, where 𝒓 is the 

total number of image rows and 𝒄 is the total number of image columns. It is to be noted that 

the plants are at specific angle, but we did not rotate them for the analysis. As the plant’s 

geometry is somewhat circular, the rotation will not affect the extraction of centre point and 

radius as explained below. 𝑰 is considered for one individual plant and there are 32 such plants 

in one crop row as shown, Fig. 4.5(a).Moreover, let 𝑰(𝒊, 𝒋) represents the NDVI value of image 

pixel at 𝒊𝒕𝒉 row and 𝒋𝒕𝒉 column of 𝑰, and 𝑰(𝒊, 𝒋) ∈ [−𝟏, 𝟏]. The first step was to remove any 

background values, which does not contain plant pixels. To remove the unnecessary 

background, Otsu binary thresholding [19] was employed, to automatically perform 

clustering-based image thresholding returning a value of threshold, 𝒕𝒉𝑶𝒕𝒔𝒖. The background 

corrected image of a single plant, 𝑰𝒃 is obtained using the following: 

𝑰𝒃(𝒊, 𝒋) =  {
𝑰(𝒊, 𝒋)       𝒊𝒇   𝑰(𝒊, 𝒋) > 𝒕𝒉𝑶𝒕𝒔𝒖,
𝟎               𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.

                                     (𝟒. 𝟏) 

The Otsu image thresholding for background correction was applied on Fig. 4.5(a)-(d) and 

results are shown in Fig. 4.6(a)-(d).  
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                       (a)                                   (b)                                      (c)                                     (d) 

Fig. 4.6. (a)-(d) Background corrected images obtained from applying Otsu thresholding on images 

shown in Fig. 4.5(a)-(d) respectively. Grey pixels represent NDVI intensity and black pixels represent 

the background. 

4.4.2. Centre Point Calculation 

Whether a rectangular plant bounding box contained a plant was determined by identifying 

the centre point of a plant. If there is a centre point in a bounding box, then it contains a plant 

and vice-versa. As mentioned in the problem statement, bounding boxes where defined 
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based on row layouts and expected plant number and spacing per row following [22].  The 

distribution of greenness or NDVI values in an individual plant assists in finding the plant 

centres (Fig. 4.7). The greenness is likely to be at a maximum in the centre of plant and 

gradually decreases towards the plant’s edges. Therefore, the centre point should correspond 

to or near a location of an image pixel with the maximum NDVI value. However, there can be 

more than one pixel whose values correspond to the maximum NDVI and they can be in 

different places. Another solution could consider the middle point of the bounding box as the 

plant centres. However, the assumption is not always justified as plant locations could deviate 

from bounding box centres. Our approach combines these two methods. This allows for the 

correction of NDVI maxima that are at bounding box edges but have false values due to 

encroaching neighbouring plants. The centred positions of a plant image are determined as 

follows: 

{(𝒊, 𝒋) | 𝑰𝒃(𝒊, 𝒋)  ≥  𝟎. 𝟔 ∗ 𝑰𝒎𝒂𝒙; ∀ 𝒊 𝝐 ⌈𝟎. 𝟐𝒓, 𝟎. 𝟖𝒓⌉; ∀ 𝒋 𝝐 [𝟏, 𝒄]}                             (𝟒. 𝟐) 

Where, 𝑰𝒎𝒂𝒙 is the maximum value of 𝑰𝒃. Without loss of generality, the above equation 

specifies a set of image positions within a given plant-box, as shown in Fig. 4.4(b), with its 

origin specified at (1,1) and with 𝒓 rows and 𝒄 columns that have intensity values that satisfy 

𝑰𝒃(𝒊, 𝒋)  ≥  𝟎. 𝟔 ∗ 𝑰𝒎𝒂𝒙. The optimization value of 0.6 is based on trial and error and was 

chosen based on visual inspection. Increasing the value beyond 0.6 will result in more centred 

image pixels and vice-versa. We recommend to investigate this threshold when applying the 

algorithm to new datasets. This set will be empty if there is no centre point, otherwise the 

average 𝒊, 𝚯𝒓 and average 𝒋, 𝚯𝒄, location (𝚯𝒓, 𝚯𝒄) is used to define a plant’s centre point 

within its corresponding plant-box. The goal is to locate a centre point of the plant which 

cannot be at top or  
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Fig. 4.7. Distribution of image pixels in terms of greenness or NDVI values in an individual plant. 

bottom of the image, therefore the search row domain in each plant-box is constrained to 

not include the top and bottom 20% of the rows. In our study, plants were generally planted 

at equal distances justifying this assumption. In field data where this is not the case, further 

development of the algorithm may be needed. This process was then applied to all plant-

boxes within each field image.  

The results of this step applied to images shown in Fig. 4.6(a)-(d) are shown in Fig. 4.8(a-d). 

The centre points are represented by a red plus symbol. The algorithm correctly identified the 

number of plants in a crop row. For instance, Fig. 4.8(a) has only 31 plants with centre points 

labelled and Fig. 4.8 (b) has only 30 plants. The identification of centre points has solved the 

first research problem, that is, the bounding boxes with no plants have been identified. 

4.4.3. Extraction of Plant Areas 

The next goal is to extract the individual plant areas. The distribution of plant pixels is 

somewhat circular and symmetric (Fig. 4.7). To define the circular plant region associated with 

each plant-box containing a plant, requires only a centre point and a corresponding radius. 

The centre points have been calculated in the previous step and the radius is calculated by 

measuring the distance in terms of number of non-zero image pixels from the centre point to  
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                          (a)                                    (b)                                     (c)                                      (d) 

Fig. 4.8. (a)-(d) Identification of centre points using Algorithm 1. 

 

Fig. 4.9. Distribution of image pixels with labelling of centre point, centre row and horizontal distances 

from centre point to the horizontal extremes. 
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the horizontal extreme. Fig. 4.9 shows the same plant illustrated in Fig. 4.7 with labelling of 

centre point, centre row and horizontal distances from centre point to the horizontal 

extremes. These horizontal distances give the possible radius of the plant. The vertical 

distances are not taken for consideration as the adjacent plants may overlap at vertical (at 

both top and bottom; except the 1st and 32nd plant of the row) positions. For each centre pixel 

defined above (𝚯𝒓, 𝚯𝒄), let its corresponding radius be defined by: 

𝒓𝒂𝒅𝒊𝒖𝒔 = 𝐦𝐚𝐱{𝐚𝐛𝐬(𝚯𝒄 − 𝒋)| 𝑰
𝒃(𝚯𝒓, 𝐣) ≥  𝟎. 𝟔 ∗ 𝑰𝒎𝒂𝒙}                            (𝟒. 𝟑) 

Using the radii and centre points, the circular plant regions of each plant are extracted (Fig. 

4.10a-d). The extraction of radii and the circular plant regions has solved the second research 

problem, that is, the accurate area of the individual plants is calculated despite the 

overlapping of adjacent plants. Furthermore, the area is calculated by taking the product of 

number of non-zero pixels with the area of one pixel in cm2 within that region. 

4.4.4.  Extraction of NDVI values 

As mentioned earlier, due to the overlapping of the adjacent plants, the NDVI values can be 

inflated at top and bottom positions as depicted in Fig. 4.10(c)-(d). Therefore, the overlapping 

pixels rows at top and bottom positions must be identified and adjusted. 

Finding the Overlapping Pixel Rows 

Considering a single crop row (32 plants), the overlapping pixels rows for each plant can be 

extracted using the centre points and radii calculated earlier. Let 𝑷𝒙, 𝒙 𝝐 [𝟏, 𝟐, … , 𝟑𝟐] be a 

plant whose overlapping rows are to be extracted. The centre point and radius for 𝑷𝒙 are 

calculated earlier and let be denoted as (𝚯𝒓
𝒙, 𝚯𝒄

𝒙) and 𝐑𝒙, respectively. The number of 

overlapping rows at the bottom position, 𝝆𝒃𝒐𝒕𝒕𝒐𝒎
𝒙  of plant 𝑷𝒙 is extracted as: 
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𝝆𝒃𝒐𝒕𝒕𝒐𝒎
𝒙 = (𝚯𝒓

𝒙 + 𝐑𝒙) − (𝚯𝒓
𝒙+𝟏 − 𝐑𝒙+𝟏) − 𝟏.                              (𝟒. 𝟒) 

Similarly, the number of overlapping rows at the top position, 𝝆𝒕𝒐𝒑
𝒙  of plant 𝑷𝒙 is extracted 

as: 

𝝆𝒕𝒐𝒑
𝒙 = (𝚯𝒓

𝒙−𝟏 + 𝐑𝒙−𝟏) − (𝚯𝒓
𝒙 − 𝐑𝒙) − 𝟏.                                  (𝟒. 𝟓) 

       

                       (a)                                 (b)                                 (c)                                  (d) 

Fig. 4.10. (a)-(d) Extraction of circular plant regions and accurate area of individual plants from Fig. 4.8 

using Algorithm 4.2. 
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It is to be noted that 𝝆𝒃𝒐𝒕𝒕𝒐𝒎
𝒙

 for 𝑷𝒙 at bottom position is same as 𝝆𝒕𝒐𝒑
𝒙

 for 𝑷𝒙+𝟏 at top position.  

This is illustrated in Fig. 11 with three plants and their centre points and radii. Moreover, the 

first plant is overlapping to the second plant at the bottom position and the reverse is true 

for the second plant. Similarly, the second plant overlaps the third plant at the bottom 

position and vice-versa. Using equations (4.4)-(4.5), it can be calculated that 𝝆𝒃𝒐𝒕𝒕𝒐𝒎
𝟏 =

𝝆𝒕𝒐𝒑
𝟐 = 𝟐 and 𝝆𝒃𝒐𝒕𝒕𝒐𝒎

𝟐 = 𝝆𝒕𝒐𝒑
𝟑 = 𝟑. These are the number of pixels rows where the NDVI 

values are likely inflated and should be adjusted before consideration. Note that 𝝆𝒙 > 𝟎, if 

there is overlap, otherwise there is no overlap and therefore no adjustment needed. 

Adjusting NDVI values at Overlapping Pixel Rows 

The symmetrical distribution of plant NDVI values with centre maxima and a gradual decrease 

towards the boundary of plant informs the adjustment procedure for overlapping pixel rows 

(Fig. 4.7).  

 

Fig. 4.11. Three plants in a crop row overlapping at top and bottom positions. The centre points and 

radii are also mentioned which assist in extracting those overlapping rows. 
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Care must be taken to exclude overlapping areas from the determination of maximum and 

minimum NDVI values. The use of the centre row avoids overlapping areas and increases the 

accuracy of maxima and minima.  There are three steps described as follows: 

1. The maximum and minimum NDVI values of the plant are first calculated, labelled 

as 𝑰𝒎𝒂𝒙
𝒃  and 𝑰𝒎𝒊𝒏

𝒃  respectively.  

2. The whole centre row is updated and will be used as a reference for the 

adjustment of plant pixels at overlapping rows. The step size, which is the 

difference of NDVI values between two adjacent pixels, is calculated as: 

𝑰𝒔𝒕𝒆𝒑 = 
𝑰𝒎𝒂𝒙
𝒃 − 𝑰𝒎𝒊𝒏

𝒃

𝐑 − 𝟏
.                                                         (𝟒. 𝟔) 

The centre row is then updated with the following values: 

𝑰𝒃(𝚯𝒓, ∶)

= [𝑰𝒎𝒊𝒏
𝒃 , 𝑰𝒎𝒊𝒏

𝒃 + 𝑰𝒔𝒕𝒆𝒑, 𝑰𝒎𝒊𝒏
𝒃 + 𝟐 ∗ 𝑰𝒔𝒕𝒆𝒑, …… , 𝑰𝒎𝒂𝒙

𝒃 , …… , 𝑰𝒎𝒊𝒏
𝒃 + 𝟐 ∗ 𝑰𝒔𝒕𝒆𝒑, 𝑰𝒎𝒊𝒏

𝒃

+ 𝑰𝒔𝒕𝒆𝒑, 𝑰𝒎𝒊𝒏
𝒃 ]

𝟏×(𝟐𝐑−𝟏)
.                                                                                              (𝟒. 𝟕) 

3. Let’s take a symmetric reference vector, 𝐕𝐬𝐲𝐦, such that 𝐕𝐬𝐲𝐦 = [𝟏, 𝟐, 𝟑, … , 𝐑 −

𝟐, 𝐑 − 𝟏, 𝐑, 𝐑 − 𝟐, 𝐑 − 𝟏,… , 𝟑, 𝟐, 𝟏]. The NDVI values are adjusted as following: 

𝐼𝑏(𝑖, 𝑗)

=  

{
 

 𝐼
𝑏(Θ𝑟 , 𝑖 + 𝑗 − R)     𝑖𝑓  [(Vsym(𝑖) +  Vsym(𝑗)) > R + 1]  & [𝑖 𝑖𝑠 𝑎𝑛 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑟𝑜𝑤],

𝐼𝑏(Θ𝑟 , 1)                   𝑖𝑓  [(Vsym(𝑖) +  Vsym(𝑗)) ≤ R + 1]  & [𝑖 𝑖𝑠 𝑎𝑛 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑟𝑜𝑤],

𝐼𝑏(𝑖, 𝑗)                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                            ∀ 𝑖 𝜖 [1, 𝑟], ∀ 𝑗 𝜖 [1, 𝑐].

   (4.8) 
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As an example, after adjustment, the plant matrix 𝐼𝑏 will look like the following 

2-dimensional matrix if each pixel of 𝐼𝑏 is adjusted, considering the plant has 

seven rows and seven columns. 

𝐼𝑏

=

[
 
 
 
 
 
 
 
 𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

   

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏 + 𝐼𝑠𝑡𝑒𝑝

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

   

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏 + 𝐼𝑠𝑡𝑒𝑝

𝐼𝑚𝑖𝑛
𝑏 + 2 ∗ 𝐼𝑠𝑡𝑒𝑝

𝐼𝑚𝑖𝑛
𝑏 + 𝐼𝑠𝑡𝑒𝑝

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
𝑏

   

𝐼𝑚𝑖𝑛
𝑏

𝐼𝑚𝑖𝑛
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To validate the results obtained from the digital adjusted plants, the phenomics of these 

plants are correlated with the manually harvested fresh weights. The higher value of 

correlation confirms the accuracy of extracted phenomics of adjusted plants. The results are 

obtained by considering two phenomics; 1) area and 2) mean NDVI values of adjusted plants.  

After the adjustment of NDVI values and the extraction of circular plant regions, the next aim 

is to extract the area and mean NDVI value of each plant for each field trial image. Individual 

plant area was calculated as the product of number of non-zero pixels with the area of one 

pixel in cm2 within the circular plant region. Mean NDVI was tabulated by calculating the mean 

NDVI values of non-zero pixel with the bounding box. The area provides information about 

the size of the plant and the mean NDVI value indicates how dense the plant canopy is. Note 

that area and mean NDVI value may not be correlated, e.g., a plant with small area can have 

a similar mean NDVI value as a plant occupying a large area. 
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4.4.5. Testing of Algorithm 

Fresh biomass weights were collected for a subset of 480 perennial ryegrass plants to 

measure their individual biomass yield. The field trial was located and operated by Agriculture 

Victoria Research, Hamilton, Victoria, Australia (37.8464◦S, 142.0737◦E). The Hamilton region 

is in the Victorian high rainfall zone with generally >600mm per year of rain. Fresh weights 

were available for four harvesting dates (9th May 2017, 5th July 2017, 11th September 2017 

and 20th November 2017) in different seasons of the year 2017 [34]. Harvest dates were 

determined by the growth stage of the individual plants, in which the 2–3 leaf stage was 

considered as a standard simulated grazing stage. The above-ground biomass was harvested 

manually at 5 cm height.  

The following phenomics metrics were compared via Pearson correlations (ř) [35]: mean NDVI 

of rectangular bounding boxes, area of rectangular bounding boxes, unadjusted mean NDVI 

of circular plant regions, adjusted mean NDVI of circular plant regions and area of circular 

plant regions. 

4.5. Results and Discussions 

The robustness of the proposed algorithm was tested by correlating extracted phenomics 

metrics with harvest fresh weights. Metrics included area calculated from rectangular 

bounding boxes and their mean unadjusted and adjusted NDVI.  The fresh biomass weight 

value per individually harvested plant (82.48–127.18 g) varied across seasons in 2017. 

Moreover, measured seasonal fresh biomass weight in 2017 indicated a wide variability of 

biomass values (~1.41–428 g) for each measurement season for the individual plants [34]. 
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This suggests that biomass yield had enough variation to use to correlate the NDVI and plant 

phenomics.  

Pearson correlation coefficients (ř) between the area of circular plant regions and fresh 

weights for four field trial images from four timepoints are shown in Table 4.1 and Figs. 4.12 

(a-d). The values of ř for these four images demonstrate a good relationship between 

        

                                               (a)                                                                                   (b) 

      

                                             (c)                                                                                     (d) 

Fig. 4.12. Correlation coefficients between fresh weight of subset of 480 perennial ryegrass plants and 

circular area for field trial images taken on (a) 9th May 2017, (b) 5th July 2017, (c) 11th September 2017 

and (d) 20th November 2017. 
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Table 4.1. Values of ř calculated for the area extracted from rectangular and circular plant regions 

with the fresh weights of subset of 480 perennial ryegrass plants. 

 

Image Time Point 

𝐂𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧 

Area of 

Rectangular 

Bounding 

Boxes 

Area of Circular plant 

regions 

9th May 2017 0.74 0.75 

5th July 2017 0.30 0.74 

11th September 2017 0.28 0.63 

20th November 2017 0.30 0.66 

 

Table 4.2. Correlations of mean NDVI and fresh weights of subset of 480 perennial ryegrass plants for 

rectangular boxes and proposed circular plant regions: with unadjusted and adjusted NDVI values. 

 

Image Time Point 

Correlation 

Unadjusted NDVI 

from Rectangular 

Boxes 

Unadjusted NDVI 

from Circular plant 

regions  

Adjusted NDVI from 

Circular plant regions  

9th May 2017 0.56 0.56 0.57 

5th July 2017 0.55 0.58 0.59 

11th September 

2017 

0.52 0.54 0.55 

20th November 

2017 

0.51 0.53 0.56 



Chapter 4                                                  A new method for extracting individual plant bio-characteristics 

106 
 

fresh weight and circular area (0.63 – 0.75). The correlation could likely be further improved 

by including height measures [36]. Areas extracted from circular plant regions were more 

correlated with fresh weights than those from rectangular boxes (Table 4.1).  The advantage 

of the circular areas was less pronounced at the May 2017 time point, which also had the 

lowest number of plants overlapping across boxes. However, for the other timepoints with a 

higher degree of plant overlap, the correlation for circular plant regions were substantially 

higher than the rectangular boxes. There are two main reasons for that: 1) most plants in 

those three field trial images had overgrown across bounding boxes and merged with 

adjacent plants, thus rectangular bounding boxes will not provide an accurate measure of 

area, and 2) rectangular boxes may show area that is entirely due to neighbouring plants 

overlapping, leading to area or NDVI being attributed to missing plants.  These factors erode 

the accuracy of rectangular bounding boxes, especially when there is substantial biomass. 

To see the trends of individual plants’ values of fresh weight and extracted phenomics, the 

ranges of fresh weight and area were normalized to a single range of [0, 100] and plotted as  

 

Fig. 4.13. Comparisons between the individual plant values of normalized values of fresh weights and 

areas for first 100 plants in a same range of [0, 100] for the field trial image taken on 5th July 2017. 
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a comparison in Fig. 4.13, which shows that plant fresh weight and area follow a very similar 

pattern on 9th May 2017. This pattern is consistent with the other time points (Suppl Fig. 4.1-

4.3).  

We further compared the mean adjusted and unadjusted plant NDVI of circular plant regions 

and unadjusted NDVI of rectangular boxes to fresh weights (Table 4.2). The correlations were 

moderate for rectangular boxes and ranged between 0.51 and 0.56. Circular plant regions 

slightly improved correlations to 0.53 and 0.58. The relatively low improvement is due to NDVI 

values being similar for both types of bounding boxes despite large difference in area. Further 

small correlation improvements (range 0.55 – 0.59) were achieved by adjusting NDVI values 

for circular plant regions by accounting for plant overlap.  While the improvement observed 

from adjusting NDVI here was minor, the adjustment methods applied could be useful for 

other trials, crops or even data types (e.g., point clouds). 

The multi-spectral images used in this study had a pixel size of approximately 2cm.  This was 

sufficient to distinguish single perennial ryegrass plants. The succesfull application of our 

algorithm to other image datasets depends on their relative pixel and plant size.  Further, we 

set numercial threshold for NDVI intensity and the search space within the bounding box to 

detect plant centres.  In part, these values are expected to be dataset specific and could 

depend on achieving relative uniform plant spacing, and, therefore, should be revisited during 

application. Finally, further improvements may be needed to the determination of radii, 

especially when plants are large and overlap substantially (Table 4.1, timepoints 3 and 4), 

which adds noise and causes some overestimation.  

The correlation of our phenomic bio-characteristics (plant areas and adjusted NDVI) found in 

our study is at a level useful to provide proxy phenotypes of individual biomass in field.  Plant 
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breeding, with or without genomics, requires the phenotypic screening of many breeding 

lines to select the best for commercialization or as parents for the next breeding cycle.  

Further, methods such as genomic selection require a large training population of phenotype 

lines with genome-wide DNA markers [37]. The advantage of sensor-based methods is that 

they are non-destructive and consume less time, which makes them suitable to be taken at 

multiple time points during the growing season. In pasture grasses, growth rate and recovery 

after harvest are key properties that only non-destructive sensor-based methods can 

investigate at sufficient scale to be useful for plant breeding. Further as pasture grasses are 

outbreeding (i.e. they cannot self-pollinate making each plant genetically unique), it can be 

of importance to measure single plants for research and selection purposes. Of particular 

interest is the genetic predisposition of individual plants to compete with plants in close 

proximity in the field because highly competitive plants will lead to non-uniform growth 

patterns in the paddock, which is undesirable. The bio-characteristics defined in our study will 

provide crucial information at the individual plant level to better understand the phenome-

to-genome relationships of biomass production and other important traits.   

4.6.  Conclusions 

An efficient and effective solution presented in the paper is to develop a machine-vision 

mathematical model that can extract plant phenomic bio-characteristics with sufficient 

accuracy despite of overlapping of adjacent plants. The estimation of plant areas when plants 

are very large and overlap substantially could potentially be improved in future studies. The 

mathematical model consisted of three parts: locating of centre points, extracting the area 

by means of radius and centre point, and extracting of mean NDVI via adjustment of 

overlapping plant regions. Overall, correlations of phenomic metrics with fresh weights were 
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moderate, with plant area derived from circular plant regions were more strongly correlated 

than NDVI derived measures.  The proposed NDVI adjustment for overlapping plant portions 

increased correlations with fresh weights slightly. Like all new proposals, we strongly 

encourage the evaluation of the algorithm performance before deployment. The algorithms 

presented in this study can be applied to a wide variety of crops and to other field trial designs.  
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Supp. Fig. 4.1. Comparisons between the individual plant values of normalized values of fresh weights 

and areas for first 100 plants in a same range of [0, 100] for the field trial image taken on 9th May 2017.   
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Supp. Fig. 4.2. Comparisons between the individual plant values of normalized values of fresh weights 

and areas for first 100 plants in a same range of [0, 100] for the field trial image taken on 11th 

September 2017.   

 

Supp. Fig. 4.3. Comparisons between the individual plant values of normalized values of fresh weights 

and areas for first 100 plants in a same range of [0, 100] for the field trial image taken on 20th 

November 2017.  
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5.1. Abstract 

The genetic component of the impact of an individual on its neighbours, known as indirect 

genetic effects (IGEs), have been studied in animals and trees, but the impact of indirect 

genetic effects on pasture plants has to date not been examined. Ryegrass biomass yield is 

poorly correlated between plants grown separately or in swards or plots, which is a finding 

often attributed to competition effects. We defined individual plant phenomic predictors of 

biomass yield in perennial ryegrass from multi-spectral images across nine timepoints and 

investigated the presence of IGEs using genomic mixed linear models to understand a) 

whether IGEs were present in the species, and b) if present, whether they indicated 

cooperative or competitive action. Genomic heritabilities and genomic prediction accuracy 

for the extracted phenotypes in four cultivars were moderate (~0.3) and comparable to 

literature biomass values, indicating that our novel phenotype was suitable for further 

analysis. Genomic best linear unbiased prediction models of with and without IGEs in the 

cultivars revealed that a moderate level of IGEs existed in all cultivars and that direct and 

indirect genetic effects had a consistently negative covariance.  The inclusion of IGEs always 

improved model fit as judged from LogLikelihoods. However, the estimate of negative 

covariance was only significant for one cultivar.  Our results indicate that negative impact of 

ryegrass plants on its surrounding plants is moderate at best and that routine fitting of IGE 

models in breeding is not required. 

  

Keywords: Phenomics, competition, indirect genetic effect, ryegrass, pasture grass, genomic 

prediction 
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5.2. Introduction 

Perennial ryegrass (Lolium perenne L.) is one of the most widely grown pasture grasses native 

to Europe, temperate regions (New Zealand, Australia) and USA. It is an important forage 

grass for feeding livestock due to its nutritional qualities, high palatability, and digestibility.  

Since it is highly digestible, it aids in maintaining high dry matter intake levels of the grazing 

animal leading to outstanding animal performance. Perennial ryegrass is often a preferred 

choice for long term pastures as it is easy to establish and can remain in well-managed 

favourable environments for at least 4 years. It can be grown on a wide range of soils with 

other forage crops and recovers rapidly from heavy grazing [1]. Due of its rapid establishment, 

perennial ryegrass is also widely used for worn turf‐area restoration. Therefore, 33,000 tons 

of perennial ryegrass seed is sold annually in Europe for turf usage [2]. In Australia, at least 6 

million hectares of perennial ryegrass-based pastures are used for the dairy, sheep and meat 

industries [3].  Moreover, ryegrass holds the largest share of the forage seed market (>9000 t 

yr−1) in Australia as compared with other forage species (e.g., tall fescue [Festuca 

arundinacea Schreb.], white clover [Trifolium repens L.], <1000 t yr−1) [4]. 

Genetic improvement programmes have always been vital for the pastoral industry. However, 

genetic progress has been slow (0.7% yield gain per year) [5] and conventional phenotypic 

ryegrass selection schemes incur long breeding cycles (12-14 years) as phenotypes need to 

be measured across multiple stages and seasons.  Further, pasture grasses are outbred, and 

varieties are made up of multiple parents, making accurate pedigree capture difficult for the 

breeding values as each parents’ contribution is unknown.  Thus, pedigrees are often 

incomplete and limit the application of best linear unbiased prediction (BLUP) [6].  Genomic 

prediction is a method that applies genome-wide markers to capture the relationship 

https://www.tandfonline.com/doi/abs/10.1080/00288233.1994.9513068
https://www.tandfonline.com/doi/abs/10.1080/00288233.1994.9513068
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between populations to estimate genomic breeding values [7].  The method is being applied 

in forage breeding and simulations have shown that it would increase genetic gain 

substantially [8-11].  Hence, it is important to know how genetic improvement of perennial 

ryegrass is directly linked to increase the productivity by choosing the most appropriate 

cultivars through improved breeding programmes. 

Ryegrass synthetic lines or populations are diverse and there is the potential for competition 

effects between individual plants or a population that could affect its overall performance.  It 

has also been shown that individual plant performance does not correlate well with plot 

performance in ryegrass [12-13]. Therefore, for genetic improvement of breeding 

populations, interaction among individuals may need to be considered. The interaction 

among individuals can be cooperative or competitive depending on the target trait. The 

interaction in which the genotype of an individual can influence the phenotypic trait value of 

its neighbours is known as indirect genetic effect (IGE). IGEs can have profound effects on 

total heritable variance in a population and consequently impact the response to selection. 

IGEs are a common natural phenomenon in animals, plants, and laboratory organisms.  There 

are several examples of IGEs: the influence of the genetic effect of a mother on the trait value 

of her offspring [14-15], social interaction and behaviours in laboratory microorganisms [16], 

and competition effect among trees on growth rate in trunk diameter [17]. The competitive 

interaction in trees can reduce yield and growth due to competition for basic resources such 

as light, water and nutrients for survival.  Such competitive interaction in livestock can not 

only reduce the overall growth and productivity, but in some cases can cause injury or death 

[18]. 
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IGEs can be classified into two frameworks; direct consequence IGEs of individual trait values 

known as trait-based framework, and a variance-component framework in which phenotypic 

variance is decomposed into a direct and an indirect additive genetic component. To estimate 

the breeding values and variance components, the incorporation of IGEs in the ordinary linear 

mixed models in organism breeding has significantly improved experimental research [19]. 

For instance, the incorporation of IGEs in animal breeding within the ordinary quantitative 

genetic framework has greatly facilitated the understanding and the possible role in response 

to the selection [20]. Further, the trait based IGE models have initiated both experimental 

and theoretical work in the field of evolutionary biology [21-22]. 

The interactions can be either cooperative or competitive among individuals. Numerically, the 

cooperative and competitive interactions are defined by positive and negative covariance 

values. The covariance is an important factor that determines the influence of IGEs on the 

possible response to selection and heritable variation; a positive covariance value suggests 

increase in both possible response to selection and total heritable variation and a negative 

covariance value decreases both [23].  

To numerically determine the interactions between individual plants, it is necessary to 

accurately extract the phenotypes of individuals. In case of trees, the definition of accurate 

phenotypes is relatively easy as compared to ryegrass as individual trees are physically apart 

from each other. In case of ryegrass, individual plants often overlap making it a difficult task 

to accurately extract phenomics such as area and normalized difference vegetation index 

from digital images. In our previous work [24], we have extracted individual plant phenomics 

from digital perennial ryegrass field data images. In this paper, these extracted phenotypes 
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are associated with genetic markers to estimate variance components for direct and indirect 

genetic effects and genomic prediction. 

5.3. Methods 

5.3.1. Phenotyping 

The individual plant phenomics (plant area and normalized difference vegetation index; NDVI) 

of perennial ryegrass row field data were extracted using digital images taken from the top 

view [24]. A Parrot Sequoia (Parrot Drones S.A.S., Paris, France) multispectral camera was 

deployed on a 3DR Solo quadcopter to capture the digital images of field trials. The camera 

has incident light sensors and GPS. Tower Beta software was used to plan the flight mission. 

Images were captured simultaneously at four bands including green (530–570 nm), red (640–

680 nm), red edge (730–740nm), and near-infrared (770–810 nm). The un-crewed aerial 

system (UAS) captured images of the trial site on a weekly basis. There were nine flight dates 

(four in 2017, two in 2018 and three in 2019) used for this study. The noise from 

environmental variation was minimized by conducting flight operations under sunny, bright 

weather conditions. The flight speed of UAS was set to 6 m/s, the flight altitude was set at 20 

m above ground level with 75% side and forward overlap of images. The spatial resolution of 

the digital images was 2 cm/pixel at this flight speed and altitude. For each date, the same 

flight path was followed. Airinov calibration plates were used to correct image reflectance 

with known reflectance values (MicaSense Inc., Seattle, WA, USA). 

The field trial was located in Hamilton, Victoria and contained a total of 48,000 individual 

plants in 10 blocks (referred as major crop rows) grown in replicated rows of 32 plants per 

row (referred as minor crop rows). Further, there were 50 perennial ryegrass cultivars 

replicated in the field trial, where each replication was considered as a plot and contained 
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three rows of 32 spaced plants each (i.e., 96 plants/plot). Each individual plant was genetically 

unique (perennial ryegrass is outbred) and there were at least four parental cultivars for each 

cultivar making them genetically diverse. The vertical spacing between the individual plants 

was 25 cm and the horizontal spacing between individual rows was 60 cm. The experimental 

unit of a single plot was 8 × 1.8 m making the total area of the field experiment to be 8,100 

m2. In part, the objective of the field trial was to estimate and predict the plant performance 

such as biomass yield and flowering time using phenomics processing pipelines. 

The phenomic data of individual plants from this field trial were extracted from digital images 

as described in Rabab et al [24]. As the individual plants overlapped and merged into each 

other, the proposed algorithm [24] aimed to accurately extract the area covered by the 

individual plants and then their individual NDVI values. The algorithm assumed that the 

structure of individual plants was somewhat circular and was based on the calculation of 

centre points and radii of individual plants. These bio-characteristics of area and NDVI are 

then used in genomic prediction to select the best metrics. For the genomic prediction we 

considered the phenomics from four GSS images taken on four harvesting dates (9th May 

2017, 5th July 2017, 11th September 2017 and 20th November 2017) in different seasons of the 

year 2017. Further, for phenomics, we considered area and mean NDVI values of individual 

plants extracted from rectangular bounding boxes [25] and circular bounding boxes [24]. The 

correlation values of genomic prediction for different phenomics assist in determining the 

best phenomics measures for genetic gain. For genomic mixed linear models to investigate 

IGEs, there were nine GSS trial images (9th May 2017, 5th July 2017, 11th September 2017, 20th 

November 2017, 19th June 2018, 22nd August 2018, 12th August 2019, 30th September 2019 

and 10th November 2019) considered in different seasons of the years 2017, 2018 and 2019.  

Data was available for four Lolium perenne (LP) cultivars (LP423, LP714, LP730 and LP955). 
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5.3.2. Genotyping 

Leaf tissue of single plants was harvested at the trial site and mRNA was extracted using the 

mRNA Dynabead kit (Life Technologies, Carlsbad, CA) following manufacturer’s instructions. 

A transcriptome genotyping-by-sequencing (GBSt) approach was then applied as in Malmberg 

et al [26].  Sequencing was carried out on Illumina HiSeq 3000 and for each individual circa 

6M paired end reads were generated and aligned with BWA-mem [27] to the Shinozuka et al. 

[28] ryegrass transcriptome reference assembly.  Variant calling was performed with bcftools 

mpileup and bcftools call using a predefined SNP list filtering on a minimum read depth of 

four. Loci with more than 25% missing data in samples which had less than 50% missing data 

were removed.  Subsequently, samples with more than 90% missing data were removed. This 

resulted in 2274 individuals with 100,530 single nucleotide polymorphisms (SNP). The 

genotypes have been coded as the number of copies of the second allele at the marker. For 

instance, if the alleles at the marker were A and B, and a plant had the genotype AA, the plant 

would have a 0 coded genotype. If the genotype were AB or BA, the coded genotype would 

be 1, and BB would be 2.  Missing SNP genotypes were imputed with LinkImpute [29].  

5.3.3. Statistical analysis 

Genomic prediction   

Three genomic prediction models were implemented in R. The method ridge regression BLUP 

(rrBLUP, a method similar to GBLUP) was run using “mixed.solve” function in the “rrBLUP” R 

package and the genomic prediction with Bayes A and Bayes B [7] were done using the “BGLR” 

R package with 50,000 iterations and 25,000 burn-in [32].  These three methods were chosen 

because the genetic architecture of our novel traits had not been investigated before.  The 

Bayesian methods can better accommodate markers with larger effects, while rrBLUP treats 

markers similarly.   
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Genomic prediction was evaluated within timepoint across four cultivars in a cross-validation, 

where a random 20% of phenotypes were masked and predicted from the remaining 

phenotypes. Best linear unbiased esitmations (BLUEs) per individual plant were calculated by 

individual as a fixed effect in a mixed linear model. The accuracy of genomic prediction was 

estimated as the Pearson correlation of Genomic Estimated Breeding Values (GEBVs) and 

overall BLUEs across the four cultivars. 

Direct and indirect effects 

Phenomics data were analysed using mixed linear models with a general form below, 

implemented in ASREML [30]: 

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐞,                                                              (5.1)  

where, 𝐲 is a vector of phenomics, 𝐛 is the vector of fixed effects including the overall mean, 

𝐗 is a design matrix relating phenomics to fixed effects, 𝐙 is a design matrix relating 

phenomics to the additive genetic effects, 𝐚 is a vector of random additive genetic effects 

(GEBVs) and 𝐞 is a vector of random residuals normally distributed, i.e., ~𝑁(0, 𝐼𝜎𝑒
2), 𝜎𝑒

2 is the 

residual variance and 𝐼 is the identity matrix.  

Two GBLUP (genomic best linear unbiased prediction) models were examined in this paper, 

GBLUP models with or without competition effects. In the GBLUP model without the 

competition effects, 𝐚 is normally distributed as ~𝑁(0, 𝐆𝜎𝑎
2), where 𝜎𝑎

2 is the additive genetic 

variance and 𝐆 is the genomic relationship matrix based on SNP data [31]. The mean and 

marker effects are predicted as: 

[
�̂�

�̂�
] =  [

𝐗′𝐗 𝐗′𝐙

𝐙′𝐗 𝐙′𝐙 + 𝐆−1(𝜎𝑒
2 𝜎𝑎

2⁄ )
]

−1

[
𝐗′𝐲

𝐙′𝐲
].                                     (5.2) 
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GBLUP with indirect genetic effects  

For competition among the individual plants, the focal plant had two neighbouring plants in 

the row, one above and one below, which were initially planted 25 cm apart from the focal 

plant. The plants in the adjacent rows of the focal plant were 60 cm apart and therefore were 

not considered as neighbour plants. Plants were matched to genotypes based on their row, 

column, and plot position. While genotypes of 2274 individual plants had phenotypes and 

genotypes available, not all plants with phenotype data were genotyped. 

In the GBLUP model with competition effects, the vector of additive genetic effects 𝐚 contains 

two sub vectors with a notation of 𝐚′ = (𝐚𝑑
′ , 𝐚𝑖

′) with a design matrix defined as 𝐙 = (𝐙𝑑 , 𝐙𝑖), 

where 𝐚𝑑
′  is a vector of the direct additive genetic effects, 𝐚𝑖

′ is a vector of the indirect additive 

genetic effects, 𝐙𝑑 relates the phenomics of the focal individual to its own direct additive 

genetic effects, and 𝐙𝑖  relates the phenomics of a focal individual to its indirect additive 

genetic effects on its nearest neighbours.  

The variance-covariance submatrix for the random terms in 𝐚 was defined as: 

𝑉𝑎𝑟 [
𝐚𝑑
′

𝐚𝑖
′
] =  [

𝜎𝑎𝑑
2 𝜎𝑎𝑑𝑖

𝜎𝑎𝑑𝑖 𝜎𝑎𝑖
2
] ⊗ 𝐆,                                             (5.3) 

where, 𝜎𝑎𝑑
2  is the direct additive genetic variance, 𝜎𝑎𝑖

2  is the indirect additive genetic variance, 

𝜎𝑎𝑑𝑖  is the genetic covariance between direct and indirect additive effects, and ⊗ is the 

Kronecker product. We were interested in finding 𝜎𝑎𝑑
2 , 𝜎𝑎𝑖

2  and 𝜎𝑎𝑑𝑖  which explained the 

magnitude of direct and indirect genetic effects on phenomic trait values. 

All nine timepoints of data were combined within each of the cultivar and a fixed effect for 

timepoint was fitted in each of the following GBLUP models in ASReml [30]: 

i. Model 1: standard GBLUP model without indirect genetic effects among 

neighbouring individual plants.  
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ii. Model 2: GBLUP model with both direct and indirect genetic effects, but 

without covariance between direct and indirect effects. 

iii. Model 3 (full model): GBLUP model with both direct and indirect genetic 

effects, and covariance between direct and indirect effects. 

To test the significance of variance and covariance parameter estimates, Log likelihood-ratio 

(LogL) tests were performed. LogL1 is the LogL-ratio value for Model 1 LogL2 for Model 2 and 

LogL3 for Model 3.  A higher LogL indicates that a model is a better fit to the data. The 

significance of the difference between models was measured using a Chi square test [33] with 

one degree of freedom (df).   For further comparison of the three models, the Akaike 

information criterion (AIC) were computed for each model, where smaller AIC values reflect 

a better model fit. 

Heritability  

The narrow sense heritability, ℎ2, was calculated as: 

ℎ2 = 
𝜎𝑎𝑑
2

𝜎𝑎𝑑
2 + 𝜎𝑎𝑖

2 + 𝜎𝑒2
,                                                            (5.4) 

where, 𝜎𝑒
2 is the residual variance, 𝜎𝑎𝑑

2  is the additive direct variance and 𝜎𝑎𝑖
2  is the additive 

indirect variance. ℎ2 is calculated for each cultivar combining the phenomics of all GSS images. 

The proportion of genetic variance explained by the indirect effect, 𝑃𝑎𝑖
2 was calculated as: 

𝑃𝑎𝑖
2 = 

𝜎𝑎𝑖
2

𝜎𝑎𝑑
2 + 𝜎𝑎𝑖

2
.                                                                (5.5) 

These ratios were calculated per cultivar for each model, where applicable. 

5.4. Results 

5.4.1. Genomic prediction 

Best linear unbiased estimations (BLUEs) were calculated employing GBLUP model without  
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competition using combined data of nine timepoints per cultivar (LP423, LP714, LP730 and 

LP955). The summary statistics, such as mean, standard deviation, minimum and maximum 

BLUEs, were similar across the four cultivars 5.1. 

We used the rrBLUP and Bayesian genomic prediction models to determine the best 

phenomics for genetic analysis by analysing the correlation values of these models. We 

extracted area and NDVI phenomics for rectangular and circular regions [24]. Genomic 

prediction accuracy ranged from 0.20 to 0.45 (Table 5.2). There were only minor differences 

between rrBLUP, Bayes A and Bayes B. across the four timepoints (9th May 2017, 5th July 2017, 

11th September 2017 and 20th November 2017) investigated for the novel phenomics traits 

rectangular NDVI, circular area and circular NDVI.  This indicated that the traits were polygenic 

in nature with few larger effect loci. Higher accuracy was observed for circular area phenomics 

measures than rectangular metrics.  Further, the circular area measure was more consistent 

in genomic prediction accuracy than circular NDVI and, therefore, circular area was used for 

further analysis of genomic prediction and competition effects.  

 

 

 

Table 5.1. Stats of BLUEs across four cultivars. 

Cultivars Mean Standard 

Deviation 

Minimum Maximum 

LP423 149 42 19 347 

LP714 149 51 -32 332 

LP730 197 36 57 340 

LP955 160 35 43 342 
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Table 5.2. Genomics prediction results for rrBLUP, Bayes A and Bayes B at four time points across four 

cultivars. 

Time Points rrBLUP Bayes A Bayes B 

 

Rect. 

NDVI 

Circ. 

NDVI 

Circ. 

Area 

Rect. 

NDVI 

Circ. 

NDVI 

Circ. 

Area 

Rect. 

NDVI 

Circ. 

NDVI 

Circ. 

Area 

20170509 0.29 0.32 0.38 0.31 0.33 0.38 0.32 0.35 0.38 

20170705 0.27 0.28 0.39 0.26 0.22 0.41 0.27 0.23 0.41 

20170911 0.20 0.35 0.33 0.20 0.36 0.34 0.36 0.36 0.34 

20171120 0.45 0.43 0.37 0.43 0.40 0.36 0.43 0.42 0.37 

Mean 0.30 0.35 0.37 0.30 0.33 0.37 0.35 0.34 0.38 

 

5.4.2. Direct and indirect effects 

Variance components and IGEs were estimated with GBLUP models using combined data of 

nine timepoints per cultivar (LP423, LP714, LP730 and LP955). We use the sequential 

modelling approach starting with the GBLUP model without any competition followed by the 

competition model without covariance and lastly the competition model with covariance. 

Table 5.3 shows the variances and covariances values for the GBLUP models for all four 

cultivars. The GBLUP competition models with and without covariance for LP423 did not  

converge and therefore (co)variances estimates were not conclusive. The magnitude additive 

direct genetic variance, 𝜎𝑎𝑑
2  illustrates the impact of genetics on phenomics phenotypes. The 

additive indirect genetic variance, 𝜎𝑎𝑖
2  demonstrates the scale of competition effects among 

the individual plants. Of the three cultivars, LP714 had the highest 𝜎𝑎𝑖
2 , at 457 and 962 for 

competition effects models with and without covariance, respectively, followed by LP730 and 

LP955, which had small 𝜎𝑎𝑖
2 , indicating no or little competition among plants. Evidence for 

competition can also be observed from the covariance values, though these were relatively  

small.  The decreasing trend again followed the same order LP714, LP730, and LP955. 
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Table 5.3. Variance components for three GBLUP models. 

 Models Additive 

Variance, 

𝝈𝒂𝒅
𝟐  

Additive 

Indirect 

Variance, 

𝝈𝒂𝒊
𝟐  

Co-

variance, 

𝝈𝒂𝒅𝒊  

Residual 

Variance, 𝝈𝒆
𝟐 

 

LP423 

 

Model 1 1587 --- --- 5614 

Model 2  

Did not converge. Model 3 

 

LP714 

Model 1 3105 --- --- 5257 

Model 2 3325 457 --- 4929 

Model 3 2951 962 -103 4893 

 

LP730 

Model 1 2310 --- --- 6360 

Model 2 5509 324 --- 6795 

Model 3 2688 22 -77 6817 

 

LP955 

Model 1 3143 --- --- 4248 

Model 2 3129 68 --- 4193 

Model 3 3136 6 -36 4239 

Model 1: GBLUP with no competition; Model 2: GBLUP with competition without covariance; and 

Model 3: GBLUP with competition with covariance. 

5.4.3. Heritability 

Narrow sense heritability, ℎ2, was moderate for all cultivars and models ranging from 0.22 to 

0.43.  Further, demonstrating that the circular plant areas were a phenomic phenotype that 

was able to capture a genetic component (Table 5.4). To demonstrate the effect of 

competition, the proportion of genetic variance, 𝑃𝑎𝑖
2  , was also calculated (Table 5.4). The 𝑃𝑎𝑖

2  

values for LP714 were 24% and 12% for GBLUP competition models with and without 

covariance, respectively, displaying some competition. However, the 𝑃𝑎𝑖
2  values for LP730 and 

LP955 were less than 5% indicating very little competition among individual plants for these 

cultivars. 
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Table 5.4. Heritability and proportion of genetic variance values for GBLUP models. 

 Models Heritability, 𝒉𝟐 =

 𝝈𝒂𝒅
𝟐 (𝝈𝒂𝒅

𝟐 + 𝝈𝒂𝒊
𝟐 + 𝝈𝒆

𝟐)⁄  

Proportion of 

genetic variance,  

𝑷𝒂𝒊
𝟐

= 𝝈𝒂𝒊
𝟐 (𝝈𝒂𝒊

𝟐 + 𝝈𝒂𝒅
𝟐 )⁄  

LP423 Model 1 0.22 --- 

 

 

LP714 

Model 1 0.37 --- 

Model 2 0.38 0.121 

Model 3 0.33 0.245 

 

 

LP730 

Model 1 0.27 --- 

Model 2 0.43 0.055 

Model 3 0.28 0.008 

 

 

LP955 

Model 1 0.43 --- 

Model 2 0.42 0.021 

Model 3 0.42 0.002 

 
 

5.4.4. Model comparisons 

 

Model significance is presented in Table 5.5. The LogL values for Model 2 were always greater 

than Model 1 across all the cultivars showing that the Model 2 is better a better fit to the data 

than Model 1. However, the LogL values do not have a constant pattern when compared 

between Model 2 and Model 3 making it difficult to comment whether fitting a covariance 

between direct and indirect effects is of value. The values for test statistic were greater than 

3.84 for all the cultivars demonstrating the significance of the indirect additive genetic effect 

and the covariance between direct and indirect additive genetic effect. Specifically, for LP714, 

the test statistic between Model 2 and Model 1 was significantly higher (88.12) as compared 

to the other cultivars.  However, for LP730 and LP955, the LogL was actually lower for Model 

3, indicating its fit deteriorated by estimating a covariance. 
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Table 5.5. LogL and Chi square test values for GBLUP models. 

 Models LogL* Test 

Against 

Test 

Statistic 

AIC 

 

 

LP714 

Model 1 71   39860 (2 

Parameters) 

Model 2 115 Model 1 88.12 

(df=1) 

39774 (3 

Parameters) 

Model 3 120 Model 2 9.436 

(df=1) 

39766 (4 

Parameters) 

 

 

LP730 

Model 1 -6891   53787 (2 

Parameters) 

Model 2 -6886 Model 1 10.26 

(df=1) 

53779 (3 

Parameters) 

Model 3 -6895 Model 2 18.34 

(df=1) 

53799 (4 

Parameters) 

 

 

LP955 

Model 1 -1224   62453 (2 

Parameters) 

Model 2 -1212 Model 1 24.94 

(df=1) 

62430 (3 

Parameters) 

Model 3 -1222 Model 2 19.98 

(df=1) 

62452 (4 

Parameters) 

*LogL values for LP714 are reported relative to a base of -20000.000. LogL values for LP730 are 

reported relative to a base of -20000.000. LogL values for LP955 are reported relative to a base of -

30000.000. 

5.5. Discussion 

We demonstrated the interactive behaviour among individual ryegrass plants with IGE 

models.  The extraction of individual plant phenomics is essential to numerically determine 

the interactions between individual plants. This the first application of IGE models in pasture 

grasses. The difficulty in extraction of individual plant phenomics in ryegrass arises due to 

ryegrass plants often overlapping, making it a difficult task to accurately extract phenomics 
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such as area and normalized difference vegetation index from a digital image. We extracted 

individual plant phenomics from digital perennial ryegrass field data images [24] and linked 

these extracted phenotypes with genetic markers to estimate variance components for direct 

and indirect genetic effects and genomic prediction.  

Increased biomass is the main goal in perennial ryegrass breeding programs which requires 

accurately extracted phenotypes. The validation of extracted phenotypes is crucial for 

genomic prediction and investigating interaction among spaced ryegrass plants. The 

correlation values of genomic prediction for different phenomics assist in determining the 

best phenomics to achieve genetic gain. Therefore, we used genomic prediction to predict 

novel phenotypes and compared results between different genomic prediction models. The 

circular area measure was found to be more consistent and higher in genomic prediction 

accuracy. Moreover, the moderate heritability of the direct effect and genomic prediction 

accuracy were comparable to normal biomass yield hence circular plant areas were 

considered an appropriate phenotype to be used in further analysis of genomic prediction 

and competition effects [4, 34]. 

For the statistical analysis, GBLUP models 1) without competition, 2) with competition but 

without covariance and 3) full model with competition and covariance were used. We 

estimated the variances and covariances for three cultivars (LP423, LP714, LP730 and LP955). 

The additive direct genetic variance, 𝜎𝑎𝑑
2  values specify that the phenomic variance can be 

partially explained by genomics. The competition effect among individual plants can be 

identified by the additive indirect genetic variance, the 𝜎𝑎𝑖
2  component. The cultivars LP730 

and LP955 had small 𝜎𝑎𝑖
2 , signifying no or little competition among individual ryegrass plants. 

Moreover, for LP714 the additive indirect variance component increased from model 2 to 
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model 3. The results revealed that all cultivars exhibited negative covariance but in LP714 we 

can identify significant negative covariance, as indicated by the LogL test and AIC. Therefore, 

LP714 provided the most conclusive evidence for competition effects among the three 

ryegrass cultivars. The significance of variance and covariance parameter estimates was 

tested by performing loglikelihood ratio tests. To determine the difference between the three 

models, comparison between these models are done. We found that Model 2 was always 

more likely than Model 1. The estimation of a covariance between direct and indirect 

covariances only improved model fit for one cultivar.  This may be demonstration of the 

limited power of our experiment to estimate multiple variance components. 

For the IGE model, we only considered neighbours above and below the focal plant in the 

row, ignoring plants in adjacent rows at a distance of 60cm.  This trial design would allow 

plants to partly avoid competition through use of resources between rows. This may have 

affected our estimates of competition between plants.  Therefore, it is possible that the 

impact of IGEs in plots would be higher when plants are grown closer together instead of our 

rows design.  

The overall low to moderate level of competition estimated in our study is in contrast to 

results comparing performance of spaced plants to sward or plot performance, which tend 

not to be correlated [13].  As discussed, this could be due to the power of our experiment or 

due to the field trial design.  Increasing the number of plants tested per cultivar would 

increase power, but that was beyond the scope of the current study.  We did attempt to fit 

all cultivars together in one overall mixed model, which did not converge.  Aside from study 

specific reasons, it is also possible that selection has favoured ryegrass cultivars in which 

plants are not overly competitive when grown in close proximity.  Breeders are encouraged 
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to select cultivars that perform well and are also unform to be able to register the variety for 

plant variety rights.  Further, limited competition of plants in plots need not be genetically 

incompatible with plants making use of additional resources when grown separately. 

While our study has provided initial information on indirect genetic effects in ryegrass, the 

results need further confirmation.  Further, collecting individual plant phenotypes under 

competition is not feasible routinely in a commercial setting.  The relatively low level of 

competition also does not support the application of IGE models in breeding programs.  

Nevertheless, uniformity in plots may be a simple measure to select high yielding non-

competitive cultivars.  This could also be accomplished with novel phenomics, such as 

variance of NDVI or, more broadly, variance in predicted biomass per plot. 
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This PhD thesis was primarily focused on developing methods to accurately extract in-field 

phenomics measures for perennial ryegrass and analyse their competition effects for 

improved genetic gain by incorporating genomic selection (GS). The genomic sub-selection 

(GSS) field trial data set was used, which contained 50 perennial ryegrass cultivars with 

replicated rows of 32 plants each. Few images of the GSS trial were available at the beginning 

of the thesis and processing and the extraction of data from images needed development, 

which became an important research focus. The images were sufficient to apply precision 

agriculture strategies for digital phenotyping. The outcomes of this thesis provide insights to 

automation in ryegrass field trials for digital phenotyping, genomic selection and competition 

effects among individual plants and its effect on practical ryegrass breeding programmes.  

The thesis chapters have evolved from exploiting machine vision strategies for automatic crop 

row detection to phenomics data extraction that can be applied in commercial ryegrass field 

trials.  First, a novel template free crop row detection algorithm was developed that did not 

require any pre-known crop information such as crop spacing and number of rows. The 

proposed algorithm was also robust in varied conditions such as poor illumination, small weed 

quantity and irregular crop rows (chapter 3). The thesis then further investigated the 
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extraction of the individual plant phenomics. Therefore, a novel method for extracting 

individual plant bio characteristics (plant area and adjusted NDVI) from high quality field trial 

images was proposed (chapter 4). The method not only focused on accurate extraction of 

regions at the individual plant level, but also effectively linked these regions with individual 

plant biomass. The accuracy of the proposed work was verified by correlating harvest plant 

biomass with individual plant phenomics (Area, NDVI). The accurate extraction of individual 

plant phenomics was essential for genomic prediction of the overall plant performance using 

quantitative genetic techniques.  Thus, the thesis then further investigated whether there is 

competition among individual plants in ryegrass (chapter 5). Furthermore, it was explored 

how competition affects the genomic prediction model for predicting genomic breeding 

values. The goal was to understand whether there is competition among individual plants and 

what role phenotypic variation plays in competition effects. 

This general discussion concentrates on four main areas which summarizes each chapter and 

discuss both theoretical and practical aspect of the thesis. 1) Machine vision crop row 

detection. 2) Extraction of individual plant phenomics. 3) Incorporation of GS models and 

competition effects. 4) Further research required to bridge the pheno-geno gap and 

competition effects. 

6.1. Processing of images for machine vision crop row detection  

There has been impressive progress over the time in the development of several genomic 

resources that have been practically implemented in crop science for overall improved 

genetic gain. However, phenotypic technologies have failed to follow the pace hence we 

observe the pheno-geno gap. Therefore, the development of sophisticated techniques for 

attainment of quantitative traits is an important research area to explore. In plant breeding, 



Chapter 6                                                                                                                                  General Discussion 

141 
 

the generation of high-quality quantitative data needs automation.  Automation for high 

through-put phenotyping is often based on various imaging techniques (discussed in chapter 

2 and 3).  In this thesis, the software Pix4Dmapper Pro (version 4.3.31 Pix4D, Lausanne, 

Switzerland, https://pix4d.com) was used for processing of the raw images into ortho-

mosaics for applying image analysis techniques. For the attainment of accurate and efficient 

phenotypic data, the first and foremost step for digital phenotyping was crop row detection 

in the GSS field trial. 

For crop row detection, after the pre-processing of images (image rotation, cropping, noise 

removal, contrast improvement etc), the fundamental step was the classification of the crop 

rows. There are several techniques available in literature for crop row classification which are 

mostly based on template generation and worked under specific circumstances (discussed in 

literature review). For a binary image with low noise intensity, crop row detection is 

essentially just connecting the white pixels in the image. However, most of the field trial 

images are complex and required a novel algorithm that can be applied to these images for 

crop row detection. Moreover, the motivation was to develop a crop row detection algorithm 

that is template free and did not require any pre-information (number of crop rows, crop row 

spacing, etc). The proposed algorithm [1] detected all the crop rows effectively in GSS field 

trial in which the images were taken from the top view.  It also worked effectively when 

applied to a public data set [2] of 281 images with varied crop conditions (number of rows, 

spacing, varied weed intensity). To assess the performance of the algorithm, several 

parameters have been considered one being the accuracy. The accuracy of the proposed 

algorithm for GSS data set was 87.5% and for public data set of 281 images it was 84%. 

Another metric, receiver operating characteristic (ROC) graph was also used for the first time 

(according to my knowledge) in crop row detection. The area under curve (AUC) of 0.98128 

https://pix4d.com/
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of the ROC graphs showed the robustness of the proposed algorithm. The algorithm was also 

compared with other methods available in literature (chapter3) and proved superior. 

Computational time is of paramount importance for real time crop row detection system, 

therefore, the computational time of the proposed algorithm with existing algorithms was 

compared (Table 3.2) and it outperformed other approaches. 

Recently, the development of crop models to capture the quantitative information of crop 

growth and development have received extensive attention. Crop models have progressively 

entered the practical application stage. The incorporation of crop functional structure models 

with machine vision strategies, global positioning system (GPS) technologies, and the Internet 

of Things would aid in further development of digital agriculture and assist in technical 

support for modern agriculture [3]. 

The algorithm proposed in Chapter 3 had a limitation that it needs the approximate intensity 

of weeds as the only pre-information for accurately detecting crop rows. Also, the 

performance of the algorithm decreases significantly in case of high weed intensity as it fails 

to differentiate crop rows from weeds. This problem can be catered for by applying some sort 

of weed detection algorithm [4-5] first followed by the crop row detection algorithm. 

However, it proved effective for the GSS field trial by accurately detecting all the crop rows, 

which was necessary for the next step of individual plant detection. 

6.2. Extraction of individual plant phenomics from GSS trial images 

The extraction of individual plant phenomics are of importance for automated phenotyping 

as they aid in investigating family or population uniformity in plant species (inbred and 

outbred). Finkel [6] proposed that for plant scientists phenomic imaging could shift plant 

breeding towards hands-free work.  This would require an increased number of imaging 
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based, non-destructive and automatic high-throughput phenotypic data that is accurately 

acquired and analysed. In image based phenomics research, crop phenotypic data collection 

is just the first step followed by the extraction of valuable agronomic and physiological traits 

from image features. Classical image processing pipelines, under controlled conditions, can 

often provide adequate phenotypic results such as NDVI [7], biomass [8], chlorophyll 

responses [8] and compactness [9]. 

The best way to increase crop productivity is genetic improvement by breeding. With the 

increased and rapid progression in the field of functional genomics and sequencing, an 

increased number of crop genomes can be sequenced.  Consequently, dozens of genes 

influencing the key agronomic traits have been identified. However, the present genome 

sequence information has not been fully exploited due to the lack of crop phenotypic data for 

understanding the complex characteristics of multiple genes [10-11]. Hence, for crop 

improvement, extraction of automatic, efficient, and accurate phenotypic data that can be 

linked to genotypic data (at all growth stages) is equally important as crop genomic 

information [12]. Therefore, in this thesis, I worked on extraction of individual plant 

phenomics to bridge this pheno- geno gap. 

For the extraction of individual plant phenomics, image segmentation was considered.  Image 

segmentation is crucial for distinguishing background from regions of interest, individual 

plants in my case. There are several image segmentation algorithms available in the literature 

as discussed in chapter 4.  The digital image information extracted can be linked to the plant 

bio characteristics such as area and NDVI, which can be used to estimate plant biomass yield.  

Therefore, a new method was proposed [13] that automatically extracted the phenomics 

traits (NDVI and area) for each plant of the GSS trial. The method was based on the calculation 
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of centre points and radii of individual plants with the assumption that the structure of 

individual plants was somewhat circular. 

The ryegrass field trial was located in Hamilton, Victoria, Australia (37.8464_S, 142.0737_E) 

and operated by Agriculture Victoria Research. For the extraction of phenomics traits, an 

experimental field trial design was used, specifying the layouts for individual rows and 

individual plants. To measure individual biomass yield, fresh weights for 480 perennial 

ryegrass plants were collected. Fresh biomass was available for four harvesting dates in 

different seasons of 2017. Harvest dates were based on the individual plant growth, the two 

to three leaf stage was taken into consideration as the preferred simulated grazing stage. 

There are several methods available in literature for capturing individual plant phenomics as 

cited in chapter 4. However, none of them were found suitable for my research problem. The 

phenomics extraction was simple in images with less growth. Nevertheless, identifying the 

accurate area was not a straightforward task with increased plant growth as plants started 

merging. Therefore, the proposed algorithm catered to the problems associated with the 

overgrowth of the plants for accurate NDVI and area estimation. The effectiveness of the 

proposed algorithm was tested by correlating harvest fresh weights with the extracted 

phenomics. Pearson correlations (r) was used to compare the phenomics metrics. The 

correlation ranged between 0.63 to 0.75 for the four field trial images for four time points.  

In this thesis, the multi-spectral GSS images used had a pixel size of almost 2cm.  This was 

enough to distinguish single perennial ryegrass plants. For the successful deployment of the 

proposed work to other image data sets, careful consideration of their relative pixel and plant 

size is required. Furthermore, to detect plant centres, I considered the search space within 

the bounding box of individual plant and set a numerical threshold for NDVI intensity. This 
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numerical threshold and other parameters are specific for the image dataset considered in 

this work and thus should be revisited during application on other image datasets. Another 

important factor to consider in practical applications is the accurate determination of radii 

when plants overlap substantially, adding noise and causing some overestimation. The 

estimation of accurate individual plant (large and overlapped) area and further improvement 

in correlation could potentially be achieved in future studies by incorporating plant height 

measures. The height data together with volume and leaf features could provide better and 

accurate estimation of the individual plant phenotypes. In this thesis, the extracted individual 

plant bio-characteristics (area and NDVI) provided crucial information at individual plant level 

to better link phenomics with individual plant genomics. 

6.3. Incorporation of GS models and competition effect  

Pasture grasses are usually outbreeding which makes each plant genetically unique. 

Therefore, the phenotypic evaluation at individual plant level may be necessary to understand 

competition effects and to fully explore the potential of genomic selection (GS) programmes. 

It is known that yield in spaced plants versus plots is lowly correlated and it is assumed that 

this is due to plant response when competing for resources [14].  However, it is unknown 

whether ryegrass plants are competitive or cooperative and highly competitive plants with 

negative impacts on neighbouring plants would lead to non-uniform growth patterns in the 

paddock, which is undesirable. Using plant bio characteristics, the thesis then investigated the 

presence of competition effects in ryegrass plants. 

To numerically determine the interactions between individual plants, it was essential to 

precisely extract the phenotypes of individual plants. In ryegrass each individual plant was 

genetically unique (perennial ryegrass is outbred) and there were at least four parental 
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cultivars for each cultivar making them genetically diverse. I have extracted individual plant 

phenomics from digital perennial ryegrass field data images as discussed in Chapter 4 and the 

next step was to link these extracted phenotypes with genetic markers to estimate variance 

components for genomic prediction and direct and indirect genetic effects. There were 2274 

individual plants whose 100,530 single nucleotide polymorphisms (SNPs) were available. 

These plants originated from four cultivars: LP423, LP714, LP730 and LP955. 

Genomic Prediction (GP) was used to predict novel phenotypes and a comparison was done 

between different GP models. For the genomic prediction using best linear unbiased 

prediction (GBLUP) and Bayesian methods BayesA and BayesB [15], the phenomics of four 

GSS images taken on four harvesting dates (9th May 2017, 5th July 2017, 11th September 2017 

and 20th November 2017) in different seasons of the year 2017 were considered. Further, for 

phenomics, area and mean NDVI values of individual plants were considered that were 

extracted from rectangular bounding boxes and circular bounding boxes. The correlation 

values of genomic prediction for different phenomics assist in determining the best 

phenomics for genetic gain. The correlation values of circular bounding boxes were better 

and hence were considered for further analysis to investigate the competition effects in 

individual ryegrass plants. 

For the statistical analysis of competition effects (i.e. indirect genetic effects), the phenomics 

data were analysed in ASREML using mixed linear models. Moreover, three GBLUP models 

were examined: 1) GBLUP model without competition effects, 2) GBLUP model with 

competition effects, but without covariance and 3) GBLUP model with competition effects 

and covariance. Models 2 and 3 defined the neighbouring plants above and below in the row 

(25cm distance) in the indirect effects model but did not consider neighbours in separate rows 

due to them being further away (60cm).   
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The results demonstrated that all cultivars exhibited negative covariance, but in LP714 

significant negative covariance was identified. Therefore, LP714 seemed to exhibit biggest 

competition effects among all the cultivars.  Additionally, to check how much phenotypic 

variance was explained by genetic effects, heritability was calculated for all the four cultivars. 

The heritability values for all the cultivars were generally greater than 0.3, demonstrating the 

direct effects of genetics on phenomics and providing a validation for the phenomics metrics 

developed. Furthermore, to test the significance of variance and covariance parameter 

estimates, loglikelihood ratio tests were performed. The difference in models with and 

without indirect genetic effects (without covariance) were significant for all cultivars 

demonstrating the significance of the indirect additive genetic effect. Precisely, for LP714, the 

test statistic between Model 2 and Model 1 was significantly higher (88.12) as compared to 

the other cultivars. 

In this thesis, heritability of the direct effect and genomic prediction accuracy were 

comparable to normal biomass yield [16]. All three cultivars exhibited competition (negative 

covariance) but the model with covariance was only significant for LP714 when compared to 

the competition effects model without covariance. The field trials were designed with a gap 

of 60cm between rows, therefore, for the interactive behaviour study of individual ryegrass 

plants only two neighbours (top and bottom) were available. It was possible for plants to 

avoid each other and still grow large by utilizing resources between rows. Another research 

direction could be to analyse the plants interactive behaviour in plots when they are grown 

close together instead of in rows. This would require definition of plot variability phenomics 

measures.   
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6.4. Limitations and further research directions to bridge the Pheno-Geno gap 

This thesis focused on developing methods for phenomics extraction from high resolution 

images of perennial ryegrass and analysed competition effects by incorporating genomic 

selection models. The results were validated with different performance metrics. While the 

solutions presented according to the research problems are encouraging, there are 

limitations which could be addressed going forward one being an increased reference 

population. 

Improved genetic gain is the goal of selective breeding in plant populations. The size of the 

population and population diversity is important to fully exploit the potential of genomic 

selection. Increased higher reference population size improves the accuracy of Genomic 

Estimated Breeding Values (GEBVs) for selection candidates and, consequently, individuals 

can be selected as early as possible. Therefore, larger training populations, and higher marker 

density are generally required for better accuracy of GEBVs in both self and open pollinated 

plants. In this thesis, an increased reference population could possibly result in lower 

standard error therebyimproving correlation between GEBVs and BLUEs and provide a better 

genomic prediction estimation. Further, ensuring that a higher proportion of plants was 

genotyped would likely have improved the power of my analyses. 

Another limitation was related to the requirement of the bounding boxes for individual plant 

identification. In this thesis, the bounding boxes for individual plants were necessary 

especially in timepoints where plants started merging. With the assumption that the 

individual plant shapes are circular, there are methods available in the literature such as 

Circular Hough transform and its variants [17-18] that are widely used in many image 

processing applications for detecting circles. These methods can even detect the irregular 
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circular shapes. However, they fail to perform effectively when circles started overlapping just 

like the research problem we addressed. Therefore, a similar method for overlapping plants 

could be developed. Such methods could potentially provide the boundary of the circles in 

plant overlapping scenarios, eliminating the need of bounding boxes for individual plants, and 

making the individual phenomics extraction process for pasture plants more universal. 

Further, as the plants age, some die in the middle making it difficult to deploy the proposed 

algorithm [13] on these sorts of images because the centre point in the proposed algorithm 

[13] is calculated based on the maximum greenness point. However, this problem can be 

tackled by applying the reverse methodology for the detection of centre point. Greenness is 

likely to be at a minimum in the centre of plant and gradually increases towards the plant’s 

edges. Therefore, the centre point should correspond to or near a location of an image pixel 

with the minimum NDVI value. 

Beside these challenges, there are some opportunities to advance plant phenotyping by 

digital phenotyping. High throughput phenotyping is paramount for improved genetic gain in 

plant science. However, the implementation of automated phenotyping is still in its infancy 

[19]. In plant phenotyping, there has been considerable progress in data management. 

Nevertheless, the routine availability of complex phenotyping data often remain unavailable 

as there is a lack of standardized format for data handling and storage. Therefore, a major 

goal in plant sciences is the incorporation of data into searchable and organized data base 

using the FAIR data (findable, available, identifiable, reusable) principle [20]. The entire data 

acquisition pipeline including the meta data with clear measurement protocols, sensor 

calibrations, measurement explanation of the obtained images needs to be standardized to 

create public data sets that could potentially aid in developing improved phenomics 

techniques. In the plant science community, MIAPPE (Minimal Information about Plant 
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Phenotyping Experiments, www.miappe.org) took initiative to standardized data [21-23]. 

However, it lacked an explicit data model, which left some users struggling in representing 

their experiment. Therefore, automation in plant breeding coupled with lack of comparable 

standards across phenotyping trials could be addressed for bridging the phenomics-genomics 

gap to accelerate genetic gain. It is important to implement standards for generating and 

describing the data with adequate meta data to make them available publicly for 

implementing novel machine learning techniques for advanced phenotyping [24].  

In plant phenotyping, many types of sensors are vital to address varied needs with respect to 

targets, ease of operation and accuracy. In the past decade, advancement in the innovative 

sensor technologies and phenotyping methods have been proposed [25-26]. Different 

sensors are utilized to measure different biochemical traits for phenotyping applications. This 

gave rise to two major challenges: cost and data storage problems. Therefore, the fusion into 

one smart cost-effective multispectral sensor invention could solve these issues by allowing 

real-time and simultaneously retrieval of structural and biochemical traits.  There are many 

computational challenges in image processing such as the handling of incomplete, noisy, 

imprecise, vague, and overloading information [27-28]. However, some computational 

techniques, for instance neural networks [29], fuzzy logic [30] and evolutionary methods [31], 

have shown promising potential to solve such image processing problems. Also, the systems 

capturing real time data are highly sensitive to time factors, so computational delay could 

cause significant loss of information that should be addressed. Moreover, for future field 

phenotyping, imaging and sensor technologies must be designed to integrate minimal 

metadata from the experiment. The process of linking the meta data to sensor data and 

transforming it into traits in an automatic way should be investigated for advanced 
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phenotyping. The developed methods should be inexpensive, user-friendly, robust and 

applicable to real-world problems which could be a hurdle in automation. 

In this research work, the GSS trial was designed in such a way that genotyped varieties are 

scattered though out the field trial. Moreover, plants in such a setting could potentially had 

competitive interactions which was investigated in this thesis. However, the field trial was 

designed with significant gap between individual rows so the competitive interactions (if any) 

could be only from neighbouring plants (top and bottom). Another research direction could 

be to analyse the plants interactive behaviour in plots when plants are close together instead 

of in rows.  Further, instead of just using the mean NDVI of individual plants other statistics 

such as standard deviation and variance across a plot could be used. Moreover, in this thesis 

only NDVI was used to estimate biomass, other spectral vegetative indices such as the Simple 

Ratio, Triangular Vegetation Index, Green Normalized Difference Vegetation Index or LiDAR 

could be used to investigate and compare the results for better estimation of biomass means 

and variability [32-33]. Another important research area in which initial efforts seems 

promising [34] but needs significant attention in future field-based phenotyping could be the 

real time data processing with error free and automated plot detection. The automatic plot 

detection together with automatic circular plant detection (merged plants) model could 

potentially be a milestone in field-based plant phenotyping. 

Not all plants per cultivar were genotyped, which lead to neighbours of focal plants with 

missing information in the GBLUP model.  However, we know the mean relationships between 

plants in a cultivar from the off-diagonals of the genomic relationship matrix.  It may be 

possible to assume mean relationships for non-genotyped plants.  This would add phenotypes 
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to the analysis and may increase power.  However, it is possible that the genomic relationship 

matrix may not invert properly as many plants would have the same values for off-diagonals.  

The main contributions of this thesis were the development of template free crop row 

detection algorithm to aid in automation in agriculture for smart farming. Another highlight 

of this thesis was the extraction of individual plant phenomics especially in cases where plants 

overgrow and start merging.  Moreover, the genetic impact of a plant on its neighbour in 

pasture plants (not known before) was investigated. Individual plant phenomics and genetic 

markers were used to determine whether these impacts were positive (beneficial) or negative 

(competitive) through the estimation of indirect genetic effects. The investigation of four 

ryegrass populations across 9 time points showed that there exist indirect genetic effects and 

they were negatively correlated with direct effects, showing that ryegrass plants do exhibit 

competitive behaviour. 
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Abstract
Due to the increase in the use of precision agriculture, field trials have increased in size to 
allow for genomic selection tool development by linking quantitative phenotypic traits to 
sequence variations in the DNA of various crops. Crop row detection is an important step 
to enable the development of an efficient downstream analysis pipeline for genomic selec-
tion. In this paper, an efficient crop row detection algorithm was proposed that detected 
crop rows in colour images without the use of templates and most other pre-information 
such as number of rows and spacing between rows. The method only requires input on 
field weed intensity. The algorithm was robust in challenging field trial conditions such as 
variable light, sudden shadows, poor illumination, presence of weeds and noise and irregu-
lar crop shape. The algorithm can be applied to crop images taken from the top and side 
views. The algorithm was tested on a public dataset with side view images of crop rows 
and on Genomic Sub-Selection dataset in which images were taken from the top view. Dif-
ferent analyses were performed to check the robustness of the algorithm and to the best of 
authors’ knowledge, the Receiver Operating Characteristic graph has been applied for the 
first time in crop row detection algorithm testing. Lastly, comparing this algorithm with 
several state-of-the-art methods, it exhibited superior performance.
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Introduction

Agriculture is the primary industry sector ensuring food security and underpinning eco-
nomic growth. Agriculture contributes heavily to different aspects of the personal and 
collective lives. It is the major source of income in developing countries with almost 
70% of the population relying on agriculture (Cervantes-Godoy and Dewbre 2010). 
Agriculture is the underpinning industry to feed a growing world population and the 
last billion-dollar industry to be digitized. The advent of newer technologies has led 
to the next “green” revolution in agriculture allowing for the use of digital technolo-
gies to enable genomic selection in outbreeding species, where large-scale phenotyp-
ing was a limiting factor. The large data volumes generated by these technologies pose 
new data analysis challenges. Data extraction requires the identification of crops from 
background in images, which then enables the application of data in downstream analy-
sis. These processes also need to be implemented in an automated manner so that data 
processing is fast, accurate and user friendly. The use of automation in agriculture has 
gained huge attention and has become very beneficial in the last three decades (Katariya 
et al. 2015; Caldwell 2012).

According to the International Society of Precision Agriculture (https ://www.ispag .org), 
precision agriculture is a management strategy that analyses and processes temporal, spa-
tial and individual data aiming to improve productivity and profitability, while sustaining 
the quality of the surrounding environment. Machine vision can enhance precision agri-
culture through digital phenotyping, grading and sorting, machine guidance and livestock 
identification. The application of machine vision systems in agriculture is increasing over 
time. A few of the examples of its applications are real-time imaging of crops, management 
maps, automatic guidance and quality control. High resolution cameras fitted on satellites 
and drones can assist in detecting the in-field heterogeneous mix of crops, weeds and soil 
with high precision. They can also be used in weed infested areas of the field to apply her-
bicides in a targeted manner. Out of the numerous applications of precision agriculture, 
crop plot and row detection in field trials and extraction of associated data is an impor-
tant research focus for phenotyping and then genomic selection as it is a crucial step in 
data extraction. It has attracted numerous studies (Montalvo et al. 2012; Jiang et al. 2016; 
Ramesh et al. 2016; García-Santillán et al. 2018) working on different aspects of crop row 
and weed detection. After detecting the rows, the extracted plant data from rows can be 
used for downstream analysis. For example, plant physical characteristics or phenotypes 
can be associated with genetic markers in genome-wide association studies and genomic 
selection (Meuwissen et al. 2001; Visscher et al. 2017). In turn, these analyses can be used 
to identify plants with an increased genetic potential for productivity and resource use effi-
ciency. While there are several advantages to automatic crop row detection using machine 
vision, there are also certain challenges, including:

• Outdoor environment conditions: factors like variable light conditions, shadows, 
complex backgrounds, poor illumination can affect the image quality;

• Confusion of crops with weeds: regular plants and crops can be confused with high 
density weeds that have similar visual patterns.

• Irregular shape of crops: growth variation of plants and crops resulting in different 
plant shapes and volumes can lead to false detection.

• Curved and irregular paths: the crop rows can be curved or irregular in shape. Also, the 
movements of the vehicle in irregular terrain can affect the resulting captured images.
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The high-level description of a general crop row detection process is illustrated in 
Fig. 1. The third step is crop row classification. In the literature, the classification of crop 
rows often requires known input parameters such as number of rows, spacing between 
rows and intensity of weeds in a crop image. Furthermore, in some proposals, a template 
is generated first which is used in the main algorithm. This limits the level of automation 
and applicability to field trials where the input parameters are varied or unknown and fails 
when the number of rows, spacing between rows or another parameter varied. Therefore, a 
robust crop row detection system is required that can be applied to a wide variety of field 
trials in an automated manner without the need for known input parameters enabling a crop 
row detection algorithm that caters for the described challenges mentioned above.

The contributions and aims of this study were:

1 Develop a crop row detection algorithm that detects crop rows in colour images without 
the use of known input parameters relating to the images. The proposed algorithm has 
been applied on a Genomic Sub-Selection dataset and achieved an accuracy of over 90%.

2 The algorithm must be effective in challenging conditions such as variable light, shad-
ows, poor illumination, presence of weed and noise and irregular shape of crops. We 
have applied the proposed algorithm on a challenging public dataset (Cupec 2018) and 
achieved an accuracy of 84%.

3 The algorithm can be applied to crop images which are taken from the top and side 
views.

A novel method of applying Receiver Operating Characteristic (ROC) curve for the first 
time (to the best of authors’ knowledge) in the testing of a crop row detection algorithm. 
ROC graphical plot demonstrates the diagnostic ability of a binary classifier system by 
plotting true positive rate versus false positive rate.

Background

In this section, the major steps of crop row detection will be described as illustrated in 
Fig. 1.

Fig. 1  The high-level description of a general crop row detection process is illustrated. There are three 
major steps involved in crop row detection; image acquisition, image segmentation and crop row detection

Author's personal copy



 Precision Agriculture

1 3

Crop row classification

The most important step is the classification of crop rows. Given the binary image with 
low noise intensity, it is easy to draw lines on the remaining white pixels detecting the crop 
rows. However, the images are complex making this step not straightforward. In this sec-
tion, the different methodologies for the crop row classification will be reviewed.

Hough transform methods

The Hough transform (Hough 1960) was introduced in 1962 for detecting lines, parametric 
curves and circles. A decade later, it was used in digital images for detecting straight lines. 
A wheat crop row detecting algorithm has applied the Hough transform to obtain straight 
lines from binary images after image acquisition and segmentation (Jiang et al. 2016). Van-
ishing points were used to finally extract the real wheat rows. A high detection rate of up 
to 90% was demonstrated for the early wheat growth stages. The algorithm cannot detect 
crop rows in complex conditions, such as large amounts of weeds, sky and end of crop 
rows. A modified version of the Hough transform, the random Hough transform, was pro-
posed to reduce computational complexity (Ji and Qi 2011). This algorithm was tested on 
three types of plant density; sparse, general and intensive. The simulation results confirmed 
that the random Hough transform was adaptive to the different length and volume of the 
plants as compared to the simple Hough transform. However, the algorithm did not have 
the capacity to work in complex scenarios such as in the presence of weeds. A comparative 
study on weed discrimination measured and compared the effectiveness of the developed 
algorithms (Jones et  al. 2009). It was concluded that the results obtained by the Hough 
transform were better as compared to Gabor filtering. Furthermore, an extension of the 
Hough transform (Jones et al. 2009) was proposed based on the previous results applied on 
images from a top view. The Hough transform has also been adapted for autonomous weed 
detection (Asif et al. 2010). This method was used to calculate the current pose and orien-
tation between the crops. The simulations were conducted with greater than 50% success 
rate. All Hough Transform methods are limited to straight crop rows and perform poorly in 
curved rows.

Exploration of horizontal strips

A crop row detection algorithm which removed the image segmentation step signifi-
cantly reduced the image processing computational burden (Sogaard and Olsen 2003). 
Prior to the estimation of the row positions, several points indicating row centres were 
determined. These points were obtained by dividing the greyscale image resulting from 
colour combination into a number of horizontal strips and subsequently it estimated 
where the rows intersect each individual strip. The simulation results confirmed an 
accuracy within the range of ± 6 mm to ± 12 mm depending upon the plant develop-
ment in the field. However, the algorithm exhibited poor results if there was only one 
row per image. Moreover, the presence of weeds significantly decreased the accuracy of 
the algorithm. Another method (Hague et al. 2006) of automated crop and weed moni-
toring in widely spaced cereal crops transformed the digital images from the camera 
from RGB to grey. The original image was transformed to grey scale and then divided 
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into eight horizontal bands. The row spacing in image pixels can be calculated for each 
of the horizontal bands using a pinhole model of the camera optics. The results of the 
automated mapping appear to be consistent with manual assessment.

Linear regression

Linear regression can be used for the predictive analysis. A study using linear regres-
sion has been used successfully for the development of a vision guidance system in 
agriculture (Billingsley and Schoenfisch 1997) to detect crop rows. A major drawback 
of this system was its insensitivity to additional visual noise from weeds. The crops 
were divided into three crop row segments and in each segment, they used linear regres-
sion and a cost function to outline the rows. In Montalvo et  al. (2012), linear regres-
sion was also applied for the automatic detection of crop rows in maize fields with high 
weed pressure. After image acquisition and segmentation using an excess green index, 
the third step was to apply linear regression to obtain the straight-line equations cor-
responding to the crop rows. However, some prior knowledge was required for crop row 
detection; the expected location of each row, the number of crop rows and area covered 
by the digital image. Crop row detection using linear regression without image segmen-
tation can also be done via image analysis.

Blob analysis and stereo-based

Blob (Binary Large OBject) analysis based on the analysis of consistent image regions 
is a fundamental technique of machine vision (Fontaine and Crowe 2006). Blob analy-
sis identifies the regions of a digital image that have different properties such as col-
our or brightness compared to their surroundings. A method based on blob analysis for 
the development of line-detection algorithms for local positioning in densely seeded 
crops was presented by Fontaine and Crowe (2006). The digital images were first seg-
mented and transformed into binary form. The blob objects with less than 200 pixels 
were ignored because they can represent noise in the crop rows and therefore the objects 
with more than 200 pixels are gathered together to form a possible crop row. After the 
identification of all blobs, their locations for centre of gravity and angles of the prin-
cipal axes were calculated. Stereo vision generally refers to the perception of depth 
and three-dimensional structure. The method (Fontaine and Crowe 2006) showed poor 
results when applied to real crop fields as compared to laboratory images due to less 
information in crop field images than laboratory images. Furthermore, the discontinu-
ity between the crop rows impacted the value of accuracy of the algorithm. An effective 
and robust stereovision-based crop row detection method for tractor-automated guid-
ance (Kise et  al. 2005) encompasses stereo-image processing functions for elevation 
map creation and navigational point determination. From the digital image taken from 
a stereovision camera, a three-dimensional crop elevation map was generated first and 
then optimal navigation points from the map were generated. This method was deployed 
in a soya bean field for the testing of crop row detection (Kise and Zhang 2008) with 
promising results. The extensions of this work by the same authors are presented by 
Kise and Zhang (2008) and Rovira-Más et  al. (2008) for three-dimensional crop row 
structure mapping and guidance.
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Other methods

K-Means clustering for spectra (which was further improved by spatial methods) was used 
for the detection of crop rows by Ramesh et al. (2016). A combination of clustering and 
linear regression methods (Jiang et al. 2015) was used for the automatic detection of crop 
rows based on multiple regions of interest. Crop row detection has also been done with 
the help of accumulation of green image pixels (Jiang et al. 2015). Other than straight line 
rows, the proposed algorithm can determine curved crop rows as well as irregular inter-
row spaces. The simulations showed good results in terms of accuracy and computational 
complexity. Vertical projection in combination with a Hough transform has been employed 
(Jiang et al. 2015) for a machine vision-based crop rows detection. In this algorithm, the 
first two steps of image acquisition and image segmentation were the same as performing 
a Hough transformation except for a vertical projection being applied before the use of 
the Hough transform for crop row detection. The algorithm was only compared with the 
standard Hough transform and therefore it is difficult to comment on the superiority and 
effectiveness of the algorithm. An unmanned aerial vehicles guidance system using crop 
row detection and line follower algorithms was developed by Basso and Freitas (2019). 
The algorithm has two parts; one for crop row detection, which was responsible for the 
correct identification of the crop rows and a second for Line Filter that was responsible for 
generating the driving parameters sent to the flight controller. It was claimed that the crop 
row detection algorithm had an accuracy of 100%. However, the image data considered 
was simple to process and essentially free of weeds. Another method for crop row detec-
tion in unmanned aerial vehicles images was developed by Bah et al. (2019). The images 
were taken from the top view instead of side view. Convolution neural networks were 
employed to increase the accuracy rate of crop row detection. However, with these net-
works, the computation time was very high making them less suitable for real-time appli-
cations. Crop row detection by global energy minimization was proposed by Vidović et al. 
(2016). Dynamic programming was employed to detect both straight and curved crop rows. 
Their experiments demonstrated that the proposed method outperformed the other methods 
considered for straight crop row detection. However, a template was generated based on the 
pre-information prior to the detection stage making it not suitable for all crop fields.

One of the common drawbacks in the above-mentioned methods is the need for impor-
tant information such as number and spacing of rows prior to the implementation of crop 
row detection algorithms. Also, in some proposals, a template was generated first to be 
used in crop row detection. This implies that there is no single algorithm that can be 
applied to each crop field. In this paper, a crop row detection algorithm was proposed that 
does not require pre-information such as number and spacing of rows and therefore can be 
applied to a wider variety of crop fields.

Methods

The proposed algorithm was applied to a public data set (Vidović et al. 2016). The com-
plete evaluation image set contained 281 images and is available from their web page 
(Cupec 2018). The images contained a varied number of crop rows, varied spacing and 
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varied weed intensity. The images were originally captured at resolution 2560 × 1920 pix-
els and then resized to 320 × 240 pixels. This subsampling reduced the required computa-
tion time without significant loss of information for the purposes of crop row detection. A 
small sample of six down-sized images of this dataset is shown in Fig. 2. In the next sub-
sections, all the steps in the proposed crop row detection algorithm will be explained and 
the resulting images will be showed to aid the reader’s understanding of the process.

Identification of greenness

Let the original colour image be denoted as Io with X number of image pixel rows, Y  num-
ber of pixel columns and Z number of frames. Let Io(x, y, z) ∈ [0, 255] be a grey value of an 
image pixel of image Io at xth row, yth column and zth frame. There are three frames in a 
colour image; red, green and blue. Let Rf  , Gf  and Bf  represents red, green and blue frames 
of Io , respectively. Furthermore, Rf (x, y) , Gf (x, y) and Bf (x, y) represent the grey values of 
these individual frames respectively at the xth row and yth column. The greenness in Io was 
identified using the following equation (Burgos-Artizzu et al. 2011):

where, Ig is a grey image whose pixels with greater intensity represents the green pixels of 
Io . Figure 3a–f illustrates the greenness of Fig. 2a–f when Eq. (1) is applied.

(1)

Fig. 2  a–f A small sample of six images of the public dataset available at Vidović et  al. (2016). These 
images have a varied number of crop rows, varied spacing and varied weed intensities. The original resolu-
tion of images were 2560 × 1920 pixels and then resized to 320 × 240 pixels
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Fig. 3  a–f Identification of greenness using Eq. (1) applied on images shown in Fig. 2a–f. Degree of pixel 
whiteness indicates the level of greenness and black pixels represent the background

Fig. 4  a–f Binary images resulting from Otsu binary thresholding on images shown in Fig.  3a–f respec-
tively. The white pixels represent the greenness and black pixels represent the background
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Grey to binary

The grey image whose values ∈ [0,255] highlighted the greenness can be converted into 
binary image with only two grey values ∈ [0,1] ; white (binary value: 1), which repre-
sented the greenness and black (binary value: 0), which represented the background. 
The Otsu binary thresholding (Otsu 1979) was employed to automatically perform clus-
tering-based image thresholding returning a value of threshold, thOtsu . The binary image 
Ib was obtained using the following:

The Otsu binary image thresholding was applied on Fig. 3a–d and results are shown in 
Fig. 4a–f.

Removing smaller objects

While the binary images successfully identified crop rows, weeds were also identified because 
of their green colour. Weeds should not be classified as crops and must be removed from the 
image before identifying rows. To do so, an algorithm was developed based on arithmetic 
operations. It was assumed that weeds are usually smaller binary objects compared to con-
nected crop row binary objects. A binary object is shown in Fig. 5.

Let a binary object be denoted as Bi,∀i ∈ , Ń, Ń = [1, 2, … , N], where, N was the total 
number of binary objects in an image. The number of rows in Bi was denoted as Xi and num-
ber of columns was denoted as Yi.

First, the mean of each binary object was calculated using the following:

(2)

(3)

Fig. 5  A binary object which 
is a collection of white pixels 
connected with each other. The 
number of rows in Bi is denoted 
as Xi and number of columns is 
denoted as Yi
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where, Ai was the area of binary object Bi . Then the mean size of all objects’ areas, M was 
calculated as:

The smaller binary objects can be eliminated if the area of the individual binary object was 
less than the half of the mean area across all objects, that is:

The threshold of half of the mean was set based on the authors’ own testing on the observed 
database. It can be adjusted based on the intensity of weeds in a crop field. This is the only 
parameter that should be known prior to the implementation of the developed algorithm. 
The elimination of smaller binary objects is shown in Algorithm 1 and the resulting images 
of applying this process on images in Fig. 4a–f are shown in Fig. 6a–f. Most of the smaller 
objects, which represent weeds (noise), have been eliminated and the larger binary objects 
remaining primarily identified the crop rows.

(4)M =

∑N

i
Ai

N
.

Ib(x, y) = 0, ifAi < M∕2,

(5)

Fig. 6  a–f Binary images with smaller binary objects (assumed to be weeds) removed using Algorithm 1

Author's personal copy



Precision Agriculture 

1 3

Fig. 7  The perspective projection 
of crop rows. The projection is 
from the side view of the crop 
field

Fig. 8  The bounding box of a 
binary object
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Joining row objects

Once smaller binary objects have been removed, the remaining binary objects belonging 
to the same crop row must be joined. To perform this step, it was important to understand 
the perspective projection of crop rows (Vidović et al. 2016; Pajares et al. 2016; Romeo 
et al. 2012) shown in Fig. 7. The projection was from the side view of the crop field. The 
crop rows were straighter in the middle of the crop image and started tilting while mov-
ing towards the other side of the crop image. In other words, the angle of crop rows with 
respect to the centre of the crop image increased moving away from the centre of the crop 
image. Furthermore, the spacing between the crop rows was at the maximum at the bottom 
of the crop image and decreased while moving upward. The following subsections will 
explain the systematic joining of binary crop row objects.

Bounding box and columns point of row objects

The first step was to identify the bounding box of each binary object (Fig. 8) with respect 
to original crop image dimensions and to identify its column and row points. In Fig.  8, 
c1 and c2 represent the starting and ending column points of binary object, respectively 
and r1 and r2 represent the starting and ending row points of binary object, respectively. In 
the same figure, p1 and p2 represent the starting column points of first and last row of the 
object respectively and p3 and p4 represent the ending column points of first and last row 
of the object, respectively. These points will assist in determining the location of the binary 
object with respect to the column position of the original crop image.

Fig. 9  Determination of the location of binary object with respect to the centre column of the crop image. 
a, b The objects are completely on one of either side. c–f The decision is based on points p1, p2, p3 and p4 . 
Based on the differences of p1 and p2 and p3 and p4 , the side will be determined
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Determining the side of the object

Regarding the perspective projection of crop rows, the next step was to find the side 
of the binary object with respect to the centre column of the crop row image, that is, 
whether the object was left or right of centre in the crop row image. If the object did 
not overlap with the centre (i.e. it is full on one side), its location was clear (Fig. 9a, b). 
However, if the object overlapped the centre column then its location will be determined 
based on points p1, p2, p3 and p4. If the binary object was tilted towards the right side 
of the crop image, or if the differences of both p1 and p2 and p3 and p4 were positive, 
then the object was declared to be on the left side as shown in Fig. 9c and vice versa for 
objects tilted towards the left of the centre (Fig. 9d). Furthermore, if the difference of 
p1 and p2 was positive and the difference of p3 and p4 was negative or vice-versa, then 
its location was based on the absolute value of the difference. If the absolute value of 
the difference between p1 and p2 was greater than the absolute value of the difference 
between p3 and p4 , then the location of the object was defined as left, otherwise right 
as shown in Fig.  9e and f, respectively. Absolute values were taken to determine the 
width of image pixels. If the width of image pixels between the points p1 and p2 was 
greater than the width of image pixels between the points p3 and p4 then the location of 
the object was defined as left, otherwise right. The process in the form of an equation is 
given below:

where, centre was the centre column of the crop image and & represented the logical AND 
operator.

Creating a triangle matrix

The objective was to connect binary objects that belonged to the same row. To achieve that, 
after determining the side, the next step was to create a triangular matrix of ones. A trian-
gular matrix was created based on respective location and size. The size was defined as a 
square matrix using the row position of the binary object ( r1 ). The size of the triangular 
matrix was greatest for an object located at the bottom of the crop image and decreased as 
the object’s position moved towards the top of the crop image. Specifically, the size ( sz) of 
the triangular matrix was determined as:

where, smin and smaxwere the minimum and maximum sizes of the triangular matrix with 
smin = 2 and smax ≈ 0.5 ∗ X , r1 represented the starting row point of binary object and ⌈⋅⌉ 
was a ceiling function. Equation (7) mapped the row range ∈ [1,X] to triangular matrix 
sizes ∈ [smin, smax] . The left matrix, matL was created as:

(6)Side =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Left if
�
c1 < centre&c2 < centre

�
,

Right if
�
c1 > centre&c2 > centre

�
,

⎧⎪⎨⎪⎩

Left if
�
p1 − p2 > 0&p3 − p4 > 0

�
,

Right if
�
p1 − p2 < 0&p3 − p4 < 0

�
,�

Left if
���p1 − p2

�� > ��p3 − p4
��
�
,

Right if
���p1 − p2

�� ≤ ��p3 − p4
��
�
,

(7)sz =
⌈
smin +

( smax − smin

X − 1

)(
r1 − 1

)⌉
,
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Similarly, the right matrix, matR was created as:

(8)matL(a, b) =

{
0 if a + b − 1 > sz,

1 otherwise,
∀a, b ∈ S, S = [1, sz].

(9)matR(a, b) =

{
1 for a ≤ b,

0 for a > b,
∀a, b ∈ S, S = [1, sz].

Fig. 10  Two examples of joining two binary objects with each other. a A binary object, Bi placed at the left 
side of the centre of the column. A left triangular matrix of size 6 is placed at Ib

(
r1, p3

)
 which overlaps with 

the other binary object, Bj results in joining Bi and Bj . b A binary object, Bi placed at the right side of the 
centre of the column. A right triangular matrix of size 6 is placed at Ib

(
r1, p1

)
 which overlaps with the other 

binary object, Bj results in joining Bi and Bj

Fig. 11  a–f The results of joining binary objects applied on the crop images illustrated in Fig. 6a–f. The 
images, however, are cropped from the top side and the bottom side to improve the efficiency and effective-
ness of the proposed algorithm. The effects of joining objects can be visualised in (a), (b), (d) and (e). The 
crop rows in (c) and (f) are already connected and therefore the impact of this step is not highlighted
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Joining objects

The triangular matrix and binary object information was used to connect row binary 
objects. The principle was that if two binary objects ( Bi and Bj ) were close enough to 
potentially lie on the same crop row then these two binary objects should be joined. To 
see whether Bi and Bj should be connected, first, the triangular matrix was placed on top of 
the binary object, Bi . For an object located at the left side of the crop image, the triangular 
matrix was placed at Ib(r1, p3) and for an object located at the right side of the crop image, 
the triangular matrix was placed at Ib(r1, p1) . As the binary object consisted of a collec-
tion of ones and so does the triangular matrix, this will temporarily create one big binary 
object. This big binary object for the left triangular matrix is given as:

where, | represented the logical OR operator. Similarly, the big binary object for the right 
triangular matrix is given as:

If this big binary object, Ib
(
x′, y′

)
 , overlapped with any other binary object, let say Bj 

then the triangular matrix was removed and Bi and Bj were connected. Two examples of 
joining two binary objects with each other is shown in Fig. 10a and b. The pseudo-code for 
joining row objects is shown in Algorithm 2.

Images in Fig.  11a–f demonstrated the joined objects. The images, however, were 
cropped from the top side as the crop rows were almost merged into each other and there-
fore it was unnecessary to detect crop rows at the top side. Moreover, once the crop rows 
were identified in the middle of the image, they can be extended towards the top and bot-
tom of the image. Furthermore, for this step, the images were also cropped at the bottom 
to reduce the computational complexity and to increase the accuracy of the proposed algo-
rithm. It is to be noted that the crop rows will always be straight at the bottom of the crop 
image irrespective of the fact that the crop rows are curved at the top. Therefore, cropping 
images from the bottom will not introduce any error or false information. Binary objects 
were not joined if the distance between them was more than sz , irrespective of the fact that 
both binary objects belonged to the same row. This situation could be seen in the sixth and 
seventh crop rows of Fig. 11b, where binary objects of the same row cannot be joined as 
the distance between them was greater than sz.

(10)

Ib
(
x�, y�

)
= Ib(x, y)|matL(a, b),

x� ∈ X�
i
,X�

i
=
[
r1 − sz + 1, r2

]
,

y� ∈ Y �
i
, Y �

i
=
[
c1, p3 + sz − 1

]
,

(11)
Ib
(
x�, y�

)
= Ib(x, y)|matR(a, b), x� ∈ X�

i
,X�

i
=
[
r1 − sz + 1, r2

]
, y� ∈ Y �

i
, Y �

i
=
[
p1 − sz + 1, c2

]
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Extending longer objects

The next step was to extend those objects whose vertical length (number of pixel rows) was 
more than 70% of X , if objects beyond this threshold would all be crop rows. The 70% is 
based on hit and trial. This step was applied to all binary objects except those that were full 
crop rows. A binary object was classified as a full crop row based on the following:

The incomplete rows were extended by considering the bounding box of the binary 
object, where p1 represented the column of the first image pixel (white) of the first row and 
p3 represented the column position of the last image pixel (white) of the first row. Applying 
this to the other rows, let li

2
 represent the column position of the first image pixel (white) of 

the second row of ith binary object and qi
2
 represent the column position of the last image 

pixel (white) of the second row of ith binary object. For simplicity and clarity, write p1 as li
1
 

and p3 as qi
1
 . Continuing this, consider a vector Li , which consists of all the li

t
 values of all 

the rows of ith binary object and consider a vector Qi , which consists of all the qi
t
 values of 

all the rows of the ith binary object, where, t = [1, r2 − r1 + 1] , such that, 
Li = [li

1
, li
2
,… , li

r2−r1+1
] , Qi = [qi

1
, qi

2
,… , qi

r2−r1+1
] . The mean or the values of the middle 

columns of these vectors were placed in a vector, U = [�1,�1,… ,�r2−r1+1
] whose values 

were calculated as:

Also, add r1, r2 into vector, � = [r1, r2]1×r2−r1+1 . Fitting a polynomial of curve to the vec-
tor in a straight line with degree one;

(12)

Objectrow =

{
complete if

((
r1 = 1&r2 = X

)||r1 = 1&c1 = 1||
(
r1 = 1&c2 = Y

))
,

not complete otherwise.

(13)�t =

⌈
li
t
+ qi

1

2

⌉
,∀t =

[
1, r2 − r1 + 1

]
.

(14)� = polyfit(U, �),
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where, polyfit(.) is a function requiring vectors U and y and return the slope sl and y-inter-
cept, int of a straight line. Using � , those objects can be extended whose length is more 
than 70% of X as follows:

Extending other row objects

The last step was to extend the remaining objects if they belonged to a crop row. The decision 
that these remaining objects belong to a row or not was based on the minimum distance of the 
columns between the objects considered as the full crop rows. A binary object as a full crop 
row is given in Eq. (12). Let say there were N∗ number of full rows in Ib . For each full row, 
first, the vectors, Li and Qi were determined. Let put Li and Qi , ∀i ∈ [1,N∗] of all the full rows 
in a single matrix, � and �. � and � were two matrices whose columns correspond to the indi-
vidual values of Li and Qi for each of the full rows respectively. These matrices are given as:

{
c∗
i
= sl ∗ r∗

i
+ int,∀r∗

i
=
[
1, r1

]
, ifr1 ≠ 1, (15a)

c∗
i
= sl ∗ r∗

i
+ int,∀r∗

i
=
[
r2,X

]
, ifr2 ≠ X. (15a)

⎧⎪⎨⎪⎩

Ib
�
r∗
i
, c∗

i

�
= 1,∀r∗

i
=
�
1, r1

�
, (16a)

Ib
�
r∗
i
, c∗

i
− 1

�
= 1,∀r∗

i
=
�
1, r1

�
, (16b)

Ib
�
r∗
i
, c∗

i
+ 1

�
= 1,∀r∗

i
=
�
1, r1

�
.(16c)

⎧⎪⎨⎪⎩

Ib
�
r∗
i
, c∗

i

�
= 1,∀r∗

i
=
�
r2,X

�
, (17a)

Ib
�
r∗
i
, c∗

i
− 1

�
= 1,∀r∗

i
=
�
r2,X

�
, (17b)

Ib
�
r∗
i
, c∗

i
+ 1

�
= 1,∀r∗

i
=
�
r2,X

�
.(17c)

(18)� =

⎡
⎢⎢⎢⎣

l1
1

l2
1

… lN
∗

1

l1
2

l2
2

… lN
∗

2

⋮

l1
X

⋮

l2
X

⋱ ⋮

… lN
∗

X

⎤
⎥⎥⎥⎦
X×N∗

,

Fig. 12  Distance in terms of 
columns between two consecu-
tive full crop rows for all the full 
crop rows. In the image, there 
are N∗ = 3 full crop rows and 6 
image rows
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where, X was the length of each of the column of � and � even though the individual 
length of these columns depended on the values of r1 and r2 of the individual binary objects. 
However, the actual values remained the same and the length was still r2 − r1 + 1 for the 
individual binary objects. The rest of the elements were assigned with the value zero.

The next step was to determine the distance in terms of columns between two con-
secutive full crop rows for the whole image. This is illustrated in Fig. 12, in which there 
are N∗ = 3 full crop rows and 6 image rows (this is a small example to explain the pro-
cess, the public dataset (Vidović et  al. 2016) considered here has 240 image rows in 
each crop image). The distance between two consecutive crop rows for all the full crop 
rows was determined and placed in a matrix, � and given as:

The next step was to find the minimum of distance of each row of � , as below:

�min was a vector whose individual values, dt
min

, t ∈ [1,X], were for all the image rows 
and corresponded to the minimum and standard distance between two consecutive crop 
rows.

This �min was used in determining the other binary objects as the crop rows. This 
process was repeated for each binary object for the decision. If the difference between 

(19)� =

⎡
⎢⎢⎢⎣

q1
1

q2
1

… qN
∗

1

q1
2

q2
2

… qN
∗

2

⋮

q1
X

⋮

q2
X

⋱ ⋮

… qN
∗

X

⎤
⎥⎥⎥⎦
X×N∗

,

(20)� =

⎡
⎢⎢⎢⎢⎣

l2
1
− q1

1
l3
1
− q2

1
… lN

∗

1
− qN

∗−1
1

l2
2
− q

1

2
l3
2
− q

2

2
… lN

∗

2
− q

N∗−1

2

⋮

l2
X
− q1

X

⋮

l3
X
− q

2

X

⋱ ⋮

… lN
∗

X
− q

N∗−1

X

⎤
⎥⎥⎥⎥⎦X×N∗−1

.

(21)�min =
[
min(l2

t
− q1

t
, l3
t
− q2

t
,… , lN

∗

t
− qN

∗−1
t

)
]
1×X

,∀t = [1,X].

Fig. 13  a–f The results of extending binary objects applied on the crop images illustrated in Fig. 11a–f. The 
binary objects shown in these images only represent the completely detected crop rows
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the distance and �min was small enough, then the binary object was considered as the 
part of a potential crop row otherwise that binary object was deleted.

Fig. 14  a–o A few of the results of the proposed algorithm applied to the images of the dataset (Vidović 
et al. 2016). The images in (a–f) are the same as considered in Fig. 13a–f

Table 1  Values of the input 
parameters used for the 
experiments

Parameter Value Parameter Value

s
min

2 th
dis

0.30
s
max

20 th
count

0.50
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Let say a binary object, Bj has Lj = [l
j

1
, l
j

2
,… , l

j

r2−r1+1
] and let compare its distance 

with the next immediate full crop row which has Qi = [qi
1
, qi

2
,… , qi

r2−r1+1
] . The compari-

son will be between each element of Lj and each element of Qi . A temporary variable 
was taken and initialized to zero, i.e. count = 0 . The comparison is given as:

where, thdis was the distance threshold or a percentage tolerance level. The accuracy or 
number of truly detected crop rows can be increased with the increase in thdis , but this 
would also increase the falsely detected crop rows. Finally, the object was determined as a 
crop row based on the following check:

where, thcount was the count threshold or a percentage tolerance level. If the count was 
greater than a user defined fraction of the length of the binary object, then the binary object 
was considered as a potential part of a crop row otherwise this binary object would be 
deleted. The accuracy or number of truly detected crop rows can be increased with the 
decrease in thcount , however, at the same time, this would also increase the falsely detected 
crop rows.

The results of this step applied on the images illustrated in Fig. 11a–f are shown in 
Fig. 13a–f. Also, these images were extended to the bottom of the crop images to negate 
the effect of cropping done earlier.

Results

The proposed algorithm was applied on a public data set (Vidović et al. 2016), which con-
sisted of 281 images and can be downloaded from their web page (Cupec 2018). The param-
eters used in these results are mentioned in Table 1. The values of thdis and thcount are fixed 

(22)count = count + 1, if
|||l
j

t − qi
t

||| < thdis ∗ dt
min

, ∀t ∈
[
1, r2 − r1 + 1

]
,

(23)object = part of crop row, if count > thcount ∗
(
r2 − r1 + 1

)
,

Fig. 15  An example of GSS field trial in colour form is shown in (a) and a grey frame of a GSS image is 
shown in (b). The white pixels in (b) represent greenness in GSS image and black pixels represent back-
ground. In (b), there are 10 major crop rows and in each major crop row, there are 150 minor crop rows for 
a total of 1500 crop rows (Color figure online)
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Fig. 16  a A sub-part of Fig. 15b which is cropped and rotated into a rectangular form. b The result of Otsu 
binary thresholding applied on (a). c The result of binary erosion applied on (b) by st in which the binary 
objects have been shrunk. d Detected crop rows marked in red (Color figure online)
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and should remain the same for testing on other image databases as well. However, to test 
the robustness of the developed algorithm, the values of these two thresholds can be tuned 
to see the values of false positive rates and true positive rates as explained later. Similarly, as 
mentioned earlier, smin = 2 and smax ≈ 0.5 ∗ X . The value of smax considered for the observed 
image database is 20 and should be changed for other image databases depending upon the 
size of images. As an example, some of the results of the proposed algorithm on the images 
are shown in Fig. 14a–o, in which crop rows are shown in red.

As is apparent from the figures, the proposed algorithm is robust and can detect any num-
ber of crop rows with any spacing between them. The rare limitation of the proposed algo-
rithm is that it requires the spacing between the crop rows to be reasonably consistent. The 
effects of this limitation can be seen in Fig. 15e, in which one row cannot be detected (a small 
row at top left) and in Fig. 15f where one false crop row is detected.

Genomic Sub‑Selection (GSS) dataset

Beside the image dataset taken from the perspective projection, the algorithm was tested in the 
Genomic Sub-Selection (GSS) image dataset in which images were taken from the top view. 
The GSS trial contains 50 perennial ryegrass cultivars with an aim to enable genomic selec-
tion (Meuwissen et al. 2001) analyses grown in replicated rows of 32 plants each. The aims 
of these field trials were the development of phenomic processing pipelines to define novel 
traits, the estimation and prediction of hybrid vigour and inclusion of single plant competi-
tion effects in genomic selection. An example colour image of the GSS field trial is shown 
in Fig. 15a and a grey frame of a GSS image is shown in Fig. 15b. Images were taken with 
a GoPro Hero 4 (GoPro, San Mateo, CA, USA) deployed on a 3DR Solo quadcopter (3D 
Robotics, Berkeley, CA, USA).

The proposed algorithm for crop row detection was modified to be applied on the GSS 
images. A geo-rectified ortho-mosaic image (Fig. 15b) was created with Pix4D (Pix4D SA, 
Prilly, Switzerland) software. The image was geo-rectified with the aid of 12 ground control 
points distributed across the GSS field trial. The ortho-mosaic was cropped and rotated. For 
illustration purposes, only a sub-section of the whole trial is shown in Fig. 16, but the algo-
rithm was applied on the entire picture.

The grey image was converted into binary using the same Otsu binary thresholding (Otsu 
1979) mentioned earlier (Fig. 16b). The weeds or noise in these images was minimal and, 
therefore, the step of removing smaller objects could be ignored. However, some crop rows 
were overlapping as can be seen in the first major crop row of Fig. 16b. To shrink or thin these 
overlapped crop rows, the binary image erosion was used (Gonzalez and Woods 2018). Binary 
image erosion removes image pixels from the boundaries of the binary image with the help 
of a pre-defined structuring element. Let take Ib as a binary image shown in Fig. 16b. The 
image erosion applied on Ib with the help of a structuring element st is given by (Gonzalez 
and Woods 2018):

where, ⊖ was a binary image erosion of st on Ib , z was a translation vector (z1, z2) , (st)z was 
translation of st by point z =

(
z1, z2

)
 , ∩ was an intersection or logical AND operator, (.)c 

was a compliment or logical NOT operator and ∅ was an empty set. The Eq. (24) can also 
be stated as:

(24)Ib ⊖ st =
{
z|(st)z ∩ Ib

c
≠ �

}
,
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where, Ib−z represented the translation of Ib by −z . The structuring element st used in this 
work is a square of 1 s of size 4.

The result of binary erosion applied on Fig.  16b by st is shown in Fig.  16c and the 
binary objects have been shrunk.

Once the objects are eroded, the next step was to extend them using the process men-
tioned above. However, due to the image being taken from top view, the extension of the 
binary objects was best done by placing a rectangular shape object over the top of the 
binary objects. Furthermore, the crop rows are disconnected due to the major crop row 
sections. Thus, there are intended gaps between the major crop rows and must be classified 
before the crop row detection. The gaps were labelled as black rows identified with the help 
of following:

where, throw_gap was a threshold for the row gaps. The accuracy or number of truly detected 
crop rows can be increased with the increase in throw_gap . However, this will also increase 
the number of falsely detected rows. The gaps between the minor crop rows can be identi-
fied as black columns with the help of the following:

where, thcol_gap was a threshold for the column gaps. The accuracy or number of truly 
detected crop rows can be increased with the increase in thcol_gap . However, at the same 
time, this will also increase the falsely detected crop rows. Once the black rows and col-
umns were classified, the rest of the spaces belonged to the crop rows. These crop rows 
were labelled with the red marker depicting the detected crop rows as shown in Fig. 16d. 
The values of both throw_gap and thcol_gap in the experiments were set to 0.1. The accuracy 
achieved for GSS dataset is over 90%.

(25)Ib ⊖ st =
⋂
z∈st

Ib−z,

(26)rowi = black if

Y∑
j=1

Ib(i, j) < throw_gap ∗ Y ,∀i ∈ [1,X]

(27)columnj = black if

X∑
i=1

Ib(i, j) < thcol_gap ∗ X,∀j ∈ [1, Y]

Fig. 17  a A crop image having eight crop rows. b A crop row image with one false detected row (non-crop 
row)
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Performance evaluation

To evaluate the performance of the proposed algorithm, several parameters were consid-
ered. To the best of the authors’ knowledge, one of them, the Receiver Operating Char-
acteristic, was used for the very first time in assessing the performance of any crop row 
detection algorithm. These parameters are explained in line with the proposed algorithm as 
follows:

Accuracy

In crop row detection, accuracy is the measure of percentage of detected rows in a crop row 
field. To declare a detected crop row as an actual row, the detected crop row was compared 
with the crop row of the ground truth image. A ground truth image was created with the 
help of an expert who defines the actual crop rows in an image. The ground truth images 
can be created with the help of software (Vidović et  al. 2016); in that case, the expert 
defines two or more points lying on a crop row in a test image and the developed software 
automatically generates a smooth curve passing through these points. The same procedure 
was undertaken for the adjacent crop row in the image. According to these two curves rep-
resenting midlines of two adjacent crop rows, the curves for the remaining crop rows in 
the image are reconstructed. Or, the ground truth images can be manually generated by the 
expert specifying all the crop rows.

To check whether a detected row was the actual row or not, different parameters can be 
used for the validation of a crop row such as distance/deviation or the length of the detected 
row. In terms of distance, the difference between the position of the detected crop row and 
the actual crop row of the ground truth image should be less than the specified threshold 
to be accepted as an actual crop row. Furthermore, the detected row can be declared as the 
actual row if the length of the detected row was close to the length of the actual crop row of 
the ground truth image.

The proposed algorithm was applied with the input parameters mentioned in Table 1. 
As stated earlier, accuracy gives the percentage of detected crop rows in an image. For 
instance, in Fig. 17a which represented a crop image having eight crop rows, the algorithm 

Fig. 18  a The graph of sensitivity against the input parameter of thgap for the range between 10% (0.10) and 
100% (1.00) keeping the other input parameters constant mentioned in Table 1
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detected seven crop rows and, therefore, the accuracy in this case was 7/8*100% = 87.5%. 
For the public dataset (Vidović et al. 2016), the accuracy of the proposed algorithm was 
nearly 84%.

Limitations of the accuracy criterion

Accuracy alone is not enough to test the robustness of the algorithm. For instance, in 
the same crop image shown in Fig. 17a, if the algorithm has detected seven actual crop 
rows and one false row as shown in Fig. 17b, the accuracy is still 87.5%. Therefore, other 
parameters need to be considered to comment on the robustness of the crop row detection 
algorithm.

Receiver operating characteristic (ROC) graph

The problem with the accuracy mentioned before can be resolved with the ROC analysis. 
It has been applied in various applications, from medicine to computer science, in applica-
tions like face recognition, image hashing and many others. However, in crop row detec-
tion, to the best of the authors’ knowledge, ROC analysis has been applied here for the very 
first time. ROC has four parameters:

True positive rate

True positive rate ( TPR ) is the number of correctly detected rows. It is equivalent to the 
accuracy mentioned earlier. In the example shown in Fig. 17a, seven out of eight crop rows 
are detected and therefore, in this case, TPR = 7∕8.

Fig. 19  a The graph of FPR against the input parameter of thgap for the range between 10% (0.10) and 100% 
(1.00) keeping the other input parameters constant mentioned in Table 1
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False negative rate

False negative rate ( FNR ) is the number of not correctly detected rows. In the same exam-
ple shown in Fig. 17a, one out of eight crop rows are not detected and therefore, in this 
case, FNR = 1∕8 . Also, FNR = 1 − TPR.

True negative rate

True negative rate ( TNR ) is the number of correctly detected non-crop rows. Let say, there 
are ten positions in a crop image where there is no crop row and if the algorithm detects 
eight positions as non-rows position, then TNR = 8∕10.

False positive rate

False positive rate ( FPR ) is the number of incorrectly detected non-crop rows. Let say, in 
the same example given in TNR case, if the algorithm cannot detect two positions as non-
rows position, then FPR = 2∕10 . Also, FPR = 1 − TNR . TPR and FPR have been consid-
ered to comment on the robustness of the crop row detection algorithm; the remaining two 
parameters are their reciprocal. For the public dataset (Vidović et al. 2016), using the same 
input parameters mentioned in Table 1, the TPR is about 84% and the FPR is 6%. How-
ever, these values are just for the individual values of the input parameters. The interest is 
in observing the inclusive performance of the algorithm when certain input parameters, 
such as thdis and thcount are varied from minimum to maximum values. Based on the overall 
performance of the algorithm one can set the appropriate input parameters which suit the 
real-time application.

Sensitivity

Sensitivity is the measure of the proportion of actual positives that were correctly iden-
tified. This is equivalent to the TPR observed over a range of a certain input parameter. 
Figure 18a shows the graph of sensitivity against the input parameter of thgap for the range 
between 10% (0.10) and 100% (1.00) keeping the other input parameters constant as 

Fig. 20  a ROC graph considering thgap . The FPR is plotted on the x-axis and TPR is plotted on the y-axis. b 
ROC graph considering thcount
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mentioned in Table 1. The minimum accuracy is 80% at thgap = 0.10 and starts to increase 
as thgap increases. Finally, the accuracy is at its maximum when thgap = 1.00 . Similarly, 
Fig. 18b shows the graph of sensitivity against the input parameter of thcount for the range 
between 10% (0.10) and 100% (1.00) keeping the other input parameters constant as men-
tioned in Table 1. The minimum accuracy is 80.8% at thcount = 0.10 and starts to increase 
as thcount increases. Finally, the accuracy is maximum at thcount = 1.00 . By looking at these 
graphs, one can say that the values of thgap and thcount should be set to 1.00 to achieve the 
maximum accuracy. However, at these values, the FPR is also maximum, as explained in 
the next section.

Specificity

Specificity is the measure of the proportion of actual negatives that are correctly identified. 
This is equivalent to TNR or 1 − FPR observed over a range of a certain input parameter. 
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Table 2  Comparative results 
of accuracy of the proposed 
algorithm with other published 
studies. Accuracy of other 
methods were directly taken from 
their respective publications

Methods Accuracy (%)

Linear regression (Montalvo et al. 2012) 57.2
Hough transform (Bakker et al. 2008) 62.2
Hough transform with template (Bakker et al. 2008) 67.9
Template matching followed by global energy
minimization (Vidović et al. 2016)

73.7

Proposed 84.0
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The graphs of specificity can be shown to illustrate the actual negatives that are correctly 
identified or the actual negatives which are not correctly identified. Figure 19a shows the 
graph of 1-specificity ( FPR ) against the input parameter of thgap for the range between 
10% (0.10) and 100% (1.00) keeping the other input parameters constant as mentioned in 
Table 1. The minimum value of 1-specificity ( FPR ) is 6.7% at thgap = 0.10 and increases 
as thgap increases. Finally, the value of 1-specificity ( FPR ) is at its maximum (12%) when 
thgap = 1.00 . Similarly, Fig. 19b shows the graph of 1-specificity ( FPR ) against the input 
parameter of thcount for the range between 10% (0.10) and 100% (1.00) keeping the other 
input parameters constant as mentioned in Table I. The minimum value of 1-specificity 
( FPR ) is 7.5% at thcount = 0.10 and starts to increase as thcount increases. Finally, the value 
of 1-specificity ( FPR ) is maximum (12%) at thcount = 1.00 . By looking at these graphs, 
one can say that the values of thgap and thcount should be set to 0.10 to achieve the minimum 
FPR , however, at these values, the TPR or accuracy is also minimum. There is a trade-off 
between TPR and FPR. Therefore, one must set the appropriate values of these thresholds 
according to the requirement of the real time applications. To adopt the appropriate values 
of these thresholds, a comparison of TPR and FPR is given, in terms of a ROC graph, as 
explained in the next section.

ROC graph

A ROC graph can be used to see the relation between TPR and FPR , to choose an appropri-
ate value of the input threshold and to observe the robustness of the algorithm. Figure 20a 
shows a ROC graph considering thgap . When FPR is minimum (0–6.7%), the TPR is 80% 
and then increases to a maximum (100%) when FPR is 12%. In some applications, this can 
be an interesting point because the accuracy is at its maximum and FPR is very low. How-
ever, in applications where t minimum FPR is the priority, this point with a specific value 
of thgap cannot be used. According to the need of the application, one can set an appropriate 
value of thgap . To check the performance of the algorithm, the area under curve (AUC) of 
the ROC graph is calculated. In an ideal scenario, the AUC is 1 and the algorithm is con-
sidered as robust if AUC is close to 1. For Fig. 20a, the value of AUC is 0.98125 demon-
strating the robustness of the proposed algorithm. Similarly, Fig. 20b shows a ROC graph 
considering thcount . When FPR is minimum (0–7.5%), the TPR is 80%. The TPR starts to 
increase after that point and becomes a maximum (100%) when FPR is 12%. The AUC of 
0.98128 shows the robustness of the proposed algorithm.

Comparison with other algorithms

To compare the proposed algorithm, the parameter accuracy was sub-optimal, because 
it differs from study to study. Furthermore, the standards, environment and assumptions 
deployed in other studies differ from the current study. For instance, in other studies, the 
number and spacing of crop rows in an image were known, in contrast to this investiga-
tion. Therefore, the accuracy of the results was compared with other studies considering 
the same image database (Cupec 2018). The other methods were Hough Transform (Bak-
ker et al. 2008), Hough transform with Template (Bakker et al. 2008), Linear Regression 
(Montalvo et al. 2012) and Template Matching followed by Global Energy Minimization 
(Vidović et al. 2016). There were 34 images taken with straight crop rows as Hough Trans-
form and Linear Regression can only detect straight rows. The results of accuracy of the 
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proposed algorithm with comparisons to the other methods are shown in Table 2 depicting 
the superiority of the proposed method. Also, the computational time of algorithms was 
compared. As crop row detection may be applied in real time, computational time is very 
important. For example, the vision system deployed on a moving vehicle must process the 
captured images (or frames of video), show the resulting images and perform pre-defined 
tasks on them before capturing the next images. It was required that the computational time 
is less than or equal to the time spent between the acquisition of two (or set of) images to 
synchronize with the hardware platform. Figure 21 shows the comparative results of com-
putational time of the proposed algorithm and that of other studies. Metrics were normal-
ized based on the system specifications and size of the images used in each study. It was 
shown that the proposed algorithm has faster performance than the other algorithms.

Conclusions

This paper proposed a new crop row detection algorithm that does not require pre-infor-
mation such as number of crop rows and spacing between crop rows. The only information 
the algorithm needs is the approximate intensity of weeds. Furthermore, there is no need 
for a template to be used in the detection stage. Therefore, the proposed algorithm can be 
applied to a wide variety of crop fields. The crop row detection phenotype data can be used 
for downstream analysis such as genomic selection or for the development of phenomic 
processing pipelines to define novel traits.

The proposed algorithm for detecting crop rows involved various image processing 
operations, such as identification of greenness, binarization and binary image erosion. 
Besides these basic operations, the proposed algorithm utilized the perspective projec-
tion of crop rows to identify the row objects. These objects of a same row are then con-
nected with each other and extended using the triangular matrices. The proposed algorithm 
can also be applied to the images taken from the top view with some modifications. Like 
all new proposals, it is strongly encouraged to do the analysis of the algorithm before its 
immediate deployment. The algorithm could potentially be extended to identify weeds in 
crop fields.
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Abstract: The extraction of automated plant phenomics from digital images has advanced in recent
years. However, the accuracy of extracted phenomics, especially for individual plants in a field
environment, requires improvement. In this paper, a new and efficient method of extracting individ-
ual plant areas and their mean normalized difference vegetation index from high-resolution digital
images is proposed. The algorithm was applied on perennial ryegrass row field data multispectral
images taken from the top view. First, the center points of individual plants from digital images
were located to exclude plant positions without plants. Second, the accurate area of each plant
was extracted using its center point and radius. Third, the accurate mean normalized difference
vegetation index of each plant was extracted and adjusted for overlapping plants. The correlation
between the extracted individual plant phenomics and fresh weight ranged between 0.63 and 0.75
across four time points. The methods proposed are applicable to other crops where individual plant
phenotypes are of interest.

Keywords: plant phenomics; image processing; plant area; plant center points; normalized difference
vegetation index

1. Introduction

Due to the exponentially increasing consumption of food, fuel, and feed by the
burgeoning population of the world, global agricultural demand is growing. Global cereal
grain production must increase by 70% by 2050 to meet food demands [1,2]. Forages are
also an important feed source for animals that produce dairy, meat, and fiber products, and
they play a crucial role in maintaining a good natural environment. In parallel, growing
climate unpredictability is shifting crop production onto marginal lands, leading to the
intensification of existing agricultural practices, and displacement of natural ecosystems [3].
Conventional methods for plant breeding, such as phenotypic and pedigree selection,
have significantly increased crop yields worldwide [4]. Nevertheless, these methods alone
will not be enough to meet the projected global food demands [5,6]. Moreover, these
traditional methods are costly, require intensive labor resources, have a lower throughput
and are time consuming. Genomic breeding approaches (e.g., genomic selection) will
assist in increasing crop and pasture production [7,8] and a wealth of plant genomic
knowledge has been accumulated over the last decade [9–12]. However, genomic selection
requires large training sets of lines that are well characterized with both genomics and
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phenotypes. Traditional phenotyping methods are often too laborious and costly for
large plant collections, leading to a significant gap between genomic knowledge and its
connection to phenotypes. These problems can be rectified to some extent by the accurate
and precise phenotyping of germplasm with novel technologies.

The phenotyping of organisms [13–16] can be defined as a set of protocols or method-
ologies applied to measure physical characteristics, such as architecture, growth and
composition, with a certain accuracy and precision. For plants, phenotyping is based on
morphological, physiological, biochemical, and molecular structures. Current phenotyping
methods in plants are considered slow, expensive, are sometimes destructive and can cause
variations between observations due to human operator variability. This has led to a growth
in automated phenotyping technologies, which overcome these shortcomings. One such
automated method relies on digital imaging, containing two main steps: image acquisition
and image analysis. Image acquisition is a process where a digital representation (image)
of the crop field is obtained using an imaging sensor. Image acquisition can generally be
classified into seven groups with respect to plant phenotyping [16]: mono-red green blue
(RGB) vision, multi and hyperspectral cameras, stereo vision, Light Detection and Ranging
(LiDAR) technology, fluorescence imaging, tomography imaging and thermography, in ad-
dition to time of flight cameras. Image analysis, on the other hand, deals with the extraction
of useful information—in regard to plants—from digital images, involving pre-processing,
segmentation, and feature extraction [17]. The pre-processing step can include operations
such as image cropping, image rotation, contrast improvement, color mapping, image
smoothing, and edge detection [18]. The application of these methods for phenotyping
depends upon the output requirements and several other factors. The main goal of image
segmentation is to differentiate between the irrelevant or background objects and objects
(segments) of interest by using color, texture and statistical measures. For example, Otsu
binary thresholding [19] is a segmentation algorithm that is used to automatically perform
clustering-based image segmentation, returning a value of threshold. The threshold can
then be used to discriminate between the background and foreground of a digital image us-
ing methods such as watershed transformation [20]. Feature extraction is also an important
factor in automated phenotyping using digital images. The measurements extracted from
the image segments, such as area and normalized difference vegetation index (NDVI), are
placed into feature vectors which summarize the physical characteristics of each identified
plant or plant region. The digital information extracted from the images in the form of
NDVI, surface area, width, height, and circular shape, can be linked to the degree of green-
ness, fresh weight, and biomass of the plant. Phenomic bio-characteristics, such as NDVI
or plant area, can be correlated or used to predict plant biomass yield, which is the main
production phenotype in forage species and is a characteristic that contributes to grain
yield in other crops [21,22]. Bio-characteristics, if sufficiently correlated, can then be used
as proxy phenotypes for biomass in genomic selection to select the best populations and
generate genetic gain over generations. Furthermore, as image derived bio-characteristics
are non-destructive, they can be collected at multiple time-points during the growth cycle
of crops, giving rise to novel phenotypes for genomic selection and breeding purposes (e.g.,
change in biomass over time, growth, or senescence rate).

Most plant breeding applications focus on plot or row phenotypes consisting of
multiple plants, which is often sufficient. However, individual plant phenotypes are of
interest for investigating family or population uniformity in both in- and outbred species.
Uniformity is important because growers desire high forage biomass with even growth
throughout a paddock, while additionally, it is also a characteristic for determining plant
breeder’s rights. Furthermore, in outbred species, it may be of interest to understand
the effect of individual plants on other plants in close proximity—so called, competition
effects [23]—as each plant is genetically unique. If plants in a forage cultivar are overly
competitive, the overall biomass yield and uniformity is expected be suboptimal in the
paddock. The manual collection of individual plant characteristics is especially laborious
and automated phenomic solutions are required.
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We propose a new method for extracting the area of individual plants from digital
field trial images. The method focuses on both the extraction of these regions from a
multispectral image taken by an uncrewed aerial vehicle (UAV) and the linking of these
regions with the biomass of individual plants. The utility of the approach is evaluated by
correlating individual plant phenomic bio-characteristics and plant biomass, as estimated
by fresh weight at harvest. The study is organized as follows: Section 2 provides the work
problem statements, Section 3 describes the proposed algorithm in detail, Section 4 explains
the experimental results and presents a comparative analysis on perennial ryegrass field
data, and Section 5 outlines the conclusions.

2. Problem Statements

The proposed algorithm was applied to perennial ryegrass row field data for which
images were taken from the top view. The field trial contained 50 perennial ryegrass culti-
vars, grown in replicated rows of 32 plants per row. Perennial ryegrass is a diploid outbred
species, where each individual plant is genetically unique and each cultivar has at least
four parental cultivars, making them genetically diverse. Each replication was considered
as a plot and contained three rows of 32 spaced plants each (i.e., 96 plants/plot). The
experimental unit was, therefore, a plot of 8 × 1.8 m. The expected spacing between plants
was 25 cm and 60 cm between rows. The field trial contained a total of 48,000 individual
plants in 10 blocks. The total area of the field experiment was 8100 m2. In part, the aims of
these field trials were to develop phenomics processing pipelines to define novel traits for
the estimation and prediction of plant performance (e.g., biomass yield, flowering time).
Images were taken with a Parrot Sequoia (Parrot Drones S.A.S., Paris, France) multispectral
camera, deployed on a 3DR Solo quadcopter. The camera captures images simultaneously
at four bands, including green (530–570 nm), red (640–680 nm), red edge (730–740 nm),
and near-infrared (770–810 nm). It also has a GPS and sensor and incident light sensors.
The flight mission was planned by Tower Beta software. Aerial images were collected
using the UAV on a weekly basis over the GS trial site, and data from four flight dates
in 2017 were used for this analysis. Imaging dates were synchronized with each harvest.
Flight operations were conducted under bright, sunny weather conditions to minimize
noise from environmental variation. The UAV flight altitude was set at 20 m above ground
level and the flight speed was 6 m/s, with 75% side and forward overlap of images. At
this flight altitude and speed, the spatial resolution of the images was 2 cm/pixel. The
same flight path was followed on each date. Image reflectance was corrected using Airinov
calibration plates with known reflectance values (MicaSense Inc., Seattle, WA, USA). An
example color image of the field trial is shown in Figure 1a and a grey scale image of the
field trial area is shown in Figure 1b. The white pixels (NDVI TIFF image) in Figure 1b
mostly represent greenness in the trial image and black pixels represent the background.
In Figure 1b, there are 10 blocks, and in each block, there are 150 plant rows equaling a
total of 1500 crop rows. Furthermore, in each plant row, there are 32 plants, resulting in
48,000 plants in each field-trial image.

The goal was to automatically extract phenomic traits, such as area and the NDVI
value of each plant, from each field trial’s TIFF file image. In principle, other vegetation
indexes such as the green normalized difference vegetation index, red edge normalized
difference vegetation index, soil adjusted vegetation index and the enhanced vegetation
index could also be used. The extraction of these traits utilizes the experimental field trial
design, specifying the layout of plant-rows and the plants within each row to help define
the boundary or bounding boxes for plant rows and initial estimates of the individual plant
regions. The row polygons of row plants were identified using projection methods, as
outlined in [22], followed by the identification of center-points of individual plants. These
center-points then assisted in identifying the individual plant polygons. Figure 2a shows
the layout of bounding boxes for several row polygons and Figure 2b shows the bounding
boxes for individual plant polygons. These bounding boxes assist in extracting phenomics
traits of interest. For instance, the bounding box region can be cropped, and the area can
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be calculated by multiplying the number of non-zero pixels with the area of one pixel in
cm2. Furthermore, the mean NDVI value is calculated by taking the mean of NDVI values
of all non-zero pixels within that region.
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Figure 2. Bounding Boxes of (a) 3 plant-row boxes and (b) their individual plant boxes.

In images where there is moderate amount of plant growth (Figure 2), the extraction of
phenomics is relatively simple. The plants are almost entirely confined in their individual
bounding boxes, referred to as plant boxes, and therefore, the area and mean NDVI value
can be calculated easily. However, there are bounding boxes where plants have not grown
at all, but due to encroachment of adjacent plants, their bounding boxes contain some
image pixels that show NDVI signals, as shown in Figure 3.
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Figure 3. A bounding box without a plant, but due to the overlapping of the top plant, the bounding
box contains some image pixels that are erroneously classified as plants.

These NDVI values can be mistaken for a plant in the box which has either died or
not grown at all, when it was in fact the neighboring plant. Additionally, the plants can
overgrow and overlap into adjacent plants (Figure 4a). In such cases, calculating the area
by counting the number of non-zero pixels in that bounding box (Figure 4b) will not be
accurate. Therefore, a potentially more accurate area is hypothesized in Figure 4c of the
same plant, by highlighting a circular plant region. In summary, these problems are the
main objectives of our work, aimed at identifying the accurate area of individual plants,
and includes the following sub-objectives:

1. to identify bounding boxes with no plants;
2. to calculate accurate individual plant areas, despite overlapping adjacent plants;
3. to calculate accurate individual plant NDVI values, despite overlapping adjacent plants;
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Figure 4. (a) Plants overgrow from their bounding boxes and overlapping with adjacent plants.
(b) Rectangular bounding box of a plant; the area equal to the bounding box is not accurate as plant
is overgrown from the bounding box. (c) A potentially more accurate representation of the area is
illustrated with the circular plant region.
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3. Methods

The use of machine vision in phenotyping started almost three decades ago, for the
extraction of NDVI values [24]. Since then, there has been huge progress in monitoring
large fields using sensor technologies. However, the applications involve simple digital data,
which are usually extracted in controlled environments. In the previous proposals [25–31],
the examined plants were captured in very controlled and simplistic environments; either
there was only one plant per digital image, or the plants did not overlap.

To detect circles in images, Circular Hough Transform (CHT) [32] and its variants [33]
have become common methods in numerous image processing applications. CHT is very
effective in detecting circles in digital images, even with somewhat irregular circular shapes.
However, it performs poorly when circles are merged and overlap with each other, just as
in the case of our research problem.

These existing studies do not provide solutions that are relevant to our mentioned
problems; therefore, we have developed a new and effective image-based phenotyping
method. The proposed algorithm was developed and implemented on a field trial im-
age dataset, in which images were taken from the top view. A sample of a single crop
row image from the field trial, taken at four time points, is shown in Figure 5a–d. We
employed MATLAB version R2019a for the simulations and analyses of our work. In the
next subsections, the proposed algorithm is explained, and images are shown to aid the
reader’s understanding.
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Figure 5. (a–d) A small set of different crop rows extracted from four field trial images taken on (a)
9 May 2017, (b) 5 July 2017, (c) 11 September 2017 and (d) 20 November 2017. Note: that the rows at
different time points are not exactly the same length as pixel size varied slightly from expected 2 cm.
Values were converted to metric units to standardize between capture dates.
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3.1. Background Correction

Let I be the two-dimensional matrix for a single plant box image with size r, c, where
r is the total number of image rows and c is the total number of image columns. It should
be noted that the plants are at a specific angle, but we did not rotate them for the analysis.
As the plant’s geometry is somewhat circular, the rotation will not affect the extraction
of the center point and radius, as explained below. I is considered for one individual
plant and there are 32 such plants in one crop row, as shown in Figure 5a. Moreover,
let I(i, j) represent the NDVI value of the image pixel at the ith row and jth column of I,
and I(i, j) ∈ [−1, 1]. The first step was to remove any background values, which did not
contain plant pixels. To remove the unnecessary background, Otsu binary thresholding [19]
was employed to automatically perform clustering-based image thresholding, returning a
threshold value of thOtsu. The background corrected image of a single plant, Ib is obtained
using the following:

Ib(i, j) =
{

I(i, j) i f I(i, j) > thOtsu,
0 otherwise.

(1)

The Otsu image thresholding for background correction was applied in Figure 5a–d
and the results are shown in Figure 6a–d.
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3.2. Center Point Calculation

Whether a rectangular plant bounding box contained a plant or not was determined
by identifying the center point of the plant. If there was a center point in a bounding
box, then it was determined as containing a plant and vice-versa. As mentioned in the
problem statement, bounding boxes were defined based on row layouts and the expected
plant number and spacing per row, following [22]. The distribution of greenness or NDVI
values in an individual plant, assists in finding the plant centers (Figure 7). The greenness
is likely to be at a maximum in the center of plant and gradually decreases towards the
plant’s edges. Therefore, the center point should correspond to, or near, a location of
an image pixel with the maximum NDVI value. However, there can be more than one
pixel whose values correspond to the maximum NDVI and they can be in different places.
Another solution could consider the middle point of the bounding box as the plant centers.
However, this assumption is not always justified, as plant locations could deviate from
bounding box centers. Our approach combines these two methods. This allows for the
correction of NDVI maxima that are at bounding box edges but have false values due to
encroaching neighboring plants. The centered positions of a plant image are determined
as follows: {

(i, j)
∣∣∣ Ib(i, j) ≥ 0.6 ∗ Imax; ∀ i ε [0.2r, 0.8r]; ∀ j ε [1, c]

}
(2)

where Imax is the maximum value of Ib. Without loss of generality, the above equation
specifies a set of image positions within a given plant-box, as shown in Figure 4b, with
its origin specified at (1,1) and with r rows and c columns that have intensity values that
satisfy Ib(i, j) ≥ 0.6 ∗ Imax. The optimization value of 0.6 is based on trial and error and
was chosen based on visual inspection. Increasing the value beyond 0.6 will result in more
centered image pixels and vice-versa. We recommend investigating this threshold when
applying the algorithm to new datasets. This set will be empty if there is no center point,
otherwise the average i, Θr and average j, Θc, location (Θr, Θc) is used to define a plant’s
center point within its corresponding plant-box. The goal is to locate a center point of the
plant which cannot be at the top or bottom of the image. Therefore, the search row domain
in each plant-box is constrained to not include the top and bottom 20% of the rows. In our
study, plants were generally planted at equal distances, justifying this assumption. In field
data where this is not the case, further development of the algorithm may be needed. This
process was then applied to all plant-boxes within each field image.
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Figure 7. Distribution of image pixels in terms of greenness or NDVI values in an individual plant.

The results of this step, applied to the images shown in Figure 6a–d, are shown in
Figure 8a–d. The center points are represented by a red plus symbol. The algorithm
correctly identified the number of plants in a crop row. For instance, Figure 8a has only
31 plants with center points labelled and Figure 8b only has 30 plants. The identification of
center points indicates that the first research problem has been solved, that is, the bounding
boxes with no plants have been identified.



Remote Sens. 2021, 13, 1212 9 of 18
Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 19 
 

 

 
                     (a)                      (b)                    (c)                    (d)  

Figure 8. (a–d) Identification of center points using Algorithm 1. 

 
Figure 9. Distribution of image pixels with labelling of center point, center row and horizontal distances from center point 
to the horizontal extremes. 

Using the radii and center points, the circular plant regions of each plant were ex-
tracted (Figure 10a–d). The extraction of radii and the circular plant regions resulted in 

Figure 8. (a–d) Identification of center points using Algorithm 1.

3.3. Extraction of Plant Areas

The next goal is to extract the individual plant areas. The distribution of plant pixels is
somewhat circular and symmetrical (Figure 7). To define the circular plant region associated
with each plant-box containing a plant requires only a center point and a corresponding
radius. The center points were calculated in the previous step and the radius was calculated
by measuring the distance in terms of number of non-zero image pixels from the center
point to the horizontal extreme. Figure 9 shows the same plant illustrated in Figure 7, with
labelling of the center point, center row and horizontal distances from the center point to
the horizontal extremes. These horizontal distances give the possible radius of the plant.
The vertical distances are not taken into consideration, as the adjacent plants may overlap
at the vertical (at both top and bottom; except the 1st and 32nd plant of the row) positions.
For each center pixel defined above (Θr, Θc), let its corresponding radius be defined by:

radius = max
{

abs(Θc − j)
∣∣∣ Ib(Θr, j) ≥ 0.6 ∗ Imax

}
(3)

Using the radii and center points, the circular plant regions of each plant were extracted
(Figure 10a–d). The extraction of radii and the circular plant regions resulted in the second
research problem being solved, that is, the accurate area of the individual plants has been
calculated, despite the overlapping of adjacent plants. Furthermore, the area is calculated
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by taking the product of the number of non-zero pixels with the area of one pixel in cm2

within that region.
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3.4. Extraction of NDVI Values

As mentioned earlier, due to the overlapping of the adjacent plants, the NDVI values
can be inflated at the top and bottom positions, as depicted in Figure 10c,d. Therefore, the
overlapping pixels rows at top and bottom positions must be identified and adjusted.

3.4.1. Finding the Overlapping Pixel Rows

Considering a single crop row (32 plants), the overlapping pixels rows for each plant
can be extracted using the center points and radii calculated earlier. Let Px, x ε [1, 2, . . . , 32]
be a plant whose overlapping rows are to be extracted. The center point and radius for Px
are calculated earlier and let be denoted as (Θx

r , Θx
c ) and Rx, respectively. The number of

overlapping rows at the bottom position ρx
bottom of the plant Px are extracted as:

ρx
bottom = (Θx

r + Rx)−
(

Θx+1
r − Rx+1

)
− 1 (4)

Similarly, the number of overlapping rows at the top position ρx
top of the plant Px is

extracted as:
ρx

top =
(

Θx−1
r + Rx−1

)
− (Θx

r − Rx)− 1 (5)

It should be noted that ρx
bottom for Px at the bottom position is the same as ρx

top for Px+1
at the top position.

This is illustrated in Figure 11, with three plants and their center points and radii.
Moreover, the first plant is overlapping with the second plant at the bottom position and the
reverse is true for the second plant. Similarly, the second plant overlaps with the third plant
at the bottom position and vice-versa. Using Equations (4) and (5), it can be calculated
that ρ1

bottom = ρ2
top = 2 and ρ2

bottom = ρ3
top = 3. These are the number of pixel rows

where the NDVI values are likely inflated and should be adjusted before consideration.
Note: that ρx > 0, if there is overlap, otherwise there is no overlap and, therefore, no
adjustment needed.
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𝐼𝑏(Θ𝑟 , 1) 𝑖𝑓 [(Vsym(𝑖) +  Vsym(𝑗)) ≤ R + 1]  & [𝑖 𝑖𝑠 𝑎𝑛 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑟𝑜𝑤],

𝐼𝑏(𝑖, 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, ∀ 𝑖 𝜖 [1, 𝑟], ∀ 𝑗 𝜖 [1, 𝑐].

 
(8) 

Figure 11. Three plants in a crop row overlapping at top and bottom positions. The center points
and radii are also mentioned, which assist in extracting overlapping rows.
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3.4.2. Adjusting NDVI Values at Overlapping Pixel Rows

The symmetrical distribution of plant NDVI values with center maxima and a gradual
decrease towards the boundary of plant informs the adjustment procedure for overlapping
pixel rows (Figure 7).

Care must be taken to exclude overlapping areas from the determination of maximum
and minimum NDVI values. The use of the center row avoids overlapping areas and
increases the accuracy of maxima and minima. There are three steps described as follows:

1. the maximum and minimum NDVI values of the plant are first calculated, labelled as
Ib
max and Ib

min; respectively;
2. the whole center row is updated and will be used as a reference for the adjustment

of plant pixels at overlapping rows. The step size, which is the difference of NDVI
values between two adjacent pixels, is calculated as:

Istep =
Ib
max − Ib

min
R− 1

(6)

The center row is then updated with the following values:

Ib(Θr, :) = [Ib
min, Ib

min + Istep, Ib
min + 2 ∗ Istep, . . . . . . , Ib

max, . . . . . . , Ib
min

+2 ∗ Istep, Ib
min + Istep, Ib

min]1×(2R−1).
(7)

1. Let us take a symmetric reference vector, Vsym, such that
Vsym = [1, 2, 3, . . . , R− 2, R− 1, R, R− 2, R− 1, . . . , 3, 2, 1]. The NDVI values are
adjusted as following:

Ib(i, j) =


Ib(Θr , i + j− R) if

[(
Vsym(i) + Vsym(j)

)
> R + 1

]
& [i is an overlapping row],

Ib(Θr , 1) if
[(

Vsym(i) + Vsym(j)
)
≤ R + 1

]
& [i is an overlapping row],

Ib(i, j) otherwise, ∀ i ε [1, r], ∀ j ε [1, c].

(8)

As an example, after adjustment, the plant matrix Ib will look similar to the following
two-dimensional matrix if each pixel of Ib is adjusted, considering the plant has seven rows
and seven columns.

Ib =



Ib
min Ib

min Ib
min Ib

min Ib
min Ib

min Ib
min

Ib
min Ib

min Ib
min Ib

min + Istep Ib
min Ib

min Ib
min

Ib
min Ib

min Ib
min + Istep Ib

min + 2 ∗ Istep Ib
min + Istep Ib

min Ib
min

Ib
min Ib

min + Istep Ib
min + 2 ∗ Istep Ib

max Ib
min + 2 ∗ Istep Ib

min + Istep Ib
min

Ib
min Ib

min Ib
min + Istep Ib

min + 2 ∗ Istep Ib
min + Istep Ib

min Ib
min

Ib
min Ib

min Ib
min Ib

min + Istep Ib
min Ib

min Ib
min

Ib
min Ib

min Ib
min Ib

min Ib
min Ib

min Ib
min


7×7

To validate the results obtained from the digital adjusted plants, the phenomics of
these plants were correlated with the manually harvested fresh weights. The higher value
of correlation confirms the accuracy of extracted phenomics of the adjusted plants. The
results were obtained by considering two phenomic bio-characteristics: (1) area and (2)
mean NDVI values of adjusted plants.

After the adjustment of NDVI values and the extraction of circular plant regions, the
next aim was to extract the area and mean NDVI value of each plant for each field trial
image. The individual plant area was calculated as the product of number of non-zero
pixels with the area of one pixel in cm2 within the circular plant region. Mean NDVI was
tabulated by calculating the mean NDVI values of non-zero pixels with the bounding
box. The area provides information about the size of the plant and the mean NDVI value
indicates how dense the plant canopy is. Note that the area and mean NDVI values may
not be correlated, e.g., a plant with small area can have a similar mean NDVI value as a
plant occupying a large area.
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3.5. Testing of the Algorithm

Fresh biomass weights were collected for a subset of 480 perennial ryegrass plants
to measure their individual biomass yield. The field trial was located and operated by
Agriculture Victoria Research, Hamilton, Victoria, Australia (37.8464◦S, 142.0737◦E). The
Hamilton region is in the Victorian high rainfall zone, generally receiving >600 mm per
year of rain. Fresh weights were available for four harvesting dates (9 May 2017, 5 July
2017, 11 September 2017 and 20 November 2017) in different seasons of 2017 [34]. Harvest
dates were determined by the growth stage of the individual plants, in which the two to
three leaf stage was considered as a standard simulated grazing stage. The above-ground
biomass was harvested manually at 5 cm height.

The following phenomics metrics were compared via Pearson correlations (r) [35]:
mean NDVI of rectangular bounding boxes, area of rectangular bounding boxes, unadjusted
mean NDVI of circular plant regions, adjusted mean NDVI of circular plant regions and
area of circular plant regions.

4. Results and Discussions

The robustness of the proposed algorithm was tested by correlating extracted phe-
nomics metrics with harvest fresh weights. Metrics included the area calculated from
rectangular bounding boxes and their mean unadjusted and adjusted NDVI. The fresh
biomass weight value per individually harvested plant (82.48–127.18 g) varied across sea-
sons in 2017. Moreover, measured seasonal fresh biomass weight in 2017 indicated a wide
variability of biomass values (~1.41–428 g) for each measurement season for the individual
plants [34]. This suggests that biomass yield had sufficient variation to use to correlate the
NDVI and plant phenomics.

The Pearson correlation coefficients (r) between the area of circular plant regions
and fresh weights for four field trial images from four timepoints are shown in Table 1
and Figure 12a–d. The values of r for these four images demonstrate a good relationship
between fresh weight and circular area (0.63–0.75). The correlation could likely be further
improved by including height measures [22]. Areas extracted from the circular plant
regions were more closely correlated with fresh weights than those from rectangular boxes
(Table 1). The advantage of the circular areas was less pronounced at the May 2017 time
point, which also had the lowest number of plants overlapping across boxes. However, for
the other timepoints with higher degrees of plant overlap, the correlation for circular plant
regions was substantially higher than the rectangular boxes. There are two main reasons
for this: (1) most plants in these three field trial images had overgrown across bounding
boxes and merged with adjacent plants, thus, rectangular bounding boxes will not provide
an accurate measure of the area; (2) rectangular boxes may show an area that is entirely due
to the overlapping of neighboring plants, leading to an area or NDVI being attributed to
missing plants. These factors erode the accuracy of rectangular bounding boxes, especially
when there is substantial biomass.

Table 1. Values of ř calculated for the area extracted from rectangular and circular plant regions with
the fresh weights of subset of 480 perennial ryegrass plants.

Image Time Point
Correlation

Area of Rectangular Bounding Boxes Area of Circular Plant Regions

9 May 2017 0.74 0.75
5 July 2017 0.30 0.74

11 September 2017 0.28 0.63
20 November 2017 0.30 0.66
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To see the trends of individual plant’s values of fresh weight and extracted phenomics,
the ranges of fresh weight and area were normalized to a single range of [0, 100] and
plotted as a comparison, shown in Figure 13, which shows that plant fresh weight and area
follow a very similar pattern on 9 May 2017. This pattern is consistent with the other time
points (Supplementary Material, Figure S1–S3).

We further compared the mean adjusted and unadjusted plant NDVI of circular plant
regions and unadjusted NDVI of rectangular boxes to fresh weights (Table 2). The corre-
lations were moderate for rectangular boxes and ranged between 0.51 and 0.56. Circular
plant regions slightly improved in terms of correlations to 0.53 and 0.58. The relatively
low level of improvement is due to NDVI values being similar for both types of bounding
boxes, despite large differences in area. Further small correlation improvements (range
0.55–0.59) were achieved by adjusting NDVI values for circular plant regions by accounting
for plant overlap. While the improvement observed from adjusting NDVI, here, was minor,
the adjustment methods applied could be useful for other trials, crops or even data types
(e.g., point clouds).
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Table 2. Correlations of mean NDVI and fresh weights of subset of 480 perennial ryegrass plants for
rectangular boxes and proposed circular plant regions: with unadjusted and adjusted NDVI values.

Image Time Point

Correlation

Unadjusted NDVI from
Rectangular Boxes

Unadjusted NDVI from
Circular Plant Regions

Adjusted NDVI from
Circular Plant Regions

9 May 2017 0.56 0.56 0.57
5 July 2017 0.55 0.58 0.59

11 September 2017 0.52 0.54 0.55
20 November 2017 0.51 0.53 0.56

The multi-spectral images used in this study had a pixel size of approximately 2cm.
This was sufficient to distinguish single perennial ryegrass plants. The successful applica-
tion of our algorithm to other image datasets depends on their relative pixel and plant size.
Furthermore, we set a numerical threshold for NDVI intensity and the search space within
the bounding box to detect plant centers. In part, these values are expected to be dataset
specific and could depend on achieving relatively uniform plant spacing, and, therefore,
should be revisited during application. Finally, further improvements may be needed
to the determination of radii, especially when plants are large and overlap substantially
(Table 1, timepoints three and four), which adds noise and causes some overestimation.

The correlation of our phenomic bio-characteristics (plant areas and adjusted NDVI)
found in our study is at a level that is useful to provide proxy phenotypes of individual
biomass in the field. Plant breeding, with or without genomics, requires the phenotypic
screening of many breeding lines to select the best for commercialization or as parents
for the next breeding cycle. Furthermore, methods such as genomic selection require
a large training population of phenotype lines with genome-wide DNA markers [36].
The advantage of sensor-based methods is that they are non-destructive and take less
time to be conducted, which makes them suitable to be used at multiple time points
during the growing season. In pasture grasses, growth rate and recovery after harvest
are key properties that only non-destructive sensor-based methods can investigate at a
sufficient scale to be useful for plant breeding. Further, as pasture grasses are generally
outbreeding (i.e., they cannot self-pollinate making each plant genetically unique), it can be
of importance to measure single plants for research and selection purposes. Of particular
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interest, is the genetic predisposition of individual plants to compete with plants in close
proximity in the field because highly competitive plants will lead to non-uniform growth
patterns in the paddock, which is undesirable. The bio-characteristics defined in our
study provide crucial information at the individual plant level to better understand the
phenome-to-genome relationships of biomass production and other important traits.

5. Conclusions

Here, we present an efficient and effective solution to develop a machine-vision math-
ematical model that can extract plant phenomic bio-characteristics with sufficient accuracy,
despite the overlapping of adjacent plants. The estimation of plant areas when plants
are very large and overlap substantially could potentially be improved in future studies.
The mathematical model consisted of three parts: locating center points, extracting the
area by means of radius and center point, and extracting of mean NDVI via adjustment of
overlapping plant regions. Overall, correlations of phenomic metrics with fresh weights
were moderate, with plant areas derived from circular plant regions being more strongly
correlated than the NDVI derived measures. The proposed NDVI adjustment for overlap-
ping plant portions increased correlations with fresh weights slightly. As is the case with
all new proposals, we strongly encourage the evaluation of the algorithm performance
before deployment. The algorithms presented in this study can be applied to a wide variety
of crops and to other field trial designs.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/6/1212/s1, Figure S1: Comparisons between the individual plant values of normalized values
of fresh weights and areas for first 100 plants in a same range of [0, 100] for the field trial image taken
on 9 May 2017, Figure S2: Comparisons between the individual plant values of normalized values of
fresh weights and areas for first 100 plants in a same range of [0, 100] for the field trial image taken
on 11 September 2017,Figure S3: Comparisons between the individual plant values of normalized
values of fresh weights and areas for first 100 plants in a same range of [0, 100] for the field trial
image taken on 20 November 2017.
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