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Summary

Relation-type algebras are abstract algebraic generalisations of algebras of binary
relations on a given set, which are usually called proper relation algebras. Initially,
much of the research into these algebras focused on determining whether or not all
relation algebras are representable, i.e., embeddedable into proper relation algebras.
Once this was answered in the negative, research into these algebras branched out.
This thesis focuses two weaker notions of representability that were introduced re-
cently, the subvariety lattices of tense algebras and various relation-type algebras,
and probabilistic topics.

After introducing the two weaker notions of representability, namely feeble and
qualitative representability, we investigate the representability of chromatic algebras.
In particular, we show that every Ramsey algebra has a qualitative representation.
By modifying a known graph, we show that a variety of tense algebras has continuum
many covers in the subvariety lattice of the variety generated by total tense algebras.
Using a previously known relationship between the subvariety lattice of this variety
and the subvariety lattice of a certain variety of semiassociative relation algebras,
we complete the description of all varieties of height at most two, up to cardinality,
in a number of subvariety lattices of varieties of nonassociative relation algebras.
Next, by constructing qualitative representations of the generators of these varieties,
we extend this result to the subvariety lattices of the varieties generated by feeble and
qualitatively representable algebras, and then look at other varieties of low height.
Using some known results on counting relation-type algebras, we show that almost
all nonassociative relation algebras are symmetric and have the identity as an atom.
Consequently, we obtain a simple single variable asymptotic formula that counts the
number of isomorphism classes finite relation-type algebras that are in various classes.
Lastly, we obtain a 0–1 law for the atom structures of nonassociative relation algebras.
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Introduction

Relation algebras were introduced as an abstract algebraic counterpart to the cal-
culus of relations in the nineteen fourties by Alfred Tarski [86]. In its early years,
research into relation algebras was dominated by Tarski and his doctoral students,
and was chiefly focused on Tarski’s representability problem for relation algebras, i.e.,
the problem of determining whether or not every relation algebra is isomorphic to an
algebra with binary relations as elements and with the usual set theoretic operations.
A negative solution was discovered within a decade by Lyndon [65]. Following this,
research into relation algebras branched out more. For example, subvariety lattices,
conditions guaranteeing representability, the existence and properties of axiomati-
sations, the representability of known algebras or families of algebras, probability,
computability, and varieties containing relation algebras became more widely stud-
ied; see Maddux [68]. This thesis focuses on two weaker notions of representability,
the representability of chromatic algebras, subvariety lattices, and probabilistic re-
sults. The original goal of this thesis was to solve a problem on the subvariety lattice
of the variety of relation algebras (Problem 4 here), which lead to the contents of
Chapter 3. The remainder of the contents were inspired by conversations with my
supervisors, Robin Hirsch, and Roger Maddux, and by other problems that I saw in
the literature.

The assumed knowledge for this thesis is roughly equivalent to that of a honours
graduate in the general (universal) algebra research group at La Trobe University;
more specifically, the lattice theory, general algebra, and model theory subjects at La
Trobe University, which are roughly equivalent to Chapters 1–5 of Davey and Priest-
ley [22], Chapters 1–5 of Bergman [13], and Chapters 1, 3, 5, and 6 of Hodges [41].
Chapter 1 contains a relatively brief introduction to Boolean algebras with opera-
tors and relation-type algebras that is intended for someone with this background
knowledge, and reviews some useful tools from universal algebra and model theory.

Chapter 2 begins with a brief introduction to representations, networks, and two
more recent notions of representability, namely feeble and qualitative representability.
In Section 2.3, we introduce chromatic algebras, summarise the currently known repre-
sentability results for these algebras, show that every Ramsey algebra is representable,
and show that algebras whose consistent cycles are 3-cycles are feebly representable,
but qualitatively representable if and only if the number of diversity atoms is odd.
Theorem 2.8 and the results in Section 2.3 are set to appear in Koussas, Kowalski,
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x INTRODUCTION

and Al-Juaid [39]. The idea to use the Walecki construction in Theorem 2.19 and the
‘only if’ portion of Theorem 2.21 are due to Tomasz Kowalski.

Chapter 3 begins with a brief summary of the research into the subvariety lat-
tices of various varieties of relation-type algebras and tense algebras. In Section 3.2,
we show that the variety generated by the algebra T0 has 2ℵ0 covers in the subvariety
lattice of the variety generated by the class of total tense algebras. In Section 3.3,
we use this result to show that the variety generated by A3 has 2ℵ0 covers in the sub-
variety lattices of the varieties of nonassociative and semiassociative relation algebras.
Then, by constructing qualitative representations of the generators of these covers,
we extend this result to the subvariety lattices of the varieties generated by the classes
of all feebly representable relation algebras and qualitatively representable algebras.
Additionally, we find all join-irreducible varieties above the varieties generated by A1

or A2, but not A3. The results on tense algebras, semiassociative relation algebras,
nonassociative relation algebras have been published in Koussas and Kowalski [58],
while the results on feeble and qualitatively representable algebras are set to appear
in Hirsch, Jackson, Koussas, and Kowalski [39]. The graph illustrated in Figure 3.1
is due to Tomasz Kowalski and Lemma 3.42 is partially due to Tomasz Kowalski.

Chapter 4 begins with a summary of the history of probability in model theory,
and a summary of the results of this nature in the study of relation-type algebras.
In Section 4.2, we show that almost all finite nonassociative relation algebras are sym-
metric integral relation algebras, and consequently improve an existing two-variable
formula that counts the number of isomorphism classes of integral relation algebras
to a single-variable one. In Section 4.3, we show that the class of atom structures
of nonassociative relation algebras has a 0–1 law using a Fräıssé limit construction.
In Section 4.4, we discuss some possible approaches to the problem of showing that
almost all nonassociative relation algebras are (some kind of) representable, and show
that they cannot lead to a solution. The results from Section 4.2 and Section 4.3
are set to appear in Koussas [57]. The idea of proving that almost all nonassocia-
tive relation algebras are integral and symmetric was mentioned by Roger Maddux
in a private communication discussing a proof that almost all of these algebras are
symmetric, which was discovered independently.

The title of the conclusion is due to Andrzej Sapkowski.



A note on notation

??

We reserve ‘Lemma’, ‘Theorem’, and ‘Corollary’ for results where we claim (some)
originality, and use ‘Proposition’ for known results.

We use ⊆ for inclusion and ⊂ for proper inclusion.
We usually use script symbols, such as A , for sets of sets.
We will assume that the natural numbers N do not include 0. We will use ω to

denote the set N ∪ {0} of non-negative integers. The cardinality of N (or ω) will be
denoted by ℵ0. The powerset of a set X is defined to be the set of all subsets of X,
and is denoted by ℘(X). The cardinality of ℘(N) (or ℘(ω)) will be denoted by 2ℵ0 .
It is well known that R has cardinality 2ℵ0 , hence it is fairly common to refer to 2ℵ0

as the cardinality of the continuum.
We will usually omit superscripts from the interpretation of an operation symbol,

provided that no ambiguity arises; for example, when working with a single structure.
We generally use boldface symbols for algebras and standard letters for their uni-

verse. For example, A will be used for the universe of an algebras A.
We will usually use a, b, and c for atoms; i, j, k, and ` for elements of index sets;

m and n for natural numbers; p, q, r, and s for integers; u, v, and w for nodes; x, y,
and z for elements of algebras; and µ and ν for homomorphisms.

If x̄ is a tuple, we denote the ith coordinate of x̄ by xi. We start indexing with 1,
so x̄ = (x1, x2, . . . ), for example.

To avoid confusion with lattice symbols and to match the use of ≈ in algebra,
we will use g and f for (first-order) logical disjunction and conjunction, respectively.
To avoid reusing symbols, we use ¬ for logical negation, ′ for Boolean complement,
and c for relative set complement. Respectively, ¬0 and ¬1 mean no symbol and ¬.

Let K be an arbitrary class of similar algebras. The classes of all isomorphic copies,
subalgebras, homomorphic images, direct products, and ultraproducts of members of
K will be denoted by I(K), S(K), H(K), P(K), and U(K), respectively. The variety
generated by K will be denoted by Var(K). The class of all subdirectly irreducible
members of K will be denoted by Si(K). For an example of this notation, a well
known result of Tarski says Var(K) = HSP(K), for any class K of similar algebras.
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xii A NOTE ON NOTATION

For each n ∈ N, the set {0, . . . , n− 1} of remainders modulo n is denoted by Zn,
the usual modular addition and multiplication operations are denoted by ⊕n and ⊗n,
and the remainder of p ∈ Z modulo n is denoted by Rn(p).

To match the notation used in Davey and Priestley [22], we will use ∨, ∧, ·, ′, and
e rather than +, ·, ;, (− or ¯), and 1′ as operation symbols for relation-type algebras.
For the same reason, we use ∨ and ∧ for arbitrary joins (suprema) and meets (infima).

The set and ordered set of join-irreducible elements of a lattice L will be denoted
by J(L) and J(L), respectively.

The polynomial time, nondeterministic polynomial time, and complement nonde-
terministic polynomial time complexity classes will be denoted by P, NP, and co-NP,
respectively.



CHAPTER 1

Preliminaries

Our primary objects of study will be examples of Boolean algebras with operators.
In this chapter, we will give a general overview of Boolean algebras with operators,
introduce the specific classes of Boolean algebras with operators that we will study
later, and look at some general algebraic properties of Boolean algebras with operators.

1.1. Boolean algebras with operators

Before discussing Boolean algebras with operators, we will revise Boolean algebra.
See Chapter 1 of Bell and Slomson [11], Chapter 4 of Burris and Sankappanavar [16],
Chapter 4 of Davey and Priestley [22], Chapters 1–8 of Givant and Halmos [33],
Chapter 2 of Hirsch and Hodkinson [36], or Chapter 4 of Maddux [70] for a more
comprehensive introduction to the topic.

Definition 1.1 (Boolean algebra). An algebra A = 〈A;∨,∧, ′, 0, 1〉 of the signature
(or type) (2, 2, 1, 0, 0) is called a Boolean algebra if:

(B1) A |== x ∨ y ≈ y ∨ x and A |== x ∧ y ≈ y ∧ x;
(B2) A |== x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z and A |== x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z;
(B3) A |== x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z) and A |== x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z);
(B4) A |== 0 ∨ x ≈ x and A |== 1 ∧ x ≈ x;
(B5) A |== x ∨ x′ ≈ 1 and A |== x ∧ x′ ≈ 0.

Notation 1.2. We will assume that ′ is applied first; x∨y′ means x∨(y′), for example.

The most common examples of Boolean algebras come from logic and set theory.
Indeed, the study of Boolean algebra was motivated by Boolean logic.

Example 1.3 (Boolean logic). Let L := {F, T}, where F 6= T . Define g : L2 → L,
f : L2 → L, and ¬ : L→ L as follows.

x y xg y
F F F
F T T
T F T
T T T

x y xf y
F F F
F T F
T F F
T T T

x ¬x
F T
T F

Figure 1.1. Operation tables for g, f, and ¬.

It is easy to check that L := 〈L;g,f,¬, F, T 〉 is a Boolean algebra. If p is a statement,
i.e., a sentence that is either true or false, let v(p) := F if p is false and let v(p) := T if

1



2 1. PRELIMINARIES

p is true. By construction, we have v(p or q) = v(p)g v(q), v(p and q) = v(p)f v(q),
and v(not p) = ¬v(p), for all statements p and q. Thus, L encodes Boolean logic.

Example 1.4 (Powerset algebra). If X is a set, then the algebra 〈℘(X);∪,∩, c,∅, X〉
is a Boolean algebra, where c is complementation relative to X.

Some basic properties of Boolean algebras are summarised in the following Lemma;
a proof can be found in Chapter 4 of [22], for example.

Proposition 1.5. Let A be a Boolean algebra.

(1) If x, y ∈ A, then x ∧ y = x if and only if x ∨ y = y.
(2) The binary relation 6 on A defined by

x 6 y ⇐⇒ x ∧ y = x

is an order relation. Further, x ∨ y and x ∧ y are the least upper bound and
greatest lower bound of {x, y}, respectively, for all x, y ∈ A.

Notation 1.6. We define 6 as above on any algebra with a Boolean algebra reduct.
Note that 6 coincides with inclusion in powerset algebras; we write ⊆ rather than 6.

Proposition 1.7. Let A be a Boolean algebra.

(1) If x, y ∈ A with x ∧ y = 0 and x ∨ y = 1, then x = y′ and y = x′.
(2) A |== 0′ ≈ 1 and A |== 1′ ≈ 0.
(3) A |== x′′ ≈ x.
(4) A |== (x ∨ y)′ ≈ x′ ∧ y′ and A |== (x ∧ y)′ ≈ x′ ∨ y′.
(5) If x, y ∈ A, then x 6 y if and only if y′ 6 x′.
(6) If x, y ∈ A, then x 6 y if and only if x ∧ y′ = 0.

We will usually use (B1)–(B5) and the preceding pair of propositions silently.
Next, we state the definition of a Boolean algebra with operators (as presented

by Jipsen in [43]). For more details, see Chapter 1 of Givant [31], Chapter 2 of [36],
Jónsson [53], Jónsson and Tarski [54] or Chapter 4 of Maddux [70], for example.
To motivate this abstract definition, we mention that relation algebras, tense alge-
bras, cylindric algebras, modal algebras, closure algebras, projective algebras, polyadic
algebras, and monadic algebras are all examples of Boolean algebras with operators;
this observation is stated in [53].

Definition 1.8 (Operator). Let A be a Boolean algebra, let n ∈ ω, and let f be an
n-ary operation on A.

(1) Let x̄ ∈ An. The operation on A given by x 7→ f(x1, . . . , xi−1, x, xi+1, . . . , xn)
will be denoted by fx̄,i. We call fx̄,i the (x̄, i)-translate of f .

(2) We call f normal if fx̄,i(0) = 0, for all x̄ ∈ An and 1 6 i 6 n.
(3) We call f additive if fx̄,i(x ∨ y) = fx̄,i(x) ∨ fx̄,i(y), for all x, y ∈ A, x̄ ∈ An,

and 1 6 i 6 n.



1.1. BOOLEAN ALGEBRAS WITH OPERATORS 3

(4) We call f an operator (on A) if f is normal and additive.

The term ‘additive’ is commonly used in the literature because many authors use
+ and · rather than ∨ and ∧, respectively; see [54], for example.

Notation 1.9. Let A be an algebra of a signature that contains every Boolean algebra
operation symbol. The reduct of A to {∨,∧, ′, 0, 1} will be denoted by A[.

Definition 1.10 (Boolean algebra with operators). Let A be an expansion of a
Boolean algebra. We call A a Boolean algebra with operators if A[ is a Boolean
algebra and each non-Boolean operation of A is an operator on A[.

Some general (but rather boring) examples of operators are given below.

Example 1.11. Let A be a Boolean algebra.

(1) Every nullary operation on A is an operator.
(2) The identity map is an operator.
(3) The unary operation u on A given by

u(x) =

1 if x 6= 0
0 if x = 0

is an operator.

Conjugates, which were defined in [54], are more interesting examples of operators.

Definition 1.12 (Conjugate). Let A be a Boolean algebra and let f and g be unary
operations on A. We call g a conjugate of f (with respect to A) if

f(x) ∧ y = 0 ⇐⇒ x ∧ g(y) = 0,

for all x, y ∈ A. We call f selfconjugate (with respect to A) if f is a conjugate of f .

By Proposition 1.7(6), g is a conjugate of f with respect to a Boolean algebra A
if and only if (′ ◦ f, ′ ◦ g) is a Galois connection with respect to the ordered set 〈A;6〉,
i.e.,

x 6 g(y)′ ⇐⇒ y 6 f(x)′,

for all x, y ∈ A.
Some basic examples of conjugates are given below.

Example 1.13. Let A be a Boolean algebra.

(1) For each x ∈ A, the unary operation on A given by y 7→ x∧y is selfconjugate.
(2) The functions in Example 1.11(2) and Example 1.11(3) are selfconjugate.

The following result from [54] summarises some useful properties of conjugates.
Note that the observation above on the relation between Galois connections and con-
jugates can be used to prove the first statement.
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Proposition 1.14. Let A be a Boolean algebra and let f and g be unary operations
on A.

(1) If g is a conjugate of f , then f and g preserve existing joins. In particular,
both f and g are operators on A.

(2) g is a conjugate of f if and only if f(x ∧ g(y)′) ∨ (f(x) ∧ y′) = f(x) ∧ y′ and
g(y ∧ f(x)′) ∨ (f(x) ∧ y′) = f(x) ∧ y′, for all x, y ∈ A. Thus, the conjugacy
of a pair of operation symbols is definable by equations.

Now we can introduce our first concrete class of Boolean algebras with operators,
namely tense algebras.

Definition 1.15 (Tense algebra). We call an algebra A = 〈A;∨,∧, ′, f, g, 0, 1〉 of
the signature (2, 2, 1, 1, 1, 0, 0) a tense algebra if A[ is a Boolean algebra and g is a
conjugate of f with respect to A[. The class of all tense algebras will be denoted by TA.

Based on Proposition 1.14(2), TA is an equational class, and therefore a variety.
Concrete examples of tense algebras can be constructed from (directed) graphs.

Example 1.16 (Complex algebra). Let R be a binary relation on a set V , and let fR
and gR be the image and preimage operations of R, respectively, i.e., define fR and
gR by

X 7→ {v ∈ V | (x, v) ∈ R, for some x ∈ X}

and
X 7→ {v ∈ V | (v, x) ∈ R, for some x ∈ X},

respectively. Then the algebra Cm(〈V ;R〉) := 〈℘(V );∪,∩, c, fR, gR,∅, V 〉 is a tense
algebra, called the complex algebra of the directed graph 〈V ;R〉.

In Example 1.3, we saw that Boolean algebras are connected to Boolean logic.
Tense algebras are also related to a form of logic, namely tense (or temporal) logic.
In this setting, one views the elements of V in Example 1.16 as moments of time and
thinks of (x, y) ∈ R as meaning ‘x is earlier than y’. So, fR(X) is the set of moments
preceding a moment in X and gR(X) is the set of moments following a moment in X.
For general references on modal logic, we direct the reader to Blackburn, de Rijke,
and Venema [14] and Kracht [61].

1.2. Relation-type algebras

In this section, we aim to introduce three classes of Boolean algebras with oper-
ators, namely the classes of nonassociative relation algebras, semiassociative relation
algebras, and relation algebras. These algebras will be the focus of most of remainder
of this thesis, and will therefore be covered in more depth than the algebras that we
defined in Section 1.1. For general references, we recommend Givant [30], Givant [32],
Hirsch and Hodkinson [36], and Maddux [70].
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Definition 1.17 (Relation-type algebra). A relation-type algebra is an algebra of the
signature {∨,∧, ·, ′, ,̆ 0, 1, e}, where ∨, ∧, and · are binary operation symbols, ′ and ˘
are unary operation symbols, and 0, 1, and e are nullary operation symbols.

Notation 1.18. Throughout, we always assume that ′ and ˘ are applied first, followed
by ·. We will use multiplicative notation for ·, i.e., we will write xy rather than x · y.
For example, x z̆ ∧ y′ means ((x )̆ · z) ∧ (y′).

Definition 1.19 (Relation algebras). A relation-type algebra A is called a nonas-
sociative relation algebra if A[ is a Boolean algebra, e is an identity element for ·,
and the triangle laws (or Peircean laws) hold, i.e., we have

xy ∧ z = 0 ⇐⇒ x z̆ ∧ y = 0 ⇐⇒ zy˘∧ x = 0,

for all x, y, z ∈ A. The class of all nonassociative relation algebras will be denoted by
NA. We call A ∈ NA a semiassociative relation algebra if A satisfies the semiasso-
ciative law, i.e., A |== (x1)1 ≈ x(11). An algebra A ∈ NA is called a relation algebra
if · is associative. The classes of all semiassociative relation algebras and relations
algebras will be denoted by SA and RA, respectively. We call (the value of the term)
d := e′ the diversity element of A. An algebra A ∈ NA is said to be symmetric if
A |== x˘≈ x.

It is easy to check that a relation-type algebra A satisfies the triangle laws if and
only if x 7→ xy˘ is a conjugate of x 7→ xy, for all y ∈ A, and y 7→ x y̆ is a conjugate
of y 7→ xy, for all x ∈ A. Further, since e is an identity for ·, ˘ is selfconjugate. By
Proposition 1.14(2), the triangle laws are equivalent to equations, so NA, SA, and RA
are all varieties.

As one might expect, relation algebras can be constructed from sets of (binary)
relations.

Example 1.20 (Full relation algebra). If D is a set, 〈℘(D2);∪,∩, ◦, c, −1,∅, D2, idD〉
is a relation algebra, where ◦ is (relational) composition, −1 is relational converse,
idD is the identity (or diagonal) relation, i.e., we have

idD = {(x, y) ∈ D2 | x = y},

R ◦ S = {(x, y) ∈ D2 | (x, z) ∈ R and (z, y) ∈ S, for some z ∈ D},

and
R−1 = {(x, y) ∈ D2 | (y, x) ∈ R},

for all R, S ⊆ D2. This algebra is referred to as the full relation algebra on D, and is
denoted by Re(D). If D = {1, . . . , n}, for some n ∈ N, it is common to write Re(n)
rather than Re(D). The diversity element of Re(D) is called the diversity relation
on D, and is denoted by diD.

Like Boolean algebras and tense algebras, relation algebras are connected to logic.
Binary relations are a useful tool for talking about relationships between objects
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formally. For example, the phrase ‘is a parent of’ defines a binary relation on the set of
all people. The relational converse of the relation defined by this phrase corresponds
to the phrase ‘is a child of’. Similarly, the relational composition of the relation
defined by ‘is a parent of’ relation with itself corresponds to ‘is a grandparent of’.
Such ideas motivated the study of the calculus of relations in the late nineteenth
century, which was chiefly advanced by De Morgan, Peirce, and Schröder; see De
Morgan [23], Peirce [80], and Schröder [82]. Full relation algebras were originally
defined in Tarski’s work on the calculus of relations, and the study of relation algebras
grew out of Tarski’s attempt to axiomatise them; see Tarski [86]. Nonassociative and
semiassociative relation algebras were first defined by Maddux in [72] as a natural
generalisation of relation algebras.

Concrete examples of relation algebras can also be constructed from groups.

Example 1.21 (Group relation algebra). If G is a group, 〈℘(G);∪,∩, ·, c, −1,∅, G, {e}〉
is a relation algebra, where · is complex multiplication and −1 is complex inverse, i.e.,
XY = {xy | x ∈ X, y ∈ Y } and X−1 = {x−1 | x ∈ X}, for all X, Y ⊆ G.

Some basic properties of these algebras are stated below; see Chapter 2 of [32],
Chapter 3 of [36], or Chapter 6 of [70]. We will usually use these results silently.
As is customary, we will extend concepts from Boolean algebras to Boolean alge-
bras with operators, and therefore to relation-type algebras in particular. For exam-
ple, we will call a nonassociative relation algebra A complete when A[ is complete,
and we will call a an atom of A when a is an atom of A[.

Proposition 1.22. Let A ∈ NA.

(1) If x ∈ A and S ⊆ A are such that ∨S exists, then both ∨{xs | s ∈ S} and∨{sx | s ∈ S} exist and equal x(∨S) and (∨S)x, respectively. In particular,
A |== x(y ∨ z) ≈ xy ∨ xz and A |== (x ∨ y)z ≈ xz ∨ yz.

(2) If S ⊆ A such that ∨S exists, then ∨{s̆ | s ∈ S} exists and is equal to ∨S .̆
In particular, A |== (x ∨ y)̆ ≈ x˘∨ y .̆

(3) A |== 0˘ = 0, A |== 1˘ = 1, A |== ĕ = e, and A |== d˘ = d.
(4) A |== (xy)̆ ≈ y˘x .̆
(5) If a is an atom, then a˘ is an atom.
(6) If A |== e ≈ 0, then A is trivial.
(7) If 1 < m 6 n, there exists B ∈ NA with n atoms and exactly m atoms below e.

We often work with algebras in which e is an atom, so it will be useful to introduce
notation for them. This definition abuses language slightly; a non-trivial A ∈ NA is
called integral if A |== ∀x, y : xy = 0 → x = 0 g y = 0, which is equivalent to e being
an atom when A ∈ SA, but not in general. See [70] or Section 6.15 of Maddux [72]
for further details.
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Notation 1.23 (INA, ISA, and IRA). The classes of all members of NA, SA, and RA
in which e is an atom will be denoted by INA, ISA, and IRA, respectively.

By Proposition 1.22, the operations of a complete atomic (and, in particular, a
finite) nonassociative relation algebra are completely determined by their values on
its atoms. The table of · restricted to the atoms of a finite A ∈ NA is often called
the atom table of A; since A has log2(|A|) atoms, such a table is a very compact and
convenient description of A. These ideas motivate the following (and the study of
duality and atom structures in general; for more details, see Chapter 1 of Givant [31],
or Chapter 2 of [36].

Definition 1.24 (Atom structure). Let A be a relation-type algebra with A[ a com-
plete atomic Boolean algebra. We call At(A) := 〈At(A); fA, IA, TA〉 the atom struc-
ture of A, where At(A) is the set of atoms of A, fA is the unary operation on At(A) de-
fined by x 7→ x ,̆ IA := {a ∈ At(A) | a 6 eA}, and TA := {(a, b, c) ∈ At(A)3 | ab > c}.
If eA is an atom, we also call Ate(A) := 〈At(A); fA, e

A, TA〉 the atom structure of A.

It turns out that the classes of these structures can be first-order axiomatised.
Firstly, we introduce the appropriate signatures.

Definition 1.25 (Atom-type structure). An atom-type structure is a structure of the
signature {f, T, I}, where f is a unary operation symbol, T is a ternary relation sym-
bol, and I is a unary relation symbol. An integral atom-type structure is a structure of
the signature {f, e, T}, where f is a unary operation symbol, e is a nullary operation
symbol (i.e., constant), and T is a ternary relation symbol.

Definition 1.26 (FAS, FSIAS, and FSIASe). Let FAS denote the class of all finite
atom-type structures such that:

(P) for all a, b, c ∈ U , we have (f(a), c, b), (c, f(b), a) ∈ T whenever (a, b, c) ∈ T ;
(I) for all a, b ∈ U , we have a = b if and only if there is some i ∈ I with

(a, i, b) ∈ T .

An atom-type structure U is said to be symmetric and integral if U |== f(x) ≈ x

and |I| = 1, respectively. The class of all symmetric integral members of FAS will
be denoted by FSIAS. Let FSIASe denote the class of all finite integral atom-type
structures where f(x) ≈ x and:

(IP) for all a, b, c ∈ U , we have (f(a), c, b), (c, f(b), a) ∈ T whenever (a, b, c) ∈ T ;
(II) for all a, b ∈ U , we have a = b if and only if (a, e, b) ∈ T .

The following construction generalises how a complete atomic nonassociative re-
lation algebra is recovered from its atom structure.

Definition 1.27 (Complex algebra). Let U be an atom-type structure. We call the
relation-type algebra Cm(U) := 〈℘(U);∪,∩, ·U, c,˘U,∅, U, I〉 the complex algebra of
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U, where ·U and ˘U are defined by

X ·U Y = {z ∈ U | (x, y, z) ∈ T, for some x ∈ X, y ∈ Y }

and
X˘U = {f(x) | x ∈ X},

for all X, Y ⊆ U . In the case where U is an integral atom-type structure, we call
Cme(U) := 〈℘(U);∪,∩, ·U, c,˘U,∅, U, {eU}〉 the complex algebra of U.

The connections between these classes is summarised below; see [72], for example.
The third result is unsurprising, since FSIAS and FSIASe are essentially the same
structures in different signatures.

Proposition 1.28. FAS is precisely the class of all atom structures of finite mem-
bers of NA, FSIAS is precisely the class of all atom structures of finite and symmetric
members of INA. Every finite member of NA isomorphic to the complex algebra of a
member of FAS. Every finite symmetric member of INA is isomorphic to the complex
algebra of a member of FSIAS. Thus, there are bijective correspondences between the
sets of isomorphism classes from:

(1) the class of finite members of NA and FAS;
(2) the class of finite and symmetric members of INA and FSIAS;
(3) FSIAS and FSIASe.

Next, we introduce the important notion of a cycle from Maddux [67].

Definition 1.29 (Cycles). Let U be an atom-type structure and let a, b, c ∈ U . We
call (a, b, c), (f(a), c, b), (b, f(c), f(a)), (f(b), f(a), f(c)), (f(c), a, f(b)), and (c, f(b), a)
the Peircean transforms of (a, b, c). The set of Peircean transforms of (a, b, c) is called a
cycle and is denoted by [a, b, c]. We call (a, b, c) an identity triple if I∩{a, b, c} 6= ∅ and
a diversity triple otherwise. We call [a, b, c] an identity cycle if it contains an identity
triple and a diversity cycle otherwise. We call (a, b, c) consistent if (a, b, c) ∈ T and
forbidden otherwise. Lastly, we call [a, b, c] consistent if [a, b, c] ⊆ T and forbidden if
[a, b, c] ∩ T = ∅. These concepts will be extended to integral atom-type structures in
the obvious way.

The following result from [67] illustrates the importance of cycles as a tool for
axiomatising and understanding atom structures.

Proposition 1.30. (1) Let U be an atom-type structure.
(a) The following are equivalent:

(i) U satisfies (P);
(ii) for all a, b, c ∈ U , the cycle [a, b, c] is either consistent or forbidden.

(b) The following are equivalent:
(i) U satisfies (I);
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(ii) for all a, b ∈ U , we have a = b if and only if [a, i, b] is consistent,
for some i ∈ I.

(c) If U is integral, then the following are equivalent:
(i) U satisfies (I);
(ii) f(e) = e and {[a, e, a] | a ∈ U} is the set of consistent identity

cycles, where e is the unique element of I.
(2) Let U be an integral atom type structure.

(a) The following are equivalent:
(i) U satisfies (IP);
(ii) for all a, b, c ∈ U , the cycle [a, b, c] is either consistent or forbidden.

(b) The following are equivalent:
(i) U satisfies (II);
(ii) f(e) = e and {[a, e, a] | a ∈ U} is the set of consistent identity

cycles.

1.3. Tools from general algebra and model theory

In this section, we aim to give a brief overview of some of the concepts and results
from universal algebra and model theory that we will need later. We refer the reader to
Bergman [13], Burris and Sankappanavar [16], and Werner [88] for more on universal
algebra; and to Bell and Slomson [11], Chang and Keisler [18], and Hodges [41] for
more on model theory. Firstly, we recall two different notions of discriminator terms.

Definition 1.31 (Discriminator terms). Let A be an algebra. A ternary discrimina-
tor term for A is a term t whose interpretation is the ternary discriminator function
on A, i.e.,

t(x, y, z) =

x if x 6= y

z if x = y.

A variety V is called a discriminator variety if there is a term that is a ternary
discriminator term for all subdirectly irreducible members of V. If A is an expansion
of a Boolean algebra, then a term u whose interpretation satisfies

u(x) =

1 if x 6= 0
0 if x = 0

is called a unary discriminator term for A.

A simple calculation gives the following result, which implies that these two notions
are equivalent for Boolean algebras with operators. See Chapter 2 of [43], for example.

Proposition 1.32. Let A be an expansion of a Boolean algebra.

(1) If t is a ternary discriminator term for A, then t(0, x, 1)′ is a unary discrim-
inator term for A.
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(2) If u is a unary discriminator term for A, then (x∧u(x⊕ y))∨ (z∧u(x⊕ y))′

is a ternary discriminator term for A, where x⊕ y := (x ∧ y′) ∨ (x′ ∧ y).

Example 1.33. The term 1x1 is a unary discriminator for every subdirectly irre-
ducible member of RA, so RA is a discriminator variety.

The study of discriminator terms and discriminator varieties was motivated by
attempts to capture some useful properties of Boolean algebras, some of which are
summarised below. We refer to Chapter 6 of [13], Chapter 4 of [16], Jónsson [50],
Pixley [81], or [88] for further details.

Proposition 1.34. Let K be a class of similar non-trivial algebras with a common
discriminator term. Then

(1) every element of K is simple;
(2) all directly indecomposable and subdirectly irreducible elements of Var(K) are

simple;
(3) the class of simple (and therefore the class of subdirectly irreducible) elements

of Var(K) is precisely ISU(K);
(4) Var(K) is congruence permutable, congruence distributive, congruence exten-

sile, congruence regular, congruence uniform, and semisimple;
(5) the subvariety lattice of Var(K) is distributive.

Based on Proposition 1.34(5), the varieties of finite height in the subvariety lattice
of a discriminator variety are completely determined by join-irreducible elements of
finite height. The following result is a consequence of Jónsson’s Theorem that char-
acterises join-irreducible covers in the subvariety lattices of discriminator varieties;
see Lemma 3.30 from Jipsen [43].

Proposition 1.35. Let V be a discriminator variety, let U be a proper subvariety of V,
and let A ∈ V be simple.

(1) If A is infinite, then Var(A) is a join-irreducible cover of U if and only if
A /∈ U, U ⊆ Var(A), and we have A ∈ ISU(B), for all B ∈ ISU(A) \ U.

(2) If A is finite, then Var(A) is a join-irreducible cover of U if and only if
U ⊆ Var(A) and S(A) \ U = {A}.

Next, we state a pair of results on ultraproducts. Their proofs are relatively routine
applications of techniques in Chapter 5 of [11], Chapter 4 of [18], or Chapter 8 of [41].

Proposition 1.36. Let I be a non-empty set and let U be an ultrafilter over I.

(1) Let {Ai | i ∈ I} and {Bi | i ∈ I} be indexed sets of similar algebras,
let ā ∈ ∏

i∈I Ai, let b̄ ∈ ∏
i∈I Bi, let µi : Ai → Bi be an isomorphism that

satisfies µi(ā(i)) = b̄(i), for each i ∈ I, and define ` : ∏i∈I Ai →
∏
i∈I Bi by
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`(a)(i) = µi(a(i)), for all i ∈ I. Then the map x̄/U 7→ `(x̄)/U is a well-
defined isomorphism from the subalgebra of ∏i∈I Ai/U generated by ā/U to
the subalgebra of ∏i∈I Bi/U generated by b̄/U .

(2) Let A be an algebra and let a ∈ A. For each x ∈ A, define x̄ : I → A by i 7→ x.
Then, for each x ∈ A, the subalgebra of A generated by a is isomorphic to
the subalgebra of AI/U generated by ā/U via the canonical map x 7→ x̄/U .

To conclude this section, we will summarise the presentation of Fräıssé limits from
Chapter 6 of [41]. The construction of these structures generalises the construction
of the ordered set of rational numbers from the class of finite chains and the random
graph (also known as the Rado graph or Erdős-Rényi graph) from the class of finite
graphs.

Definition 1.37 (Age). Let A be a structure. The age of A is the class of all finitely
generated structures that embed into A.

Definition 1.38 (HP, JEP, and AP). Let K be a class of similar structures. We
say that K has the hereditary property (HP) if K is closed under forming finitely
generated structures. We say that K has the joint embedding property (JEP) if, for
all A,B ∈ K, there is some C ∈ K that both A and B embed into. We say that K has
the amalgamation property (AP) if, for all A,B,C ∈ K and embeddings µ : A → B
and ν : A → C, there is some D ∈ K and embeddings µ′ : B → D and ν ′ : C → D
such that µ′ ◦ µ = ν ′ ◦ ν.

Definition 1.39 (Homogeneity). Let A be a structure. We call A ultrahomogeneous
if every isomorphism between finitely generated substructures of A extends to an
automorphism of A. We call A weakly homogeneous if, for all finitely generated
structures B and C of A with B 6 C and all embeddings µ : B → A, there is an
embedding ν : C→ A extending µ.

Proposition 1.40. A finite or countable structure is ultrahomogeneous if and only if
it is weakly homogeneous.

Proposition 1.41 (Fräıssé’s Theorem). Let S be a countable signature and let K be
a class of at most countable S-structures, that has the HP, JEP, and AP. Then there
is an S-structure F (called a Fräıssé limit of K), unique up to isomorphism, such that
(the universe of) F is at most countable, K is the age of F, and F is ultrahomogeneous.

To state the last result of this section, we need to recall some definitions.

Definition 1.42 (Uniform local finiteness). Let K be a class of similar structures.
We say that K is uniformly locally finite if there is a function f : N → N, such that,
for all A ∈ K, each n ∈ N, and every subset S of A with |S| 6 n, the substructure of
A generated by S has cardinality at most f(n).
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Definition 1.43 (κ-categorical). Let κ be an infinite cardinal and let T be a first-
order theory. We say that T is κ-categorical if T has a unique model of cardinality κ
up to isomorphism.

The following result is Theorem 6.4.1 of [41].

Proposition 1.44. Let S be a finite signature, let K be a uniformly locally finite class
of S-structures with the HP, JEP, and AP, and at most countably many isomorphism
types of finitely generated S-structures, and let F be a Fräıssé limit of K. Then the
first-order theory of F is ℵ0-categorical and has quantifier elimination.



CHAPTER 2

Representability

In this chapter, we will revise the classical notion of representability for relation al-
gebras, and then look at two notions of representability that appeared in the literature
more recently, namely feeble and qualitative representability, which will be central in
the following chapters. We will also cover networks and some of their applications.

2.1. Background

Before we can give the classical definition of a representation, we will need to
generalise the structures from Example 1.20.

Definition 2.1 (Proper relation algebra). Let E be an equivalence relation on a set
D. We call Re(E) := 〈℘(E);∪,∩, ◦, c, −1,∅, E, idD〉 the proper relation algebra on E.

To help distinguish between the different notions of representability we will be us-
ing, we use the term strong representability for the classical notion of representability.

Definition 2.2 (Strong representation). Let A ∈ RA. We call A strongly repre-
sentable if there exists an embedding φ : A→ Re(E), for some equivalence relation E
over a set D. An embedding of this form will be called a strong representation of A.
In the case where E = D2, a representation is called a square representation of A.
The classes of all strongly representable and square representable members of RA will
be denoted by RRA and SqRRA, respectively.

Some basic properties of strongly representable relation algebras are summarised
in the proceeding proposition. For further details, see Chapter 3 of Hirsch and Hodkin-
son [36], Hirsch and Hodkinson [38], Jónsson and Tarski [55], Lyndon [65], Monk [74],
and Tarski [84], for example.

Proposition 2.3. (1) If E is an equivalence relation, then Re(E) ∈ RA.
(2) RRA is a variety, and hence an equational class. In fact, RRA is canonical.
(3) Every simple member of RRA embeds into Re(D), for some set D.
(4) 1(x1) is a unary discriminator term for RRA.
(5) RRA is a proper subvariety of RA. Further, RRA is not finitely first-order

axiomatisable relative to RA, i.e., there is no finite set F of first-order sen-
tences with RRA = {A ∈ RA | A |== F}, or equivalently, a first-order sentence
σ with RRA = {A ∈ RA | A |== σ}.

(6) RRA has no finite first-order axiomatisation.

13
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(7) The problem of deciding whether a finite A ∈ RA is in RRA is undecidable.
(8) The problem of deciding whether an equation holds over RRA is undecidable.

As we saw in Section 1.2, the study of algebras of relations arose fairly naturally
from the study of the calculus of relations, so the study of strongly representable rela-
tion algebras is understandably one of the central focuses of research into relation-type
algebras. However, strong representability has limitations in some contexts, particu-
larly in applied ones. For example, relation-type algebras often appear in the study of
constraint satisfaction problems (CSPs), where strong representability is too restric-
tive to model some problems. Loosely speaking, strong representations require certain
properties to hold everywhere they can possibly hold, when it is sometimes more nat-
ural to require that they only hold somewhere, or that only allowable properties hold.
(Respectively, these conditions correspond to qualitative and feeble representability.)
To an algebraist, strong representability could be seen as too restrictive, as it only
applies to relation algebras. For general introductions to CSPs and applications of
relation-type algebras, see Allen [6], Lecoutre [62], Maddux [69], and Tsang [87].

Weaker notions of representability have appeared in articles since the early nine-
teen fifties. For example, Jónsson and Tarski defined what was called weak repre-
sentability in [55]. Here a weak representation is an embedding of a relation algebra
into an algebra of binary relations where every operation other than meet and com-
plement is the usual set theoretic one. In [55], Jónsson and Tarski show that weak
representations exist for all relation algebras. This was intended to be a first step to
showing that all relation algebras are strongly representable, which was later shown to
be impossible by Lyndon, who constructed a nonrepresentable relation algebra in [65].
We will focus on feeble and qualitative representability, which were defined by Hirsch,
Jackson, and Kowalski in [40]. Firstly, we will need to introduce what they call a herd.

Definition 2.4 (Herd). Let D be a set. We call a subset H of ℘(D2) a herd (over D)
if H is a subuniverse of 〈℘(D2);∪,∩, c, −1,∅, D2, idU〉. We call D the base of H .

Definition 2.5 (Feeble and qualitative representations). Let A ∈ NA, let H be a herd,
and let φ : A→H be an injective map that preserves ∨, ∧, ′, ,̆ 0, 1, and e.

(F) φ is called a feeble representation (of A in H ) if we have φ(x) | φ(y) ⊆ φ(xy),
for all x, y ∈ A.

(Q) φ is called a qualitative representation (of A in H ) if, for all x, y, z ∈ A,
we have that

φ(x) | φ(y) ⊆ φ(z) ⇐⇒ xy 6 z.

If A has a feeble or qualitative representation, we call A feebly or qualitatively repre-
sentable, respectively. The classes of all feebly and qualitatively representable mem-
bers of NA will be denoted by FRA and QRA, respectively. Define GFRA := Var(FRA)
and GQRA := Var(QRA). (This notation follows Hirsch, Jackson, Koussas, and Kowal-
ski [39]. The ‘G’ refers to ‘generated’, as FRA and QRA are not varieties.)
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As in [40], we restrict these definitions to the equivalents of square representations,
i.e., strong representations that map an algebra into the full relation algebra on a set.
In [86], Tarski only considers square representations. In the literature, it is common
to define RRA as the variety generated by the class of all square representable relation
algebras. Thus, our definitions are in line with conventional definitions if we view
FRA and QRA as equivalents of square representable algebras, and GFRA and GQRA
as equivalents of RRA. Further, almost all of the algebras we consider in this thesis
are simple, which implies that membership in (FRA and GFRA) or (QRA and GQRA)
are equivalent for these algebras.

The following gives an equivalent definition of qualitative representability.

Proposition 2.6. Let A ∈ NA, let H be a herd over a base D, and let φ : A → H

be an injective map preserving ∨, ∧, ′, ,̆ 0, 1, and e. Then (1) and (2) are equivalent,
and the three statements are equivalent when A is complete and atomic:

(1) φ is a feeble representation of A in H ;
(2) for all x, y, z∈A, we have xy∧z 6=0 if there are u, v, w∈D with (u, v)∈φ(x),

(v, w) ∈ φ(y), and (u,w) ∈ φ(z);
(3) for all a, b, c ∈ At(A), we have ab ∧ c 6= 0 if there are u, v, w ∈ D with

(u, v) ∈ φ(a), (v, w) ∈ φ(b), and (u,w) ∈ φ(c).

Similarly, (1) and (2) below are equivalent, and the three statements are equivalent
when A is complete and atomic:

(4) φ is a qualilitive representation of A in H ;
(5) for all x, y, z ∈ A, we have xy ∧ z 6= 0 if and only if there are u, v, w ∈ D

with (u, v) ∈ φ(x), (v, w) ∈ φ(y), and (u,w) ∈ φ(z);
(6) for all a, b, c ∈ At(A), we have ab∧ c 6= 0 if and only if there are u, v, w ∈ D

with (u, v) ∈ φ(a), (v, w) ∈ φ(b), and (u,w) ∈ φ(c).

The following summarises the main properties of GFRA and GQRA from [39] and
[40].

Proposition 2.7. (1) RRA ⊂ GQRA ⊂ GFRA.
(2) 1(x1) is a unary discriminator term for GFRA and GQRA.
(3) Every non-trivial element of FRA (and therefore QRA) is simple.
(4) Every simple element of GFRA and GQRA is in FRA and QRA, respectively.
(5) Every class K with RRA ⊆ K ⊆ GFRA has no finite first-order axiomatisation.

In particular, GFRA and GQRA have no finite first-order axiomatisations.
(6) If A ∈ FRA or A ∈ QRA, then A has a feeble representation on a base with

at most 2| log2(A)| or a qualitative representation on a base with at most
3| log2(A)|3 points, respectively. So, the problems of deciding whether a finite
A ∈ NA is a member of FRA or QRA are both in NP, and hence decidable.
Further, both problems are NP-complete (using the number of atoms as the
input size, not the size of the algebra).
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(7) The problems of deciding whether a finite A ∈ NA is a member of GFRA or
GQRA are both NP-complete (using the number of atoms as the input size,
not the size of the algebra). In particular, both problems are decidable.

(8) GQRA and RRA are not finitely first-order axiomatisable relative to GFRA.
(9) The problem of deciding whether an equation holds over QRA is co-NP-complete.

We can use a brief decidability argument to obtain a similar result to Proposi-
tion 2.7(7). This result is due to the author and is set to appear in [39].

Theorem 2.8. RRA is not finitely first-order axiomatisable relative to GQRA.

Proof. For a contradiction, say RRA is finitely first-order axiomatisable relative to
GQRA. Then there is a first-order sentence σ such that RRA = {A ∈ GQRA | A |== σ}.
By Proposition 2.7(7), we can decide whether a finite A ∈ RA is a member of RRA:
firstly, check whether we have A ∈ GQRA; then check whether we have A |== σ;
then accept if and only if both conditions hold. This contradicts Proposition 2.3(7),
so we are done. �

2.2. Networks

A strong representation of an atomic algebra can be viewed as a labelled directed
graph; take the base as the set of vertices and label edges by the atom whose image
contains it. For square representations, this graph is complete. By looking at labelled
complete graphs, one can study feeble, qualitative, and strong representations from a
different perspective, and look at various ways of approximating or constructing these
representations. Further, these graphs also relate to network problems that arise in
applications. For further details, we refer to Chapter 7 of Hirsch and Hodkinson [36]
and Hirsch, Jackson, and Kowalski [40]; we will mostly follow the conventions in [40].

Definition 2.9 (Network). Let A ∈ NA, let N be a set, and let λ : N2 → A. We call
〈N ;λ〉 a network (over A). We call 〈N ;λ〉 atomic if λ[N2] ⊆ At(A). We call 〈N ;λ〉
consistent if:

(N1) λ(u, u) 6 e, for all u ∈ N ;
(N2) λ(u, v)λ(v, w) ∧ λ(u,w) 6= 0, for all u, v, w ∈ N .

The elements of N and values of λ are usually called nodes and labels, respectively.

Some basic properties of networks from [40] are summarised below.

Proposition 2.10. Let A ∈ NA and let 〈N ;λ〉 be a network (over A).

(1) If 〈N ;λ〉 is consistent, then λ(u, v) ∧ λ(v, u)̆ 6= 0, for all u, v ∈ N .
(2) If 〈N ;λ〉 is consistent, then λ(u, v) 6= 0, for all u, v ∈ N .
(3) If 〈N ;λ〉 is consistent and atomic, then λ(v, u) = λ(u, v)̆ , for all u, v ∈ N .
(4) If 〈N ;λ〉 is atomic, then 〈N ;λ〉 satisfies (N2) if and only if (λ(u, v), λ(v, w), λ(u,w))

is consistent in A, for all u, v, w ∈ N .
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Networks can be used to define a sequence of subclasses of NA that approximate
RRA in the sense that they are strictly decreasing (in the inclusion order) and intersect
to RRA. These classes were originally defined by Maddux in [66] using matrices rather
than networks, but these formulations are essentially equivalent; see [36].

Definition 2.11 (Bases). Let A ∈ NA and let n > 2. A n-dimensional relational basis
for A is a set R of consistent atomic networks over A with underlying set {1, . . . , n}
such that:

(RB1) for all a ∈ At(A), there exists 〈{1, . . . , n};λ〉 ∈ R with λ(1, 2) = a;
(RB2) for all 〈{1, . . . , n};λ〉 ∈ R, u, v, w ∈ {1, . . . , n} such that w 6= u and w 6= v,

and a, b ∈ At(A) with λ(u, v) 6 ab, there exists 〈{1, . . . , n};λ′〉 ∈ R with
λ′(u,w) = a, λ′(w, v) = b, and λ′(u′, v′) = λ(u′, v′), for all u′, v′ ∈ {1, . . . , n}
with (u′, v′) /∈ {(u,w), (v, w), (w, u), (w, v)}.

Definition 2.12 (RAn). For each n > 2, let RAn denote the class of all relation-type
algebras that embed into an atomic member of NA with an n-dimensional relational
basis.

A Hasse diagram of inclusions for the classes we have defined is shown below.

QRA

FRA

RRA

GQRA

GFRA

RA5

RA = RA4

SA = RA3

IRA

ISA

INA

NA = RA2

SqRRA

...

Figure 2.1. A Hasse diagram of classes.

Like the majority of the classes of Boolean algebras with operators we have dis-
cussed, these classes are connected to logic. The class RAn is the class of models of the
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equational forms of statements in the calculus of relations that can be proved using
at most n variables; for further details, see Maddux [66].

Some basic properties of these classes are summarised below; we refer to [36],
Hirsch and Hodkinson [37], [66], Maddux [67], and Maddux [70] for further details.
Here canonical means closed under canonical extensions; see Chapter 2 of [36].

Proposition 2.13. (1) RA2 = NA, RA3 = SA, RA4 = RA, and ⋂∞n=1 RAn = RRA.
(2) RAn is a canonical variety, for all n > 3.
(3) If m > n > 2, then RAn ⊂ RAm. Further, if m > n > 4, then RAm is not

finitely first-order axiomatisable relative to RAn.
(4) If n > 2 and A ∈ NA is finite, then A ∈ RAn if and only if A has a n-

dimensional relational basis.
(5) Any finite set of equations that hold in all members of RRA is included in the

equational theory of RAn, for some n > 2.
(6) For each n > 2, the problem of deciding whether a finite A ∈ NA is in RAn

is in P. In particular, these problems are decidable.

The connections between networks and feeble and qualitative representability are
summarised in the following pair of results based on results from [40].

Proposition 2.14. Let A ∈ NA be atomic. If there is a consistent atomic network
〈N ;λ〉 such that, for each atom a, there exist u, v ∈ N with λ(u, v) = a, then A ∈ FRA.
Further, the converse holds if A is finite.

Proposition 2.15. Let A ∈ NA be atomic. If there is a consistent atomic network
〈N ;λ〉 such that, for all consistent triples (a, b, c) of A, there exist u, v, w ∈ N with
λ(u, v) = a, λ(v, w) = b, and λ(u,w) = c, then A ∈ QRA. Further, the converse holds
if A is finite.

For contrast, we state the equivalent result for strong representations; see Alm,
Maddux, and Manske [4].

Proposition 2.16. Let A ∈ NA be atomic. If there is a consistent atomic network
〈N ;λ〉 such that: for all u ∈ N and a ∈ A, there exists some v ∈ N satisfying
λ(u, v) = a; and, for all consistent triples (a, b, c) of A and u, v ∈ N with λ(u, v) = c,
there exists w ∈ N that satisfy λ(u,w) = a and λ(w, v) = b, then A has a square
representation. Further, the converse holds if A is finite.

The three preceding results effectively justify the claims about the requirements
representations have on networks in Section 2.1; all triangles that appear must be
consistent, feeble representations require every atom to appear, qualitative represen-
tations require every consistent triangle to appear, and strong representations require
every consistent triangle to appear everywhere it can.
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2.3. Representability of chromatic algebras

To conclude this chapter, we will study the algebras En(X) defined in Maddux [68].
The results in this section will appear in Al Juaid, Jackson, Koussas, and Kowalski [1].
The idea to use the Walecki construction in Theorem 2.19, Lemma 2.20, and the
‘only if’ portion of Theorem 2.21 are due to Tomasz Kowalski. Unless stated otherwise,
the remaining results are due to the author.

Following the conventions in [1], we will call these algebras chromatic algebras.
As well as being interesting in their own right, studying the representability of these
algebras is quite illustrative and highlights the difference between the three notions of
representability we will be focusing on. We begin by defining these algebras formally.

Definition 2.17 (Chromatic algebras). For every n ∈ N and X ⊆ {1, 2, 3}, we define
An := {e, a1, . . . , an−1}, fn = idAn , and

TX,n :=
(⋃
{[a, e, a] | a ∈ An}

)
∪
(⋃
{[a, b, c] | |{a, b, c}| ∈ X and a, b, c ∈ An\{e}}

)
.

We call En(X) := Cm(〈An; fn, TX,n, {e}〉) the chromatic algebra (on X and n).

We will drop set brackets whenever possible. For example, we will write En(1, 3)
rather than En({1, 3}), and ai rather than {ai}.

Two important classes of relation-type algebras can be defined as chromatic alge-
bras. Chromatic algebras of the form En(1, 3) are often called Lyndon algebras in the
literature. These algebras were first studied by Jónsson in [49]. Later, in [64], Lyn-
don showed that, En(1, 3) is strongly representable if and only if there is a projective
plane of order n − 2, for all n > 5. Using the Bruck-Ryser-Chowla Theorem on the
nonexistence of projective planes, in [74], Monk constructs a strongly representable
ultraproduct of nonrepresentable Lyndon algebras; Monk’s original proof of Proposi-
tion 2.3(5) used this construction. In [52], Jónsson used these algebras to show that
there is no equational axiomatisation of RRA that uses only finitely many variables.
Since so many important results in the theory of relation algebras use these algebras,
it should not be surprising that the problem of determining whether they are strongly
representable has attracted some interest; Maddux mentions it in [68], for example.
Both the feeble and qualitative representability of Lyndon algebras is studied in [1].
We have that E1(1, 3),E2(1, 3) ∈ RRA, E3(1, 3) /∈ FRA, and E4(1, 3) ∈ FRA \ QRA.
When n > 5, we always have En(1, 3) ∈ FRA, and the membership of En(1, 3) in QRA
is equivalent to the existence of a certain type of geometry; we refer to [1] for details.

Another important class is the class of all chromatic algebras of the form En(2, 3),
which are often called Ramsey algebras, due to their connection to Ramsey theory.
By Ramsey’s Theorem (see Chapter 5 of Jukna [56]), a complete graph (edge) coloured
by a finite set of colours always has a triangle that has a monochromatic triangle,
provided its vertex set is larger than a constant that depends on the number of colours;
by Lemma 2.16, representable Ramsey algebras must be representable on a finite set,
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as every triangle in a network is consistent and all one-label triangles are forbidden.
Other common names for these algebras include Monk algebras and Maddux algebras;
see Hirsch and Hodkinson [36], for example. Despite being less popular than Lyndon
algebras, the representability problem for these algebras has attracted some interest.
In [19], Comer defines these algebras and constructs strong representations of En(2, 3),
for all n 6 6. In [59], Kowalski gives strong representations for all 7 6 n 6 119, except
9 and 14, and in [5], Alm and Manske give strong representations for all 7 6 n 6 399,
except 9 and 14; their approaches were developed concurrently and independently.
In Alm [3], the latter upper bound was improved to 1999. Using Walecki’s cycle
decomposition (as in Alspach [7]), we will solve the qualitative (and hence feeble)
representability problem by defining networks that give representations of En(2, 3),
for all n ∈ N. The edges that are coloured by the first colour are illustrated below.
Subsequent colours are obtained by rotating the previous pattern one step clockwise.

u1
u2

u3

u4

un−2

un−1
un

un+1

un+2

un+3

un+4

u2n−2

u2n−1
u2n

Figure 2.2. The edges coloured by the first colour.

Example 2.18. Some small concrete examples of these colourings are shown below.

Figure 2.3. Three small examples of colourings.

Theorem 2.19. En(2, 3) ∈ QRA, for all n ∈ N.

Proof. It is clear that E1(2, 3) is strongly and therefore qualitatively representable.
For notational convenience, we will construct qualitative representations of En+1(2, 3),
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for all n ∈ N. Let n ∈ N and, for each m ∈ N, define sm : Z→ Z by x 7→ Rm(x−1)+1.
Using some basic modular arithmetic, it is easy to check that

sn(s2n(p) + s2n(q)) = sn(p+ q),

for all p, q ∈ Z. We will use this observation silently to omit s2n within brackets.
Let N := {u1, . . . , u2n} with ui 6= uj if i 6= j, and define λ : A2

n → N using Figure 2.3.
More formally, we first define λ(ui, ui) = e, for all 1 6 i 6 2n. Next, by construction,
the index of λ(u1, u1+s) is d(s+ 1)/2e, for all 1 6 s 6 2n− 1; u2n moves to u1 for a2,
hence we have λ(u1, u2) = a2 = λ(u1, u3), and similarly for the remaining values of s.
So, based on the clockwise rotation and periodicity involved in the construction above,
the index of λ(ui, ui+s) is given by

sn

(⌈
s+ 1

2

⌉
+ i− 1

)
,

for all 1 6 i 6 2n and s ∈ Z \ 2nZ; the edges from u2 have the same pattern as u1,
but shifted by 1, and similarly for the remaining values. This formally describes λ.
By construction, the triangles that appear will never have the same label on all edges,
since the edges of a given label form a Hamiltonian path. So, based on Lemma 2.15,
it remains to show that 〈N ;λ〉 has all two-label or three-label triangles.

Let 1 6 i, j, k 6 n with i < j. Firstly, assume that k 6= i. Define ` := s2n(i+j−k),
s := 2k − 2j + 1, and t := 2k − 2i. Observe that s, t ∈ Z \ 2nZ. Based on the above,
the index of λ(u`, us2n(`+s)) is

sn

(⌈
(2k − 2j + 1) + 1

2

⌉
+ (i+ j − k)− 1

)
= sn(k − j + 1 + i+ j − k − 1)

= i.

Similarly, the index of λ(u`, us2n(`+t)) is

sn

(⌈
(2k − 2i) + 1

2

⌉
+ (i+ j − k)− 1

)
= sn(k − i+ 1 + i+ j − k − 1)

= j.

Since i < j, we have s < t. Now, we have

t− s = (2k − 2i)− (2k − 2j + 1)

= 2(j − i)− 1,

which is in Z \ 2nZ, hence the index of λ(us2n(`+s), us2n(`+t)) is

sn

(⌈
(2(j − i)− 1) + 1

2

⌉
+ ((2k − 2j + 1) + (i+ j − k))− 1

)
= sn(j − i+ 2k − 2j + 1 + i+ j − k − 1)

= k.

Thus, u`, us2n(`+s), and us2n(`+t) form a triangle with edges coloured by ai, aj, and ak.
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Next, assume that k 6= j. Define ` := s2n(i+j−k), s := 2k−2j, and t := 2k−2i+1.
Similarly to the above, the index of λ(u`, us2n(`+s)) and λ(u`, us2n(`+s)) are given by

sn

(⌈
(2k − 2j) + 1

2

⌉
+ (i+ j − k)− 1

)
= sn(k − j + 1 + i+ j − k − 1)

= i

and

sn

(⌈
(2k − 2i+ 1) + 1

2

⌉
+ (i+ j − k)− 1

)
= sn(k − i+ 1 + i+ j − k − 1)

= j.

Similarly to the previous case, we have

t− s = (2k − 2i+ 1)− (2k − 2j)

= 2(j − 1) + 1,

so the index of λ(us2n(`+s), us2n(`+t)) is

sn

(⌈
(2(j − i) + 1) + 1

2

⌉
+ ((2k − 2j) + (i+ j − k))− 1

)
= sn(j − i+ 1 + 2k − 2j + i+ j − k − 1)

= k.

Thus, u`, us2n(`+s), and us2n(`+t) form a triangle with edges coloured by ai, aj, and ak.
Combining the observations from the two cases above, by taking (k = i and k 6= j),

(k = j and k 6= i), or k 6= i, j, we can construct every two-label or three-label triangle,
which is what we wanted to show. �

While the remaining cases are not as well-studied as Lyndon or Maddux algebras,
their feeble, qualitative, and strong representation problems are completely solved.
By Lemma 2.14 and Lemma 2.16, we have E1(∅) ∈ RRA and En(∅) /∈ FRA if n > 1,
as there is no suitable network. Similarly, E1(1),E2(1) ∈ RRA and En(1) /∈ FRA, for all
n > 2. Using Lemma 2.16, it is easy to check that E1(2),E2(2),E3(2) ∈ RRA. In [1], it
is shown that En(2) ∈ FRA\QRA, for all n > 3. We have En(1, 2) ∈ RRA, for all n ∈ N;
this is stated in [68] and follows from Theorem 422 from Maddux [70]. It is stated
in [68] that En(1, 2) is only strongly representable on a finite set if n < 4. In [47],
Jipsen, Maddux, and Tuza show that En(1, 2, 3) ∈ RRA, for all n ∈ N. Further,
the representations constructed in [47] are on base sets with finitely many points.
Using networks as above, it is easy to verify that E1(3) ∈ RRA and E2(3),E3(3) /∈ FRA.
It is stated in [68] that E4(3) is strongly representable on a 4-element set, and that
En(3) /∈ RA when n > 4, which implies that En(3) /∈ RRA when n > 4. We will
see that the qualitative representability of En(3), for n > 4, is equivalent to the
existence of a commutative idempotent quasigroup. Using this observation, we show
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that En(3) ∈ FRA, for all n > 4; see Corollary 2.23. Recall that a quasigroup is an
algebra with a single binary operation (also known as a binar or magma) with both
left and right cancellation properties, and that an idempotent quasigroup is one that
is a model of the equation x2 ≈ x. We will make use of the following existence result
for these quasigroups; ⊕n, ⊗n, and Rn are defined in the note on notation.

Lemma 2.20. If n ∈ N is odd, then 2 has a multiplicative inverse in Zn and 〈Zn; ·n〉
is a commutative idempotent quasigroup, where ·n is given by (p, q) 7→ (p⊕n q)⊗n 2−1.

Proof. Clearly, dn/2e is the multiplicative inverse of 2 in Zn. For all p, q, r ∈ Zn,
we have

p ·n q = p ·n r =⇒ (p⊕n q)⊗n 2−1 = (p⊕n r)⊗n 2−1

=⇒ p⊕n q = p⊕n r

=⇒ q = r,

hence 〈Zn; ·n〉 has right cancellation. By symmetry, 〈Zn; ·n〉 also has left cancellation.
The commutativity of 〈Zn; ·n〉 follows immediately from the commutativity of ⊕n.
Lastly, we have

p ·n p = (p⊕n p)⊗n 2−1

= Rn(Rn(2p)⊗n 2−1)

= p,

so 〈Zn; ·n〉 is idempotent. Combining these results, we find that 〈Zn; ·n〉 is a commu-
tative idempotent quasigroup, as required. �

Theorem 2.21. If n > 3, then En+1(3) ∈ QRA if and only if n is odd.

Proof. Firstly, for the reverse implication, assume that n is odd. By Lemma 2.20(1),
〈Zn; ·n〉 is a commutative idempotent quasigroup. Now, define N := {u0, u1, . . . , un},
where ui 6= uj, for all distinct 0 6 i, j 6 n, and define λ : N2 → An by

λ(u, v) =


e if u = v

ai if (u, v) ∈ {(ui, un), (un, ui)}
ai·j if (u, v) = (ui, uj) and i, j ∈ Zn are distinct;

since 〈Zn; ·n〉 is commutative, λ is a well-defined map. If u, v, w ∈ N with u = v,
u = w, or v = w, then (λ(u, v), λ(v, w), λ(u,w)) is clearly a consistent identity triple.
If i, j ∈ Zn are distinct, then i ·n j 6= i, j, since 〈Zn; ·n〉 is an idempotent quasigroup.
From this, it follows that ui, uj, and un form a triangle with three different labels,
hence the corresponding triples are consistent. Let i, j, k ∈ Zn be mutually distinct.
As 〈Zn; ·n〉 is a commutative quasigroup, i ·n j, j ·n k, and i ·n k are mutually distinct,
so (λ(ui, uj), λ(uj, uk), λ(ui, uk)) is consistent. Thus, 〈N ;λ〉 is a consistent network.
Clearly, all identity triples are witnessed on {un} or subsets of the form {ui, un}. Now,
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let (ai, aj, ak) be a consistent diversity triple, i.e., let i, j, and k be mutually distinct.
Define p := Rn(i− j + k), q := Rn(i+ j − k), and r := Rn(−i+ j + k). Then

p ·n q = (p⊕n q)⊗n 2−1

= Rn(i− j − k + i+ j − k)⊗n 2−1

= Rn(Rn(2i)⊗n 2−1) = i,

q ·n r = (q ⊕n r)⊗n 2−1

= Rn(i+ j − k − i+ j + k)⊗n 2−1

= Rn(Rn(2j)⊗n 2−1) = k,

and

p ·n r = (q ⊕n r)⊗n 2−1

= Rn(i− j − k − i+ j + k)⊗n 2−1

= Rn(Rn(2k)⊗n 2−1) = j,

so (λ(up, uq), λ(uq, ur), λ(up, ur)) = (ai, aj, ak), hence 〈N ;λ〉 witnesses (ai, aj, ak). So,
by Lemma 2.15, we have En+1(3) ∈ QRA.

Now, for forward implication, assume that En+1(3) ∈ QRA. Based on Lemma 2.15,
there is a consistent atomic network, say 〈N ;λ〉, that witnesses every consistent triple.
Let u ∈ N . Since every consistent diversity triple has mutually distinct coordinates,
we have that

v 6= w =⇒ λ(u, v) 6= λ(u,w),

for all v, w ∈ N \{u}. From this, it follows that |N \{u}| 6 n, so we have |N | 6 n+1.
As 〈N ;λ〉 has

(
|N |
3

)
triangles and all

(
n
3

)
diversity cycles appear, we need

(
n
3

)
6
(
|N |
3

)
,

so n 6 |N |. Thus, |N | = n or |N | = n+ 1.
First, assume that |N | = n+ 1. Based on the above, for all 1 6 i 6 n and u ∈ N ,

there is a unique v ∈ N \ {u} with λ(u, v) = ai, since

v 6= w =⇒ λ(u, v) 6= λ(u,w),

for all v, w ∈ N \{u}. Consistent diversity triples have mutually distinct coordinates,
so, for all u, v, u′, v′ ∈ N , we have that

λ(u, v) = λ(u′, v′) =⇒ {u, v} = {u′, v′} or {u, v} ∩ {u′, v′} = ∅.

So, for all 1 6 i 6 n, there is an even number of elements u of N such that λ(u, v) = ai,
for some v ∈ N . Combining these observations, we find that |N | = n + 1 is even,
hence n is odd.

Next, assume that |N | = n. Then 〈N ;λ〉 has
(
n
3

)
triangles and must witness

(
n
3

)
consistent cycles, so every cycle is witnessed on exactly one triangle in 〈N ;λ〉. Thus,
all n atoms are the label of the same number of edges. There are

(
n
2

)
= n(n − 1)/2
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edges, so each atom labels (n− 1)/2 edges. This implies that n− 1 must be even, i.e.,
that n must be odd. So, n is odd in every case and the two statements are equivalent,
which is what we wanted to show. �

The following example illustrates how to construct such a representation.

Example 2.22. We aim to construct a network for E6(3). In Z5, we have 2−1 = 3.
Using this, we find the Cayley table for 〈Z5; ·5〉, as defined in the proof of Lemma 2.21.

· 0 1 2 3 4
0 0 3 1 4 2
1 3 1 4 2 0
2 1 4 2 0 3
3 4 2 0 3 1
4 2 0 3 1 4

Figure 2.4. The Cayley table for 〈Z5; ·5〉.

Using black, blue, red, green, and yellow to denote 0, 1, 2, 3, and 4, respectively,
with u5 in the centre and u0, u1, u2, u3, and u4 being listed clockwise from the top,
we get the following colouring from the proof of Theorem 2.20.

Figure 2.5. A colouring for E6(3).

Using Theorem 2.21, we can verify the claims we made earlier about the feeble
and qualitative representability of En(3), for n > 4.

Corollary 2.23. Let n > 4.

(1) We have En(3) ∈ QRA if and only if n is even.
(2) We have En(3) ∈ FRA.

Proof. The first statement follows immediately from Theorem 2.21. By Proposi-
tion 2.7(1), the second result follows from (1) when n is even. Assume that n is odd,
Then n−1 > 3 is even. By (1) and Lemma 2.15, there is a consistent atomic network,
say 〈N ;λ〉, that witnessing all consistent triples of En−1(3). Let u, v ∈ N be distinct,
and define λ′ : N2 → An by

λ′(u′, v′) :=

λ(u′, v′) if {u′, v′} 6= {u, v}
an if {u′, v′} = {u, v}.
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By construction, 〈N, λ′〉 is a consistent network that witnesses every atom in An,
hence by Lemma 2.14, we have En(3) ∈ FRA, so (2) holds. �

The results from this section are summarised below.

RRA QRA \ RRA FRA \ QRA NA \ FRA
En(∅) n = 1 n > 1
En(1) n = 1, 2 n > 2
En(2) n = 1, 2, 3 n > 3
En(3) n = 1, 4 Even n > 4 Odd n > 4 n = 2, 3
En(1, 2) n ∈ N
En(1, 3) n = 1, 2 n = 4 n = 3
En(2, 3) n 6 1999
En(1, 2, 3) n ∈ N

RRA QRA FRA NA \ FRA
En(∅) n = 1 n = 1 n = 1 n > 1
En(1) n = 1, 2 n = 1, 2 n = 1, 2 n > 2
En(2) n = 1, 2, 3 n = 1, 2, 3 n > 3
En(3) n = 1, 4 n = 1, 4 and even n > 4 n 6= 2, 3 n = 2, 3
En(1, 2) n ∈ N n ∈ N n ∈ N
En(1, 3) n = 1, 2 n = 1, 2 n 6= 3 n = 3
En(2, 3) n 6 1999 n ∈ N n ∈ N
En(1, 2, 3) n ∈ N n ∈ N n ∈ N

Figure 2.6. A summary of the known representability results on chro-
matic algebras.

2.4. Open problems

In Section 2.3, we completed the study of the feeble and qualitative representability
of En(X), except for the case where X = {1, 3}. This suggests the following problem.

Problem 1. Determine the values of n for which En(1, 3) ∈ GQRA.

The strong representability status of some chromatic algebras are still unknown.

Problem 2. Determine the values of n for which En(X) ∈ RRA, for X = {1, 3}, {2, 3}.

Recall that the qualitative representability of a Lyndon algebra is equivalent to the
existence of a certain geometry, while its strong representability is equivalent to the
existence of a certain projective plane. Thus, both Problem 1 and (part of) Problem 2
are equivalent to problems in finite geometry; we refer to Al Juaid, Jackson, Koussas,
and Kowalski [1] and Lyndon [65] for further details.

Earlier, in Section 2.3, we saw that all chromatic algebras of the form En(1, 2, 3)
that are strongly representable must be strongly representable over finite base sets.
More broadly, determining whether or not all strongly representable integral relation
algebras that have an atom a that satisfies a 6 bc, for all diversity atoms b and c,
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must have strong representations over a finite base set is also an interesting problem.
Such an atom is called a flexible atom. The following problem is often called the
flexible atom conjecture, and is quite well known; see Maddux [68], Alm, Maddux,
and Manske [4], and Chapter 21 of Hirsch and Hodkinson [36], for example.

Problem 3. Determine whether or not every relation algebra with a flexible atom
has a strong representation over a finite base set.





CHAPTER 3

Subvariety lattices

The subvarieties of a variety, i.e., the subclasses of a variety that are themselves
varieties, form a lattice when ordered by inclusion. (Since varieties are proper classes
rather than sets, this is not strictly true. However, there is a correspondence between
varieties and equational theories, so treating the collection of subvarieties of a variety
as a set causes no harm.) Almost all problems in algebra are centred around classes of
algebras or sets of equations, so information about subvariety lattices can be useful.
Thus, it should be unsurprising that the the subvariety lattices of many well-known
varieties have been studied extensively. For example, the subvariety lattices of the
varieties of groups, monoids, semigroups, and lattices are covered in Neumann [78],
Shevrin, Vernikov, and Volkov [83], Gusev, Lee, and Vernikov [35], and Rose and
Jipsen [48], respectively. Boolean algebras with operators are no exception; much of
the research into these algebras relates to subvariety lattices. In this chapter, we aim
to summarise some of this work and present some new results on subvariety lattices.

3.1. Background

The subvariety lattice of a given variety always has a bottom element and a top
element, namely the variety consisting of all trivial algebras and the given variety
itself, respectively. Thus, one could attempt to describe a subvariety lattice using a
‘bottom up’ approach, i.e., by finding all of its atoms, then finding all of the covers
of its atoms, and so on. Dually, one could take a ‘top down’ approach by finding
all coatoms, all of their lower covers, and so on. Due to the correspondence between
equational theories and (fully invariant) congruences on free algebras, the subvariety
lattice of a congruence distributive variety is always distributive, so the problem of
finding all covers or lower covers of a given subvariety reduces to the problem of finding
all join-irreducible covers or meet-irreducible lower covers, respectively. In particular,
this always applies to varieties of Boolean algebras with operators.

Most of the early attempts to study the subvariety lattice of the variety of relation
algebras followed one of these two approaches. The earliest result on this subvari-
ety lattice, published by Tarski in [85], implies that this lattice has exactly three
atoms. These atoms are generated by A1, A2, and A3, which can be characterised
as the minimal subalgebras of the full relation algebra on a one-element set, a two-
element set, and a three-element set, respectively. From results published by Jónsson
and Tarski in [55], it follows that Var(A1) does not have any join-irreducible covers.

29
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In [51], Jónsson showed that Var(A2) has a unique join-irreducible cover that has no
join-irreducible covers, and constructed a countably infinite set of coatoms below RA.
The join-irreducible covers of Var(A3) have not been completely classified. Thus far,
21 of these covers have been discovered, of which 20 are generated by finite algebras
Most were found and listed by Jipsen in [43]; the infinite generator is due to Jónsson.
The problem of classifying these covers is posed by Jónsson and Maddux in [68],
by Hirsch and Hodkinson in Chapter 21 of [36], and by Givant in Chapter 18 of [30].

Another approach to studying the structure of a subvariety lattice is to study its
sublattices, typically by constructing sublattices that are isomorphic to well known
lattices. For example, in [9], Andréka, Givant, and Németi show that the subvariety
lattice of the variety of (representable) relation algebras has a subalgebra isomorphic
to the powerset lattice of a countably infinite set, and hence a sublattice isomorphic
to the chain of the real numbers. Later, in [8], the same authors constructed an
embedding from the powerset lattice of the set of natural numbers into the subvariety
lattice of the variety of relation algebras with the property that a set is recursive if
and only if the equational theory of its image is decidable. Some other approaches to
studying subvariety lattices include studying splittings and looking at the centre of
the lattice; Jónsson takes both of these approaches in [51].

As one might expect, the subvariety lattices of other varieties of relation-type
algebras have also attracted some interest. As well as being interesting in their own
right, results on these lattices can also provide insight into the classification problem
mentioned above. For example, in [43], Jipsen solves the corresponding problem for
what he calls neat symmetric relation algebras, so the remaining covers in the relation
algebra case are generated by algebras that are not both neat and symmetric. Results
on varieties containing the variety of relation algebras are usually not directly useful
for this classification problem, but can involve useful ideas. In [10], Andréka, Jónsson,
and Németi observe that the subvariety lattice of the variety of semiassociative relation
algebras has the same atoms as the subvariety lattice of the variety of relation algebras,
and that Var(A1), Var(A2), and the cover of Var(A2) have the same join-irreducible
covers as in the relation algebra case. In [45], Jipsen, Kramer, and Maddux show
that Var(A3) has a countably infinite set of join-irreducible covers in the subvariety
lattice of the variety of a certain variety of semiassociative relation algebras.

The subvariety lattices of other varieties of Boolean algebras with operators have
also been investigated, particularly the subvariety lattices of varieties related to modal
logics, due to their correspondence with lattices of normal extensions. For example,
Kowalski shows in [60] that the variety of tense algebras has 2ℵ0 atoms (which was
already known to Blok). One of these atoms, namely the variety generated by T0,
which can be characterised as the complex algebra of a reflexive point, was shown to
have a countable set of covers by Jipsen, Kramer, and Maddux in [45]. For further
results, we mention Makinson [73], Blok [15], Kowalski [60], and Kracht [61].
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3.2. Varieties of tense algebras

In this section, we will show that Var(T0) has 2ℵ0 covers in two subvariety lattices.
The majority of this content was published previously in Koussas and Kowalski [58].
Definition 3.5 is due to Tomasz Kowalski, Proposition 3.3 is due to Peter Jipsen,
and the remainder of the results in this section are the sole work of the author.

Our construction is based on an infinite set of frames (or graphs) defined by Jipsen,
Kramer, and Maddux in [45], which were based on the veiled recession frame defined
by Blok in [15]. We begin by recalling the definition of a total tense algebra from [45].

Definition 3.1 (Total tense algebra). We will call A ∈ TA total if f(x) ∨ g(x) = 1,
for all x ∈ A with x 6= 0. The class of all total tense algebras will be denoted by TTA.

The class of total tense algebras is not a variety, but it generates a finitely based
variety; see [44] and [45] for further details.

Notation 3.2. The subvariety lattices of TA and Var(TTA) will be denoted by ΛTA

and ΛTTA, respectively. Let T0 := Cm(〈{0}; {(0, 0)}〉) and denote Var(T0) by T0.

Recall that a binary relation R on a set U is said to be total if we have (x, y) ∈ R
or (y, x) ∈ R, for all x, y ∈ U .

Proposition 3.3. (1) If R is a total binary relation on a set U , then we have
Cm(〈U ;R〉) ∈ TTA.

(2) If A ∈ TTA, then f(x) ∨ g(x) is a unary discriminator term for A.

Before we can present our main construction, we will need to introduce some
notation.

Notation 3.4. Let E := {2n | n ∈ N} and let O := {2n+ 1 | n ∈ N}. For all S ⊆ O,
define SE := S ∪ E.

Definition 3.5. Let V := {ap,m | p ∈ Z,m ∈ N}, where ap,m 6= aq,n if p 6= q or m 6= n.
For each S ⊆ O, define FS := Cm(〈V ;RS〉), where RS is defined by

RS := {(ap,m, aq,n) | p > q or (p = q and m > n)}

∪ {(ap,1, ap+1,m) | p ∈ Z,m ∈ SE}

∪ {(ap,m, ap,m+1) | p ∈ Z,m ∈ N}.

As is usually the case with graphs, drawings are more digestible than written
definitions. Thus, we will usually refer to Figure 3.1 (below) rather than referring to
Definition 3.5 explicitly.
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· · ·

· · ·

· · ·

· · ·

· · ·

a0,5 a0,4 a0,3 a0,2 a0,1

a1,5 a1,4 a1,3 a1,2 a1,1

a2,5 a2,4 a2,3 a2,2 a2,1

a−1,5 a−1,4 a−1,3 a−1,2 a−1,1

a−2,5 a−2,4 a−2,3 a−2,2 a−2,1

... ... ... ... ...

... ... ... ... ...

Figure 3.1. A (directed) graph drawing of 〈V ;RS〉.

This graph drawing uses some conventions from [45] that warrant some explana-
tion. For the sake of cleanliness, we omit loops in the drawing, as there are loops at
every vertex. As usual, ap,m pointing at aq,n means that (ap,m, aq,n) is in the relation.
Non-bold and non-dashed edges indicate pointing. For example, (a0,1, a1,2) is included.
The bold vertical arrow indicates that a vertex points at all of the vertices below it.
For example, the vertex a1,1 points at a0,1, a0,2, and a−1,1. The bold horizontal arrow
indicates that a vertex points at every vertex to its right. So, a0,4 points at a0,3, a0,2,
and a0,1, for example. The dashed arrows indicate edges whose presence depends on
the choice of the subset S. For example, in the cases where we have 3 ∈ S and 5 /∈ S,
a0,1 will point at a1,3, but a0,1 will not point at a1,5. Similarly, a1,1 will point at a2,3,
but a1,1 will not point at a2,5.

For a second example, we will find every vertex pointed at by a0,1. When m ∈ N
is even, a0,1 always points at a1,m. If m ∈ O, then a0,1 points at a1,p if p ∈ S. If p < 0
and m ∈ N, then a0,1 always points at ap,m. Finally, a0,1 always points at both a0,1

and a0,2.
The following is the only proof that uses Definition 3.5 directly rather than refer-

ring to Figure 3.1.
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Lemma 3.6. Let S ⊆ O. Then RS is total.

Proof. Let p, q ∈ Z and let m,n ∈ N. Since m > m, it follows that (ap,m, ap,m) ∈ RS,
so RS is reflexive. Assume that ap,m 6= aq,n. If p = q, then m 6= n, so m > n or m < n,
hence (ap,m, aq,n) ∈ RS or (aq,n, ap,m) ∈ RS. Similarly, if p 6= q, we have p > q or p < q,
which tells us that (ap,m, aq,n) ∈ RS or (aq,n, ap,m) ∈ RS. Combining these results,
we find that R is total, which is what we wanted. �

Combining Lemma 3.6 with Proposition 1.34 and Proposition 3.3, we get the
following result.

Corollary 3.7. Let S ⊆ O. Then we have IS(FS) ⊆ TTA and every element of
IS(FS) is simple.

As in [45], we will work with subalgebras generated by atoms, not full complex
algebras. These subalgebras will be more difficult to describe explicitly than the
subalgebras from [45]; it will be convenient to define these algebras in terms of some
relatively basic elements rather than defining them as subalgebras generated by atoms.

Definition 3.8. For all p ∈ Z, m ∈ N, and S ⊆ O, we define

Vp := {ap,n | n ∈ N},

Ap,m := {ap,m},

Dp := {aq,n | q 6 p, n ∈ N},

Up := {aq,n | q > p, n ∈ N},

Sp,m := {ap,n | n ∈ SE, n > m},

S̄p,m := {ap,n | n /∈ SE, n > 1, n > m}.

Now, for each S ⊆ O, let

SS := {Ap,m, Sp,m, S̄p,m | p ∈ Z,m ∈ N} ∪ {Dp, Up | p ∈ Z}

and let BS be the set of finite unions of elements of SS.

The following result describes the action of the operators on all of the sets defined
above. To avoid double subscripts, we will write fS and gS rather than fRS

and gRS
,

respectively.

Lemma 3.9. Let S ⊆ O, let p ∈ Z, let m ∈ N, and define T := {n ∈ N\SE | n > m}.
Then

(1) fS(Ap,1) = Ap,1 ∪ Ap,2 ∪Dp−1 ∪ Sp+1,1,
(2) fS(Ap,m) = ⋃{Ap,n | n 6 m+ 1} ∪Dp−1 when m > 1,
(3) fS(Dp) = Dp ∪ Sp+1,1,
(4) fS(Up) = V ,
(5) fS(Sp,m) = Dp,
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(6) fS(S̄p,m) = ∅ if T = ∅,
(7) fS(S̄p,m) = ⋃{Ap,n | n 6 max(T ) + 1} ∪Dp−1 when T 6= ∅ and T is finite,
(8) fS(S̄p,m) = Dp if T is infinite,
(9) gS(Ap,1) = Up,

(10) gS(Ap,2) = Ap−1,1 ∪ Up,
(11) gS(Ap,m) = Up+1 ∪ Sp,m−1 ∪ S̄p,m−1 when m > 1 and m /∈ SE,
(12) gS(Ap,m) = Ap−1,1 ∪ Up+1 ∪ Sp,m−1 ∪ S̄p,m−1 when m > 2 and m ∈ SE,
(13) gS(Dp) = V ,
(14) gS(Up) = Ap−1,1 ∪ Up,
(15) gS(Sp,m) = Ap−1,1 ∪ Up,
(16) gS(S̄p,m) = ∅ when T = ∅,
(17) gS(S̄p,m) = Sp,min(T )−1 ∪ S̄p,min(T )−1 ∪ Up+1 when T 6= ∅.

Proof. Let X ⊆ V . By definition, fS(X) is the set of vertices that are pointed at
by X, while gS(X) is the set of all vertices that point at X. From this observation
and Figure 3.1, the required results follow immediately. �

Next we will check that the subsets we defined are in fact subuniverses.

Lemma 3.10. Let S ⊆ O. Then BS is the subuniverse of FS generated by SS.

Proof. It is clear that SS ⊆ BS and that all subuniverses of FS extending SS

extend BS, so it remains to show that BS is a subuniverse of FS.
It is clear that BS is closed under (binary) union and ∅ ∈ BS.
By distributivity, to show that BS is closed under (binary) intersection, we only

need to show that X ∩ Y ∈ BS, for every X, Y ∈ SS. Let p ∈ Z and let m ∈ N.
If X ∈ SS, then Ap,m ∩ X = ∅ or Ap,m ∩ X = Ap,m, so Ap,m ∩ X ∈ BS. Clearly,
Up ∩ Uq = Umax(p,m) and Up ∩ Dq = ⋃{Vr | p 6 r 6 q}, for all q ∈ Z. If q ∈ Z,
n ∈ N and X ∈ {Sq,n, S̄q,n}, then Up ∩X = X when q > p and Up ∩X = ∅ if q < p.
Thus, Up ∩X ∈ BS when X ∈ SS. If q ∈ Z, then it is clear that Dp ∩Dq = Dmin(p,q).
If we have X ∈ {Sq,n, S̄q,n}, for some q ∈ Z and n ∈ N, then Dp ∩X = X if q 6 p and
Dp ∩ X = ∅ when q > p. From this, it follows that Dp ∩ X ∈ BS, for all X ∈ SS.
If q ∈ Z and n ∈ N, then Sp,m ∩ Sq,n = Sp,max(m,n) when q = p and Sp,m ∩ Sq,n = ∅
when q 6= p. Clearly, Sp,m ∩ S̄q,n = ∅, for all p ∈ Z and n ∈ N, hence Sp,m ∩X ∈ BS

if X ∈ SS. If q ∈ Z and n ∈ N, then we have S̄p,m∩ S̄q,n = Sp,max(m,n) whenever q = p

and S̄p,m∩ S̄q,n = ∅ otherwise, so S̄p,m∩X ∈ BS, for all X ∈ SS. From these results,
it follows that BS is closed under intersection.

Based on De Morgan’s laws and the observations above, to show that BS is closed
under forming complements, it will be enough to show that Xc ∈ BS when X ∈ SS.
Using Figure 3.1, we find that
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Acp,m =
⋃
{Ap,n | n < m} ∪ Up+1 ∪Dp−1 ∪ Sp,m+1 ∪ S̄p,m+1,

Dc
p = Up+1,

U c
p = Dp−1,

Scp,m =
⋃
{Ap,n | n < m} ∪ S̄p,m ∪ Up+1 ∪Dp−1,

S̄cp,mT =
⋃
{Ap,n | n < m} ∪ Sp,m ∪ Up+1 ∪Dp−1,

so BS is closed under forming complements.
As ∅ ∈ BS and BS is closed under forming complements, we have V ∈ BS.
Since fS and gS preserve unions, to show that BS is closed under both fS and gS,

it will be enough to show that we have fS(X), gS(X) ∈ BS, for all X ∈ SS. Clearly,
this follows from Lemma 3.9, so BS is indeed closed under fS and gS.

Based on these results, BS is a subuniverse of FS, which is what we wanted. �

Thus, we can make the following definition.

Notation 3.11. For each S ⊆ O, the subalgebra of FS with universe BS will be
denoted by BS and Var(BS) will be denoted by BS.

Before we look at the varieties that these algebras generate, it will be convenient
to show that they are generated by any element of the form Vp, for some p ∈ Z.

Lemma 3.12. Let S ⊆ O, let X ⊆ V and assume that there is a maximal p ∈ Z with
Vp ∩X 6= ∅, say q. Then:

(1) f 4
S(X) ∩ f 2

S(X)c = Vq+2 when aq,1 ∈ X;
(2) f 5

S(X) ∩ f 3
S(X)c = Vq+2 when aq,1 /∈ X.

Proof. Assume that aq,1 ∈ X. From Figure 3.1, f 2
S(X) = Dq+1 and f 4

S(X) = Dq+2,
which implies that f 4

S(X) ∩ f 2
S(X)c = Vq+2. Thus, (1) holds.

Assume that aq,1 /∈ X. Similarly to the above, f 3
S(X) = Dq+1 and f 5

S(X) = Dq+2,
so we have f 5

S(X) ∩ f 3
S(X)c = Vq+2. Thus, (2) also holds. �

The following portion of our argument will be useful later, so we will isolate it here.
Below we define a set of terms that describe how each element of {Ap,1 | p ∈ Z}
generates each element of Vp, for each p ∈ Z and S ⊆ O. In an argument below,
these terms are used to show that distinct choices of O yield nonisomorphic algebras.

Definition 3.13. (1) Let β(x) := f 4(x) ∧ f 2(x)′.
(2) Let σ(x) := f(x) ∧ (x ∨ g2(β(x)) ∨ f 4(g10(β(x)) ∧ g8(β(x))′))′.
(3) Let ν3(x) := f(σ(x)) ∧ f(x)′.
(4) Let ν4(x) := f(ν3(x)) ∧ f(σ(x))′.
(5) For each n > 5, let νn := f(νn−1(x)) ∧ f(νn−2(x))′.
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Lemma 3.14. Let S ⊆ O and let p ∈ Z. Then σ(Ap,1) = Ap,2 and νn(σ(x)) = Ap,n,
for all n > 3.

Proof. By Lemma 3.12(1), we have β(Ap,1) = Vp+2. Hence, based on Figure 3.1,
we must have g2

S(β(Ap,1)) = Up+1. Similarly, g8
S(Vp+2) = Up−2 and g10

S (Vp+2) = Up−3,
hence

f 4
S(g10

S (β(Ap,1) ∩ g8
S(β(Ap,1))c) = f 4

S(Vp−3)

= Dp−1.

By Lemma 3.9(1), σ(Ap,1) = Ap,2, as claimed.
For the second claim we use strong induction. By Lemma 3.9(1) and Lemma 3.9(2),

we have

ν3(Ap,1) = fS(Ap,2) ∩ fS(Ap,1)c

= Ap,3,

ν4(Ap,1) = fS(Ap,3) ∩ fS(Ap,2)c

= Ap,3,

as σ(Ap,1) = Ap,2. Now, let n > 5 and assume that νm(Ap,1) = Ap,m, for all 4 6 m 6 n.
Then by Lemma 3.9(2), we must have

νn+1(Ap,1) = fS(Ap,n) ∩ fS(Ap,n−1)c

= Ap,n+1.

It follows that νm(Ap,1) = Ap,m, for all m > 3, as claimed. �

Lemma 3.15. Let S ⊆ O and let p ∈ Z. Then BS is the subuniverse of BS gener-
ated by Vp.

Proof. Let Vp denote the subuniverse of BS generated by Vp. Based on Lemma 3.10,
it will be enough to show that SS ⊆ Vp.

Firstly, we claim that Vq ∈ Vp, for every q ∈ Z. From Figure 3.1, Lemma 3.9(3),
and Lemma 3.9(5), it follows that f 2m

S (Vp) = Dp+m, for each m ∈ N. Therefore

Vp+m+1 = f 2m+2
S (Vp) ∩ f 2m

S (Vp)c

∈ Vp,

for all m ∈ N, so we have Vq ∈ Vp, for every q > m+2. Similarly, if q ∈ Z and m ∈ N,
then g2m

S (Vq) = Uq−m, hence

Vq−m−1 = g2m+2
S (Vq)c ∩ g2m

S (Vq)

∈ Vp.

It follows that Vq ∈ Vp, for all q ∈ Z, as claimed.
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Based on Figure 3.1, Lemma 3.9(3), and Lemma 3.9(5), we have f 2
S(Vq−1) = Dq,

for all q ∈ Z. Similarly, g2
S(Vq+1) = Uq, for all q ∈ Z, so by the previous result,

Dq, Uq ∈ Vp, for all q ∈ Z.
By Lemma 3.9(13) and the previous result, we have Ap,1 = g(Uq+1) ∩ U c

q+1 ∈ Vp,
for all q ∈ Z. So, by Lemma 3.14, we have Ap,n ∈ Vp, for all p ∈ Z and n ∈ N.

Based on Lemma 3.9(3), we have

Sq,m = fS(Dq−1) ∩
(⋃
{Aq,n | n < m} ∪Dq−1

)c
.

Hence, by the above results, we must have Sq,m ∈ Vp, for all q ∈ Z and m ∈ N.
Clearly, we have

S̄q,m =
(⋃
{Aq,n | n < m} ∪Dq−1 ∪ Uq+1 ∪ Sq,m

)c
,

for all q ∈ Z and m ∈ N. Hence, based on the above results, we must have S̄q,m ∈ Vp,
for all q ∈ Z and m ∈ N.

Combining these results, we find that SS ⊆ Vp, which is what we wanted. �

Using Lemma 3.12 and Lemma 3.15, it is not too hard to show that BS is indeed
the subalgebra of FS generated by the set of atoms of FS (or any element of BS),
for each S ⊆ O.

Now we can shift our attention to varieties. First, we will need four intermediate
results.

Lemma 3.16. Let S ⊆ O and let X ∈ BS. Then fS(X) 6= V or fS(Xc) 6= V .

Proof. By Lemma 3.10, X and Xc can be written as unions of finite subsets of SS.
Clearly, only one of the unions will involve an element of {Up | p ∈ Z}. By Figure 3.1,
we will either have fS(X) 6= V or fS(Xc) 6= V , as required. �

Lemma 3.17. Let S ⊆ O and let X ∈ BS with X 6= ∅ and fS(X) 6= V . Then there
is a maximal p ∈ Z with Vp ∩X 6= ∅.

Proof. From Lemma 3.10, X can be written as the union of a finite subset of SS.
By assumption, fS(X) 6= V , so Lemma 3.9(iii) tells us that no element of {Up | p ∈ Z}
appears in such a union. So, as X 6= ∅, there is maximal p ∈ Z with Vp ∩ X 6= ∅,
which is what we wanted to show. �

Lemma 3.18. Let S ⊆ O and let p, q ∈ Z. Then there is an automorphism of BS

that maps Vp to Vq.

Proof. It is clear that map given by ar,m 7→ ar+q−p,m is an automorphism of 〈V ;RS〉.
The image function of this map is clearly an automorphism of BS that maps Vp to Vq,
which is what we wanted. �
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Lemma 3.19. Let S ⊆ O, let I be a non-empty set, let U be an ultrafilter over I,
and let X ∈ BI

S with X/U 6= 0 and X/U 6= 1. Then BS embeds into the subalgebra
of BI

S/U generated by X/U .

Proof. By Lemma 3.16 and  Loś’s Theorem, we have f(X/U ) 6= 1 or f(X/U ′) 6= 1.
Hence, we can assume without any loss of generality that we have f(X/U ) 6= 1. So,
by Lemma 3.12 and Lemma 3.17, we either have

{i ∈ I | f 4
S(X(i)) ∩ f 2

S(X(i))c = Vp, for some p ∈ Z} ∈ U

or {i ∈ I | f 5
S(X(i)) ∩ f 3

S(X(i))c = Vp, for some p ∈ Z} ∈ U .

Combining this observation with Proposition 1.36, Lemma 3.15, and Lemma 3.18,
we can conclude that BS embeds into the subalgebra of BI

S/U generated by X/U ,
as claimed. �

Now we have all of the tools to show that BS is in fact a join-irreducible cover of T0,
for each S ⊆ O.

Lemma 3.20. Let S ⊆ O. Then BS is a join-irreducible cover of T0 in ΛTTA.

Proof. It is clear that T0 embeds into BS, hence by Corollary 3.7, both of T0 and BS

are simple. Based on Proposition 1.34, we have A /∈ T0 and T0 ⊆ AS ⊆ TTA. Now,
let B ∈ ISU(BS) \T0. By Lemma 3.19, BS embeds into B, so we have BS ∈ ISU(B).
Based on Proposition 1.35(1), AS is in fact a join-irreducible cover of T0 in ΛTTA,
which is what we wanted to show. �

To get the main result of this section, it remains to show that these covers are dis-
tinct for distinct choices of O. Using Lemma 3.14 and the terms from Definition 3.13,
we will construct first-order formulæ that will be used to distinguish between the
generators of these covers, and hence the varieties that they generate.

Definition 3.21. (1) Let α(x) := x 6≈ 0f (∀y : x ∧ y ≈ 0g x ∧ y ≈ x).
(2) Let ϕ(x) := α(x)f¬(∃w, y, z : α(w)fα(y)fα(z)f f(x)∧ g(x) ≈ w∨ y∨ z).
(3) For each n > 3, let τn(x) := ϕ(x)f νn(x) ∧ f(g2(x) ∧ g(x)′) 6≈ 0.

Lemma 3.22. Let S ⊆ O, let n > 3, and let X ∈ BS. Then:

(1) BS |== ϕ[X] if and only if X = Ap,1, for some p ∈ Z;
(2) BS |== τn[X] if and only if n ∈ SE and X = Ap,1, for some p ∈ Z.

Proof. If T is a tense algebra and x ∈ T , then T |== α[x] if and only if x is an atom,
so this implies that B |== α[X] if and only if X = Ap,n, for some p ∈ Z and n ∈ N.

By Lemma 3.9(1) and Lemma 3.9(9),

fS(Ap,n) ∩ gS(Ap,n) = Ap,1 ∪ Ap,2 ∪ Sp,1
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if n = 1 and p ∈ Z. Similarly,

fS(Ap,n) ∩ gS(Ap,n) = Ap,n−1 ∪ Ap,n ∪ Ap,n+1

if n > 1 and p ∈ Z. From the above, (1) holds. By Lemma 3.9(9) and Lemma 3.9(13),

g2
S(Ap,1) = gS(Up)

= Ap−1,1 ∪ Up,

for all p ∈ Z. From Lemma 3.9(1),

fS(g2
S(Ap,1) ∩ gS(Ap,1)c) = fS(Ap−1,1)

= Ap−1,1 ∪ Ap−1,2 ∪Dp−2 ∪ Sp,1,

for all p ∈ Z. By Lemma 3.14,

νn(Ap,1) ∩ fS(g2
S(Ap,1) ∩ gS(Ap,1)c) 6= ∅

if and only if n ∈ SE, hence (2) follows from (1). Therefore (1) and (2) both hold,
which is what we wanted to show. �

Lemma 3.23. Let S, T ⊆ O. If µ : BS → BT is a homomorphism, then µ is an
isomorphism.

Proof. Since BS and BT are both Non-trivial, the kernel of µ must be non-zero.
Based on Corollary 3.7, BS is simple, hence the kernel of µ is the identity relation.
This implies that µ is an embedding, so ∅ ( µ(V0) ( V . Combining Lemma 3.12,
Lemma 3.15, Lemma 3.16, and Lemma 3.17, we find that µ[BS] = BT . From this,
it follows that µ is surjective, hence µ is an isomorphism, as required. �

Lemma 3.24. Let S, T ⊆ O with S 6= T . Then BS 6= BT .

Proof. Without loss of generality, we can assume that we have S * T , since S 6= T .
Thus, there exists some n ∈ S \N . Based on Lemma 3.22, we have BS |== ∃x : τn(x)
and BT |=6= ∃x : τn(x), which implies that BS and BT are not elementarily equivalent,
and are therefore not isomorphic. So, by Lemma 3.23, BS does not embed into BT .
Based on Proposition 1.34(3), Corollary 3.7, and Lemma 3.19, we must have BT /∈ BS,
so BS 6= BT , as claimed. �

Now we just need to put on the finishing touches.

Theorem 3.25. Var(T0) has exactly 2ℵ0 join-irreducible covers in ΛTTA. Thus,
Var(T0) has 2ℵ0 join-irreducible covers in ΛTA.

Proof. Let C denote the set of all join-irreducible covers of Var(T0) in ΛTTA.
Then, based on Lemma 3.20 and Lemma 3.24, we must have |C| > 2ℵ0 . Clearly,
there are at most 2ℵ0 sets of equations in a countable signature, so |C| 6 |ΛTTA| 6 2ℵ0 .
Combining these results, we find that |C| = 2ℵ0 , which is what we wanted to show. �
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3.3. Varieties of relation-type algebras

In this section, we will study varieties of low height in the subvariety lattices of
five varieties of relation-type algebras. Theorem 3.32 appears in Koussas and Kowal-
ski [58], and the majority of the results in this section are set to appear in Hirsch,
Jackson, Koussas, and Kowalski [39]. Lemma 3.42 is partially due to Tomasz Kowal-
ski. Unless stated otherwise, the remaining results are the sole work of the author.

Using the main result from Section 3.2, we will solve the classification problem
from Section 3.1 for several varieties of relation-type algebras (up to cardinality).
We will first look at the subvariety lattices of NA, SA, and a certain subvariety of SA.
We begin by recalling some definitions from Jipsen, Kramer, and Maddux [45].

Definition 3.26 (Reflexive and subadditive). We call a nonassociative relation alge-
bra A reflexive or subadditive if we have x 6 x2, for all x ∈ A or x(x′ ∧ y) 6 x ∨ y,
for all x, y ∈ A, respectively. The class (variety) of all reflexive subadditive symmetric
semiassociative nonassociative relation algebras will be denoted by RSA.

Definition 3.27 (Reflexive subadditive semiassociative symmetric r-algebra). We call
an algebra A = 〈A;∨,∧, ·, ′, ,̆ 0, 1〉 of signature (2, 2, 2, 1, 1, 0, 0) a reflexive subadditive
semiassociative symmetric r-algebra if A satisfies all defining properties of a reflexive
subadditive semiassociative symmetric relation algebra not involving e, i.e., A[ is a
Boolean algebra, x 7→ xy and x 7→ yx are conjugates of themselves, for all y ∈ A,
A |== (x1)1 ≈ x1, x 6 x2, for every x ∈ A, x(x′ ∧ y) 6 x ∨ y, for all x, y ∈ A, and
A |== x˘≈ x. The class (variety) of all reflexive subadditive semiassociative symmetric
r-algebras will be denoted by RSR.

Notation 3.28. The subvariety lattices of NA, SA, RSA, RA, and RRA will be denoted
by ΛNA, ΛSA, ΛRSA, ΛRA, and ΛRRA, respectively. Let Ai be the minimal (constant)
subalgebra of Re(n) and let An := Var(An), for 1 6 n 6 3. Let N1 := Re({0, 1})
and let N1 := Var(N1); we follow Table 6 of Jipsen [43].

It is easy to see that A1,A3 ∈ RSA, A2,N1 /∈ RSA, and A1,A2,A3,N1 ∈ RRA.
Thus, the results from Section 3.1 give the following result.

Proposition 3.29. (1) A1, A2, and A3 are atoms of ΛNA.
(2) A1, A2, and A3 are the only atoms of ΛSA, ΛRA, and ΛRRA.
(3) A1 and A3 are the only atoms of ΛRSA.
(4) A1 has no join-irreducible covers in ΛNA, ΛSA, ΛRA, and ΛRSA.
(5) N1 is a join-irreducible cover of A2 in ΛNA.
(6) N1 is the unique join-irreducible cover of A2 in ΛSA, ΛRA, and ΛRRA.
(7) A3 has at least ℵ0 join-irreducible covers in ΛNA, ΛSA, and ΛRSA.
(8) N1 has no join-irreducible covers in ΛSA, ΛRSA, ΛRA, and ΛRRA.
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In ΛSA, ΛRSA, ΛRA, and ΛRRA, the join-irreducible varieties not including A3 are
known, so looking at the corresponding varieties in ΛNA and classifying the join-
irreducible covers of A3 are two natural ways of continuing the study of the bottoms
of these subvariety lattices; we will focus on the latter problem in ΛNA, ΛSA, and
ΛRSA. The following result is essentially from Section 4 of [45].

Proposition 3.30. (1) Let 〈A;∨,∧, ·, ′, ,̆ 0, 1〉 ∈ RSR. Define two unary opera-
tions f and g on A by x 7→ x2 and x 7→ x ∨ xx′, respectively. Then we have
〈A;∨,∧, ′, f, g, 0, 1〉 ∈ TTA.

(2) Let 〈A;∨,∧, ′, f, g, 0, 1〉 ∈ TTA. Define a binary operation · and a unary
operation ˘ on A by (x, y) 7→ f(x ∧ y) ∨ (x ∧ g(y)) ∨ (g(x) ∧ y) and x 7→ x,
respectively. Then 〈A;∨,∧, ·, ′, ,̆ 0, 1〉 ∈ RSR.

(3) RSR and TTA are term-equivalent varieties.

Proposition 3.30 can be used to establish the following result; we refer the reader
to [45] for more details.

Proposition 3.31. A3 has at least as many join-irreducible covers in ΛRSA as has T0

in ΛTTA.

Combining Theorem 3.25 and Proposition 3.31, we obtain the following result,
which improves Proposition 3.29(7).

Theorem 3.32. A3 has exactly 2ℵ0 join-irreducible covers in ΛNA, ΛSA, and ΛRSA.

The join irreducibles of low height in ΛSA and ΛRSA are illustrated in Figure 3.3
below.

2ℵ0

A1 A3A2

N1 . . .

... ...

Figure 3.2. J(ΛSA) and J(ΛRSA), with J(ΛSA) \ J(ΛRSA) shown in blue.

Now we will shift our attention to the subvariety lattices of the varieties from
Chapter 2. Firstly, we must introduce some notation.

Notation 3.33 (ΛF and ΛQ). The subvariety lattices of GFRA and GQRA will be
denoted by ΛF and ΛQ, respectively.

Next, we extend the notion of a class from Jónsson and Tarski [55] to NA

Definition 3.34 (Classes). We say that an algebra A ∈ NA is of class 1, class 2,
or class 3 if A satisfies d2 ≈ 0, d2 ≈ e, or d2 ≈ 1, respectively.
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The following result is rather easy to prove; we refer to Lemma 13.1 and Lemma 13.3
of Givant [32], Theorem 4.35 of [55], Theorem 236 of Maddux [70].

Proposition 3.35. (1) An algebra A ∈ NA is of class 1 if and only if A |== d ≈ 0.
(2) An is of class n, for each 1 6 n 6 3.

The following result shows how the size of a base determines the class of a feebly
representable algebra. This turns out to be different to the strong representation case,
where |D| = 2 implies that A is of class 2.

Lemma 3.36. Let A ∈ NA and let φ be a feeble representation of A over a base D.

(1) If |D| = 1, then A is of class 1.
(2) If |D| = 2, then A is of class 2 or class 3.
(3) If |D| > 2, then A is of class 3.

Proof. Firstly, we will assume that |D| = 1. By Proposition 3.35, we have diD = ∅,
hence A |== d ≈ 0. This implies that A |== d2 ≈ 0, so A is of class 1 and (1) holds.

Next, we will assume that |D| = 2. Then we must have

φ(d2) ⊇ φ(d) ◦ φ(d)

= diD ◦ diD
= idD.

Similarly, we have

φ(d2)−1 = φ((d2)̆ )

= φ((d̆ )2)

= φ(d2).

These results tell us that φ(d2) is a symmetric element extending idD. Since |D| = 2,
we have φ(d2) = idD or φ(d2) = D2. This implies that A |== d2 ≈ e or A |== d2 ≈ 1,
hence A is of class 2 or class 3 and (2) holds.

Lastly, we will assume that |D| > 2. Then

φ(d2) ⊇ (d)φ ◦ (d)φ

= diD ◦ diD
= D2,

so we have φ(d2) = D2, which implies that A |== d2 ≈ 1. Thus, A is of class 3, so (1),
(2), and (3) all hold, as required. �

It is not too hard to show that A3 has a feeble representation on a two-element base,
so the conclusion of Lemma 3.36(2) cannot be strengthened.

It is shown in Section 13.1 of [32] that a non-trivial relation algebra has at most
one class. This proof does not require associativity, so we have the following result.
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Corollary 3.37. Every simple member of GFRA and GQRA has a unique class.

It follows that every simple member of GFRA has a subalgebra isomorphic to A1,
A2, or A3. Since A1,A2,A3 ∈ RRA ⊆ GQRA, we get the following result.

Corollary 3.38. A1, A2, and A3 are the only atoms of ΛF and ΛQ.

From Proposition 3.29(4), we obtain the following result, which characterises the
covers of A1 in ΛF and ΛQ.

Theorem 3.39. A1 has no join-irreducible covers in both ΛF and ΛQ.

Next, we aim to determine all of the join-irreducible varieties that extend A2, but
not A1 or A3. Firstly, we define four algebras.

Definition 3.40 (Q1, Q2, F1, and F2). Let Q1 and Q2 be the algebras #19 and #21
from Section 4.4 of Neuzerling [79], respectively. Let F1 and F2 be the algebras #49
and #50 from Section A.2 of [79], respectively. For each 1 6 n 6 2, let Fn and Qn

denote Var(Fn) and Var(Qn), respectively.

The atom tables and representations of these algebras are illustrated below.

#19 e1 e2 a
e1 e1 0 a
e2 0 e2 a
a a a e

#21 e r r˘
e e r r˘
r r 0 e
r˘ r˘ e 0

#49 e1 e2 r r˘
e1 e1 0 r r˘
e2 0 e2 r 0
r r 0 0 e
r˘ r˘ r˘ e1 0

#50 e1 e2 r r˘
e1 e1 0 r r˘
e2 0 e2 r r˘
r r r 0 e
r˘ r˘ r˘ e 0

Figure 3.3. Atom tables for Q1, Q2, F1, and F2.

ae1 e2
r

1′ 1′
re1 e2

Figure 3.4. Networks that yield qualitative representations Q1, Q2,
and N1. The third network gives feeble representations of F1 and F2.

Now we are in the position to determine all of the join-irreducible varieties that
extend A2, but not A1 or A3.

Theorem 3.41. (1) N1, Q1, Q2, and F1 are the only join-irreducible covers of
A2 in ΛF.

(2) F2 is the only join-irreducible cover of Q1 in ΛF.
(3) N1, Q1, F1, and F2 have no join-irreducible covers in ΛF.



44 3. SUBVARIETY LATTICES

(4) N1, Q1, and Q2 are the only join-irreducible covers of A2 in ΛQ.
(5) N1 and Q1 have no join-irreducible covers in ΛQ.
(6) N1, Q1, and Q2 have no join-irreducible covers in ΛQ.

Proof. Firstly, we note that N1,Q1,Q2 ∈ QRA and F1,F2 ∈ GFRA \ QRA.
That N1 is a join-irreducible cover of A2 in ΛF and ΛQ follows from Proposi-

tion 3.29(6).
Clearly, Q1 and Q2 have no non-constant proper subalgebras, so by Proposi-

tion 1.35(2), Q1 and Q2 are join-irreducible covers of A2 in ΛF and ΛQ.
By definition, we have r r̆ = e1 and

e2(r ∨ r )̆ = e2r ∨ e2r˘

= r

in F1. Based on this, it is easy to see that F1 has no non-constant proper subalgebras,
so by Proposition 1.35(2), F1 is a join-irreducible cover of A2 in ΛF.

Clearly, F2 has no non-constant subalgebras except for the one generated by r∨r .̆
It is easy to see that this subalgebra is isomorphic to Q1. So, by Proposition 1.35(2),
F2 is indeed a join-irreducible cover of Q1 in ΛF.

Assume that an algebra A ∈ FRA generates a join-irreducible subvariety contain-
ing A2. This implies that A2 is the only member of {A1,A2,A3} that is in Var(A),
hence A is of class 2. Based on this fact and Lemma 3.36, A has a feeble represen-
tation on a two-element base. This implies that A is isomorphic to an algebra from
Section 4.4 or Section A.2 of [79]. Thus, A must be isomorphic to N1, Q1, Q2, F1,
or F2, hence there are no further join-irreducible varieties above A2, but not A1 or A3.

Combining all of these results, we find that (1), (2), (3), (4), (5), and (6) all hold,
which is what we wanted to show. �

We can also prove the above claim that an algebra A ∈ FRA that generates a
join-irreducible subvariety containing A2 is isomorphic to N1, Q1, Q2, F1, or F2.

Proof. As in Theorem 3.41, if A ∈ FRA generates a join-irreducible variety extend-
ing A2, then A must have a feeble representation on a two-element base set. Firstly,
assume that this feeble representation is a qualitative representation. By Lemma 2.15,
A has a network with two nodes that gives a qualitative representation of A. Clearly,
the networks shown in Figure 3.3 are the only networks of this form (up to relabeling),
since only one diversity cycle can be represented in a network with only two nodes.
Now, based on Lemma 2.14, all choices of A are represented by the same networks,
and are therefore obtained from N1, Q1 or Q2 by adding consistent cycles. Clearly,
F1 and F2 are the only results with d2 ≈ e, so this list is exhaustive, as required. �
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Lastly, using Theorem 3.32, we aim to show that A3 has 2ℵ0 join-irreducible covers
in both ΛF and ΛQ, which solves the classification problem from Section 3.1 for ΛF

and ΛQ, up to cardinality. Clearly, it will be enough to show that the semiassociative
relation algebra corresponding to BS has a qualitative representation, for each S ⊆ O;
see Proposition 3.30. To this end, we state and prove the following intermediate result.

Lemma 3.42. Let A ∈ INA be symmetric and let U be the set of all atoms of A.
Assume that there is a chain 〈I;6〉 and sets {ai | i ∈ I} ⊆ U and {Xi | i ∈ I} ⊆ ℘(U)
with the following properties:

(1) ⋃i∈I Ui = U ;
(2) if i, j ∈ I, then Ui ⊆ Ui if and only if i 6 j;
(3) if i ∈ I, then [ai, ai, a] is consistent, for all a ∈ Ui ∪ {ai}.

Then we have A ∈ QRA.

Proof. For each i ∈ I, we define Ti := T ∩U3
i and Ni := {ti,m | t ∈ Ti,m ∈ {1, 2, 3}}.

For all t ∈ T and distinct 1 6 m,n 6 3, let at,m,n be the atom in the oth entry of t,
where o ∈ {1, 2, 3} \ {m,n}. Now, let N := ⋃

i∈I Ni and define λ : N2 → U by

λ(ti,m, sj,n) =


e if ti,m = sj,n

at,m,n if s = t, i = j,m 6= n

amax{i,j} if i 6= j.

Assume that u, v, w ∈ N are mutually distinct. If we have {u, v, w} = {ti,1, ti,2, ti,3},
for some i ∈ I and t ∈ Ti, then (λ(u, v), λ(v, w), λ(u,w)) is a Peircean transform of t,
and is therefore consistent. Next, assume that we have {u, v, w} 6= {ti,1, ti,2, ti,3},
for all i ∈ I and t ∈ Tm. By (1) and (2), there is a minimal i ∈ I with u, v, w ∈ Ui.
Clearly, we have (λ(u, v), λ(v, w), λ(u,w)) ∈ [ai, ai, a], for some a ∈ Ui ∪ {ai}. Hence,
by (3), (λ(u, v), λ(v, w), λ(u,w)) is a consistent triple. Now, (λ(u, v), λ(v, w), λ(u,w))
is a consistent identity triple whenever u, v, and w are not mutually distinct, so 〈N ;λ〉
is a consistent atomic network.

Now, let t ∈ T . Then we have t = (a, b, c), for some a, b, c ∈ U . From (1) and (2),
it follows that there is some i ∈ I with a, b, c ∈ Ui. By construction,

(λ(ti,2, ti,3), λ(ti,3, ti,1), λ(ti,1, ti,2)) = (at,2,3, at,3,1, at,1,2)

= (a, b, c)

= t,

so every consistent triple is witnessed in 〈N ;λ〉.
By Proposition 2.15, A has a qualitative representation, as claimed. �

Notation 3.43 (AS). For each S ⊆ O, let AS be the variety generated by the semi-
associative relation algebra corresponding to BS.
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Lemma 3.44. AS is a join-irreducible cover of A3 in both ΛF and ΛQ, for all S ⊆ O.
Further, S 6= T implies that AS 6= AT , for all S, T ⊆ O.

Proof. Using Proposition 3.30, we can see that

AB = (A ∩ gS(B)) ∪ (fS(A) ∩B),

for distinct atoms A and B in the semiassociative relation algebra given by AS.
Therefore [Ap,m, Ap,m, Aq,n] is consistent when aq,n points at ap,m in FS; in particular,
when m < n. Similarly, [Ap,m, Ap,m, Ap,m] is always consistent, since we have

Ap,m ⊆ fS(Ap,m)

⊆ A2
p,m.

So, if we put 〈I;6〉 := 〈Z;6〉, ai := Ai,1, and Xi := {Ap,m | p < i}, the conditions (1),
(2), and (3) of Lemma 3.42 are satisfied, so the corresponding algebra belongs to QRA.
So, based on Theorem 3.32, we have the required result. �

Using this result, we get the following result on the join-irreducible covers of A3

in ΛF and ΛQ.

Theorem 3.45. A3 has 2ℵ0 join-irreducible covers in both ΛF and ΛQ.

The results from Theorem 3.39, Theorem 3.41, and Theorem 3.45 are illustrated
in Figure 3.3 below, which depicts the join irreducibles of low height in ΛF and ΛQ.

2ℵ0
F1 N1 Q2 Q1

A2 A3A1

F2

. . .

... ...

Figure 3.5. J(ΛF) and J(ΛQ), with J(ΛF) \ J(ΛQ) shown in blue.

3.4. Open problems

In this chapter, we studied the join-irreducible covers of some known varieties in a
number of subvariety lattices. There are many open problems related to these results.
In Section 3.3, we saw that A3 has 2ℵ0 covers in ΛNA, ΛSA, ΛF, and ΛQ. However,
based on Lemma 3.9 and Proposition 3.30, we have

A0,1(A0,1A1,1) = A0,1A1,1

= A1,1
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and

(A0,1A0,1)A1,1 = (A0,1 ∪ A0,2 ∪D−1 ∪ S1,1)A1,1

= A1,1 ∪ S1,1

in the relation-type algebras that correspond to BS, so these algebras are never asso-
ciative, and hence not members of RA or RRA. Thus, the number of covers of A3 in
ΛRA and ΛRRA cannot be determined from this construction, and are hence unknown.
Thus, the following problem is still one of the most important open problems in the
study of subvariety lattices of varieties of relation-type algebras; see Maddux [68],
Chapter 18 of Givant [30], and Chapter 21 of Hirsch and Hodkinson [36].

Problem 4. Determine the number of covers of A3 in ΛRA and ΛRRA.

A list of finite algebras in SA that generate covers of A3 is given in Appendix 4.5.
Another interesting problem would be determining whether or not such algebras exist
with n atoms, for each n > 9.

Problem 5. Determine whether or not A3 has infinitely many covers in ΛSA that are
generated by a finite algebra.

Taking these problems and the results we saw in this chapter another step further,
one may wish to find the complete list of covers rather than just the number of them.
Extending Theorem 14 of Jipsen and Lukács [46] to finite joins of diversity atoms is a
possible starting point for the relation algebra case; see Section 4 of the same article.
Determining the feeble and qualitative representability of B10, B11, B12, C4 and C5

from Tables 4 and 5 of Jipsen [43] could be a starting point for ΛQ and ΛF.

Problem 6. Classify the covers of A3 in ΛNA, ΛSA, ΛRSA, ΛRA, ΛF, ΛQ, or ΛRRA.

Problem 7. Classify the covers of T0 in ΛTA or ΛTTA.

Equational bases for the varieties we saw in Section 3.2 may also be of interest.
The following problem is an obvious one; recursive subsets seem to be a likely answer.

Problem 8. Determine the subsets S of O for which the variety BS is finitely based.

We also mention the following problems that are inspired by results in Section 3.1.
If they are solved, studying the lower covers of these coatoms would be the next step.
We refer to Jónsson [51] and [68].

Problem 9. Determine the number of coatoms in ΛNA, ΛSA, ΛRA, ΛF, ΛQ, or ΛRRA.

Problem 10. Classify the coatoms of ΛNA, ΛSA, ΛRA, ΛF, ΛQ, or ΛRRA.





CHAPTER 4

Probability

In this chapter, we will revise some probabilistic concepts from finite model theory,
and then we will study relation-type algebras and atom-type structures in this context.
More precisely, we will look at ‘almost all’ results and 0–1 laws for these structures.
This approach has been taken in graph theory, semigroup theory, universal algebra,
and many other fields; we refer to Section 11.3 of Diestel [24], Jackson and Volkov [42],
and Section 6.2 of Bergman [13], for example. Unless otherwise stated, all results in
this chapter are due to the author. The results original results from Section 4.2 and
Section 4.3 are set to appear in Koussas [57].

4.1. Background

The idea of defining the probability of a property holding in a class of finite
structures as the limit of the fraction of isomorphism classes of n-element structures
that satisfy it first appeared explicit;y in writing in the nineteen fifties in Carnap [17],
but did not attract much attention until the late nineteen sixties and early seventies.
In [25] and [26], Fagin shows that the class of all finite structures of a finite purely
relational signature that has at least one symbol that is not unary has a 0–1 law, i.e.,
first-order sentences either hold in almost all structures or fail in almost all structures;
that almost all of these structures are rigid, i.e., have a trivial automorphism group;
and finds an asymptotic formula for the number of isomorphism types of structures.
The former results were found independently in Glebskĭı, Kogan, and Liogon’kĭı [34],
and Liogon’kĭı [63] without the assumption of the existence of a nonunary symbol,
but with a more difficult proof. This area became active again in the nineteen eighties,
when Compton published two articles on 0–1 laws. In [20] and [21], Compton found
conditions that many classes of purely relational structures satisfy that guarantee the
existence of 0–1 laws for first-order sentences and monadic second order sentences,
respectively. The most well known results for algebraic signatures are those of Murskĭı.
In [75], [76], and [77], Murskĭı showed that almost all finite algebras of a finite
signature with at least two operation symbols and at least one nonunary symbol have
discriminator terms and are finitely based, that almost all finite binars are simple,
and that finite binars have no idempotent element with probability 1/e, for example;
an English presentation of this work can be found in Section 6.2 of [13]. In [28],
Freese examines the relationship between two definitions of probabilities as limits,
and shows that they are equivalent for classes where almost all structures are rigid;
the class of all finite structures of finite signatures with at least three unary operation

49
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symbols or an operation of arity two or greater are shown to have this property.
It is also shown that the definitions differ by at most 0.001 in the class of all finite
structures with just two unary operation symbols.

Surprisingly little results of this nature have been published on relation-type al-
gebras. The seminal (and essentially the only) article on this topic is Maddux [67].
In this article, Maddux shows that almost all finite nonassociative relation algebras
are rigid, and that almost all nonassociative algebras satisfy each finite subset of the
equational theory of RRA, which means that almost all of these algebras are in SA,
RA, and RAn, for each fixed n > 5; recall Proposition 2.3(5). Another (unpublished)
article is Alm [2]. The main open problem in this area is to extend the latter result
by showing that almost all nonassociative relation algebras are strongly representable;
this problem is stated by Maddux in [67] and [68], by Hirsch and Hodkinson in [36],
and by Alm in [2].

4.2. Symmetric and integral algebras

In this section, we will show that almost all nonassociative relation algebras are
symmetric and have e as an atom. Combining this with results from Maddux [67],
we obtain a simple asymptotic formula for the number of relation algebras. Firstly,
we will need to define the concepts from the previous section with more formality.
Our presentation will mostly follow Freese [28].

Definition 4.1 (Labelled and unlabelled probabilities). Let K be a class of finite
structures of a finite signature F that is closed under isomorphism and has no upper
bound on the size of its members. For each n ∈ N, let Un be a set with precisely
one representative from each isomorphism class of n-element structures from K and
let Ln be the set of all structures in K with universe {1, . . . , n}. Let P be some
property of F -structures that is invariant under isomorphisms (for example, a first-
order property). Let s : N→ N be the increasing sequence of values of n with Un 6= ∅.
If the limit

lim
n→∞

|{A ∈ Us(n) | A |== P}|
|Us(n)|

exists, then we will call it the unlabelled probability of P and denote it by PrU(P,K).
If the limit

lim
n→∞

|{A ∈ Ls(n) | A |== P}|
|Ls(n)|

exists, then we will call it the labelled probability of P and denote it by PrL(P,K).
When PrU(P,K) = 1, we say that almost all structures in K satisfy P .

We will usually work with classes where there are elements of every possible car-
dinality, so the sequence s will be the identity sequence.

The main result from [28] that we will need is stated below. While this result is
only proved for algebraic signatures, the arguments apply to more general signatures.
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Proposition 4.2. Let K be a class of similar finite structures of a finite signature F
that is closed under isomorphism and has no upper bound on the size of its members,
let R denote the property of being rigid, let P be some arbitrary property of F -
structures that is isomorphism invariant, and assume that we have PrL(R,K) = 1.
If one of PrU(P,K) and PrL(P,K) exists, then both quantities exist and are equal.

Next, we recall the following definition, which we will need later in Section 4.3.

Definition 4.3 (Almost sure theory). Let K be a class of finite structures of a finite
signature F that is closed under isomorphism and has no upper bound on the size of
its members. We call the set of all first-order sentences σ that satisfy PrL(σ,K) = 1
the almost sure theory of K.

Based on Proposition 1.30 and Proposition 1.28, once some finite set U , some
e ∈ U , and an involution f : U → U with f(e) = e, any U ∈ FAS that is an expansion
of 〈U ; f, {e}〉 is completely determined by which cycles are consistent or forbidden.
Using this observation, it is possible count the number of atom-structures of a given
(finite) size. Indeed, in [67], Maddux obtains asymptotic formulæ using this method.
The results we will need from [67] are summarised below.

Proposition 4.4. Let U be an n-element set, for some n ∈ N, let e ∈ U , let f be an
involution of U with f(e) = e, and let s := |{a ∈ U | f(a) = a}|.

(1) There are s− 1 diversity cycles with 1 triple: those of the form [a, a, a].
(2) There are (n−s)/2 diversity cycles with 2 triples: those of the form [a, a, f(a)],

where f(a) 6= a.
(3) There are (s − 1)(n − 2) diversity cycles with 3 triples: those of the form

[a, b, b], where f(a) = a and a 6= b.
(4) There are (n − 1)((n − 1)2 − 3s + 2)/6 + (s − 1)/2 diversity cycles with 6

triples.
(5) There are Q(n, s) := (n− 1)((n− 1)2 + 3s− 1)/6 diversity cycles in total.
(6) There are P (n, s) := (s−1)! ((n−s)/2)! 2(n−s)/2 automorphisms of 〈U ; f, {e}〉.

Definition 4.5 (dt). For each t ∈ N, let dt be the following (first-order) property:
For all a1, . . . , at, b1, . . . , bt 6= e, there is some c 6= e such that [a1, b1, c], . . . , [at, bt, c]
are all consistent.

Proposition 4.6. (1) Almost all labelled integral structures in FAS are rigid.
(2) Almost all labelled integral structures in FAS satisfy dt, for each fixed t ∈ N.
(3) If t > 2 and U ∈ FAS is integral and satisfies dt, then Cm(U) ∈ RAn.
(4) If ε is the conjunction of some finite set of equations that hold in all members

of RRA, then ε will hold in almost all finite members of NA. In particular,
almost all members of NA belong to SA, RA, and RAn, for each fixed n > 5.

Proposition 4.7. Let F (n, s) be the number of n-atom integral relation algebras with
s atoms satisfying x˘ = x. Then 2Q(n,s)/P (n, s) is an asymptotic formula for F (n, s),
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i.e., for all ε > 0, there is some integer N such that if n > N and 1 6 s 6 n is even,
then we must have ∣∣∣∣∣∣1− F (n, s)P (n, s)

2Q(n,s)

∣∣∣∣∣∣ < ε.

The same statement holds for nonassociative relation algebras in which e is an atom,
integral semiassociative relation algebras, and integral relation algebras from RAm,
for each fixed m > 3.

Now we have all of the tools we need to prove the main result of this section.
Firstly, we will prove the equivalent result for atom-type structures.

Theorem 4.8. Almost all members of FAS are in FSIAS.

Proof. Let n > 5, let U be an n-element set, and assume that 1 6 i < n. Clearly,
there are

(
n
i

)
ways to select i identity atoms from U . Assume that 0 6 p 6 b(n−i)/2c.

Clearly, there are at most
(
n−i

2

)p
involutions of U with p non-fixed pairs of elements,

i.e., sets of the form {u, f(u)} with u 6= f(u), since
(
n−i

2

)p
is the number of p inde-

pendent selections of 2-element sets of diversity atoms. Based on Proposition 1.30(2),
there are (2i−1)n possible ways of selecting identity cycles to define an member of FAS,
since each element of U must appear in at least one of the i cycles of the given form.
Lastly, by Proposition 4.4(5), there are 2Q(n−i+1,n−i+1−2p) ways to pick diversity cycles;
the number of choices of diversity cycles in a (n− i+1)-element structure with |I| = 1
and a n-element structure such that |I| = i and |U \ I| = n − i is clearly the same.
Hence, by Proposition 1.22(5), the fraction of members of FAS with universe {1, . . . , n}
that belong to FSIAS is bounded below by

n2Q(n,n)∑n
i=1

∑b(n−i)/2c
p=0

(
n
i

)(
n−i

2

)p
(2i − 1)n2Q(n−i+1,n−i+1−2p)

= 1(∑n
i=1

∑b(n−i)/2c
p=0

(
n
i

)(
n−i

2

)p
(2i − 1)n2Q(n−i+1,n−i+1−2p)−Q(n,n)

)
/n

Now, we have

1
n

n∑
i=1

b(n−i)/2c∑
p=0

(
n

i

)(
n− i

2

)p
(2i − 1)n2Q(n−i+1,n−i+1−2p)−Q(n,n)

= 1
n

b(n−1)/2c∑
p=0

n

(
n− 1

2

)p
2Q(n,n−2p)−Q(n,n)

+ 1
n

n−1∑
i=2

b(n−i)/2c∑
p=0

(
n

i

)(
n− i

2

)p
(2i − 1)n2Q(n−i+1,n−i+1−2p)−Q(n,n).

Firstly, we show that the first term has a limit less than 1. Clearly, we have(
n− 1

2

)p
6

(
n2

2

)p
.
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Now,

Q(n, n− 2p)−Q(n, n)

= 1
6(n− 1)((n− 1)2 + 3(n− 2p)− 1)− 1

6(n− 1)((n− 1)2 + 3n− 1)

= 1
6(n− 1)((n− 1)2 + 3n− 6p− 1− ((n− 1)2 + 3n− 1))

= 1
6(n− 1)(3n− 6p− 3n)

= (1− n)p,

hence (
n2

2

)p
2Q(n,n−2p)−Q(n,n) =

(
n2

2

)p
2(1−n)p

=
(
n2

2n

)p
.

Since n > 5, we have 0 < n2/2n < 1, so the formula for a geometric sum gives

1
n

b(n−1)/2c∑
p=0

n

(
n− 1

2

)p
2Q(n,n−2p)−Q(n,n) 6

b(n−1)/2c∑
p=0

(
n2

2n

)p

= 1− (n2/2n)b(n−1)/2c+1

1− n2/2n .

Clearly, both n2/2n and (n2/2n)b(n−1)/2c+1 tend to 0, so we have

lim
n→∞

(
1− (n2/2n)b(n−1)/2c+1

1− n2/2n

)
= 1.

Now we will consider the second term. Define S(m) := Q(m,m), for each m ∈ N.
We have

S(m) = 1
6(m− 1)((m− 1)2 + 3m− 1)

= 1
6(m− 1)(m2 − 2m+ 1 + 3m− 1)

= 1
6(m− 1)(m2 +m)

= 1
6(m3 −m), (1)

for all m ∈ N. By the difference of cubes formula, i.e., x3−y3 = (x−y)(x2 +xy+y2),

S(n− i+ 1)− S(n) = 1
6((n− i+ 1)3 − (n− i+ 1)− n3 + n)

= 1
6((n− i+ 1− n)((n− i+ 1)2 + n(n− i+ 1) + n2) + i− 1)

= 1
6(−(i− 1)(n2 − 2(i− 1)n+ (i− 1)2 + n2 − (i− 1)n+ n2) + i− 1)

= 1
6(−3(i− 1)n2 + 3(i− 1)2n− (i− 1)3 + i− 1).
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In particular,

i = 2 =⇒ S(n− i+ 1)− S(n) = −1
2n

2 + 1
2n, (2)

i = 3 =⇒ S(n− i+ 1)− S(n) = −n2 + 2n− 1, (3)

i = 4 =⇒ S(n− i+ 1)− S(n) = −3
2n

2 + 9
2n− 4. (4)

If 1 6 i < n and 1 6 p 6 b(n− i)/2c, then we have

b(n− i)/2c 6 n, (5)(
n

i

)
6 nn, (6)

(2i − 1)n 6 2in, (7)(
n− i

2

)p
6 (n2)n

= n2n, (8)

and
Q(n− i+ 1, n− i+ 1− 2p) 6 S(n− i+ 1). (9)

On the interval [1,∞), the function x 7→ (x3−x)/6 is increasing, so by (1), m 7→ S(m)
is an increasing sequence. Thus, S(n−i+1) is maximised when n−i+1 is maximised,
i.e., when i is mimimised. So, based on (4), we have that

4 6 i 6 n =⇒ S(n− i+ 1)− S(n) 6 −3
2n

2 + 9
2n− 4. (10)

Combining these results, we find that

1
n

n∑
i=2

b(n−i)/2c∑
p=0

(
n

i

)(
n− i

2

)p
(2i − 1)n2Q(n−i+1,n−i+1−2p)−Q(n,n)

6
1
n

n∑
i=2

b(n−i)/2c∑
p=0

nnn2n(2i − 1)n2S(n−i+1)−S(n) (6, 8, 9)

6
1
n

n∑
i=2

nn3n(2i − 1)n2S(n−i+1)−S(n) (5)

=
n∑
i=2

n3n(2i − 1)n2S(n−i+1)−S(n)

= n3n3n2−n2/2+n/2 + n3n7n2−n2+2n−1 +
n∑
i=4

n3n(2i − 1)n2S(n−i+1)−S(n) (2, 3)

6 n3n3n2−n2/2+n/2 + n3n7n2−n2+2n−1 +
n∑
i=4

n3n2in2−3n2/2+9n/2−4 (7, 10)

6 n3n3n2−n2/2+n/2 + n3n7n2−n2+2n−1 + n3n2−3n2/2+9n/2−4
n∑
i=0

(2n)i.

Firstly, we have
n3n3n2−n2/2+n/2 = 23n log2(n)+log2(3)n−n2/2+n/2,
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which clearly tends to 0. Similarly,

n3n7n2−n2+2n+1 = 23n log2(n)+log2(7)n−n2+2n−1,

which tends to 0. As n > 5, we have 2n > 1. Using the formula for a geometric sum,
we get

n3n2−3n2/2+9n/2−4
n∑
i=0

(2n)i = n3n2−3n2/2+9n/2−4 2n(n+1) − 1
2n − 1

= 23n log2(n)−n2/2+11n/2−4 2−n2−n(2n2+n − 1)
2n − 1

= 23n log2(n)−n2/2+11n/2−4 1− 2−n2−n

2n − 1 .

It is clear that 23n log2(n)−n2/2+9n/2−4 tends to 0 and (1− 2−n2−n)/(2n − 1) tends to 0,
hence the term above has limit 0. Combining these results with basic limits, we get

lim
n→∞

 1
n

n∑
i=1

b(n−i)/2c∑
p=1

(
n

i

)(
n− i

2

)p
(2i − 1)n2Q(n−i+1,n−i+1−2p)−Q(n,n)

 6 1,

so

lim
n→∞

 1(∑n
i=1

∑b(n−i)/2c
p=1

(
n
i

)(
n−i

2

)p
(2i − 1)n2Q(n−i+1,n−i+1−2p)−Q(n,n)

)
/n

 > 1.

The fraction of members of FAS with universe {1, . . . , n} in FSIAS is always below 1,
and this fraction is an upper bound for the corresponding term of this sequence, so

lim
n→∞

 1(∑n
i=1

∑b(n−i)/2c
p=1

(
n
i

)(
n−i

2

)p
(2i − 1)n2Q(n−i+1,n−i+1−2p)−Q(n,n)

)
/n

 6 1.

Combining these inequalities, we find that the limit of this sequence is equal to 1.
The fraction of members of FAS with universe {1, . . . , n} in FSIAS is always below 1,
and above the corresponding term of the sequence above, so by the Squeeze Theorem,
the fraction of members of FAS with universe {1, . . . , n} in FSIAS tends to 1. Now,
combining this observation, Proposition 1.28, Proposition 4.2, and Proposition 4.6(1),
we find that almost all members of FAS belong to FSIAS, which is what we wanted. �

Combining this with Proposition 4.6(2), we obtain the following.

Theorem 4.9. Almost all finite members of NA are symmetric and belong to IRA
and RAn, for each fixed n > 5.

Further, using Proposition 1.30, Proposition 1.28, and Proposition 4.7, we obtain
the following result, which gives the promised asymptotic formula for relation algebras.

Theorem 4.10. 2(n3−n)/6/(n−1)! is an asymptotic formula for the number of n-atom
nonassociative relation algebras. This formula also applies if we add the assumption
of semiassociativity, associativity, being a member of RAm, for some fixed m > 3,
or e being an atom.
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4.3. A Fräıssé limit and its applications

In this section, we will show that FAS has a 0–1 law. We follow the approach
outlined by Burris and Bell in [12]. For the completeness component of this method,
we will make use of the Fräıssé limit construction that we covered in Section 1.3.
The majority of this section deals with the class FSIASe, since it has a Fräıssé limit;
the results we obtain for this class will subsequently be lifted to FSIAS and FAS.
Firstly, we will show that the limit of FSIASe does indeed exist.

Lemma 4.11. FSIASe has a Fräıssé limit.

Proof. Based on Theorem 1.41, it is enough to show that FSIASe has the HP, JEP,
and AP.

By definition, FSIASe is the class of all finite members of a universal class. Thus,
FSIASe is closed under forming substructures, so FSIASe clearly has the HP.

For the AP, let S,V,W ∈ FSIASe and let µ : S → V and ν : S → W be embed-
dings. Without loss of generality, we can assume that V ∩W = S, and that µ and ν

are inclusion maps. Thus, we can define U := 〈U ; fU, e, TU〉, where U := V ∪W ,
fU is given by

fU(x) =

f
V(x) if x ∈ V
fW(x) if x ∈ W,

and TU := TV∪TW. Let a, b, c ∈ U and assume that (a, b, c) ∈ TU. By construction,

(a, b, c ∈ V and (a, b, c) ∈ TV) or (a, b, c ∈ W and (a, b, c) ∈ TW).

In the first case, we have (fU(a), c, b), (c, fU(b), a) ∈ TU, since TV ⊆ TU, fU�V = fV,
and V satisfies (IP). Similarly, (fU(a), c, b), (c, fU(b), a) ∈ TU in the second case,
hence U satisfies (IP). Now, let a ∈ U . If a ∈ V , then we have (a, e, a) ∈ TU,
since TV ⊆ TU and V satisfies (II). Similarly, we have (a, e, a) ∈ TU when a ∈ W .
By construction, U = V ∪W , it follows that we have (a, e, a) ∈ TU in every case.
Lastly, assume that (a, e, b) ∈ TU. By construction,

(a, b ∈ V and (a, e, b) ∈ TV) or (a, b ∈ W and (a, e, b) ∈ TW).

As V and W satisfy (II), we have x = y, so (II) holds. As V and W satisfy f(x) ≈ x,
it follows that fV and fW are identity maps. By construction, fU is an identity map,
so U |== f(x) ≈ x. By definition, U = V ∪W , so |U | 6 |V | + |W |. Thus, U is finite.
Based the above results, we have U ∈ FSIASe. Clearly, the inclusion maps ıV : V → U

and ıW : W → U are embeddings such that ıV ◦ µ = ıW ◦ ν. Combining these results,
we find that FSIASe has the AP, which is what we wanted to show.

It is clear that FSIASe contains a trivial structure that embeds into all A ∈ FSIASe,
so the JEP follows from the AP for this class.

Based on the above, FSIASe has the HP, JEP and AP, as required. �
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This result allows us to make the following definition.

Definition 4.12 (LSI, TSI, and SSI). Let LSI be a Fräıssé limit of the class FSIASe,
let TSI be the first-order theory of LSI, and let SSI be the almost-sure theory of FSIASe.

The members of FSIASe are symmetric, so subsets generate at most one additional
element, namely e. By Proposition 1.44, we have the following.

Corollary 4.13. TSI is ℵ0-categorical and has quantifier elimination.

Next we introduce the sentences that Bell and Burris call extension axioms in [12].
These sentences essentially assert that a substructure can be extended by a single point
in all possible ways. We define ¬c in the note on notation.)

Definition 4.14. Let ASI be the set of first-order sentences of the form

∀x1, . . . , xn :
nk

i=1
xi 6≈ e→ ∃y : y 6≈ ef

 nk

i=1
y 6≈ xi

f ¬cT (y, y, y)f
 nk

i=1
¬ciT (xi, y, y)

f
 k

16i6j6n
¬cijT (xi, xj, y)

,
where n ∈ ω and c, ci, cij ∈ {0, 1}, for all 1 6 i 6 j 6 n.

Next, we show that these sentences (effectively) axiomatise LSI.

Lemma 4.15. Let L be countable integral atom-type structure that is a model of (II),
(IP), and f(x) ≈ x. Then we have L ∼= LSI if and only if L |== ASI.

Proof. For the forward direction, say L ∼= LSI. Then L is a Fräıssé limit of FSIASe,
so the age of L is FSIASe and L is ultrahomogeneous. Let n ∈ ω, let c, ci, cij ∈ {0, 1},
for all 1 6 i 6 j 6 n, and let u1, . . . , un ∈ L \ {eL}. Let U be the substructure of L
generated by U := {u1, . . . , un}. Now, fix some v /∈ U and let V := 〈V ; fV, eV, TV〉,
where V := U ∪ {eF, v}, fV = idV , eV = eL, and TV is given by

TU ∪ [v, eL, v] ∪ [v, v, v] ∪
(⋃
{[ui, v, v] | ci = 0}

)
∪
(⋃
{[ui, uj, v] | cij = 1}

)
if c = 0 and

TU ∪ [v, eL, v] ∪
(⋃
{[ui, v, v] | ci = 0}

)
∪
(⋃
{[ui, uj, v] | cij = 1}

)
if c = 1. As the age of L is FSIASe, we must have U ∈ FSIASe, so we have V ∈ FSIASe.
Again, the age L is FSIASe, so there is a substructure W of L that is isomorphic to V.
Now, let µ : V→W be such an isomorphism. Then µ ◦ ıU is an isomorphism from U
to the substructure of L generated by µ[U ]. We saw above that L is ultrahomogeneous,
so µ ◦ ıU extends to an automorphism of L, say ν. Then, by construction, ν−1(µ(v))
is a suitable witness to the sentence from ASI defined by n, c, and each ci, and cij,
when choosing xi = ui, for each 1 6 i 6 n. The choice of parameters was arbitrary,
so this tells us that L |== ASI.
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For the converse, assume that L |== ASI. By Theorem 1.41, to show that L ∼= LSI,
it is enough to show that FSIASe is the age of L and that L is ultrahomogeneous.
Since L is a symmetric model of (II) and (IP), the age of L is a subset of FSIASe.
Assume, for a contradiction, that the age of L is a proper subclass of FSIASe. Let U
be a minimal member of FSIASe that is not in the age of L. It is clear that |U | > 1.
Now, let u ∈ U \{eU} and let V be the substructure of U generated by V := U \{u}.
By our minimality assumption, V embeds into L. Let µ : V → L be an embedding,
let n := |V | − 1, let {v1, . . . , vn} be an enumeration of V \ {eV}, let

c :=

0 if [u, u, u] ⊆ TU

1 if [u, u, u] * TU,

let

ci :=

0 if [vi, u, u] ⊆ TU

1 if [vi, u, u] * TU,

for all 1 6 i 6 n, and let

cij :=

0 if [vi, vj, u] ⊆ TU

1 if [vi, vj, u] * TU,

for all 1 6 i 6 j 6 n. As L |== ASI, L satisfies the sentence defined by c and each ci

and cij, so there is a witness, say y, for the choice of xi = µ(vi), for all 1 6 i 6 n.
By construction, the substructure of L generated by µ[V ] ∪ {y} is isomorphic to U.
It follows that U embeds into L, so U is in the age of L, contradicting our assumption.
Thus, FSIASe is in fact the age of L, as claimed.

Based on Lemma 1.40, it will be enough to show that L is weakly homogeneous.
Let U 6 V be finitely generated substructures of L and let µ : U→ L be an embed-
ding. Observe that since L is symmetric, generating sets and subuniverses coincide,
except for the possible addition of the constant e. If U = V, then we are clearly done.
Now, assume that U 6= V and fix some v ∈ V \ U . Let n := |U | − 1, let {u1, . . . , un}
be an enumeration of U \ {eU}, let

c :=

0 if [v, v, v] ⊆ TV

1 if [v, v, v] * TV,

let

ci :=

0 if [ui, v, v] ⊆ TV

1 if [ui, v, v] * TV,

for all 1 6 i 6 n, and let

cij :=

0 if [ui, uj, v] ⊆ TV

1 if [ui, uj, v] * TV,
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for all 1 6 i 6 j 6 n. As L |== ASI, L satisfies the sentence defined by c and each ci

and cij, so there is a witness, say y, for the choice of xi = µ(vi), for all 1 6 i 6 n.
By construction, the map ν : U ∪ {v} → L given by

ν(x) =

µ(x) if x ∈ U
y if x = v

embeds the substructure of V generated by U∪{v} into L. By assumption, V is finite,
hence µ can be extending to an embedding ν : V→ L by repeating this construction.
Thus, L is weakly homogeneous, as claimed.

Combining these results, we find that L ∼= LSI, so the two statements are equiva-
lent, which is what we wanted to show. �

Based on Theorem 1.41, we have the following.

Corollary 4.16. Together, (II), (IP), f(x) ≈ x, and ASI form a ℵ0-categorical,
and therefore complete, theory.

Next, we show that these sentences belong to SSI.

Lemma 4.17. ASI ⊆ SSI.

Proof. Let n ∈ N, let m ∈ ω, and let c, ci, cij ∈ {0, 1}, for all 1 6 i 6 j 6 m.
Clearly, if we are given non-identity elements x1, . . . , xm, y ∈ {1, . . . , n} with y 6= xi,
for all 1 6 i 6 n, then at most

1 +m+ (m2 +m)/2 = (m2 + 3m+ 2)/2

cycles must be included for the sentence from ASI given by these parameters to hold.
So, the fraction of structures failing this sentence must be below 1 − 2−(m2+3m+2)/2.
There are (n − 1)m ways to select x1, . . . , xm, and then n − m − 1 ways to select y
once given x1, . . . , xm, so the fraction of structures not satisfying the sentence from ASI

is bounded above by
(n− 1)m(1− 2−(m2+3m+2)/2)n−m−1.

Clearly, we have n−m− 1 < n and

(n− 1)m 6 nm

= 2m log2(n),

so this quantity is below 2m log2(n)+n log2(1−2−(m2+3m+2)/2). Since 1 − 2−(m2+3m+2)/1 < 1,
and since m ∈ ω is fixed, it follows that log2(1− 2−(m2+3m+2)/2) is fixed and negative,
hence

lim
n→∞

2m log2(n)+n log2(1−2−(m2+3m+2)/2) = 0.

By the Squeeze Principle, the fraction of structures that do not satisfy the sentence
defined by the given parameters tends to 0. It follows that we must have ASI ⊆ SSI,
as claimed. �
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So, based on Proposition 1.41 and Lemma 4.15, we have the following.

Corollary 4.18. The theory SSI is ℵ0-categorical, and is therefore complete. Thus,
FSIASe has a 0–1 law.

Next, we translate this result to one on FSIAS.

Corollary 4.19. FSIAS has a 0–1 law.

Proof. Let U ∈ FSIAS, let eU be the unique element of I, let Ue := 〈U ; fU, eU, TU〉,
let σ be a {f, T, I}-sentence, and let σe denote the {f, e, T}-sentence obtained from ϕ

by replacing all occurences of I(x), for some variable x, with x ≈ e. By construction,
U |== ϕ if and only if Ue |== ϕe. Hence, based on Proposition 1.28 and Corollary 4.18,
the class FSIAS has a 0–1 law, as required. �

Theorem 4.8 allows us to translate this result to FAS, giving us the main result of
this section.

Theorem 4.20. FAS has a 0–1 law.

4.4. Dead ends

In this section, we outline some results that are related to the problem mentioned
in Section 4.1, namely, the problem of determining whether or not almost all nonas-
sociative relation algebras are strongly representable.

One approach to solving this problem would be to make use of the following result,
which is Theorem 437 of Maddux [70].

Proposition 4.21. Let A ∈ INA be complete and atomic. If there is some a ∈ At(A)
with a 6 bc, for all diversity atoms b and c, then A ∈ RRA. Further, if |At(A)| = ℵ0,
then there is an embedding µ of A into Re(ω2) with ⋃b∈At(A) µ(b) = ω2.

However, in [2], Alm shows that almost all nonassociative algebras do not have
such an atom, which is usually called a flexible atom. Similarly, the following result,
which is Theorem 422 of [70], would be another approach.

Proposition 4.22. Let A ∈ ISA. If any finite S ⊆ A\{0} with ∨S = 1 and s∧t = 0,
for all distinct s, t ∈ S, contains an element s with s2 = 1, then A ∈ RRA.

To show that making use of this result cannot lead to a solution of this problem,
we will use the following result.

Lemma 4.23. Let A ∈ ISA be finite. Then the following are equivalent:

(1) every S ⊆ A \ {0} with ∨
S = 1 and s ∧ t = 0, for all distinct s, t ∈ S,

contains an element s with s2 = 1;
(2) there is a diversity atom a with a2 = 1.
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Proof. Firstly, assume that (1) holds. Since A is finite, it follows that ∨At(A) = 1.
Since a ∧ b = 0, for all distinct a, b ∈ At(A), it is clear that (2) follows from (1).

Conversely, assume that (2) holds. Let S ⊆ A \ {0} with ∨
S = 1 and s ∧ t = 0,

for all distinct s, t ∈ S. Since (2) holds, there is an atom a with a2 = 1. As ∨S = 1,
we have a 6 s, for some s ∈ S. Based on Proposition 1.22(1), we must have a2 6 s2,
so s2 = 1 and (2) implies (1).

Thus, (1) and (2) are equivalent, as claimed. �

Lemma 4.24. Almost all finite members of NA fail to have an atom a with a2 = 1.

Proof. Let n > 2 and let 1 6 s < n. Based on Proposition 4.4(5), there are

n

(
n− 1
s

)
2Q(n,n)−sn

members U of FSIAS with A = {1, . . . , n} and s atoms whose square is 1 in Cm(U);
first choose what is the unique element of I, then pick a s-element subset of At(A)\I,
then choose freely from theQ(n, n)− sn cycles that are not the ones of the form [a, a, b]
that are forced to be included for the atoms to square to 1. Thus, there are

n−1∑
s=1

n

(
n− 1
s

)
2Q(n,n)−sn

members of FSIAS with universe {1, . . . , n} and an atom a that satisfies a2 = 1. Thus,
the fraction of these structures is∑n−1

s=1 n
(
n−1
s

)
2Q(n,n)−sn

n2Q(n,n) =
n−1∑
s=1

(
n− 1
s

)
2−sn.

Since n > 2, we have (
n− 1
s

)
6 (n− 1)s

= 2s log2(n−1),

hence
n−1∑
s=1

(
n− 1
s

)
2−sn 6

n−1∑
s=1

2s(log2(n−1)−n).

Since n > 2, we have n > log2(n) and log2(n) > log2(n− 1), so log2(n− 1)− n 6 0.
Combining these results, we find that

n−1∑
s=1

(
n− 1
s

)
2−sn 6 (n− 1)2log2(n−1)−n

= 22 log2(n−1)−n,

which tends to 0, hence almost all labelled members of FSIAS have no such atom.
Hence, from Theorem 4.8 and Proposition 4.6(2), almost all finite members of NA
have no such atom, which is what we wanted to show. �
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Based on this result, not enough algebras have such an atom.
The other results in [70] that guarantee the strong representability of an algebra,

namely Theorem 423, Theorem 424, Theorem 425, Theorem 426, Theorem 427, The-
orem 431, Theorem 433, Theorem 532, Theorem 533, and the results in Section 77,
are easily shown (with Theorem 4.9) to not hold in enough algebras to give a solution.

The corresponding problems for feeble and qualitative representability are of in-
terest in their own right, and their solutions could lead to a negative solution or useful
ideas for the strong representability problem. So, we will also look at these problems.

Based on Proposition 2.14, if U,V ∈ FAS such that U 6 V and Cm(U) ∈ FRA,
then we have Cm(V) ∈ FRA; simply use the same network. So, the following result,
which is a special case of Theorem 10 of Maddux [71], along with Proposition 4.6(2),
would give a possible approach to the feeble representability problem.

Definition 4.25. Let A be a relation algebra, let a, b, c ∈ At(A), and let 1 6 n 6 3.
We call [a, b, c] a n-cycle if |{a, b, c}| = n.

Proposition 4.26. Let A ∈ IRA be finite and symmetric with no consistent 3-cycles.
Then the following are equivalent:

(1) A ∈ RRA;
(2) A ∈ RA5.

We will see that almost none of these (labelled) algebras are even relation algebras.
The following results are mostly folklore; we include proofs for completeness.

Lemma 4.27. Let A ∈ INA. Then the following are equivalent:

(1) A ∈ ISA;
(2) a1 = 1, for every atom a ∈ A;
(3) x1 = 1, for every non-zero x ∈ A.

Proof. Assume that (1) holds and that a ∈ A is an atom. Since a is an atom,
we have 0 < a 6 a1, so a1 6= 0. As A is symmetric, it follows that A is commutative.
So, by the triangle laws,

(a1)′a = (a1)′a ∧ 1

= 0,

as a1 ∧ (a1)′ = 0. Since a 6= 0, this implies that

ea = a 
 0

= (a1)′a,
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hence e 
 (a1)′. Thus, e ∧ (a1)′ = 0, as a is an atom. This implies that e 6 a1, so

1 = e1

6 (a1)1,

which implies that (a1)1 = 1. As (1) holds, this implies that a1 = 1, so (1) implies (2).
Next, we will assume that (2) holds and let x ∈ A with x 6= 0. Since A is atomic,

there is an atom a with a 6 x. Thus,

1 = a1

6 x1,

which implies that x1 = 1. From this, it follows that (2) implies (3).
Assume that (3) holds and x ∈ A. If x = 0, then we have

(x1)1 = (01)1

= 01

= x1.

When x 6= 0, we have

(x1)1 = 11

= 1

= x1,

hence (3) implies (1).
Thus, (1), (2), and (3) are equivalent, which is what we wanted to show. �

Lemma 4.28. Let A ∈ INA be finite and symmetric. Then the following are equiva-
lent:

(1) A ∈ ISA;
(2) for all atoms a, b ∈ A, there is an atom c ∈ A with b 6 ac;
(3) for all distinct diversity atoms a and b, there is an atom c with [a, b, c] con-

sistent.

Proof. Since A is finite, A has n diversity atoms, for some n ∈ ω. Let {a1, . . . , an}
be enumeration of At(A). Since A is finite, A must be atomic, so by Lemma 4.27,
we have A ∈ ISA if and only if a1 = 1, for every atom a, i.e.,

1 = a1

= a(e ∨ a1 ∨ · · · ∨ an)

= ae ∨ aa1 ∨ · · · ∨ aan,
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for every atom a. As A is finite, if x ∈ A, then we have x = 1 if and only if b 6 x,
for every atom b, hence (1) and (2) are equivalent. Since A is symmetric, (2) and (3)
are clearly equivalent, so we are done. �

Theorem 4.29. Almost none of the labelled symmetric structures in FSIAS with no
3-cycles have complex algebras in ISA.

Proof. Let U := {1, . . . , n} with n > 3, let e ∈ U , and assume that a, b ∈ U \ {e}
with a 6= b. The proportion of ternary relations T such that Cm(〈U ;T, idU , e〉) ∈ ISA
with no 3-cycles in which [a, b, c] is consistent, for some c ∈ U \ {e}, is 1− 1/4 = 3/4,
since the only possible choices for c are a and b when there are no consistent 3-cycles.
Thus, the fraction of relations where this holds for all choices of a and b is (3/4)(

n−1
2 ),

so the fraction of labelled members of IAS with no 3-cycles that are symmetric
where the condition (3) from Lemma 4.28 holds in its complex algebra is (3/4)(

n−1
2 ).

Clearly, (3/4)(
n−1

2 ) → 0, hence almost none of these labelled structures are in ISA,
which is what we wanted to show. �

Corollary 4.30. Almost none of the labelled members of FSIAS have complex algebras
in RRA.

The proof of Proposition 4.6(1) in Maddux [67] does not extend to these algebras,
so we cannot use Proposition 4.2 to extend this result to unlabelled structures.

4.5. Open problems

In Section 4.2, we saw that almost all members of NA are symmetric and integral
members of RAn, for each fixed n > 3. However, as we mentioned above in Section 4.4,
it is not known whether or not almost all of these structures are strongly, qualitatively,
or even feebly representable. Thus, we restate the following problem from Maddux [68]
and Hirsch and Hodkinson [36].

Problem 11. Determine whether almost all members of NA are members of FRA,
QRA, or RRA.

Earlier, in Section 4.3, we also saw that the class FAS has a (first-order) 0–1 law.
However, this result does not extend to the class of all finite members of NA. Thus,
the problem of determining whether or not such a law exists suggests itself. Further,
one may also look at the subclasses of NA that we defined above.

Problem 12. Determine whether or not NA, FRA, QRA, or RRA have 0–1 laws.



Something ends, something begins

The study of relation-type algebras began as an offshoot of the calculus of relations,
and has since developed into one of the most widely studied areas of algebraic logic.
Much like many other classes of algebras that are associated with some form of logic,
the subvariety lattices of these algebras have attracted some interest from researchers.
Probabilistic topics have attracted interest, and tie into an important open problem.
This thesis investigates the intersection of these two areas and two notions of repre-
sentability, feeble and qualitative representability, that were introduced recently.

Chromatic algebras can be defined as ones with all or no cycles of a given size.
The study of the feeble and qualitative representability of Ramsey algebras and alge-
bras with only 3-cycles is completed in this thesis, and the qualitative representability
of Lyndon algebras are the only remaining case for these notions of representability.
The strong representability of Ramsey algebras and Lyndon algebras remain signifi-
cant open problems.

The lattice of subvarieties of the variety of relation algebras has three atoms, the
covers of two of which have been completely classified. The problem of finding all
covers of the remaining atom is one of the main open problems in relation algebra.
Up to cardinality, we solved the corresponding problem for nonassociative relation
algebras, semiassociative relation algebras, feebly representable algebras, and quali-
tatively representable algebras. Our methods do not translate to relation algebras or
strongly representable relation algebras, but are quite interesting in their own right.

We showed that almost all finite nonassociative relation algebras are symmetric
integral relation algebras, and derived a simple formula counting these structures.
We showed that the atom structures of nonassociative relation algebras have a 0–1
law, and discussed the problem of showing that almost all algebras are (some kind of)
representable. The problem remains open, but these results may be useful in solving it.

It is the hope of the author that this work shines a light on the appeal of feeble
and qualitative representability and sparks interest in these intriguing open problems,
some of which have perhaps been neglected for too long.
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Appendix A: Finite algebras that generate covers of A3 in ΛSA

Here we give a list of atom tables (and consistent cycles) of finite algebras in SA
that generate covers of A3. Here the set of atoms is of the form {0, . . . , n} with n ∈ N,
and 0 is always the identity element; this determines its products, so we omit them.
Each entry of these tables lists the atoms that are below the corresponding product.
These structures were found using code that was written and run by Tomasz Kowalski.
This list is not an exhaustive list of the structures that were found.

· 1 2 3
1 0, 2 1, 2, 3 2, 3
2 1, 2, 3 0, 1 1
3 2, 3 1 0, 1

[0, 0, 0], [0, 1, 1], [0, 2, 2], [0, 3, 3],

[1, 1, 2],

[1, 2, 2], [1, 2, 3],

[1, 3, 3].

· 1 2 3 4
1 0, 3 2, 3, 4 1, 2, 3, 4 2, 3, 4
2 2, 3, 4 0, 1, 2 1 1
3 1, 2, 3, 4 1 0, 1 1
4 2, 3, 4 1 1 0, 1

[0, 0, 0], [0, 1, 1], [0, 2, 2], [0, 3, 3], [0, 4, 4],

[1, 1, 3],

[1, 2, 2], [1, 2, 3], [1, 2, 4],

[1, 3, 3], [1, 3, 4],

[1, 4, 4],

[2, 2, 2].
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· 1 2 3 4 5
1 0, 4 4, 5 3, 4, 5 1, 2, 3, 4, 5 2, 3, 4, 5
2 4, 5 0, 3 2 1 1
3 3, 4, 5 2 0, 1 1 1
4 1, 2, 3, 4, 5 1 1 0, 1 1
5 2, 3, 4, 5 1 1 1 0, 1

[0, 0, 0], [0, 1, 1], [0, 2, 2], [0, 3, 3], [0, 4, 4], [0, 5, 5],

[1, 1, 4],

[1, 2, 4], [1, 2, 5],

[1, 3, 3], [1, 3, 4], [1, 3, 5],

[1, 4, 4], [1, 4, 5],

[1, 5, 5],

[2, 2, 3].

· 1 2 3 4 5 6
1 0, 3, 5 5, 6 1, 3, 4, 5, 6 3, 4, 5, 6 1, 2, 3, 4, 5, 6 2, 3, 4, 5, 6
2 5, 6 0, 3, 4 2 2 1 1
3 1, 3, 4, 5, 6 2 0, 1 1 1 1
4 3, 4, 5, 6 2 1 0, 1 1 1
5 1, 2, 3, 4, 5, 6 1 1 1 0, 1 1
6 2, 3, 4, 5, 6 1 1 1 1 0, 1

[0, 0, 0], [0, 1, 1], [0, 2, 2], [0, 3, 3], [0, 4, 4], [0, 5, 5], [0, 6, 6],

[1, 1, 3], [1, 1, 5],

[1, 2, 5], [1, 2, 6],

[1, 3, 3], [1, 3, 4], [1, 3, 5], [1, 3, 6],

[1, 4, 4], [1, 4, 5], [1, 4, 6],

[1, 5, 5], [1, 5, 6],

[1, 6, 6],

[2, 2, 3], [2, 2, 4].
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· 1 2 3 4 5 6 7

1 0, 4, 6 3, 6, 7 2, 3, 4, 5, 6, 7 1, 3, 4, 5, 6, 7 3, 4, 5, 6, 7 1, 2, 3, 4, 5, 6, 7 2, 3, 4, 5, 6, 7
2 3, 6, 7 0, 2, 3, 4, 5 1, 2 2 2 1 1
3 2, 3, 4, 5, 6, 7 1, 2 0, 1 1 1 1 1
4 1, 3, 4, 5, 6, 7 2 1 0, 1 1 1 1
5 3, 4, 5, 6, 7 2 1 1 0, 1 1 1
6 1, 2, 3, 4, 5, 6, 7 1 1 1 1 0, 1 1
7 2, 3, 4, 5, 6, 7 1 1 1 1 1 0, 1

[0, 0, 0], [0, 1, 1], [0, 2, 2], [0, 3, 3], [0, 4, 4], [0, 5, 5], [0, 6, 6], [0, 7, 7],

[1, 1, 4], [1, 1, 6],

[1, 2, 3], [1, 2, 6], [1, 2, 7],

[1, 3, 3], [1, 3, 4], [1, 3, 5], [1, 3, 6], [1, 3, 7],

[1, 4, 4], [1, 4, 5], [1, 4, 6], [1, 4, 7],

[1, 5, 5], [1, 5, 6], [1, 5, 7],

[1, 6, 6], [1, 6, 7],

[1, 7, 7],

[2, 2, 2], [2, 2, 3], [2, 2, 4], [2, 2, 5].

· 1 2 3 4 5 6 7 8

1 0, 3, 5, 7 3, 4, 7, 8 1, 2, 3, 4, 5, 6, 7, 8 2, 3, 4, 5, 6, 7, 8 1, 3, 4, 5, 6, 7, 8 3, 4, 5, 6, 7, 8 1, 2, 3, 4, 5, 6, 7, 8 2, 3, 4, 5, 6, 7, 8
2 3, 4, 7, 8 0, 2, 3, 4, 5, 6 1, 2 1, 2 2 2 1 1
3 1, 2, 3, 4, 5, 6, 7, 8 1, 2 0, 1 1 1 1 1 1
4 2, 3, 4, 5, 6, 7, 8 1, 2 1 0, 1 1 1 1
5 1, 3, 4, 5, 6, 7, 8 2 1 1 0, 1 1 1
6 3, 4, 5, 6, 7, 8 2 1 1 1 0, 1 1
7 1, 2, 3, 4, 5, 6, 7, 8 1 1 1 1 1 0, 1
8 2, 3, 4, 5, 6, 7, 8 1 1 1 1 1 1 0, 1

[0, 0, 0], [0, 1, 1], [0, 2, 2], [0, 3, 3], [0, 4, 4], [0, 5, 5], [0, 6, 6], [0, 7, 7], [0, 8, 8]

[1, 1, 3], [1, 1, 5], [1, 1, 7]

[1, 2, 3], [1, 2, 4], [1, 2, 7], [1, 2, 8]

[1, 3, 3], [1, 3, 4], [1, 3, 5], [1, 3, 6], [1, 3, 7], [1, 3, 8]

[1, 4, 4], [1, 4, 5], [1, 4, 6], [1, 4, 7], [1, 4, 8]

[1, 5, 5], [1, 5, 6], [1, 5, 7], [1, 5, 8]

[1, 6, 6], [1, 6, 7], [1, 7, 8]

[1, 7, 7], [1, 7, 8]

[1, 8, 8]

[2, 2, 2], [2, 2, 3], [2, 2, 4], [2, 2, 5], [2, 2, 6].
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An example of some of Tomasz Kowalski’s code (in C) is shown below.

#include <stdio.h>
#include <sys/types.h>
#include <time.h>
#define LN 11
#define MAX max_cycles()

int cycletable[LN][LN][LN];
int invtable[LN] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int related[LN][LN];
int last_found[LN][LN];
int inv(int i)
{

return invtable[i];
}
int two_to(int pow)
{

int val = 1;
int i;
for(i = 0; i < pow; i++)

val <<= 1;
return(val);

}
int max_cycles()
{

int i,k,val=0;
for(i=1; i<LN; i++)

val=val+(i*(LN-i));
return val;

}
int compose_atoms(int a, int b)
/* composes atoms numbered a and b */
{

int c, val=0;
for(c=0; c<LN; c++)

if(cycletable[a][b][c] > 0)
val = val | two_to(c);
return val;

}
void a_priori_cycles()
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{
int i,j;
for(i=0; i<LN; i++)
{

cycletable[i][0][i] = 1;
cycletable[0][i][i] = 1;

for(j=0; j<LN; j++)
if(i==inv(j))

cycletable[i][j][0] = 1;
}

}
int exclude_cycleset(int i, int j, int k)
{

cycletable[i][j][k] = 0;
cycletable[inv(i)][k][j] = 0;
cycletable[inv(j)][inv(i)][inv(k)] = 0;
cycletable[j][inv(k)][inv(i)] = 0;
cycletable[inv(k)][i][inv(j)] = 0;
cycletable[k][inv(j)][i] = 0;

}
int include_cycleset(int i, int j, int k)
{

cycletable[i][j][k] = 1;
cycletable[inv(i)][k][j] = 1;
cycletable[inv(j)][inv(i)][inv(k)] = 1;
cycletable[j][inv(k)][inv(i)] = 1;
cycletable[inv(k)][i][inv(j)] = 1;
cycletable[k][inv(j)][i] = 1;

}
void fixed_cycles()
{

int i, j;
for(i=3; i<LN; i++)

for(j=3; j<LN; j++)
include_cycleset(i,j,1);
for(i=2; i<LN-2; i++)

include_cycleset(2,2,i);
for(i=1; i<LN/2; i++)

include_cycleset(1,1,LN-2*i);
for(i=0; i<(LN-2)/4; i++)

include_cycleset(1,2,LN-4*i-2);
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for(i=0; i<(LN-1)/4; i++)
include_cycleset(1,2,LN-4*i-1);
}
int lex_smaller(int a, int b, int c, int x, int y, int z)
{

int ctrl=0;
if(a<x)

ctrl=1;
else if(a==x && b<y)

ctrl=1;
else if(a==x && b==y && c<=z)

ctrl=1;
return ctrl;

}
int minimal_triple(int i, int j, int k)
{

int ctrl=0;
if(lex_smaller(i,j,k, inv(i),k,j) &&

lex_smaller(i,j,k, inv(j),inv(i),inv(k)) &&
lex_smaller(i,j,k, j,inv(k),inv(i)) &&
lex_smaller(i,j,k, inv(k),i,inv(j)) &&
lex_smaller(i,j,k, k,inv(j),i))

ctrl=1;
return ctrl;

}
/*
int allowed_triple(int i, int j, int k)
{

int ctrl=1;
if(i > 2 && j > 2 && k > 1)

ctrl = 0;
return ctrl;

}
*/
int quick_next_cycletable()
{

int i, ctrl = 1;
for(i=1; i<4 && ctrl == 1; i++)

if(minimal_triple(1,2,i) == 1)
if(cycletable[1][2][i] == 0)
{
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include_cycleset(1, 2, i);
ctrl=0;

}
else /* if(cycletable[i][j][k] == 1 */
{

exclude_cycleset(1, 2, i);
}

}
int next_cycletable()
{

int i,j,k, ctrl = 1;
for(i=1; i<3 && ctrl == 1; i++)

for(j=1; j<3 && ctrl == 1; j++)
for(k=1; k<LN && ctrl == 1; k++)

if(minimal_triple(i,j,k) == 1)
if(cycletable[i][j][k] == 0)
{

include_cycleset(i, j, k);
ctrl=0;

}
else /* if(cycletable[i][j][k] == 1 */
{

exclude_cycleset(i, j, k);
}

}
int integral()
{

int i,j,u, ctrl=1, found=0;
for(i=0; i<LN && ctrl == 1; i++)

for(j=0; j<LN && ctrl == 1; j++)
{

for(u=0; u<LN && found==0; u++)
if(cycletable[i][j][u] > 0)

found=1;
if(found==1)

found=0;
else

ctrl=0;
}

return ctrl;
}
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int semi_associative()
{

int v,w,x,y,z,u, ctrl=1, found=0;
for(v=0; v<LN && ctrl == 1; v++)

for(w=0; w<LN && ctrl == 1; w++)
for(x=0; x<LN && ctrl == 1; x++)

for(y=0; y<LN && ctrl == 1; y++)
for(z=0; z<LN && ctrl == 1; z++)

if(cycletable[v][w][x] > 0 &&
cycletable[x][y][z] > 0 &&
(v!=z || w!=inv(y)))

{
for(u=0; u<LN && found==0; u++)

if(cycletable[v][u][z] > 0)
found=1;
if(found==1)

found=0;
else

ctrl=0;
}

return ctrl;
}
int no_equiv()
{

int i, j, ctrl=1, found=0;
for(i=1; i<LN && ctrl == 1; i++)
{

for(j=1; j<LN && found == 0; j++)
if(cycletable[i][inv(i)][j]>0)

found=1;
if(found==1)

found=0;
else

ctrl=0;
}
return ctrl;

}
int noncommutative()
{

int i, j, k, found=0;
for(i=1; i<LN && found == 0; i++)
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for(j=i+1; j<LN && found == 0; j++)
for(k=1; k<LN && found == 0; k++)

if(cycletable[i][j][k] != cycletable[j][i][k])
found=1;
return found;

}
int transitive()
{

int i,j,k, ctrl=1;
for(i=1; i<LN && ctrl == 1; i++)

for(j=1; j<LN && ctrl == 1; j++)
for(k=1; k<LN && ctrl == 1; k++)

if(related[i][j] == 1 &&
related[j][k] == 1 &&
related[i][k] == 0)
ctrl=0;
return ctrl;

}
int diagonal()
{

int i,j;
for(i=0; i<LN; i++)

for(j=0; j<LN; j++)
if(i==j)

related[i][j]=1;
else

related[i][j]=0;
}
int next_relation()
{

int i,j, ctrl = 1;
for(i=1; i<LN && ctrl == 1; i++)

for(j=i+1; j<LN && ctrl == 1; j++)
if(related[i][j] == 0)
{

related[i][j] = 1;
related[j][i] = 1;
ctrl=0;

}
else
{
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related[i][j] = 0;
related[j][i] = 0;

}
}
int converse_compatible()
{

int i,j,ctrl=1;
for(i=1; i<LN && ctrl==1; i++)

if(i != inv(i))
for(j=1; j<LN && ctrl==1; j++)

if(related[j][i]==1 && related[inv(j)][inv(i)]==0)
ctrl=0;
return ctrl;

}
int composition_compatible()
{

int v,w,x,y,z,u, ctrl=1, found=0;
for(v=0; v<LN && ctrl == 1; v++)

for(w=0; w<LN && ctrl == 1; w++)
for(u=0; u<LN && ctrl == 1; u++)

if(cycletable[v][w][u] == 1)
for(z=0; z<LN && ctrl == 1; z++)

if(related[u][z]==1)
{

for(x=0; x<LN && found == 0; x++)
for(y=0; y<LN && found == 0; y++)

if(cycletable[x][y][z] == 1 &&
related[v][x]== 1 &&
related[w][y]== 1)

found=1;
if(found==1)

found=0;
else

ctrl=0;
}

return ctrl;
}
int bounded_morphism()
{

if(converse_compatible() && composition_compatible())
return 1;
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else
return 0;
}
int nontrivial_subalgebras()
{

int i,j, before=0, after=0, ctrl=0;
diagonal();
while(ctrl==0)
{

next_relation();
if(transitive() && bounded_morphism())
{

for(i=0; i<LN; i++)
for(j=0; j<LN; j++)

last_found[i][j]=related[i][j];
ctrl=1;

}
}
before=related[LN-2][LN-1];
next_relation();
after=related[LN-2][LN-1];
if(before>after)

ctrl=0;
return ctrl;

}
void cycletable_to_screen()
{

int i,j,k;
for(i=0; i<LN; i++)

for(j=0; j<LN; j++)
for(k=0; k<LN; k++)

if(cycletable[i][j][k]>0 && minimal_triple(i,j,k))
printf("[%d, %d, %d]\n",i,j,k);
printf("-------------------\n");

}
void full_cycletable_to_screen()
{

int i,j,k;
for(i=0; i<LN; i++)

for(j=0; j<LN; j++)
for(k=0; k<LN; k++)
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if(cycletable[i][j][k]>0)
printf("(%d, %d, %d) (%d, %d, %d) (%d, %d, %d)\

(%d, %d, %d) (%d, %d, %d) (%d, %d, %d)\n",
i,j,k, inv(i),k,j, j,inv(k),inv(i),
inv(j),inv(i),inv(k), inv(k),i,inv(j), k,inv(j),i);
printf("-------------------\n");

}
void table_to_screen()
{

int i,j;
for(i=0; i<LN; i++)
{

for(j=0; j<LN; j++)
printf("%5d", compose_atoms(i,j));

printf("\n");
}
printf("\n");

}
void print_partition_class(int i)
{

int j;
printf("{ ");
for(j=1; j<LN; j++)

if(last_found[i][j] == 1)
printf("%d ", j);
printf("}\n");

}
void print_partition()
{

int i,k,done=0;
for(i=1; i<LN; i++)
{

for(k=1; k<i && done==0; k++)
if(last_found[k][i]==1)

done=1;
if(done==1)

done=0;
else

print_partition_class(i);
}
printf("\n");
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}
int not_last_table()
{

int i,j,k,found=0;
for(i=1; i<LN; i++)

for(j=i; j<LN; j++)
for(k=j; k<LN; k++)

if(cycletable[i][j][k]==0)
found=1;
return found;

}
int clear_cycletable()
{

int i,j,k;
for(i=1; i<LN; i++)

for(j=1; j<LN; j++)
for(k=1; k<LN; k++)

cycletable[i][j][k] = 0;
}
int first_cycletable(int c)
{

int i,j,k,count=0;
for(i=1; i<LN && count<c; i++)

for(j=1; j<LN && count<c; j++)
for(k=1; k<LN && count<c; k++)

if(minimal_triple(i,j,k)==1)
{

include_cycleset(i,j,k);
count = count++;

}
}
int main()
{

time_t t1,t2;
(void) time(&t1);
a_priori_cycles();
fixed_cycles();
include_cycleset(1,2,3);
include_cycleset(3,4,5);
include_cycleset(5,6,7);
if(semi_associative() == 1
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&& nontrivial_subalgebras() == 0)
{

table_to_screen();
cycletable_to_screen();

}
else
{

table_to_screen();
cycletable_to_screen();

printf("\n Dupa\n");
}
(void) time(&t2);
printf("\n Time elapsed: %d seconds\n", (int) t2-t1);

}
/*
int main()
{

time_t t1,t2;
(void) time(&t1);
int found=0;
a_priori_cycles();
fixed_cycles();
while(not_last_table() && found < 1)
{

quick_next_cycletable();
if(semi_associative() == 1 &&

nontrivial_subalgebras() == 0)
{

table_to_screen();
cycletable_to_screen();
found++;

}
}
(void) time(&t2);
printf("\n Time elapsed: %d seconds\n", (int) t2-t1);
printf(" Number of algebras found: %d\n", found);

}
*/



Appendix B: Code for finding qualitative representations

Below we give SageMath code for finding qualitative representations of algebras.
The atom set, identity atom set, and consistent triples are the inputs; here we use
C5 from Table 5 of Jipsen [43]. This code was used was intended to be used for the
algebras in Tables 4 and 5 from [43], but was never run for long enough to terminate.
Line breaks were added to fit the code within the page.

# Input section.
# Here we need the start of AL and IL to match; use natural numbers for atoms

and make sure identity atoms come first in your list.
# I think this only works for integral algebras at the moment.

A = {1,2,3,4,5} # Atom set.
I = {1} # Identity triples.
C = {(1,1,1),(1,2,2),(1,3,3),(1,4,4),(1,5,5),(2,1,2),(2,2,1),(2,2,4),(2,2,5),

(2,3,5),(2,4,1),(2,4,4),(2,4,5),(2,5,2),(2,5,3),(2,5,4),(2,5,5),(3,1,3),
(3,2,4),(3,3,1),(3,3,2),(3,3,3),(3,3,4),(3,3,5),(3,4,2),(3,4,3),(3,4,4),
(3,4,5),(3,5,3),(3,5,4),(3,5,5),(4,1,4),(4,2,2),(4,2,3),(4,2,4),(4,2,5),
(4,3,3),(4,3,4),(4,3,5),(4,4,2),(4,4,3),(4,4,4),(4,4,5),(4,5,1),(4,5,2),
(4,5,3),(4,5,4),(4,5,5),(5,1,5),(5,2,1),(5,2,4),(5,2,5),(5,3,2),(5,3,3),
(5,3,4),(5,3,5),(5,4,1),(5,4,2),(5,4,3),(5,4,4),(5,4,5),(5,5,2),(5,5,3),
(5,5,4),(5,5,5)}

AL = list(A) # Indexed list of atoms.
IL = list(I) # Indexed list of identity atoms.
CL = list(C) # Indexed list of cycles.
a = len(AL) # Number of atoms.
i = len(IL) # Number of identity atoms.
c = len(CL) # Number of cycles.
lown = a # Minimum number of nodes needer for a qualitative representation.
maxn = 3*(c-3*a+2) # Maximum number of nodes needed.

# Set initial values for nodes and search status.
found = 0
n = lown
# Start looking for networks!
while found == 0 & n <= maxn:

81
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# Calculate the number of off diagonal elements of Nˆ2 up to symmetry.
nod = int((n**2-n)/2)
# Create an index set for functions defined on the diagonal elements.
if i > 1:

dtemp = list(range(i**n))
dfunc = [ZZ(x).digits(base=i, padto=n)[::-1] for x in dtemp]

if i==1:
dtemp = list(range(n))
for j in list(range(n)):

dtemp[j]=0
dfunc = [dtemp]

# Create an index set for symmetric functions on the off-diagonal elements.
if a > 1:

odtemp = list(range(a**nod))
odfunc = [ZZ(x).digits(base=a, padto=nod)[::-1] for x in odtemp]

if a == 1:
odtemp = list(range(a))
for j in list(range(a)):

odtemp[j]=0
odfunc = [odtemp]

# Create an index set for combining these index sets.
bigindex = list(range((i**n)*(a**nod)))
for j in list(range((i**n)*(a**nod))):

bigindex[j]=[int(j)//int(a**nod),mod(j,a**nod)]
# Create lists of diagonal elements of Nˆ2.
d = list(range(n))
for j in list(range(n)):

d[j]=[j,j]
# Create a list of off-diagonal elements of Nˆ2 (up to symmetry).
od = list(range(nod))
for j in list(range(n-1)):

od[j]=[0,j+1]
for j in list(range(n-2)):

for k in list(range(n-j-2)):
od[int((j+1)*n-(j+1)*(j+2)//2+k)] = [j+1,j+k+2]

# Combine the previous two lists to get all elements of Nˆ2 (up to symmetry).
dom = d+od
# Create a list of elements of Nˆ3.
Ntemp = list(range(n**3))
Ntup = [ZZ(x).digits(base=n, padto=3)[::-1] for x in Ntemp]
# Set initial index for search through functions.
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j = 0

while j < len(bigindex):
func = dfunc[bigindex[Integer(j)][0]]+odfunc[bigindex[Integer(j)][1]]
LN3 = set(range(0))
for k in list(range(nˆ3)):

a1 = AL[func[dom.index([min(Ntup[k][0],Ntup[k][1]),
max(Ntup[k][0],Ntup[k][1])])]]

a2 = AL[func[dom.index([min(Ntup[k][1],Ntup[k][2]),
max(Ntup[k][1],Ntup[k][2])])]]

a3 = AL[func[dom.index([min(Ntup[k][0],Ntup[k][2]),
max(Ntup[k][0],Ntup[k][2])])]]

LN3 = LN3.union({(a1,a2,a3)})
if LN3 == C:

found = 1
workingnodes = n
workingindex = j
j = len(bigindex)

if LN3 != C:
j = j+1

# If no network is found at this step we increment the number of nodes.
if found == 0 & n < maxn:

n = n+1

# Report the result of the search.
if found == 0:

print(’No cigar.’)
if found == 1:

winningfunc = dfunc[bigindex[workingindex][0]]+
odfunc[bigindex[workingindex][1]]

for k in list(range(len(winningfunc))):
winningfunc[k] = AL[winningfunc[k]]

print(’There is a network with’,workingnodes,’nodes.’)
print(’The labels are as follows:’,winningfunc)
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The following modification of this code looks for representations of chromatic
algebras, and takes the number of atoms and defining subset of {1, 2, 3} as inputs.
This code was used to construct some small networks while working on the material
presented in Chapter 2. Line breaks were added to fit the code within the page.

# For finding qualitative representations of E_n(X); the inputs are n and X.
X = {1,3}
a = 3 # Number of atoms, not the number of diversity atoms.

# First we construct the universe and the set of consistent triples.
# 1 will always be the identity and {1,...,n} will be the universe.
A = {1} # This will be the universe.
for i in range(a-1):

A = A.union({i+2})

C = set(range(0)) # This will be the set of all consistent triples.
t = 0 # This will be the total number of consistent diversity triangles.

# First we add in all the identity triples.
for i in range(a):

C = C.union({(1,i+1,i+1),(i+1,1,i+1)})

# Add in all the equilateral triples if 1 is in X.
if X == X.union({1}):

t = t+a-1
for i in range(a-1):

C = C.union({(i+2,i+2,i+2)})

# Add in all the isosceles triples if 2 is in X.
if X == X.union({2}):

t = t+(a-1)*(a-2)
for i in range(a-1):

for j in range(a-1):
if i != j:

C = C.union({(i+2,i+2,j+2),(i+2,j+2,i+2),(j+2,i+2,i+2)})

# Add in all the scalene triples if 3 is in X.
if X == X.union({3}):

t = int(t+(a-1)*(a-2)*(a-3)/6)
for i in range(a-1):
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for j in range(a-1):
for k in range(a-1):

if i != j and i !=k and j != k:
C = C.union({(i+2,j+2,k+2)})

# Now we look for a suitable network.
# First we find the maximum and minimum numbers of points a network can have.
maxn = 3*(t-1)
minn = 0
while minn*(minn-1)*(minn-2)/3 < t:

minn = minn+1

# Now we use a while loop to search for networks.
found = 0 # This variable will be used to keep track of whether we’ve found

a network.
if (a==1)|(a==2):

found = 1
n = minn # This will be the number of points in the network.
while found == 0 & n < maxn:

ed = n*(n-1)/2 # The number of edges (by symmetry and integrality).
od = list(range(ed)) # We calculate a list of lists of the form [i,j]

with i < j to extract labels from the labelling function.
for i in list(range(n-1)):

od[i]=[0,j+1]
for j in list(range(n-2)):

for k in list(range(n-j-2)):
od[int((j+1)*n-(j+1)*(j+2)//2+k)] = [j+1,j+k+2]

nf = n**ed # The number of atomic networks to consider.
# Labellings are like length base n numbers with at most ed digits.
# This is how will enumerate the functions without storing a massive

array like in my old code.
index = 0
while index < nf:

T = set(range(0)) # This will be the set of triples in the network.
for i in range(a-1): # We add in all the identity triples, which

must be present.
T = T.union({(1,i+2,i+2),(i+2,1,i+2)})

rem = int(a*(i/a-floor(n/a)))
quo = floor(n/a)
fun = list(range(ed))
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fun[ed-1]=rem+1
for i in range(ed-1):

rem = int(a*(quo/a-floor(quo/a)))
quo = floor(quo/a)
fun[ed-2-i]=rem+1

for i in range(n):
for j in range(n):

for k in range(n):
if i!= j & i != k & j != k:

T = T.union({(fun[od.index([min(i,j),max(i,j)])],
fun[od.index([min(j,k),max(j,k)])],fun[od.index([min(i,k),max(i,k)])])})

if T == C:
found = 1
winningindex = index
winningfun = fun

else:
index = index+1

if found == 0:
n = n+1

if found == 0:
print(’No cigar.’)

if (found == 1)&((a==1)|(a==2)):
print(’There is a small network that is easy to find’)

if (found == 1)&(a!=1)&(a!=2):
print(winningindex,winningfun)
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