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Abstract 

Biosurveillance systems aiming to detect and monitor populations of insect pests often 

employ traps that also catch a wide range of bycatch species. The resulting mixed 

specimens require extensive sorting by taxonomic experts before target pests can be 

identified, creating a major diagnostic bottleneck. This thesis explores how genomic 

techniques can be used to rapidly identify multiple species within unsorted trap samples, 

and then trace the geographic origins of detected populations, thereby increasing the 

scale and resolution at which insect biosurveillance can be conducted. First, short 

subregions of the cytochrome oxidase subunit I (COI) barcode were compared in-silico 

for their ability to act as broad-spectrum diagnostic markers for invasive insect pests. 

Second, four high performing mini-barcodes were applied in a non-destructive 

metabarcoding assay aimed at detecting spotted wing drosophila (Drosophila suzukii), a 

high priority exotic pest for Australia. In accordance with in-silico predictions, 

metabarcoding successfully detected D. suzukii and its close relatives spiked into 

mixed trap samples. Both field collection and DNA extraction protocols will, however, 

require optimisation to minimise sample and replicate dropouts. Third, the use of 

predictive models to correct for taxonomic bias inherent to metabarcoding assays was 

evaluated in order to expand their scope to quantitative population monitoring. All six 

evaluated models significantly improved the correlation between expected and observed 

relative abundances; and results could be transformed back to counts of insects using an 

independent measurement of absolute abundance, providing benefits for interpretability. 

Finally, low-coverage whole genome resequencing was used to compare trapped 

Queensland fruit fly (Bactrocera tryoni) specimens from recent outbreaks against a 

genomic reference panel of endemic populations. Despite weak concordance between 

genetic and geographic structure, outbreak specimens were successfully assigned to 

major populations, ruling out certain introduction pathways. These findings demonstrate 

how genomic biosurveillance can enhance management response to invasive insect pests, 

and practical integration into surveillance programmes is discussed.  
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Thesis Preface 

This thesis is comprised of seven chapters, with the original experimental content 

formatted as self-contained manuscripts either published, submitted, or in preparation 

to submit to peer-reviewed scientific journals. The first chapter provides a general 

introduction to biological invasions, biosecurity, and insect biosurveillance. The second 

chapter consists of an in-depth review of the relevant literature, focussing on the 

application of metabarcoding to diagnostics of invasive insect pests. The following four 

chapters detail the original experimental work, with each containing its own separate 

introduction, methodology, results, and discussion sections. Each experimental chapter 

includes a preface which describes how the research links to the other chapters and lists 

the publication details, including a statement from a co-author confirming the 

contribution of the PhD candidate. The final chapter comprises a general discussion 

which integrates the major themes from each experimental chapter and identifies 

avenues for future research. As chapters 2-6 correspond to separate scientific 

manuscripts, some redundancy of content has arisen between the introduction and 

methods sections of each respective chapter. In the case of published or submitted 

manuscripts, each employs the distinct referencing and citation styles of the 

corresponding journal, with the bibliography and any supplementary material included at 

the end of the chapter. The remaining chapters employ a single referencing and citation 

style with the bibliography provided at the end of each chapter.  
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1  
General Introduction 

1.1 Biological invasions & biosecurity 

Biological invasions have become symptomatic of our increasingly globalised world, as an 

unintended consequence of international trade and tourism, agricultural and urban 

development, and changing climates (Chown et al., 2015; Elton, 1958; Mack et al., 2000). 

Insects form a dominant component of the global spread of invasive species, with more 

than 4,900 species listed as invasive worldwide (Seebens et al., 2018). To date, the 

economic impact of insect invasions has primarily been considered through the lens of 

agricultural production, where the combined global costs of forgone output, pest control 

efforts, and loss of trade opportunities run into the tens of billions annually (Bradshaw et 

al., 2016). In Australia, new incursions of invasive insects threaten the productivity of a 

$14.4 billion horticultural sector (Hort Innovation, 2020), as well as the enviable market 

access position attained through historical freedom from many of the world’s major pests 

and diseases (Beale et al., 2008). Beyond agroecosystems, invasive insects can have 

pervasive effects on the natural environment, altering food webs and outcompeting 

endemic species (Ehrenfeld, 2010; Kenis et al., 2009). In turn, both the newly introduced 

species and the practices required to control it impact the goods and services provided 

by ecosystems as well as the communities that depend upon them for recreation, cultural 

practices, and human amenity (Binimelis et al., 2007; Kenis et al., 2009; Pejchar & Mooney, 

2009). Ultimately, this highlights the importance of preventing the introduction and 

spread of biological invaders to protect economic prosperity, food security, and human 

wellbeing.  

Biosecurity 

Biosecurity is a multidisciplinary field that encompasses the use of science, policy, and 

regulation to protect agriculture, food, and the environment from biological risk (FAO, 

2003). This rebranding of the centuries-old practice of controlling pests and diseases is a 

direct reflection of globalisation and the required shift towards nation interdependence 
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for managing introduction pathways (Hulme, 2011; Waage & Mumford, 2008). A primary 

aim of biosecurity programmes is to prevent the introduction of new pests or diseases in 

the first place, through a combination of risk analysis, regulatory measures, and 

quarantine inspection (Epanchin-Niell & Liebhold, 2015; Leung et al., 2002). This follows 

the precautionary principal, meaning a lack of scientific certainty about the risk posed by 

a potentially invasive species should not be used as a reason for not taking preventative 

action against its introduction (Cooney, 2004). When preventing introduction fails, 

eradication may be an option as long as incipient populations remain relatively small and 

localised (Liebhold et al., 2016; Pluess et al., 2012). If, however, the introduced species is 

detected too late for eradication to be successful, populations may be suppressed on a 

long-term basis in order to minimise impact on production (Kogan, 1988; Stenberg, 2017), 

but the return on investment quickly diminishes the longer a pest has had time to 

establish (Figure 1) (Finnoff et al., 2007; Leung et al., 2002; Rout et al., 2011). Due to the 

critical importance of detecting pests as early as possible, effective surveillance forms a 

key component of modern biosecurity programmes (Kalaris et al., 2014; Quinlan et al., 

2015).  

Biosecurity surveillance 

Biosecurity surveillance covers a continuum of pre-border, at-border, and post-border 

activities (Beale et al., 2008; Kalaris et al., 2014). Pre-border surveillance includes 

monitoring of international outbreaks and conducting risk assessments for newly 

emerging threats (Andersen et al., 2004; MacLeod, 2015). At-border surveillance involves 

quarantine inspection of commodities and baggage, generally targeted towards 

identifying those pests highlighted by prior risk assessment (Martin et al., 2016; Whattam 

et al., 2014). Post-border surveillance is considered the last line of defence, aiming to 

detect newly-introduced populations as early as possible to increase the likelihood of 

successful eradication (Reaser et al., 2020; Sharma et al., 2014). This is commonly achieved 



 

3 

 

through a mixture of targeted (active) surveillance activities to detect or demonstrate 

absence of a high priority pest (Low-Choy, 2015), and more general (passive) surveillance 

that leverages public awareness, reports of pest symptoms, and biodiversity surveys 

conducted by researchers and natural resource managers (Bishop & Hutchings, 2011; F. C. 

Jarrad et al., 2011; Thomas et al., 2017). In Australia, post-border biosecurity surveillance 

is coordinated and conducted by various national, state, and industry organisations, 

depending on the geographic scale and relevant jurisdictions covered (Anderson et al., 

2017). Surveillance programmes targeting insect pests generally employ traps containing 

targeted pheromone lures (Witzgall et al., 2010), host semiochemicals (e.g. Cha et al., 2014; 

Cunningham, Carlsson, Villa, Dekker, & Clarke, 2016), or simply relying upon wind and 

insect flight (Hardulak et al., 2020). Depending on the selectivity of the lure and the 

environment they are deployed in, surveillance traps can collect just a few specimens of 

a single species, or more commonly, hundreds of mixed specimens from a broad range of 

species (Batovska et al., 2018, 2020; Spears & Ramirez, 2015). In the latter case, detection 

of a newly introduced species requires it to first be located and identified within the 

mixed trap (Boykin, Armstrong, Kubatko, & De Barro, 2012), which in itself presents a 

major bottleneck to the design and implementation of cost-effective surveillance.  

Figure 1: Generalised invasion curve, with the economic returns associated with each stage highlighted 
(indicative only). Adapted from Invasive Plants and Animals Policy Framework, State of Victoria, 
Department of Primary Industries, 2010  
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Biosecurity diagnostics 

While visual morphological examination has long been the routine for insect 

identification, the microscope has recently been supplemented with a varied toolbox of 

molecular assays that allow standardised identification of diverse taxa without requiring 

specialist taxonomic expertise (Roe et al., 2019). As quarantine and regulatory decisions 

are often based on species names (Boykin, Armstrong, Kubatko, & de Barro, 2012), these 

assays provide species-level identification either through targeting distinct mutational 

signatures (Kim et al., 2016), or by comparing the molecular variation contained within a 

conserved gene against a reference database (Armstrong & Ball, 2005). Sometimes, 

however, a species name is insufficient: for example, when testing for virulent biotypes 

(Herbert et al., 2010), pesticide resistant populations (Van Leeuwen et al., 2020), or when 

tracing the geographic source of an intercepted specimen (Barr et al., 2014). In these 

cases, molecular methods are often the only approach for obtaining the required intra-

specific data, historically involving ‘sanger’ sequencing of short strands of DNA (Sanger et 

al., 1977), or by comparing physical size differences in simple sequence repeats or 

‘microsatellites’ (Goldstein & Pollock, 1997). While these traditional techniques have 

provided valuable insights into the identity and structure of invasive populations (Darling 

& Blum, 2007; Kirk et al., 2013), they only yield polymorphism information for a small 

fraction of the genome and are now largely being replaced by genomic datasets provided 

by High-Throughput Sequencing (HTS) technologies (McCartney et al., 2019; North et al., 

2021; Tay & Gordon, 2019).  

1.2 Genomic biosurveillance 

Genomic biosurveillance involves the use of genomic datasets to investigate the identity, 

spread, and evolutionary dynamics of invasive pests and pathogens at a fine spatial and 

temporal scale (Bilodeau et al., 2019; Hamelin & Roe, 2020; Roe et al., 2019). While the term 

is relatively new, the concept has its roots in genomic epidemiology of human pathogens 

(Achidi et al., 2008; Gardy & Loman, 2018), a field which has recently entered the broader 

public consciousness as a result of the global COVID19 pandemic (Lu et al., 2020). Similar 

to an infectious disease, the process of invasion by an insect pest consists of four major 

steps; transport, introduction, establishment and spread, each of which can be mitigated 

by an associated management response (Figure 1). Genomic techniques can contribute to 
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monitoring and management actions at each of these stages through accelerating species 

identification (Batovska et al., 2018, 2020; Dupuis, Bremer, et al., 2018), tracing 

introduction pathways (Lee et al., 2019; Schmidt et al., 2021; Tay et al., 2020), and providing 

information on the demographic processes (Bergey et al., 2020; Wu et al., 2019; You et al., 

2020), and genetic architecture underlying successful establishment in a new 

environment (Calfee et al., 2020; Dupuis, Sim, et al., 2018). While many of these 

applications represent finer scale investigations of classic questions in invasion biology 

(Bock et al., 2015), genomic techniques also permit entirely new questions to be 

addressed. For instance, the ability of HTS platforms to sequence diverse template 

molecules enables the simultaneous identification of entire communities of native and 

introduced species (Comtet et al., 2015; Tedersoo et al., 2019), a significant step towards 

the universal invasive species identification chip envisioned by Darling & Blum, (2007). 

Genomic biosurveillance may therefore contribute a range of new diagnostic methods to 

the insect biosecurity toolbox, and provide valuable insights into invasion biology that 

can be leveraged to better anticipate and respond to future invasions (Poland & Rassati, 

2019; Roe et al., 2019).  

1.3 Research overview 

This thesis applies the concept of genomic biosurveillance to improving the detection 

and control of invasive insect pests within Australian horticulture. A central aim of the 

research is to develop and evaluate practical tools for uptake by laboratories conducting 

insect diagnostics as part of biosecurity surveillance, focussing on two main approaches: 

(i) the ability for broad-scope HTS assays to simultaneously identify multiple invasive 

species within mixed trap catches, thereby overcoming the diagnostic bottleneck of 

morphological specimen sorting; and (ii) the use of genome-wide information to locate 

the geographic origin of invasive populations and explore patterns of genetic diversity 

during colonisation and establishment. As diagnostic laboratories commonly operate 

across a broad scope of invasive insects, the tools developed here are designed to be 

species-independent, and thus readily applicable to new targets with minimal change in 

protocol. Each tool is developed and validated on a series of case studies representing 

high-priority exotic or established pest threats for Australia, serving to demonstrate a 
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flexible genomic biosurveillance pipeline that could be readily expanded to the next 

emerging threat.  

Chapter 2 combines a comprehensive literature review with novel analyses of public 

sequence data to evaluate the prospects for DNA metabarcoding to act as a universal 

diagnostic assay for invasive insect pests. This chapter synthesises current knowledge 

from the metabarcoding literature into a set of procedural best practices, then identifies 

technical and regulatory challenges which must be overcome before application within 

the highly regulated field of invasive insect diagnostics. 

Chapter 3 aims to determine the taxonomic breadth across which short subregions of 

COI can achieve species-level resolution and summarise the many published 

metabarcoding primers into a recommended list for diagnostic use. To achieve this, a 

large database of public COI reference sequences is curated, then computational 

methods are used to evaluate the optimal placement, diagnostic sensitivity, and 

taxonomic bias for 68 published and novel metabarcoding primers. 

Chapter 4 then applies these optimal primers within a non-destructive metabarcoding 

assay aiming to detect Drosophila suzukii, a high-priority exotic pest for Australian 

horticulture, within mixed trap catches. Laboratory and bioinformatic methods 

appropriate for detecting low abundance specimens are developed; sensitivity, 

specificity, and overall accuracy of the assay is established; and the required number of 

technical replicates to ensure robust results is determined.  

Chapter 5 assesses whether metabarcoding can provide quantitative measurements to 

support decision making during pest eradication or suppression efforts. Iterating upon 

the protocol developed in the previous chapter, six statistical models are evaluated for 

their ability to correct for taxonomic bias and transform the sequence read data provided 

by metabarcoding into counts of individual specimens. This approach is then validated on 

pheromone trapped Carpophilus beetles collected within an integrated pest management 

programme, with the quantitative measurements provided by the bias-corrected 

metabarcoding assay compared to traditional morphological sorting.  

Chapter 6 evaluates the use of genome wide SNP data for tracing the geographic origin 

of new outbreaks and exploring the patterns of genetic diversity occurring during 
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colonisation and establishment. A low-coverage whole genome sequencing assay is 

developed and validated on the Queensland fruit fly (Bactrocera tryoni), a highly 

polyphagous pest endemic to Australia but only recently established in the temperate 

fruit growing regions of Victoria. 

Chapter 7 comprises a general discussion that considers the results and findings of each 

experimental chapter with regards to the broader implications for applied biosecurity 

and fundamental invasion biology. Practical recommendations are made for integrating 

genomic approaches into active biosurveillance, and promising avenues for future 

research are identified.  
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2  
Prospects and Challenges of implementing DNA 

Metabarcoding for High-Throughput Insect Surveillance 

2.1 Chapter preface: 

This chapter combines an in-depth literature review with novel analyses of publicly 

available sequence data to evaluate the prospects for implementing universal 

metabarcoding assays within insect diagnostic laboratories. This chapter consolidates 

current best practices from the largely ecology focussed metabarcoding literature into a 

set of recommendations for laboratory processing, bioinformatic analysis, quality control, 

and data reporting. In the process, a series of technical challenges are identified that may 

prove barriers to adoption within the highly regulated field of invasive insect diagnostics. 

Several of these challenges are then addressed in later chapters, while many of the 

regulatory and policy considerations highlighted here are referred to throughout the 

thesis. This chapter is presented in published format.  

2.2 Publication details:  

Prospects and challenges of implementing DNA metabarcoding for high-throughput 

insect surveillance 

Stage of publication: Published 

Journal details: GigaScience, Volume 8, Issue 8, August 2019, giz092, 

https://doi.org/10.1093/gigascience/giz092 

Authors: Alexander M. Piper, Jana Batovska, Noel O. I. Cogan, John Weiss, John Paul 

Cunningham, Brendan C. Rodoni, Mark J. Blacket 



 

16 

 

2.3 Statement of joint authorship: 

 A.M.P. and M.J.B. conceptualized the study. A.M.P. wrote the first draft of the manuscript 

with contributions from J.B., M.J.B, and J.P.C. J.W. contributed to the sections on detection 

probability and sampling considerations. B.C.R. contributed to the sections on reporting 

detections and regulatory considerations. N.O.I.C. contributed to the discussion of 

sequencing platforms and costs involved. J.P.C., M.J.B. and N.O.I.C. provided supervision. 

All authors contributed to the editing of the final manuscript and approved the version 

submitted for publication 

Statement from co-author confirming the contribution of the PhD candidate:  

“As co-author of the manuscript ‘Piper, A. M., Batovska, J., Cogan, N. O. I., Weiss, J., 

Cunningham, J. P., Rodoni, B. C., & Blacket, M. J. (2019). Prospects and challenges of 

implementing DNA metabarcoding for high-throughput insect surveillance. GigaScience, 

8(8), giz092.’, I confirm that Alexander M. Piper has made the contributions listed above.” 

Associate Professor John Paul Cunningham 

30/03/2021 

  



GigaScience, 8, 2019, 1–22

doi: 10.1093/gigascience/giz092
Review

REVIEW

Prospects and challenges of implementing DNA
metabarcoding for high-throughput insect
surveillance
Alexander M. Piper 1,2,*, Jana Batovska 1,2, Noel O.I. Cogan1,2, John Weiss1,
John Paul Cunningham 1, Brendan C. Rodoni1,2 and Mark J. Blacket 1

1Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia; and 2School of
Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
∗Correspondence address. Alexander M. Piper. AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia ; E-mail:
alexander.piper@ecodev.vic.gov.au http://orcid.org/0000-0002-0664-7564

Abstract

Trap-based surveillance strategies are widely used for monitoring of invasive insect species, aiming to detect newly arrived
exotic taxa as well as track the population levels of established or endemic pests. Where these surveillance traps have low
specificity and capture non-target endemic species in excess of the target pests, the need for extensive specimen sorting
and identification creates a major diagnostic bottleneck. While the recent development of standardized molecular
diagnostics has partly alleviated this requirement, the single specimen per reaction nature of these methods does not
readily scale to the sheer number of insects trapped in surveillance programmes. Consequently, target lists are often
restricted to a few high-priority pests, allowing unanticipated species to avoid detection and potentially establish
populations.
DNA metabarcoding has recently emerged as a method for conducting simultaneous, multi-species identification of
complex mixed communities and may lend itself ideally to rapid diagnostics of bulk insect trap samples. Moreover, the
high-throughput nature of recent sequencing platforms could enable the multiplexing of hundreds of diverse trap samples
on a single flow cell, thereby providing the means to dramatically scale up insect surveillance in terms of both the quantity
of traps that can be processed concurrently and number of pest species that can be targeted. In this review of the
metabarcoding literature, we explore how DNA metabarcoding could be tailored to the detection of invasive insects in a
surveillance context and highlight the unique technical and regulatory challenges that must be considered when
implementing high-throughput sequencing technologies into sensitive diagnostic applications.

Keywords: biosecurity; alien species; biosurveillance; early detection; bioinformatics; reference database; quality assurance;
controls; validation; non-destructive

Background

Increasing globalization of trade and tourism, along with chang-
ing climates, is expected to further increase the rate of biological
invasions over coming decades [1–3]. Insects form a dominant
component of this global spread of invasive species [4], posing a

major threat to agroecosystems [5], the environment [6], and hu-
man health [7] through disruption of ecological networks, plant
herbivory, and the transmission of pathogens and disease [8].
Once established in a new environment, ongoing containment
and control of invasive insect pests imposes substantial costs
to industry, government, and private landowners [8], and conse-
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2 DNA metabarcoding for high-throughput insect surveillance

quently major efforts are made to forecast incursion risk [9–11]
and implement quarantine of entry pathways [12–14]. Despite
these measures, the exponential increase in global movement
of food, commerce, and humans complicates traceability and
makes quarantine inspection of more than a fraction of arriv-
ing cargo an impossible task [15, 16]. Therefore, proactive post-
border surveillance within agricultural and natural landscapes
is becoming an increasingly important component of effective
biosecurity programmes, aiming to detect invasive species early
before populations escalate or spread and eradication becomes
unfeasible [17–19].

Insect invasions can initiate and disperse across vast and
highly heterogenous landscapes [20], and therefore surveillance
programmes often involve extensive trapping conducted across
a range of spatial scales, from large geographic areas to pre-
cise crop-monitoring activities within agricultural properties
[21]. Because it is generally unclear whether a new introduc-
tion has occurred or what species it may be, surveillance pro-
grammes can extend over many years and target diverse tax-
onomic groups [22, 23]. In many cases surveillance traps will
capture non-target endemic species in vast excess of the tar-
get pests and the sheer number of specimens that need to be
sorted through and identified by highly trained entomologists
forms a major diagnostic bottleneck. While insect diagnostics
still largely relies on traditional morphological examination [24],
in recent years this has been supplemented by a range of molec-
ular techniques that allow standardized identification of a wide
range of taxa without specialist taxonomic expertise (Table 1).
DNA barcoding in particular has become a central component of
the modern diagnostic toolbox, owing to the ability to compare
a single unknown specimen against many potential species in a
single assay, and standardized protocols that allow transparent
and objective comparison of specimen identifications between
laboratories, regulatory agencies, and trading partners [24–26].
Despite these advantages, the time-consuming process of con-
ducting single PCR and sequencing reactions on individual spec-
imens has restricted the use of DNA barcoding to confirming the
identity of specimens already deemed suspect by prior morpho-
logical sorting, or for identification of taxa or life stages where a
taxonomic key may not be available or key diagnostic structures
are degraded or missing [24, 27]. Without access to a scalable
and cost-effective diagnostic method for large trap catches, cur-
rent surveillance programmes generally do not identify all spec-
imens to species level [23, 28]. Instead, target lists are confined
to relatively few priority pest species identified by previous risk
assessment [9] or statistical methods are used to select only a
subset of specimens for species-level identification [29]. These
restrictions can result in the non-detection of unanticipated or
cryptic invasive species that are not being actively monitored for
[30].

In order to overcome the limitations of current identifica-
tion methods for processing large numbers of specimens, re-
cent studies have looked to high-throughput sequencing (HTS)
technologies to allow DNA barcode-based identification to be
conducted in a massively parallel manner. This process, termed
“metabarcoding” [31] or “marker gene sequencing” [32], gener-
ates a large number of individual barcode sequences in a single
reaction, enabling the simultaneous identification of individuals
in large mixed communities [33, 34], such as a trap sample con-
taining many different insect species. The ability to rapidly and
cost-effectively survey biodiversity has led to metabarcoding be-
ing taken up across numerous fields of applied ecology [34–37],
including the identification of invasive species (Fig. 1A) [33, 38–
40]. By identifying both endemic and potential exotic species in

a bulk DNA analysis approach, metabarcoding can obviate the
time-consuming specimen sorting required by previous molec-
ular and morphological diagnostic methods, and allow detec-
tion of not just key pests but also other unanticipated species
that are not being actively searched for [38, 41, 42]. This aspect
is particularly advantageous for the detection of environmental
threats because when one considers impacts beyond just agri-
culture and the time lag that can occur between introduction of
a new species and perceptible damage to the environment [43], it
becomes clear that there are far more invasive species of threat
than can be identified by risk assessment and incorporated into
target lists [23, 44]. A further advantage arises from the ability of
HTS to count occurrences of specific sequences in a mixed sam-
ple [45], potentially allowing simultaneous pest identification
and population size estimation. Finally, the rapidly increasing
output of HTS technologies enables multiplexing of hundreds of
trap samples in a single sequencing run, providing an avenue to
dramatically scale up insect surveillance to the level required for
effective, affordable, and proactive management response.

Despite the advantages that metabarcoding may offer to
insect surveillance programs, uptake of new diagnostic tools
into operational use depends on more than just the cost-
effectiveness of the tool, but also on factors such as ease of
use, accuracy, reproducibility, and perceived usefulness to the
end users, as well as compatibility with existing policy frame-
works [46, 47]. With the introduction of the World Trade Or-
ganisation Agreement on the Application of Sanitary and Phy-
tosanitary measures (SPS) came new obligations for exporting
nations to demonstrate freedom of a geographic area from par-
ticular pests using scientifically rigorous surveillance practices
[48]. This agreement has in turn led to harmonization of routine
diagnostic procedures into internationally standardized proto-
cols to ensure that all end users are aware of the particulars in-
volved and therefore committed to accepting any risk manage-
ment actions that arise through its use [46, 49]. The SPS agree-
ment recognizes the International Plant Protection Convention
(IPPC) and the World Organisation of Animal Health (OIE) as
the international standard-setting bodies for plant and animal
health, respectively [48], and adoption of new standards stems
from exhaustive workgroup efforts by these agencies [13, 50].
While the opportunities that HTS approaches could offer have
been widely recognized by the diagnostics community [51, 52],
because of the relative infancy of the technology, standards and
guidelines around their use is a rapidly evolving space and val-
idated protocols do not yet exist. Despite this, there is flexibil-
ity within the SPS framework for trading partners to introduce
novel sanitary or surveillance procedures if it can be demon-
strated that they are equivalent to or better than previous meth-
ods [49] and both the IPPC and OIE have now released guidelines
for those laboratories preparing to implement HTS approaches
in routine diagnostics applications. These guidelines highlight
the need for robust experimental designs, assay validation, and
quality assurance [51, 53, 54], reflecting recent discussions in the
wider metabarcoding community [55]. In this review we explore
the application of metabarcoding for high-throughput species-
level identification of insects, providing an overview of common
metabarcoding workflows (Fig. 2) and considerations required
at each step to ensure reliable detection and quantification of
taxa within complex mixed communities. We further discuss
the unique technical and regulatory challenges of integrating
broad-spectrum HTS assays into diagnostic laboratories and of-
fer a perspective on the future adoption of high-throughput in-
sect surveillance within international biosecurity frameworks.
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Table 1: Methods used for insect identification, with suitability assessed according to accuracy, expertise, general applicability, time, and
throughput criteria

Identification method
Taxonomic
expertise

Identify specific
taxa

Identify broad
range of taxa Throughput level

Time per
identification

Morphological
Microscopic examination High High∗ High∗ Low Moderate

Molecular
PCR–restriction fragment

length polymorphism
Low Moderate Low Moderate Moderate

DNA barcoding Low High High Low Moderate
Quantitative PCR/droplet

digital PCR
Low High Low High Low

Loop-mediated isothermal
amplification

Low High Low Low Low

Metabarcoding Low High High Very high Low

∗This morphological identification score assumes a high level of taxonomic knowledge and a low human error rate.

0

100

200

300

400

2012 2013 2014 2015 2016 2017 2018 2019-06-19
Year of publication

N
um

be
r o

f a
rti

cl
es

 p
ub

lis
he

d

All Metabarcoding articles
Articles with keywords:
 Invasive, detection,
 surveillance, diagnostic,
 biosecurity, exotic,
 alien, nonindigenous

A

P
ro

po
rti

on
 o

f a
rti

cl
es

HTS Platforms 454 Ion Torrent HiSeq MiSeq NextSeq NovaSeq PacBio Nanopore

B

Figure 1: Metabarcoding in the literature. (A) Published articles obtained from Scopus, Crossref, and PubMed searches on 6 June 2019 for all metabarcoding studies, and

those containing keywords in title or abstract relevant to invasive insect surveillance. (B) Sequencing platforms used in the above metabarcoding studies displayed as
a proportion for each year.

Review
Selecting a taxonomic marker

Appropriate selection of a taxonomic marker or barcode locus is
a critical first step in design of a metabarcoding assay because
all downstream species detection and identification will rely on
how conserved this marker is across taxa, and the discrimina-
tory power of the nucleotide variation contained within it [56].

The markers most commonly used in metabarcoding studies are
those already widely adopted for conventional DNA barcoding,
and therefore the mitochondrial cytochrome oxidase I (COI) lo-
cus has been the most widely used marker for metabarcoding
of insects to date. The 658-bp region of COI [57] used for con-
ventional DNA barcoding has a strong track record of delivering
species-level identification of insect pests [58]; however, many
HTS platforms impose strict limitations in molecule length that
can be sequenced (Table 2) and therefore smaller stretches of the

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/8/8/giz092/5541630 by M

inistry of H
ealth,  alexander.piper@

agriculture.vic.gov.au on 02 August 2019



4 DNA metabarcoding for high-throughput insect surveillance

Short read sequencing

NovaSeq

MiSeq

MGISEQ

HiSeq

Next
Seq

Long read sequencing

Oxford Nanopore MinION
PacBio
Sequel

Oxford Nanopore 

PromethION

OTU clustering De-noising

ATT CTGAT   GCCACGTTA   TAGCATAA ATT

f1 f2 fn. . .

CTCCAAATCGATCCACTTCAAC
AATCGAT

ACATCGAGGT

GTCGTCATCACGATCGAGAACT
ATCCATCATCATCCTTCATCAAC
CTCGTCATCACGATCGAGAACT
CACCAAATCTCCACACTTCAGC
CTCGTCATCACGATCGGGAACT
CTCCAAATCGAGGCACGTCAAC
AACGTCAGCACGATCGAGAACT

TAATCGAGTG
CAATCGAAGGT

CompositionSimilarity Phylogenetic

Sample
1

FastQ

Sample
2

FastQ

Sample
3

FastQ

FastQ

Marker enrichment (Optional)

Metagenomics Mitochondrial 
enrichment

Hybridisation probe 
capture

Technical
 replicates

Nucleic acid extraction

Homogenisation
Non-
destructive

Priority pest list Endemic diversity

Library preparation
& sample Indexing

LA
BO

RA
TO

RY

OTU Table

Ta
xo

n

Sample

Endemic
pest monitoringPost-border 

surveillance

Border surveillance

Quality trimming

Decision Support

Additional target
markers

Short paired-end
 sequencing

Long read
SequencingFI

EL
D

 S
A

M
PL

IN
G

BI
O

IN
FO

RM
AT

IC
S

IN
TE

RP
RE

TA
TI

O
N

Distribution 
modelling

Low quality
sequences

Primer & adapter
trimming

Taxonomic assignment

Library multiplexing

Long-term storage

Unique dual indices

A

B

C

D

1 2 3 4

Consensus
sequence
generation

Demultiplexing

OTU clustering
& de-noising 

Pseudogenes
& chimeras

Library clean-up &

Calibration
community

No-template
control

Positive
control

Figure 2: Overview of common metabarcoding workflows for identification of trapped insect species

conventional barcode loci or “mini-barcodes” must be used [59].
Nevertheless, research into degraded DNA samples has shown
that singular COI barcode of sizes between 135 [60] and 250 bp
[61] can reliably distinguish most animal species; however, ap-
propriate placement within the larger barcode region is essen-
tial [62]. Despite the excellent taxonomic resolution provided
by COI, since its application to metabarcoding a number of fur-
ther limitations have become particularly apparent. Because COI
is a protein-coding gene, the third position of codons can be
variable, leaving no strictly conserved nucleotide sites for de-

sign of universal PCR primers [63]. This mismatch inevitably
leads to primers having variable affinity for different template
molecules, biasing the amplification towards well-matched taxa
and failing to amplify others [64]. Unlike conventional DNA bar-
coding where a failed amplification will result in a noticeably ab-
sent PCR product, in a bulk sample failed amplification of a par-
ticular taxon will be masked by the recovery of sequences from
other taxa and therefore will go unnoticed [63]. A further issue
inherent to mitochondrial loci such as COI is the proliferation
of nuclear mitochondrial pseudogenes (numts) in many insect

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/8/8/giz092/5541630 by M

inistry of H
ealth,  alexander.piper@

agriculture.vic.gov.au on 02 August 2019



Piper et al. 5

Ta
b

le
2:

C
om

p
ar

is
on

of
se

q
u

en
ce

th
ro

u
gh

p
u

ts
,e

rr
or

ra
te

,a
n

d
as

so
ci

at
ed

co
st

s
am

on
g

h
ig

h
-t

h
ro

u
gh

p
u

t
se

q
u

en
ci

n
g

p
la

tf
or

m
s

Sh
or

t-
re

ad
p

la
tf

or
m

s
Lo

n
g-

re
ad

p
la

tf
or

m
s

Il
lu

m
in

a
M

iS
eq

Il
lu

m
in

a
N

ex
tS

eq
Il

lu
m

in
a

H
iS

eq
30

00
/4

00
0

Il
lu

m
in

a
N

ov
aS

eq
M

G
IS

eq
-2

00
M

G
IS

eq
-2

00
0

M
G

IS
eq

-T
7

Pa
cB

io
Se

q
u

el
Pa

cB
io

Se
q

u
el

II
O

N
T

M
in

IO
N

O
N

T
Pr

om
et

h
IO

N

M
ax

im
u

m
th

ro
u

gh
p

u
t

(G
b)

15
12

0
75

0/
1,

50
0

(8
/1

6
la

n
es

)
6,

00
0

(8
la

n
es

)
60

1,
08

0
6,

00
0

20
16

0
20

15
0

p
er

fl
ow

ce
ll

(u
p

to
48

)
M

ax
im

u
m

re
ad

le
n

gt
h

2
×

30
0

bp
2

×
15

0
bp

2
×

15
0

bp
2

×
15

0
bp

2
×

10
0

bp
2

×
15

0
bp

2
×

15
0

bp
∼1

00
kb

∼1
00

kb
∼2

M
b

∼2
M

b

Er
ro

r
ra

te
Lo

w
Lo

w
Lo

w
Lo

w
Lo

w
Lo

w
Lo

w
Lo

w
(c

on
se

n
su

s
er

ro
r)

Lo
w

(c
on

se
n

su
s

er
ro

r)
H

ig
h

H
ig

h

In
st

ru
m

en
t

co
st

Lo
w

M
ed

iu
m

H
ig

h
H

ig
h

Lo
w

M
ed

iu
m

H
ig

h
H

ig
h

H
ig

h
Ex

tr
em

el
y

lo
w

Lo
w

Se
t-

u
p

ti
m

e
(l

ab
ou

r)
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
H

ig
h

H
ig

h
Lo

w
Lo

w
R

u
n

ti
m

e
(h

ou
rs

)
56

30
84

40
<

48
<

48
24

15
15

1–
72

1–
72

Se
q

u
en

ci
n

g
co

st
p

er
sa

m
p

le
∗,
†

<
$5

0
<

$1
5

<
$1

0
<

$5
<

$5
0

<
$1

0
<

$5
<

$2
5

<
$1

5
<

$2
5

<
$5

∗ C
os

ts
ar

e
p

re
se

n
te

d
in

A
u

st
ra

li
an

D
ol

la
rs

(A
U

D
)a

n
d

co
n

si
d

er
ch

em
is

tr
y

co
st

,d
ep

re
ci

at
io

n
,s

er
vi

ci
n

g,
an

d
co

m
p

u
ta

ti
on

al
co

st
ov

er
th

e
li

fe
sp

an
of

th
e

in
st

ru
m

en
t;

h
ow

ev
er

,t
ot

al
co

st
s

an
d

re
ad

le
n

gt
h

s
w

il
lf

u
rt

h
er

d
ep

en
d

on
ta

rg
et

en
ri

ch
m

en
t

an
d

li
br

ar
y

p
re

p
ar

at
io

n
m

et
h

od
s

u
se

d
.

† A
ss

u
m

in
g

p
oo

le
d

se
q

u
en

ci
n

g
of

m
an

y
tr

ap
s

w
it

h
25

0-
M

b
se

q
u

en
ci

n
g

ef
fo

rt
p

er
sa

m
p

le
.

orders [65–67], the result of historical recombination between
the mitochondrial and nuclear genomes [68]. Co-amplification
or preferential amplification of these pseudogenes instead of the
true mitochondrial locus can complicate species identification
[67] and result in overestimation of taxonomic diversity in the
sample [69].

As a result of the aforementioned issues, as well as the in-
ability for COI to differentiate certain pest groups [70], a range of
alternative universal barcode markers have been proposed (re-
viewed by Freeland [56]). Ribosomal RNA (rRNA) genes are par-
ticularly appealing owing to their high copy number and stem-
loop structure that consists of highly conserved core sequences
for primer binding, interspaced with variable regions providing
taxonomic resolution [71, 72]. Despite this, rRNA regions are on
average more conserved than COI and therefore while appro-
priate for reconstructing higher level relationships they require
longer spans of nucleotides to be informative at the species
level. For single-specimen barcoding this can be overcome by
concatenating several markers to increase phylogenetic reso-
lution [73]; however, this presents a challenge for metabarcod-
ing of mixed communities because there is no way of knowing
whether 2 non-overlapping markers are from the same individ-
ual [74]. Therefore, while multi-locus approaches can be useful
for expanding the taxonomic diversity an assay can recover [75–
77], in particular cross-kingdom diversity (Box 2), they do not
necessarily provide greater resolution [45]. Consequently, closely
related and difficult-to-diagnose pest taxa may require further
studies to identify appropriate diagnostic loci [78], or the devel-
opment of novel analytical methods to integrate taxonomic as-
signments from multiple independent barcode loci. Finally, the
application of alternative markers to insect diagnostics will suf-
fer from a lack of reference sequence data because many taxa,
including those of economic importance, currently only have
COI sequence data publicly available (Fig. 3B, 3C). Therefore, be-
cause species-level resolution is a requirement of many diagnos-
tic standards [24, 49, 79], for the taxa in which it has sufficient
resolution, the high mutation rate and extensive reference infor-
mation obtainable for COI will maximize the utility of metabar-
coding within a broad-spectrum surveillance programme [80].

Box 1:
Reference sequence databases

As with conventional DNA barcoding, accurate taxonomic
assignment in metabarcoding studies relies on a well-
curated reference database of DNA marker sequences tied
to vouchered morphological specimens to compare query
sequences against [81]. The primary public nucleotide
databases of relevance to insect metabarcoding are the Bar-
code of Life Data System (BOLD) [82] and the NCBI Gen-
Bank database [83]. While GenBank hosts greater overall
sequence data, BOLD represents a curated DNA barcoding
database that aims to maintain consistent links between
sequences, validated morphological specimens, and asso-
ciated specimen collection metadata [84]. Concerted efforts
to generate mitochondrial COI barcodes for major insect or-
ders have led to broad coverage of insects of biosecurity con-
cern in both major public databases [58]; however, many ge-
ographic regions are still under-sampled (Fig. 3A) and ref-
erence sequences for alternative loci are mostly unavail-
able (Fig. 3B and C). While continued public submission and
high-throughput reference sequence generation [85] will in-
crease the representation of missing taxa and loci over time,
ensuring the quality of submitted sequences from correctly
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identified specimens is crucial [24]. There are numerous ex-
amples of barcode sequences being either insufficiently an-
notated [34], annotated with the incorrect species in public
databases [81, 86–89], or multiple morpho-species assigned
to the same DNA barcode, which may reflect misidentifica-
tions or the existence of species complexes [58]. These is-
sues highlight the importance of engaging taxonomic ex-
perts to ensure a priori identification of a specimen before
submitting a reference barcode to a public database [90,
91]. Furthermore, the use of non-destructive DNA extraction
methods when generating barcode sequences would allow
the retention of voucher specimens to ensure traceability
between the molecular and morphological features, espe-
cially in the case of taxonomic reassignments [92].
While some metabarcoding studies have responded to the
aforementioned issues by exclusively using in-house refer-
ence databases for taxonomic assignment [90, 93–95], be-
cause many insect surveillance programmes aim to detect
species that are not locally present, the reliance on public
data to supplement in-house sequences may be unavoid-
able. Some taxonomic classifiers used in metabarcoding
studies provide the option to weight classifications towards
certain reference sequences [96, 97], which could be bene-
ficial when combining high-confidence in-house sequences
with public sequences of more variable quality, or when the
endemic diversity for the target region is well character-
ized [74, 98]. Regardless of source, barcode sequences will
be compiled together and formatted appropriately for use
with automatic taxonomic classification software [99–101],
and this presents an ideal point where automated or semi-
automated curation methods can be used to identify and
remove any taxonomically mislabelled sequences or non-
homologous regions such as pseudogenes [74, 102]. Finally,
curated databases used in an active surveillance program
should only be updated after rigorous testing with standard-
ized datasets to ensure that assay results remain accurate
and reproducible following addition of new sequences [103].

Marker enrichment

Similar to conventional DNA barcoding, most metabarcoding
studies use a set of universal oligonucleotide primers to expo-
nentially amplify a target barcode marker until it reaches a con-
centration appropriate for sequencing. This “amplicon sequenc-
ing” methodology has proven reliable and sensitive for detec-
tion of low-abundance taxa in bulk samples [40]. However, dif-
ferential PCR amplification efficiencies between taxa generally
result in a biased depiction of relative abundances of commu-
nity members [104]. This bias is thought to mainly arise from
primer-template mismatches, particularly at the 3′ end of the
primer where extension takes place [64, 105] and therefore com-
prehensive in silico evaluation should be conducted at the begin-
ning of a project to ensure that primer sequences are appropri-
ate for the underlying target community [106–108]. Where mis-
matches with certain taxa are predicted to occur, inclusion of
degenerate bases can overcome taxonomic bias inherent to a
specific primer sequence [109, 110]; however, high levels of de-
generacy can also lead to undesirable off-target amplification or
formation of dimers [87, 111], which will require further labo-
ratory validation to detect [71, 109, 112]. In addition to the ef-
fects of PCR primers, a range of template-specific factors in-
cluding copy number of the loci [113], nucleotide composition

and secondary structure [114], variable amplicon lengths [115],
specimen biomass [116], and complexity of the species mix-
ture [105, 117] can further contribute bias. While the cumula-
tive bias from all these factors may suggest that amplicon se-
quencing can only be used for presence-absence data, impor-
tantly, sequencing reads are still correlated with DNA input in a
predictable way, and biases should only affect the slope of that
correlation [113]. Therefore the calculation of taxon-specific cor-
rection factors shows great promise for improving abundance
estimates from metabarcoding data [113, 118–120], particularly
for simpler communities such as those trapped using targeted
attractant lures [17]. Nevertheless, if accurate quantification is
essential for the surveillance programme, removing the PCR am-
plification process altogether should also be considered for im-
proving taxon abundance estimates from metabarcoding data.

PCR-free approaches

The major alternative to amplicon sequencing–based metabar-
coding involves simply fragmenting the genomic DNA extract
to lengths appropriate for the sequencing platform and directly
sequencing it without any prior bias-inducing enrichment step.
This methodology, termed “shotgun metagenomics,” generates
sequence reads comprising a random subsample of the mixed
community DNA and relies on the higher representation of tax-
onomically informative multi-copy mitochondria and nuclear
rRNA in this subsample to identify community members [121–
123]. In addition, these high-copy regions can be assembled
into long contigs and even full-length mitochondrial genomes
for further phylogenetic inference and systematics applications
[124, 125]. Despite this, restricting taxonomic analysis to just mi-
tochondrial and nuclear rRNA regions still leaves the vast ma-
jority of reads corresponding to DNA that is not taxonomically
informative or easily assembled from a bulk sample to be dis-
carded [121] and deep sequencing will be required to reliably de-
tect rare specimens in the community [125, 126]. While the rapid
growth in sequencing capabilities is making this brute force ap-
proach to community identification increasingly possible, for
routine surveillance a cost-effective method for enriching tax-
onomically informative loci should be used prior to sequencing.
A range of potential methods for PCR-free sequence enrichment
have been reviewed elsewhere (see Mamanova et al. [127] and
Jones and Good [128]), but some examples that have been suc-
cessfully used for metabarcoding include differential centrifu-
gation to enrich for mitochondria [129] or baiting target barcode
markers and whole mitochondria using hybridization probe cap-
ture [130–133]. Hybridization capture relies on the use of thou-
sands of synthetic oligonucleotide probes, each with strict com-
plementarity to a target sequence, and therefore should ideally
be designed with a priori knowledge of every target sequence
[128]. Although this may be a limiting factor for recovery of pre-
viously unsequenced diversity, the flexibility to include essen-
tially infinite numbers of probes provides further advantages for
building bespoke metabarcoding assays that capture diverse loci
for purposes beyond taxonomic inference (Box 2). Nevertheless,
while PCR-free approaches have shown improved correlations
between sequencing reads and input DNA [123, 134], it is im-
portant to remember that HTS counts molecules not individual
specimens [45] and therefore biases are likely to still remain due
to variation in biomass and copy number between organisms
and tissues [131, 134]. Furthermore, the process of PCR ampli-
fication is already widely accepted within diagnostics protocols
[49], and implementation of alternative PCR-free sequence en-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/8/8/giz092/5541630 by M

inistry of H
ealth,  alexander.piper@

agriculture.vic.gov.au on 02 August 2019



Piper et al. 7

richment methods may require overcoming additional regula-
tory hurdles.

Box 2:
Modular metabarcoding assays

Many of the insect pests actively monitored by surveillance
programs are not targeted because of direct damage they
do to animals, plants, or the environment but instead the
associated fungi, bacteria, viruses, and viroids for which
they can be vectors [52, 135, 136]. Similar to identification of
insects, detection of host-associated pathogens has previ-
ously required screening of trapped samples on a specimen-
by-specimen basis using target-specific assays or culturing
and morphological analysis [33]; however, this is rapidly be-
ing augmented with metabarcoding and metagenomic ap-
proaches [33, 103, 137, 138]. The ability of HTS platforms to
sequence a heterogenous mix of loci opens up the opportu-
nity for combining both the identification of insects and the
screening of a diverse range of host-associated microbiota
within a single multiplexed metabarcoding assay [40, 139].
Nonetheless, developing an integrated assay that allows de-
tection and identification of biologically diverse organisms
in a diagnostics context presents a number of challenges.
Extraction techniques will need to be optimized to account
for the pathogen association with its insect host (i.e., intra-
cellular [140], external [141], gut-borne [142]), and specific
microbial life histories may make this incompatible with
non-destructive DNA extraction. Furthermore, PCR proto-
cols will need to be optimized to account for the large dif-
ferences in template quantity between abundant host DNA
and low-titre vectored organisms [143].
In contrast with the high resolution that COI provides
for identification of insects, the commonly used universal
markers for bacterial and fungal barcoding struggle to iden-
tify organisms to the species or strain level, which is neces-
sary to separate pathovars from common innocuous envi-
ronmental organisms [33, 136]. Therefore, diagnostic assays
that aim to be universal for identification of both host and
vectored organisms will require analysis of a range of group-
specific markers in multiplex, or make use of long-read HTS
platforms for increased taxonomic resolution [144, 145].
While multiplexing many loci together in single PCR reac-
tions can greatly simplify laboratory protocols and therefore
costs involved, for metabarcoding this can be complicated
by cross-reactivity between primers and individual primer
sensitivities changing depending on community composi-
tion [76, 105, 112]. As an alternative, various target loci could
be enriched in parallel reactions and then pooled together
by sample prior to library preparation in proportions rel-
ative to the number of reads desired for each marker [40,
146]. This highly flexible modular approach would then al-
low group-specific microbial primers or other markers of in-
terest to be added or retracted from the assay depending on
the target community and needs of the end user. For exam-
ple, Swift et al. [147] have demonstrated the ability of modu-
lar metabarcoding assays not just to identify cross-kingdom
species composition but also to genotype microsatellite loci
and sex-specific markers relevant to the community un-
der study. While the field of invasion biology has tradition-
ally been concerned with the transport and movement of
species, this doctrine overlooks the intraspecific movement
of genetic material such as pesticide resistance alleles [148],
transposable elements [149], and genetically modified or-

ganisms [150]. The ability to capture essentially any loci in
a modular metabarcoding assay may allow integration with
a more gene-focused model of biosecurity in the future.

Library preparation and multiplexing

Regardless of whether an enrichment or metagenomics ap-
proach was used, platform-specific sequencing adapters need
to be attached to the molecules (via ligation [151] or 1-step [152]
or 2-step PCR [40, 106]) to form “libraries” that can then bind
to the flow cell for sequencing (Fig. 4A). Because current HTS
platforms output sequences far in excess of what is required to
identify the taxa in a single community, metabarcoding studies
commonly multiplex many samples together on a single flow
cell and use oligonucleotide index sequences incorporated into
the sequencing adapters to link sequencing reads back to origin
sample. While a range of indexing strategies exist for HTS [153],
for sensitive diagnostics applications it is critical to choose an
approach that can adequately cope with the occasional recombi-
nation of these indices between molecules. Index-switching has
received particular recent attention due to reports of remarkably
high levels on current Illumina platforms [154]; however, similar
phenomena can affect multiplexed sequencing across all ma-
jor platforms to various degrees [155–159] (with the possible ex-
ception of recent MGI platforms [160]). Suggested causes include
contamination from residual adapter/primer oligonucleotides
[161], chimera formation during adapter PCR [162], mixed clus-
ters on the flow cell [157], or physical contamination during li-
brary preparation or oligo synthesis by the vendor [159, 163,
164]. Regardless of mechanism, when not properly controlled
for, index-switching can cause taxa from one sample to “bleed”
into others, and while this will only produce false-positive re-
sults for a taxon of concern when a true-positive result is present
in ≥1 of the samples, the spreading of positive signal across sam-
ples can imply that the taxon of interest has a larger geographic
distribution than exists in reality. Recent studies have demon-
strated that the most effective method for controlling for index-
switching is through the use of unique dual indices (Fig. 4C)
rather than the commonly used combinatorial indexing (Fig. 4B).
When unique dual indices are used, switching events at either
end of the molecule will generate an index combination that was
not originally applied and, during de-multiplexing, the reads
with mismatched indices to the sample sheet will be filtered into
an unassigned-reads file and excluded from analysis [159, 162,
165]. Furthermore, sets of indices should be alternated for each
sequencing run [51] because carryover of molecules between
runs on an HTS machine can be a further cause of false-positive
results in high-sensitivity sequencing applications [166]. Finally,
it is important that index sequences used are designed with suf-
ficient edit distance between them so that substitution or inser-
tion/deletion errors within the index do not cause further se-
quence misassignment [131, 167], particularly for higher error
rate platforms such as nanopore [115].

High-throughput sequencing platforms

While the rapid growth of HTS over the past decade has pro-
duced a variety of techniques and chemistries for discerning the
nucleotide sequence of a DNA molecule [168], modern platforms
can largely be divided into those producing short-but-accurate
sequences or long-but-error-prone sequences (Table 2). To date,
the majority of metabarcoding studies have been conducted us-
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Figure 3: DNA barcodes in public reference databases. (A) Global distribution of all sufficiently annotated DNA barcode records from BOLD and GenBank for all barcode
loci; records for all Insecta are displayed as a density map, while those species present on international pest lists are overlaid in red. (B) Distribution of records and

unique species within major public databases for the 10 barcode markers with the most reference information for entire Insecta and for (C) Insecta species present
on international pest lists.

ing the former, with the Illumina “MiSeq” dominating the re-
cent metabarcoding literature due to its high-quality reads and
relatively inexpensive purchase cost (Fig. 1B). Despite the cur-
rent popularity of the MiSeq for research studies, the cost per
sample may be impractical for the number of specimens pro-
duced by large-scale surveillance programmes, and instead the
production-scale Illumina “NextSeq,” “HiSeq,” and “NovaSeq”
provide progressive increases in throughput and therefore cost
reductions (Table 2). Nevertheless this increased sequencing
throughput of these platforms must be balanced with diagnos-
tic turnaround times, and effective use of the ultrahigh-capacity

HiSeq and NovaSeq flow cells will involve multiplexing of thou-
sands of samples, necessitating substantial logistical efforts in
sample collection and processing [103].

Despite the cost-effectiveness of the aforementioned plat-
forms, their restricted read lengths (Table 2) limit the taxonomic
resolution achievable with a metabarcoding assay and there-
fore long-read sequencing platforms such as the Pacific Bio-
sciences (PacBio) “Sequel” and Oxford Nanopore Technologies
(ONT) “MinION” and “PromethION” are becoming increasingly
attractive alternatives. The ability to sequence barcode regions
thousands of bases in length has potential to enable greater
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Figure 4: Unique dual indexing overcomes issues of cross-contamination due to index-switching. (A) An amplified barcode locus with sequencing adapters attached;
read locations and orientations are indicated for commonly used Illumina MiSeq platform. Reads 1 and 2 are designed to overlap to facilitate assembly into a consensus

sequence. Both sequencing adapters incorporate a unique oligonucleotide index sequence to allow differentiation of multiplexed samples. Strategies for indexing
include (B) combinatorial indexing, where indices on either end of the molecule are shared with other samples but the combination of the two is unique, and (C)
unique dual indexing, where adapter indices at both ends of the molecule are completely unique to the sample.

recovery of taxonomic diversity with intraspecific resolution
[169]; however, in practice the utility of long reads for species
identification has been limited by considerably higher per-base
error rates that commonly exceed intraspecific distance [115,
170]. Nevertheless, methods for repeatedly sequencing a sin-
gle molecule to create higher quality consensus sequences [171]
are now opening up applications in metabarcoding [144, 158],
with natively implemented circular consensus sequencing on
the PacBio Sequel producing consensus reads with similar accu-
racy to traditional Sanger sequencing [172], and third-party pro-
tocols mimicking this approach have now been published for the
ONT platforms [173, 174]. If similarly robust consensus sequenc-
ing can be achieved with nanopore technology, the significantly
smaller start-up cost and portability of the handheld MinION
platform may in future permit metabarcoding-based diagnos-
tics to be conducted in remote field sites [115], as well as enable
lesser resourced laboratories to access these technologies [14].

Bioinformatics

Computational processing of sequence reads represents a se-
ries of steps of equal importance to laboratory protocols for en-
suring accurate and sensitive detection of invasive species [175,
176]; however, many of the skills and techniques involved in this
process have not historically been required within diagnostic

laboratories. While there exist a number of popular end-to-end
computational pipelines for analysing marker gene data [177–
181], many of these have been designed for measuring diversity
rather than detection of low-abundance taxa. Each step in the
bioinformatic analysis can present trade-offs between sensitiv-
ity to rare taxa, amount of erroneous sequences retained, and
overall computing time [77, 175, 182–184], and use of metabar-
coding in an invasive species surveillance or other sensitive con-
text presents some unique challenges and regulatory require-
ments that may be best addressed through the creation of a cus-
tom analysis pipeline [146, 176].

De-multiplexing and sequence quality trimming
A metabarcoding assay typically involves multiplexing many
samples into a single pooled sequencing library in order to
make optimal use of the high-capacity flow cells of current
sequencing platforms. Therefore, the first step following se-
quencing (typically automated by the HTS platform’s software)
is to assign sequences back to their origin sample using unique
oligonucleotide sample indices incorporated into the sequenc-
ing adapters (Fig. 4). Following de-multiplexing, sequencing
adapters and any other non-biological information such as PCR
primer sequences are removed, and reads are assembled into
consensus sequences using their overlapping bases. While im-
provements in underlying sequencing chemistries and afore-
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mentioned consensus approaches means that the majority of
platforms now provide per base accuracies >99.99% (with the
notable exception of nanopore platforms) [168, 173, 185], when
put in context of the billions of bases sequenced on modern flow
cells, tens of thousands of sequences will still contain errors
[186]. Raw sequence reads are generated in conjunction with a
predicted error profile based on signal intensity and background
noise, and these data are generally presented to the user in the
form of a FASTQ file [187]. An initial quality-trimming stage uses
this profile to truncate or remove sequences that contain exces-
sive ambiguous or low-confidence base calls [186, 188]; this is,
however, a coarse filtering process where parameters should be
carefully considered, particularly for higher error platforms such
as nanopore. While strict quality trimming will more effectively
remove sequencing artefacts and erroneous reads that can af-
fect downstream diversity and abundance estimates, overly con-
servative parameters can result in removal of too many reads
and therefore loss of sensitivity to low-abundance taxa [146,
176].

OTU clustering and denoising
While quality trimming can improve accuracy by removing se-
quencing errors, the PCR amplification process used in the ma-
jority of metabarcoding studies can further introduce single-
base substitutions [158, 189] and length variation [190] that will
not necessarily be associated with low quality scores [191]. Be-
cause these noisy sequences can cause spurious results and
substantially increase downstream computation, many stud-
ies cluster together all sequences within an arbitrary similar-
ity threshold (commonly 97%) into representative bins called
“operational taxonomic units” (OTUs). While the 97% similarity
threshold is thought to represent a broadly generalizable com-
promise between interspecific and intraspecific variation and is
commonly used to indicate distinct taxa [192, 193], actual coales-
cent depths between species can differ greatly across taxonomic
groups [91]. Therefore when a single global threshold is applied
to diverse communities it can result in both the splitting of a sin-
gle species across multiple OTUs, as well as the lumping of mul-
tiple species into the same OTU, resulting in false-negative re-
sults [176, 194]. Furthermore, aggregating all similar sequences
into a single OTU loses all information on intraspecific diversity,
restricting the ability to trace the geographic origin of invasive
populations [39, 79]. In addition, the OTUs generated by cluster-
ing are dependent on the particular dataset, reference database,
and parameters selected [194, 195], and as such they do not lend
themselves to ongoing comparison with the constantly evolv-
ing data produced by a longitudinal surveillance programme.
To overcome the aforementioned limitations, newly developed
“denoising” algorithms instead use statistical models to infer
true biological sequences from sequencing noise and correct
for single-nucleotide differences, without imposing the arbitrary
similarity threshold that defines OTUs [196–198]. This single-
nucleotide resolution enables binning sequences into “amplicon
sequence variants” (ASVs) [196] (also termed “exact sequence
variants” [194], sub-OTUs [197], or zero-radius OTUs [zOTUs]
[198]) that retain precise haplotype information that can be nec-
essary for diagnostics of closely related taxa or tracking an inva-
sion [199], and act as a consistent label between analyses [194].

OTU quality control
While the above measures account for the majority of low-
abundance errors, they are not designed to deal with high-
abundance artefacts such as PCR-generated chimeras and non-
specific amplification products. Chimeric sequences are the re-

sult of incompletely extended PCR products acting as primers
for a different closely related sequence [189], and therefore ap-
pear as concatenated products of 2 parent sequences. Assuming
that parent sequences will be more abundant having undergone
more rounds of amplification, chimeras can be algorithmically
removed through comparison with other sequences in the sam-
ple [196, 200] or with a chimera-free reference database [201].
On the other hand, removing products of non-specific amplifi-
cation such as intragenomic variants and pseudogenes presents
more of a challenge and will generally require manual curation
[151, 202]. When targeting protein-coding mitochondrial genes
such as COI, the presence of stop codons and frameshifts that
disrupt the open reading frame are common indicators of pseu-
dogenes [80], and for rRNA markers secondary structure predic-
tion could be used to ensure that sequences do not contain sub-
stantial variation in highly conserved regions [203]. Because it
is inefficient to include a manual curation process as part of a
high-throughput bioinformatics pipeline, it would be beneficial
for future denoising algorithms to incorporate patterns of se-
quence evolution to allow more precise and automated filtering
of barcode loci from erroneous and pseudogenic sequences [80,
204, 205].

Taxonomic assignment
In order to process the large diversity of sequences that a
metabarcoding assay typically produces, the assignment of Lin-
naean taxonomy (e.g., species, genus) is typically conducted in
an automated manner. While a large range of software tools ex-
ist for this purpose [206], the approaches used can generally be
delineated into either sequence similarity searches (i.e., BLAST
alignment), sequence composition methods (i.e., hidden Markov
models and k-mer counts), phylogenetic methods, or a hybrid
of the above (see Bazinet and Cummings [207] for an in-depth
comparison). To date, the most widely used approach for taxo-
nomic classification in metabarcoding studies has been best-hit
classification using alignment based tools such as BLAST [208],
which assume that the taxonomy of the query sequence will be
identical to the taxonomy of the most similar sequence in a ref-
erence database. While this approach is simple to implement
and can perform effectively when the reference database con-
tains sequence information from conspecifics, when reference
data are absent or when the particular loci cannot distinguish
between multiple organisms, best-hit classification is prone to
over-classifying the sequence to incorrect species-level taxon-
omy [209]. In the worst case, this over-classification error could
lead to false-positive results by classifying a previously unse-
quenced but probably innocuous organism as a known pest, ow-
ing to the pest being the closest taxon with an existing reference
sequence [210].

As the above situation demonstrates, for applications where
management decisions are to be based on the results of a taxo-
nomic classification, a central question is the reliability of that
classification. A number of taxonomic assignment algorithms
aim to address this issue by returning a measure of confidence
of inclusion in each taxonomic rank, e.g., by using repeated ran-
dom sampling [97, 211], lowest common ancestor methods [212],
or probabilistic models [96, 213]. In an ideal case, only a sin-
gle possible taxonomic outcome will obtain a high level of con-
fidence, whereas alternate outcomes will obtain probabilities
close to zero. In cases where there may be uncertainty at the
species or genus level due to imperfect reference data and mul-
tiple taxonomic outcomes obtaining similar probabilities, the
sequence may still be robustly assigned to a higher taxonomic
rank (e.g., family) [101], providing important information about
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sample composition and possible presence of novel taxa without
producing false-positive results [214]. While using measures of
confidence can reduce the incidence of over-classification, many
of these approaches are impaired by an inherent bias in that
they infer the entire scope of possible taxonomic outcomes ex-
clusively from the reference sequences used for training [215,
216], which in reality only represents taxonomic units that have
been previously sequenced. In contrast, the Bayesian framework
of PROTAX [96] accepts a reference taxonomy tree alongside the
reference sequence database in order to account for taxa that
are present in Linnaean taxonomy but not represented by ref-
erence sequences. Furthermore, PROTAX explicitly models the
probability that a sequence belongs to a taxon that is novel to
both the reference sequence database and reference taxonomy,
which could be particularly important when conducting surveil-
lance in regions with substantial uncharacterized biodiversity
[216, 217]. Nevertheless, even the most complex taxonomic as-
signment algorithms do not model important aspects of species
biology that may limit the possible geographical distribution or
habitat in which they could reasonably exist, and therefore the
results of taxonomic assignment should be vetted with ecologi-
cal knowledge of the detected species where possible [35].

Quality assurance
The ability to simultaneously identify many loci from thousands
of specimens in a single diagnostic assay underlies the power
of the metabarcoding approach to surveillance; however, the re-
sulting increase in sequence diversity and analytical complexity
introduces further risk of cross-contamination and technical er-
ror [55]. An important challenge for the use of metabarcoding
in a diagnostic context is the rate of false-positive errors (in-
correct identification of an insect as the pest of concern) and
false-negative errors (not identifying a pest of concern). While
many ecological studies prioritize minimizing false-positive er-
rors over false-negative errors [37], generally the precautionary
principle applies in biosecurity; i.e., it is better to have a false-
positive result that can be followed up with an orthologous con-
firmation method than to miss a serious pest. This is particularly
important if the assay is to provide “evidence of absence” to sup-
port pest-free status [218], which can be required to access cer-
tain international markets [28]. Therefore, a quality assurance
system for metabarcoding diagnostics should aim to reduce the
frequency of false-positive results as much as possible through
the appropriate use of controls, replication, and validation, with-
out in turn increasing the incidence of false-negative results.

Controls and replication
The majority of contamination in next-generation sequencing
assays is expected to arise from other samples processed in the
same laboratory environment, particularly when PCR is involved
[164, 219], and therefore workspaces should be physically or
temporally separated for different assay steps, with all surfaces,
equipment, and reagents regularly decontaminated [33, 219–
221]. Periodic swipe tests of laboratory surfaces can help iden-
tify common laboratory contaminants and confirm the absence
of environmental DNA from target pests [220, 222]. Despite these
precautions, even the cleanest laboratory environment will not
account for all possible contaminant sequences and therefore
no-template controls should be included throughout the en-
tire laboratory workflow and sequenced alongside the sample
libraries to provide a cumulative measure of contamination [162,
223, 224]. When these controls are incorporated sequentially at
each step of the laboratory protocol they can further enable par-
titioning of contamination to the stage in the workflow where it

occurred, which can highlight processes that can be improved
during assay development [35, 37]. Index-switching is perhaps
the most worrisome cause of contaminating sequences in HTS,
and while use of unique dual indices (Fig. 4C) can reduce this
phenomenon to a level acceptable for most studies, trace lev-
els of index-switching can still persist and cause issues for sen-
sitive diagnostic applications [159]. While index-switching arte-
facts will be detectable in no-template controls, it can be difficult
to discern this phenomenon from sequences arising through
physical contamination. Instead, including a positive control li-
brary made up of synthetic standard DNA [177, 225, 226] or an
“alien” taxon guaranteed to be absent from the sample [88, 227]
allows empirical measurement of the index-switch rate. Alter-
natively, the rate of index-switching can be measured post hoc
by comparing read counts between valid and invalid combina-
tions of unique dual indices [131, 228]. Once contaminant se-
quences have been identified, their presence can be controlled
through the application of a minimum abundance filter based
on the read counts within negative and/or positive control li-
braries [35, 229], although choice of an appropriate threshold
can be complicated by read depth differences between samples
and preferential amplification of contaminants in low-biomass
no-template control samples [175, 230]. As an alternative, new
statistical methods allow systematic removal of contaminant
sequences based on co-occurrence patterns and library quan-
tification data [231–233]; however, if particularly high levels of
contamination or abnormally high rates of index-switching are
detected in a specific batch of samples, it may be more appro-
priate to repeat the assay. Finally, including an additional posi-
tive control in the form of a well-characterized mock “calibration
community” in every sequencing run could further highlight
any additional run-specific aberrations or batch effects that may
have been introduced during the metabarcoding workflow when
taxonomic composition or error rates deviate strongly from ex-
pected [205, 234, 235].

In addition to being prone to contamination, library prepa-
ration protocols involve a series of molecular bottlenecks where
during each subsequent stage of DNA extraction, target enrich-
ment, and binding of molecules onto the flow cell, only a random
subsample of molecules are taken forward [37]. Stochasticity in
this sampling process is likely to bias the resulting sequences to-
wards more abundant taxa and increase the false-negative rate
for rare taxa [236], and this can be further exacerbated by neg-
ative primer bias [77]. Potential loss of rare taxa during sample
processing can be offset through the use of technical replicates,
and these provide a further avenue to identify laboratory cross-
contamination in the case that replicates show significant dis-
similarities in taxonomic composition [77, 229, 237]. While us-
ing higher numbers of replicates can increase the probability of
detecting rare taxa [237], this must be weighed against the in-
creased costs of sequencing and library replication as well as the
strategy for processing the replicates [37]. Additive processing
(i.e., pooling the detections of all replicates) can be most useful
for overcoming sampling stochasticity and controlling for false-
negative results, while restrictive processing (i.e., only retaining
sequences present in several replicates) more effectively con-
trols for cross-contamination. To balance the positives of both
approaches, it may be best to include a minimum number of
technical replicates to allow a majority-rules approach (e.g., 2/3
replicates count as a detection) [77, 88, 112]. A further aspect to
consider is the importance of biological replicates at the sample
collection stage [238] because regardless of the effectiveness of
the metabarcoding diagnostic assay, if an insect is not caught in
a trap, it does not necessarily mean absence in the area. The use
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of site occupancy models that account for the false-positive– and
false-negative–prone nature of metabarcoding surveys could be
used to determine the optimal number of both technical and
biological replicates to reach the desired statistical power for
the survey [239, 240]. Finally, while outside the scope of this re-
view, appropriate trap design [241] and surveillance grid plan-
ning [242] must also be adhered to for effective metabarcoding-
based surveillance.

Validating metabarcoding assays
Because of the relevance of many invasive insects to inter-
national trade and human health, laboratories conducting in-
sect diagnostics generally exist within strict regulatory environ-
ments. As part of laboratory accreditations, newly developed as-
says are required to undergo a validation process in order to
provide objective evidence to all end users that an assay is fit
for purpose [53, 54, 243, 244]. Traditionally, validation first in-
volves defining the scope of the assay and then establishing
performance parameters such as analytical sensitivity, analyti-
cal specificity, reproducibility and repeatability for every individ-
ual target designated in this scope [26, 244, 245]. However, the
universal nature of metabarcoding assays and the taxonomic
diversity of potential surveillance catch make this impractical
[246]. To overcome this inevitable variation between reference
samples and reality, a flexible scope validation process should
be used to establish performance parameters on representa-
tive samples and identify critical steps in the workflow where
variation can be introduced [146, 247]. These critical steps can
then be monitored run to run using control samples and ap-
propriate quality control checkpoints (Table 3) to ensure that no
sample or sequence data continue without meeting minimum
quality requirements [51, 221, 247, 248]. In the case of insect
metabarcoding, mock communities made up of the taxonomic
groups of interest are generally used for validation, which are
then spiked with decreasing concentrations of target species in
order to establish assay sensitivity and limits of detection [40,
249]. Because DNA extraction efficiency and primer bias can be
affected by overall community complexity [105, 250], mock com-
munities should as closely as possible represent the diversity
expected to be recovered in different trapping scenarios. Fur-
thermore, the amount of sequencing effort assigned to an in-
dividual sample during multiplexed sequencing can vary across
runs [224, 251], and the effect of sequencing depth on detection
should also be established using rarefaction curves [107, 117].
On the other hand, analytical specificity will generally depend
on choices made during assay design, such as the choice of tar-
get marker, availability of appropriately annotated reference se-
quences for the chosen marker, and taxonomic assignment cri-
teria used [220, 246]. Parameters such as precision and repro-
ducibility of a metabarcoding assay can be established similar to
other molecular diagnostics, through replication of samples and
controls within and across sequencing runs and inter-laboratory
comparisons [146]. Finally, stability of specimens and DNA to en-
vironmental factors such as temperature, UV radiation, pH of
commonly used drowning or attractant solutions (e.g., vinegar
traps [252]), and exposure to environmental microorganisms in
the field and during storage [253] should be evaluated and may
prompt a need for redesign of insect traps to collect and preserve
samples in a manner more suited to DNA-based identification.

Reporting and confirming detections
Even when primers are designed around a specific taxonomic
group, metabarcoding can amplify and detect many more taxa
outside the scope of the original validated target list [254]. How

these incidental detections are reported and eventually acted
upon will present a major challenge to diagnostic laboratories
and end users, due to the increased number of previously un-
documented taxa being discovered for which knowledge of dis-
tribution or ecological significance may be missing [51, 53]. Many
of these incidental detections will be taxa that simply have not
previously been searched for, and when an appropriate manage-
ment response is considered, it will be important not to conflate
“first detection” in an invasion biology sense, where there was
prior evidence of absence, with merely the first time a species
has been formally identified in a region [255]. Hence a greater
emphasis needs to be placed on conducting baseline surveys to
establish comprehensive species checklists of endemic diversity
and resolve synonymous taxa at the beginning of a surveillance
programme to avoid creating sudden market access and trade is-
sues [256]. Furthermore, a decision framework should be devel-
oped for evaluating incidental detections that sets out steps for
further characterization and risk assessment for the detected or-
ganisms in order to establish whether eradication or other man-
agement actions are appropriate or achievable [257]. Where nec-
essary, putative detections can be further confirmed using an
orthogonal diagnostic method such as quantitative PCR/droplet
digital PCR on the original DNA extract [146]; however, these as-
says require prior development and will therefore not be avail-
able for all incidental taxa detected in a metabarcoding assay. In-
stead, the use of non-destructive DNA extraction methods that
use a combination of enzymes, buffers, and heat without me-
chanical homogenization [227, 258–260], or even amplification of
insect DNA from the ethanol used to preserve specimens [261–
264], would enable diagnosticians to revisit original samples fol-
lowing metabarcoding to confirm species detections. Develop-
ment of a non-destructive metabarcoding assay has great po-
tential for bridging the gap between new HTS methods and tra-
ditional entomological techniques and may bootstrap the ac-
ceptance of metabarcoding into international regulatory frame-
works.

Perspectives and conclusions

The ability to accurately, rapidly, and cost-effectively deter-
mine the species composition of bulk insect trap contents us-
ing metabarcoding has the potential to revolutionize broad-
spectrum surveillance for invasive insect pests. Similar to any
novel technology, as metabarcoding transitions from purely re-
search to management applications it faces the growing pains
that come with integration into established regulatory struc-
tures. While rigorous standardization of both laboratory tech-
niques and data analysis has proven essential for the acceptance
of conventional DNA barcoding as a validated diagnostic for in-
sects of regulatory concern [26, 79], the sheer pace of develop-
ment of HTS technologies and platforms may complicate simi-
lar standardization of metabarcoding protocols. Historically, the
effective lifespan of many HTS platforms has only amounted to
a few years before obsolescence [168], and laboratory protocols
and bioinformatic methods are therefore constantly evolving to
chase this moving target. In response to this constantly shift-
ing state of the art, harmonization efforts by regulatory bodies
should avoid the over-prescription of restrictive standards into
law because these will quickly become outdated and risk further
widening the gap between research and diagnostics capabilities
[46]. Instead, development and distribution of certified reference
materials in the form of standard and diverse mock commu-
nities or DNA standards (similar to the ZymoBIOMICS micro-
bial mock community standards [265]) as well as computational

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/8/8/giz092/5541630 by M

inistry of H
ealth,  alexander.piper@

agriculture.vic.gov.au on 02 August 2019



Piper et al. 13

Table 3: Recommended quality control checkpoints for metabarcoding-based diagnostics

Category Quality control checkpoint Consequences

Laboratory
preparedness

Are all reagents within expiry date and stored
properly?

Poor reagent storage can lead to reduced efficiency and
false-negative results

Is equipment appropriately maintained and
calibrated?

Poorly calibrated equipment will generate inconstancies
and inaccurate data

Have laboratory surfaces been decontaminated
and swipe testing of laboratory surfaces been
conducted?

Dirty laboratories can be a source of DNA contamination,
leading to lowered sensitivity or false-positive results

Sample acceptance Have specimens arrived in a condition
appropriate for extracting DNA?

Inappropriately stored specimens can lead to
false-negative results and a reduction in sensitivity

Are specimens traceable to origin location? Misidentification of sample origin can complicate
detection response

Nucleic acid extraction Is DNA of sufficient quantity and quality? Insufficient DNA quantity or presence of contaminants
can inhibit reactions and result in false-negative results

Marker enrichment Are the correct fragment sizes present for the
target barcode marker?

Incorrect fragment sizes could indicate off-target
amplification

Have the positive control samples successfully
amplified?

Absence of product in positive controls indicates
amplification failure

Are negative control samples free of DNA
fragments?

Visible DNA fragments in negative controls indicates
contamination

Library preparation
and multiplexing

Are libraries of the appropriate size and
concentration?

Libraries of significantly different sizes or concentrations
will complicate multiplexing

Have sets of unique dual indices been used? Unique dual indexing is necessary to control for
index-switching

Have index sets been alternated since the
previous sequencing run?

Cross-contamination of libraries between sequencing
runs can cause false-positive results

High-throughput
sequencing

Has the pooled library been appropriately sized
and quantified?

Inaccurate sizing and quantification can cause
overloading of flow cell and failed runs, or underloading
and low data output

Has the sequencer been appropriately cleaned
between runs?

Insufficient cleaning of the sequencer can result in
cross-contamination between runs

De-multiplexing and
quality trimming

Has minimum sequencing depth been achieved
for each sample?

Low sequencing depth can cause false-negative results

Are an appropriate number of reads passing
quality filtering?

Low numbers of reads passing quality filters can indicate
issues with sequencing run and result in false-negative
results

OTU clustering and
denoising

How much of the original data are explained by
the final OTUs/ASVs

Lower-than-expected sequences can indicate overly
restrictive bioinformatics parameters

Have chimeras and sequences with disrupted
open reading frames been checked for? (for
protein coding genes)

Chimeras and pseudogenes can inflate taxonomic
diversity, leading to false-positive results

Taxonomic
assignment

Has the reference database been curated to
remove mislabelled taxonomy and pseudogenic
sequences?

Mislabelled reference sequences can lead to both
false-positive and false-negative results

Has the taxonomy been applied with appropriate
confidence levels?

Low-confidence assignment indicates incomplete or
erroneous reference database

Interpretation of
results

Have the taxa received an appropriate number of
reads to pass detection threshold?

Taxa under detection threshold could represent
laboratory or reagent contamination, or erroneous
sequences that have not been sufficiently controlled for

Has a minimum detection threshold been
applied to remove index-switching?

Index-switching can cause spreading of taxa to other
samples and result in false-positive results

Are there any taxa that need to be confirmed
with alternative methods?

Any high-risk putative detections should be confirmed
with alternative method before reporting, if possible

Reporting and sign-off Have any exceptions to laboratory standard
operating procedure been made?

Non-compliances with standard operating procedure
should be highlighted, and diagnostic confidence may be
reduced

Have data been stored appropriately? Archiving of data allows future re-analysis in case of
disputed results

Have results been signed off by competent
individual?

Incorrect reporting or interpretation of significant taxa
can lead to incorrect managment response

datasets [266] would enable benchmarking of laboratory and
computational methods and begin to characterize the sources

of technical variation between laboratories [267, 268]. This could
be further developed into an inter-laboratory proficiency testing
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program where blinded reference samples are periodically dis-
tributed for analysis, in order to demonstrate to all stakehold-
ers that an assay is fit for purpose for detecting invasive insect
species [248, 269]. The results of these processes would allow
further development of best-practice technical guidelines and
begin to harmonize approaches across the wider metabarcod-
ing community [270].

Biosecurity and pest management decision making is still
largely reliant on the application of a species name to a speci-
men barcode sequence [81], and issues of mislabelled sequences
in public reference databases (Box 1) highlight the importance of
maintaining expertise in taxonomy and classical diagnostics to
complement high-throughput approaches. Owing to the incom-
plete nature of reference databases, much of the sequence data
currently produced by metabarcoding assays will consist of in-
sufficiently identified sequences [84]. While some of these will
no doubt be the result of sequencing errors making it through
quality control, many more will represent real taxa and re-
flect the further work required to more completely describe
and acquire reference data for insect biodiversity. Monitoring
programs for biological invasions are at their most informative
when they are continuous and long term [271, 272], and it would
be beneficial for these insufficiently identified sequences to be
integrated into reference databases and tracked across analy-
ses and timepoints. Porter and Hajibabaei [84] have highlighted
the advantages that ASVs provide over more traditional OTU
methods for consistent labelling of insufficiently identified se-
quences, and embracing non-destructive DNA extraction tech-
niques would further enable taxonomists to verify these se-
quences using morphological methods and potentially locate
previously unbarcoded taxa or novel species, which could then
feed back into reference databases [259]. Conventional DNA bar-
coding and morphological taxonomy currently benefit from a
close and reciprocal interaction [273], and we envision a sim-
ilar relationship for the future of insect metabarcoding. This
ability to systematically reanalyse historical datasets with im-
proved reference databases, bioinformatic tools, and biological
knowledge presents a major strength of HTS diagnostics [51],
and therefore raw datasets should also be archived alongside
relevant technical and environmental metadata in a machine-
readable format [195]. However the datasets from ongoing lon-
gitudinal surveillance quickly amount to terabytes of data [274],
the storage, management, and securing of which will require
dedicated infrastructure and personnel [53]. Unlike the current
drive for open sharing of data in academic research, concerns
of misuse harming the international movement of goods means
that historically the release of raw diagnostic data to the public
has not been common [51]. However, a pathway for declassify-
ing and releasing these data to researchers should be developed
because the mass of community-level information generated by
metabarcoding bio-surveillance shows great potential for gen-
erating new insights into the process and impacts of biological
invasion [275].

In an increasingly globalized world, more effective and scal-
able utilization of surveillance effort will be required to manage
the spread and establishment of invasive species. While broad-
spectrum approaches to surveillance have historically been lim-
ited by the overwhelming amount of diagnostics work gener-
ated, metabarcoding-based diagnostics fundamentally change
this dynamic by allowing entire communities of diverse organ-
isms containing target pests, endemic species, and unexpected
invaders to be simultaneously identified [41]. While present
costs of technological investments may currently limit the up-
take of HTS tools to only well-funded core diagnostic labora-

tories, we expect that developments in portable real-time se-
quencing will further enhance the availability of these tools to
a much wider user-base worldwide. Furthermore, it is conceiv-
able that the ongoing miniaturization of sequencers may syn-
ergize with advances in microfluidic and lab-on-a-chip tech-
nologies [276] to produce a new generation of metabarcoding-
based “smart traps” for remote monitoring [277, 278]. Neverthe-
less, metabarcoding forms just a single component of a larger
biosecurity toolbox that contains not only fast, cost-effective,
and reliable means of diagnostics but also predictive models,
improved risk forecasting, field-tested tools, and an overarching
decision support system [46, 52, 135, 137]. The future of biosecu-
rity surveillance and pest management is a distinctly interdisci-
plinary area, and we encourage future research to involve closer
collaboration between academic scientists, diagnosticians, and
the end users who rely on effective surveillance data to manage
the spread of invasive pests and pathogens.

Methods

All articles containing ”Metabarcoding” in their abstract, title, or
keywords were retrieved from the Scopus, PubMed, and Crossref
citation databases on 20 June 2019 using the rscopus [279], ren-
trez [280], and fulltext [281] packages in R 3.5.3 [282]. Duplicated
article entries were detected using fuzzy string matching func-
tions from tidystringdist [283], and filtered out using dplyr [284].
All articles containing keywords in their title or abstract indica-
tive of invasive species or sequencing platform used (see supple-
mentary table 1 for full list of keywords) were then represented
graphically by year of publication using ggplot2 [285]. A list of
global insect pests was then retrieved from Ashfaq et al. [58] and
combined with additional pests of concern for Australia [286].
This list was filtered to retain only unique and complete genus
species binomials, retaining 558 species, for which all records for
these species and the entire Insecta were retrieved from BOLD
using the bold package [287]. The list of genes successfully re-
trieved from BOLD used to query GenBank and all records for
species on the pest list and the entire Insecta were retrieved us-
ing the Rentrez R package [280]. Records from all databases were
combined and specimen collection information was extracted
using R and the biofiles package [288]. Of the 5,589,069 records
for all loci in the datasets, 4,603,488 were annotated with lat-
itude and longitude information and these were plotted on a
world map using ggmap [289]. The number of overall records and
unique species within all datasets were then plotted for the top
10 occurring loci.

Availability of supporting data and materials

A snapshot of the datasets and R markdown documents imple-
menting the analyses contained in this manuscript are available
in the Zenodo repository [290].

Additional files

Supplementary table 1: Keywords used to filter articles
Supplementary information 1: Reproducable R code used to

conduct analyses and produce figure 1
Supplementary information 2: Reproducable R code used to
conduct analyses and produce figure 3
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3  
Computational Evaluation of DNA Metabarcoding for 

Universal Diagnostics of Invasive Insect Pests 

3.1 Chapter preface 

This chapter uses in-silico methods to establish the taxonomic breadth across which COI 

“mini-barcodes” can achieve species level resolution, and condense the many published 

metabarcoding primers into a shortlist of those suitable for diagnostic use. To achieve 

this, a computational pipeline for curating reference sequence data is developed and 

applied to all insect COI sequences publicly available on the NCBI GenBank and BOLD 

repositories. Using the resulting curated database, the diagnostic sensitivity and 

taxonomic bias is evaluated in-silico for 63 published metabarcoding primers, together 

with 5 novel primers designed in this chapter. Four of the highest performing primer 

combinations identified in this chapter are then compared on real mixed trap samples in 

Chapter 4, and the reference sequence database generated here is used for species 

identification in both Chapters 4 and 5. This chapter is presented as a self-contained 

manuscript in the final stages of preparation, with intended submission to the journal 

Molecular Ecology Resources, and includes supplementary material at the end. 

3.2 Publication details: 

Computational Evaluation of DNA Metabarcoding for Universal Diagnostics of Invasive 

Insect Pests 

Stage of publication: In Preparation 

Journal details: Molecular Ecology Resources 

Authors: Alexander M. Piper, Noel O.I. Cogan, John Paul Cunningham, Mark J. Blacket 
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Abstract 

Appropriate design and selection of PCR primers plays a critical role in determining the 

sensitivity and specificity of a metabarcoding assay. Despite several studies applying 

metabarcoding to insect pest surveillance, the diagnostic performance of the short “mini-

barcodes” required by high-throughput sequencing platforms has not been established 

across the broader taxonomic diversity of invasive insects. We address this by 

computationally evaluating the diagnostic sensitivity and amplification bias for 68 

published and novel cytochrome c oxidase subunit 1 (COI) primers on a curated database 

of 110,676 insect species, including 2,625 registered on global invasive species lists. We 

find that mini-barcodes between 125-257 bp can provide comparable resolution to the 

full-length barcode for both invasive insect pests and the broader Insecta, conditional 

upon the subregion of COI targeted and the genetic similarity threshold used to identify 

species. Taxa that could not be identified by any barcode lengths were phylogenetically 

clustered within ‘problem groups’, many arising through taxonomic inconsistencies 

rather than insufficient diagnostic information within the barcode itself. Substantial 

variation in predicted PCR bias was seen across published primers, with those including 

4-5 degenerate nucleotide bases showing almost no mismatch to major insect orders. 

While not completely universal, a single COI mini-barcode can successfully differentiate 

the majority of pest and non-pest insects from their congenerics, even at the small 

amplicon size imposed by 2 × 150 bp sequencing. We provide a ranked summary of high-

performing primers and discuss the bioinformatic steps required to curate reliable 

reference databases for metabarcoding studies. 
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Introduction 

Early detection and rapid response are crucial for preventing the establishment and 

spread of invasive pests and pathogens (Liebhold et al., 2016; Reaser, Burgiel, et al., 2020). 

Historically, invasive species surveillance has relied upon targeted inspections for 

predefined lists of regulated taxa (Reaser, Frey, & Meyers, 2020; Schrader & Unger, 2003). 

However, as global trade networks become increasingly interlinked and anthropogenic 

climate change alters species range distributions, this list-based framework often lags 

behind the speed at which new pests can emerge and spread across borders (Bebber, 

2015; Hulme, 2009). This lag becomes particularly apparent when considering impacts 

beyond agroecosystems, where the size and complexity of the natural environment 

presents challenges for accurate risk prediction (Caley, Lonsdale, & Pheloung, 2006; 

Crooks, 2005). In light of this, it is becoming increasingly appreciated that modern 

biosecurity will need to adopt a more comprehensive approach to surveillance that aims 

to detect and evaluate all newly introduced species, not just those regulated by national 

quarantine agencies (Meyerson & Reaser, 2002; Reaser, Meyerson, & von Holle, 2008; 

Simberloff, 2006). In practice, however, adoption of this framework is bottlenecked by a 

lack of diagnostics capacity to sort and identify the large number of specimens collected 

by intensive surveillance efforts (Bishop & Hutchings, 2011; Piper et al., 2019). 

Plant pest and pathogen diagnostics currently rely on a mixture of morphological 

examination, biochemical techniques, and molecular assays such as diagnostic qPCR, and 

DNA barcoding (EPPO, 2019a). While these methods provide highly accurate identification 

for small numbers of specimens (Armstrong & Ball, 2005; Darling & Blum, 2007), their 

inherent restriction to analysing single specimens per-reaction limits their application to 

large mixed samples collected in surveillance traps (Batovska, Piper, Valenzuela, 

Cunningham, & Blacket, 2020; Carnegie & Nahrung, 2019). As an alternative, high-

throughput sequencing (HTS) platforms can comprehensively characterise mixed 

populations of genomic DNA (metagenomics), RNA (metatranscriptomics) or 

taxonomically informative marker genes (metabarcoding), allowing whole communities 

to be identified without any prior isolation or specimen sorting (Piper et al., 2019; 

Tedersoo, Drenkhan, Anslan, Morales-Rodriguez, & Cleary, 2019). While first emerging for 

exploring biodiversity (Handelsman, 2004; Taberlet, Coissac, Pompanon, Brochmann, & 
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Willerslev, 2012), broad-scope HTS assays have recently been co-opted by various 

disciplines of molecular diagnostics, where their potential to act as a universal 

identification tool was quickly recognised (Adams et al., 2009; Comtet, Sandionigi, Viard, 

& Casiraghi, 2015). By removing the requirement to separately develop and maintain 

hundreds of targeted diagnostic assays, universal HTS diagnostics could substantially 

expand the range of organisms within the scope of a diagnostic laboratory, as well as 

decrease the costs of implementation (Adams, Fox, Boonham, Massart, & De Jonghe, 2018; 

Allcock, Jennison, & Warrilow, 2017). 

Metabarcoding of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene presents 

the most readily adoptable HTS approach for diagnostics of insect pests, due to its cost 

effectiveness, extensive public reference sequence databases, and ability to leverage 

widespread acceptance of DNA barcoding within regulatory frameworks (Andújar, 

Arribas, Yu, Vogler, & Emerson, 2018; Comtet et al., 2015; Piper et al., 2019). While 

conventional single-specimen DNA barcoding targets a 709 bp region of COI (Folmer, 

Black, Hoeh, Lutz, & Vrijenhoek, 1994), modern HTS platforms impose strict length 

limitations on sequenced molecules, and therefore “mini-barcodes” must instead be used 

(Brandon-Mong et al., 2015). The number of diagnostic nucleotides contained within 

these mini-barcodes largely determines the sensitivity and specificity for single 

specimens, but mismatch between PCR primers and variable template molecules can bias 

amplification and cause dropouts of low-abundance taxa within mixed community 

samples (Elbrecht & Leese, 2015; D. W. Yu et al., 2012). Primer-template mismatch is a 

particular issue for protein-coding genes such as COI where variability in the third 

position of each codon leaves no strictly conserved regions for placement of universal 

PCR primers (Deagle, Jarman, Coissac, Pompanon, & Taberlet, 2014). Therefore, 

degenerate nucleotide bases are commonly incorporated into COI metabarcoding 

primers to account for this inevitable mismatch (Elbrecht & Leese, 2017b), though overuse 

can result in undesired amplification of non-target organisms (Collins et al., 2019; Leese 

et al., 2021).  

Historically, molecular diagnostic assays would have undergone stringent laboratory 

validation in order to resolve the aforementioned issues and establish performance 

parameters for every target designated in an unambiguously defined scope (EPPO, 2019b). 
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However, when considering the sheer number of potential targets, hosts and matrices 

that would need to be evaluated for a universal assay, it is evident that many validation 

processes cannot be applied in their traditional sense and must be adapted to novel HTS 

based diagnostics (Maree, Fox, Al Rwahnih, Boonham, & Candresse, 2018; Roenhorst et al., 

2018). In-silico methods pose a promising alternative that can leverage public reference 

sequence data to establish the diagnostic performance of a target barcode region and 

determine the best placement of degenerate PCR primers, all without requiring physical 

specimens (Elbrecht & Leese, 2017a; Ficetola et al., 2010). Nevertheless, the use of public 

reference data comes with some caveats, as issues of mislabelled taxonomic annotations, 

insufficiently identified specimens, and contamination with non-homologous loci are 

well documented (Garg, Leipe, & Uetz, 2019; Locatelli, McIntyre, Therkildsen, & Baetscher, 

2020; Pentinsaari, Ratnasingham, Miller, & Hebert, 2020; Siddall, Fontanella, Watson, 

Kvist, & Erséus, 2009). It is therefore essential for public DNA barcode sequences to be 

appropriately curated before use for in-silico validation procedures or as reference 

databases for metabarcoding analysis (Piper et al., 2019). 

In this article we develop a computational workflow for curating a large collection of 

Insect COI sequences from public sequence repositories. Using this curated database, in-

silico methods are then used to evaluate the sensitivity, specificity, and predicted 

amplification bias for 68 published and novel metabarcoding primers on a globally 

relevant list of invasive insect pests and the broader insect diversity. We identify optimal 

subregions of the COI barcode for species differentiation and determine the amplicon 

lengths required to achieve comparable resolution to the full-length barcode. This study 

informs and offers recommendations for selection of metabarcoding primers and 

provides a robust workflow for assembling curated reference databases for DNA barcode-

based insect identification. 

Methods 

Retrieval and curation of public reference data 

COI records and mitochondrial genomes with the taxonomic annotation ‘Insecta’ were 

retrieved from NCBI GenBank  and the Barcode of Life Data system (BOLD) (Ratnasingham 

& Hebert, 2007) using the Rentrez (Winter, David & Winter, 2017) and bold (Chamberlain, 

2017) R packages. All retrieved sequences then went through a series of curation steps 
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(Figure 1A). First, to resolve taxonomic synonyms between the two repositories, sequence 

annotations were mapped into the Open Tree of life Taxonomy (OTT) (Hinchliff et al., 

2015), and only those with complete binomial names and not flagged with uncertain 

taxonomic placement were retained (see supplementary notes 2 and 3 for relevant flags). 

All sequences were then aligned to a reference Profile Hidden Markov Model (PHMM) 

(Eddy, 1998) of the COI locus generated from a manually curated version of the Midori-

longest V237 dataset (Machida, Leray, Ho, & Knowlton, 2017) using the aphid R package 

(Wilkinson, 2019). All sequences that met a minimum odds-ratio alignment score of 100 

without containing stop-codons or frameshift mutations were retained, and bases 

outside the bounds of the LCO1490-HCO2198 (Folmer et al., 1994) primer binding sites 

trimmed from the alignment. To identify putatively misannotated sequences, the 

alignment was hierarchically clustered using the kmer R package (Wilkinson, 2018) and 

sequences removed if their species annotation at 99% identity, genus annotation at 97% 

identity, or family annotation at 95% identity disagreed with more than 80% of other 

sequences within its respective cluster. A nucleotide BLAST search (Altschul, Gish, Miller, 

Myers, & Lipman, 1990) was then conducted against a local contaminants database and 

sequences with percentage coverage and identity >79% for Wolbachia, >98% for known 

pseudogene sequences, or >96% for human mitochondria were removed. To identify 

invasive insect species within the curated sequence database, taxonomic names were 

retrieved from 11 global and geographically focused pest and invasive species lists 

(Supplementary Note 1), hereafter referred to as the ‘pest’ dataset. All sequences <200 bp 

were removed, then the number of barcodes per pest taxon was compared to the 

remainder of the insect taxa using the Welch t-test. Finally, in order to accelerate 

downstream computations and minimize the effects of taxonomic sampling bias 

(Mutanen et al., 2016), the database was pruned to a maximum 5 representative sequences 

per species, discarding sequences sequentially from smallest to largest.  

Construction of phylogenetic tree 

The curated Insect reference sequences were supplemented with an outgroup of 15 COI 

sequences from Diplura, the sister taxa to Insecta (Misof et al., 2014), and all positions in 

the alignment that contained gaps in >95% of sequences were masked. A maximum 

likelihood phylogenetic tree was generated using FastTree (Price, Dehal, & Arkin, 2009) 

following the General Time-Reversible (GTR) model (Tavaré, 1986) and gamma model of 



 

48 

 

rate heterogeneity across sites, with taxonomic identities at the domain, phylum, class 

and order ranks used to constrain the deeper topology of the tree. The constructed 

phylogeny was rooted on the edge connecting the Diplura outgroup to the rest of the tree 

and made ultrametric using the geiger R package (Pennell et al., 2014) and PATHd8 

(Britton, Anderson, Jacquet, Lundqvist, & Bremer, 2007). All phylogenetic trees were 

plotted using the ggtree (G. Yu, Lam, Zhu, & Guan, 2018; G. Yu, Smith, Zhu, Guan, & Lam, 

2017) and ggplot2 R packages (Wickham, 2016).  

Diagnostic information within the COI barcode 

The curated reference sequence database was split by taxonomic order, and Shannon’s 

entropy (Scheider & Stephens, 1990) calculated for each alignment position, then 

visualised with structural motifs annotated as per Pentinsaari et al. (2016). To identify the 

most diagnostically informative subregions of the COI barcode, a sliding window 

approach was used to split the alignment into virtual amplicon sequences of 200 bp, 300 

bp and 400 bp, in intervals of 3 bp. The sequences within each virtual amplicon window 

were clustered at 97% similarity using UCLUST (Edgar, 2010), and a species considered 

successfully identified if there were no other sequences with conflicting taxonomic 

annotations within its respective cluster. 

Figure 1 – A) Overview of the computational pipeline used to curate public reference sequence data for 

primer evaluation. B) Number of sequences (upper) and species (lower) retained after each curation step, and 

their origin from BOLD, GenBank or duplicated across both repositories.  
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Characteristics of published and novel primers 

32 forward and 31 reverse primers (Figure 2B) overlapping the COI barcode region were 

identified from a literature search for the terms ‘metabarcoding mini-barcode’, and 

‘metabarcoding primer’ and supplemented with 2 new forward and 3 new reverse primers 

designed using Primer3 (Untergasser et al., 2012). The number of reference sequences for 

which each primer had an appropriate binding site was determined via string matching 

using the Biostrings R package (Pagès, Aboyoun, Gentleman, & DebRoy, 2019), allowing for 

a hamming distance of 2. The frequency of each nucleotide base, as well as presence of 

homopolymers or GC clamps (2 or more contiguous G or C bases at the 5’ end) were 

determined using the Biostrings and DECIPHER R packages (Wright, 2016). Primer melting 

temperatures were calculated using nearest neighbour thermodynamics (SantaLucia & 

Hicks, 2004) with the TmCalculator package (Li, 2019).  

Diagnostic sensitivity of mini-barcodes 

PCR amplification was simulated by truncating the reference sequences to the region 

amplified by each primer set as originally published, as well as the 1156 unique 

combinations of forward and reverse primers that could produce an amplicon >50 bp. To 

determine how the percentage identity threshold used to assign species impacted 

identification success, virtual amplicons were clustered at the commonly used 

identification threshold of 97% (Alberdi, Aizpurua, Gilbert, & Bohmann, 2018), as well as 

more stringent 98%, 99%, and 100% thresholds using UCLUST (Edgar, 2010). Again, each 

species was considered successfully identified if there were no sequences with 

conflicting taxonomic annotations within its respective cluster. As the relationship 

between identification success and amplicon length was not linear, a segmented 

regression model was fit separately to each distance interval using the chngpt R package 

(Fong, Huang, Gilbert, & Permar, 2017). The changepoint between the two regression 

segments, which can be considered the minimum amplicon length at which identification 

success using COI mini-barcodes becomes congruent with the full-length barcode 

region, was determined via maximum likelihood with confidence intervals obtained from 

1000 bootstrap replicates (Fong, 2019). Primer specific identification performance was 

obtained by averaging the residuals from the regression model for all evaluated 

combinations that contained that respective primer. In order to determine how the taxa 
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that could not be identified by any barcode length were distributed across the insect 

phylogeny, the consenTRAIT metric (Martiny, Treseder, & Pusch, 2013) was calculated for 

the full-length barcode at the 97% identification threshold, with each clade weighted by 

the number of failed identifications. This metric measures the mean phylogenetic depth 

of clades for which a binary trait, in this case failed identification, is present in at least 

50% of its tips, with significance assessed against 1000 permutations. The phylogenetic 

clades with the highest number of identification failures were then annotated with their 

lowest common taxonomic rank.  

Primer-template mismatch 

A mismatch score was calculated between each primer and every sequence that 

contained an appropriate binding site using PrimerMiner (Elbrecht & Leese, 2017a). The 

default penalties as per Stadhouders et al., (2010) were used to score types of mismatches, 

with penalty scores doubled for each contiguous mismatch and increased exponentially 

towards 3’ end of primer. To determine the phylogenetic scale at which primer-template 

mismatch is conserved, 1×108 pairs of tips were randomly selected from the tree and 

binned into 100 discrete intervals of phylogenetic distance. The phylogenetic 

autocorrelation function (Zaneveld & Thurber, 2014), or how the value of a trait (primer 

mismatch score) decays with increasing phylogenetic divergence was then calculated 

separately for each primer using the castor R package (Louca & Doebeli, 2018). As primer-

template mismatch was found to be phylogenetically conserved (supplementary Figure 

4), phylogenetic independent contrasts (Felsenstein, 1985) was used to impute mismatch 

scores for species that did not have available sequence data within their respective primer 

binding sites (Zaneveld & Thurber, 2014). The accuracy of phylogenetic imputation is 

determined by the depth at which the trait is conserved (measured by the decay of the 

autocorrelation function), as well as the distance from the tip being imputed to the 

nearest clade with available data, which was quantified for each primer set using the 

Nearest Sequence Taxon Index (NSTI) averaged over all tips in the phylogeny (Langille et 

al., 2013). To determine the importance of primer degeneracy for reducing bias, a linear 

regression model was fit separately to the imputed and unimputed mismatch data for all 

forward and reverse primers. 
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Final primer rankings 

To obtain an overall ranking for each evaluated primer, the identification success for both 

the pest and entire insect datasets, as well as the inverse of the primer mismatch score 

were z-normalised to be on the same scale. Additionally, each forward and reverse primer 

was assigned a value of either -1 (poor), 0 (moderate), or 1 (good), depending on how 

closely their physical characteristics adhered to common primer design 

recommendations (Supplementary Table 1) (Abd-Elsalam, 2003; Kwok, Chang, Sninsky, & 

Wang, 1994; Shen et al., 2010), and these were also normalised. The standardised scores 

from each metric were then weighted by their relative importance for overall primer 

performance; 1× for mismatch, 0.5× for pest insect identification, 0.5× for all insect 

identification, and 0.25× for each of the measured physical characteristics; fold-

degeneracy, primer length, melting temperature, GC%, presence of GC clamps and 

longest homopolymer, then summed by primer to obtain a final ranking.  

Results 

Sequence database assembly 

To assemble the reference database for primer evaluation, 4,491,128 COI sequences with 

taxonomy “Insecta” were retrieved from GenBank and BOLD, including 23,571 extracted 

from mitochondrial genomes. Of these sequences, 1,584,589 were exclusive to GenBank, 

15,153 were exclusive to BOLD, and 2,891,386 shared across both repositories (Figure 1B). 

2,745,595 sequences and 129,225 species could be mapped to valid binomial names 

within the OTT taxonomy, including 11,431 taxonomic synonyms resolved to currently 

accepted species names in the process. This step resulted in the largest reduction of 

both unique sequences and species (Figure 1B), with most unsuccessfully mapped 

sequences being flagged as incertae_sedis (1,329,337 sequences) or not present in the 

taxonomy at all (346,299 sequences). Additional reasons for removal at this stage 

included infraspecific taxa (22,501 sequences), the taxon being extinct (4,493 sequences) 

or other more minor issues (supplementary Figure 1). In contrast, many of the later 

curation steps only marginally reduced the number of both sequences and species 

(Figure 1B), with homology and pseudogene filters removing 333,765, and 16,553 

sequences respectively, and comparisons of taxonomy between highly similar 

sequences removing 3,130 putatively misannotated sequences. A BLAST search against 
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a local database of contaminants 

removed 30 Wolbachia and 56 

human mitochondrial sequences 

and identified a further 1,667 

sequences that were >98% 

similar to known COI 

pseudogenes but did not contain 

any characteristic stop codon or 

frameshift mutations. All 

sequences <200 bp in length 

were then removed, leaving 

2,389,404 sequences from 

110,676 distinct species 

remaining. When compared to 

globally relevant lists of invasive 

insects, a total of 2,625 species 

spanning 1,490 genera and 20 

taxonomic orders were 

identified within the curated 

database (supplementary Figure 

2). Each pest species as 

represented by a significantly 

higher number of sequences 

(mean 79.9 ± 5.60) than the 

average insect taxon (mean 20.2 

Figure 2 - Summary of the COI barcode 
region. A) Boxplots of Shannon’s 
entropy per nucleotide position 
calculated separately for each Insect 
order in the database, with structural 
motifs annotated as per Pentinsaari et 
al. (2016). B) Binding positions of all 
published and novel primers evaluated 
in this study. C) Identification success 
for all insects within sliding windows of 
length 200 bp, 300 bp and 400 bp. D) 
Number of sequences at each position 
within the COI barcode locus.   
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± 0.428) (Welch t-test: t(2837) = 11.1, p < .001), however no reference data was available for 

1,717 of the listed species. As the number of sequences per species was greatly skewed 

by a few highly sampled taxa (supplementary Figure 3), the database was pruned to a 

maximum of 5 sequences per species. This left a total of 315,754 sequences from 110,676 

species remaining in the final curated reference database (Figure 1B).  

Optimal diagnostic subregions within the COI barcode 

The final curated reference database consisted of a 712 bp alignment (Figure 2), which 

included the 709 bp barcode region and a 3bp insertion at position 110-112 that occurred 

in the order Thysanoptera as well as some Hymenopteran species. Sequence coverage 

was relatively even across the COI barcode, with exception of the terminal regions 

where the standard practice of removing priming sequences before submission to 

public repositories resulted in low coverage (Figure 2D). The per-site Shannon entropy 

within regions coding for loop structures was significantly higher than within those 

coding for transmembrane helices (Welch t-test: t(12306) = 4.0459, p < .001). However,  short 

segments of low entropy were distributed throughout both (Figure 2A). The large majority 

of the 58 primers retrieved from the literature were designed around these few low-

entropic segments, with many overlapping around 180 bp, 255 bp, 370 bp, and 600 bp into 

the alignment (Figure 2B). As none of these segments of low entropy extended for the 18-

24 bp length of a typical primer, many of the evaluated primers included multiple 

degenerate bases to account for variable positions (Supplementary Table 1). Sliding 

window analyses revealed that for a 200 bp or 300 bp amplicon, those positioned towards 

the 3’ end of the barcode region could differentiate substantially more species than those 

towards the 5’ end, however differences were much less pronounced for a 400 bp 

amplicon (Figure 2C).  
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Diagnostic sensitivity of mini-barcodes 

PCR amplification was simulated for the 1156 primer combinations that could produce an 

amplicon >50 bp, as well as for the full-length barcode region. Identification success using 

mini-barcodes generally increased with amplicon length, but did not follow a simple 

linear relationship, instead seeing a sharp initial increase up to a certain length, followed 

by a second more gradual slope (Figure 3). A segmented regression model applied to the 

whole insect dataset inferred the change point between these trends to be 257 bp at the 

97% identity threshold (95% CI: 242 bp – 266 bp), 237 bp at the 98% threshold (95% CI: 

218 bp – 248 bp), 146 bp at the 99% threshold (95% CI: 137 bp – 206 bp) and 125 bp when 

only 100% matches were considered (95% CI: 110 bp – 131 bp). On the other hand, the 

inferred changepoints for the pest dataset were approximately 20 bp smaller at the 97%, 

98% and 99% identity thresholds, but identical to the larger dataset at the 100% 

threshold. In spite of this general trend, certain amplicons deviated up to 10% above or 

below the regression line for both datasets (Figure 3), reinforcing that appropriate 

placement of mini-barcodes within the COI barcode region can be just as important as 

amplicon length for diagnostic performance.  

Figure 3) Identification success for all insects (upper) and Insect pests (lower) as a function of amplicon 
length for all possible combination of mini-barcode primers. Percentage identity threshold used to identify 
species increases from 97% (leftmost panel) to 100% (rightmost panel), with segmented regression model 
predictions overlaid. Each primer combination is coloured by its residual error from regression model 
predictions, with higher residuals indicating better than expected performance for its length. 
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The overall proportion of insect species that could be successfully identified by any of the 

barcodes increased with the stringency of the percentage identity threshold used (Figure 

3). For the complete insect dataset, the proportion identified increased from 76.6% when 

using a 97% identification threshold up to 91.5% when only 100% matches were 

considered, and similarly increased from 77.6% to 89.4% in the pest dataset. Taxa that 

could not be identified even by the full-length barcode showed significant phylogenetic 

clustering (Figure 4A), with the mean phylogenetic depth of problem clades (those in 

which ≥50% of species couldn’t be differentiated from their congenerics) ranging from 

0.83% at a 97% identity threshold (consenTRAIT, p < .001) to 0.21% at 100% identity 

threshold (p < .001). These patterns indicate that identification failure with DNA 

barcoding can be considered a phylogenetically conserved trait, but concentrated in 

smaller clades scattered throughout the tips of the phylogeny rather than being inherent  

Figure 4: A) Phylogenetic tree of all insect genera contained within the curated reference database with 
major orders annotated. Clades are highlighted in red where ≥50% of species could not be successfully 
differentiated from their congenerics by the full-length barcode a 97% identity threshold. B) Phylogenetic 
depth of clades where ≥50% of specimens could not be identified, with those containing the highest number 
of failed identifications annotated. C) Number of failed identifications per taxonomic order with the full-
length barcode region at the 97% identity threshold. 
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to any broader lineage (Figure 4A). These problem clades mostly occurred within the 

order Lepidoptera, which contained the highest number of failed species identifications 

(Figure 4C). In particular, the families Noctuidae, Nymphalidae, and Tortricidae each 

Figure 5: A) Phylogenetic tree of all insect genera contained within the curated sequence database, coloured 
by their mean primer-template mismatch across all evaluated primers. B) Primer-template mismatch for 
each evaluated sequence and primer, summarised by insect genus. C) Dot-plot of mean mismatch per genus, 
with highly mismatched clades indicated. D) Summary of results by primer, from top to bottom; mean primer 
mismatch across all sequences, fold degeneracy on a log2 scale, mean phylogenetic distance from each 
imputed tip to its nearest sequenced taxon. 
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contained several large problematic clades (Figure 4B). Other non-Lepidopteran taxa that 

posed problems for DNA barcode based identification included Hoverflies (Diptera: 

Syriphidae), sawflies (Hymenoptera: Empria) and the hemipteran families Aphididae and 

Lachnidae (Figure 4B), however to a substantially lesser degree than Lepidoptera (Figure 

4C).  

Predicted bias for metabarcoding primers 

Primer-template mismatch scores were calculated between the 68 primers and all taxa 

that had reference sequences available for their respective binding sites, and scores for 

missing species phylogenetically imputed. Mismatch was found to be phylogenetically 

conserved across the majority of primers, with the autocorrelation function decaying 

moderately with phylogenetic divergence to reach a correlation of 0.5 at a distance of 5% 

and falling to zero at a distance of 7-10% (supplementary Figure 4). This indicates that 

missing data imputation would be reliable for those taxa <5% diverged from a sequenced 

clade, and close to random for species >7% diverged. Almost all primers had a mean 

phylogenetic distance to their nearest sequenced taxon (NSTI) between 0.05% and 0.35%, 

well below this value. The exception was those primers situated at each terminus of the 

COI barcode where available sequence data was sparser (Figure 2), leaving the NSTI 

between 4% and 6% (Figure 5D). Following imputation, the forward primers with the 

lowest mean mismatch across all insect taxa were: C, BF1i, ARF5, and the reverse primers 

ArR5, E, EN and BR1 (Figure 5B). Nevertheless, these primers still showed significant 

mismatch to certain clades within the phylogenetic tree, most notably the families 

Diaspididae, Pseudococcidae, Philopteridae, Phlaeothripidae, Apidae, Gyrinidae, Leiodidae, 

Hesperiidae and the Coleopteran genus Exapion (Figure 5C). At a higher level, the orders 

Hymenoptera and Hemiptera showed substantially more mismatching taxa then any of 

the other major insect groups (Figure 5A, B, C). Primer-template mismatch was found to 

be significantly related to primer degeneracy for both the imputed (p < .001, R2 = .187) and 

unimputed datasets (linear regression, p < .001, R2 = .152), yet those primers with the 

highest degeneracy were not necessarily the best performers (Figure 5D). The 

diminishing returns of adding degeneracy was particularly apparent for the ZBJ-ArtF1c-

deg, mtCOIF-XT and MZPlankF2 forward primers and the reverse primer D, which despite 
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extremely high degeneracy still showed moderate mismatch across the insect phylogeny 

Figure 6) Summary of primer performance across all metrics measured within this study, with primers 
ranked from best overall performance (top) to worst (bottom). Metrics from left to right: Average 
performance of primer compared to regression model predictions on all insects and pest insects, mean 
mismatch score for each primer, and primer characteristics. Error bars represent 2 standard deviations. 
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(Figure 5D). The underperformance of highly degenerate primers such as ZBJ-ArtF1c-deg 

remained when only the unimputed data was viewed (Supplementary Figure 5), 

suggesting that these results were not confounded by difficulties imputing higher levels 

of missing data.  

Final primer rankings 

Many of the evaluated forward primers performed well across all metrics, with C, BF1, 

fwhF2, BF1i, SauronS878 and MlCOIintF all ranking highly (Figure 6). Nevertheless, there 

was no perfect forward primer, with many of those showing higher diagnostic sensitivity 

also having excessive mismatches, or physical characteristics outside of recommended 

design guidelines (Figure 6). In contrast, there was substantially more variability in the 

performance of reverse primers, with primers such as D, AgPestR1a and AgPestR1b 

showing exceptional diagnostic sensitivity, but having either too much degeneracy or a 

melting temperature well below the recommended guidelines. On the other hand, the 

reverse primers Ill-C-R, fwhR2n, and BR2 showed slightly less sensitivity, but adhered 

well to recommended physical characteristics (Figure 6). To comply with restrictions of 2 

× 150 bp sequencing, the primer combinations fwhF2-fwhR2n, BF1-BR1, or SauronS878-

fwhR2n present the best overall options, amplifying a ~250 bp subregion of COI that 

contains the most diagnostic nucleotides (Figure 2A, C), while showing little mismatch 

across all insects and physical characteristics within recommended guidelines. The novel 

AgPestF1-AgPestR1b primers designed in this study would also provide an appropriate 260 

bp amplicon for 2 × 150 bp sequencing, however further laboratory evaluation would be 

required to ensure their lower than recommended melting temperatures does not 

introduce non-specific amplification. On the other hand, a much greater range of primer 

combinations are appropriate for sequencing technologies that can deliver read lengths 

of 2 × 300 bp. In particular, those that amplify a subregion from 250 bp into the full-length 

barcode, along to either the low entropy region around 600 bp, or onwards the 3’ 

terminus will capture the most diagnostic nucleotides (Figure 2C). Published primer 

combinations that amplify these subregions and performed well across all evaluated 

metrics include HexCOIF4-HexCOIR4, BF2-BR2 and BF3-BR2, but many of the alternative 

forward or reverse primers which overlap the same positions would also prove suitable 

(Figure 2B). Nevertheless, once the amplicon has reached approximately 400 bp there is 

minimal difference in species discrimination across the COI barcode (Figure 2C), and 
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therefore primer combinations that amplify from the 5’ end of the barcode onwards would 

likely also perform adequately for 2 × 300 bp sequencing.  

Discussion 

High sensitivity across a broad taxonomic scope is a defining feature of DNA 

metabarcoding assays, facilitating their use as a universal diagnostic assay to rapidly 

screen mixed samples for a range of target pests or pathogens. Despite several studies 

applying metabarcoding to certain pest taxa (Batovska et al., 2018, 2020; Bowser et al., 

2019; Young, Milián-García, Yu, Bullas-Appleton, & Hanner, 2021), the diagnostic 

performance of the required mini-barcodes has not until now been systematically 

evaluated across the broader diversity of invasive insect pests. Using a curated reference 

database covering 110,676 insect species, including 2,625 species registered on global 

invasive species lists, we here demonstrate that mini-barcodes can achieve comparable 

resolution to the full-length COI barcode region already widely accepted within insect 

diagnostic protocols. Our findings are largely in agreement with previous investigations 

showing congruence between mini-barcodes and the full-length barcode (Hajibabaei, 

Smith, et al., 2006; Meusnier et al., 2008), as well as morphospecies (Yeo, Srivathsan, & 

Meier, 2020). However, our study expands these predictions to a more than five-fold 

larger sample of insect taxa, with an additional focus on invasive insect pests.  

While 97% identity is considered the default threshold for delineating taxonomic units 

from DNA barcodes (Alberdi et al., 2018; Porter & Hajibabaei, 2020), our analyses 

demonstrate that a more stringent 98% or 99% identification threshold not only 

increases the number of insects that can successfully be differentiated, but also reduces 

the amplicon length required to do so. This is particularly notable for implementing 

metabarcoding on production scale HTS platforms such as the Illumina NovaSeq, which 

offer the lowest cost per sample but require much shorter amplicons due to their typical 

read lengths of only 2 × 150 bp (Piper et al., 2019). Shorter barcodes also improve recovery 

of taxa when DNA is degraded, which can occur when traps are deployed in the field for 

extended periods of time without adequate preservative (Krehenwinkel et al., 2018). While 

use of more stringent identification thresholds has been constrained by the common 

practice of clustering metabarcoding reads to resolve sequencing errors (Porter & 

Hajibabaei, 2020), recent denoising algorithms provide single nucleotide resolution that 
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can be leveraged for more accurate and reproducible taxonomic assignment (Callahan, 

McMurdie, & Holmes, 2017; Porter & Hajibabaei, 2020). Nevertheless, the metric of 

identification success used within our study (proportion of clusters containing only a 

single species) does not consider the actual availability of reference sequences to match 

unknown taxa against, and false negatives may be introduced when using these more 

stringent thresholds if intraspecific diversity isn’t sufficiently represented in the 

reference database. While this will not be an issue for most invasive insect pests due to 

their general overrepresentation in public sequence repositories, some taxa were 

represented by only single sequences, and a further 1,717 had no publicly available COI 

data whatsoever. Moreover, the 110,676  insect species represented in our curated 

database barely accounts for 10% of described insect diversity (Stork, 2018), highlighting 

the considerable efforts still required to increase the taxonomic coverage of reference 

databases before metabarcoding assays can operate in a truly universal manner. 

While many of the evaluated mini-barcodes performed comparably to the full-length 

barcode region, 10.6% of the insect pests, and 8.5% of all insect species could not be 

differentiated at all, even when solely considering 100% matches. While this may at first 

glance seem high, it is largely consistent with previous research that suggests between 

12.3% and 26.5% of described Arthropod species are non-monophyletic for the COI 

barcode region (Funk & Omland, 2003; Mutanen et al., 2016; Ross, 2014). In our study, 

these misidentified taxa were phylogenetically clustered in “problem clades” towards the 

tips of the phylogeny, which predominantly occurred within the order Lepidoptera. 

Issues of DNA barcode failure for Lepidoptera and other speciose taxonomic groups has 

long been noted (Meier, Shiyang, Vaidya, & Ng, 2006; Wiemers & Fiedler, 2007), but only 

recently has it been appreciated how much of this can be attributed to underlying 

misidentifications, databasing errors, or flawed taxonomic delimitation (Locatelli et al., 

2020; Mutanen et al., 2016). While our study has followed current best practices in 

reference database curation, we notably did not go to the extra length of verifying the 

original source for the taxonomic identities applied to each sequence, a task which would 

prove insurmountable for a dataset of this size. While computational curation presents 

an extremely scalable approach for resolving annotation errors and contamination within 

public datasets, the quality of any identification ultimately depends on the quality of the 

systematics and taxonomy that originally delimited and described the species (Clarke & 
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Schutze, 2014). Therefore, additional taxonomic consideration using more 

comprehensive genomic (Leaché, Fujita, Minin, & Bouckaert, 2014) or integrative methods 

(Padial, Miralles, De la Riva, & Vences, 2010) may be required to determine if the problem 

clades identified in our study are actually due to insufficient resolution within the COI 

barcode, or rather, over-splitting in the underlying taxonomy (Mutanen et al., 2016). 

The 11,431 defunct or synonymous species names identified and corrected in our study 

clearly demonstrates that taxonomic synonyms remain one of the largest and seldom 

discussed issues within public sequence repositories (Leray, Knowlton, Ho, Nguyen, & 

Machida, 2019). While taxonomic names must be free to change to reflect revised species 

concepts, this becomes a problem when historically defunct species names are retained 

in reference databases, propagating errors through later studies and the management 

decisions made from them (Clarke et al., 2019). For insect metabarcoding, issues arising 

from taxonomic synonyms will become most apparent as hierarchical taxonomic 

classifiers already widely adopted by microbiome researchers become more prevalent 

(Porter, Gibson, Shokralla, & Baird, 2014; Porter & Hajibabaei, 2018). These methods 

require a query sequence to reach a certain bootstrap support to be assigned to lower 

ranks in the taxonomy, but conflicts in taxonomic annotation between genetically similar 

reference sequences could result in a failure to reach the required confidence, and thus 

false negative detections. Therefore, we recommend that resolving taxonomic synonyms 

to their currently accepted name become a default step in all metabarcoding database 

curation efforts, alongside the more common practices of removing non-homologous 

sequences, contaminants, and misannotated taxonomy (Kozlov, Zhang, Yilmaz, Glöckner, 

& Stamatakis, 2016; Richardson, Sponsler, McMinn-Sauder, & Johnson, 2020). While some 

curation of taxonomic synonyms already occurs within both GenBank and BOLD (Schoch 

et al., 2020), determining the currently valid taxonomic name from a diverse and 

constantly evolving primary literature is by no means a trivial task (Schoch et al., 2017). 

Continued investment into digital infrastructure for distribution of taxonomic 

information will therefore prove critical for ensuring identifications obtained through 

metabarcoding remain robust to the inevitable future description and renaming of taxa 

(Miralles et al., 2020). 
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In addition to its ability to differentiate target species, the amount of PCR amplification 

bias towards or against certain taxonomic groups plays an important role in the selection 

of primers for metabarcoding studies. While the lack of evolutionarily conserved primer 

binding sites led to early studies questioning the suitability of COI for metabarcoding 

(Deagle et al., 2014), our analyses demonstrate that incorporating a moderate 216 to 512-

fold degeneracy into primers (4-5 degenerate bases) can adequately resolve primer-

template mismatch across the large majority of insect taxa, with diminishing returns 

beyond this. While not explicitly evaluated in this study, previous research has shown that 

primers with over 2000-fold degeneracy are likely to cause undesired amplification of 

non-target taxa (Collins et al., 2019), a particular problem for samples with low DNA 

concentrations (Leese et al., 2021; Macher et al., 2018). With this in mind, we advise against 

the use of extremely degenerate primers such as ArR5, ZBJ−ArtF1c−deg, or D for insect 

metabarcoding, in favour of other primers that overlap the same regions of COI and show 

similar performance despite substantially less degeneracy. Of the taxonomic groups that 

still showed a high level of mismatch despite inclusion of degenerate bases, the most 

concerning for an invasive species surveillance programme would be the Armoured 

Scales (Hemiptera: Diaspididae), Mealybugs (Hemiptera: Pseudococcidae), and the thrips 

family Phlaeothripidae, for which 120, 90, and 28 species respectively were registered on 

global invasive species lists. While Apidae also showed substantial mismatch across many 

primers, this was only towards non-pest taxa within the family, and most well-designed 

primers matched the 26 invasive Bombus and Apis species well. In all these cases, 

researchers and diagnosticians should be aware that primer-template mismatches could 

cause false negatives when these taxa are at a low relative abundance within mixed trap 

samples. Therefore, the sequencing effort applied to each sample may need be adjusted 

in proportion to both the overall biomass and expected composition of the communities 

under study, if known in advance.   

Despite this study being a purely in-silico evaluation and the many limitations that this 

entails (Alberdi et al., 2018; Corse et al., 2019; Zhang, Zhao, & Yao, 2020), it represents a 

comprehensive first step in applying big data principles to inform development of HTS 

based diagnostics for invasive insect pests. As well as providing a starting point for 

diagnosticians and researchers selecting mini-barcode primers for insect identification, 

our results offer a degree of confidence to managers and regulators grappling with the 
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consequences of broad-scope HTS diagnostic assays and how to appropriately respond 

the incidental detection of regulated species (Darling, Pochon, Abbott, Inglis, & Zaiko, 

2020). Whilst we still recommend additional laboratory validation be conducted on high-

priority targets before adoption in active surveillance, promisingly, many of the 

outstanding primers highlighted in our rankings have also shown similarly high 

performance in a recent in-vitro evaluation on a diverse insect mock community 

(Elbrecht et al., 2019). Our finding that mini-barcodes of lengths 125-257 bp provide 

comparable resolution to the full-length barcode opens for use of production-scale 

sequencing platforms such as the Illumina NovaSeq to cost-effectively process large 

numbers of bulk samples. Nevertheless, the lower capacity Illumina MiSeq may remain 

more appropriate when samples are likely to arrive at the laboratory in small batches, due 

to the increased diagnostic turnaround time from waiting to fill the higher capacity 

NovaSeq flow cells. In summary, appropriately chosen COI mini-barcode primers perform 

effectively across the majority of pest and non-pest insects, opening for the adoption of 

universal metabarcoding assays within diagnostic laboratories. While the computational 

curation pipeline presented here can resolve many issues inherent to public reference 

sequence data, regardless of whether the diagnostic tool is a microscope or a HTS assay, 

the accuracy of results will ultimately depend on the underlying quality and completeness 

of the taxonomy for the target groups. 
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3.5 Supplementary Information 

Supplementary Table 1: Published and novel primers evaluated in this study 

Primer 
 

Sequence Citation 
SternoCOIF1 F ATTGGWGGWTTYGGAAAYTG Batovska et al. (2021) 
SternoCOIR1 R ATRAARTTRATWGCTCCTA Batovska et al. (2021) 
Saurons878 F GGDRCWGGWTGAACWGTWTAYCCNCC Rennstam Rubbmark et al. (2018) 
AgPestF1 F ATYATWATTGGDGGDTTYGG This Study 
AgPestF2 F HGAYATRGCHTTYCCHCG This Study 
HexCOIF4 F HCCHGAYATRGCHTTYCC Marquina et al. (2019) 
HexCOIR4 R TATDGTRATDGCHCCNGC Marquina et al. (2019) 
mLepR1 R CCTGTTCCAGCTCCATTTT Hebert et al. (2004) 
AgPestR1a R GTRATRAARTTDAYWGMHCC This Study 
AgPestR1b R ARAATWGADGADAYWCCWGC This Study 
AgPestR2 R RACWGMTCAVAYAAATARDGG This Study 
LCO1490 F GGTCAACAAATCATAAAGATATTGG Folmer et al. (1994) 
HCO2198 R TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. (1994) 
Uni-MinibarR1 R GAAAATCATAATGAAGGCATGAGC Meusnier et al. (2008) 
Uni-MinibarR1d R AAAATTATAATAAARGCRTGRGC Jordaens et al. (2013) 
Uni-MinibarF1 F TCCACTAATCACAARGATATTGGTAC Meusnier et al. (2008) 
UniMinibarF1d F TCCACTAATCACAARGATATTGGTAC Jordaens et al. (2013) 
ZBJ-ArtF1c F AGATATTGGAACWTTATATTTTATTTTTGG Zeale et al. (2011) 
ZBJ-ArtF1c-deg F RGAYATYGGWACHYTWTAYTTYHTHTTYGG Elbrecht et al. (2019) 
ZBJ-ArtR2c R WACTAATCAATTWCCAAATCCTCC Zeale et al. (2011) 
ZBJ-ArtR2c-deg R WAYTARTCARTTWCCRAAHCCHCC Elbrecht et al. (2019) 
mlCOIintF F GGWACWGGWTGAACWGTWTAYCCYCC Leray et al. (2013) 
mlCOIintR R GGRGGRTASACSGTTCASCCSGTSCC Leray et al. (2013) 
BR3 R GGDGGRTANACWGTYCAHCCDGTHCC Elbrecht et al. (2019) 
LepF1 F ATTCAACCAATCATAAAGATATTGG Hebert et al. (2004) 
EPT-long-univR R AARAAAATYATAAYAAAIGCGTGIAIIGT Hajibabaei et al. (2011) 
MLepF1-Rev R CGTGGAAAWGCTATATCWGGTG Brandon-Mong et al. (2015) 
Ill-C-R R GGIGGRTAIACIGTTCAICC Shokralla et al. (2015) 
Ill-B-F F CCIGAYATRGCITTYCCICG Shokralla et al. (2015) 
BF1 F ACWGGWTGRACWGTNTAYCC Elbrecht & Leese (2017b) 
BF1i F ACIGGITGRACIGTITAYCC Elbrecht et al. (2019) 
BF2 F GCHCCHGAYATRGCHTTYCC Elbrecht & Leese (2017b) 
BF3 F CCHGAYATRGCHTTYCCHCG Elbrecht et al. (2019) 
BR1 R ARYATDGTRATDGCHCCDGC Elbrecht & Leese (2017b) 
BR1i R ARYATIGTRATIGCICCIGC Elbrecht et al. (2019) 
BR2 R TCDGGRTGNCCRAARAAYCA Elbrecht & Leese (2017b) 
ArF5 F GCICCIGAYATRKCITTYCCICG Gibson et al. (2014) 
ArR5 R GTRATIGCICCIGCIARIACIGG Gibson et al. (2014) 
jgLCO1490 F TITCIACIAAYCAYAARGAYATTGG Geller et al. (2013) 
jgHCO2198 R TAIACYTCIGGRTGICCRAARAAYCA Geller et al. (2013) 
MZplankF2 F RGYNGGNACRGGNTGRACNGT Elbrecht et al. (2019) 
LepR1 R TAAACTTCTGGATGTCCAAAAAATCA Hebert et al. (2004) 
C-LepFolR R TAAACTTCWGGRTGWCCAAAAAATCA Hernández-Triana et al. (2014) 
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AncientLepF3 F TTATAATTGGDGGWTTTGGWAATTG Prosser et al. (2016) 
A F GGIGGITTTGGIAATTGAYTIGTICC Hajibabaei et al. (2012) 
D R CCTARIATIGAIGARAYICCIGC Hajibabaei et al. (2012) 
B F CCIGAYATRGCITTYCCICG Hajibabaei et al. (2012) 
Bn F CCNGAYATRGCNTTYCCNCG Elbrecht et al. (2019) 
E R GTRATIGCICCIGCIARIAC Hajibabaei et al. (2012) 
En R GTRATNGCNCCNGCNARNAC (Elbrecht et al. (2019) 
C F GITGAACIGTITAYCCICC Hajibabaei et al. (2012) 
F R CCIGCIGGRTCIAARAAIGAIGT Hajibabaei et al. (2012) 
fwhF1 F YTCHACWAAYCAYAARGAYATYGG Vamos et al. (2017) 
fwhR1 R ARTCARTTWCCRAAHCCHCC Vamos et al. (2017) 
fwhF2 F GGDACWGGWTGAACWGTWTAYCCHCC Vamos et al. (2017) 
fwhR2n R GTRATWGCHCCDGCTARWACWGG Vamos et al. (2017) 
MG-LCO1490 F ATTCHACDAAYCAYAARGAYATYGG Galan et al. (2018) 
MG-univR R ACTATAAARAARATYATDAYRAADGCRTG Galan et al. (2018) 
230-R R CTTATRTTRTTTATICGIGGRAAIGC Gibson et al. (2015) 
MhemF F GCATTYCCACGAATAAATAAYATAAG Park et al. (2011) 
dgHCO2198 R TAAACTTCAGGGTGACCAAARAAYCA Meyer (2003) 
dgLCO1490 F GGTCAACAAATCATAAAGAYATYGG Meyer (2003) 
Fol-degen-for F TCNACNAAYCAYAARRAYATYGG D. W. Yu et al. (2012) 
Fol-degen-rev R TANACYTCNGGRTGNCCRAARAAYCA D. W. Yu et al. (2012) 
MLepF1 F GCTTTCCCACGAATAAATAATA Hajibabaei, Janzen et al. (2006) 
RonMWASPdeg F GGWTCWCCWGATATAKCWTTTCC Clare et al. (2019) 
mlCOIintF-XT F GGWACWRGWTGRACWITITAYCCYCC Wangensteen et al. (2018) 
EPTDr2n R CAAACAAATARDGGTATTCGDTY Leese et al. (2021) 

 

Supplementary Table 2: Criteria used to rank primer characteristics 

Criterion Good (1) Moderate (0) Bad (-1) 
GC% 40%-60% 30%-40% or 60%-

70% 
<30% or >70% 

Degeneracy 0-517 fold  517-1026 fold >1026 fold 
GC clamp (last 2 
bases of 5’ end) 

2 G or C bases 1 G or C base No G or C bases 

Primer length 18-24 bp 16-18 bp or 24-26 bp <16 bp or >25 bp 
Longest 
homopolymer 

≤2 bp ≤4 bp >4 bp 

Melting temperature 48-62 °C 43-48 °C or 63-67 °C <43 °C or >67 °C 
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Supplementary Figure 1: Categories of sequences that could not be successfully mapped into the Open Tree 
of Life taxonomy. Displayed on a log10 scale. 
 

Supplementary Figure 2 – Summary of public pest and invasive insect datasets used to assemble the pest 
list for primer evaluation. A) Principal component analysis of species overlap (Jaccard distance) between pest 
lists. B) Total records for each dataset source, coloured by taxonomic order or class. C) 25 largest 
intersections of species names between invasive or pest species datasets. 
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Supplementary Figure 3: Number of sequences per species in the reference database before pruning. 
Vertical line indicates the maximum of 5 sequences per species the final database was pruned to. Displayed 
on a pseudo-log scale. 

Supplementary Figure 4: Phylogenetic autocorrelation function of primer mismatch for each forward and 
reverse primer. Annotations refer to mean mismatch between primer and all insect species. 
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Supplementary Figure 5: Alternative to main figure 5 without imputation of missing data 



 

81 

 

Supplementary Note 1: Sources for invasive or pest species records used to assemble 

global list of pest Arthropods. 

 EPPO global database https://gd.eppo.int/ 
 US APHIS - https://www.aphis.usda.gov/aphis/home/ 
 QBank - https://qbank.eppo.int/arthropods/organisms 
 Global invasive species database - http://www.iucngisd.org/gisd/search.php  
 Global register of introduced or invasive species http://www.griis.org/ 
 VectorBase: https://www.vectorbase.org/organisms  
 DAWR top 40 - http://www.agriculture.gov.au/pests-diseases-weeds/plant  
 PHA National biosecurity status report -  

http://www.planthealthaustralia.com.au/national-programs/national-plant-
biosecurity-status-report/  

 Ashfaq & Herbert 2016 - DNA barcodes for bio-surveillance: regulated and 
economically important arthropod plant pests  

 CABI - https://t.co/LGjlFoOazd  
 http://www.europe-aliens.org  

Supplementary Note 2: All sequences that were mapped to nodes within the Open Tree 

of Life that were annotated with these flags that indicate uncertain placement were 

removed during sequence filtering. 

 incertae_sedis 
 major_rank_conflict 
 infraspecific 
 unplaced 
 environmental 
 inconsistent 
 extinct 

 hidden 
 hybrid 
 not_otu 
 viral 
 barren 

Supplementary Note 3: All sequences with taxonomic annotations containing these 

words that indicate insufficient identification were removed during sequence filtering. 

 sp. 
 spp. 
 aff. 
 nr. 
 bv. 
 cf. 
 nom 
 nud 
 environment 

 undescribed 
 unverified 
 unclassified 
 uncultured 
 unidentified 
 [0-9] (all numeric) 
 [:punct:] (Punctuation and 

symbols) 
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4   
DNA Metabarcoding Enables High-Throughput Detection 

of Spotted Wing Drosophila (Drosophila suzukii) Within 
Unsorted Trap Catches 

4.1 Chapter preface: 

This chapter extends upon the in-silico results of Chapter 3 by comparing four of the best 

performing primers for their ability to detect Spotted Wing Drosophila (Drosophila 

suzukii), a high priority pest for Australia, within unsorted trap samples. As part of this 

laboratory validation, the sensitivity, specificity, and overall accuracy of the assay are 

established for both the primary target and its close relatives, and the number of 

biological and technical replicates required for reliable detection is determined. This 

chapter employs a non-destructive DNA extraction method to retain intact specimens 

for confirmation of any detected exotic species, and evaluates various methods for 

deriving a detection threshold to resolve false positives introduced through index-

switching, both issues discussed in depth within Chapter 2. The laboratory protocol and 

bioinformatic pipeline developed here are used again in Chapter 5, where the quantitative 

performance of the assay is refined. This chapter is presented as a self-contained 

manuscript in the final stages of preparation, with intended submission to the journal 

Environmental DNA, and includes supplementary material at the end. 

4.2 Publication details: 

 DNA Metabarcoding Enables High-Throughput detection of Spotted Wing Drosophila 

(Drosophila suzukii) within Unsorted Trap Catches 

Stage of publication: In Preparation 

Journal details: Environmental DNA 

Authors: Alexander M. Piper, John Paul Cunningham, Noel O.I. Cogan, Mark J. Blacket 
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authors contributed to the editing of the final manuscript and approved the version 
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Abstract  

The spotted wing drosophila (Drosophila suzukii, Matsumara) is a rapidly spreading global 

pest of soft and stone fruit production. Due to lack of selectivity of monitoring traps and 

the similarity of many of its life stages to other cosmopolitan drosophilids, surveillance 

for this pest is currently bottlenecked by the required sorting and identification of mixed 

trap catches. DNA metabarcoding is an untargeted, high-throughput sequencing based 

assay that allows multi-species identification of mixed communities, and thus may lend 

itself ideally to rapid and scalable diagnostics of D. suzukii within unsorted insect trap 

samples. In this study we compare the qualitative (identification accuracy) and 

quantitative (bias towards each species) performance of four recently published 

metabarcoding primer sets on D. suzukii and its close relatives. We then determine the 

sensitivity of a non-destructive metabarcoding assay (i.e. which retains intact specimens) 

by spiking target specimens into mock communities of increasing size, as well as diverse 

field-sampled communities from a cherry and a stone fruit orchard. Metabarcoding 

successfully detected D. suzukii and its close relatives D. subpulchrella and D. biarmipes 

in a background of Australian drosophila with a sensitivity of 73.6%, 76% and 81% 

respectively, and further identified 42 non-target arthropods collected as bycatch by 

Drosophila surveillance methods. Trap designs and surveillance protocols will, however, 

need to be optimised to adequately preserve specimen DNA for molecular identification. 

While the non-destructive DNA extraction retained intact voucher specimens, dropouts 

of low-abundance taxa and entire replicates suggest that these protocols behave more 

similarly to environmental DNA than tissue homogenisation-based metabarcoding, and 

thus will require increased replication to ensure reliable detections. Adoption of high-

throughput metabarcoding assays for screening mixed trap samples could enable a 

substantial increase in the geographic scale and intensity of D. suzukii surveillance, and 

thus the likelihood of detecting a new incursion. 
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Introduction 

The combined influences of international trade, tourism, and changing climates are 

increasing the rate at which new insect pests emerge and spread, creating a global burden 

on food security (Savary et al., 2019). A particularly striking example is the rapid 

intercontinental spread of Drosophila suzukii, Matsumara (spotted wing drosophila), a 

significant pest of soft and stone fruits which over the last two decades has expanded 

from its native range in South East Asia (Kanzawa, 1939; Walsh et al., 2011), to Europe, the 

Americas, and more recently Africa (Asplen et al., 2015; Cini et al., 2012; Goodhue et al., 

2011; Kwadha et al., 2021). The pace of this expansion is attributed to a high fecundity, 

short generation time, and a broad host range that allows populations to persist 

throughout the year by alternating between cultivated and wild fruits with different 

ripening times (Cini et al., 2012). Recent modelling of global climatic suitability predicts 

further establishment of D. suzukii if introduced into regions and continents where it is 

not yet present, such as Australia and New Zealand (Dos Santos et al., 2017; Maino et al., 

2020). 

Early detection is critical for containment and eradication of invasive insect populations, 

with the probability of detecting a new incursion increasing with the intensity of 

surveillance (Anderson et al., 2017; Liebhold et al., 2016). Surveillance for D. suzukii is 

generally conducted using traps baited with ‘food attractant’ lures such as apple cider 

vinegar (Landolt et al., 2012), live yeasts (Hamby et al., 2014), or synthetic formulations 

mimicking these (Cha et al., 2012, 2014). To complement trapping, infested fruit can be 

crushed and agitated in a salt solution to float any larvae and eggs to the surface, which 

can then be collected via filtration (Van Timmeren et al., 2017). However, neither of these 

surveillance techniques are specifically selective for D. suzukii, often capturing hundreds 

of mixed specimens that must be sorted and identified in order to detect a new incursion 

(Burrack et al., 2015; Tonina et al., 2018). In addition to the sheer numbers of specimens, 

rapid morphological identification of D. suzukii is hampered by the characteristic 

“spotted wings” being present only for male flies, unreliable for juvenile adults, and shared 

by its sister species D. biarmipes and D. subpulchrella (Cini et al., 2012; Hauser, 2011). 

Alternative molecular diagnostic assays such as DNA barcoding (Calabria et al., 2012), real-

time PCR (Dhami & Kumarasinghe, 2014), PCR-RFLP (S. S. Kim et al., 2014), and loop-
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mediated isothermal amplification (LAMP) (Y. H. Kim et al., 2016) can provide highly 

accurate identifications of any life stage, yet the costly and time-consuming process of 

conducting single reactions on individual specimens has restricted their use to 

confirming the identity of specimens already suspected to be D. suzukii (Boughdad et al., 

2021; Calabria et al., 2012). Lack of a cost-effective and high-throughput diagnostic 

method for bulk trap catches remains a major bottleneck for large-scale D. suzukii 

surveillance, with misidentification or delayed management response incurring 

considerable costs to individual growers and the wider economy (Hauser, 2011).  

DNA metabarcoding is an untargeted molecular assay that couples DNA barcoding with 

high-throughput sequencing (HTS) in order to simultaneously identify all species within 

complex mixed communities (Taberlet et al., 2012; Tedersoo et al., 2019). The resulting 

whole-community data can be compared to both lists of regulated species and baseline 

knowledge of endemic biodiversity to screen not just for target pests, but also other 

unanticipated taxa that are not being actively searched for (Batovska et al., 2020; Hardulak 

et al., 2020). The ability for metabarcoding to be conducted on mixed trap samples 

without any prior sorting (Nielsen et al., 2019) is particularly appealing for efficiently 

handling the large number of specimens likely to be produced by an intensive surveillance 

programme for D. suzukii. Nevertheless, ensuring the accuracy of detections must be a 

priority for use of metabarcoding in an invasive species surveillance context (Piper et al., 

2019), due to the risk of false positive and negative detections being introduced by 

phenomena such as index switching (Schnell et al., 2015a), PCR biases (Deagle et al., 2014), 

and stochastic sampling of molecules from low abundance specimens (Leray & Knowlton, 

2017). Robust metabarcoding assays therefore require both technical replication and use 

of a detection threshold to resolve true positives from low-abundance contaminants 

(Zinger et al., 2019), but the number and type of replicates, and appropriate manner for 

deriving this detection threshold remains unclear for assays which employ non-

destructive DNA extractions (Batovska et al., 2020; Carew et al., 2018; Nielsen et al., 2019). 

These recently developed non-destructive protocols allow high-throughput 

metabarcoding detections to be confirmed using gold-standard morphological 

examination and voucher specimens to be retained according to regulatory requirements 

(Batovska et al., 2020; Martins et al., 2019), yet come at the expense of reduced DNA 
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concentrations compared to more common tissue-homogenisation based protocols 

(Martoni et al., 2021). 

In this study we evaluate the use of a non-destructive DNA metabarcoding assay for 

detection of D. suzukii and its close relatives D. subpulchrella and D. biarmipes within large 

unsorted trap samples. Four published primer sets are evaluated for their qualitative and 

quantitative performance and 6 methods for deriving a detection threshold compared for 

their ability to resolve false positives caused by index-switching. The sensitivity, 

specificity, and overall accuracy of the assay, as well as the required number of PCR and 

DNA extraction replicates is then determined via spiking target species into both mock 

communities of known composition and field samples collected from a cherry and stone 

fruit orchard. Analysis of these diverse field samples enabled further assessment of the 

selectivity of different D. suzukii sampling strategies, as well as the effects of commonly 

used attractant lures on DNA preservation of trapped specimens. Practical 

implementation of metabarcoding assays into D. suzukii surveillance and the wider 

implications of broad-scope HTS assays for plant pest diagnostics are discussed.  

Methods 

Assembling mock communities  

To assemble mock communities for validating the metabarcoding assay, isofemale lines 

(David et al., 2005) of D. melanogaster, D. simulans, D. hydei and Scaptodrosophila 

lattivitata were established from individual female drosophila trapped in banana baited 

traps (Reed, 1938) around Melbourne, Australia. F1 offspring from each isofemale line were 

identified via DNA barcoding using the LCO1490-HCO2198 primers (Folmer et al., 1994) 

and those found to be of the same species combined into ongoing colonies. D. 

melanogaster, D. simulans and D. hydei colonies were maintained at 25 °C on a diet of 

instant drosophila medium (Carolina Biological Supply, USA) and live brewer’s yeast 

(Fleischmann's, USA), while S. lattivitata was maintained at 25 °C on the diet described by 

Bock & Parsons (1980). Adult specimens were collected weekly into absolute ethanol, with 

a random 5 individuals barcoded every 2 months to confirm colony purity. Additional 

ethanol preserved specimens of D. suzukii, D. subpulchrella, D. biarmipes, and D. 

immigrans were obtained from Cornell Drosophila Stock Centre, USA, Ehime University 

Drosophila Species Stock Centre, Japan, and the National Institute of Agricultural Botany 
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East Malling Research Station, UK. Various numbers of adult or larval specimens from 

each species were combined to form mock communities with total sizes ranging from 100 

to 1000 individuals (Supplementary Table 1), then stored in absolute ethanol at -20 °C 

until DNA extraction. 

Sampling method Method Reference Specimens 
collected in 

Samples 
successfully 
sequenced 

Apple cider vinegar (ACV) Landolt et al. (2012) Apple cider 
vinegar (pH 2.9) 

1/8 

Synthetic lure (Syn) Cha et al. (2014) Synthetic lure 
(pH 2.5) 

6/8 

Synthetic lure + propylene glycol + 
dichlorvos insecticide cube (SPD) 

This study Propylene glycol 5/5 

Fruit crush & floatation 

(FF) 

Van Timmeren et al. 
(2017) 

In fruit 7/7 

 
Field sampling 

To obtain samples representative of the insect diversity expected to be encountered in a 

real surveillance programme, 55 red cup traps (Lee et al., 2012) were deployed in a sweet 

cherry (Prunus avium L.) orchard and 44 traps in a mixed stone fruit (Prunus persica L.) 

orchard, each located in Mornington and Tatura, Victoria, Australia. Each trap contained 

one of either apple cider vinegar as attractant and drowning solution (ACV) (Landolt et 

al., 2012), the synthetic lure of Cha et al. (2014) as attractant and drowning solution (Syn) 

or the same synthetic lure with a separate propylene glycol drowning solution and a 

dichlorvos insecticide cube (SPD). Trap catches were collected every 2 weeks over the 

course of a 10-week period from January to March 2018, and ~1kg of recently fallen fruits 

collected at each timepoint. These fruits were crushed and agitated in a 15% w/v salt 

solution and larvae collected using methods described by Van Timmeren et al. (2017), with 

Table 1: Drosophila suzukii surveillance methods used to collect field samples for evaluation of the non-destructive 
metabarcoding assay, and the number of samples which had at least one successfully sequenced replicate. 
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exception of the salt solution used here being almost twice the concentration of the 

original study. To ensure a robust validation of the metabarcoding assay on sufficiently 

sized communities, all field collected samples were combined by week of collection for 

each sampling method and orchard. Across the two orchards this yielded a total of 22 

trapped samples each containing between 200 and 800 adult insect specimens, as well as 

7 fruit crush samples containing between 100 to 800 of predominantly larval specimens. 

A subset of mock and field collected samples were spiked with either 1 or 5 individuals of 

D. suzukii, D. subpulchrella or D. biarmipes (Supplementary Table 1) then suspended in 

absolute ethanol within 15mL falcon tubes and stored at -20 °C until DNA extraction.  

Non-destructive DNA extraction 

The non-destructive Qiagen DNeasy based method of Nielsen et al. (2019) was used to 

extract DNA from each mixed community, in order to retain voucher specimens for 

morphological confirmation of any detected exotic species. In brief, ethanol was removed 

from the samples using a 1000 μL pipette and specimens dried overnight to ensure all 

residual ethanol was evaporated. The mixed specimens were suspended in a 10:1 mix of 

Qiagen ATL tissue lysis buffer and Proteinase K (Qiagen, Germany), with the total volume 

of buffer increased proportionally to the number of specimens to ensure all were fully 

immersed, then incubated for 24 hours at 56 °C and 220 rpm in a shaking incubator. 

Following incubation, lysate was removed from the specimens and manually loaded into 

Qiagen 96 well DNeasy extraction blocks using a multichannel pipette, and the remainder 

of the Qiagen DNeasy Blood & Tissue protocol followed within the QiaCube automated 

DNA purification workstation (Qiagen, Germany). Voucher specimens retained after non-

destructive DNA extraction were resuspended in absolute ethanol and stored at -20 °C. 

COI amplification and sequencing 

Four candidate primers pairs; BF1-BR1 (Elbrecht & Leese, 2017), fwhF2-fwhR2n (Vamos et 

al., 2017), fwhF2-HexCOIR4 (Marquina, Andersson, et al., 2019) and fwhF2-SauronS878 

(Rennstam Rubbmark et al., 2018) producing 254-258 bp amplicons were selected from 

those determined as high performing in Piper et al. (2021) and appropriate for 2 × 150 bp 

sequencing. The qualitative and quantitative performance of each primer pair was 

compared on a subset of 5 mock and 4 field collected samples, then fwhF2-fwhR2n alone 
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was used for the remaining 20 mock and 18 field samples. Each 25 µL PCR reaction 

consisted of 5 μL 5X MyFi reaction buffer (Bioline, USA), 1 μL of 10 nM forward and reverse 

primers, 0.8 μL MyFi DNA polymerase, 11.2 μL BSA and 2 μL of variable concentration 

template DNA. Cycling conditions were an initial denaturation at 94 °C for 2 min, then 30 

cycles of 94 °C for 30 sec, 50°C for 45 sec, and 72 °C for 45 sec, followed by a final 2 min 

extension at 72 °C. Successful amplification was verified on a 2% w/v agarose gel, then 

amplicons were diluted 1:10 in ddH20 with no further clean-up step. 1 μL of the diluted 

COI amplicons were further amplified using 7 cycles of real-time PCR to attach 8 bp 

unique-dual indices and Illumina sequencing adapters (Costello et al., 2018). Cycling 

conditions for the second PCR were 98 °C for 10 sec, 65 °C for 30 sec, and 72 °C for 30 

sec, with each cycle followed by a SYBR Green fluorescence read.  

While only a single DNA extraction and PCR replicate per sample was used for the initial 

comparison of the four candidate primer sets, after the fwhF2-fwhR2n primers were 

selected all further samples were replicated twice at the DNA extraction stage and 3 times 

at the PCR stage. DNA extraction replicates were obtained by splitting the lysate from the 

24hr incubation into two aliquots and running each through the QiaCube on separate 96 

well DNA extraction blocks, while PCR replicates were obtained by splitting the final DNA 

extract and amplifying each aliquot in separate thermocyclers (Supplementary Fig. 1). As 

insufficient unique-dual indices were available for all replicated samples, a ‘twin-tagging’ 

approach (Axtner et al., 2019) was used where 3 modified versions of the forward and 

reverse primers containing an additional 2-4 bp inline tag at the 5’- terminus were used 

to separately amplify each set of PCR replicates (Supplementary Fig. 2). These inline tags 

were designed to incorporate length variation in order to improve phasing during the 

critical first cycles of the sequencing process (Lundberg et al., 2013). Two positive control 

libraries consisting of 13 equimolarly pooled synthetic gBlock gene fragments (Integrated 

DNA Technologies, USA), each designed to mimic the COI gene of a certain insect family 

in base composition and structure (Supplementary Note 1), were included alongside all 

real communities after DNA extraction but prior to PCR amplification. 

Following indexing qPCR, melt curve analysis was used to quantify DNA concentrations, 

then libraries were pooled in equimolar ratios using a Biomek FXP liquid handling robot 

(Beckman Coulter, USA). Pooled libraries were purified using a 0.8:1 ratio of AMPure XP 
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beads and then sized and quantified using a 2200 TapeStation (Agilent Technologies, USA) 

and Qubit 3.0 Fluorometer (Thermo Fisher, USA). Final libraries for the primer 

comparison were diluted to 7 pM, spiked with 5% PhiX, and sequenced on an Illumina 

MiSeq V2 flow cell using 2 × 150 bp reads, while the remainder of fwhF2-fwhR2n amplified 

mock and field collected samples were diluted to 100 pM, spiked with 1% PhiX and 

sequenced on a portion of an Illumina NovaSeq 6000 S2 flow cell lane, again using 2 × 150 

bp reads. To minimise the risk of contamination from the laboratory environment, DNA 

extraction, preparation of PCR master-mix, PCR amplification, and library preparation 

were each performed in separate rooms using dedicated equipment and pipettes. 

Bioinformatics  

Sequence reads were demultiplexed using bcl2fastq allowing for zero mismatches to the 

expected index combinations, followed by a second round of demultiplexing for the inline 

tags using Seal in BBTools (Bushnell et al., 2017). Demultiplexed sequencing reads (NCBI 

SRA acc no: XXXXX, to be assigned later) were trimmed of PCR primer sequences using 

BBDuK and any sequences with >1 expected error (Edgar & Flyvbjerg, 2015), <8 unique 2-

mers, or any ambiguous ‘N’ bases were removed. Remaining sequences were denoised 

using DADA2 (Callahan et al., 2016), with the error model determined separately for the 

MiSeq and NovaSeq data using the “pseudo-pooling” mode for increased sensitivity to 

rare variants. Due to overfitting of the default Loess error model to the binned quality 

scores provided by the NovaSeq, the estimated error matrix of nucleotide transitions was 

modified to enforce monotonicity as suggested by the DADA2 developers (Callahan, 2019). 

Following denoising, the Amplicon Sequence Variants (ASVs) inferred separately from 

each sequencing run were merged into a single table and any chimeric sequences 

removed de-novo using the removeBimeraDenovo function in DADA2. To further remove 

any non-specific amplification products and pseudogenes, the ASVs were aligned to a 

Profile Hidden Markov Model (PHMM) of the COI barcode region (Piper et al., 2021) using 

the aphid R package (Wilkinson, 2019), and checked for frame shifts or stop codons that 

commonly indicate pseudogenes (Roe & Sperling, 2007). 

Hierarchical taxonomy was assigned to the filtered ASVs with a minimum bootstrap 

support of 60% using the IDTAXA algorithm (Murali et al., 2018) trained on the curated 

insect reference database of Piper et al. (2021), followed by additional species level 
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assignment using a nucleotide BLAST search against the same reference database 

(Altschul et al., 1990). Where taxonomic clashes occurred at the species level due to ties 

between BLAST top hits, species occurrence records from the Atlas of Living Australia 

(https://www.ala.org.au/) and the Australian Faunal Directory 

(https://biodiversity.org.au/afd/) were used to resolve the most likely species name for 

the geographic location. Following taxonomic assignment, all samples which received 

<1000 reads, and all ASVs that were not classified to Arthropoda were removed. A 

maximum likelihood phylogenetic tree was then constructed from the remaining ASVs 

using FastTree (Price et al., 2009) following the General Time-Reversible (GTR) model 

(Tavaré, 1986) and gamma distribution of rate variation among sites. Taxonomic identities 

at the phylum, class and order were used to constrain the deeper topology of the tree, 

and the constructed phylogeny was rooted on the edge connecting the synthetic positive 

controls to the rest of the tree. All phylogenetic trees were plotted using the ggtree R 

package (Yu et al., 2017, 2018). 

Determining a detection threshold 

A baseline detection threshold of 0.01% relative abundance was used to resolve false 

positive observations within the initial primer comparison, which approximates the 

expected rate of index-switching of both i5 and i7 indices (Costello et al., 2018; MacConaill 

et al., 2018). For the later fwhF2-fwhR2n amplified samples, this baseline threshold was 

compared to 5 additional methods for empirically deriving a detection threshold: (i) the 

‘unassigned indices’ used the abundance ratio of valid (applied during library preparation) 

to invalid (pairs that could only arise due to switching) index combinations as per Wilcox 

et al. (2018). (ii) the ‘positive control’ method used the abundance ratio of synthetic COI 

sequences that were correctly assigned to the positive control libraries to those that were 

found in other samples. (iii) the ‘mock community’ method used the abundance ratio of 

expected to unexpected taxon observations across all mock communities. (iv) the ‘logistic 

regression’ method fit a logistic model of the per-sample relative abundance of each 

detection, trained on the expected and unexpected taxon observations within the mock 

communities, with the sequencing run included as an additional covariate to account for 

run-specific variation in contamination rates (Batovska et al., 2020). With this method the 

predictive equation from the logistic model describes the probability of each observation 
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being a true positive (Coughlin et al., 1992), and all observations with probability ≥50% 

were considered detections. (v) the final method used the same logistic regression model 

but included both the number of DNA extraction and PCR replicates that each 

observation was detected in as additional covariates. To evaluate the predictive 

performance of each approach, all taxon observations within the mock communities were 

randomly split into 80% training and 20% test sets and the logistic regression classifiers 

and all detection thresholds compared for their ability to remove cross contamination 

within the test dataset (Quinn et al., 2021). To ensure the comparisons were robust to 

whichever observations were assigned to the training and test sets, the random splitting, 

training, and evaluation was repeated 1,000 times and the results averaged. 

Statistical analyses 

Overlap in detected species between replicates was quantified using Jaccard’s index 

(Jaccard, 1908), and the influence of collection method and sequencing depth on replicate 

dissimilarity tested for significance using Analysis of Variance (ANOVA) and linear 

regression respectively. Using the known presence or absence of target specimens spiked 

into both mock and field collected communities, the diagnostic sensitivity (proportion of 

known positives that were correctly identified as positives), diagnostic specificity 

(proportion of known negatives that were correctly identified as negatives), and the 

overall accuracy of the assay (average of the sensitivity and specificity) were calculated 

separately for each taxon. Species-specific quantitative bias was estimated for each 

primer set using a linear regression of the compositional error (ratio between expected 

and observed abundances) with taxon as the predictor, and the results geometrically 

centred to be relative to the ‘average taxon’ as per McLaren et al. (2019).  

Community diversity 

To ensure comparisons of species diversity (α-diversity) between field collected 

communities were not confounded by differing sequencing depths between samples 

(Willis, 2019), the breakaway R package was used to estimate the number of unobserved 

species for each sample using the frequency ratios of detected species (Willis & Bunge, 

2015). Once it was confirmed that there were no unobserved species in samples with 

lower sequencing depths, both the observed species richness and Shannon index 
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(Shannon, 1948) were calculated using the phyloseq R package (McMurdie & Holmes, 2013). 

ANOVA was then used to test whether differences in α-diversity could be explained by 

the collection method or the orchard the sampling was conducted in, with post-hoc 

pairwise comparisons made using Tukey tests. Differences in species composition (β-

diversity) between communities was quantified using the weighted-UniFrac distance, 

which considers both the phylogenetic relatedness and relative abundance of taxa within 

each sample (Lozupone & Knight, 2005). The effect of sampling method and orchard type 

on β-diversity was tested for significance using multivariate generalised linear models as 

implemented in the manyglm function from the mvabund R package (Wang et al, 2012). 

Principal coordinate analysis of the weighted-UniFrac distances was used to visualise the 

clustering of samples, with 95% confidence ellipses drawn using a multivariate t-

distribution. All statistical analyses were conducted within the R4.1 statistical 

programming environment (R Core Team, 2019) using tidyverse (Wickham et al., 2019) and 

tidymodels (Kuhn & Wickham, 2020) packages, and figures plotted with ggplot2 (Wickham, 

2016).  

Results 

Comparison of 4 mini-primer sets 

A MiSeq paired-end sequencing run (2 × 150 bp) was conducted for a subset of 5 mock and 

4 field collected communities in order to compare the 4 candidate primer sets, yielding 

4,743,487 total reads (mean 121,628 ± 6,193 per sample). All taxa within the mock 

communities were recovered by the 4 primer combinations, apart from D. biarmipes 

which was absent from BF1-BR1 (Fig. 1A). The absence of D. biarmipes for this primer set 

where it should have been present in two samples at 1% abundance was not related to 

low total sequencing depth, as these libraries received 66,670 and 146,188 reads 

respectively. Instead, low amplification efficiency for BF1-BR1 on this taxon left its relative 

abundance below the 0.01% detection threshold used to control index-switching within 

this first sequencing run. In addition to the dropout of D. biarmipes, between 6 and 9 false 

positive detections per primer set were recorded within the mock communities (Fig. 1A). 

Of these, only the D. immigrans and D. hydei false positives were recorded across all 

primers with a relative abundance >1%, indicating they may be due to physical cross 

contamination of a specimen when the mock communities were assembled. In contrast, 
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the remaining false positives were detected with relative abundances between 0.01% and 

0.08%, which alongside their presence at high abundance in other sequenced 

communities suggests they arose through index-switching. For the 4 field samples used 

for primer evaluation, the fwhF2-fwhR2n primers detected 38 taxa, while fwhF2-

HexCOIR4 and SauronS878-HexCOIR1 detected 32 and 33 taxa respectively (Fig. 1A). 

Despite an entire sample amplified with BF1-BR1 receiving insufficient sequence reads to 

pass quality control steps, BF1-BR1 still detected 34 distinct taxa. Primer-specific 

differences were also seen in the identities of detected species (Fig. 1A), with Carpophilus 

hemipterus only being detected by fwhF2-fwhR2n, Carpophilus truncatus only by fwhF2-

fwhR2n and SauronS878-HexCOIR1, and Lonchoptera bifurcata detected with all primer 

combinations except BF1-BR1. However, in all cases where a taxon was not detected by 

every primer combination it was <1% relative abundance within the respective sample. 

In addition to qualitative differences in taxa detected, primer specific quantitative biases 

were also seen across the mock community taxa (Fig. 1B). BF1-BR1 showed a high 

Figure 1 A) Per-sample relative abundance of detected species across the four evaluated primer sets, with 
false positive or false negative results within the mock community samples highlighted. B) Relative efficiency 
of each Drosophila species in mock communities compared to the geometric mean efficiency, with 95% 
confidence intervals obtained from 1000 bootstrap resamples.  
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efficiency for S. lattivitata, D. immigrans, D. subpulchrella, D. suzukii, and D. hydei, a below 

average efficiency for D. simulans, and a very low efficiency for D. melanogaster, while the 

drop-out of D. biarmipes meant the efficiency for this taxon was unable to be measured. 

fwhF2-HexCOIR4 showed similar quantitative performance to BF1-BR1 across most taxa, 

except for S. lattivitata which showed an average efficiency, and D. melanogaster where 

efficiency was slightly higher. In contrast, fwhF2-fwhR2n showed close to average 

efficiency for S. lattivitata, D. melanogaster, D. simulans, and D. hydei, while preferentially 

amplifying D. immigrans, D. subpulchrella, and D. suzukii, leaving D. biarmipes with slightly 

below average efficiency. Finally, SauronS878-HexCOIR4 preferentially amplified D. 

immigrans, but showed average efficiency for D. suzukii, D. subpulchrella, and D. hydei, 

and below average efficiency for D. biarmipes, S. lattivitata, D. melanogaster, and D. 

simulans. Ultimately, the fwhF2-fwhR2n primer combination was chosen to proceed for 

the remainder of the study as it identified the most species in the field samples (Fig. 1A) 

and showed the highest efficiency for the targets D. suzukii, D. subpulchrella and D. 

biarmipes (Fig. 1B), which should increase the probability of detecting them even at low 

abundance.  

Replicate similarity 

The 22 field collected samples, remaining 20 mock communities, and 2 synthetic positive 

control samples were each replicated twice at the DNA extraction and 3 times at the PCR 

stage, and the resulting 264 libraries sequenced on a portion of a NovaSeq S2 flow cell 

lane. This yielded a total of 314.5 million reads following bioinformatic quality control 

(mean 1,502,245 ± 121,999 per replicate), however, a large number of replicate dropouts 

occurred across both the mock and field collected communities (Fig. 2A). For the mock 

communities, 79% of the replicates from the adult samples and 67% from the larval 

samples were successfully sequenced. While for the field samples, 80% of replicates from 

the SPD treatment, 67% from the fruit crush, 58% from synthetic lure, and only 10% of 

replicates from the apple cider vinegar samples were successful. Most of these replicate 

dropouts occurred within the second set of PCR replicates from extraction replicate 1, 

where 39 of 50 were unsuccessful, including one of the positive controls (Fig. 2A). As each 

set of replicates was processed in a separate microtiter plate and thermocycler 

(Supplementary Fig. 1), this likely indicates a systematic failure during PCR amplification 
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or when these replicates were pooled into the final libraries. With the exception of this 

whole set of replicates, dropouts of singular replicates seemed to randomly occur across 

the samples (Fig. 2A). On the other hand, when considering samples where no replicates 

were successfully sequenced, there were apparent DNA preservation effects relating to 

collection method used (Table 1). For the field collected samples, all the fruit crush and 

SPD samples had at least one successfully sequenced replicate which could be analysed 

further, while 75% of the synthetic lure samples and only 12.5% of apple cider vinegar 

samples produced any usable data. For the mock communities, 93% of the adult 

communities and 80% of the larval communities as well as both positive control samples 

had at least one successfully sequenced replicate.  

While most successful replicates reached saturation in species accumulation 

(Supplementary Fig. 3), the pairwise Jaccard similarity between each ranged from 25% to 

98% (Fig. 2B), and showed a weak but statistically significant relationship with pairwise 

differences in sequencing depth (R2 = .073, p < .001; Fig. 2D). A significant relationship was 

also found between replicate dissimilarity and the community type (field or mock) or 

collection method used (F(4, 683) = 15.43, p < .001), which post-hoc comparisons revealed to 

Figure 2 A) Total number of species observed within each replicated sample prior to application of detection 
threshold, with complete replicate dropouts indicated in grey. B) Pairwise Jaccard similarity coefficients 
(presence/absence of taxa) between all replicates of each sample C) Mean Jaccard similarity coefficient 
between PCR replicates of the same DNA extract, DNA extraction replicates of the same sample, and separate 
samples obtained using the same collection method (biological replicates). D) Relationship between pairwise 
Jaccard similarity and sequencing depth difference for all replicates.  
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be driven by replicates of the larval mock communities, fruit crush, and SPD being less 

similar to each other than those from the synthetic lure or the adult mock communities 

(p < .001). However, in all cases where a detection occurred in ≤50% of the sequenced 

replicates, the taxon was ≤1% relative abundance within the physical community. Overall, 

extraction replicates of the same samples were as similar to each other as PCR replicates 

of the same DNA extraction, but separate samples collected from the same orchard using 

the same collection method (biological replicates) showed much less overlap in species 

detected (Fig. 2C). Finally, there were no significant differences seen in the quantitative 

performance between the 3 tagged primer sets on any of the mock community taxa, 

confirming that replicate dissimilarity was not due to the twin-tagging approach to 

multiplexing (Supplementary Fig. 4).  

Determining a detection threshold  

All methods for deriving a detection threshold increased the proportion of true positive 

detections over the uncorrected data, however the degree of improvement varied 

substantially (Fig. 3A). While the baseline 0.01% filtering threshold more than halved the 

number of false positives for the MiSeq run, this threshold was overly strict for the 

NovaSeq and introduced a significant number of false negatives. Surprisingly, the positive 

control method (included in the NovaSeq run only) performed worse than the baseline 

threshold, only marginally reducing the number of false positives compared to the 

uncorrected data. As these two positive control samples were included after DNA 

extraction, this limited success could indicate that false positives arose through physical 

cross contamination during or prior to DNA extraction, rather than index switching. Yet 

the unassigned indices method, which should only account for index switching, removed 

substantially more false positives than the positive control approach. The mock 

community method on the other hand did not improve the proportion of true positives 

above the baseline threshold for the MiSeq run but performed the best for the NovaSeq 

data (Fig. 3A). While both logistic regression classifiers fit to this same mock community 

abundance information performed slightly worse than using just using the abundance 
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ratio as a threshold, ultimately, the logistic regression classifier incorporating both 

abundance and replicate information was chosen for use on the field samples, as framing 

the trade-off between false positives and negatives in terms of the probability of an 

observation being a true detection provides advantages for interpretability. When this 

final model was trained again on the full dataset, the most important model covariates 

were the number of DNA extraction replicates a taxon was observed in (t = 2.11), followed 

by its mean relative abundance across all replicates (t = 1.44), the sequencing run (t = 1.04) 

and finally the total number of PCR replicates it was observed in (t = 0.680). The differing 

importance of extraction and PCR replicates for detection efficiency can be seen on the 

probability surface for the final logistic regression model (Fig. 3B). 

Figure 3 A) The proportion of true positives, false positives, and false negatives across both the MiSeq and 
NovaSeq run following application of various methods for deriving a detection threshold. B) Probability 
surface for the final logistic regression classifier shows how the likelihood of an observation being a true 
positive increases with higher relative abundance and the number of extraction replicates (top), and PCR 
replicates (bottom) it was observed in. Classification of low abundance observations from the sequenced 
mock and trap communities overlaid. C) Relationship between expected (from morphology) and observed 
(from sequencing) relative abundance for target species spiked into mock and trap communities, with each 
observation coloured by whether it was classified as a true positive or false negative by the logistic regression 
model. Dashed line indicates perfect relationship between expected and observed relative abundances. 
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Detection success in field and mock samples 

Following application of the logistic regression model, D. suzukii was successfully 

detected in 14 of 19 positive samples with no false positives, giving a sensitivity of 73.6% 

and specificity of 100%. The secondary targets, D. subpulchrella and D. biarmipes were 

detected in 10 of 13 and 8 of 11 positive samples respectively, again with no false positive 

detections, resulting in a sensitivity of 76% and 81% for each and specificity of 100% for 

both. The accuracy of the assay was 86%, 88% and 91% for D. suzukii, D. subpulchrella, 

and D. biarmipes respectively. While all false negative results for the three targets 

occurred when the respective taxa were ≤1% relative abundance within the physical 

community, there was no clear relationship between relative abundance and detection 

failure (Fig. 3C). This was most apparent for the false negatives for D. suzukii in mock 

community samples D500M3 and D500M4 where they were spiked in at 1% relative 

abundance, but successful detection in the samples D1000M3 and D1000M4 where the 

overall community composition was similar but the targets were at 0.5% relative 

abundance (Fig. 3C, Supplementary Table 1).  

Community diversity 

A total of 1,281 specimens were collected from the cherry orchard, and 4,772 from the 

stone fruit orchard over the entirety of the 10-week trapping period (Fig. 4B). Of these, 

654 specimens were caught by the apple cider vinegar traps, 1,640 by the synthetic lure 

(Syn), and 2,224 by the synthetic lure treatment with the propylene glycol and insecticide 

cube (SPD). On the other hand, fruit crushing and salt flotation (FF) collected at least 1,535 

specimens, with the absolute number likely being much higher due to some larvae being 

too small to accurately count. Following sequencing and application of the logistic 

regression detection model, a total of 46 unique insect taxa were identified within the 

trap samples, 45 of which could be successfully assigned to species level taxonomy. This 

bycatch diversity included 19 Diptera (excluding the 3 spiked in targets), 10 Coleoptera, 7 

Hymenoptera, 2 Lepidoptera and Hemiptera, and a single Neuropteran species (Fig. 4A). 

Although the PCR primers used were designed to amplify insects (Vamos et al., 2017), the 

spider species Badumna longinqua and Tenuiphantes tenuis were also detected in the fruit 
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crush and synthetic lure samples from the cherry orchard. When the identities of bycatch 

taxa were compared to species occurrence records, all were confirmed to be endemic or 

previously recorded in Australia. 

For the field collected communities, the species richness estimated by the breakaway 

model matched the number of detected species, indicating that all species in the 

communities had been captured at that sequencing depth. For these communities, the 

sampling method significantly affected species richness (ANOVA, F(3, 19) = 5.19, p = .009) 

(Fig. 4C), with the single successful ACV sample (17 species) containing significantly more 

species than the fruit crush treatment (mean 6.78 ± 1.15, p = .029), but no significant 

differences were found between any of the other sampling methods (p > .05). Significant 

differences in Shannon diversity were also found between sampling methods (F(3, 19) = 5.23, 

p = .008), primarily driven by the SPD treatment having many more taxa at low abundance 

than the ACV treatment (p < .001) (Fig. 4B). In contrast, no significant differences were 

found between the cherry and stone fruit orchards in either of the α-diversity metrics (F(1, 

21) = 0.76, 0.49, both p > .05). 

Figure 4 A) Phylogenetic relationships between detected taxa, with the mean relative abundance of each 
taxon displayed by sampling method for the cherry (inner heatmap) and stone fruit (outer heatmap) orchards. 
B) Number of individual specimens collected from each orchard by each sampling strategy over the total 
course of the 10-week trapping period, displayed on a pseudo-log scale. C) Species richness and D) Shannon 
index for each community following metabarcoding. * Spiked-in exotic species, not present in Australia. 
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There were significant effects of both orchard (Likelihood Ratio Test [LRT] = 126.98, p = 

.002) and sampling method (LRT = 224.53, p < .001) on community composition, with no 

interaction effect found between the two (p > .05). Principal coordinate analysis revealed 

that while the SPD samples from the stone fruit orchard clustered tightly together, the 

95% confidence ellipses of the synthetic lure and the fruit crush samples from the same 

orchard completely overlapped these (Supplementary Fig. 5). In contrast, the synthetic 

lure and fruit crush samples from the cherry orchard formed discrete clusters separated 

from each other, as well as all samples from the stone fruit orchard. Taken together, this 

indicates that differences in β-diversity are primarily driven by a distinct cohort of 

species occurring in each orchard, as well as between the synthetic lure and fruit crush 

samples within the cherry orchard. For the stone fruit orchard on the other hand, the 

differences in species occurrence and abundance between sampling methods were much 

less pronounced (Fig. 4A). 

Discussion 

Whilst originally developed for studying biodiversity, metabarcoding approaches are 

increasingly being applied to the detection of invasive species in aquatic and terrestrial 

environments (Brown et al., 2016; Piper et al., 2019; Tedersoo et al., 2019). Here we 

demonstrate the use of a non-destructive metabarcoding assay to detect the rapidly 

spreading global pest Drosophila suzukii and its close relatives D. biarmipes and D. 

subpulchrella within large unsorted trap catches. By circumventing the time-consuming 

and labour-intensive process of morphological sorting, adoption of metabarcoding assays 

by diagnostic laboratories could enable a substantial increase in the geographic scale and 

intensity of D. suzukii surveillance, and thus the likelihood of detecting a new incursion. 

Nevertheless, our results show that aspects of trap design and laboratory protocols may 

need to be reconsidered if metabarcoding is to be successfully adopted for invasive insect 

identification.  

Apple cider vinegar is the most commonly used attractant and drowning solution for D. 

suzukii surveillance (Hamby et al., 2014; Harris et al., 2014; Landolt et al., 2012; Mazzetto 

et al., 2015), yet almost all communities collected using this method failed to produce a 

sequenceable amplicon. This limited success may be related to trapped specimens being 

immersed within the highly acidic and watery solution for up to two weeks between traps 
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being set and collected, which can cause degradation of DNA molecules (Lindahl, 1993). 

Even so, if pH or hydrolysis mediated DNA degradation were the only factors involved, a 

comparable failure rate would be expected for those communities trapped in the more 

acidic synthetic lure (Table 1). Furthermore, even if the DNA of the trapped specimens 

were completely degraded, the ethanol preserved D. suzukii, D. subpulchrella and D. 

biarmipes specimens that were spiked into these samples should have produced some 

data. On the other hand, apple cider vinegar is a complex matrix containing various 

polysaccharides, polyphenolics, and tannins, all of which have PCR inhibiting properties 

(Jara et al., 2008). While all specimens were rinsed with ethanol, and the DNA extraction 

method involved two clean-up steps, carry over of some residual inhibitors may have 

prevented amplification for many of these samples (Martins et al., 2019). In contrast, traps 

employing the synthetic attractant lure but using a separate propylene glycol drowning 

solution adequately preserved specimens for metabarcoding analysis. Propylene glycol 

shows promise for use in Drosophila surveillance traps when molecular methods are to 

be used for identification, being cheap, non-flammable, non-evaporative, and able to 

effectively preserve DNA for up to 6 months (Martoni et al., 2021; Nakamura et al., 2020). 

To facilitate the use of liquid preservatives such as propylene glycol, new trap designs 

should physically separate the highly acidic lures from the drowning solution, either in a 

separate compartment within the trap or a controlled release sachet (Larson et al., 2020). 

Nevertheless, DNA degradation or PCR inhibition were not the only factors in play, and 

further laboratory optimisation may be required to resolve the seemingly random 

dropouts of single replicates that occurred across both the mock and field collected 

communities.  

Early detection surveillance depends upon swift diagnostic turnaround to ensure that 

quarantine and intervention procedures are appropriate and effective. In light of this, our 

study opted for a rapid laboratory protocol that omitted any normalisation or purification 

of DNA between the extraction and both PCRs. While similar rapid protocols have been 

successfully applied to destructively homogenised specimens (Elbrecht & Steinke, 2019), 

the extra variability introduced by the non-destructive protocol may have contributed to 

the large number of replicate dropouts observed. Therefore, we suggest that future 

studies employing non-destructive DNA extractions normalise the resulting extracts and 

PCR amplicons to similar concentrations in order to increase sequencing success. While 
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these additional steps will increase laboratory processing time, ultimately it is the 

sequencing process itself which represents the longest step in a metabarcoding assay, 

taking between 40-56 hours depending on the HTS platform (Piper et al., 2019). While the 

Illumina NovaSeq platform used in our study is currently the most cost-effective for large 

numbers of samples, drawing together hundreds of trap samples on a regular basis 

without in-turn increasing diagnostic turnaround times may prove a logistical challenge 

for smaller surveillance programmes. Therefore, lower throughput platforms such as the 

Illumina MiSeq will likely remain important into the future, despite their higher cost per 

gigabase of data and longer runtimes (Elbrecht et al., 2017). 

In addition to dropouts of some replicates, there was also variability in the taxa detected 

between successfully sequenced replicates. While replicate dissimilarity showed a slight 

relationship with sequencing depth differences, with a mean 3.2 million sequence reads 

per replicate the sequencing depths obtained in our study were an order of magnitude 

higher than most metabarcoding studies (Singer et al., 2019). Conversely, all taxa that were 

detected in 50% or less replicates were below a 1% physical relative abundance within 

the respective community, suggesting that the taxonomic dropouts were not simply a 

product of insufficient sequencing depth as some have proposed (Smith & Peay, 2014), but 

instead may be due to stochastic sampling of DNA molecules from low abundance taxa as 

small quantities of liquid go through the metabarcoding pipeline (Leray & Knowlton, 2017).  

This phenomenon, also known as pipeline noise, increases dissimilarity between 

replicated samples (Zhou et al., 2013) and can be further exacerbated by taxonomic biases 

from different species traits (McLaren et al., 2019). Previous studies conducting 

metabarcoding on preservative ethanol have shown higher variance in taxon detections 

compared to tissue homogenisation, and that results are much more sensitive to 

exoskeleton hardness and specimen morphology, rather than just specimen biomass 

(Marquina, Esparza-Salas, et al., 2019; Zizka et al., 2019). The leeching of DNA from 

specimens into ethanol is conceptually similar to the non-destructive DNA extraction 

used here, and therefore we expect similar issues to have played a role in our study. 

Further mechanistic research will be required to better understand the specific biases of 

non-destructive methods; yet our results suggest that these approaches may best be 

considered closer to environmental DNA metabarcoding, which requires a higher level of 

replication to maximise species detection (Alberdi et al., 2018; Ficetola et al., 2015; Mata 
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et al., 2019). These replicates should consist of both DNA extraction and PCR replicates, 

as we found both these stages introduced variation in the species detected. That said, 

including technical replicates should not come at the expense of reduced biological 

samples, as regardless of the effectiveness of metabarcoding or any other diagnostic 

assay, if an insect is not caught in a trap, it does not necessarily mean it is absent in the 

area (Low-Choy, 2015). A variety of ‘occupancy’ models have been developed to account 

for this imperfect detection through use of multiple samples, often taken at repeated 

visits to a site (Ji et al., 2020; Schnell et al., 2015b).  By estimating the probability of true 

species occurrence, occupancy models provide a more accurate understanding of the 

distribution of pests across the landscape (Allen et al., 2021), which may prove useful as 

part of area-wide management programmes in regions where D. suzukii has already been 

introduced (Gilioli et al., 2013). Nevertheless, in countries such as Australia where D. 

suzukii is currently absent, any detection even in a single sample would result in an 

immediate management response.  

Molecular recombination of oligonucleotide indices used to label samples during 

sequencing can cause taxa from one sample to “bleed” into others and must be controlled 

for using a detection threshold (Piper et al., 2019). Use of positive control samples in the 

form of synthetic sequences or taxa ‘alien’ to the study environment has previously been 

proposed for empirically measuring and accounting for the run-specific contamination 

rate (Galan et al., 2018; Palmer et al., 2017; Piper et al., 2019). In our study, however, we 

found this approach drastically underestimated cross contamination, underperforming 

compared to simply placing a minimum relative abundance threshold of 0.01% across the 

dataset. Indeed, none of the evaluated methods for empirically deriving a detection 

threshold were able to increase the proportion of true positives detections above 90%. 

This suggests that the similar abundances recorded for taxa close to the limits of 

detection and false positive observations introduced by index switching means there will 

always be a trade-off between type I and II error (Alberdi et al., 2019). Despite this, the 

ability of the logistic regression model to frame this trade-off in terms of a probability 

that an observation is a true detection (determined by the abundance of each ASV and 

the number of replicates it was detected in) provides benefits for practical interpretation 

of the results. The coefficients of the logistic regression model highlight that true 

sequences are likely to be present in more replicates at higher abundance, a concept that 
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has previously been formalised by Zepeda-Mendoza et al. (2016) and integrated into the 

software package begum (Yang et al., 2021). While in our study a simple probability 

threshold of 50% was used to consider an observation a true detection or not, this 

threshold could be further tailored to the specific goals and statistical power desired by 

the surveillance programme (Whittle et al., 2013). For instance, a biodiversity survey may 

prefer a stricter threshold to ensure only the most robust detections are recorded 

(Alberdi et al., 2019), whilst an invasive species surveillance programme may opt for a 

more lenient threshold to maximise sensitivity, as the economic consequences of a false 

negative are much higher (Jarrad et al., 2011). Nevertheless, the logistic regression model, 

as well as the mock community and positive control methods all require a portion of each 

sequencing run to be pre-allocated to mock communities or positive controls, which 

introduces additional sequencing costs. For studies where this may not be practical, the 

abundance ratio of correctly assigned to unassigned index combinations allows the 

contamination rate to be estimated post-hoc without requiring inclusion of additional 

control samples. Alternatively, the twin-tagging approach used in this study to 

differentiate PCR replicates could be expanded to ensure every library contains a 

completely unique twin-tag as well as the unique Illumina indexes. The extra power to 

identify switched molecules enabled by this approach has recently been shown to 

alleviate cross contamination issues altogether (Yang et al., 2021), yet comes at the 

substantial upfront cost of purchasing separate primer oligos for each sample and 

replicate. 

Besides the spiked-in target species, metabarcoding revealed the identity of diverse 

arthropod communities collected as bycatch through D. suzukii surveillance methods. 

Communities extracted from fallen fruit were the least diverse, but showed the most 

variability between samples, possibly due to limited larval dispersal creating a patchy 

distribution across fallen fruit. In agreement with previous comparisons of D. suzukii 

attractants, the synthetic lure outperformed the apple cider vinegar in both the number 

of specimens collected and selectivity for Drosophila species (Burrack et al., 2015; Cha et 

al., 2018; Tonina et al., 2018). The SPD treatment on the other hand was slightly less 

selective than the synthetic lure on its own, likely due to the inclusion of the dichlorvos 

insecticide cube, the effects of which were clearly illustrated by the presence of the ant 

species Iridomyrmex suchieri and Iridomyrmex anceps within this treatment. These ants 
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may have entered traps to prey on already collected insects and would have been able to 

safely exit those traps which solely relied upon flying insects drowning in the attractant 

solution. Predation of trapped specimens by ants and other species has been documented 

by a number of studies (Armstrong & Richman, 2007; De Groot & Nott, 2003; Lynegaard 

et al., 2014; Martín et al., 2013), and this raises an intriguing question about whether 

predation could be an additional source of false negatives for surveillance programmes.  

Whilst all the bycatch identified in our study were either endemic or previously recorded 

in Australia, in other cases metabarcoding has revealed the presence of unanticipated or 

cryptic exotic taxa that have been missed by formerly targeted surveys (Batovska et al., 

2020; Simmons et al., 2016). While metabarcoding is not the only novel high-throughput 

diagnostic assay, with other recent advances such as hybridisation probes (Wilcox et al., 

2018), and CARMEN–Cas13 (Ackerman et al., 2020) also offering sensitive detection of 

multiple targets, these alternatives required the targets to be defined a-priori. Therefore, 

while the ability for metabarcoding to be conducted on unsorted trap catches is a 

significant advance in itself, the universal nature of metabarcoding primers could 

substantially expand the range of organisms within the scope of a diagnostic laboratory 

without having to redesign the assay for the next emerging pest (Piper et al., 2021). 

Adoption of high-throughput metabarcoding assays for screening of mixed trap catches 

therefore offers a viable method for increasing the geographic scale and intensity of 

insect pest surveillance that could be readily expanded to the next emerging threat. 
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4.5 Supplementary Information 

 

 

 

 

 

Supplementary Figure 1: ‘Twin-tagging’ replication strategy used to prepare metabarcoding libraries for this 
study.  
 

Supplementary Figure 2: Design of in-line tagged PCR primers to facilitate the twin-tagging strategy. Bases 
highlighted in red represent the inline tags, which incorporate length variation to improve phasing during 
the critical first cycles of the sequencing process. 
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Supplementary Figure 3: Rarefaction curves displaying the accumulation of unique ASVs within each sample 
as sequencing depth increases, displayed on a pseudo-log scale. All samples that received <1000 sequence 
reads were removed from subsequent analyses. 
 

Supplementary Figure 4: Quantitative performance of the three ‘tagged’ fwhF2-fwhR2n primer sets across 
all mock community members. 
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Supplementary Note 1: Design of synthetic positive controls 

To design synthetic positive controls, alignments of 13 major insect families; 

Drosophilidae, Tephritidae, Culicidae, Crambidae, Tortricidae, Apidae, Siricidae, Aphididae, 

Triozidae, Cerambycidae, Nitidulidae, Thripidae and Acrididae were extracted from the 

curated COI reference database of Piper et al., (2021). Profile Hidden Markov Models 

(Eddy, 1998) were then derived separately for each family using the aphid R package 

(Wilkinson, 2019), and novel 658 bp sequences generated from the per-site nucleotide 

base probabilities described by each profile. Each synthetic sequence was checked for 

absence of stop codons and verified via a BLAST search to be >8% diverged from any 

sequence on GenBank for both the full 658 bp sequence and ~220 bp subregion amplified 

by the metabarcoding primers evaluated in this study. To increase the GC content and 

allow further differentiation from biological sequences, the letters PAC for ‘Positive 

Amplification Control’ was spelt in amino acids (CCT GCC TGC) at each end of the 

synthetic sequence, and then synthesised as gBlocks fragments (Integrated DNA 

Supplemetary Figure 5: A) Hierarchial clustering of weightedUniFrac distances between samples using the
ward.D2 method. B) Principal coordinate analysis of weighted UniFrac distances between samples with 95% 
confidence ellipses drawn using a multivariate t-distribution. 
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Technologies, USA). The final 676 bp synthetic sequences were equimolarly pooled to 

form a mixed template positive control sample included as a separate library in all 

sequencing runs. 

Supplementary Table 1: Composition of all mock communities used in this study. * Target 
exotic species, not present in Australia 
 

D
rosophila 

m
elanogaster 

D
rosophila 

sim
ulans 

D
rosophila 
hydei 

Scaptodrosophil
a lattivitata 

D
rosophila 

Im
m

igrans 

D
rosophila 

subpulchrella * 

D
rosophila 

suzukii * 

D
rosophila 

biarm
ipes * 

T
otal 

in
dividuals 

D100M1 30 50 10 10 0 0 0 0 100 

D100M2 40 9 30 10 10 1 0 0 100 

D100M3 14 10 40 30 0 1 0 1 96 

D100M4 40 10 0 39 5 1 5 0 100 

D100M5 10 55 14 0 20 0 1 1 101 

D250M1 75 125 25 25 0 0 0 0 250 

D250M2 100 25 75 25 24 1 0 0 250 

D250M3 37 25 100 82 0 1 5 1 251 

D250M4 100 25 0 104 15 1 5 0 250 

D250M5 25 145 29 0 50 0 1 1 251 

D500M1 150 250 50 50 0 0 0 0 500 

D500M2 200 50 150 50 49 1 0 0 500 

D500M3 70 50 220 154 0 1 5 1 501 

D500M4 210 50 0 210 24 1 5 0 500 

D500M5 54 275 70 0 100 0 1 1 501 

D1000M1 300 500 100 100 0 0 0 0 1000 

D1000M2 400 100 300 100 99 1 0 0 1000 

D1000M3 194 100 400 300 0 1 5 1 1001 

D1000M4 444 100 0 400 50 1 5 0 1000 

D1000M5 100 550 149 0 200 0 1 1 1001 

DLarv1 75 125 49 0 0 0 1 0 250 

DLarv2 100 25 100 25 0 0 0 0 250 

DLarv3 40 29 100 80 0 0 1 0 250 

DLarv4 100 50 0 100 0 0 0 0 250 

DLarv5 0 190 19 40 0 0 1 0 250 
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5  
Quantification of Insect Pests Within Mixed Trap Samples 

Using a Bias-Corrected Metabarcoding Assay 

5.1 Chapter preface: 

The preceding chapters focussed on the qualitative application of metabarcoding to early 

detection of invasive insects, yet for other biosurveillance activities, such as population 

monitoring to support pest eradication or suppression efforts, accurate quantitative 

measurements of species abundance are required. In order to refine the quantitative 

performance of the metabarcoding assay developed in chapters 3 and 4, this chapter 

evaluates the use of statistical and machine learning models to actively correct for 

taxonomic bias during data analysis. This bias-correction approach is then validated on 

the case study of pheromone trapped Carpophilus beetles, endemic pests of almonds and 

stone fruit in Australia. This chapter is presented as a self-contained manuscript in the 

final stages of preparation, with intended submission to the journal Pest Management 

Science, and includes supplementary material at the end. 

5.2 Publication details:  

Quantification of insect pests within mixed trap samples using a bias-corrected 

metabarcoding assay 

Stage of publication: In Preparation 

Journal details: Pest Management Science 

Authors: Alexander M. Piper, Lea Rako, Linda Semeraro, Noel O.I. Cogan, Mark J. Blacket, 

John Paul Cunningham. 

5.3 Statement of joint authorship: 

 A.M.P, J.P.C. and M.J.B. conceptualised the study, A.M.P. performed all molecular 

laboratory procedures, bioinformatic and statistical analyses. L.R. performed all 
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morphological identification of trap samples. L.R. and L.S. generated the Carpophilus 

reference sequences used for identification. A.M.P. wrote the first draft of the manuscript 

with input and supervision from J.P.C., N.O.I.C., and M.J.B. All authors contributed to the 

editing of the final manuscript and approved the version presented here. 

Statement from co-author confirming the contribution of the PhD candidate:  

“As co-author of the manuscript ‘Piper, A. M., Rako, L., Semeraro, L., Cogan N.O.I., Blacket 

M.J. & Cunningham, J. P. (In preparation). Quantification of insect pests within mixed trap 

samples using a bias-corrected metabarcoding assay, Pest Management Science’, I confirm 

that Alexander M. Piper has made the contributions listed above.” 

Associate Professor John Paul Cunningham 
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Abstract 

Monitoring of pest populations forms a cornerstone of integrated pest management (IPM) 

programmes, informing the timely application of control measures before widespread 

crop damage can occur. While monitoring traps aim to be species-specific for the target 

pest, this is not always possible, and the use of traps with a lower specificity can require 

extensive specimen sorting. DNA metabarcoding offers a high-throughput molecular 

method for simultaneously identifying multiple species within unsorted trap samples, but 

taxonomic bias currently limits its ability to provide quantitative data. Here we compare 

six statistical and machine learning models for their ability to accurately estimate and 

correct for taxonomic bias in a metabarcoding assay targeting mixed communities of 

horticultural pest Carpophilus beetles (Coleoptera: Nitidulidae). All six models 

substantially improved the concordance between expected and observed relative 

abundances, and the bias-corrected relative abundances could be translated back into 

counts of specimens using an independent measurement of the sample. However, none 

of the models, nor data transformations, could reduce the root mean squared error below 

11%, regardless of the number of samples used for model training. While taxonomic bias 

was found to act consistently between DNA extraction replicates, PCR replicates, and 

samples; intra-specimen variability in morphological traits likely imposes this limit on 

bias correctability. Despite this, bias-calibrated and absolute abundance adjusted 

metabarcoding datasets are comparable to those derived from traditional morphological 

identification, while requiring substantially less time and personnel to obtain. Bias-

calibrated metabarcoding may therefore provide an approach for significantly scaling up 

the identification and quantification of trapped specimens collected through IPM 

population monitoring activities.   
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Introduction 

Monitoring of pest populations is a foundation of integrated pest management (IPM) 

programmes, allowing precise and targeted control measures to be applied before 

widespread crop damage can occur (Gray et al., 2008; Kogan, 1988). Monitoring traps 

baited with synthetic pheromone lures enable selective capture of target pest species 

(Witzgall et al., 2010), but where a species-specific pheromone is not available a more 

general lure must be used, for example based on host plant semiochemicals (Cha et al., 

2014; Cunningham et al., 2016) or pheromone blends that attract several related species 

(Hossain et al., 2006; Tan et al., 2014). Use of these more broadly tuned lures can lead to 

substantial bycatch that must be sorted through to locate and quantify the target pests 

(Digirolomo & Dodds, 2014; Spears et al., 2016; Weber & Ferro, 1991), a process which can 

be further complicated by closely related non-pest species that share morphological 

features with the pest taxa (Blacket et al., 2012; Hossain & Bartelt, 2010).  

DNA metabarcoding is a recently developed high-throughput sequencing (HTS) based 

assay for simultaneously identifying multiple species that can be applied directly to 

unsorted trap catches (Liu et al., 2020; Piper et al., 2019). To date, use of metabarcoding 

in pest management has centred upon its qualitative application within early detection 

surveillance (Brown et al., 2016; Piper et al., 2019), yet metabarcoding also holds the 

potential for measuring species abundance within the sample; if taxon-specific 

quantitative biases can be overcome (Deagle et al., 2019; Lamb et al., 2019). Taxonomic 

bias in metabarcoding assays primarily arises through mismatch between PCR primers 

and the various template molecules released by a mixed community (Clarke et al., 2014; 

Piñol et al., 2015). This presents a particular problem for the widely adopted mitochondrial 

cytochrome c oxidase I (COI) barcoding gene where there are no strictly conserved 

nucleotide sites for design of universal primers (Deagle et al., 2014). While inclusion of 

degenerate nucleotide bases within primers can account for template variation between 

targets (Elbrecht et al., 2019; Piñol et al., 2019), any other trait that alters the number of 

molecules released by a specimen, such as its biomass (Elbrecht et al., 2017), exoskeleton 

hardness (Marquina et al., 2019), or mitochondrial copy number (Krehenwinkel et al., 2017; 

Wilcox et al., 2018), will further bias the results.  
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While continued efforts to optimise primers and protocols will no doubt prove important 

for refining the quantitative performance of metabarcoding, a less explored but 

complementary approach is the use of statistical models to actively correct for taxonomic 

bias during analysis. Metabarcoding bias can be modelled as a multiplicative effect, where 

each consecutive step of the laboratory and bioinformatic protocol distorts the starting 

abundances by a taxon-specific multiplicative factor (McLaren et al., 2019). Under this 

model, any bias introduced throughout the entire protocol should be ameliorable by 

simply dividing the final abundances of each taxon by an appropriate correction factor 

(Krehenwinkel et al., 2017; McLaren et al., 2019). These correction factors can be obtained 

by measuring the deviation between the expected and observed abundances in 

morphologically identified, or artificially assembled ‘mock’ communities, and then used 

to calibrate further samples (Krehenwinkel et al., 2017). Stochastic variation or ‘pipeline 

noise’   introduced throughout the laboratory process can, however, impact the accuracy 

of these measurements, propagating error into the final calibrated results. In light of this, 

the most effective modelling approach and minimum number of observations required to 

accurately capture the taxonomic bias must be determined before bias-calibration can 

be integrated into metabarcoding analysis pipelines.  

Deriving correction factors from previously identified communities can be framed as a 

predictive modelling problem, for which the field of supervised machine learning 

provides a collection of eminently suitable techniques (Crisci et al., 2012; Lucas, 2020). 

However, the datasets generated by HTS platforms have nuances that can compromise 

the inference and interpretation of predictive models if not appropriately considered 

(Quinn et al., 2018). Metabarcoding and other HTS assays provide compositional data 

(sometimes called relative, or proportions data), where the sequence read counts 

returned for each taxon are conditionally dependent on the counts of all other taxa within 

the sample (Gloor et al., 2017; Quinn et al., 2019). Therefore, if the representation of 

molecules from one taxon increases due to taxonomic bias the measured counts of other 

taxa will appear to decrease, even if their absolute abundances in the original sample 

remain unchanged. When analyses fail to take this compositionality into account it may 

appear that bias does not consistently act across samples, limiting its correctability 

(McLaren et al., 2019). Compositional Data Analysis (CODA) approaches deal with this by 

transforming the raw variables into a set of log-ratios in which the denominator is an 
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internal reference within each sample, such as a specific control taxon or the per-sample 

geometric mean (Quinn et al., 2019). By framing the analysis in this way, log-ratio 

transformations map compositional data into conventional Euclidean geometry, thereby 

enabling the use of many statistical methods without violating underlying assumptions 

(Aitchison, 1982). Alternatively, compositional constraints can be removed by adjusting 

samples back to absolute abundances using an independent measurement of the total 

specimens or biomass in the sample (Harrison et al., 2021). While measuring absolute 

abundance presents a challenge in itself for the microbiome studies which pioneered this 

technique (Morton et al., 2019; Props et al., 2017), it may be more tractable for insect 

metabarcoding where specimens can be seen with the naked eye. Translating 

metabarcoding-provided relative abundances back to absolute abundances also provides 

benefits for data interpretation and practical implementation, as many economic 

thresholds for IPM are assessed using absolute numbers of insects per unit area, per 

plant, or per part of plant (Ramsden et al., 2017). This means that traditional economic 

threshold models can be applied directly, without having to be reformulated to account 

for the compositional data returned by metabarcoding. 

In this study, we compare a series of predictive models and data transformations for their 

ability to estimate and correct for taxonomic bias in metabarcoding assays, and 

determine whether the relative abundances provided by metabarcoding can be 

transformed back to absolute counts of insects using independent measurements of each 

sample. This approach is then applied to metabarcoding based identification of trap-

caught Carpophilus beetles (Coleoptera: Nitidulidae), a genus containing several 

economically important pests of fruit and nut crops (Hossain, 2018; Hossain et al., 2006). 

In Australia, the pheromone baited traps employed in Carpophilus surveillance can 

capture hundreds to thousands of insects from up to 12 different species, and assessing 

the abundance of each constituent species—only some of which are pests—is limited by 

the requirement for trained entomological diagnosticians (Hossain, 2018; James et al., 

1995). Following selection of the best performing model, we measure how closely the 

corrected bias reflects the results of morphological sorting to determine whether 

datasets of interest to IPM population monitoring can be provided by high-throughput 

metabarcoding assays.  
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Methods 

Samples 

15 adult and 6 larval mock communities with total abundances of approximately 300 

individuals were assembled from laboratory reared colonies of Carpophilus davidsoni, C. 

hemipterus, and C. truncatus, supplemented with field collected specimens of C. nepos, C. 

marginalus, Urophorus humeralis, and Brachypeplus sp. (Supplementary Table 1). In 

addition, 12 field samples were collected from traps baited with a commercial Carpophilus 

aggregation pheromone and food lure (Hossain et al., 2006), deployed as part of regular 

monitoring activities in almond orchards located near Sunraysia, Victoria, Australia 

(Supplementary Table 1). All trapped Nitidulid beetles were morphologically identified 

using the taxonomic key of Leschen & Marris (2005) and stored dry at 4 °C for 1 year 

before DNA extraction.  

Metabarcoding 

DNA was extracted from mock and field collected communities using the non-destructive 

Qiagen DNeasy based protocol presented in Chapter 4. In brief, ethanol was removed 

from the insect communities using a 1000 µL pipette and specimens dried overnight to 

ensure all residual ethanol was evaporated. Dried specimens were suspended in a 10:1 mix 

of Qiagen ATL lysate buffer and proteinase K in 15 mL falcon tubes, with the total volume 

of buffer increased proportionally to the size of the insect community to ensure all 

specimens were fully immersed, then incubated for 24 hours at 56 °C and 220 rpm in a 

shaking incubator. Following incubation, lysate was removed from the specimens and 

split into two separate replicate aliquots per community, each of which were manually 

pipetted into a separate Qiagen 96 well DNeasy extraction plate using a multichannel 

pipette. The remainder of the Qiagen DNeasy Blood & Tissue protocol was then followed 

within the QiaCube automated DNA purification workstation (Qiagen, Germany).  

Metabarcoding libraries were prepared from the non-destructively extracted DNA using 

a two-step PCR approach. First, 3 replicated PCRs were used to amplify the COI locus 

from each DNA extract using the fwhf2-fwhR2n primer pairs (Vamos et al., 2017), modified 

with 2-4 bp inline tags at the 5’- terminus to differentiate each PCR replicate as per 

Chapter 4. Each 25 µL reaction consisted of 5 µL 5X MyFi reaction buffer (Bioline, USA), 1 
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μL of 10 nM forward and reverse primers, 0.8 μL MyFi DNA polymerase, 11.2 μL bovine 

serum albumin (BSA) and 2 μL of variable concentration template DNA. Cycling conditions 

were 94 °C for 2 min, 30 cycles of 94 °C for 30 sec, 50 °C for 45 sec, and 72 °C for 45 sec, 

followed by a final extension step of 2 min at 72 °C, with each set of PCR replicates 

amplified in a separate thermocycler. Successful amplification was verified on a 2% w/v 

agarose gel, and amplicons diluted 1:10 in ddH20 with no further clean-up step. 1 μL of 

the diluted COI amplicons were then amplified again using 7 cycles of real-time PCR in 

order to attach 8 bp unique dual indexes  and Illumina sequencing adapters (Costello et 

al., 2018). Cycling conditions for the second PCR were 98 °C for 10 sec, 65 °C for 30 sec, 

and 72 °C for 30 sec, with each cycle followed by a SYBR Green fluorescence read. Melt 

curve analysis was used to quantify the concentrations of successfully indexed libraries, 

and these measurements used to pool all libraries in equimolar ratios using a Biomek FXP 

Figure 1: Flow diagram of modelling workflow used in this study. First the entire dataset was split into training 

(80%) and held-out test sets (20%), then the training set was further split into five cross-validation folds, on 

which models were iteratively trained and evaluated to select the best hyper-parameters. Following selection 

of optimal hyper-parameters, the finalised models were compared on the original held-out data set. The 

entire process was repeated across 100 random training/test splits to ensure robustness of comparisons to 

whichever samples were assigned to each set. 
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liquid handling robot (Beckman Coulter, USA). Pooled libraries were purified using a 0.8:1 

ratio of AMPure XP beads (Beckman Coulter, USA) then sized and quantified using a 2200 

TapeStation (Agilent Technologies, USA) and Qubit 3.0 Fluorometer (Thermo Fisher, USA). 

Final pooled and cleaned libraries were either diluted to 7 pM, spiked with 5% PhiX, and 

sequenced on an Illumina MiSeq, or diluted to 100 pM, spiked with 1% PhiX and sequenced 

an Illumina NovaSeq6000 S2 flow cell, both using 2 x 150 bp reads. In order to minimise 

the risk of contamination from the laboratory environment, DNA extraction, preparation 

of PCR master-mixes, PCR amplification, and library preparation were each performed in 

separate rooms using dedicated equipment and pipettes.  

Bioinformatics analysis 

Sequence reads were demultiplexed using bcl2fastq allowing for no mismatches to the 

expected index combinations, followed by a second round of demultiplexing for the inline 

tags using Seal in BBTools v38 (Bushnell et al., 2017). Demultiplexed sequencing reads 

(NCBI SRA acc no: xxxxxxx, to be assigned later) were trimmed of PCR primer sequences 

using BBDuK in BBTools v38 and any sequences with >1 expected error (Edgar & Flyvbjerg, 

2015), <8 unique 2-mers or any ambiguous ‘N’ bases were removed.  Remaining sequences 

were denoised with DADA2 v1.16 (Callahan et al., 2016), using the “pseudo-pooling” mode 

for increased sensitivity to rare variants, and the error matrix modified to enforce 

monotonicity in order to deal with the binned quality scores produced by the NovaSeq as 

per Chapter 4. Following denoising, the Amplicon Sequence Variants (ASVs) inferred 

separately from each sequencing run were merged into a single table and chimeric 

sequences removed using the removeBimeraDenovo function in DADA2. The remaining 

ASVs were aligned to a Profile Hidden Markov Model (PHMM) of the COI barcode region 

(Chapter 3) using the aphid R package (Wilkinson, 2019) in order to filter out pseudogenes 

and non-specific amplification products.  

To assign taxonomy to the filtered ASVs, the IDTAXA algorithm (Murali et al., 2018) was 

trained for 5 iterations on the curated insect reference database generated in Chapter 3 

supplemented with 91 additional Australian Nitidulid sequences. Hierarchical taxonomy 

was assigned to the lowest rank attainable with a minimum 60% bootstrap support, and 

additional species level assignments obtained using a nucleotide BLAST search (Altschul 

et al., 1990) against the same reference database. As bias correction models can only be 
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trained for those taxa for which abundance was measured a-priori, all ASVs 

corresponding to species that were not identified during the initial morphological sorting 

were removed, and only replicates with >1000 total sequence reads retained. All 

remaining ASVs were then agglomerated by species, and their associated sequence read 

counts transformed into per-sample relative abundances. 

Method Linearity Tuned hyper-parameters Fixed hyper-
parameters 

References 

metacal  Linear 
 N/A 

 N/A 
McLaren et 
al., (2019) 

Linear regression  Linear 
 N/A 

 N/A 
N/A 

LASSO regression  Linear  penalty: Regularization penalty 
 mixture: proportion of L1 

regularization  

 N/A 
Tibshirani, 
(1996) 

Polynomial 
support vector 
machine (SVM) 

Non-
linear 

 cost: The cost of predicting a 
sample within or on the wrong 
side of the margin. 

 degree: The polynomial degree. 
 scale_factor: A scaling factor for 

the kernel. 
 margin: The epsilon in the SVM 

insensitive loss function 

 N/A 
Cortes & 
Vladimir, 
(1995) 

Random forest  Non-
linear 

 mtry: Number of Predictors 
randomly sampled at each split 

 min_n: number of data points 
per node for the node to be split 

 trees: number 
of trees 
contained in 
the ensemble 
= 1000 

Breiman, 
(2001) 

XGBoost  Non-
linear 

 min_n: number of data points 
per node for the node to be split 

 tree_depth: maximum depth of 
the tree (i.e. number of splits)  

 learn_rate: Rate at which the 
boosting algorithm adapts from 
iteration-to-iteration. 

 trees: number 
of trees 
contained in 
the ensemble 
= 1000 

Chen & 
Guestrin, 
(2016) 

 

Comparing correction models 

Five linear and non-linear predictive models (Table 1) were fit to the expected and 

observed relative abundances as is, or transformed using the natural log, log-odds (logit), 

Table 1: Classes of statistical and machine learning models evaluated for bias estimation and calibration. 
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or into absolute abundances by multiplying each by the total number of morphologically 

counted individuals in the respective sample. Each model was constructed so that the 

proportions of reads produced by metabarcoding was a function of the proportion of 

starting individuals, species, sequencing run, and the type of community (mock adult, 

mock larval, or field collected adult) (Supplementary equation 1). In addition, the same 5 

model types were fit to the compositional error, or the ratio between expected and 

observed abundances (McLaren et al., 2019), transformed to be relative to C. hemipterus 

(additive log-ratio [ALR], Supplementary equation 3), or the per-sample geometric mean 

(centred log-ratio [CLR], Supplementary equation 4). Again, the taxon, sequencing run, 

and community type were included as covariates (Supplementary equation 2), and the 

final calibrated abundances obtained by dividing the observed proportions by the 

correction factors predicted by the model. Models fit to the compositional error were 

also compared to metacal, a published model specifically designed to correct for 

taxonomic bias using a CODA framework (McLaren et al., 2019). To accurately evaluate 

the predictive performance of a model, it must be tested on data it has not seen before 

(Quinn et al., 2021; Topçuoğlu et al., 2020). Therefore, a random 80% of the previously 

identified communities were assigned to a training set on which each model was fit, with 

the remaining 20% held aside as a test set (Figure 1). Dataset splitting was conducted in a 

stratified manner in order to maintain similar proportions of mock adult, mock larval, and 

field collected communities within the training and test sets. Model selection for the 

machine learning algorithms requires tuning of hyper-parameters, which are those input 

parameters that need to be specified by the user rather than learned directly from the 

data (Table 1). To determine the best performing hyper-parameters, the training set was 

further split 80/20 into five separate cross-validation (CV) folds, again in a stratified 

manner (Figure 1), then a grid search following a Latin-hypercube design (Sacks et al., 

1989) was used to explore the possible hyper-parameter space. Final hyper-parameter 

values were selected from those that led to the lowest average Root Mean Squared Error 

(RMSE) across the 5 CV folds, then each model was re-trained on the complete training 
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set and applied to the withheld test dataset in order evaluate its predictive performance. 

Dataset splitting, hyper-parameter tuning, final model training, and test set evaluation 

were repeated 100 times using a different random initiation seed to ensure that 

comparisons were robust to whichever samples were assigned to the training or test sets 

(Figure 1). The performance of models across all 100 training/test splits was compared 

against the uncorrected data, as well as the baseline linear regression model using t-tests 

with a Benjamini-Hochberg correction. In order to determine the minimum number of 

training samples required to obtain a good fit for the final model, samples were iteratively 

removed from the training set and the change in test set RMSE measured for each taxon. 

All statistical analysis and model training procedures were conducted using the 

tidymodels (Kuhn & Wickham, 2020) and tidyverse (Wickham et al., 2019) packages within 

the R 4.1 statistical programming environment (R Core Team, 2019), and all figures plotted 

using ggplot2 (Wickham, 2016).  

Figure 2: A) Quantitative error between expected and observed abundance, displayed as; relative abundances 
(proportions), absolute abundances, additive log-ratios relative to C. hemipterus (ALR), and centred log-ratios 
(CLR) for each taxon across the three community types B) Photos of morphological species contained within 
a typical adult trapped, larval mock, and adult mock community C) Consistency of taxonomic bias between 
extraction replicates of the same sample, PCR replicates of the same DNA extraction, and different samples 
(biological replicates). 
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Results 

Sequencing results 

All mock and field collected communities were sequenced across a portion of a MiSeq V2, 

and NovaSeq 6000 S2 lane, yielding 1,067,524 and 172,221,696 filtered reads respectively 

(mean: 213,505 ± 26,187 per sample for MiSeq, mean: 3,131,304 ± 418,767 per replicate for 

NovaSeq), however, a large number of replicate dropouts were seen across both the mock 

and trap communities sequenced on the NovaSeq (Supplementary Figure 1). For the mock 

communities, 26% of the replicates from both the adults and the larval samples did not 

produce sufficient data to pass quality control steps, while for the field collected 

communities only 50% were successful. Most replicate dropouts occurred in PCR 

replicate set 2 of extraction replicate 1, where all replicates failed, and PCR replicate set 1 

of extraction replicate 2 where 27 of 36 replicates failed (Supplementary Figure 1). These 

samples were processed in the same batch as those in Chapter 4 which saw similar 

replicate dropouts, and likely indicates a systematic failure during PCR amplification or 

library pooling. Despite the failure of these replicates, all of the adult and larval mock 

communities and 82% of the trap samples had at least one replicate that was successfully 

sequenced and could therefore be analysed further. From these samples, a total of 32 

unique taxa were identified at above 0.01% relative abundance, substantially higher than 

the 6 distinct species recorded by morphological sorting. The majority of these additional 

taxa were from the orders Coleoptera (13 species) and Diptera (7 Species) (Supplementary 

Figure 2) and represented low abundance specimens that were likely overlooked or left 

unidentified while searching for the target Carpophilus species. As correction factors can 

only be calculated for taxa which abundance was measured in advance, all species that 

were not identified during the morphological sorting were removed from the samples, 

reducing the mean reads per sample to 1,978,250 (±368,804; range: 22,496-8,310,225).  

Bias acts consistently across samples and replicates 

When the expected relative abundances from morphological counting were compared to 

the metabarcoding results, substantial taxonomic bias was seen (Figure 2A). The mock 

larval and adult communities showed the strongest deviation from expected abundances, 

with an RMSE of 14% and 13% respectively, while the trapped mock communities had an 

RMSE of 7%. The magnitude and direction of the quantitative bias was relatively 
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consistent between DNA extraction replicates of the same samples and PCR replicates of 

the same extractions (Figure 2C), while more variability was seen between different trap 

samples, particularly for Urophorus humeralis.   

Bias can be corrected in relative and absolute abundances 

All 6 predictive models significantly improved the relationship between the expected 

relative abundances from morphological counting and those observed from 

Figure 3: Comparison of Root Mean Square Error (RMSE) for each model and data transformation, calculated 
across 100 training/test dataset splits. Significance of pairwise t-test comparisons of each model against the 
baseline linear regression indicated on right of each box.  Left panel indicates the relative abundances, while 
right panel indicates absolute abundances obtained by multiplying the bias corrected relative abundances 
by the total number of morphologically counted individuals in each community. Abbreviations: ALR; additive 
log-ratio, CLR; centred log-ratio 
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metabarcoding (t-tests, p < .001), and this remained consistent after the data was 

transformed to absolute abundances (Figure 3, Supplementary Figures 3-6). However, 

there was no significant improvement in quantitative performance for any of the more 

complex statistical or machine learning models compared to the baseline linear 

regression model across all data transformations (t-tests, p > .05). On the other hand, the 

SVM model showed slightly worse performance than the linear regression across both 

the log and log-odds transformed relative (p = .01) and absolute abundances (p = .04). 

Ultimately none of the log, log-odds, or CLR or ALR transformations improved the 

predictive performance of any model over the untransformed relative abundance data, 

with the latter two CODA transformations producing slightly worse predictions overall 

(Figure 3). In addition to the CLR or ALR transformations providing no appreciable benefit, 

the metacal model which was specifically designed for correcting metabarcoding bias 

using the same CODA framework also showed no improvement in performance over the 

baseline regression model (p > .05). While not statistically significant, the Random Forest 

model showed the smallest median RMSE for the 100 random dataset splits across most 

data transformations (Figure 3). Therefore, the Random Forest model fit directly to the 

relative abundances with no additional transformations was selected as the final model 

for correcting taxonomic bias in this dataset.  

Performance of final random forest model 

For the final Random Forest model, the median RMSE was relatively consistent across all 

taxa included in the adult mock communities, ranging from 2% for Brachypeplus sp. to 6% 

for C. davidsonii (Figure 4A). For the trapped communities on the other hand, C. 

hemipterus showed a median RMSE of 12.2%, significantly higher than all the other taxa 

(Tukey HSD, p < .001), while Urophorus humeralis was significantly lower at 1% (p < .001). 

The Random Forest model fit to the larval mock communities showed a higher RMSE than 

both the mock and field collected adults, with C. davidsonii having a median RMSE of 10%, 

and C. hemipterus and C. truncatus showing a median RMSE of 15% and 15.1% respectively 

(Figure 4A). Across all taxa the variance in the RMSE between the different training/test 
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splits steadily reduced as more samples were used to train the model, but the median 

RMSE did not decrease beyond 5 samples used for training (Figure 4B).    

Bias calibration makes metabarcoding comparable to morphological counting   

Across all taxa, a substantial divergence was seen between the abundances obtained 

through morphological sorting and those returned by metabarcoding (Figure 5A, 5B). 

However, when these same metabarcoding results were calibrated using the final Random 

Forest model and then translated back to absolute abundances, the resulting specimen 

counts were significantly closer to the morphological count (Figure 5C). This was similarly 

reflected in multivariate space, where the bias calibration procedure recovered most of 

the compositional error between the morphological and metabarcoding results (Figure 

6). Furthermore, the similarity between the multivariate clustering across the relative and 

absolute abundances reinforces that analyses based on relative abundances will reflect 

those made on absolute abundances if a compositionally appropriate distance such as the 

Aitchison distance is used (Figure 6, Supplementary Figure 7).  

Figure 4: A) Root Mean Square Error (RMSE) for the final Random Forest model across the 100 random test 

sets, displayed by taxon and community type. B) Change in test set RMSE for each taxon as the number of 

samples used to train the model is increased, repeated across 100 random dataset splits. 
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Discussion 

Statistical correction models are shown here to successfully ameliorate taxonomic biases 

introduced during metabarcoding protocols, enabling accurate estimates of both relative 

abundance and absolute counts of insect specimens. Following bias-calibration and 

absolute abundance adjustment, metabarcoding datasets become comparable to those 

derived from morphological sorting, while requiring substantially less time and personnel 

to obtain. Importantly, our study began with the use of highly degenerate primers that 

showed almost no mismatch to the target species, which led to the initial deviation 

between expected and observed relative abundances being substantially lower than many 

other metabarcoding studies (Lamb et al., 2019). When fit to this already low taxonomic 

bias, all evaluated statistical and machine learning models were similarly effective in 

correcting for it, with neither CODA transformations nor absolute abundance adjustment 

further improving correctability. This equivalent performance of models with different 

mechanisms and complexity is likely due to a limit in correctability being reached, where 

Figure 5: Comparison of measured abundances across each sample for a single random training and test set 
split. A) Actual abundances from morphological counting. B) Observed abundances after sequencing 
transformed to absolute abundances by multiplying by the total number of morphologically counted 
individuals in the sample. C) Observed absolute abundances following calibration with the final Random 
Forest model.  
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intraspecific variation between specimens begins to outweigh the systematic taxon bias. 

Intraspecific nucleotide variation can occur in primer sites and affect PCR amplification 

(Piper et al., 2021), and differences in morphological traits such as cuticle hardness can 

be the product of developmental environment or exposure to different weather 

conditions during trapping (Hopkins & Kramer, 1992; Krehenwinkel et al., 2018), with 

impacts on non-destructive DNA extraction efficiency (Marquina et al., 2019). 

Furthermore, the “pipeline noise” that is introduced through stochastic sampling of 

molecules throughout the metabarcoding laboratory workflow (Leray & Knowlton, 2017) 

may also contribute additional variance to the model fits. Finally, because models were 

trained on ‘ground truth’ data obtained through morphological counting, any human 

error during this process would introduce additional variance into the bias estimates 

(Culverhouse et al., 2014; MacLeod et al., 2010). Using more pre-identified samples to train 

the correction models increases the robustness to both intraspecific variation and 

occasional large random errors, yet this only marginally increased the overall 

correctability and comes at the expense of reduced sequencing effort applied to real 

samples. Therefore, we suggest that including a minimum of 5 pre-identified samples per 

sequencing run should allow taxonomic bias to be sufficiently captured, and future 

studies should determine whether previously obtained bias estimates can be accurately 

extrapolated across batches and sequencing runs. 

The similar performance of the non-linear machine learning models to the simple linear 

regression across all data transformations suggests that metabarcoding taxonomic bias 

can be accurately captured with log-linear relationships, reinforcing the multiplicative 

model proposed by McLaren et al., (2019). Although it should be noted that neither the 

metacal model nor CODA transformations proposed by the same study provided any 

appreciable benefits over ignoring the compositional nature of the data and fitting 

models directly to the relative abundances. While this seems to conflict with previous 

theory (Gloor et al., 2017; Quinn et al., 2018), this discrepancy may be due to the simple 

and consistent species composition of the samples analysed here. The main justification 

for use of CODA transformations is to increase consistency of bias estimates across 

differently composed samples (McLaren et al., 2019), yet the pheromone lure used to 

collect samples for our study meant that after the necessary removal of the low-

abundance bycatch taxa, the analysed communities were almost taxonomically identical. 
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Therefore, while we did not see any benefits of CODA transformations for estimating bias, 

they may be more applicable when analysing communities collected through less 

targeted sampling methods, such as traps containing lures derived from host odours 

(Chapter 4) or passively collected wind-borne insects (Batovska et al., 2020).  

Similar to the CODA transformations, there was also no appreciable gain in accuracy 

when samples were transformed to absolute abundances either prior to, or following, 

model training and bias calibration. Despite this, a metabarcoding assay which provides 

absolute counts of specimens or biomass rather than sequence reads is an important step 

towards easing interpretation by non-specialists, as well as integration into economic 

injury threshold models. Our study used the total number of individuals counted during 

morphological sorting to adjust the metabarcoding data into absolute abundances, but a 

higher throughput method for obtaining this independent measurement would be 

desirable for practical application: for instance, the total weight or volume of each 

community could be measured prior to DNA extraction (although this may introduce 

additional biases due to not all species being the same physical size (Elbrecht et al., 2017)), 

or specimen counts could be obtained from photographs of trap catches using image 

analysis techniques (Mele, 2013). For studies where an independent measurement of 

absolute abundance cannot be obtained, such as when samples have already gone 

through destructive DNA extraction, taxonomic bias calibration performs just as well on 

relative abundances alone (Supplementary Figure 7). So, while incorporating absolute 

abundance information aids interpretation, conducting analyses on bias-calibrated 

relative abundances remains valid approach as long as the statistical challenges of 

comparing relative abundances across-samples are appropriately considered (Gloor et 

al., 2017).  

The commercially available Carpophilus lure used in this study is a synthetic blend 

derived from the pheromones of three Carpophilus species (Bartelt et al., 1995), combined 

with a synergistic “co-attractant” of fermenting fruit volatiles (Bartelt & Hossain, 2006). 

Attraction to fermentation volatiles is common across diverse taxonomic groups (Davis 

et al., 2013), and it was therefore unsurprising when an additional 26 species were 

recorded in the metabarcoding analysis compared to the morphological sorting, which 

aimed to identify only the high priority pests. As the correction models could only be 
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trained on species for which measurements were obtained in advance, these taxa had to 

be excluded from further analysis, an aspect which remains a major limitation for 

application of correction factors to more diverse communities. To address this, McLaren 

et al. (2019) highlighted the potential use of phylogenetic imputation methods to 

extrapolate corrections factors from measurable species to closely related taxa which 

share similar traits, an approach that is commonly employed to predict bacterial genome 

content from 16S metabarcoding sequences (Goberna & Verdú, 2016; Zaneveld & Thurber, 

2014). While a promising avenue for future research, this approach may be complicated 

by metabarcoding bias being the joint product of multiple laboratory steps, each 

interacting with various species traits (Martoni et al., in prep). Yet even if metabarcoding 

must be targeted to a smaller cohort of measurable species in order to be quantitative, 

this is no different to alternative quantitative molecular assays such as qPCR, while still 

allowing substantially more species to be identified in a single diagnostic test. On this 

note it is worth mentioning recent statistical advances which use a quantitative 

Figure 6: Principal coordinate analysis of Aitchison distance between actual, observed, and calibrated 
abundances using the final Random Forest model for each sample within in the test and training sets. Bias 
calibration produces metabarcoding results that more closely reflect the actual morphological content for 
both relative and absolute abundances. 
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measurement for a subset of taxa (commonly obtained through qPCR) to estimate 

taxonomic bias for the remainder of the species in the sample (Williamson et al., 2021). 

This alternative framework avoids the complications involved in assembling mock 

communities and could conceivably be integrated with “spike-in” internal standards 

(Harrison et al., 2021) to provide a more streamlined quantitative metabarcoding 

workflow. 

When crop managers do not have access to accurate and timely pest abundance 

information the quality of management decisions can be affected, leading to an over-

reliance on damaging insecticides which increase input costs and eliminate populations 

of natural enemies (Peterson et al., 2018). Bias-calibrated metabarcoding poses a 

promising method for scaling up the identification and quantification of pest taxa by 

insect diagnostic laboratories to support IPM population monitoring. While wider 

adoption of metabarcoding faces challenges related to diagnostic turnaround time, cost 

of platforms, and technological access (Piper et al., 2019), the rapid and ongoing evolution 

of this technology (e.g. low-cost and real time nanopore sequencing) will most certainly 

circumvent much of this in the near future (Baloğlu et al., 2021; Krehenwinkel et al., 2019). 

Importantly, the model-based bias calibration approach presented here is independent 

of the target taxonomic groups, laboratory protocol, and HTS platform used, and may 

therefore prove an effective and readily adoptable method for increasing the quantitative 

accuracy of metabarcoding assays for insect population monitoring.  
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5.5 Supplementary Information 

Equation 1: Proportions regression model 

𝑡
𝑒𝑥𝑝

∑ 𝑒𝑥𝑝
=  𝛽 𝑡

𝑜𝑏𝑠

∑ 𝑜𝑏𝑠
+  𝛽 (𝑇𝑎𝑥𝑜𝑛 ) + 𝛽 𝑠𝑒𝑞 𝑟𝑢𝑛 +  𝛽 𝑐𝑜𝑚𝑚 𝑡𝑦𝑝𝑒  

Where i is the respective taxon, j is the respective sample, and t is either the natural log, 

log-odds, or absolute abundance transformation. 

Equation 2: Compositional regression model 

𝑡
𝑜𝑏𝑠

𝑒𝑥𝑝
=  𝛽 (𝑇𝑎𝑥𝑜𝑛 ) +  𝛽 𝑠𝑒𝑞 𝑟𝑢𝑛 + 𝛽 𝑠𝑒𝑞 𝑟𝑢𝑛  

Where i is the respective taxon, j is the respective sample, and t is either the CLR or ALR 

transformation. 

Equation 3: Additive log-ratio transform (ALR) 

𝑎𝑙𝑟(𝑥) = 𝑙𝑜𝑔
𝑥

𝑥
, … , 𝑙𝑜𝑔

𝑥

𝑥
 

Where r is an arbitrary reference taxon, i is the first taxa and I is the last taxa. 
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Equation 4: Centred log-ratio transform (CLR) 

𝑐𝑙𝑟(𝑥) = 𝑙𝑜𝑔
𝑥

𝑔(𝑥)
, … , 𝑙𝑜𝑔

𝑥

𝑔(𝑥)
 

Where g is the geometric mean, i is the first taxa and I is the last taxa. 

  



 

154 

 

  

C
om

m
un

ity 
T

ype 

Sam
ple  

N
am

e 

C
arpophilus 

davidson
i 

C
arpophilus 

trun
catus 

C
arpophilus 

hem
ipterus 

U
rophorus 

hum
eralis 

B
rachypeplus 

Sp. 

C
arpophilus 

n
epos 

C
arpophilus 

m
argin

alus 

Mock  CM1 150 80 40 15 15 
  

Mock  CM2 80 150 40 15 15 
  

Mock  CM3 80 40 150 15 15 
  

Mock CM4 60 60 60 100 20 
  

Mock  CM5 60 60 60 20 100 
  

Mock  CM6 100 100 100 0 0 
  

Mock  CM7 60 60 60 60 60 
  

Mock  CM8 100 3 100 49 48 
  

Mock  CM9 73 73 151 0 0 
  

Mock  CM10 72 150 72 0 0 
  

Mock  CM11 135 0 135 15 15 
  

Larvae CML1 240 30 30 
    

Larvae CML2 30 240 30 
    

Larvae CML3 30 30 240 
    

Larvae CML4 3 149 149 
    

Larvae CML5 148 3 149 
    

Larvae CML6 148 149 3 
    

Trapped  CT1 172 36 82 0 25 2 0 

Trapped  CT2 32 25 123 1 97 51 1 

Trapped  CT3 83 5 178 3 118 27 3 

Trapped  CT4 22 2 151 1 110 46 1 

Trapped  CT5 108 25 77 0 128 128 3 

Trapped  CT6 40 0 118 3 143 135 3 

Trapped  CT7 25 22 184 2 51 51 6 

Trapped  CT8 20 10 162 0 57 180 1 

Trapped  CT9 11 32 187 1 23 234 5 

Trapped  CT10 0 12 323 13 13 8 2 

Trapped  CT11 5 14 332 4 27 3 1 

Trapped  CT12 0 1 343 19 2 46 88 

  

Supplementary Table 1: Number of individual specimens from each species included within each mock 
community, or morphologically identified within each trapped community.  
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Supplementary Figure 1: Number of mock community taxa detected across each DNA extraction and PCR 
replicate. Grey indicates dropouts of all taxa within a sequenced replicate, while white indicates samples that 
were not replicated.  
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Supplementary Figure 2: Phylogenetic relationships between all species detected within the trap samples, 
with those detected in both morphological sorting and metabarcoding highlighted. The mean relative 
abundance of the respective taxa across each community type is displayed as a heatmap. 
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Supplementary Figure 3: Density plot of expected relative abundances compared to model calibrated 
relative abundances across each model typle and data transformation, displayed for the training sets from 
all 100 data splits. Data are displayed on a pseudo-log scale to avoid compressing variation near zero. 
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Supplementary Figure 4: Density plot of expected relative abundances compared to model calibrated 
relative abundances across each model typle and data transformation, displayed for the test sets from all 100 
data splits. Data are displayed on a pseudo-log scale to avoid compressing variation near zero. 
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Supplementary Figure 5: Density plot of expected absolute abundances compared to model calibrated 
absolute abundances across each model type and data transformation, displayed for the training sets from 
all 100 data splits. Absolute abundances were obtained by multiplying the corrected relative abundances by 
the total number of individuals in the sample. Data are displayed on a pseudo-log scale to avoid compressing 
variation near zero. 
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Supplementary Figure 6: Density plot of expected absolute abundances compared to model calibrated 
absolute abundances across each model type and data transformation, displayed for the test sets from all 
100 data splits. Absolute abundances were obtained by multiplying the corrected relative abundances by the 
total number of individuals in the sample. Data are displayed on a pseudo-log scale to avoid compressing 
variation near zero. 
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Supplementary Figure 7: Comparison of relative abundances for each sample in a single training and test set 
split, from top to bottom: Actual relative abundances from morphological counting, observed relative 
abundances after sequencing, and observed relative abundances after calibration using the final random 
forest model. 
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6  
Exploring the Genomic Consequences of Range Expansion 

in an Invasive Tephritid Fruit Fly 

6.1 Chapter preface: 

While the metabarcoding assay developed in chapters 3-5 was shown to successfully 

detect and quantify abundances of insect pests, the limited nucleotide variation 

contained within the COI mini-barcode does not provide sufficient resolution for tracing 

the source of new outbreaks. Therefore, this chapter develops a complementary low-

coverage whole genome sequencing (lcWGS) assay to predict the geographic origin of 

intercepted specimens and explore patterns of genetic diversity during colonisation and 

establishment. This approach is developed and validated on the range expansion of the 

Queensland fruit fly (Bactrocera tryoni), a highly polyphagous pest endemic to Australia 

but only recently established in the temperate fruit growing regions of Victoria. The 

population structure of B. tryoni is characterised through sequencing of specimens 

collected from across the entire endemic and invasive range, then used as a reference 

panel to train a deep-learning model for predicting geographic origin. The accuracy of 

this model is evaluated through cross-validation with  samples of known origin, then used 

to trace the source of recent outbreaks in Tasmania, the Yarra Valley, and Auckland, New 

Zealand. This chapter is presented as a self-contained manuscript in the final stages of 

preparation, with intended submission to the journal Evolutionary Applications, and 

includes supplementary material at the end. 

6.2 Publication details:  

Exploring the genomic consequences of range expansion in an invasive Tephritid fruit fly 

Stage of publication: In Preparation 

Journal details: Evolutionary Applications 

Authors: Alexander M. Piper, Noel O.I. Cogan, John Paul Cunningham, Mark J. Blacket 
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Abstract 

Over the past century the geographic range of the polyphagous plant pest, the 

Queensland fruit fly (Bactrocera tryoni, Diptera: Tephritidae), has expanded from its 

endemic coastal tropical and subtropical forests into temperate fruit growing regions of 

Australia. Outbreaks and specimen interceptions within previously pest-free areas have 

become regular occurrences, impacting horticultural exports, and incurring costly 

quarantine and intervention procedures. Determining whether these outbreaks arise 

from long-distance dispersal events, or resurgent local populations which have evaded 

eradication is a priority for coordinating biosecurity responses. In this study we use 

genome-wide markers, obtained through low-coverage whole genome sequencing 

(lcWGS), to characterise the genetic structure of endemic and invasive B. tryoni 

populations and predict the geographic origin of recent outbreaks. We find the 

demographic history of B. tryoni is defined by two major endemic populations on the 

East- and North-coasts of Australia, with the former being the source of both the 

southwards range expansion and colonisation of island populations in Melanesia. These 

endemic populations are genetically homogenous over large distances with no isolation-

by-distance, while geographically isolated populations are highly differentiated following 

population bottlenecks. Temporal sampling within the southernmost invasive 

populations, in Victoria, revealed a broad increase in genetic diversity over the past 

decade, with early founder populations being replaced by further immigration from the 

expansion front. Evidence for recent population bottlenecks suggests, however, that 

regular die-off and recolonisation is ongoing in some areas, despite B. tryoni now being 

declared endemic in Victoria. Specimens intercepted from outbreaks in Tasmania, the 

Yarra Valley, and Auckland, New Zealand, were tentatively assigned to the south-eastern 

invasive range, but weak concordance between genetic and geographic structure led to 

confidence intervals encompassing a considerably larger geographic area. The 

importance of these results in context of area wide management of B. tryoni, and the use 

of lcWGS approaches for exploring insect invasions are discussed. 
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Introduction  

Many species experience periods of range expansion or contraction throughout their 

evolutionary history in response to shifts in the geographic distribution of suitable 

habitats (Holt, 2003). More recently, anthropogenic activity has become the primary 

driver of range expansions, through the artificial introduction of individuals into new 

environments and homogenisation of habitats by agricultural and urban development 

(Elton, 1958; Lodge, 2003). The highly polyphagous Tephritid fruit fly Bactrocera tryoni 

(Queensland fruit fly), presents a striking example of rapid human-mediated range 

expansion, leading it to become one of Australia’s most damaging horticultural pests 

(Clarke et al., 2011). Considered endemic to tropical and subtropical rainforests along the 

eastern coast of Queensland (QLD) and New South Wales (NSW) (Drew, 1989; Meats, 1981), 

within the last century the geographic distribution of B. tryoni has expanded south into 

temperate fruit growing regions of Victoria (VIC), west into the Northern Territory (NT) 

and overseas to various Melanesian islands (Clarke et al., 2011; Dominiak & Mapson, 2017; 

May, 1962). Several important fruit growing regions depend upon Pest Free Area (PFA) 

status to ensure access to valuable interstate and international markets (Dominiak et al., 

2015), however, interceptions of B. tryoni specimens within these areas have become a 

regular occurrence, pausing fruit exports and incurring costly quarantine and 

intervention procedures (Florec et al., 2013; Suckling et al., 2016). Determining whether 

these outbreaks arise through new incursions from the endemic range or resurgent local 

populations which have evaded eradication efforts is a priority for coordinating 

biosecurity response (McInnis et al., 2016; Sved et al., 2003).  

Tephritid fruit flies do not naturally disperse great distances, and instead commonly 

spread via long distance human-assisted movements followed by local diffusion through 

natural insect flight (Dominiak, 2012; Sadler et al., 2011). When specimens are intercepted 

while still associated with a human vector, such as within a fruit shipment or at a vehicle 

inspection checkpoint, their introduction pathway may be readily identified from cargo 

manifests or interviews with drivers. When specimens are instead intercepted within 

surveillance traps placed near agricultural, urban, or natural areas, confidently 

establishing the pathway and timeframe of introduction can prove impossible using 

conventional approaches (Barr et al., 2014). In these cases, molecular genetic techniques 
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can be used to place outbreaks back to their source population, even when multiple 

lifecycles have progressed since the initial introduction event (Cristescu, 2015; Estoup & 

Guillemaud, 2010). 

Previous studies of B. tryoni genetic structure have revealed that populations along the 

east coast native range are homogenous over large distances (Gilchrist et al., 2006; Yu et 

al., 2001), but distinct from those in NT and northern Western Australia (WA) (Cameron 

et al., 2010; Popa-Báez et al., 2020), which some authors accord full species status as B. 

aquilonis (Drew & Lambert, 1986; Morrow et al., 2000). In contrast, incipient (small, 

localised) populations within the south-eastern invasive range show multiple distinct 

origins, with greatly reduced gene flow compared to established regions (Blacket et al., 

2017; Gilchrist & Meats, 2010). These studies used microsatellites or mitochondrial 

haplotypes to genotype specimens (Blacket et al., 2017; Gilchrist et al., 2006; Gilchrist & 

Meats, 2010; Yu et al., 2001), which were then matched against potential source 

populations (Gilchrist & Meats, 2010; Sved et al., 2003), or used to detect kinship groups 

within outbreak zones (Gilchrist et al., 2004). However, reliable population assignment 

using these limited loci, which represent a very small fraction of the genome, requires 

source populations to be relatively old and not share gene pools (Barr et al., 2014), and 

thus may be unsuitable when regional co-ancestry is already high such as when tracing 

localised incursions following an initial invasion event (Fitzpatrick et al., 2012; Schmidt et 

al., 2021). More recently, Popa-Báez and colleagues (2020) applied genome wide single 

nucleotide polymorphisms (SNPs) obtained through reduced-representation high-

throughput sequencing (HTS) to examine B. tryoni population structure, yet placing 

outbreak specimens to anywhere more fine-scale than ‘the east coast of Australia’ 

remained a challenge, despite using an order of magnitude more loci than previous 

investigations (Popa-Báez et al., 2021). Nevertheless, given that genetic homogeneity 

cannot be fully achieved by any population where individual dispersal is smaller than its 

geographic range (Bradburd & Ralph, 2019; Cristescu, 2015), improved resolution may be 

obtainable using a method of genotyping that samples an even larger portion of the 

genome across many individuals. 

As an alternative to common reduced-representation HTS approaches which sample 

small portions of the genome at high sequencing coverage, outlined above, low-coverage 
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whole genome sequencing (lcWGS) instead samples the entire genome at low coverage, 

providing substantially more SNPs for similar costs (Lou et al., 2020; Therkildsen & 

Palumbi, 2017). At this low depth of coverage reliably differentiating real mutations from 

sequencing error becomes challenging (Nielsen et al., 2011, 2012), however, for many 

questions relevant to invasion biology it is not the genotype at any particular site that 

matters, but rather the pattern of variation across the genome (North et al., 2021). 

Therefore, use of probabilistic analysis frameworks which take uncertainty about 

individual SNP genotypes into account can still provide reliable inference about that 

individual’s overall genetic signature (Korneliussen et al., 2014; Meisner & Albrechtsen, 

2018). Simulation studies have demonstrated that when following this approach, 

sequencing more individuals at lower depths (0.5-2× coverage of the genome) can 

maximise the information obtained and provide more accurate estimates of population 

level parameters than sequencing fewer individuals to greater depths (Alex Buerkle & 

Gompert, 2013; Fumagalli, 2013; Lou et al., 2020). The size of these datasets can further 

enable the use of supervised machine learning methods for population assignment, a 

process-agnostic framework that may be particularly suited for range expanding species 

which, by definition, do not conform to typical assumptions of discrete, well-mixed 

populations (Battey et al., 2020; Schmidt et al., 2021).  

In this study we use genome-wide markers, obtained through lcWGS of specimens 

collected from the entire endemic and invasive range, to describe the contemporary 

population structure of the Queensland fruit fly (Bactrocera tryoni). Through fine-scale 

sampling of the Victorian invasive range during the initial invasion in 2011/12, then later 

in 2017/18, we further explore spatial patterns of genetic diversity occurring during 

colonisation and establishment. Using this continental-scale genotype dataset as a 

reference panel, a spatially-explicit deep learning approach is used to predict the 

geographic origin of specimens intercepted during recent outbreaks from Tasmania, the 

Yarra Valley, and Auckland, New Zealand (NZ). The importance of these results in context 

of area wide management of B. tryoni, and the use of lcWGS approaches for 

understanding the historical dynamics of insect invasions are discussed. 
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Methods: 

Sample collection, DNA Extraction and Library preparation 

Male B. tryoni were collected from 43 endemic or recently invaded locations around 

Australia, New Caledonia, and French Polynesia (Table 1) using cue-lure baited traps 

(Meats & Hartland, 1999), and morphologically identified using standard characters (Plant 

Health Australia, 2018). Additional ‘outbreak’ specimens were collected from Auckland, 

NZ, in 2015, Perth, WA, in 2011, northern Tasmania in both 2011 and 2018, and the Yarra 

Valley, VIC in 2018. At the time of processing, all specimens had been stored either dry or 

in absolute ethanol at –20 °C for between 1 and 7 years. Genomic DNA was extracted from 

each specimen using the Qiagen DNeasy 96 blood and tissue kit within the QIACube 

automated sample preparation system (Qiagen, Germany), and integrity of resulting DNA 

evaluated using 2% w/v agarose gel electrophoresis. 605 individual DNA extracts with 

visible high molecular weight bands and concentrations >10 ng/µL as measured by a 

Qubit 2.0 fluorometer (Thermo Fisher, USA) were selected for library preparation. 

Genomic DNA was enzymatically sheared using the method described by Shinozuka et al. 

(2015). In brief, 1 mM of 5-methyl-dCTP (New England Biolabs, USA) was randomly 

incorporated into 1 µL of genomic DNA via whole genome amplification with the REPLI-

g UltraFast mini kit (Qiagen, Germany), then digested using the MspJI restriction enzyme 

(New England Biolabs, USA), which recognises the modified 5-methylcytosine bases. 

Digested DNA underwent an end-filling and dA-tailing reaction using the JetSeq flex DNA 

library preparation kit (Bioline, USA), followed by ligation of in-house adapters. Adapter 

ligated libraries were double sided size selected to retain products of approximately 280-

429 bp, first using a 0.2:1 ratio of Agencourt AMPure XP beads (Beckman Coulter, USA) to 

DNA and discarding the beads, followed by a second 0.2:1 ratio discarding the 

supernatant. Eight (8) bp dual indexes were then attached using 7 cycles of real time PCR 

with cycling conditions of 98 °C for 10s, 65 °C for 30s, and 72 °C for 30s, followed by a 

SYBR Green fluorescence read. Indexed libraries were quantified via melt curve analysis, 

then equimolarly pooled in batches of 96 using a Biomek FXP liquid handling robot 

(Beckman Coulter, USA). Each pooled library was purified using a 0.8:1 ratio of AMPure XP 

beads to DNA, then sized and quantified using a 2200 TapeStation (Agilent Technologies, 

USA) and Qubit 3.0 fluorometer. A pooled library containing 108 specimens representing 

key established populations were sequenced on an Illumina HiSeq 3000 (v4 chemistry)  
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Table 1: Summary of collections made for all populations analysed in this study. 

using 2 × 150 bp reads, aiming for ‘moderate’ 10× coverage of the genome per specimen. 

The remaining 377 successful libraries were pooled separately and sequenced on either a 

Loca on ID Region N (early) N (late) Year (early) Year (late) 
Alice Springs  Central Aus     
Kalumburu  North Coast     
Darwin  North Coast     
Cobourg Peninsula  North Coast    -  
Coen  East Coast    

 

Cairns  East Coast     
Mourilyan Harbour  East Coast   

 
 

Townsville  East Coast     
Mackay  East Coast     
Gladstone  East Coast     
Bundaberg  East Coast     
Brisbane  East Coast     
Sydney  East Coast     
Dubbo  Inland NSW     
Cootamundra  Inland NSW     
Hillston  Inland NSW     
Wodonga  Inland VIC     
Rutherglen  Inland VIC     
Dookie  Inland VIC     
Cobram  Inland VIC     
Yarrawonga  Inland VIC     
Shepparton  Inland VIC     
Kyabram  Inland VIC     
Echuca  Inland VIC     
Barham  Inland VIC     
Speewa  Inland VIC     
Wood Wood  Inland VIC     
Boundary bend  Inland VIC     
Robinvale  Inland VIC     
Nichols Point  Inland VIC   

 
 

Merbein  Inland VIC     
Ellerslie  Inland NSW     
Orbost  Coastal VIC   -   
Marlo  Coastal VIC   -   
Lakes Entrance  Coastal VIC     
Bruthen  Coastal VIC   

 
 

Upper Tambo  Coastal VIC    
 

Eagle Point  Coastal VIC     
Sarsfield  Coastal VIC   

 
 

Bairnsdale  Coastal VIC     
Sale  Coastal VIC     
Yarra Valley  Outbreak     
Tasmania  Outbreak     
Auckland  Outbreak     
New Caledonia  Melanesia     
Tahi   Melanesia     
Hakatao  Melanesia     



 

171 

 

HiSeq 3000 (94 specimens) or a NovaSeq 6000 S2 flow cell lane (283 specimens), both 

using 2 × 150bp reads and aiming for 2× coverage of the genome. 

Bioinformatics 

Sequence data from the HiSeq and NovaSeq lanes were demultiplexed using bcl2fastq and 

filtered with fastp (Chen et al., 2018) to only retain reads with a mean base quality >20, 

>50 bp in length, and containing <5 consecutive N bases, as well as remove all Illumina 

adapter sequences and polyG tails which can occur in NovaSeq data (Arora et al., 2019). 

Filtered reads were mapped to the B. tryoni v2.2 draft reference genome (Gilchrist et al., 

2014) using BWA-mem (Li, 2013), retaining only properly paired reads with a mapping 

quality >30. PCR and optical duplicates were removed using the markdup function of 

SAMtools v1.9 (Li et al., 2009), and reads realigned around indels using GATK 

IndelRealigner (Depristo et al., 2011). A hard-called list of variants was generated from just 

the moderate coverage HiSeq data using SAMtools mpileup, then filtered to retain only 

biallelic SNPs with a minor allele frequency (MAF) >5% and <20% missing data. This list of 

high confidence variants was used to recalibrate base quality scores within all BAM files 

in order to avoid introducing systematic biases due to the different sequencing 

technologies used (De‐Kayne et al., 2021).  

Genotype calling and filtering 

Following base quality score recalibration, SNPs with a p-value <1e-6 were identified from 

both the moderate and low coverage datasets, and genotype likelihoods calculated using 

the empirical Bayesian framework implemented in the software ANGSD (Korneliussen et 

al., 2014). Variants from the entire dataset were filtered to retain only biallelic SNPs with 

<50% missing data, however this time the MAF filter was lowered to 1% to capture alleles 

private to populations where few individuals were successfully sequenced (Linck & Battey, 

2019). Additionally, all sites with >10,000 reads across the dataset, or >50% heterozygote 

genotypes were removed as they likely represented incorrectly mapped paralogs, 

repetitive regions, or nuclear mitochondrial pseudogenes (Blacket et al., 2012; Matz, 2018). 

As uncertainty in genotype calling can arise within low coverage sequencing data due to 

difficulties resolving true mutations from mapping and sequencing errors (Han et al., 

2014), all subsequent analyses were conducted using genotype likelihoods rather than 
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hard-called genotypes unless indicated, in order to integrate this uncertainty into 

inferences (Nielsen et al., 2011, 2012). Linkage disequilibrium between variant sites was 

calculated in windows of 50 kb using ngsLD (Fox et al., 2019), and unlinked SNPs obtained 

using the included network-pruning method. Per-site inbreeding coefficients were 

calculated taking population structure into account using PCAngsd (Meisner & 

Albrechtsen, 2018, 2019), with the optimal number of eigenvectors used in the model 

determined from Velicier’s Minimum Average Partial (MAP) test (Shriner, 2011). All sites 

which deviated from Hardy-Weinberg Equilibrium (HWE) expectations with a p value <1e-

6 were removed as they likely represented erroneous genotypes (R. S. Waples & Allendorf, 

2015). Kinship between sequenced individuals was determined from the combination of 

KING-robust, R0, and R1 statistics calculated using NGSRelate V2 (Hanghøj et al., 2019), 

which allows identification out to 3rd order kin, as well as distinction between parent-

offspring and full-sibling relationships within 1st order kin (R. K. Waples et al., 2019). To 

avoid biasing estimates of genetic diversity and population structure, for all detected 

close-kin dyads (full-sibling, half-sibling, or parent-offspring) the individual with the 

lower sequencing coverage was removed from subsequent analyses. 

Genetic diversity 

Allele frequency likelihoods were estimated directly from BAM files using ANGSD, 

considering only sites with <20% missing data but not using MAF or SNP likelihood filters 

to avoid biasing the site frequency spectrum (Matz, 2018). A maximum likelihood estimate 

of the folded site frequency spectrum (SFS) was generated for each population which had 

>2 sequenced individuals, then the average number of pairwise differences between 

sequences (θπ; Nei & Li, 1979) and total number of segregating sites (θw; Watterson, ) 

were calculated in windows of 15 kb using the SFS as a prior. The Tajima's (D) test for 

neutrality (Tajima, 1989) was then calculated from windowed θπ and θw to determine 

evidence for population expansion or decline. Per-individual inbreeding coefficients (F) 

were calculated using PCAngsd, and genome wide heterozygosity (HE) using the EM 

algorithm from realSFS (Nielsen et al., 2012). To test for founder effects within the 

southern invasive range, HE for each VIC and NSW population was regressed against its 

geographic distance to either coastal Gippsland or Sydney respectively as potential 

source populations.  
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Population structure & admixture 

A covariance matrix of individual genotype probabilities taking population structure into 

account was generated using PCAngsd, then decomposed into eigenvectors in R4.3 (R 

Core Team, 2019). Per-individual admixture proportions were calculated using PCAngsd 

(number of ancestral populations (K) equal to the number of principal components used 

to model the dataset +1). Relative genetic differentiation between populations (2DSFS; 

Korneliussen et al., 2014) was estimated between each sampling location with >2 

sequenced individuals, using the same filtering parameters as the intra-population 

genetic diversity. The weighted pairwise Fixation Index (FST) between populations was 

calculated genome-wide and in 15 kb windows using the 2DSFS as a prior, according to 

the method of Reynolds et al., (1983). To ensure analyses of population structure were not 

confounded by recent selection, SNPs located within the top 5% of windows in each 

pairwise FST comparison were removed to produce a putatively ‘neutral’ dataset. To test 

for Isolation-by-distance (IBD; Wright, 1946), the correlation between geographic 

distance and PCA latent space or pairwise FST was assessed using Mantel tests (Diniz-

Filho et al., 2013). 

Spatial assignment 

The spatially-explicit deep learning based Locator method (Battey et al., 2020) was used 

to assign outbreak individuals to their most probable geographic origin. As Locator does 

not currently operate on genotype likelihoods, genotypes with a probability >95% were 

hard-called from the posterior probabilities output by PCAngsd and converted to a VCF 

file. A 10-fold Cross Validation (CV), and spatial CV procedure (Brenning, 2012) were 

performed to evaluate the predictive accuracy of the Locator model, where either a 

random 10% of specimens, or an entire geographic region were dropped out of the 

training set and their locations re-predicted. To measure confidence in Locator 

predictions, windows of 10,000 SNPs were used for model training and prediction, and a 

two-dimensional kernel density surface was fit over the separate windowed predictions 

to derive a point estimate and associated confidence contours (Battey et al., 2020). CV 

error was quantified by the distance in kilometres between the point estimate and the 

samples' true location (km-error), as well as the number of times the true location was 

contained within the 95%, 50% or 10% confidence contours. As any georeferencing errors 
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in the training samples will propagate into model predictions, samples were considered 

outliers and removed if their km-error was >3 standard deviations above the mean of all 

other samples within a 500 km radius. The Locator model was then trained again on all 

remaining samples and used to predict the locations of the outbreak specimens (Table 1). 

All statistical analyses were conducted within R4.3 (R Core Team, 2019) using the tidyverse 

(Wickham et al., 2019) and tidymodels (Kuhn & Wickham, 2020) packages, with figures 

plotted using ggplot2 (Wickham, 2016). 

Results 

Sequencing results 

Sequencing of the 108 specimens in the initial ‘moderate coverage’ dataset yielded a mean 

12.6× depth of coverage per individual (± 0.786, range 0.55×-32.6×) across the 31,960 

contigs of the B. tryoni v2.2 draft reference genome. 1,272,540 biallelic SNPs were called 

Figure 1: Individual-level principal components analysis showing samples clustering on A) axes 1 and 2 and 
B) axes 2 and 3, with main clusters labelled. C) Pairwise weighted fixation index (FST) between all sampled 
populations during early Victorian invasion (2011-2012) and D) more recently (2017-2018), displayed by 
geographic location. 
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from this initial dataset and stringently filtered down to a set of 340,612 high confidence 

variants that were used for BSQR (Supplementary Fig. 1). The further 377 specimens 

sequenced in the ‘low coverage’ dataset yielded a mean 2.03× depth of coverage (± 0.147, 

range 0.005×-21×), but only the 316 samples that obtained >0.2× mean depth were 

retained. Genotype likelihoods were calculated for all variant sites with <50% missing 

data across both low and moderate coverage datasets, yielding 2,462,560 biallelic SNPs 

with a MAF >1%, of which 1,730,779 SNPs were found to be unlinked. Removing variants 

within the top 5% of windowed FST comparisons left 607,012 SNPs in the putatively 

‘neutral’ dataset (Supplementary Fig. 2). Two full-sibling and 9 half-sibling dyads were 

identified within this dataset (Supplementary Fig. 3), and within each dyad the individual 

with the lowest sequencing coverage was removed to avoid biasing population structure 

inferences.  

Principal component analyses 

Principal component analysis of the remaining 347 individuals revealed specimens 

broadly clustered by their collection location (Fig. 1A), rather than year of collection or 

other technical factors (Supplementary Fig. 3). All specimens collected from both the 

endemic East Coast and Victorian invasive range formed a single large cluster, while those 

collected from the North Coast (NT and WA) formed a discrete smaller cluster separated 

along PC2 (Fig. 1A). The geographically isolated populations of Hakatao and Alice springs 

showed a large degree of separation from the larger coastal populations along PC1 and 

PC2 respectively, with specimens from Tahiti clustering intermediately between the East 

Coast and Hakatao (Fig. 1A). While the North Coast samples clustered intermediately 

between the East Coast and Alice springs specimens on PC2, these locations were 

separated along PC3 (Fig. 1B). In contrast to the other isolated island populations, 

specimens collected from New Caledonia clustered with specimens from the East Coast 

across PC axes 1, 2 and 3 (Fig. 1A, B).  

Differentiation between early populations 

For the specimens collected during 2011/12, genetic differentiation between sites along 

the East Coast endemic range was low, even between the most geographically separated 

collection locations of Coen and Sydney, ~2800 km apart (Fig. 1C, Supplementary Table 1). 
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Substantial genetic differentiation was, however, seen between the East Coast endemic 

range and inland locations within the Victorian invasive range (FST 0.2-0.3), but not coastal 

Victorian populations in Gippsland (FST 0.07-0.09) (Fig. 1C). Many of the inland Victorian 

sites were also differentiated from each other (FST 0.04-0.22), particularly at the western 

fringe of the invasive range where even the adjacent Ellerslie and Merbein sites were 

distinct (FST 0.19). Most inland Victorian populations were also highly differentiated from 

the inland NSW populations of Hillston, Dubbo, and Cootamundra (FST 0.17-0.37), as well 

as coastal Gippsland populations (FST 0.2-0.3), the latter being more similar to NSW 

populations (FST 0.02-0.05; Fig. 1C). Mantel tests found no significant correlation between 

geographic distance and distance in PC1 and PC2 latent space (r = 0.08, p = .053), or 

pairwise FST (r = -0.3, p > .05) across all early samples. When just the early samples from 

the NSW and Victorian invasive range were considered, a small but statistically significant 

correlation was found between geographic distance and both PCA latent space (r = 0.17, p 

= .012) and pairwise FST (r = 0.305, p = .018). 

Differentiation between recent populations 

Samples collected more recently from the Victorian invasive range (2017-2018) were more 

similar to the East Coast native range than at the earlier timepoint (FST 0.03-0.11), and 

comparable to that seen between the major East coast and North coast populations (FST 

0.02-0.09) (Fig. 1D, Supplementary Table 2). The differentiation seen between early inland 

Victorian and NSW populations has since reduced considerably (FST 0.01-0.16), with the 

earlier distinction between Gippsland and inland populations also no longer present (FST 

0.03-0.12). Despite this broad homogenisation of genetic diversity across the invasive 

range, populations collected from the VIC-NSW border sites of Wodonga, Yarrawonga 

and Rutherglen showed increased differentiation with the rest of inland Victoria (FST 0.14-

0.3) compared to the earlier collections (FST 0.08-0.16; Fig. 1C, D). For the isolated invasive 

populations only sampled at the later timepoint, both the central Australian population 

of Alice springs as well as the French Polynesian island population of Hakatao showed the 

greatest differentiation from all other locations (FST 0.25-0.35; Fig. 1C, D). Specimens from 

the other French Polynesian island of Tahiti showed less differentiation with the east 

coast endemic range (FST 0.12-0.15), but similarly high with the VIC invasive range (FST 

0.25-0.35), while the closer island of New Caledonia showed relatively little differentiation 
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from the East Coast (FST 0.09-0.14). Across all the recent samples, Mantel tests found 

significant correlation between geographic distance and distance in PCA latent space (r = 

0.74, p < .001), as well as pairwise FST (r = 0.31, p < .001). When the highly differentiated 

isolated populations were removed from the analysis the correlation between geographic 

and PCA distance was reduced but still significant (r = 0.65, p < .001), while the correlation 

with FST was no longer significant (r = -0.2, p > .05). When just the recent samples from 

the NSW and Victorian invasive range were considered, Mantel tests found a significant 

Figure 2: Average genome-wide Heterozygosity (HE) for each collection location during A) early Victorian 
invasion (2011-2012) and B) more recently (2017-2018). C) Distribution of Watterson’s Theta (θw) and Tajima’s D
across 15 kb genomic windows per population for early, recent, and combined samples. Population ID numbers 
correspond to Table 1. Abbreviations: NC; North Coast, EC; East Coast, IN; Inland NSW, IV; Inland Victoria, CV; 
Coastal Victoria, MI; Melanesian islands. 
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correlation between geographic distance and PCA distance (r = 0.42, p < .001), but not 

with FST (r = 0.09, p = .018).  

Genetic diversity 

Heterozygosity (HE) within the early samples was a uniformly high 0.06-0.07 along the 

East Coast native range into NSW but saw a rapid reduction to only 0.02-0.04 in the 

Victorian invasive range (Fig. 2A). While HE has broadly increased across Victoria in the 

more recent samples, it remains below that of the East Coast (Fig. 2B). HE within the early 

Victorian invasive range was highest in coastal Gippsland populations (HE  = 0.058), and 

decreased with both distance from Gippsland (linear regression; R2 = .2, p < .001), and the 

major southern population of Sydney (R2 = .18, p < .001). This was not, however, reflected 

in the recent samples where the more inland population of Barham showed the highest 

HE, and no relationship was found between distance from Gippsland (R2 = .012, p > .05) or 

Sydney (R2 = .001, p > .05). Despite the isolated populations showing similar HE to the East 

Coast populations (Fig. 2B), all showed a strong positive skew in the genome wide 

distribution of Tajima’s D, with Alice Springs and Hakatao being particularly high (Fig. 2C). 

Positive genome-wide values of D arise from a lack of rare alleles, characteristic of a 

sudden population contraction, and similar patterns were observed across many of the 

southern invasive range populations (Fig. 2C). Locations with a strongly positive skew of 

D at the early timepoint, but less so in the recent samples included Shepparton, Kyabram, 

Wood Wood, Merbein, and Ellerslie, suggesting that early population bottlenecks have 

been partially erased through continued immigration. On the other hand, the sites of 

Wodonga and Cobram showed increased D in 2017 compared to 2011, potentially 

indicating die-off and recent recolonisation by a limited number of founding individuals. 

For the major East- and North-Coast populations θw was consistently high and D either 

neutral or slightly negative across both timepoints, indicating that population sizes have 

remained stable or slightly expanded in the native range since the early collections in 

2011/12 (Fig. 2C).   

Admixture 

A four ancestral population (K=4) model was chosen as most parsimonious from the MAP 

test, and under this model the East Coast and North Coast populations were determined 
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to be the two main ancestry groups, with Alice Springs and Hakatao representing minor 

ancestry components (Fig. 3). For the North Coast populations, the WA location of 

Kalumburu was the most ancestral, while individuals collected from the more eastward 

NT locations of Darwin and Cobourg Peninsula showed up to 35% East Coast ancestry. 

Similarly, the more northern populations within the East Coast endemic range showed 

between 20 and 35% North Coast ancestry, indicating bi-directional gene flow between 

the NT and the East Coast. While the North Coast populations were only sampled at the 

Figure 3: Population admixture proportions for each collection location from A) early Victorian invasion 
(2011-2012), and B) more recently (2017-2018). Insets show greater detail of the Victorian invasive range. C)
Individual admixture proportions for each specimen collected during the early and D) recent samples. 
Population ID numbers correspond to Table 1. 
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recent timepoint, the presence of their ancestry within specimens collected along the 

East Coast was consistent across both timepoints, and steadily reduced with latitude until 

reaching complete absence at ~35°S in the specimens from Wodonga, Rutherglen and 

Dookie at the NSW/VIC border (Fig. 3A, B). While specimens collected from inland VIC 

showed almost no North Coast ancestry at both timepoints, those from the coastal 

Gippsland region saw a reduction from 10% North Coast ancestry in the 2011 to none in 

2018 (Fig. 3C, D). Ancestral Alice Springs and Hakatao alleles on the other hand were 

practically absent from all other populations, with exception of Tahiti which contained 

20% Hakatao ancestry (Fig. 3D). Despite both Alice Springs and Hakatao being identified 

as ‘ancestral’, the very high value of D for these isolated populations suggests that the 

admixture analysis is instead capturing the effects of a strong population bottleneck and 

subsequent genetic drift. Therefore, rather than the ~20% Hakatao ancestry seen in the 

Tahiti population being a real sign of admixture, this may instead reflect the extreme 

bottleneck undergone by the Hakatao populations where only ~20% of the allelic diversity 

present within the Tahiti population successfully colonised the more distant island of 

Hakatao. 

Spatial assignment 

During Locator cross validation, a random 10% (32-38) of individuals with known origins 

were iteratively dropped out of the training set and their geographic locations re-

predicted, returning a median error of 298 km between the expected and predicted 

locations (95% quantiles: 85-1777 km, Fig. 4B). Prediction accuracy was relatively 

consistent across each separate 10k SNP window with no significant outlier windows 

observed (Supplementary Figure 4), however, the confidence contours derived from these 

windowed predictions only marginally captured the true uncertainty of inferences: in 

only 20% of predictions was the true location contained within the 95% confidence 

contour, 44.4% within the 50% contour and 55.3% within the 10% contour (Fig. 4C). 

Hakatao and Tahiti showed the highest CV error, reflecting their geographic isolation 

from the rest of the dataset, however the locations of Darwin and Cobourg peninsula on 

the north coast and Hillston in inland NSW also showed relatively high error (Fig. 4A). In 

contrast, specimens collected within the intensively sampled Victorian invasive range all 

showed the least error (Fig. 4A), with predictions deviating 50-400 km from known 
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collection locations. Predictive accuracy across the 10 spatial CV folds was substantially 

lower than the conventional CV, returning a median 625 km-error (95% quantiles: 157-

3011 km), with only 0.2% of predictions having the true locations within the 95% 

confidence interval, 20.8% within the 50% confidence interval and 25.4% within the 10% 

confidence interval (Fig. 4). The North Coast and Melanesian island populations showed 

the highest spatial CV error, with predictions for these samples being off by more than 

2,000 km (Fig. 4A).  

Following cross-validation, the model was re-trained using all samples then used to 

predict the most probable geographic origin of outbreak specimens. All four successfully 

Figure 4: A) Mean cross validation error for Locator predictions summarised by collection location for both 
the conventional cross-validation (left panels) and spatial CV folds (right panels). B) Histogram of cross 
validation error by individual sample, and C) number of times the true location was within the 95%, 50% and 
10% confidence interval for each CV procedure. 
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sequenced individuals from the 2015 Auckland outbreak were assigned to the northern 

Victorian invasive range, with point estimates around north-eastern Victoria (Fig. 5). 

However, the 50% confidence contour for three of these samples encompassed most of 

Northern Victoria and NSW, and 10% confidence contour almost the entire east coast. 

This was not the case for the remaining sample, where the 95% and 50% confidence 

contours encompassed only a small set of towns in northern Victoria, but the 10% contour 

also included coastal Gippsland (Figure 5). The two samples collected from the Tasmanian 

outbreak in 2011 (VAITC2086 & VAITC2087) were also placed towards central Victoria, but 

the confidence intervals around these predictions were more geographically constrained 

(Fig. 5). The single successfully sequenced sample (VAITC7710) from the Tasmanian 

outbreak in 2018 was placed to a similar area, with the 50% confidence contour covering 

North-Central Victoria, and the 10% contour further including populations in coastal 

Gippsland. Finally, the 2 successfully samples from the 2018 outbreak in the Yarra Valley, 

Victoria were also placed to the southern invasive range, with point estimates and 95% 

confidence contours around North-Central Victoria, and 50% and 10% contours covering 

most of the inland Victorian invasive range (Fig. 5).  

Discussion 

The demographic history of Queensland fruit fly can be characterised by two large 

ancestral populations residing on the East and Northern coasts of Australia, of which the 

former has been the major source for both the southern range expansion and isolated 

island populations in Melanesia. Despite the massive geographic scale of the East Coast 

population, there is little differentiation seen between geographically distant locations 

and no evidence for isolation-by-distance. This indicates that despite the distances 

involved, migration and gene flow must occur at a rate sufficient to overcome any 

regional differentiation and local adaptation that would otherwise occur (Wright, 1931, 

1943). This could be due to a combination of natural and anthropogenic factors; for 

instance temperatures within the endemic range remain high enough for breeding to 

occur year-round (Clarke et al., 2011; Meats & Fay, 2000), and regular dispersal from 

breeding sites is likely to play a role in maintaining genetic homogeneity on a local scale 

(Fletcher, 1973, 1974). At a regional scale, this natural dispersal would act in concert with 

long-distance human mediated movement to produce the pattern of apparent panmixia 
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seen southwards until Sydney. On the Northern coast of Australia, a distinct ancestral 

population extends across both NT and northern WA, geographically separated from the 

East Coast population by an arid zone between NT and QLD (Drew, 1989). Whether this 

North Coast population represents the sibling species B. aquilonis, a hybrid B. aquilonis-

tryoni, or whether B. aquilonis ever existed has been debated since the late 1980s, when 

populations around Darwin underwent a 10-fold increase in host range (Cameron et al., 

2010; Drew & Lambert, 1986; Morrow et al., 2000; Smith et al., 1988). While our study does 

not attempt to resolve this taxonomic question, we provide evidence for both substantial 

genetic diversity in the North Coast population and a large degree of differentiation from 

Figure 5: Predicted geographic origins of specimens intercepted from recent outbreaks, with their associated 
95%, 50% and 10% confidence contours. 
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the East Coast, indicating that it considerably predates the first collection record of 1953 

(Cameron, 2006). On the other hand, our admixture analyses found bi-direction gene flow 

between the North Coast locations of Darwin and Cobourg Peninsula and the northernly 

populations on East Coast, leaving recent hybridisation between the two as a plausible 

cause for the increased pestiferousness of North Coast populations (Morrow et al., 2000; 

Osborne et al., 1997; Yu et al., 2001). Future studies should examine the genomic context 

around these introgressed East Coast alleles to determine if they could play an adaptive 

role in host selection, or whether the recent change in pest status was simply a 

behavioural shift due to increased host availability. Integrating historical specimens of 

North Coast B. tryoni into this dataset using ‘museum genomics’ approaches (Mikheyev 

et al., 2017) may further assist in resolving the taxonomic validity of B. aquilonis, an issue 

that continues to impact trade and research (Clarke et al., 2011) .  

Under a stepping-stone model of range expansion, consecutive founder effects should 

lead to a steady decrease of genetic diversity into the invasive range (Austerlitz et al., 

1997). While populations within the early Victorian invasive range showed low HE and high 

values of D characteristic of founder effects, there was little evidence for isolation-by-

distance and instead genetic differentiation between adjacent sites was often as great as 

those at opposite ends of the invasive range. This patchy distribution of allele frequencies 

suggests early invasive populations were separately founded by long distance dispersal of 

small numbers of specimens, which were then subjected to strong genetic drift causing 

localised random fixation of different alleles (Ibrahim et al., 1996; Nichols & Hewitt, 1994). 

This pattern matches that seen in the mitochondrial haplotype data from Blacket et al., 

(2017) who separately analysed many of the specimens used in our study, yet the larger 

genomic and geographic context presented here reveals that despite their distinct 

mitochondrial haplotypes, all these outbreaks arise from the same East Coast range 

expansion. Since these early samples were collected, however, HE has broadly increased 

across inland Victoria, suggesting an ongoing consolidation of genetic diversity through 

further immigration from the primary range expansion. The main exceptions to this 

pattern were the populations of Cobram, Rutherglen, and Wodonga in North-central 

Victoria, as well as Bruthen and Sarsfield in coastal Gippsland, which all showed recent 

evidence of population bottlenecks. This may indicate that rather than having an 

established resident population, these areas may still be undergoing regular local 
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extinction and re-colonisation as recently as 2018. This is despite B. tryoni recently being 

declared endemic within Victoria, and the fruit fly exclusion zone which used to cover 

the north east of the state being repealed in favour of area wide management practices 

(Dominiak & Mapson, 2017). The potential recent replacement of Gippsland populations 

is of particular interest, as B. tryoni has been present in this area since the 1960s, the 

earliest recorded in Victoria and thus most likely to have undergone local adaptation 

(O’Loughlin, 1964; O’Loughlin et al 1984). Furthermore, the relative proportion of North 

Coast ancestry within many Victorian populations, and Gippsland in particular, has 

reduced since the early timepoint, suggesting the presence of a more ancestrally East 

Coast population on the NSW side of the border, unsampled in our study, which may have 

acted as a source for more recent incursions into Victoria. Taken together, these patterns 

indicate that the mode of colonisation in Victoria combines aspects of both 

mainland/island and stepping-stone dynamics, where satellite colonies generated 

through long-distance dispersal remain in isolation only for a short period before either 

dying off, or coalescing with their slowly expanding parent population (Shigesada & 

Kawasaki, 2002). 

Continued die-off and recolonisation within the Victorian invasive range could be due to 

a combination of bioclimatic stressors and localised pest control efforts undertaken by 

government agencies and individual growers. Tolerance of extreme low temperatures and 

desiccation stress are considered key factors restricting the distribution and abundance 

of B. tryoni (Meats, 1981; O’Loughlin et al., 1984; Yonow & Sutherst, 1998), and in northern 

Victoria where winter frosts are common, considerable selection pressure would be 

expected to increase cold tolerance and capacity for adults and pupae to overcome the 

critical winter ‘breeding gap’ (Clarke et al., 2019; Gilchrist & Meats, 2010). However, 

continued immigration from larger subtropical populations which have not been 

subjected to the same selective pressures may oppose local adaptation, particularly if 

seasonal extinction of invasive populations continues to occur. Our windowed FST 

comparisons found a substantial portion of the genome to be highly differentiated 

between populations, and future work should explore the genomic context of these 

outlier regions to determine if they may play a role in climatic adaptation, or are simply 

driven to high frequencies through phenomena such as allele surfing (Klopfstein et al., 

2006). Nevertheless, colonisation of the temperate Victorian environment may not 
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require an adaptive hypothesis and instead could be explained by a combination of 

microclimatic features and adult behavioural traits. While B. tryoni pupae do not 

diapause, in a recent review Clarke et al. (2019) highlighted the ability for adult flies to 

survive cold winters by sheltering in dense bushland, or by taking advantage of the urban 

heat island effect (Dominiak et al., 2006; Yonow & Sutherst, 1998). Fletcher (1974) also 

proposed that populations in drier temperate regions can persist through short distance 

movements between orchards and nearby water sources, and uptake of irrigation 

systems within Victoria has dramatically increased since these early observations (Millar 

& Roots, 2012). Therefore, while the recent range expansion may well be an evolutionary 

novel situation for B. tryoni, it does not necessarily mean the species should be 

considered maladapted to temperate regions. In fact, B. tryoni is now considered rare in 

much of its native rainforest compared to more artificial habitats in peripheral and 

suburban areas (Ero, 2009; Raghu et al., 2000; Zalucki et al., 1984), and future studies 

should investigate fine-scale patterns of gene flow along the urban-rural gradient to 

clarify whether urban overwintering could be taking place followed by seasonal dispersal 

into crops. 

In addition to mainland Australia, B. tryoni is considered invasive to the Melanesian 

islands of New Caledonia, French Polynesia, Pitcairn, and Cook (Clarke et al., 2011). Popa-

Baez and colleagues (2020) found that colonisation of Melanesian islands followed a 

stepping stone pattern, where flies were introduced from the east coast of Australia into 

New Caledonia (~1600 km), which in turn became the source of migrants to the more 

distant Tahiti (~4700 km). Our study additionally included the island population of 

Hakatao (1,359 km north west of Tahiti), where we found similar patterns of reduced 

genetic diversity and substantial differentiation from mainland Australian ancestors. 

However, while our data supported Hakatao populations arising from the nearby Tahiti, 

we found no evidence to support Tahiti populations being introduced from New 

Caledonia and this may instead represent a separate introduction from the east coast of 

Australia. Similar to the Melanesian islands, the isolated Central Australian population of 

Alice springs also showed reduced genetic diversity and a high value of D, fitting with the 

theory that this population was founded by a small number of flies, potentially around 

1987 (Cameron, 2006). The geographic origin of this population remains elusive, however, 

as it showed a high degree of differentiation from all major East- and North Coast 
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endemic populations. For all of these isolated populations, further investigation using 

alternative statistical approaches such as Approximate Bayesian Computation may be 

required to resolve the conflicting introduction scenarios (Estoup & Guillemaud, 2010), 

but these methods will need further validation to ensure they remain fit-for-purpose 

within the constraints of low-coverage datasets. From a management perspective, given 

many of these isolated populations show no evidence of recent gene flow with major 

endemic populations they may be prime targets for future eradication efforts (Suckling 

et al., 2016). 

The Locator model predicted the inland Victorian invasive range to be the source for not 

only a local outbreak in the Yarra Valley, but also interstate and international outbreaks 

in Tasmania and Auckland, NZ. Many of these predictions should be interpreted with 

caution, however, due to their wide confidence intervals and the large errors seen 

between model predictions and true locations during CV. The use of genomic windows 

based upon physical distances, or preferably recombination-based distances, to measure 

prediction confidence was recommended by the original Locator paper (Battey et al., 

2020), but the highly fragmented B. tryoni reference genome instead required the use of 

SNP-based windows in our study. While this meant the number of variants remained 

consistent between windows, the physical length of each window varied substantially, 

with some covering multiple unplaced contigs and potentially, multiple chromosomes. 

Much like an admixed individual, Locator is thus attempting to model a patchwork of 

different evolutionary and geographic histories within each window, which may have 

impacted prediction accuracy (Battey et al., 2020). Furthermore, while our study covered 

almost the entirety of the known B. tryoni range (with exception of the distant Pitcairn 

and Cook Islands), the sampling was heavily biased towards the Victorian invasive range, 

at the expense of other key locations such as NSW. While Locator has been shown to 

interpolate unsampled locations reasonably well if allele frequencies change smoothly 

over the landscape (Battey et al., 2020), the patchiness of genetic differentiation across 

Victoria indicates that this may not hold for B. tryoni. Therefore, if these outbreaks 

actually originated from NSW or another unsampled location, it is possible that Locator 

may erroneously project them towards the nearest and most densely sampled geographic 

area in the training set, in this case Northern Victoria. Due to these confounding factors, 

it is worth comparing our results to the study of Popa-Báez et al. (2021) who analysed 
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separate specimens from the same 2015 Auckland and 2018 northern Tasmanian 

outbreaks, assigning both to the ‘East Coast of Australia’. While it is possible that the 

specimens analysed here represent distinct sub-groups within mixed introduction 

events, the discrepancy between our studies is more likely related to differences in 

geographic coverage of training samples as well as the loci used for assignment. The 

reference panel used in Popa-Báez et al. (2021) comprehensively sampled the endemic 

East and North coast populations but only 9 individuals from Shepparton were included 

from the Victorian invasive range, while our reference panel instead contained a densely 

sampled Victorian invasive range and used substantially more SNPs for assignment 

(607,012 vs 2,361 to 2,428). Considering the somewhat conflicting results of our two 

studies, and the geographic limitations of the reference panels used in each, it may be 

best to consider the outbreaks from both Tasmania and Auckland as arising from 

somewhere along the East Coast of Australia, inclusive of the southern invasive range. 

While this conservative assignment greatly reduces the resolution of predictions, it still 

rules out alternative introduction scenarios, such as these outbreaks arising from North 

Coast, Alice springs, or Melanesian island populations.  

Understanding the pathways and processes underlying colonisation and establishment 

by B. tryoni will become increasingly important as much of the southern invasive range 

transitions to area-wide management, and new incipient populations appear along the 

South Australian border (Florec et al., 2013; Jessup et al., 2007).  The use of genomic 

sequencing to identify populations with limited genetic connectivity—and thus low 

recolonisation risk—will likely prove important for future control efforts such as with the 

Sterile Insect Technique (Raphael et al., 2014). While improvements in predictive accuracy 

will no doubt be required before geographic assignment techniques can be used in a 

management context, the importance of pathway tracing for increasing the likelihood of 

future pest exclusion, as well as the substantial costs incurred during quarantine and 

outbreak control should promote further investment in these methods. In particular, the 

development of international collaborative working groups to generate larger and more 

diverse reference collection, and the assembly of a chromosomal scale reference genome 

for B. tryoni would increase inferential power for both population structure and 

geographic placement of incursion samples. Ultimately, the complex dispersal patterns 

of B. tryoni and limited spatial-genetic structure means an integrated approach that takes 
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advantage of multiple data sources including shipping and transport records, host 

information, genotypes, and trapping records may be required to effectively trace and 

respond to new outbreaks of this destructive horticultural pest. 
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6.5 Supplementary Information: 

 

  

Supplementary Figure 1: Empirical vs reported quality scores for each flow cell lane pre- and post- base quality 
score recalibration (BQSR) 
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Supplementary Figure 2: A) Identification of close-kin dyads using the combination of KING-Robust, R0, and 
R1 statistics. B) Genome-wide kinship coefficient for all samples. 

Supplementary Figure 3: Principal component analysis of genetic distance between individuals, coloured by 
A, B) collection year, C, D) Mean sequencing depth, and E, F) Flow-cell each sample was sequenced across. 
Top panels display principal component axes 1 & 2, while bottom panels display axes 2 & 3. 
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Supplementary Figure 4: Cross-validation error across each separate 10k SNP window used for Locator 
training and prediction. 
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7  
General Discussion 

The research presented within this thesis demonstrates how genomic biosurveillance can 

be applied to efficiently detect, quantify abundance, and trace the origin of insect pest 

outbreaks. As an outcome of this research, two practical diagnostic tools were developed, 

each designed to be suitable for use across the broad scope of taxa targeted by 

biosecurity surveillance programmes. The first tool is a high-throughput metabarcoding 

assay that enables detection of both target and unanticipated non-target invasive insects 

within large unsorted trap samples. The second tool is a low-coverage whole genome 

sequencing (lcWGS) assay that provides dense genome-wide SNP markers from single 

specimens, which can be used to trace the geographic origin of new outbreaks and 

explore the genetic structure of established populations. These tools were developed and 

evaluated across four experimental chapters, combining meta-analysis of public datasets, 

laboratory and field evaluation, statistical modelling, and population genetic analyses. 

Within each chapter, a separate exotic or established insect pest was used as a model 

system on which each approach was validated, serving to demonstrate a flexible genomic 

biosurveillance pipeline that could be readily expanded to any emerging threat. 

Universal metabarcoding diagnostics 

A primary aim of this thesis was to develop a molecular technique that could overcome 

the ‘needle in a haystack’ problem of detecting low abundance pests within the diverse 

mixed specimens collected by surveillance traps. Chapter 2 explored the use of DNA 

metabarcoding for this purpose, highlighting its eminent suitability, but also the technical 

and regulatory challenges that must be overcome before adoption within routine 

diagnostic operations. The first two experimental chapters (Chapters 3 and 4) then set 

out to address several of these issues: Chapter 3 established the taxonomic breadth 

across which short subregions of COI can achieve species-level resolution, 

demonstrating suitable diagnostic performance for the majority of insect taxa registered 

on global invasive species lists. Chapter 4 then applied this mini-barcode in a non-

destructive metabarcoding assay, showing it could successfully detect invasive 
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Drosophila suzukii within unsorted trap catches, whilst retaining intact voucher 

specimens for confirmation of any detected exotic taxa using morphological methods. 

This chapter highlighted the need for increased replication to enable reliable detection 

with non-destructive assays and compared methods for resolving real detections from 

index-switching, a pervasive source of false positives in metabarcoding assays. This study 

demonstrates the practical feasibility of metabarcoding-based diagnostics and provides 

laboratory and bioinformatic protocols to facilitate uptake within early detection 

surveillance programmes for D. suzukii currently being launched in Australia. When 

considering the massive capacity of contemporary HTS platforms (Piper et al., 2019), 

adopting this metabarcoding assay could enable a substantial increase in the geographic 

scale and intensity of planned trapping, and thus likelihood of detecting a new incursion 

(Epanchin-Niell et al., 2012).  

Metabarcoding is further unique among diagnostic assays in that, in addition to the target 

species, it also provides the identities of diverse taxa caught as bycatch within 

surveillance traps: in Chapter 4, 34 non-drosophilid species were detected within field 

deployed traps, and in Chapter 5 an additional 26 species were recorded by 

metabarcoding compared to morphological sorting. While in both chapters all identified 

bycatch had been previously recorded in Australia, in other studies, metabarcoding has 

revealed the presence of unanticipated exotic species that were not actively being 

searched for (Batovska et al., 2020; Brown et al., 2016; Hardulak et al., 2020; Young et al., 

2021). Considering the high initial cost of implementing a pest survey, further examining 

trap bycatch for other potential new introductions presents a cost effective decision 

(Looney et al., 2016), yet this only rarely occurs due to the considerable taxonomic effort 

and expertise required by traditional identification methods (Spears & Ramirez, 2015). 

This ability of metabarcoding to screen all trapped specimens is an exciting step toward 

comprehensive surveillance programmes that aim to detect and evaluate all newly 

introduced species, not just those regulated by national quarantine agencies. For 

instance, those which may be minor or non-pests in other countries and thus overlooked 

by risk assessment but could emerge as damaging pests within unique Australian 

ecosystems (Lott & Rose, 2016). Fully realising this goal will, however, require more than 

just a universal diagnostic assay: before an insect can be identified it must first be caught 

in a trap, and both trap designs and surveillance grid layouts, which have traditionally 
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been targeted to single species, may need to be reconsidered to ensure a broader 

taxonomic diversity is captured for metabarcoding screening. This could involve 

supplementing highly-specific pheromone lures with more generic semiochemical 

attractants (Gandhi et al., 2009), or use of completely passive malaise traps commonly 

used in biodiversity surveys (Hardulak et al., 2020). This does present a trade-off, 

however, as more broadly tuned lures generally lack the sensitivity of pheromone lures 

over long distances (Byers et al., 1989; Larsson, 2016). Comprehensive species detection 

will also require baseline knowledge of endemic biodiversity against which potential new 

introductions can be assessed (Bishop & Hutchings, 2011), information which is both 

geographically limited and taxonomically biased in Australia and abroad (Cranston, 2010; 

Rocha-Oretga et al., 2021). As conducting the required baseline biodiversity surveys is 

outside the traditional scope of biosecurity agencies, this would benefit from increased 

engagement with biodiversity researchers, natural resource managers, and international 

biosurveillance efforts such as the BIOSCAN and Genomic Observatories initiatives 

(Arribas et al., 2021; Hobern, 2020). If systematically implemented across global ports of 

entry, comprehensive and ongoing metabarcoding surveys could not only improve 

detection of newly introduced species, but also reveal the pool of potentially invasive 

species within source locations (Chown et al., 2015), and provide fundamental insights 

into the dynamics and distribution of global insect biodiversity (Arribas et al., 2021). 

Towards quantitative metabarcoding 

For biosurveillance applications such as population monitoring to support pest 

eradication or suppression efforts, obtaining presence or absence information alone may 

be insufficient for effective decision making. Chapter 3 predicted substantial differences 

in taxonomic bias across published COI primers, but also showed this could be largely 

alleviated by incorporating 4-5 degenerate nucleotide bases during primer design. 

Despite this, species-specific variation in detection efficiency was still seen in the 

metabarcoding assay of Chapter 4, reinforcing the diverse molecular and morphological 

contributors (Liu et al., 2020; Piper et al., 2019). Chapter 5 subsequently evaluated the use 

of statistical models to account for taxonomic bias during analysis, demonstrating that 

bias-corrected metabarcoding assays can provide insect abundance measurements 

comparable to those obtained through conventional morphological sorting. A major 
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limitation remains, however, in that these bias correction models must be trained on pre-

identified communities and are therefore only applicable to taxa that be acquired in 

advance. While of little importance for the small cohort of pheromone-trapped 

Carpophilus species analysed in the case study, this restriction becomes constraining 

when considering the diverse assemblages that can be collected through less targeted 

sampling methods such as wind-based trapping (Hardulak et al., 2020; Watts et al., 2019). 

While the use of phylogenetic imputation methods to generalise correction factors to 

closely related taxa provides a potential workaround (Goberna & Verdú, 2016; McLaren et 

al., 2019), ultimately, further mechanistic investigation into the processes contributing to 

taxonomic bias will be required. The issues of primer-template mismatch and specimen 

biomass have seen considerable attention in the literature (Clarke et al., 2014; Deagle et 

al., 2014; Elbrecht et al., 2017; Elbrecht & Leese, 2017; Piñol et al., 2019), yet this has largely 

been at the expense of other important contributors such as exoskeleton hardness, 

mitochondrial copy number variation, and differential degradation within field deployed 

insect traps (Krehenwinkel et al., 2017, 2018; Marquina et al., 2019). Rather than 

considering taxonomic bias as one single process, future studies should partition the total 

protocol bias into its constituent laboratory, field, and bioinformatic components, then 

separately optimise protocols for each (Brooks et al., 2015).  

Genomic sequencing & Pathway tracing 

Following detection of a newly invasive population, determining the pathway and 

timeframe for its introduction can inform eradication efforts and allow targeting of 

regulatory and extension activities to reduce the likelihood of future pest introduction 

along that pathway (Barr et al., 2014; Liebhold et al., 2016). While the metabarcoding assay 

developed in chapters 3-5 could detect and measure the abundance of invasive insect 

pests, the limited nucleotide variation contained within the COI mini-barcode provides 

insufficient resolution for this kind of pathway analysis. Chapter 6 saw the development 

of a complementary lcWGS assay that enables high-resolution investigation of genetic 

diversity within invasive populations. Applied to the recent range expansion of the 

Queensland fruit fly, Bactrocera tryoni, the resulting genome-wide SNP data revealed 

endemic populations to be genetically homogenous over large distances, while both 

incipient populations in the invasive range and disjoint island populations showed genetic 
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bottlenecks and limited gene flow. Using this genomic dataset as a reference panel, 

specimens from recent outbreaks were assigned to a probable geographic origin, 

however limited concordance between genetic and spatial structure resulted in 

confidence intervals that covered a large geographic area. Rather than being an 

inadequacy of the lcWGS assay itself, this uncertainty instead reflects the complex 

patterns of genetic diversity that can arise for species such as B. tryoni, where human 

mediated long-distance dispersal events are common (Nichols & Hewitt, 1994; Shigesada 

& Kawasaki, 2002). Despite the limited success of outbreak tracing in this study, the 

identification of genetically bottlenecked populations that show limited connectivity, and 

therefore low recolonisation risk, could help define eradicable units suitable for future 

control efforts (Liebhold et al., 2016; Robertson & Gemmell, 2004). Further comparing the 

strength of these genetic bottlenecks across incipient populations and relating this to 

population reduction control measures and future population persistence may enable 

outbreak thresholds for B. tryoni to be refined through an alternative genomic lens 

(Dominiak et al., 2011; Suckling et al., 2016).  

Similar to the metabarcoding assay, the lcWGS approach developed here requires no prior 

ascertainment of target loci (Lou et al., 2020; Therkildsen & Palumbi, 2017) and could 

therefore be applied to other invasive insects where outbreak tracing may prove more 

successful. A challenge still remains, however, in the lack of published statistical methods 

that account for genotype uncertainty inherent to low-coverage datasets, meaning the 

geographic assignments made within Chapter 6 may have been biased by the requirement 

to hard-call genotypes before assignment (Nielsen et al., 2011, 2012). While a wider suite 

of methods for analysing low-coverage sequencing data is desirable, as HTS costs 

continue to decrease the sequencing depth applied to samples could be raised without 

any required change in protocol (Malmberg et al., 2018). This would eventually allow the 

lcWGS assay to transition into conventional whole genome sequencing, opening up a 

broader suite of statistical techniques for examining invasion processes (North et al., 

2021). For instance, approximate Bayesian computation can leverage whole genome data 

to model complex demographic histories (C. C. R. Smith & Flaxman, 2020; van Boheemen 

et al., 2017), making it possible to calculate the relative probabilities of competing 

introduction scenarios such as those seen for disjoint Alice Springs and Melanesian 

populations in Chapter 6.  Furthermore, while Chapter 6 explored a continental-scale 
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range expansion, genomic datasets are also informative for studying dispersal processes 

at much finer spatial scales (Bradburd & Ralph, 2019). Genome-wide SNP data allows 

robust identification of familial relationships (Waples et al., 2019), and recent statistical 

advances can leverage the spatial distribution of close-kin pairs to infer individual 

dispersal distances and estimate the number of breeding individuals within an area 

(Filipović et al., 2020; Jasper et al., 2019; Ruzzante et al., 2019). This fine-scale information 

has clear application to outbreak eradication, and similar kinship-based methods may 

provide a more tractable approach for understanding population structure for species 

such as B. tryoni, where high levels of shared genetic variation from regional co-ancestry 

makes application of conventional methods challenging (Schmidt et al., 2021).  

Technological access & diagnostic turnaround 

Early detection surveillance for new introductions and population monitoring of 

established pests are both time-critical activities, as remedial action must be taken before 

breeding populations can establish or widespread crop damage occurs (Pluess et al., 2012; 

Reaser et al., 2020). Considering this, diagnostic turnaround time presents a major 

remaining limitation for application of genomic approaches within insect diagnostics, 

with complex molecular and bioinformatic protocols extending for multiple days and 

sequencing itself taking between 40-84 hours (Rossen et al., 2018). The logistical 

challenge of regularly drawing together sufficient samples to fill the massive throughput 

of contemporary HTS platforms may further constrain diagnostic turnaround, as running 

sequencers below capacity substantially increases costs (Piper et al., 2019). For practical 

implementation of genomic biosurveillance, a central diagnostic hub model may prove 

the most effective, where the samples collected through various surveillance 

programmes, each targeting different taxonomic groups, are all identified in the same 

location using universal genomic assays. Achieving this will, however, require increased 

coordination between the various national, state, and industry organisations which 

conduct insect surveillance (Lott & Rose, 2016). Alternatively, recent nanopore HTS 

platforms offer more flexible input requirements, substantially lower purchase price, and 

real time data production, which may allow for decentralised adoption of sequencers 

within separate state or regional laboratories (Jain et al., 2016). To date, uptake of 

nanopore sequencing for species identification has been limited by considerably higher 
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per-base error rates (Benítez-Páez et al., 2016; Krehenwinkel et al., 2019), but recent 

chemistry advancements and innovative molecular protocols have now reduced this to a 

level acceptable for most diagnostic applications (Baloğlu et al., 2021; Karst et al., 2021). 

The extremely low ($1000 USD) purchase price of the Oxford Nanopore Technologies 

MinION is particularly noteworthy when considering countries most affected by 

emerging insect pests might be those less likely to have biosecurity agencies sufficiently 

funded to invest in other sequencing platforms (Bebber et al., 2014; Early et al., 2016). This 

platform has been successfully applied to both metabarcoding (Baloğlu et al., 2021) and 

lcWGS (Malmberg et al., 2019), with its small physical size and real-time data production 

enabling use for on-site diagnostics under challenging field conditions (Boykin et al., 

2019; Pomerantz et al., 2018). Ultimately, the goal of genomic biosurveillance is not to 

replace the role of diagnosticians, but to augment diagnostic decision making with more 

scalable tools and higher resolution datasets. Nanopore sequencing may therefore offer 

a promising route towards placing genomic biosurveillance tools directly into the hands 

of diagnosticians in the form of flexible and portable assays that are as readily accessible 

as a microscope.  

Integrated biosurveillance pipeline 

To fully realise the potential of genomic biosurveillance for insect pest management, the 

high-throughput screening provided by metabarcoding (many specimens, single loci) and 

the fine-scale resolution of whole genome sequencing (single specimens, many loci) need 

to be integrated. Chapters 3 and 4 demonstrated the use of non-destructive DNA 

extraction methods to retain specimens following metabarcoding analysis, which can be 

used as specimen vouchers for morphological confirmation or have their DNA re-

extracted and used for conventional DNA barcoding (Batovska et al., 2020). Following on 

from this, an integrated genomic biosurveillance pipeline may involve any species of 

concern detected through non-destructive metabarcoding being confirmed via 

morphological analysis, and subsequently sequenced using an lcWGS assay to determine 

its likely introduction pathway. Even closer integration may be possible through 

alternative ‘metagenomic’ sequencing approaches discussed in Chapter 2. While 

metagenomics remains significantly more expensive than metabarcoding, recent 

advances in meta-haplotyping algorithms may soon allow population genomic analyses 
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such as those conducted in Chapter 6 to be applied directly to mixed samples (Nicholls 

et al., 2020). Developing this approach to the point of practical implementation will 

require a large-scale effort to increase the availability of whole genomes within reference 

databases, a process that will face similar curation challenges as current DNA barcode 

databases (Piper et al., 2019). Nevertheless, as costs of sequencing continue to fall it is 

conceivable that in the not too distant future a single metagenomic assay may be able to 

identify, estimate the abundance, and trace the origin of all species within a mixed trap 

sample, providing a powerful tool for detection and control of invasive insect pest 

populations. 

An integrated genomic biosurveillance pipeline promises more than just improving 

detection and understanding of dispersal, as high-density genomic SNP data can shed 

further light on the evolutionary adaptations facilitating or resulting from colonisation of 

a new environment (Prentis et al., 2008). Identification of facilitatory ‘invasion genes’, and 

an increased understanding of the genomic architecture underlying climatic adaptation 

would enable refined forecasts of the non-native range of potentially invasive species 

(Kearney et al., 2009). Further comparing these patterns across a broad range of invasive 

taxa, facilitated by the species-independent nature of these tools, would have important 

consequences for both practical biosecurity and fundamental biology. For instance, if 

similar genetic pathways evolve across species during invasion, it may help predict when 

colonisation is likely to be successful (Chown et al., 2015), as well as provide new insight 

into longstanding paradoxes such as how invasive species can successfully adapt and 

establish despite extreme population bottlenecks (Estoup et al., 2016). Importantly, 

genomic approaches are not restricted to the invasive species themselves, and can 

additionally be used to measure changes in community composition following invasion 

(Chown et al., 2015), determine whether invasive species occur in the diets of potential 

natural enemies (Cohen et al., 2020; Sow et al., 2019), and evaluate the evolutionary 

response of native species to novel community members (Strauss et al., 2006). 

Furthermore, fine scale mapping of genotype-phenotype associations can identify 

genetic regions conferring insect resistance within affected plants (H. M. Smith et al., 

2018), which can then be used as targets for genomic-selection in breeding programmes 

(Poland & Rutkoski, 2016). Adoption of genomic approaches will therefore prove 

important not only for invasive insect biosurveillance, but also ensuring continued 
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resilience of agricultural and natural ecosystems to the increasing burden of biological 

invasion. 

7.1 Concluding remarks: 

This thesis provides a practical demonstration of how a genomic biosurveillance pipeline 

can be applied to invasive and established insect pests, focussing on the development of 

flexible and universal diagnostic tools that provide high-resolution data to inform 

biosecurity and pest management decision making. Further work will be required to 

formally validate these tools and ensure reported outputs are clearly defined and 

interpretable to end users, while widespread adoption will require significant 

international investment into the infrastructure, human capacity, and taxonomic 

frameworks underlying insect identification. Genomic tools are not a ‘silver bullet’, 

however, and end users will need to be aware of their limitations, in particular the 

dependence on accurate and well sampled reference databases. This becomes especially 

important when considering the legal dimensions of biosecurity, as questions of  whether 

a DNA-based detection alone is sufficient to support prosecution of a suspected 

perpetrator, or restricting trade with a certain country, will no doubt arise in the near 

future (Bilodeau et al., 2019). While non-destructive assays show promise for 

circumventing many regulatory challenges, development of new approaches for 

communicating detection uncertainty, as well as harmonisation of laboratory and 

bioinformatic approaches across diagnostic laboratories would be desirable. A promising 

first step would be the creation of a set of national and international guidelines for 

selecting, developing, validating, and ongoing quality assurance of HTS diagnostics in 

order to align emerging genomic approaches with the global plant pest regulatory 

framework. Ultimately, genomic tools form only a component of a larger biosecurity 

toolkit that integrates rapid, high-resolution diagnostics along with improved risk 

forecasting, effective trap designs, robust taxonomy, and an overarching decision support 

system. In an increasingly globalised world, the continued effectiveness of biosecurity 

surveillance will depend upon close collaboration between academic scientists, 

diagnosticians, and the many stakeholders who rely on effective surveillance data to 

manage the spread of invasive pests and pathogens. 
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