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Abstract

The Internet of Things (IoT) has recently attracted considerable interest due to the

development of smart technologies in today’s interconnected world. With the rapid ad-

vancement in Internet technologies and the proliferation of IoT sensors, myriad systems

and applications generate data of a massive volume, variety and velocity which tra-

ditional databases and systems are unable to manage effectively. Many organizations

need to deal with these massive datasets that are of different data types, typically from

multiple sources with variations in the types of data sources (e.g., IoT streaming data,

static data) and data formats (e.g., structured, semi-structured) from multiple sources.

Traditionally, several data integration mechanisms have been designed to process mostly

static data. These techniques are not able to deal with IoT streaming datasets from

multiple sources effectively. In addition, with the proliferation of data generated by

these IoT technologies and sensors, there are emerging challenges in integrating time-

series data from multiples sources, and indexing and managing the resulting integrated

data for the purpose of optimizing the storage space as well as the information retrieve

process. Various researchers have addressed these data integration issues by developing

IoT streaming data processing frameworks with specific techniques for data compression

techniques and data indexing; however, they have not focused on several crucial issues

such as data de-duplication, time alignment and optimised information retrieval.

To address the aforementioned issues, this thesis introduces, in successive developments,

a framework to facilitate the integration of IoT streaming data from multiple sources.

It makes several important research contributions, including a new windowing tech-

nique for streaming data integration, a mechanism to optimise the storage of integrated

data with a lossless compression technique for IoT streaming data and an index-based

optimisation scheme. Firstly, this thesis identifies the challenges of integrating IoT

streaming data from multiple sources and presents a formal approach for the real-time

integration of IoT streaming datasets, which addresses important issues concerning tim-

ing conflict/alignment. A generic window-based framework, called IoT Streaming Data

Integration (ISDI), is then proposed to deal with IoT data in different formats and rele-

vant algorithms are developed to integrate IoT streaming data from multiple sources. In
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particular, a basic windowing algorithm is extended for real-time data integration and

to deal with the timing alignment issue. A de-duplication algorithm is also introduced

to deal with data redundancy and to demonstrate the useful fragments of the integrated

data. Several sets of experiments are conducted to quantify the performance of the pro-

posed window-based approach. The local experiment results are compared with a real

setup for streaming data, using Apache Spark. The results of the experiments, which are

performed on several IoT datasets, show the efficiency of our proposed solution in terms

of processing time, and they are used to provide an integrated data view to the users.

Secondly, as a significant improvement of the first one, a second framework called the

IoT data Compression framework (ISDI-C) is proposed, in which a lossless compres-

sion for floating point time-series data is developed and incorporated. An index based

on the timestamp is built for the compressed data. The experiment results on the IoT

datasets show a reduction in storage compared with existing compression techniques.

The experimental study also demonstrates the capability of time-series data indexing

and integration in real time. Thirdly, a variety of queries from multiple IoT scenar-

ios is identified as a motivation basis for query optimization and an Indexing framework

(ISDI-CI) is developed to optimise the way to access and retrieve the integrated data for

a wide range of user queries. The optimisation is evaluated by conducting experiments

on the response of each query with different indexing schemes.

Overall, the IoT streaming data integration framework contributes to both academia

and industry in dealing with the issues of IoT data integration and plays a vital role in

today’s interconnected environment. As potential practical applications, it can be used

to support data-driven decisions to improve the customer experience, minimize fraud,

and optimise operations and resource utilization. In addition, the proposed streaming

data concepts and techniques can also be incorporated to leverage next-generation in-

frastructures such as cloud, advanced analytics/machine learning, real-time applications,

and IoT analytics.



Declaration of Authorship

I, Quang Tu Doan, declare that this thesis titled, ‘A Framework for Integrating IoT

Streaming Data from Multiple Sources’ and the work presented in it are my own. I

confirm that:

"Except where reference is made in the text of the thesis, this thesis contains no material

published elsewhere or extracted in whole or in part from a thesis accepted for the award

of any other degree or diploma. No other person’s work has been used without due

acknowledgment in the main text of the thesis. This thesis has not been submitted for

the award of any degree or diploma in any other tertiary institution."

Signed: Doan Quang Tu

Date: 09/08/2021

iii



Acknowledgements

Writing a PhD is like being on a long journey without knowing when the destination will

be reached. During this journey, there were a lot of obstacles and distractions, which

called for a great deal of perseverance and determination. Fortunately, this was not a

solo journey. Throughout my PhD candidature, I had generous networks of support from

different people without whom I would never have found ways to reach the destination. I

would like to take the opportunity to thank a number of people whose immense support

has shaped this thesis.

First, I am deeply grateful for the extensive support and inspiration I have had the

privilege of enjoying from all my supervisors. This thesis is a tribute to my principal

supervisor Professor Wenny Rahayu, who introduced me to the scientific research on

streaming data integration systems. Without her unconditional support which ignited

my passion for this PhD project, this thesis would never have reached its final form.

Although I suspect that at times I gave her moments of frustration, I hope that she

enjoyed working with me and that our collaboration has had an effect on our respective

future careers. Professor Wenny Rahayu, I am proud to have had a supervisor like you

and I cannot thank you enough for being a more-than-wonderful supervisor who shared

all the joys and anguish of my PhD journey. I would also like to express my deepest

gratitude to Dr A. S. M. Kayes, my second supervisor and my ‘big brother’, who helped

me to understand how to solve problems and write a thesis and academic papers. His

insightful suggestions, generous encouragement and considerate instruction helped me

during my PhD candidature. I learned many things from him which helped me become

an independent researcher in my field. Over countless hours and with endless patience,

he taught me how to conduct research from finding a problem to the later stages of

writing a paper and finally building a solution and completing this thesis. I am also

deeply thankful to Dr Kinh Nguyen for the many fruitful and inspiring discussions that

influenced every contribution of this thesis. I always felt encouraged and extremely

privileged to have a supervisor like you. I will never forget the times when you excitedly

presented your ideas and reviewed my points on the white board in your office. I would

also like to express my thanks to Dr Eric Pardede, Chair of the Progress Committee for

his kindness and compassion as well as his critical comments on my PhD progress.

Second, I would like to thank La Trobe University for giving me so many memorable and

wonderful experiences during my six years in Australia pursuing a master’s and PhD

degrees. I am also deeply indebted for the generous financial support from La Trobe

University that made this PhD candidature possible, and this work was supported

by a La Trobe University Postgraduate Research Scholarship. I am very grateful

to the many great professional staff in the Department of Computer Science: Dr Fei Liu,

iv



v

Dzung Le, Renuka Eliezer, Michele Mooney and others. Thank you again, Michele, for

proofreading this thesis. All of you have made my time here memorable.

Third, my list of support also extends to my other great friends. I particularly thank

Syed for being my best friend at La Trobe University. Thank you for giving me positive

thoughts during the difficult days of my PhD candidature. I would like to extend my

thankfulness to my many other great friends both in Australia and Vietnam: Dong

(Mr.Cu), Khoa (Kevin Phan), Tommy, Long Truong, Frankie, Duc, Loan, Chien, Thuy

Bac, Nhan Tinh, Dao Tung, Anne Tieu, Nga Duc, Anh Thanh, Trammoo, Dan and many

others. Enjoying life outside academic circles has been so joyful with all of you! I would

like to extend my thankfulness to my very old (secondary and high school) friend Dr Mai

Vu for your support in the latter stages of completing this thesis. My special thanks to

Jenna, who came to me just in time to help me to overcome my personal issues.

Last but not least, I would like to express my special thanks to my family for their love,

advice and encouragement over these past few years. I cannot adequately express my

gratitude to my parents for raising me in a happy family and for their unconditional

support which allowed me to choose any pathway I wanted to take. Though they do not

know anything about research or academia, my parents may now feel relieved as they do

not have to keep asking me “when will you finish your study?” anymore. I thank Mum

and Dad for giving me the wings to fly in freedom. I also thank Thu Le for caring support

she gave to our children which allowed me the time to focus on this thesis. Lastly, my

heartfelt thanks go to my little sons, Ken and Ka, who accompanied me to Australia

for this further study when they were twenty-three months old and eight months old,

respectively. They are the best companions and give me cuddles whenever I need them,

as well as giving me great happiness which helped me throughout this PhD candidature.

This thesis is dedicated to Ken and Ka.



Contents

Abstract i

Declaration of Authorship iii

Acknowledgements iv

List of Figures ix

List of Tables xi

List of Publications xii

1 Introduction 1
1.1 The Connected World and IoT Data . . . . . . . . . . . . . . . . . . . . . 2
1.2 Streaming Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 IoT Streaming Data Integration . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 9
2.1 Integrating Streaming Data from Multiple Sources . . . . . . . . . . . . . 11

2.1.1 Integrating Approaches . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1.1 Structure-Based Integration . . . . . . . . . . . . . . . . . 13
2.1.1.2 Semantic-Based Integration . . . . . . . . . . . . . . . . . 13
2.1.1.3 Time-Based Integration . . . . . . . . . . . . . . . . . . . 14

2.1.2 Discussion on Data Integration Features . . . . . . . . . . . . . . . 15
2.1.2.1 Time-based . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2.2 De-duplication . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2.3 Window-based Integration . . . . . . . . . . . . . . . . . 16
2.1.2.4 Comparative Assessment . . . . . . . . . . . . . . . . . . 17

2.1.3 Accessing and Processing Data from Multiple Sources . . . . . . . 18
2.2 Storage optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Compression based Storage optimisation . . . . . . . . . . . . . . . 20
2.2.2 Pattern based Storage optimisation . . . . . . . . . . . . . . . . . . 20

2.3 Data Access with Indexing Techniques . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Key-value Pair Indexing . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Criteria-based Indexing . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 AI-based Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



Contents vii

2.3.4 Partition-based Indexing . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Research Motivation, Problem Statement and Solution Framework 26
3.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 A Solution Framework for IoT Streaming Data Integration . . . . . . . . . 33
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 IoT Streaming Data Processing with Windowing Technique 36
4.1 An Approach to IoT Streaming Data Integration . . . . . . . . . . . . . . 37

4.1.1 Formal ISDI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 A Proposed Generic ISDI Integrator Model . . . . . . . . . . . . . 40

4.1.2.1 Data Sources and Managers . . . . . . . . . . . . . . . . . 40
4.1.2.2 Generic Integrator . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Implementation Algorithms for ISDI . . . . . . . . . . . . . . . . . . . . . 41
4.3 Experiment and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Experiment Setup #A . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 IoT Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3 Experiments #1 and #2 . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3.1 Comparative Analysis w.r.t. Non-Window and Window-
Based Approaches . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3.2 Demonstration of Streaming Data . . . . . . . . . . . . . 48
4.3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.4.1 Performance w.r.t. Different Machines . . . . . . . . . . . 50
4.3.4.2 Performance w.r.t. Different Window-Based Approaches . 51
4.3.4.3 Experiment #3 and Performance w.r.t. Different Data

Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.5 Experiment Setup #B . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.5.1 Development Environment on Spark . . . . . . . . . . . . 53
4.3.5.2 Performance w.r.t. Experimental Setups #A and #B . . 54

4.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 IoT Streaming Data Compression and Storage 59
5.1 Proposed Compression Framework . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 The Compression Mechanism for Floating-Point Data . . . . . . . 62
5.1.2 A Time-series Data Access Technique . . . . . . . . . . . . . . . . 67
5.1.3 Compression Mechanism with Time-series Data Access Support . . 68

5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Storage Space Reduction . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Time-series Data Processing Capability . . . . . . . . . . . . . . . 73
5.2.3 Time-series Data Integration through Timing Alignments and De-

duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 IoT Streaming Data Indexing and Query Optimisation 78



Contents viii

6.1 Proposed Indexing Approach for Query optimisation . . . . . . . . . . . . 79
6.1.1 Scenario and Data Representation . . . . . . . . . . . . . . . . . . 79
6.1.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Illustrative Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.1 Response for Query 1 (Selection on specific timestamp) . . . . . . 87
6.3.2 Response for Query 2 (Selection on timestamp interval) . . . . . . 89
6.3.3 Response for Query 3 (Selection on timestamp and aggregated non-

timestamp attributes) . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.4 Response for Query 4 (Selection on timestamp and actual non-

timestamp attributes) . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.5 Response for Query 5 (Selection from multiple sources) . . . . . . . 94

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Conclusion and Future Research 96
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 101



List of Figures

1.1 IoT Streaming Data Usage In Different Domains. . . . . . . . . . . . . . . 3

2.1 Number of related articles from 2000 to 2020, according to Google Scholar 12

3.1 A Scenario of IoT Streaming Data Integration from Multiple Sources . . . 28
3.2 A Framework of IoT Streaming Data Integration from Multiple Sources . 35

4.1 ISDI Integrator Model for IoT Time-Series Data from Multiple Sources . . 40
4.2 Different Components of the Generic ISDI Integrator . . . . . . . . . . . . 45
4.3 Simple Integrator (without Managers) vs Generic ISDI Integrator (with

Managers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Minute-based Data from Case 2 with Simple Integrator (W1) . . . . . . . 49
4.5 Integrated Data of Case 2 with Simple Integrator (W1) . . . . . . . . . . . 49
4.6 Second-based Data from Case 1 with Non-Windowing Approach (NW) . . 50
4.7 Integrated Data of Case 1 with Non-Windowing Approach (NW) . . . . . 50
4.8 Performance w.r.t. Different Window Sizes . . . . . . . . . . . . . . . . . . 51
4.9 Simple Integrator vs Generic ISDI Integrator . . . . . . . . . . . . . . . . 52
4.10 Performance w.r.t. Semi-structured Data in Different Formats . . . . . . . 53
4.11 An Architecture for Integrating IoT Streaming Data fromMultiple Sources

Using Apache Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.12 Setups #A vs #B w.r.t. Processing Time . . . . . . . . . . . . . . . . . . 55
4.13 Setups #A vs #B w.r.t. Processing Time per Window . . . . . . . . . . . 55

5.1 Compression Model for IoT Data . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Real Number BitBlocking Technique Overview . . . . . . . . . . . . . . . 61
5.3 Real Number BitBlocking - Phase 1 . . . . . . . . . . . . . . . . . . . . . 62
5.4 Real Number BitBlocking - Phase 2 . . . . . . . . . . . . . . . . . . . . . 62
5.5 Real Number BitBlocking - Phase 3 . . . . . . . . . . . . . . . . . . . . . 62
5.6 An Example of Traditional Bit Padding . . . . . . . . . . . . . . . . . . . 63
5.7 Time-stamp Attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.8 ISDI vs ISDI-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.9 Compression Ratio Using Different Techniques with a Big Dataset . . . . 72
5.10 On-the-fly Processing for Time-series Access Mechanism . . . . . . . . . . 74
5.11 On-the-fly Processing Time based on the Volume of Data From Single source 74
5.12 Time-series Compression and Access Mechanism from Multiple Sources . . 74
5.13 On-the-fly Processing Time Based on the Volume of Data from 2 Sources

(S1) and S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.14 The Implementation of Integrating Windows from 2 Sources (second-based

and minute-based) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



List of Figures x

6.1 A Framework of Streaming Data Indexing from Multiple Sources with
Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Scenario 1 vs Scenario 2 for Query 1 . . . . . . . . . . . . . . . . . . . . . 88
6.3 Results for Query 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4 Index Scheme for Query 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Index Scheme for Query 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.6 Index Scheme for Query 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



List of Tables

2.1 Comparative Analysis of the Existing Data Integration and Processing
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 First Set of Streaming Data (Case 1) . . . . . . . . . . . . . . . . . . . . . 47
4.2 Second Set of Streaming Data (Case 2) . . . . . . . . . . . . . . . . . . . . 48
4.3 368,199 Records (a record per minute) of 94 MB Size (Case 1) . . . . . . . 49
4.4 7,257,600 Records (a record per second) of 3.05 GB Size (Case 2) . . . . . 49
4.5 Third Set of Streaming Data (Case 3) . . . . . . . . . . . . . . . . . . . . 52

5.1 Set of Streaming Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Compression Ratio Using Different Techniques . . . . . . . . . . . . . . . 71

6.1 Old Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Identified Features for Common Queries . . . . . . . . . . . . . . . . . . . 85
6.3 Set of Streaming Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4 Results for Query 1 (Selection on specific timestamp) . . . . . . . . . . . . 88
6.5 Results for Query 2 (Selection on timestamp interval) . . . . . . . . . . . 91
6.6 Results for Query 3 (Selection on timestamp and aggregated non-timestamp

attributes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.7 Results for Query 4 (Selection on timestamp and actual non-timestamp

attributes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.8 Results for Query 5 (Selection from multiple sources) . . . . . . . . . . . . 95

xi



List of Publications

• Doan Quang Tu, A. S. M. Kayes, Wenny Rahayu, Kinh Nguyen: (2020) “IoT

Streaming Data Integration from Multiple Sources", Computing, 102(10), 2299-

2329, Springer (Q2 journal, Impact Factor: 2.063, H Index: 60, published).

• Doan Quang Tu, A. S. M. Kayes, Wenny Rahayu, Kinh Nguyen: (2020) “Integration

of IoT Streaming Data with Efficient Indexing and Storage Optimization", IEEE

Access (Q1 journal, Impact Factor: 4.098, H Index: 127, published).

• Doan Quang Tu, A. S. M. Kayes, Wenny Rahayu, Kinh Nguyen: (2019) “ISDI: A

New Window-Based Framework for Integrating IoT Streaming Data from Multiple

Sources", AINA 2019: 498-511 (Received Best Paper Award, CORE B Ranked,

published).

• Doan Quang Tu, A. S. M. Kayes, Wenny Rahayu, Kinh Nguyen: (2021) “A Frame-

work for IoT Streaming Data Indexing and Query Optimisation", IEEE Internet

of Things Journal (Q1 journal, Impact Factor: 9.47, H Index: 97, submitted).

• Doan Quang Tu, A. S. M. Kayes, Wenny Rahayu, Kinh Nguyen: (2021) “IoT

Streaming Data Indexing and Integration from Multiple Sensors: A Survey and

Future Research Directions", IEEE Sensors Journal (Q1 journal, Impact Factor:

3.30, H Index: 121, submitted).

xii



Chapter 1

Introduction

The convergence of physical-digital systems, as the globally ground-breaking driving force

of the fourth industrial revolution (Industry 4.0), has highlighted the essential role the

Internet of Things (IoT) has come to play in daily lives. A report from Juniper Research

has revealed that the total number of connected IoT sensors and devices is set to exceed

50 billion by 2022, which is a double increase compared to 2016. It is also predicted that

the growth will be equivalent to 140% over the next 4 years [1]. Due to the widespread

popularity of IoT devices, the increase in IoT streaming data is unprecedented and

it is an enormous challenge to collect and integrate data from these IoT sources. As a

result, IoT streaming data analytics which deals with the processing and analysis of large

data volumes generated by connected devices is a critical area. Companies can derive

a number of benefits from streaming data by optimizing their operations, controlling

processes automatically, predicting faults in relation to maintenance in the manufacturing

industry and so on. The combination of IoT and data analytics has already proven to

be beneficial in retail, healthcare, telematics, manufacturing, and smart cities.

To shed light on concerns about IoT streaming data and its integration from multiple

sources, in the remaining sections of this chapter, a background of the connected world

and IoT data is discussed (Section 1.1), and the term streaming data is introduced

(Section 1.2). An overview of streaming data integration is discussed in Section 1.3.

Finally, in Section 1.4, the thesis outline is presented to illustrate its structure.

1
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1.1 The Connected World and IoT Data

The introduction of the Internet of Things (IoT) has brought about a revolution in the

data industry. A range of sensors and other personal devices, including security systems,

smart TVs, smart appliances, and wearable health devices, which collect data from ev-

erywhere and are connected over the Internet, detect, measure, and send data in several

forms. There are also various commercial IoT devices, such as traffic monitoring devices,

commercial security systems, and weather tracking systems that continuously send and

receive. This data is collected by the IoT and provides real-time valuable insights to save

time, money and energy. For example, in the commercial real estate industry, there are

several types of IoT data, namely equipment data, environmental data and sub-meter

data. Equipment data enables real-time fault detection, runtime-based schedules and

predictive maintenance thus saving energy cost, increasing productivity and extending

equipment life. Taking the advantage of environmental data, IoT sensors are deployed

to track a range of data streams within buildings, for example, temperature, air quality,

people flow, moisture, and movement. These datasets are mainly used to predict poten-

tial issues to avoid disaster scenarios such as leaks and floods. Similarly, sub-meter data

support vendors by automating the utility sub-metering process, eliminating errors and

generating bills as soon as the billing period ends. In health care, IoT applications such

as connected thermal cameras, contact tracing devices and health-monitoring wearables

provide the critical data needed to help fight diseases. In the manufacturing industry,

when sensors collect data from a connected device, the sensor data can be used to up-

date a "digital twin" copy of the device’s state in real time [2, 3]. Many other IoT data

use cases also offer valuable insights such as medical data (e.g., heartbeat, blood pres-

sure, etc.), educational data (e.g., attendance and learning), location data (e.g., traffic

congestion) and agriculture data (e.g., weather and soil information).

To sum up, as the emerging paradigm of IoT enables communication between electronic

devices and sensors through the Internet, IoT data has become very critical in daily life.

Overall, IoT is an innovation that combines an extensive variety of smart systems, frame-

works and intelligent devices and sensors which generate an unprecedented volume of IoT

data which benefit human lives in many domains. Several examples of IoT streaming

data usage in different domains are illustrated in Figure 1.1.
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Figure 1.1: IoT Streaming Data Usage In Different Domains.

To gain insight from data, the first step is to collect multiple streams from which in-

formation arrives in numerous sources and formats. As discussed, the data for analysis

may come from a data warehouse, data mart, data lake, or IoT devices. In these cases,

the data may be an extract from a production system, for example, an e-commerce ap-

plication. In addition, increasingly these days, the data for machine learning projects

come from a variety of source including unstructured sources such as social media. In

this scenario, IoT data collected from multiple sources must be processed efficiently, and

it needs to perform several sub-processes, which collect, extract, gather and aggregate

data. These processes are part of IoT data integration, which combines data from differ-

ent sources into a single, unified view with the purpose of producing effective, actionable

intelligence. Nowadays, IoT data integration is in high demand to support the diverse

analytical and operational requirements for data. However, there is an urgent need to

look at the nature of IoT data, which is the flow of information or data streams, before

turning it into insights. Hence, in the following section, a background of IoT streaming

data and an overview of streaming data integration to obtain insights from IoT data are

presented.
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1.2 Streaming Data

IoT sources or connected communicating devices not only produce big data but also fast

data which arrive at a speed that is not perceptible to the human eye and which can seem

fast to obtain value from it. This kind of IoT streaming data, and machine-generated

data in particular, requires technology options like event stream processing to ensure

optimum processing and insight. Data coming from the sensors of connected devices are

the key source of streaming data now and in the future.

Valuable information is collected from a massive amount of streaming data that will be

used to improve applications and business processes, so the first step in IoT streaming

data is to collect and extract data from sources. IoT streaming data collection is the

process of using sensors to track the conditions of physical things. Devices and tech-

nology connected over the IoT can monitor and measure data in real time. IoT data

is unstructured and different IoT sources may generate different data formats. It is not

easy to transform the data to a uniform format and to ensure that format is compatible

with applications or clients’ requirements. There are various types of data generated by

IoT devices and it is essential to apply integrating tools to handle this data.

The second step is to extract useful information from IoT data and store it efficiently.

Two commonly asked questions are: what are IoT data attributes and which information

should be extracted? In practice, IoT data is highly dependent on sensors, processors, and

other technical equipment. For instance, real-time GPS asset tracking data attributes are

the position of objects and maps; energy and environment monitoring data attributes

are temperature, pollution levels, and air-quality index; and health monitoring data

attributes are pulse rates, blood pressure, and body temperature. However, all streaming

data have a common attribute which is a time-stamp. Hence, when data is integrated, it

is challenging to gain insights data from multiple sources within the choice of attributes

for the insights depending on applications.

The third step is to access integrated IoT streaming data from its optimized storage.

To deal with commercial pressure to utilise data in IoT solutions, proficiency in data

integration becomes critical. However, there is a need to coordinate these solutions. A

lack of access to, and reuse of, data to support shared goals and evolving business needs
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will quickly constrict synergistic use of IoT technologies and information capabilities.

The benefit of quick IoT data access is as important as data integration in real-time.

In the following section, an overview of IoT streaming data integration is discussed in

relation to the topic of real-time processing and integration with IoT streaming data

storage and encryption and IoT data access with indexing.

1.3 IoT Streaming Data Integration

Due to the rapid advancement of big data platforms, the need to improve access to data

from multiple sources through data analysis and decision support systems has grown

significantly over the last few years. However, with the unprecedented expansion of data

in business, decision makers and researchers find it difficult to access the necessary data

for a comprehensive and in-depth analysis. On the one hand, it is critical to be able to

react and respond to queries from clients accurately in a quick and timely manner. On

the other hand, it is necessary to integrate data coming from multiple sources as data is

generated from different streams and is infinite. Continuously generated data is called

streaming data [4].

In both research and industry arenas, it is necessary to obtain useful data and information

in real time, but streaming data may come from multiple sources in a way that it seems

infeasible to access as a whole. We are currently experiencing the era of IoT streaming

data which arrive in different structures or even semi/non-structures. As such, captur-

ing and/or transferring these heterogeneous data in different formats (e.g., structured,

unstructured and semi-structured) into a unified form, which is suitable for analysis, is

a challenging task [5]. Furthermore, the high volume of streaming data from each source

may increase dramatically and dynamically, making it difficult to manage and store when

integrating data from multiple sources in federated storage. Although there are several

tools (e.g., storage resource management [6], and the Hadoop distributed system [7])

which satisfy the requirements of data storage management from distributed sources,

they cannot handle dynamic changes and the need to integrate IoT streaming data with

timing alignment and de-duplication issues. Hence, another issue revolves around how

to integrate IoT streaming data from multiple sources on the fly in real time.
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Regarding the last step of IoT streaming data integration, efficient access to data for a

comprehensive and in-depth analysis has become more critical. This is due to the nature

of data being non-static and continuously generated, which is even more challenging to

access and store. This kind of data is referred to as streaming data or time series data

and in the context of IoT data, it is a sequence of real numbers in time order. It is critical

to be able to react and respond to queries from clients accurately in a timely manner by

accessing time-series data. Factors that should be considered in improving data access

are: how the data is accessed and how it is processed in real time from multiple sources.

Hence, to adopt the idea of quick response queries from streaming data sources, there

should be a mechanism for pre-processing streaming data including storage efficiency and

efficient indexing. A characteristic of streaming data is that it is potentially unbounded

in size, so there is a need to improve data compression in relation to storage. Also,

it is necessary to index from the compressed time-series data without decompression,

which facilitates much better performance in queries. Hence, there is a need to develop

a framework to integrate time-series data from multiple IoT sources using compression

and indexing techniques for streaming data.

Data compression is a reduction in number of bits that represent the data, saving storage

capacity, speeding up file transfer, and decreasing the cost of storage hardware and

network bandwidth. Compression techniques were developed last century but since the

expansion of IoT data, many researchers again focused on compressing time-series data

techniques, for example, Balck et al. with Sprintz [8], Wegener et al. with signal data

compression [9] and Diffenderfer et al. with ZFP [10]. However, these techniques are

merely compression approaches, which only focus on saving storage capacity. In this

thesis, an improvement to compression is introduced, not only for storage saving but for

the ability to index from compressed time-series data.

In recent years, a large body of research has been conducted on similarity searches and the

subsequent data access and indexing [11–13]. In the context of time-series data indexing,

an example query related to a similarity search can include finding past days in which

the temperature recording is similar to today’s pattern. From a different aspect, in our

research, we propose an indexing framework that features easy-to-find results based on

timing requirements but which are not based on similarity patterns. In particular, it

is observed that clients not only focus on finding a trend (up or down) or a similar

pattern in time-series data in a period of time, they also expect to obtain summarized



7

information on such time series. The term ‘summarized information’ referred to in this

thesis is not like "summarizations" proposed in [13], which are representations of time-

series data segments. The term in this thesis refers to summarized outcomes extracted

from a segment of data by relevant user-defined functions. For example, with the ability

to continuously track time-series data based on time-stamps, the solution framework

in this thesis can summarize information such as the average, maximum or minimum

temperatures in a certain period of time.

1.4 Thesis Outline

This thesis introduces a framework to integrate time-series data from multiple IoT sources

to facilitate further data analysis by integrating IoT streaming data in real-time, offering

optimized storage with useful information and optimizing data access performance using

indexing schemes.

This thesis is structured into seven chapters. The first three chapters are the introduc-

tion (Chapter 1), a literature review (Chapter 2) to provide the background knowledge

required for this thesis, the research motivation, problem statement and a solution frame-

work (Chapter 3) to provide the general requirements and formal specifications of the

IoT streaming data integration (SDI) approach. The three following chapters present

the key research contributions of this thesis: IoT streaming data processing using the

windowing technique (Chapter 4), IoT streaming data compression and storage (Chapter

5) and IoT streaming data indexing and query optimization (chapter 6). Finally, the last

chapter presents the conclusion, recapping the contributions of this thesis and related

topics for future investigation (Chapter 7).

• Chapter 2 reviews the existing approaches to the issues of IoT SDI. The chap-

ter focuses on the topic of integrating approaches and how to access and process

data from multiple sources. It also investigates a mechanism to optimize the stor-

age for IoT streaming data by reviewing the existing streaming data compression

techniques and data access optimization with indexing. Finally, data integration

features are discussed and the techniques regarding theses features are compared.

• Chapter 3 provides a generic scenario of SDI, involving several issues such as tim-

ing conflict, data redundancy and real-time integration issues. Based on these
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challenges, the general requirements for SDI are discussed, and then the problem

statement of this thesis is outlined. In this chapter, a solution framework is pro-

posed with three main research contributions, namely streaming data processing

using the windowing technique, IoT streaming data optimized storage and opti-

mized data access with an index scheme.

• Chapter 4 presents a formal approach for the real-time integration of IoT streaming

datasets. In this chapter, the thesis addresses one of the important issues of timing

conflict/alignment among streaming data coming from multiple sources. A generic

window-based ISDI approach is proposed to deal with IoT data in different formats

and introduces the algorithms to integrate the IoT streaming data obtained from

multiple sources. In particular, a basic windowing algorithm for real-time data

integration is extended to deal with the timing alignment issue. A de-duplication

algorithm is introduced to deal with data redundancies and to identify the useful

fragments of the integrated data. Several sets of experiments are conducted to

quantify the performance of the proposed window-based ISDI approach.

• Chapter 5 solves the issues of information retrieval by constructing a compression

framework (ISDI-C) within a lossless compression technique for floating point time-

series data, where an index is based on the time-stamp from the compressed data

that facilitates the search for data without full decompression. Several sets of

experiments are conducted to quantify the performance of our proposed approach.

The experimental results, performed on IoT datasets, show a reduction in storage

compared with the existing compression techniques. The experimental study also

demonstrates the capability of time-series data indexing and integration in real

time.

• Chapter 6 presents a variety of queries from the identified scenarios and then it

proposes a framework (ISDI-CI) to optimize the way to access and retrieve data per

the users’ queries. The optimization is evaluated by conducting an experiment to

illustrate the ability of the framework to respond to queries using different indexing

schemes.

• Chapter 7 concludes this research by summarizing the key contributions of this

thesis and discussing some interesting research directions for future investigation.



Chapter 2

Literature Review

In today’s interconnected world of technologies, modern data comes from a large vari-

ety of sources such as hardware sensors, servers, mobile devices, applications and web

browsers. Data generated continuously in this way is known as streaming data. Stream-

ing data are continuously generated by multiple data sources, e.g. sensors, mobile devices,

etc., and are sent simultaneously to the relevant application program to be processed in

real time in a continuous and timely fashion.

Streaming data processing is beneficial in most industries and big data use cases where

dynamic data is generated on a continual basis. Companies generally begin with simple

applications such as collecting system logs and rudimentary processing like rolling min-

max computations. Then, these applications evolve to more sophisticated near-real-time

processing. Initially, applications may process data streams to produce simple reports,

and perform simple actions in response, such as emitting alarms when key measures

exceed certain thresholds. However, these applications perform more sophisticated forms

of data analysis, like applying machine learning algorithms to extract deeper insights from

data. Complex, stream and event processing algorithms, such as time-decaying windows

[14, 15] to find the most recent popular movies, have been developed. These processes

depend on how unprecedented amounts of data are accessed from mobile devices, IoT

sensors, social media, and other databases that simply did not exist a decade or two ago.

This increase in information sources leads to the need for streaming data integration.

Streaming data integration is a process where data sources are integrated in real time to

9
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provide up-to-the-minute information and makes use of data streaming, which enables

organizations to collect and analyse information in real time.

In comparison to traditional data processing, the processing of streaming data – with

the requirement of handling incoming data in real time and the need to cope with data

generated by different sources, potentially with variations among them – presents a

number of additional and challenging issues.

First, synchronizing information and ensuring it is consistent despite sudden changes

in the data flow from sources is challenging. In traditional data integration, data is

transferred to a staging area, where it is synchronized as information sets and processed

for loading into the target system. During the real-time data integration process, there is

no staging area, rather information is brought together instantly, so there is no method

to ensure it is synchronized.

In general, streaming data processing involves two main functions, storage and process-

ing. The storage function needs to support record ordering and to have strong consistency

to enable the fast and inexpensive processing of large streams of data. The processing

function is responsible for consuming data from the storage layer, running computations

on that data, and making decisions on whether to keep all or partial data in the per-

sistence layer of the data storage. It is necessary to plan for scalability, data durability,

and fault tolerance in both the storage and processing functions.

Taking a broader view, the issues of streaming data processing can be grouped into the

following general tasks:

• Data integration. How are we to process data that are generated continuously

from multiple sources, with potential differences in generation frequencies and data

formats?

• Storage optimisation. Streaming data tend to be generated and accumulated in a

large volume over time. How should we optimize the storage of integrated data to

cope with such a large volume?

• Data access mechanism. The stored integrated data are to be extracted and used

by application programs to serve the users’ interests. It is necessary to have a data

access mechanism to facilitate efficient query performance. The term “querying”
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is commonly used to signify the extraction of the stored data for such purposes.

What can be done, as generally applicable techniques, to have this kind of data

access?

To complete the aforementioned general tasks, the literature review is organized as fol-

lows. Section 2.1 covers the related work on integrating streaming data from multiple

sources. Section 2.2 reviews the related work that involves storage optimisation with

streaming data compression. Section 2.3 covers a review of some of the indexing tech-

niques which can be applied to facilitate query optimisation.

2.1 Integrating Streaming Data from Multiple Sources

As an overall picture, the statistics on the number of research studies on Google Scholar

which relate to data streaming data in general processing and streaming data integration

in particular are presented in Figure 2.1. The figure is based on the results of the searches

on the two key terms “streaming data processing” and “streaming data integration”. The

term “streaming data processing” was introduced in academic research about two decades

ago. It is used to refer to the overall process of handling streaming data, appropriate to

some purpose and typically up to the point of saving the processed data to long-term

storage for further use. In contrast, the term “streaming data integration” refers to a

sub-process of streaming data processing with an emphasis on how to deal with the

potential complications caused by the fact that the data are generated continuously by

multiple sources with possible diverse characteristics.

As shown in Figure 2.1, with only 4 articles on data streaming processing in the year

2000, the number of research studies related to this topic has been increasing steadily and

significantly in subsequent years. The number of articles on streaming data processing

in 2020 was triple the number of research studies on this topic in 2015, which was 1,560

and 515, respectively. Likewise, although the articles with the keyword “streaming data

integration" were modest in quantity (51), the number of articles in 2020 were two-and-

a-half times more in comparison with those in 2015 (124).

In this section, we first provide a short overview of the state-of-the-art big data pro-

cessing and integration approaches as the area related to our research. The overview
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includes integrating data from multiple sources, data integration features and accessing

and processing data from multiple sources.

2000 2005 2010 2015 2020

Streaming Data Processing 4 61 199 515 1560

Streaming Data Integration 0 0 16 51 124
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Figure 2.1: Number of related articles from 2000 to 2020, according to Google Scholar

2.1.1 Integrating Approaches

In this subsection, integration techniques are categorised into three types, including

structure-based integration, semantic-based integration and time-based integration. While

structure-based integration is a traditional technique which considers data structure

and schema to map data from sources, the semantic-based techniques focus on build-

ing domain-based knowledge to share a global schema for different sources. The time-

based techniques are reviewed as a close work to this research regarding streaming data

integration.

In the context of IoT streaming data integration, the main challenges can be categorized

as follows: i) dealing with various types of data in different structures [16], ii) dynamic

streaming data acquisition from multiple sources and dealing with transformation to-

wards modeling a unified schema [17]; and iii) other concerns related to data privacy and

security issues. In this thesis, the research work is to address the first two challenges.
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2.1.1.1 Structure-Based Integration

IoT streaming data integration is a promising approach to address the challenges and

issues that traditional data integration approaches cannot deal with [18–22]. To address

the streaming data integration issues, in [16], the authors list some popular models and

techniques such as schema mapping, record linkage, and data fusion, which are potential

solutions for traditional big data challenges. The earlier research works on record linkage

[23–26] utilize blocking techniques to combine identical data from different sources. These

works deal with a huge amount of data, but not the issue related to timing alignment,

where aligning streaming data with identical or different timestamps is one of the critical

concerns.

2.1.1.2 Semantic-Based Integration

Similar to record linkage research, the schema matching and mapping [27] and global

schema [28] research works are not adequate to handle the same issue of timing alignment.

Also, these existing works do not resolve the data redundancy issue while dealing with

identical or different timestamps from multiple data sources. In terms of IoT streaming

data integration, there are several ontology-based research works in the literature. In

[29], an ontology-based data integration approach with respect to collating streaming

data from different sources has been introduced. The integration task in this work

[29] is based on ontology-based access to relational data sources. In this perspective,

in [30–34], the authors have proposed an approach to OBDM (Ontology-Based Data

Management) in order to provide a shared or unified vision to process/integrate data

from different sources. This ontology-based shared vision is used as a global schema for

all data sources. Typically, in these research works, the OBDM model is proposed based

on three main layers: the ontology layer for the representation of the conceptual domain,

the mapping layer for the correspondence between the local data sources and the general

concepts, and the source layer for producing data from different environments. The

ontology can be considered as a global schema for mapping different local schema into a

unified data model, however, similar to other data integration solutions, these ontology-

based solutions are not adequate to address the issue of timing conflicts (i.e., aligning

different timing frequencies) while integrating time-series data from multiple sources.
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A source description contains a source schema that describes the content of the source,

and a mapping between the corresponding elements of the source schema and the medi-

ated schema. In later work on data integration, techniques for automating the schema

and tasks as much as possible are needed to simplify and speed up the development,

maintenance and use of metadata-intensive applications. As such, ontology matching

was developed as powerful schema matching prototypes and applied to a large variety of

matching problems [35–37].

2.1.1.3 Time-Based Integration

In the existing research related to window-based techniques to process streaming data,

the basic windowing algorithms proposed in [38–40] focus on the machine learning and

data mining techniques through windows of data with fixed sizes. A time-based window

is a batch of data and is considered as a training set for such learning algorithms and

the window is revised if the mining rule is not sufficient [38]. In [41], the authors utilize

the basic windowing technique to identify the observed average of data elements in a

window and adjust its size to derive an efficient performance variations. The research

work in [42] is also relevant to the windowing technique for processing time-series data.

However, this work mainly focuses on concept drift when collecting data in sequences.

These existing windowing approaches are not sufficient to integrate IoT streaming data

from multiple sources in real time.

Pareek et al. [43] introduced a streaming analytics platform (the Striim engine) for real-

time data integration with respect to structured data from multiple sources. Recently,

Pareek et al. [44] proposed several adapters for the Striim engine to extract such data,

to transform SQL-based data and for continuous data validation. This Striim engine can

integrate time-series data with other structured data. In particular, it collects datasets

from different sources and transforms them for aggregation without considering identical

or different timestamps. As such, Striim is not adequate to handle timing alignment

among different streaming data from multiple sources. In addition, it is also not enough

to resolve data duplication issue while integrating data with various timestamps.
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2.1.2 Discussion on Data Integration Features

Streaming data integration from multiple sources requires processing in real time, and

the data from these sources needs to be consistent at arrival time and synchronized

with an unified scheme at the integrated stage. Therefore, in this subsection, several

features which are used to address streaming data processing and integration issues are

described, including timing alignment, de-duplication, (nearly) real-time processes and

window-based integration. Apart from reviewing the existing work on these features, a

comparative assessment of these works is discussed compared to the proposed approach

of this thesis.

2.1.2.1 Time-based

Alignment-related issues and timing synchronization are among the top concerns of many

always-on real-time applications. In the context of streaming data integration, this is

called a timing conflict of data coming from different sources, and timing alignment is

a solution to address this issue. For example, IoT sensor data obtained from multiple

sources have different timing orders and all the instances in the integrated data need

to have the same timestamp. This idea of dealing with different timing conflicts is

discussed in [45]. In industry, IoT data obtained from multiple sources can arrive at

different times, e.g., data from sensors A and B arrive at different timestamps t1 and t2,

whereas t2 = (t1 + n), respectively. This requires the streaming data to be processed in

order. Furthermore, data from multiple sources can be generated in different frequencies

so the timestamps of this data must be aligned and sorted before being integrated.

2.1.2.2 De-duplication

In general, many existing streaming processing approaches do not consider the issue of

timing conflict. Some use de-duplication to eliminate duplicated or redundant informa-

tion. Data de-duplication is a step in database record linkage referring to the task of

finding entries that refer to the same entity in different sources. There are several types

of research on data de-duplication work.

In this research, de-duplication is the process of merging instances that have the same

timestamp, an instance key, and aggregate the identical attributes of different instances
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which have the same keys. In particular, the frequency of timestamps (e.g., seconds,

minutes or hours) of the different data instances may be different, and more than one

data instance may contain the same timestamp. Those with the same timestamp contain

identical attributes and non-identical attributes, so the raw IoT data from many sensors

are usually not ready for any kind of processing or integration. Therefore, there is a

need to deal with data redundancy and duplication issues by merging or aggregating

data instances into one with the associated attributes of such instances.

Many existing works have addressed the issue of duplication and data redundancy; how-

ever, they only focused on specific scenarios and lead to the loss of data integrity [46].

For example, the work in [47] introduced a timing-based de-duplication with inline de-

duplication and post-process de-duplication. The work in [48] deals with data redun-

dancy efficiently but uses a de-duplication tool, ZFS [49], to support the de-duplication

functionality for virtual machine disk images. Similarly, the schema matching and map-

ping techniques in [27] focus on specific data types to reduce and de-duplicate identical

records. Not all of these works can handle the duplication issues comprehensively on

both timestamps and identical non-timestamp attributes at the same time.

2.1.2.3 Window-based Integration

Data integration is the process of combining data from different sources into a single,

unified view. Some existing works make use of sliding windows in the streaming process

[50–52] to integrate data. At the stage of integration, integrated windows begin the

ingestion process which includes steps such as cleansing, mapping, and transformation.

To form an integrated window with a starting timestamp at t and a period of p (e.g., a

minute, a few minutes or an hour), each window extracted from a single source is also

created at time t and the data volume of windows with different time frequencies are

also different. The technique to synchronize the time is time alignment. In addition, the

integrated data windows need to be de-duplicated and the redundancy removed. These

processes are also processed in real time. These features are discussed above. None of

those approaches focus on all the features and their issues.

Some existing works aggregate and integrate data at analytical layers by integrated win-

dows, but they do not satisfy the requirement of windows integration. The approach
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Table 2.1: Comparative Analysis of the Existing Data Integration and Processing
Solutions

Handling IoT Streaming Data
Approaches Timing

align-
ment

De-
duplication

Window-
based
integra-
tion

Data Linkage [24]
[26]

N/A N/A N/A

Schema Match-
ing and Global
Schema [27] [28]

N/A P/A N/A

Ontology-Based
Solutions [29] [32]
[33]

N/A P/A N/A

Window-Based
Solutions [38] [41]
[42]

N/A N/A P/A

Striim [43] [44] N/A P/A N/A

Hadoop and Ac-
cess Control [55]
[56] [57]

N/A N/A N/A

The ISDI Ap-
proach

Y ES Y ES Y ES

in [53] introduced a framework building feature vectors for machine learning from het-

erogeneous streaming data sources online to enable the easy configuration of streaming

data fusion and modeling pipelines. The model integrates data by windows aggrega-

tions but does not focus on the issues of timing conflict and duplication. The works

in [29, 32, 33, 54] make use of streaming queries to aggregate data windows, but the

integration merely depends on query functions.

2.1.2.4 Comparative Assessment

Table 2.1 shows the results of comparative studies in which we use "YES" when a feature

is available, "N/A" when a feature is not available, and "P/A" when a feature is partially

available. In our comparative study, we consider the following aspects of our proposed

IoT streaming data integration approach.

Several research studies address the traditional challenges of data integration, such as

data linkage [24, 26], schema matching [27], global schema [28] and ontology-based
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approaches [29, 32, 33]. However, these approaches does not consider timing conflict

(by handling different timing alignments and data redundancy (by handling de-

duplication) issues while integrating streaming data from multiple sources. Several

window-based techniques [38, 41, 42] have been introduced in the literature on processing

dynamic streaming data in real time based on the windows from different data sources.

On the other hand, recently, the Striim platform [43, 44] has been introduced and it can

also process and integrate time-series data. However, these existing solutions using the

traditional windowing technique and the Striim engine are not adequate to deal with

the identified issues of timing conflicts and data redundancy. The existing approaches to

access and process data from different sources [55–57] have been considered IoT data

integration in real time. To address this issue, in this research a new window-based

integration approach is introduced to handle IoT streaming data from multiple sources.

Different from the aforementioned data integration and processing research, in this the-

sis, a formal model for integrating time-series data from multiple sources is introduced,

including underlying concepts through preliminary definitions and formal notations. In

addition, a generic integrator model is proposed to apply in different environments to

integrate multiple time-series data.

2.1.3 Accessing and Processing Data from Multiple Sources

Ahad and Biswas [55] have proposed a distributed Hadoop-based architecture for com-

bining unstructured data from different small files (e.g., text, document, pdf, and so on).

They have introduced a dynamic merging mechanism with the goal of collating data

from different types of files. These Hadoop-based research works are useful to process

and manage data from multiple environments. Similar to Hadoop-based research, our

group’s earlier works in the area of context-sensitive access control can be applicable to

capture data from a single centralized source [12, 56, 58, 59] or from multiple decen-

tralized sources [57, 60]. However, these research works do not focus on the key issue

of timing alignment of multiple time-series data from different sources. Based on our

experience in this research, the streaming or time-series data need to be processed and

integrated in real time by dealing with timing conflicts from multiple data sources.

There are many ways to address the issue of data processing. Traditionally, in many

cases, historical and archived data are processed and time issues are not critical. It can
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take a few hours, or even a few days for a response to a monthly/yearly report. However,

with the need for a quick response on decision making and data analysis, processing

tasks are more crucial in a timely manner, and the answers need to be delivered within

seconds or shorter. This is real-time processing, which requires continual input, constant

processing, and a steady output of data. In some cases, near real-time processing, pro-

cessing time in minutes is acceptable in lieu of seconds, can be considered as real-time

processing. A significant example of real-time processing is data streaming, radar sys-

tems, customer service systems, and bank ATMs, where immediate processing is crucial

to ensure the system works properly. Apache Spark [61–63] is a valuable tool to use for

real-time processing, and Striim [43] is an example of a platform that build continuous,

streaming data pipelines, including change data capture (CDC), to power real-time cloud

integration, log correlation, edge processing, and streaming analytics.

Topic streaming data processing in this research is discussed in relation to the process of

extracting data from sources by using windows and issues such as timing alignment and

de-duplication for streaming data integration, are addressed. Much of the research on

streaming data processing and integration for the purposes of data analytics focuses on

specific tasks in real time, but not on these issues. For instance, the authors of [64] in-

troduced the architectural concept of the Apache Storm based real-time data processing

topology to process streams with their data analytics task, a task building up predic-

tive model for programming technologies trends, from social networks. The framework

processes data by adapters between the data sources and real-time data processing in-

frastructure. Each adapter is responsible for a specific data stream which enables tuples

to be produced from streams with different protocols and data formats. To pursue a

similar purpose for a real-time data analytics framework to analyse Twitter data, the

work in [65] performed basic processing tasks and proposed an infrastructure to perform

analytics on the streaming data.

2.2 Storage optimisation

In the previous section, our review work focuses on the models of time series data in-

tegration; however, to make use of the integration, there is a need to store integrated

data efficiently while still allowing effective user queries. Therefore, there should be a
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mechanism for pre-processing streaming data including efficient data storage which fa-

cilitate data access for future purposes. In this section, storage optimisation based on

compression and patterns are reviewed and discussed as follows.

2.2.1 Compression based Storage optimisation

Time-series data has a special structure, which takes into account the gaps between the

values of the two adjacent timestamps. For example, in financial time series data, the

price of the WOOLWORTHS GROUP LIMITED at time T is very close to its price

at time T+1. This structure can be exploited by many floating-point compression tech-

niques. These approaches are very popular when analysing floating-point representations

with three main components, namely sign, exponent and mantissa. Wegener and Albert

[9] proposed a typical floating-point compression and decompression method by removing

the least significant bits (LSBs) of a component (mantissa) based on similar consecutive

floating-point values and grouping values into blocks to facilitate the compression. An

important process for this method is to create a quantization function before encoding

the data. [66] used blocks differently and invented blocks of 4d values (d is the number

of dimensions). In this work, the lossy compression, ZFP, groups values into a block

and converts floating-point values to a fixed-point representation. It then de-correlates

the values by applying an orthogonal block transform and encodes the ordered transform

coefficients. Also, based on the binary representations of components, [10] improved ZFP

by establishing a bound which is a well-known limitation of ZFP.

2.2.2 Pattern based Storage optimisation

In addition, compression techniques rely on the small difference between consecutive

values and make predictions for the next values. For example, the approach in [67] takes

advantage of the correlation bewteen the subsequent data and earlier data. Recurring

difference patterns are identified and then recorded in a hash table which supports the

predictions of the next similar patterns. It compresses values by encoding the differences

between the predicted and the true values. Similarly, FPC [68] compresses data in

sequences by predicting the next value in the sequence and using hash tables as predictors.

Lindstrom et al. [69] also provide a method based on coding prediction within a plug-

in scheme. However, this work performs a floating-point quantization process before
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encoding integer data. Similar to [9], Sprintz [8] removes LSBs to reduce the number

of redundant bits to store values. This work focuses only on compressing the integer

data, and it recommends the compression of floating-point data using floating point

quantization.

The work in this thesis extends time-series integer data compression which also exploits

the nature of time-series data, the similarity between consecutive values, and greatly

reduces storage requirements.

2.3 Data Access with Indexing Techniques

This section focuses mainly on indexing techniques which optimize the way to access

data and provides the ability of respond to queries. It also investigates big data indices

in general and explores some techniques to index streaming data.

2.3.1 Key-value Pair Indexing

In terms of data indexing, SmallClient[70] improves query execution and search perfor-

mance for big datasets and minimises the overhead incurred by indexing. The framework

is implementable on any distributed file system. Basically, the main part of SmallClient

consists of three processes, namely block creation, index creation and query execution.

The systems create blocks so that no records are broken and then they use <key,value>

pairs as the content of records and the location of a data block to add in a BTree struc-

ture. Also, based on <key,value> pairs to make a basic structure, Elsayed et al.[71]

proposed a framework to address document similarity problems. They used MapReduce

because it has same-structure tasks which perform a computation on a chunk of data to

obtain partial results and then is aggregated to obtain the last outcome. The indexing

mechanism of the framework is used as a mapper, taking <key, value> pairs as inputs

to generate intermediate ones. The reducer produces the output based on all the values

associated with the same key. In particular, each term and its weight (the importance

of a term in a document) is associated with a document (docid) so that the term is

considered as the key, and a tuple containing docid and term weight are values. The

reducer is responsible for summing all the scores of the compared individuals. Likewise,

Lee et al.[72] applied indexing methods and MapReduce to the area of digital forensics
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which requires big data processing. They proposed the distributed text processing sys-

tem (DTPS) for searching which can support the identification of relevant evidence in

a trial from very large-scale data in a quick and accurate manner. The index method

used in the system is the document indexer and MapReduce is used to manipulate the

<key,value> based on <docId, term>. Hadoop is applied to solve problems involving

massive amounts of incoming data as its inputs. Several comments have noted that the

authors need to improve the accuracy of this in the future.

2.3.2 Criteria-based Indexing

According to Mamta[73], indexing splits data into fragments so that they can be in a

query, based on certain criteria. An example of a popular indexing technique is the

Cracking Database (Selection cracking). Indexes in Hadoop include Hadoop ++, HAIL

(Hadoop Aggressive Indexing Library), and LIAH (Lazy Indexing and Adaptivity in

Hadoop). Mamta summarised the challenges of big data from a different perspective.

These challenges are representation, redundancy, storage, heterogeneity and scalability;

process challenges include acquisition, alignment (ER), transforming and filtering, mod-

eling, understandable output and visualizing data; management challenges are privacy,

ethics, security and legal. In another survey, the authors of [74] identified the 6V require-

ments for big data indexing, namely volume, velocity, variety, veracity, variability and

value. They categorized indexing techniques into three methods, namely non-AI, AI and

collaborative AI. Non-AI methods are traditional indexing techniques (index construction

and query responses). These methods are mostly based on bitmap, hashing, B-Tree and

R-Tree. All the data/patterns in these methods are known and implemented following

rule-based techniques. The AI methods are reviewed in the following subsection.

2.3.3 AI-based Indexing

AI methods use a knowledge base to index a large number of moving objects. The data in

this case is variable, so the index needs to be updated frequently; whereas, collaborative

AI methods improve accuracy and search efficiency by collaborative AI (collaborative ML

and knowledge representation and reasoning methods). For example, it can adopt mul-

tiple indexing algorithms along with knowledge representation and reasoning to achieve

a high detection rate for the prediction of missing user preferences.
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In a survey of indexing on big data [75], the authors review two popular AI indexing

approaches, namely Latent Semantic Indexing (LSI) [76–80], and Hidden Markov Model

(HMM) [81–85]. For the purpose of indexing, the two methods make use of pattern

recognition and relationship between data, such as Resource Description Framework

(RDF), to make predictions of future states of an item/data or to support decision making

by using contextual matching. This is not aligned with the thesis’s scenario because the

query predicate in this work is to filter data base on the data set from streaming sensor

devices which is more suitable for indexing approaches such as tree-based indexing and

hash indexing strategies.

2.3.4 Partition-based Indexing

To address the challenges associated with streams, some studies focus on optimising the

ways data are processed in many aspects [86–88]. The research in [86] detects the reusable

parts, which are common resource usage that can be run by different applications and

optimize the streaming applications based on analysing the meta-store that captures and

exposes those applications. The work in [87] splits the workflow into suitable partitions

to reduce the cost of the inter-partition communication cost. Each partition is mapped to

an execution node that offers minimum execution time. Since each partition is mapped

on one execution node, the communication cost within the same execution node is negli-

gible. The optimized partitions provide minimum inter-partition data movement, which

improves the overall performance of the application. In this work, data parallelism is

applied to the most compute-intensive task of each partition which reduces the latency.

The work in [88] trace individual input records so that they can identify outliers in a web

crawling and document processing system and use the insights to define URL filtering

rules. Then they identify heavy keys, such as NULL, which should be filtered before pro-

cessing. In terms of optimisation they improve the key-based partitioning mechanisms

and measure the limits of over-partitioning if heavy thread-unsafe libraries are imported.

In contrast to these optimisations, the proposed framework focuses on how to get access

to data and obtain a quick response in nearly real time using indexing schemes. Hence,

in this subsection, some existing work on both indexing approaches are reviewed.

In [89], the authors discuss indexing heterogeneous data streams, which is nearly the

same as our topic. They introduce an index structure using bitmap based techniques
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to support the space-efficient lossless archiving of the data stream and then develop an

optimisation framework to adapt the changes of streaming data for index. In detail, their

index is on the segmented sections of an incoming records stream, which is stored in files

for disk I/O efficiency. Records in the same section are more homogeneous than records

in different sections, and to evaluate a structural predicate, the section index looking for

candidate sections that contain attributes of interest needs to be scanned through. For

each of the candidate sections, it is scanned through the bitmap index and the bitmap

is used to evaluate the validity of the structural predicate. However, the work assume

some pattern usage which is highly application specific. Our approach does not rely on

such specific assumptions.

Some other existing work [90–92] on streaming data indexing makes use of sliding win-

dows to index streams for information retrieval. In [91], the authors also investigate a

number of data streaming indexing approaches with some extension versions, namely

B-trees, burst tries and the advanced Judy implementation of compact tries. However,

similar to other indexing techniques, although there is a scalable range search, inser-

tion and deletion of data streams, these indices merely work in some specific scenarios

of individual element retrieval and they are not attached and applied in any optimised

framework which the proposed approach offers.

In [92], the authors provide a deep insight into the window indexing methods by providing

a list of attribute values and their counts to answer set-valued queries, and those which

provide direct access to tuples to answer attribute-valued queries. However, this work

focuses on traditional sliding windows, without taking into account the different rates of

incoming data from multiple sources and indexing on every tuple.

This section outlines the different types of indices developed by earlier work in the area.

As described above, each of these indices targets a particular application domain or a

particular performance measure (e.g., scalability of a pattern-based search, or indexing

based on partitions to reduce communication overheads).

2.4 Summary

In this chapter, the existing work and approaches related to streaming data integra-

tion have been reviewed in relation to three topics, namely data integration, storage
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optimisation and data access.

Firstly, in the review on streaming data integration, the integration approaches are cat-

egorized into three types, namely structured-based, semantic-based and time-based in-

tegration. The structure-based integration approaches are related to schema mapping,

record linkage and data fusion while the semantic-based approaches rely mostly on ontol-

ogy for sources sharing a unified schema. Time-based approaches are techniques based on

time-based windowing techniques to integrate batches of data from time-series data. On

the same topic, the chapter introduced three data integration features, namely time-based

de-duplication and window-based integration and gave a comparative assessment of the

existing work on these features. Secondly, the related works on storage optimisation with

compression and pattern optimisation are discussed. These existing approaches focus on

how to reduce the volume of data based on encoded compression or pattern based tech-

niques. Finally, data access approaches using different indexing techniques are reviewed.

These existing works are categorized into four types, namely key-value pair indexing,

criteria-based indexing, AI-based indexing and partition-based indexing. While different

types of indexing techniques are based on different criteria to index data attributes, they

have the common purpose of supporting data access and search queries, which is also

the focus of this thesis, that is, data access and query performance optimisation.

In the next chapter, the research motivation and the thesis problem statement are in-

troduced. A solution framework for IoT streaming data integration is proposed and the

main research contributions are discussed.



Chapter 3

Research Motivation, Problem

Statement and Solution Framework

In this chapter, a motivating scenario in the domain of streaming data from IoT sources

is presented and the general requirements for successful IoT streaming data integration

are discussed. After this, the problem statements are detailed and a solution framework

for streaming data integration is proposed to address the issues and ensure the general

requirements are satisfied.

The chapter is organized as follows. In Section 3.1, the motivation of this research is

presented. In Section 3.2, we detail the problem statements of the research and discuss

the general requirements to ensure the success of IoT streaming data integration. In

Section 3.3, we introduce a solution framework for integrating IoT streaming data from

multiple sources.

3.1 Research Motivation

In today’s competitive world, businesses derive meaningful insights quickly from datasets

to make better business decisions and take faster action. This is more challenging if data

presents insights about what is happening in real time. Streaming data is generated

by a huge number of applications and IoT devices which have exponentially multiplied

and continue to do so, for example, sensor data from machines in manufacturing firms,

inventory backlogs at warehouses, activities on e-commerce websites, transactions at

26
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point-of-sale systems in retail stores and many more. Consequently, it is challenging to

synchronize data across IoT sources, replicate streaming data, maintain a single source

of truth, and find meaningful information that can facilitate the success of the business.

Streaming data integration (SDI) is useful for this purpose. However, it takes time

and effort to write code and manually gather and integrate data from each system or

application copy the data, reformat it, cleanse it, and then ultimately analyze it.

There are several challenging issues in SDI which need to be addressed, such as streaming

data synchronization, migration and transformation. Streaming data synchronization is

the process of synchronizing similar object instances and data structures across multiple

IoT sources. This can be done by de-duplicating the gathered data to remove redundancy.

In addition, because streaming data comes from different sources, it is necessary to look

at the timing difference of the arrival flows to adjust and synchronize them to avoid

timing conflict. This task is referred to as timing alignment in Chapter 2. In SDI, data

migration is the process of selecting, preparing, extracting, and transforming data and

permanently transferring it from sources to storage or other sources. Data migration

reduces the cost of data storage, improves data access performance and improve data

availability. Streaming data transformation includes but is not limited to changing data

formats, combining data across multiple data sources, filtering or excluding certain data

entries from the combined data set, summarizing values across data sets, and so on.

To elaborate on the identified issues, the following scenarios of SDI illustrate some of the

issues which need to be addressed.

A scenario is illustrated in Figure 3.1. Each data sample or instance (e.g., Data1) has

a list of attributes ‘A’. The IoT streaming data can originate from multiple sources

and can be of different time durations (e.g., duration ‘D’ can be seconds, minutes or

hours). In such situations, the integrated data should be handled with a list of attributes,

which is the intersection of all the attributes of different streaming data instances from

multiple sources, as illustrated in Figure 3.1. The final duration ‘D’ represents for the

integrated data, which is the lowest one of all ‘Ds’ (e.g., seconds, minutes or hours) to

handle different timing orders. Also, there is a need to mark the starting time when

the new streaming data is on the way for real-time integration. An example to take

from the work using real streaming datasets from a global manufacturing company that

is designed by many machines along with different IoT sensors to achieve safety goals
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Figure 3.1: A Scenario of IoT Streaming Data Integration from Multiple Sources

and improve operational efficiency. These IoT sensors usually generate many different

time-series data. The aim of this thesis is to integrate this data for predictive analytics

in manufacturing (e.g., to determine the critical sensors that have a significant impact on

the long-run maintenance costs). Integrating IoT data from these sensors is important

to enable the business to react quickly to predict machine health.

As discussed previously, there is a need to develop a new model to integrate IoT data

from multiple sources to address the identified issues. The model should meet the general

requirements for successful IoT streaming data integration, which are listed as follows.

(Req.1) Process in order : As IoT sensor data is obtained from multiple sources, they

have different timing orders, so integrated data instances need to all have instances

in the same time-stamp.

(Req.2) De-duplicate data instances: The time-stamps (e.g., seconds, minutes or hours)

of the different data instances may be different. This leads to some identical time-

stamps while integrating them from multiple data sources along with different flows.

Also, more than one data instance may have the same time-stamp. Overall, raw

IoT data from many sensors are usually not ready for any kind of processing or in-

tegration. So, there is a need to deal with the data redundancy or duplication issue

by merging or aggregating such data instances into one along with the associated

attributes of such instances.
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(Req.3) Integrate in real time : Another important requirement is to integrate IoT data

in real time, as streaming data may change its arrival rate. Also, such a process

should be done without any delay in order to capture all the data instances with

different flows. Thus, there is a need for a useful data integration technique with

the goal of carrying out such processes in a real-time manner along with handling

different timing orders and de-duplication.

(Req.4) Visualize on-the-fly : The IoT streaming data with different time-stamps cannot

be visualized as a whole. First, there is a need to summarize the expected time

duration based on the requirements from the clients. Thus, there is a need for a

mechanism to visualize on-the-fly according to such requirements. Also, this can

be done either for a single source or integrated data from multiple sources.

(Req.5) Extract useful insights: It is important to gather meaningful insights from data

flows across applications. This reduces the waiting time associated with collecting

and storing data to obtain useful information to make quick decisions or to conduct

further data analysis.

(Req.6) Reduce the cost of storage : In many cases, raw data from streams need to

be stored because it can be processed as historical data for later access for the

purpose of data analysis, for example, to develop a prediction model. Streaming

data storage is an enormous challenge as the volume of data generated is infinite.

Hence, it is necessary to reduce the cost of storage for integrated streaming data

from various sources.

(Req.7) Improve data access performance : One of the most important issues to address

when manipulating data is how to access it efficiently. This requirement relates

to the previous ones as data access depends on the data structure and storage.

For example, if storage optimization involves a type of compression, it will be

challenging to access data and gain insights efficiently and effectively.

In addition to these requirements, other general requirements of data integration are

taken into account when collecting, gathering and aggregating data streams from vari-

ous sources. These requirements include trust building in integrated data, data privacy

maintenance by controlling access, an audit capability so that organizations can proac-

tively comply with regulations, data sharing and collaboration between users so that
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collectively they can make the most of the data, and so on. In the following section, the

problem statements of this thesis are discussed in relation to the identified requirements.

3.2 Problem Statements

From the motivating scenario, it can be seen that the integration of IoT streaming

data along with different timing flows/orders has become critically important in many

real-life applications. Big data from industries and businesses are usually organized

into data lakes or data warehouses for long-term storage and analytics. For example,

in our application scenario, a manufacturing company runs many IoT sensors and is

globally distributed across a wide variety of regions, hence data storage and real-time

integration are vital to this manufacturing company, as it can support decision making for

predictive analytics which can reduce subsequent maintenance efforts and costs. Using

analytics for predictive maintenance has the potential to save a business millions of

dollars by identifying machines which may be faulty before any damage occurs. However,

before performing deeper analytics and applying data mining processes, one of the most

important tasks is to integrate IoT streaming data in real time. Otherwise, data

mining has no value as the streaming data continuously comes in various formats from

different sources. Thus, a cutting edge approach to such data mining and analytics is

one that starts from historical to dynamic streaming data integration.

Depending on the nature of the IoT sensors, these data may have similar or different

attributes. For example, in our application scenario, there are many different IoT sen-

sors associated with various types of manufacturing compressors. In addition, data can

originate from different sensors in different time intervals (e.g., seconds, minutes). Thus,

the second important task is to combine or integrate the sensor data in terms of

aligning different time-stamps to provide integrated results for the users.

In addition to performing real-time processing and timing synchronization using an align-

ment solution, it is critical to react and respond to queries from clients accurately in a

timely manner by accessing time-series data. Two factors should be considered in im-

proving data access, namely how the data is accessed and how it is processed in real time

from multiple sources. Therefore, to enable a quick response to queries from streaming

data sources, there should be a mechanism for pre-processing streaming data which is
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efficient in terms of storage and indexing. Hence, one of the important tasks for SDI

is to devise a way to compress integrated streams into smaller versions in an efficient and

productive manner. This requires the following task in SDI, which is to devise a way

to access data effectively. For compressed data, it is necessary to have a sub-sequence

task to create an index in advance to facilitate data access and query optimization.

These tasks are necessary for an SDI model to assist an organisation’s decision making

and to enable data analysis to be conducted.

In the following, some terminologies with respect to the existing works are discussed

and the IoT streaming data integration research is analyzed as a part of the problem

statements.

Different Timing Arrival and Frequencies: The information (records, transactions)

in streaming data along with different timing flows labelled by either identical or different

time-stamps, which are called identities of data instances. These time-stamps have to

be aligned and consistent when integrating data from multiple sources, which may come

in different time intervals and frequencies. This idea of dealing with different timing

conflicts can be found in [45]. Thus, there is a need for the integration to be processed

simultaneously, which we call timing alignment.

Data Redundancy: Another issue of streaming data is the possibility of redundant

data originating from different IoT sources with the same or different entities. In par-

ticular, the streaming data from different IoT sources may contain both identical and

non-identical attributes, so the integration of this data should be processed by merging

identical entities or by resolving entity resolution. The existing research on this issue

[24, 93] does not address IoT streaming data. There is a need to remove redundancy in

two ways: by considering the attributes of streaming data from multiple sources and by

dealing with data fragments or windows in real time.

Window-Based Integration: The infinite volume of IoT streaming data is a prob-

lematic issue when processing and integrating data from multiple sources. Hence, a

window-based approach is applied to process the fragments/instances of data as win-

dows to ensure the real-time integration of streaming data. In the literature on processing

streaming data [94, 95] several approaches have been proposed, including a windowing

technique [41], however, these approaches are not adequate to integrate IoT data from

multiple sources in real time. Other research works [38, 96] which are based on the data
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integration perspective in the form of query-based integration, have been proposed in the

literature. These existing works do not deal with the issues of timing conflict and data

redundancy when IoT streaming data is obtained from multiple sources. Thus, there is

a need to improve the window-based approach to deal with these issues.

IoT Streaming Data Storage Optimization: A significant problematic issue when

dealing with big data is data storage due to the infinitely generated data streams. To

overcome this, many researchers have investigated storage optimization by focusing on

time-series data compression techniques, for example, Balck et al. with Sprintz [8], We-

gener et al. with signal data compression [9] and Diffenderfer et al. with ZFP [10]. A

data compression approach reduces the number of bits that represent the data, and it

can save storage capacity, speed up file transfer, and decrease the costs of storage hard-

ware and network bandwidth. However, the existing techniques are merely compression

approaches, which only focus on saving storage capacity, and there are some limitations

in storage ratios and the ability to access data due to compression. There is a need to

improve both data storage and data access when data is compressed.

IoT Streaming Compressed Data Access One of the issues in SDI is how to access

and query on the integrated data, especially compressed data. Some existing work [90–92]

on streaming data indexing make use of sliding windows to index streams for information

retrieval but their indices do not apply to compressed data. Thus, there is a need to

optimize the access to compressed IoT data and retrieve data insights to answer the

users’ queries.

Overall, the aim of this thesis is to develop techniques to address the aforementioned

issues. In particular, streaming data is generated from various sources and have different

data structures, formats and time frequencies. The integrated data needs to be unified

into one and it must be consistent, similar to a flow which is generated at regular time

intervals from a single source. Therefore, the framework has to ensure not only a unified

scheme but also must have the ability to synchronize flows from different sources with

different time frequencies. In addition, although the streams are from different sources,

they are in the same domain. This leads to the same information interest of applications

from sources, and the different streams may have the same or identical attributes. When

being integrated, the attributes of streams, both identical and non-identical ones, need
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to be merged, aggregated and de-duplicated. The framework also has to ensure the de-

duplication process is performed in real time. In the integration process, along with the

integrated data, useful information, which is an insight or summarized data from a period

of time, needs to extracted and stored so it can be accessed for further analysis. Hence,

there is a need for IoT streaming data storage, and this storage should be optimized

with a rational compression ratio to store as much data as possible. Finally, the purpose

of IoT streaming data integration is to facilitate data access to enable fast responses to

common queries so it is critical that the framework has this capability to optimize query

performance. To address these issues a solution framework is introduced in the following

section.

3.3 A Solution Framework for IoT Streaming Data Integra-

tion

In this section, a framework for IoT streaming data integration which meets the require-

ments outlined in the previous session is introduced. The design of this architecture is

inspired by the basic layers in developing data integration systems and addressing the

identified problems.

The framework has four layers, namely IoT sources, streaming data processing engine,

streaming data optimized storage, and optimized query with indexing schemes, as shown

in Figure 6.1. The layers and their components are described in the following.

The first layer of the framework is IoT sources. In practice, there are different types of

industrial IoT data sources which facilitate smarter decision making and faster responses

across organizations. IoT streaming data sources include web pages, applications, e-

services, monitoring devices, sensors, wearables, mobile devices, location beacons, GIS

systems and so on. These sources generate data streams in different formats (csv, html,

etc.) and structures (structured or semi-structured). The frequency with which the data

is generated is also different. For example, data streams are generated from a distributed

manufacturing company which includes many machines along with IoT sensors. Some

types of sensors generate data every second while other types generate streams every

minute. Some IoT devices send data encoded in binary, some send data in a JSON or

XML format and some send the data as text.
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The second layer is the streaming data processing engine. The operation of this layer

is the first main research contribution of the thesis. It plays a role in connecting and

extracting data from the source layer and processes the data to deal with the issues of data

integration, including, time alignment and de-duplication in real time. In particular, the

processing engine manipulates data using two components, namely, Data Managers and

Integrator. While the managers handle IoT streaming data in different formats (e.g., txt,

csv, xml, html and so on), and process these data and map them to a unified format, the

integrator component collates streaming data from multiple sources and handles data

redundancy depending on whether they have identical or different time-stamps (i.e.,

timing controls). This work and the solution are discussed in Chapter 4.

The third layer is streaming data optimized storage. It comprises two main components,

summarized windows and compression storage. The summarized windows are extracted

from the second layer. The summarized windows information are insights based on the

client’s queries. The compression storage stores data with the ability of data searching

based on the users’ queries. In this layer, compressed data is transformed in window-wise

records and index schemes. This layer is structured to facilitate data access for the next

layer. The operation of the layer is illustrated in the Chapter 5.

The fourth layer is optimized query with index schemes. This layer is the front-end of a

system which the user can access and interact with to receive a response to their queries.

It contains index schemes, as a part of query optimization. The schemes are based on

the search key from the queries, and to deal with multiple sources, the location of the

sources is also the entry of the index. In the case of streaming processing, the index

schemes are instantaneously created as long as data are coming, and can be accessed to

respond to queries in nearly real time. The optimization is described in Chapter 6.

In conclusion, the components and layers of the framework are the sequence connections

of the processes, namely data manipulation by the data manager, time alignment, de-

duplication and integration processes by integrator, IoT streaming data compression by

compressed storage, and data access by the index schemes. This research contributes

to both academia and industry by dealing with the issues of IoT data integration and

plays a vital role in today’s interconnected environments. This solution framework can

be widely applied to many applications and a variety of scenarios, and it can address a
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Figure 3.2: A Framework of IoT Streaming Data Integration from Multiple Sources

wide range of use cases that rely on key data delivery capabilities. The framework is also

a pre-process and uses active metadata supported by machine learning.

3.4 Summary

This chapter presents a motivating scenario that requires the integration of streaming

data from multiple sources and its associated requirements. The problem statement

addressed in this thesis is discussed and a solution framework is proposed to address the

issues.

Firstly, a generic scenario is given using the example of a global manufacturing company.

Secondly, the general requirements needed for successful IoT streaming data integration

are listed. Then, the problem statement is outlined with an explanation of some of

the terminologies in the domain of streaming data processing. Finally, to address the

identified issues, a solution framework is introduced.

In the following chapters, the work flows in the framework which are the main research

contributions of the thesis are introduced. In particular, Chapter 4 details IoT streaming

data processing using the windowing technique; Chapter 5 discusses IoT streaming data

compression and storage; and Chapter 6 introduces IoT streaming data indexing and

query optimization.



Chapter 4

IoT Streaming Data Processing with

Windowing Technique

In the previous chapter, the research motivation and the problem statement of this thesis

were introduced and several requirements of streaming data and the issues affecting

streaming data integration were discussed. After this, a solution framework of streaming

data integration is proposed to deal with these issues. This chapter addresses the issues

of different data arrival rates, the frequency of IoT streaming data and different data

structures to remove data redundancy and integrate data into a single schema. Hence,

this chapter describes the development of a new IoT Streaming Data Integration (ISDI)

framework for time-series data. The chapter is organized as follows.

In Section 4.1, a generic Integrator model is introduced for the ISDI proposal with

the goal of integrating IoT streaming data from multiple sources. Section 4.2 details

the implementation algorithms for ISDI. In practice, IoT data obtained from multiple

sources can arrive at different times. This requires an order for processing the streaming

data. Furthermore, data from multiple sources can be generated in different frequencies

so there is a need to align and sort out the time stamps of such data before integrating

them. IoT streaming data integration also requires a unified schema for the integrated

results, dealing with different data formats. Typically, streaming data from multiple

sources are different in structure (e.g., semi-structured, relational), so before integrating

them, there should be a unified schema to combine them into an integrated structure.

Data redundancy occurs both in multiple sources or even in a single source itself, and

36
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also presents the integration process. Several techniques are proposed in the literature

to identify redundant data [24, 93]. However, in the context of IoT streaming data

integration, data duplication is identified from single or multiple sources and resolves

and integrates them to satisfy the streaming data flows in real time. In this perspective,

several algorithms are introduced, namely a window-based algorithm to integrate IoT

streaming data, a timing alignment algorithm to deal with timing conflict issues and a

de-duplication algorithm to deal with data redundancy issue. Section 4.3 demonstrates

the practicality of the proposed ISDI solution through an empirical evaluation with

respect to several experiment setups. The real IoT manufacturing datasets described in

Chapter 3 are used to evaluate our approach. Finally, the conclusion and some future

research directions are presented in Section 4.4.

4.1 An Approach to IoT Streaming Data Integration

In this section, firstly the IoT Streaming Data Integration (ISDI) approach is formally

presented, including preliminary definitions and formal notations to introduce the un-

derlying concepts. Following the formal approach, a generic integrator model for ISDI is

introduced.

4.1.1 Formal ISDI Model

In this research, IoT data integration in general is the process of integrating streaming

data from multiple sources into an integrated time-series data. Timing alignment is the

critical issue that is investigated and addressed in this chapter. There are a number

of subsequent issues while integrating IoT streaming data from multiple sources, such

as resolving timing conflicts with identical or different time-stamps and dealing with

data redundancy and data integration in real time. The main tasks or techniques have

been discussed in the existing literature, such as schema matching, entity resolution,

duplication and the windowing technique, which can be applied to address these issues.

While schema matching is the process of attribute correspondence among multiple schemas

[27], the task of entity resolution is responsible for recognizing the representation of differ-

ent relevant entities that refer to the same entity. However, in the case of IoT streaming

data, real-time integration is a critical issue when applying such a schema matching or
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entity resolution task, as it is necessary that an infinite volume of data is processed con-

tinuously in real time. In addition, there is a need to align different time-stamps to the

streaming data from multiple sources. As such, a unified schema is necessary to deal

with such timing alignment. Last but not least, de-duplication also must be performed

so that all data instances can be captured from multiple sources without redundant data.

Based on this analysis, the IoT data integration model is formalized as follows, including

the key definitions and notations.

Definition 1. (Unified Schema). A unified schema (US) can be defined as the pairs of <

keys, values >. These pairs can be created based on the local schemas from multiple data

sources. The pairs of < keys, values > are used for a unified data representation from

multiple IoT sources, where a ‘key’ corresponds to an attribute that has a corresponding

‘value’.

US = {keys, values} (4.1)

In the above relation,

• US represents a unified data schema,

• {keys} represents a list of attributes in the integrated data, and

• {values} represents the corresponding data according to the keys from different

sources.

Definition 2. (Unique Keys). If {keys} represents a set of unique keys according to the

keys from multiple data sources and these keys correspond to the relevant values in such

data sources, then the following relation can be represented.

{keys} = set(keys(k)) (4.2)

In the above relation,

• keys(k) represents a list of attributes according to the local data sources, and

• {keys} represents a set of attributes in the integrated data.
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Definition 3. (De-duplication). This refers to the process of mapping duplicate instances

(i.e., data records associated with different fields/attributes) from multiple data sources

into an integrated one. We identify the identical time stamps of all instances and ag-

gregate them using a relevant mapping function, for example, a mapping function f

could be a avg() function, which takes the average values of all duplicate/identical data

instances. That is, in this research the de-duplication deals with the merging of all iden-

tical time-stamp records. For non-identical records, the values are taken from multiple

data sources.

f = mapping() (4.3)

In the above relation,

• mapping() represents a user-defined function in terms of data records (a data record

is formed based on the different fields/attributes) from different sources that are

aggregated to an integrated format. For each data field in the unified schema, a

user-defined mapping function (e.g., average function, avg()) can be used to collate

data from multiple sources.

Definition 4. (Window-based Integration). This refers to the integration of IoT stream-

ing data from multiple sources, taking individual windows from different sources and

integrating them into integrated windows. These windows are defined as different clus-

ters of a number of data records from multiple sources. A window is formed based on

a specific duration of a time interval, such as days, weeks or months. According to the

data windows from different sources, the timing alignment task is used while utilizing

such a window-based integration.

Wi(t) =

n⋃
k=1

Wk(t) (4.4)

In the above relation,

• k is the number of data sources,

• Wi(t) is an integrated window starting at time t with a specific duration, which is

called the size of the window, and
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Figure 4.1: ISDI Integrator Model for IoT Time-Series Data from Multiple Sources

• Wk(t) is the window of source k starting at time t with a duration of the window

size. More details on the duration and window sizes are discussed in the later

sections.

4.1.2 A Proposed Generic ISDI Integrator Model

A generic model is presented to integrate IoT streaming data (i.e., time-series data)

from multiple sources, called the ISDI Integrator. Figure 4.1 illustrates the different

components of the ISDI integrator model. The base model that is considered in the

research is the basic windowing model to deal with IoT streaming data in real time

from multiple sources. The ISDI integrator consists of two different layers: (i) IoT Data

sources and Managers and (ii) Integrator.

4.1.2.1 Data Sources and Managers

The data source component in the first layer handles IoT streaming data in different

formats (e.g., TXT, CSV, XML, HTML and so on) while the managers process these

data and map them to a unified format. In particular, in this research, the managers are

utilized to model a unified schema as the pairs of < keys, values > format. In addition,

the managers can pull data from data sources with the timing alignment mechanism. For

example, because real-time incoming data from applications usually arrive at different
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times, the managers are responsible for handling the differences. A timing alignment

algorithm is proposed to work in this layer.

Each kind of IoT data format needs a manager corresponding to extract and manipulate

streaming data. It aligns streaming data based on the identical or different time-stamps.

Finally, it sends data to the integrator and marks a pointer according to the last processed

data/record. This helps the integrator to process data in real time.

4.1.2.2 Generic Integrator

The integrator layer collates streaming data from multiple sources and consequently

handles data redundancy according to identical or different time-stamps (i.e., timing

controls). Two algorithms, named window-based integration and de-duplication, are

proposed to work in this layer. This generic integrator is responsible for controlling the

time of incoming multiple IoT data through different managers. It executes relevant

queries from end-users through mapping functions and selecting relevant data based on

their requirements from the queries as parameters.

For example, the inputs of this integrator are the attributes and the user-identified

mapping function according to the data request, including the size of the window that

is required to identify the fragments of data processed sequentially from multiple IoT

sources. The result of the integrator is stored as summarized windows.

4.2 Implementation Algorithms for ISDI

This section discusses the implementation algorithms for ISDI. Firstly, a generic win-

dowing algorithm is introduced to integrate IoT streaming data from multiple sources.

In this research, semi-structured IoT data is considered in different formats (CSV and

XML formats). Then, another algorithm is introduced to deal with timing alignment

with respect to integrating IoT time-series data from multiple sources. In addition, a

de-duplication algorithm is introduced to deal with the data redundancy issue.

As discussed previously, Algorithm 1, Window-Based Integrator, has the following inputs:

keys, windowSize, summarizedFuntion and sourceManagers. The keys and the associated

< keys, values > pairs can be found based on the users’ queries (i.e., requirements). The
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Algorithm 1: Window-Based Integrator for ISDI
Input: keys, windowSize, summarizedFunction, sourceManagers
Output: integratedWindows

1 List iWindows;
2 while startingTime is before the current time do
3 List iRecords;
4 for each sM in sourceMangagers do
5 List recordsList = sM.getRecords(startingTime, windowSize);
6 for each r in recordsList do
7 Record newR = r.getRecord(keys);
8 iRecords.add(newR);
9 end

10 end
11 Window window = new Window(iRecords, startingTime, windowSize);
12 iWindows.add(window);
13 startingTime.plusMillis(windowSize);
14 listOfRecords;
15 end
16 return summarizedFunction.f(iWindows);

windowSize is defined by users as it is a time duration for what users want to extract

information. The summarizedFunction is a mapping function and is defined based on the

users’ requirements. This function takes different data windows from multiple sources as

inputs and returns integrated results as output, integratedWindows. Line 5 of Algorithm 1

shows the main contribution of the sourceManagers. Each source manager is controlled by

a starting time (startingTime) and the time interval (windowSize). Without considering

the timing alignment of source managers, data from different sources can be lost. Most

importantly, if we do not align streaming data (using the loop of Lines 4 to 10) while

collecting them from multiple sources through such managers, the processing time can

be increased (see the experiments in Section 4.3). The data collection according to

different source managers through the timing alignment is introduced in Algorithm 2.

After collecting data from different sources, the integrator filters data to take only those

that have relevant keys and adds them into an integrated storage iRecords (Lines 7

and 8). The filtering is done according to the de-duplication process introduced later

in Algorithm 3. The de-duplication algorithm returns the list of records that are used

in this algorithm (see Line 14 in Algorithm 1). The data windows are added into the

integrated windows before resetting the starting time for the next integration process.

During the process of integrating the windows, the output is based on the function

summarizedFuntion.f(), as shown in Line 16.
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Algorithm 2: Timing alignment while Extracting Data from Multiple Sources
Input: startingTime, windowSize
Output: listOfRecords

1 List recordsToProcess;
2 int fromIndex = 0; int toIndex = record.size();
3 if lastRecordProcessed != null then
4 fromIndex = records.indexOf(lastRecordProcessed);
5 end
6 endTime = startingTime.plusMills(windowSize);
7 for each r in records.subList(fromIndex, toIndex) do
8 if lastRecordProcessed between startingTime and endTime then
9 recordsToProcess.add(r);

10 lastRecordProcessed = r;
11 else
12 break;
13 end
14 end
15 return recordsToProcess;

Algorithm 2, Timing alignment, is another key contribution of this research. It works

along with Algorithm 1, based on the last processed data/record (Line 10 in Algorithm

2). When the last processed data is marked, the source managers only need to scan

the data behind it until the relevant windows finish. The break functionality in Line 12

helps to cut off all the data beyond the finish time (endTime) of the relevant windows.

The timing alignment of the associated windows from different sources is controlled by

the relevant input startingTime, which is usually worked with the integrator (Line 5 in

Algorithm 1).

Algorithm 3, De-duplication, is used to process data duplication and it is also associ-

ated with the integrator model in Algorithm 1. Despite the different time-stamps (data

frequencies, such as seconds, minutes, hours or days), the time-stamps also can be iden-

tical when collected from multiple sources. The algorithm uses two pointers (see Lines 1

and 3 in Algorithm 3) to count the number of records that are associated with identical

time-stamps. The loop condition in Line 5 depends on the Lines from 8 to 12, in which

the identical time-stamps are compared with a specified record and the next record. If

the time-stamps are different, the loop will stop; otherwise, the pointer will scan the

rest of the data to look for other duplicate records. It then executes their sum of values

(named "sov" in Algorithm 3) to the non-identical attributes and aggregate the values

of the identical attributes by an user-defined mapping function (named "mfov" in Al-

gorithm 3), see line 16 and 18. Finally, all the duplicate records, which are between the
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Algorithm 3: De-duplication for ISDI
input: listOfRecords, identicalKey, keyOfTime, keys
Result: remove duplicate records and return list of records

1 int recordsPointer = 0;
2 while recordsPointer < listOfRecords.size() - 1 do
3 int pointer = recordsPointer;
4 boolean continuingCondition;
5 while continuingCondition ∧ pointer < listOfRecords.size() do
6 d1 = listOfRecords.get(pointer).getKey(keyOfTime);
7 d2 = listOfRecords.get(pointer + 1).getKey(keyOfTime);
8 if d1.equals(d2) then
9 pointer += 1 ;

10 else
11 continuingCondition = false;
12 end
13 if recordsPointer < pointer then
14 for each k in keys do
15 if !k.equals(identicalKey) then
16 listOfRecords.get(pointer).getValue(sov);
17 else
18 listOfRecords.get(pointer).getValue(mfov);
19 end
20 end
21 else

22 end
23 for k from (recordsPointer + 1) to pointer do
24 listOfRecords.remove(k);
25 end
26 recordsPointer = pointer + 1;
27 end
28 end
29 return listOfRecords;

recordsPointer and the pointer, are removed (Line 24 in Algorithm 3).

4.3 Experiment and Evaluation

This section demonstrates the feasibility of the ISDI approach. Firstly, three sets of

experiments are conducted in relation to integrating IoT streaming data from multiple

sources in different formats (IoT data of CSV and XML formats). Then, the generic

ISDI proposal is evaluated by measuring the performance with respect to non-window

and window-based approaches.
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Figure 4.2: Different Components of the Generic ISDI Integrator

4.3.1 Experiment Setup #A

In the first set of experiments, a simple window-based approach is used to integrate

streaming data from different sources. The left side of Figure 4.3 shows the different

components of this simple integrator, including two IoT data sources (S1 and S2), source-

based windows (Wi) and summarized windows. The simple integrator also comprises

three main steps, namely timing alignment, de-duplication and integration.

Instead of processing the streaming data, based on the window-based approach, all the

data files (CSV or XML files) can also be considered at once by following traditional

data integration techniques (e.g., schema matching). In the second set of experiments, a

non-windowing technique is used for experimental comparison.

The right side of Figure 4.3 shows the generic ISDI integrator, which is the main contribu-

tion in this chapter. The third set of experiments based on the proposed ISDI integrator

is conducted. Similar to the simple integrator, all the components and steps are the same

as in the ISDI integrator, the only difference being that there are different managers to

extract streaming data from multiple sources and convert them into a unified schema

(i.e., pairs of < keys, values >). These managers are also responsible for updating such

pairs in real time when new streaming data originate from IoT sources. However, in the
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Figure 4.3: Simple Integrator (without Managers) vs Generic ISDI Integrator (with
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simple integrator, there is always a check of the IoT sources for any new time-series data

according to earlier time-stamps that are already processed.

In these window-based approaches, different fragments of data are taken from multiple

sources as windows according to a specified size of the window, and they are then inte-

grated into an integrated window (IW). Figure 4.2 shows the sequences of the necessary

tasks for the ISDI integrator. In the simple integrator, windows are usually extracted

directly from the data sources and the integrator always looks back to data sources for

further windows, whereas in the generic ISDI integrator, windows are extracted and con-

verted to pairs of < keys, values >, and the integrator works independently without

looking back to data sources. The timing alignment is an important task that is imple-

mented in the source managers, to obtain data windows. When a summarized window

(IW) is created by integrating such data windows from multiple sources, it then gener-

ates a timing signal and controls the further windows through the source managers. The

other operations such as de-duplication and window-based integration are the same in

the simple and generic integrator approaches.

The sets of experiments are carried out on two different machines. The development

environment of these sets of experiments is Java on NetBeans IDE 8.0.2 and we use a
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Table 4.1: First Set of Streaming Data (Case 1)

Details IoT Source 1 IoT Source 2
Duration 256 days 3 days
Number of Records 368,199 259,200
Frequency record/1-minute record/1-second
Size 94 MB 62.8 MB

time-based library, named Joda-Time to process the different time series of the windows

from multiple data sources.

1. A Windows PC of 3.4 GHz CPU, 4 Core(s) and 8 Logical Processors with 16 GB

of physical memory (namely, machine M1).

2. A Windows Laptop of 2.4 GHz Intel Core processor, 2 Core(s) and 4 Logical Pro-

cessors with 16 GB of physical memory (namely, machine M2).

The above two machine configurations are selected for the following two reasons: (i) to

represent the two categories of most widely used machine configurations in this type of

applications, and (ii) to evaluate the scalability of the proposed algorithm in different

machine configurations

4.3.2 IoT Data Sets

In this chapter, real streaming data sets have been used from a distributed manufacturing

company in Australia, which are collected from IoT sensors installed on many pieces of

industry machinery. In this section, time-series data of different sizes generated from

these sensors are used.

Tables 4.1 and 4.2 depict two sets of IoT data. Table 5.1 contains streaming data from

two IoT sources, including second and minute-based time-series data. In particular, IoT

Source 2 has 259,200 records of 62.8 MB in size. Table 4.2 also contains streaming data

from two IoT sources, including one new IoT Source 3, which has 7,257,600 records of

3.05 GB in size.
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Table 4.2: Second Set of Streaming Data (Case 2)

Details IoT Source 1 IoT Source 3
Duration 256 days 84 days
Number of Records 368,199 7,257,600
Frequency record/1-minute record/1-second
Size 94 MB 3.05 GB

4.3.3 Experiments #1 and #2

The first two sets of experiments based on the IoT data presented in the earlier section

are described in this section. These experiments are carried out using both machines M1

and M2, and applying non-windowing and simple window-based integrator approaches.

4.3.3.1 Comparative Analysis w.r.t. Non-Window and Window-Based Ap-

proaches

The experiment results in terms of processing time are shown in Tables 4.3 and 4.4. Using

the datasets presented in Table 4.1 (Case 1) and with machine M1, the simple integrator

can take 24 seconds to integrate both streaming data from two sources, whereas the

non-windowing approach takes 32 seconds to do the same task. The performance can be

improved by using more powerful machines, which is also shown in Table 4.3.

It can be observed in Table 4.4 that the non-windowing approach is not able to perform

the integration because we consider more than 7 million records which are 3.05 GB in size

in this variation (Case 2 in Table 4.2). The main issue is that it cannot read the whole

file at a time. For such a huge dataset, the simple integrator reads the data window-by-

window and it takes more than 2 minutes to integrate streaming data from two sources.

Table 4.4 also demonstrates the performance variation in terms of two machines with

different processing powers.

4.3.3.2 Demonstration of Streaming Data

As streaming data can be an infinite time series, both non-window and window-based

approaches are compared in terms of the IoT data demonstration. Figures 4.4 and 4.5

illustrate the streaming data from a source file and from the integrated file applying the
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Table 4.3: 368,199 Records (a record per minute) of 94 MB Size (Case 1)

Machine Non-Windowing
(NW)

Simple Integrator
(W1)

CPU 2.4 GHz
(M1) 32 seconds 24 seconds

CPU 3.4 GHz
(M2) 18 seconds 14 seconds

Table 4.4: 7,257,600 Records (a record per second) of 3.05 GB Size (Case 2)

Machine Non-Windowing
(NW)

Simple Integrator
(W1)

CPU 2.4 GHz
(M1) not-identified 4 minutes 6 seconds

CPU 3.4 GHz
(M2) not-identified 2 minutes 15 seconds

Figure 4.4: Minute-based Data from
Case 2 with Simple Integrator (W1)

Figure 4.5: Integrated Data of Case
2 with Simple Integrator (W1)

simple integrator approach (in the first set of experiments). From the data demonstra-

tion, we observe that the data values change significantly in a window.

Figures 4.6 and 4.7 demonstrate another source file and the integrated file using the

non-windowing approach. To demonstrate the data clearly, a snapshot is taken of the

data in a short time period. For data analytics perspective, it can be observed that the

window-based approach is more powerful than the non-window approach. This can also

lead to the performance variation in terms of different window sizes which is discussed

in the next section (see Experiment #3 in Section 4.3.4.3).
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Figure 4.6: Second-based Data from
Case 1 with Non-Windowing Ap-

proach (NW)

Figure 4.7: Integrated Data of
Case 1 with Non-Windowing Ap-

proach (NW)

4.3.4 Performance Evaluation

In this section, first the performance variation of the simple integrator approach with

respect to different machines is discussed. Then, the performance of the generic ISDI

approach is compared to the simple integrator approach. In addition, the performance

of the ISDI approach is discussed, including semi-structured streaming data in different

formats.

4.3.4.1 Performance w.r.t. Different Machines

In the earlier section, a 1-day window size is considered to measure the processing time,

using the simple window-based approach (called the simple integrator). As shown in

Table 4.4, it takes 2 minutes and 15 seconds (i.e., 135 seconds) to integrate Case 2 data

sources. Figure 4.8 illustrates the processing time of the simple integrator using windows

of different sizes.

It can be observed that the variation in processing time is due to different factors: the

size of the window and the processing power of the machine. In terms of programming

efficiency, these factors can be the complexity of functions and approaches, and/or num-

ber of loops. Hence, it is important to revise the window size as a variation in size affects

the number of loops in the algorithms. This set of experiments is run on two machines

M1 and M2. Figure 4.8 shows that the processing time varies linearly and is almost

stable for the window sizes from 1-day to 10-day, using the powerful machine M2. It

takes approximately 140 seconds for all such cases. However, the integration time rises
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Basic Integrator Generic BSDI integrator Structured data

1 135000 60380 1 60380

2 141000 62840 2 62840

3 145000 61000 3 61000

4 146000 62560 4 62560

5 150000 62640 5 62640

6 155000 60620 6 60620

7 161000 60620 7 60620

8 155000 58910 8 58910

9 153000 61260 9 61260

10 145000 59810 10 59810

1 2 3 4 5 6 7 8 9 10 11

M1 135 141 145 146 150 155 161 155 153 145 486

M2 305 306 286 304 296 357 358 425 419 663 888
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Figure 4.8: Performance w.r.t. Different Window Sizes

dramatically for the window size on 11-day. If the window size is too large, the process

is nearly the same as the non-windows process on a huge volume of data. Hence, the

performance worsens and the processing time cannot be identified as shown in Table 4.4.

4.3.4.2 Performance w.r.t. Different Window-Based Approaches

The performance of the window-based approach is measured using machine M2 with Case

2 datasets. In particular, based on the task sequences of the simple and generic ISDI

integrator illustrated in Figure 4.3, the performance of the window-based approaches

is empirically demonstrated. The variation of window sizes from 1-day to 10-day are

considered.

Figure 4.9 compares the performance. It can be observed that the proposed ISDI integra-

tor achieves better performance than the other traditional non-window and window-based

approaches. The source managers and a unified data schema (< keys, values > pairs)

are the main reasons for this variation of performance. Overall, the source managers

usually help the ISDI integrator to collate streaming data from multiple sources in real

time and achieve better performance.
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4 146000 62560 4 62560
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Figure 4.9: Simple Integrator vs Generic ISDI Integrator

Table 4.5: Third Set of Streaming Data (Case 3)

Details IoT Source 1 IoT Source 4
Duration 256 days 180 days
Number of Records 368,199 56,570
Frequency record/1-minute record/5-minute
Size 94 MB 39.2 MB

4.3.4.3 Experiment #3 and Performance w.r.t. Different Data Formats

The third set of experiments is conducted using another real dataset. Table 4.5 depicts

the new streaming dataset in XML format (IoT Source 4). In this case (Case 3), the

same datasets (IoT Source 1) in CSV format are used, which are detailed in Tables 4.1

and 4.2. Table 4.5 contains 1-minute and 5-minute based streaming data in CSV and

XML formats. In particular, IoT Source 4 has 56.570 records which are 39.2 MB in size

(XML format).

In this set of experiments, the performance of the generic ISDI integrator is measured

when processing windows. The average processing time per window is examined by

varying the sizes of the window and using semi-structured data in different formats.

Figure 4.10 shows the performance variation in terms of 1-day to 10-day window sizes

and using streaming data in both CSV and XML formats. It can be observed that the

performance of the proposed ISDI integrator is almost stable in both cases.
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Figure 4.10: Performance w.r.t. Semi-structured Data in Different Formats

4.3.5 Experiment Setup #B

Using a new experiment in the Apache Spark environment, the ISDI algorithms are

evaluated and their performance is measured by setting different Spark partition sizes.

4.3.5.1 Development Environment on Spark

In the Spark experiment, the ’solo’ Java API implementation of the integrator component

is replaced by Apache Spark, as shown in Figure 4.11. In this architecture, the IoT data

sources and the implemented source-managers from the previous setup are used. The

Spark Driver is implemented on the Maven-based build 3.5.4 and Java 8. Although the

experiment is performed on a single computer (single node), this 4-core system’s work

resembles a distributed system more than a traditional single core machine. Note that,

the Maven’s memory usage needs a special setup (increasing the heap size) to avoid the

error "GC overhead limit exceeded". Thus, VM arguments are set as −Xmx2048M . In

the spark implementation, data requested from the Managers is transferred into resilient

distributed datasets (RDDs), which are divided into logical partitions and then operated

in parallel. The results of the experiments show that a large number of partitions is

not an ideal solution. However, it is beyond the scope of this research to investigate the

optimal number of partitions to address the issue, but different partition sizes will be

applied to measure and compare their performance with the earlier experimental setup.

During the task of partitioning, those RDDs are integrated by using the "reduceByKey"

function and passing an associative function for the following tasks: integration, time
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alignment and de-duplication. The experiment outcome is the Summarized Windows

(presented in Figure 4.11).

SPARK ENVIRONMENT

IoT Sources

Managers
<keys, values>

Spark Driver

Request data

Partition

Summarized 
Windows

Figure 4.11: An Architecture for Integrating IoT Streaming Data from Multiple
Sources Using Apache Spark

4.3.5.2 Performance w.r.t. Experimental Setups #A and #B

Different Spark partitions (Setup #B) are selected to measure their performance and

compare them with the earlier experiment (Setup #A). The entire processing time with

respect to different formats of streaming data is shown in Figure 4.12. The average

processing time per window is shown in Figure 4.13. The performance of Setup #B with

the partition sizes of 10 and 50 on processing windows and integrating them together is

lower than the performance of the earlier setup #A (see Figure 4.12). The results show

that when the partition size is 100 and the window sizes is more than 2, the performance

of setup #B in the Apache Spark environment is better. However, it is observed when a

partition size is between 10 and 50, the outcome gives a warning that some stages contain

a task of very large size, and the maximum recommended task size is smaller than the

real ones. This may reduce the performance of the entire processing. In contrast, the

performance of setup #B with a partition size of 100 has all successful integration tasks

without any warning of over-size. This produced much better performance. In addition,

Figure 4.13 shows that while the average processing time per window increases linearly
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Figure 4.12: Setups #A vs #B w.r.t. Processing Time
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Figure 4.13: Setups #A vs #B w.r.t. Processing Time per Window

from 3.7ms to almost 18ms (in the previous setup #A), this current setup #B achieves

better performance in the Spark environment (at around 3ms).

4.3.6 Discussion

This section summarizes the experience of implementing a new ISDI framework for IoT

streaming data.The proposed ISDI framework is evaluated in response to traditional non-

window and window-based approaches. The ISDI approach is tested on different local

setups and machines with regard to different semi-structured IoT data in different formats

(Setup #A). Also, Apache Spark (Setup #B) is used to improve the ISDI implementation.

The performance is finally demonstrated and compared with different partition sizes inn

the Apache Spark environment.
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To evaluate the performance, in Setup #A, different window sizes are specified with

respect to various window-based approaches. The test results in Figure 4.10 show that

the average processing time varies from 450 ms to 500 ms approximately, as the number

of window sizes changes from 1 day to 10 days. That is, the performance is affected by

changing the window sizes. The processing overhead increases at a linear rate due to

the increase in the window sizes with respect to the different formats of IoT streaming

data. This performance is acceptable for reasonable window sizes with limited computing

resources.

In Setup #B, the results shown in Figures 4.12 and 4.13 can be interpreted as fol-

lows. First, the larger the partition size, the better performance (i.e., processing time

for integrating IoT data from multiple sources). This is because different partition sizes

determine the degree of parallelism. For example, a window of 10 days is divided into10

partitions, which means 10 tasks are launched to process the data integration in parallel.

In the case of the same window size and 100 partitions, the processing time for integrat-

ing IoT data from multiple sources is much lower, as each task executes smaller data.

However, if there are too many partition sizes and the data chunks are small, then a

small number of data tasks are scheduled. This affects the entire process because of the

out of memory issues or excessive overheads in managing many small tasks. Secondly, if

the window size is too small, the performance of the entire process using Apache Spark

becomes slower (i.e., a longer time is needed to process the data). In such cases, the

data is usually divided into too many small-sizes windows. For example, with a 1-day

window size, the processing times for partition sizes of 10, 50 and 100 in Setup #B are

1867ms, 1827ms and 1457ms, respectively. However, when using Apache Spark with a

partition size of 100 and a higher window size, the performance is better than when the

partition size is smaller.

Overall, it can be said that the proposed ISDI framework has an acceptable response

time in supporting IoT streaming data integration from multiple sources.

4.4 Summary

In the last few years, much attention has been devoted to developing solutions for in-

tegrating IoT streaming data from multiple sources. This creates a major challenge
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in selecting the required fragments/windows of streaming data along with identical or

different timing alignment from multiple data sources and the subsequent adoption of

dynamic changes at regular or different intervals. A key factor in the success of these IoT

data integration solutions is the need to cope with the changing nature of the streaming

data sources while integrating them on-the-fly in real time. To date, some data inte-

gration approaches have been proposed to collate data from multiple sources. However,

these existing approaches are not robust enough in today’s dynamic and interconnected

environments with the goal of integrating IoT time-series data due to the key issues of

timing alignment and data duplication while integrating streaming data from multiple

IoT sources in real time.

In this chapter, a new window-based approach has been proposed for IoT Streaming

Data Integration (ISDI), extending the basic windowing technique. Firstly, a formal

ISDI model is introduced, including the key concepts of timing alignment, de-duplication

and window-based integration. The fundamental definitions and formal notations are

included to introduce these underlying concepts. A generic integrator model for ISDI

is then introduced, including different layers to utilize streaming data integration from

multiple IoT sources in real time. It is generic for three reasons: i) it can work based

on the user-defined mapping functions and consequently answers ad-hoc queries from

clients; ii) it can answer ad-hoc queries from users based on useful information including

the attributes required by them and the IoT data needed to be summarized; iii) it can

deal with various types of streaming data from multiple sources, such as:

• integrating relational data with continuous data streams from environmental sen-

sors, such as temperature, humidity and so on,

• integrating stock exchange data in real time from relevant sources, and

• integrating different medical and health data from multiple sources to create a

hospital information system, including relevant time-series data.

The implementation algorithms were presented to realize the preliminary definitions and

the generic ISDI model. The applicability of the ISDI approach was demonstrated by

conducting different sets of experiments and presenting an empirical comparison of the

proposed solution with respect to earlier simple data integration solutions. The results

on an experimental setup in the real Spark streaming environment show that the ISDI
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approach is effective in practice. Overall, the proposed ISDI approach can be applied

to integrate different time-series data from multiple streaming data sources. In today’s

interconnected world, it is particularly important when the necessary streaming data are

obtained from different sources to achieve integrated results for the end-users.

This chapter described the extractions, processing and integration of IoT streaming data

from multiple sources. In the next chapter, a mechanism for optimized storage for

integrated IoT data is introduced.



Chapter 5

IoT Streaming Data Compression

and Storage

In the previous chapter, a new window-based approach is proposed for IoT streaming

data integration which is extended from a basic windowing technique. The formal ISDI

model is introduced to address the key concepts of timing alignment, de-duplication

and window-based integration. The fundamental definitions and formal notations are

included to introduce these underlying concepts. A generic integrator model for ISDI

is then introduced, including different layers to utilize streaming data integration from

multiple IoT sources in real time.

However, it is critical to be able to react and respond to queries from clients accurately

in a timely manner by accessing the integrated time-series data. Factors that should

be considered in improving data access are how the data are accessed and how the

data are processed in real time from multiple sources. Therefore, to adopt the idea of

quick response queries from streaming data sources, there should be a mechanism for

pre-processing streaming data including storage efficiency and efficient access based on

timestamps. A characteristic of streaming data is that it is potentially unbounded in

size, so there is a need to improve data compression in relation to storage. In this thesis,

time-series data is considered as the collection of data, which is ordered by time, from

IoT sources. Also, it is necessary to access the compressed time-series data without

decompression, which facilitates much better performance in queries. Hence, in this

chapter a framework to integrate time-series data from multiple IoT sources is developed

59



60

S1 S2 Sn

Windows 
S1

Windows 
S2

Windows 
Sn

fWindows 
Bit- block 

S1

fWindows 
Bit- block 

S2

fWindows 
Bit- block 

Sn

Compressed 
S1

Compressed  
S2

Compressed 
Sn

Compression

Storage

Figure 5.1: Compression Model for IoT Data

using compression and utilizing timestamps to access compressed data for streaming

data.

The rest of this chapter is organized as follows. A a new compression framework is

proposed to integrate and manage IoT streaming data from multiple sources in real-

time ins Section 1. A compression mechanism and a data access algorithm based on

timestamps are also introduced in this section. In Section 2, several sets of experiments

are conducted and the benefits of the proposed framework are demonstrated, including

the relevant algorithms and an overall discussion. Finally, the chapter is concluded and

summarised in Section 3.

5.1 Proposed Compression Framework

In this section, a compression framework for streaming data from multiple IoT sources

is introduced, which comprises two main contributions, time-series data compression

and time-series data access based on timestamps. This framework, named ISDI-C, ap-

plies a newly designed compression technique to improve the storage space of the ISDI

framework in Chapter 4.

Figure 5.1 illustrates the compression model to store data with the ability of data search-

ing based on users’ queries. In particular, the scope of queries, as mentioned previously,

are timestamp-based requirements. Their responses can be searched from the timestamps

of the compressed data in the storage. The model comprises the following steps:
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Figure 5.2: Real Number BitBlocking Technique Overview

• The model can extract data from multiple sources continuously through the win-

dowing technique which defines every batch of processed data with a size which

equals a window length (a period). This step utilizes our previous work on window

extractions [97].

• As most IoT data are floating points, they are compressed using a floating-point

compression technique, which is an improvement on the integer compression tech-

nique (Sprintz). Data traces are stored in the timestamp storage. The data struc-

ture is <key,value> pairs, whereas keys are meta-data and store all the attributes

of each record. This step is implemented in Algorithm 4 in subsection 3.3.

• The floating-point compressed data can be compressed again by applying a loss-

less compression (e.g., Huffman compression [98], run-length encoding [99]), which

improves the compression ratio to enhance storage capability. The results of this

step are presented in our experiment (indicate subsection).

• The timestamps are refined so the can be used as an efficient access mechanism for

users’ queries.
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Delta Split 

Table C 

 

date 
Air Compr 
Lub Oil 1 

Air Compr 
Lub Oil 2 

MA-
2701 DE 
Bearing 

01/08/2016 0:00 0 0 0 

 0.071 -0.02275 0 

 -0.1401 -0.00404 0 

 0.1013 0.03809 0 

 0.0329 -0.01119 0 

 0.0622 -0.00929 0 

 -0.0082 -0.01562 0 

date Air Compr Lub Oil 1   

 Part1 Part2   
01/08/2016 

0:00 
0 0000   

 0 0071   

 0 -1401   

 0 1013   

 0 0329   

 0 0622   

 0 -0082   

date 
Air Compr 
Lub Oil 1 

Air Compr 
Lub Oil 2 

MA-
2701 DE 
Bearing 

01/08/2016 0:00 215.2057 44.3325 71 

01/08/2016 0:01 215.2767 44.30975 71 

01/08/2016 0:02 215.1366 44.30571 71 

01/08/2016 0:03 215.2379 44.3438 71 

01/08/2016 0:04 215.2708 44.33261 71 

01/08/2016 0:05 215.333 44.32332 71 

01/08/2016 0:06 215.3248 44.3077 71 

Table A Table B 

Figure 5.3: Real Number BitBlocking - Phase 1
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date Air Compr Lub Oil 1   
 Part1 Part2   
 0 0000   
 0 0071   

 0 -1401   

 0 1013   

 0 0329   

 0 0622   

 0 -0082   

date Air Compr Lub Oil 1   

 Part1 Part2   
 0 0   

 0 1420   

 0 2799   

 0 2026   

 0 758   

 0 1244   

 0 163   

date Air Compr Lub Oil 1   

 Part1 Part2   

 00000000 0000000000000000   

 00000000 0000010110001100   

 00000000 0000101011101111   

 00000000 0000011111101010   

 00000000 0000001011110110   

 00000000 0000010011011100   

 00000000 0000000010100011   

Zigzag 

Table D 
Table E 

Figure 5.4: Real Number BitBlocking - Phase 2
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date 
Air Compr Lub Oil 1 Air Compr Lub Oil 2 MA-2701 DE Bearing 

 Part1 Part2 Part1 Part2 Part1 Part2 

 00000000 0000000000000000 00000000 0000000000000000 00000000 0000000000000000 

 00000000 0000010110001100 00000000 0000000111000111 00000000 0000000000000000 

 00000000 0000101011101111 00000000 0000000001001111 00000000 0000000000000000 

 00000000 0000011111101010 00000000 0000001011111010 00000000 0000000000000000 

 00000000 0000001011110110 00000000 0000000011011111 00000000 0000000000000000 

 00000000 0000010011011100 00000000 0000000000000110 00000000 0000000000000000 

 00000000 0000000010100011 00000000 0000000100110111 00000000 0000000000000000 

HEADER (Part1s + Part2s) Real Payload Align 

000 000 000 1100 1010 0000 000000000000 010110001100 101011101111       … 0000000110 0100110111 < 8b 

Figure 5.5: Real Number BitBlocking - Phase 3

5.1.1 The Compression Mechanism for Floating-Point Data

The compression process comprises six steps. In this section, these steps are described

through examples, in which each window has 7 records and each record has 3 attributes.

When processing a window, we also maintain a reference record, which is the last record

of the previous window. An example of a window’s data and a reference record is shown

in Table A - Figure 5.3.
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HEADER (Part1s + Part2s) Real Payload Align 

000 000 000 1100 1010 0000 000000000000 010110001100 101011101111       … 0000000110 0100110111 < 8b 

HEADER (Part1s + Part2s) Align  Real Payload (Byte-Algned) 

000 000 000 1100 1010 0000 3*8 – 21 = 3b 000000000000 4b 010110001100 4b 101011101111 4b … 0000000110  4b 0100110111 6b 

Figure 5.6: An Example of Traditional Bit Padding

 

HEADER (Part1s + Part2s) Align  Real Payload (Byte-Algned) 

000 000 000 1100 1010 0000 3*8 – 21 = 3b 000000000000 4b 010110001100 4b 101011101111 4b … 0000000110  4b 0100110111 6b 

TimeStamp HEADER (Part1s + Part2s) Real Payload Align 

125D03A0AC40 000 000 000 1100 1010 0000 000000000000 010110001100 101011101111 … 0000000110 0100110111 <= 8b 

Figure 5.7: Time-stamp Attachment

Step 1: Delta Encoding.

In this step, for each record in the window, the difference is computed between the

reference record’s attributes. The result is shown in Table B - Figure 5.3.

It is obvious that the delta operation is reversible. That is, given the full data in Table

B, Table A is retrieved in Figure 5.3.

Step 2: Splitting

In this step, instead of working with real numbers, the following process is undertaken.

1. Each entry value is split into two parts: the whole number part and the fractional

part.

2. If an entry is negative, the fractional part is made negative.

3. Both parts are stored as integers. Because the second part is stored as an integer,

a significance factor is also maintained for its column.

For example, the value -1.0082 is split into 1 (the whole number part) and -0082 (the

fractional part), and the fractional part is stored as 82 with a significance factor 4 for its

column. The three ‘components’ allow us to retrieve the original value as−(1+82×10−4).

Applying this operation to Table B, we get the result shown in Table C - Figure 5.3. As

shown above, this step is reversible.
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Step 3: Zigzag Encoding

In Table D - Figure 5.4, some of the entries are positive and some are negative. It would

be convenient to work with positive numbers only. The zigzag operation allows us to do

this. The calculation is as follows.

1. If an entry is positive, we double it.

2. If an entry is negative, we double the absolute value and subtract 1 from the result.

Applying this operation to the data in Table D, we get the result shown in Table E -

Figure 5.4. It is obvious that this Zigzag step is reversible as well.

Step 4: Bit Conversion

Now, each integer value in Table E is converted into a 16-bit binary representation, and

the maximum number of significant bits is counted for each column (not to be confused

with the column’s significant factor in Step 2).

The result is shown in Table F. Note that this step is reversible.

Step 5: Aggregating

In this step, the data in Table F are taken and put in one record, made up of a series of

bits. This aggregate record contains the data of the reference record and all the records

in a window.

To describe the construction of this aggregate record, let us take the case where we have:

1. 7 records in the window.

2. Each record has three attributes X, Y and Z.

3. Each field (being a real number) is split into the whole number and the fraction

part, denoted by W (part 1) and F (part 2).
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The aggregate record has two parts: the header and the data.

The header has the following.

1. Number of significant bits for <attribute X, part W > (which is 0 bits or 000 in

the table in Figure 5.5)

2. Number of significant bits for <attribute Y, part W> (which is 000 in the table in

Figure 5.5)

3. Number of significant bits for <attribute Z, part W> (which is 000 in the table in

Figure 5.5)

4. Number of significant bits for <attribute X, part F> (which is 12 bits or 1100 in

the table in Figure 5.5)

5. Number of significant bits for <attribute Y, part F> (which is 1010 in the table

in Figure 5.5)

6. Number of significant bits for <attribute Z, part F> (which is 0000 in the table in

Figure 5.5)

As for the data segment (Real Payload), the contents consist of the data for record 1,

record 2, ... record 7. For record 1, the data is arranged in the following order (logically).

1. <record 1, attribute X, part W>

2. <record 1, attribute Y, part W>

3. <record 1, attribute Z, part W>

4. <record 1, attribute X, part F>

5. <record 1, attribute Y, part F>

6. <record 1, attribute Z, part F>

Similarly, the above six logical sequences will be same for record 2 to record 7.

To save space, however, any part with 0 significant bits (as is evident from the header)

can and will be omitted from the aggregate record, without loss of information. An
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example of an aggregate record, to its structure, is presented in the record under the

table in Figure 5.5. Note that this aggregation step is reversible. From the aggregate

record, we can retrieve data in the table in Figure 5.5.

Step 6: Padding Aggregate Record

There is a need to store the aggregate record as a sequence of bytes. But the last byte

may only be partially filled, i.e., some bits are not part of the actual data. We refer to

this byte as the last data byte.

Figure 5.6 shows an example of aligning bits in a traditional way. In this case, bytes

are aligned by adding bits whenever a byte is created without adding more values. This

leads to a lot of redundant bits and takes up storage space. In the improvement, as data

is managed in the window, the number of bits is controlled and known in a window.

Hence, a method for a byte-align mechanism is developed by adding bits only at the end

of each window. To take this into account the “partially filled” possibility, one more byte

is added to the aggregate record to indicate how many bits in the last data byte are part

of the data. This additional record is referred to as the padding byte.

A value of 1 in the padding byte means that the first bit of the last data byte is part

of the data, a value of 2 means the first two bits are part of the data, etc. A value of 0

means that there is no partially filled record, and all the bits of the last data byte are

part of the data. An example of the aggregate record, with partially filled data, is shown

in Figure 5.7. This is the actual compressed record that is being stored.

Note that this padding operation is clearly reversible in the sense that from a padded

aggregate record, the data can be retrieved, and there is no need to reconstruct the

record of Step 5: Aggregating.

As a critical overall feature, because each step is reversible, the whole compression process

is reversible, i.e., final aggregate record of Step 6 can be decoded to retrieve the original

data of the window in Figure 3.
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Algorithm 4: Window-Bit-Block Compression
Input: window, setOfKeys, referencedRecord
Output: integratedWindows

1 Let firstPart be a two-dimension array;
2 Let secondPart be a two-dimension array;
3 for i = 1,...,window.getRecords().size() do
4 keyIndex = 0;
5 refRecord = referencedRecord;
6 if i>1 then
7 refRecord = window.getRecords().get(i-1);
8 end
9 for each key in setOfKeys do

10 valueF = r.getValue(key) - refRecord.getValue(key);
11 Let components be an array with the size 2;
12 components = BinaryComponents(ValueF);
13 // 8bits
14 firstPart[keyIndex][i] = BitsRepresentation(components[0], 8);
15 // 16bits
16 secondPart[keyIndex][i] = BitsRepresentation(components[1], 16);
17 keyIndex ++ ;
18 end
19 end
20 for i = 1,...,keyIndex do
21 significant1 = NumberOfSignificantBits(firstPart[i]);
22 significant2 = NumberOfSignificantBits(secondPart[i]);
23 //3bits + 4bits per a header of a value
24 hearder1 += BitsRepresentation(significant1,3);
25 hearder2 += BitsRepresentation(significant2,4);
26 for j = 1,...,w.getRecords().size() do
27 payLoad1 += BitsRepresentation(firstPart[i][j],significant1);
28 payLoad2 += BitsRepresentation(secondPart[i][j],significant2);
29 end
30 end
31 return BitPadding(header1 + hearder2 + payLoad1 + payLoad2)

5.1.2 A Time-series Data Access Technique

In addition to compression, the time-series data access based on timestamps is another

main contribution of the model. Assuming a given index structure, there is a need to

denote each entry of the index by a timestamp. Hence, in this subsection, an entry of

the index is defined as a timestamp and a mechanism is found to attach a timestamp to

the window-bit blocks. In the model, the key for a window is a pair of timestamps and

window size. As a result, it is trivial to extract the timestamp for each window. In order

to attach it to the block, the DateTime format must be transferred to the bit blocks. To
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save storage, they are transferred to a hexadecimal and the number of first bytes is fixed

to store these timestamps in each block. Figure 5.7 demonstrates an example timestamp

attachment.

For example, the timestamps are normalized into the format ’YYYYMMDDhhmmss’

which can be parsed into a long variable. They are then converted into a binary or a

hexadecimal. Notice that, the attachment of the timestamp is only performed at the

first record of each block which is the encoding of a window.

5.1.3 Compression Mechanism with Time-series Data Access Support

Algorithm 4 is used to encode a batch of data into a real number bit block. This algo-

rithm is enhanced from Sprintz (time series compression for the IoT) which is mainly

applied for compressing multivariate integer time series. The improvement can be used

for real-industry data, and floating-point, and it can ignore the floating-point quantiza-

tion process similar to other floating-point compression techniques. In particular, the

algorithm takes inputs including a set of data (a window), the set of keys or attributes

as users’ requirements, and a referenced record which is the last record of the previous

window. The referenced record supports the delta encoding of the first record of the

data-set/window. First, the first parts and the second parts of the floating point values

for each attribute are identified after delta encoding (see phase 1 - Figure 5.3). Therefore,

there is a a need for two-dimension arrays to store these values. The first dimension is

the index of the record, and the second is the index of the attributes or keys. This work

is presented in the loop from line 2 to line 19. In this loop, it is first delta-encoded (line

10). Then, the results are split into two integer parts (in front of and after the dot). Each

part is transferred into binary; and the sign is moved to the second part if the first part

has a zero value. Again, delta encoding is applied for the integer parts and then zigzag

encoding for all the values. An example of this implementation is presented in Figure

5.4. The BinaryComponents() in line 12 perform all of these operations; and it transfers

the result to the components array with a size of two. The first element is converted into

an 8-bits representation to become a value of the first part, and the second element is

converted into a 16-bits representation which is the value of the second part. The loop

from line 20 to line 30 is used to identify all components for the bit block of a window

including the headers and the payloads (real values) of the two integer parts. Finally, all
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Algorithm 5: Attaching Timestamp to Compressed Data
Input: dataSources, timeIndex, startingTime
Output: time-seriesIndex-base

1 Let compressedData be an array with the size equals number or sources
2 for i = 1,...,dataSources.size() do
3 compressedData[i] <- Window-Bit-Block();
4 end
5 // TimeAlignment:
6 granularity = getMaxSize(compressedData);
7 for i = 1,...,dataSources.size() do
8 dataEntry <- compressdata[i].getData(startingTime, granularity);
9 add dataEntry to timeIndex ;

10 startingTime += granularity;
11 end

the parts are blocked together using a function BitPadding() in line 31. An illustration

of these steps is shown in Figure 5.5.

Algorithm 5 is our processing step (Attaching Timestamp to Compressed Data) after

the compression step (Figure 5.1). First, data is extracted in compression version from

each source. The data is stored in the array compressedData (line 1 to line 4). Then, a

granularity is identified from all sources in line 6. Lastly, data is obtained with a period

of granularity and they are added as entries to the index (Line 7 to line 11).

5.2 Experiment Results

The same real streaming dataset which was used in the experiment in the previous chap-

ter is used for this experiment. This dataset is from a distributed manufacturing company

which is designed with many machines along with IoT sensors. Table 5.1 contains stream-

ing data from two IoT sources, namely a small dataset and big dataset within second

and minute-based time series data. In particular, the small dataset contains IoT Source

1 with 368,199 records of 94 MB in size and IoT Source 2 with 2592,200 records of 62.8

MB; whereas, the big dataset contains IoT Source 3 and IoT Source 4 with 1,472,800

records and 6,480,000 records which are 376 MB and 1.5 GB in size, respectively. The

experiment is performed on both the small and big datasets.



70

Table 5.1: Set of Streaming Data

Details
IoT
Source
1

IoT
Source
2

IoT
Source
3

IoT
Source
4

Duration 256 days 3 days 1024
days 75 days

No of
Records 368,199 259,200 1,472,800 6,480,000

Frequency record/
min

record/
sec

record/
min

record/
sec

Size 94 MB 62.8 MB 376 MB 1.5 GB

5.2.1 Storage Space Reduction

Table 5.2 illustrates the compression ratios and storage saving abilities of our compression

techniques within the timestamp. The formulas for the compression ratio and storage

saving are defined as follows.

compressionRatio =
sizeUsingCompression

sizeWithoutCompression
(1)

storageSaving = 1− sizeUsingCompression

sizeWithoutCompression
(2)

In formulas (1) and (2), sizeUsingCompression is the size of the data storage needed

when the compression technique is applied; sizeWithoutCompression is the size of the

data storage needed when we implement the ISDI (IoT Streaming Data Integration)

model from the previous chapter with the same data. In particular, in ISDI, data is ex-

tracted in windows (blocks) and then data is integrated from sources using a user-defined

function attached in the integrator (in Figure 5.8), for example, calculating the average

temperatures in each window. The storage in this case includes semantic information. In

this experiment, data is tested on one source (the data in IoT source 1 in Table 5.1) with

different compression levels to investigate the compressionRatio and the storagSaving.

Table 5.2 provides details on the four compression techniques. The real number bit

blocks technique, which is the contribution in this chapter, is illustrated in Figure 5.2;

byte transfer is the technique that transfers all bits into bytes, and Huffman coding is an

algorithm for performing data compression [100]. These techniques are different levels of

this compression. In order to apply Huffman coding, bits presentation is transferred into
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Table 5.2: Compression Ratio Using Different Techniques

Technique

Compression
Ratio (IoT
sources 1
& 2)

Storage
Saving
(IoT
sources
1 & 2)

Compression
Ratio (IoT
sources 3
& 4)

Storage
Saving
(IoT
sources
3 & 4)

SprintZ
[8] 3.68% 96.32% 3.72% 96.28%

Real
number
bit-
blocks

27.24% 72.76% 27.5% 72.5%

Real
number
bit-
blocks
& Byte
transfer

4.94% 95.06% 5.05% 04.95%

Real
number
bit-
blocks &
Huffman

2.12% 97.88% 2.15% 97.85%

 

 

                                                                                                                                  

Source 1 

Windows 

Integrator 

uData 

The avg of w1: 23.4 

The avg of w2: 25 

…. 

 

The avg of w256: 22.7 

 

ISDI 

 

Source 1 

Windows 

cData 

Our Compression 

 

dData 

De-compress 

 

The avg of w1: 23.4 

The avg of w2: 25 

…. 

 

The avg of w256: 22.7 

 

Semantics/information: 

 

Computed from dData: 

 

Figure 5.8: ISDI vs ISDI-C

symbols (or characters), so Byte transfer is always performed before applying Huffman

coding. Lastly, they are compared with an existing time series compression technique,

SprintZ [8]. With small dataset, in the first level of our technique which applies bit blocks
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Figure 5.9: Compression Ratio Using Different Techniques with a Big Dataset

only, the compression ratio is 27.24% and the storage saving is 72.76%. However, the

compression ratio is much better when all the bits of blocks are transferred into bytes,

this being only 4.94%. This compression ratio again reduces when Huffman coding is

applied, being half the previous level at only 2.12%, and the storage saving is 97.88%

which is the best result. In comparison with SprintZ [8], this comprehensive technique

gives a better storage saving, 96.32% vs 97.88%. Notice that, with the big dataset,

the results are similar to those of the small dataset, for example, 2.15% vs 2.12% of

the compression ratio. This shows that the system is scalable. This is because data

are processed in partitions and the compression technique is applied for each window

into those partitions. The outcome will be the same with a data partition or multiple

partitions. For a different observation, the same results are presented in a bar chart in

Figure 5.9.

Figure 5.8 illustrates the process of extracting summarized information from the ISDI and

this current work, ISDI-C, to obtain data with sizeWithoutCompression (uncompressed

data - uData) and sizeUsingCompression (compressed data - cData), respectively. As

previously discussed, uData contains semantic information which is set as the average

of the temperatures for each window in the experiment. For the compression version,

data is compressed on each window and they are combined into cData. The cData is

the decompressed and the average temperature is calculated for each window. The two

results are exactly the same, which means semantic information will not be lost when

applying the compression. Hence, it can be concluded that the compression technique is

a lossless compression and offers a very good compression ratio.
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5.2.2 Time-series Data Processing Capability

In this subsection, the capability of on-the-fly processing time-series data is measured

using the model (Figure 5.10). The model includes SourceManagers, Compression and

Indexing based on timestamps. While SourceManagers or source controllers convert IoT

data to different structures (including semi-structured and non-structured data) into key-

value pairs (<k,v>) and send these data to the distributed streaming platform Apache

Kafka, the compression model and supporting access processes receive data to facilitate a

quick response to the clients’ queries as previously discussed. In particular, a streaming

data processing pipeline is set, which transfers data from IoT sources to the model. A

comparison is made of the time to transfer data (each window) from a source to our

model (Tw) versus the processing time of our model including compression and building

time-series access (Tp); whereas, Tw is measured by the time it takes to convert the data

into <key, value> pairs and transfer it through the distributed platform Apache Kafka,

and Tp is the elapsed time for the processes of compressing and building the data access.

If Tp is less than Tw, it is confirmed that the model satisfies the condition of processing

time-series data on the fly.

Figure 5.11 shows processing time Tw and Tp with different volumes of data. Typically,

the time to process both steps increases linearly if the volume of data grows as well.

In addition, the figure shows that Tp is less than Tw if the data volume is less than

25200 records, which means that the model can process data completely before other

data arrives from sources through Kafka. In contrast, if the data volume is too big (>

25200 records), Tp is greater than Tw, so the arriving data must wait for the framework to

process its job. However, in processing streaming data, the volume of on-the-fly processed

data is normally small enough to run through a streaming pipeline. To conclude, in good

conditions, when streaming data are processed as usual, the framework can definitely be

deployed in streaming pipeline processing.

In practice, Tw is determined by the slowest rate of incoming data (for example, 1 record

per hour), and the critical volume (from 3600 to under 25200 in Figure 5.11) for a window

is determined by the fastest rate (for example, 1 record per second) and the slowest rate.
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Figure 5.12: Time-series Compression and Access Mechanism from Multiple Sources

5.2.3 Time-series Data Integration through Timing Alignments and

De-duplication

In this subsection, the experiment which was described in the previous subsection is

performed on two sources in the proposed algorithms, time alignment and de-duplication.

Figure 5.12 illustrates our experiment for multiple sources. As discussed in the previous

section, windows are extracted from each source. The volume of data which is processed

on-the-fly is the size of the window (from one source). The results are shown in Figure

5.11. It is observed that their timing performance greatly depends on the size of the

window or the number of records in a window. In addition, there are differences in the
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Figure 5.13: On-the-fly Processing Time Based on the Volume of Data from 2 Sources
(S1) and S2

data volume of each window from the sources, for example, there are 60 records in a

window with a 1-hour size from source 1, but there are 3600 records from source 2 with

the same size (refer to frequency in Table 5.1). Thus, when applying the timing alignment

(Algorithm 5), the volume granularity of the on-the-fly processed data is defined as the

maximum number of records from different windows of multiple sources. In other words,

this granularity depends on the source with the minimum base (to calculate the number

of records) and the source with the maximum base (to decide the window size). For

example, with source 1 (second-based where data are generated every second) and with

source 2 (minute-based) in the framework, the granularity is 60 records corresponding

to 1 minute (window size). Hence, in this experiment, different scenarios are discussed

which effect volume granularity. They are referred to as an ‘extreme case’ and a ‘realistic

case’.

In the ‘extreme case’, source E1 is millisecond-based and source E2 is 24-hour-based

(day-based). This means the granularity for on-the-fly processed data is 1000*60*60*24

= 86,400,000 records, which violates the framework’s performance as analysed in the

previous subsection. A result cannot be generated in this case.

In the ‘realistic case’, source C1 is second-based and source C2 is minute-based (day-

based) (the same dataset as in Table 5.1). This means the granularity for on-the-fly

processed data is 60 records. The number is too small, so the window size can be defined

as bigger (1 hour or 3600 records). In this case, the volume of the on-the-fly processed

data is 3600 (from source 1) + 60 (from source 2) = 3660 records. This is a very good

condition when deploying the model in a streaming pipeline. The performance in this

case is shown in Figure 5.13.
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5.2.4 Discussion

During the implementation of the proposed compression technique, timestamps are at-

tached so that when constructing an supporting time-series data access, these timestamps

can be utilized to obtain data without decompression. Hence, with this framework, the

storage of time-series data can be reduced and the data is retrieved in real time. The

experiment results in Table 2 demonstrate that the proposed compression technique out-

performs the other two techniques by saving 97.88% of storage space compared with the

other two techniques, which save 72.76% and 95.06% storage space, respectively.

The result for the ‘realistic case’ (Figure 5.13) shows that the model can be scalable when

integrating data from different sources. This can also be inferred from the scenario and

what we have analyzed in subsection 4.2. The performance and the standard threshold

(the maximum volume of records that the model can process on-the-fly) are determined

by the slowest rate and the fastest rate of incoming data. Hence, in this case, the fastest

rate is 3,600 records per hour (second-based), so if the slowest rate is hour-based, it will

be a ‘realistic case’; and if the slowest rate is 24-hour-based, it will be an ‘extreme case’.

In addition, in the implementation to integrate data from the sources (Figure 5.14),

temporary buffers are used to store the data from different sources and then they are

merged and combined into a mediated buffer before transferring them into the model.

In this way, in the ‘realistic case’, because there are not many differences between the

volume of records (3,600) in the case of the single source with the fastest rate and the

volume of records (3,660) in the case of the integrated ones, the performance of the

single-source case with the fastest rate and the performance of the multiple-source case

is quite similar (Figure 5.11 vs Figure 5.13).
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5.3 Summary

In this chapter, a new compression framework (ISDI-C) for IoT streaming data was

proposed. A time-series data compression technique was introduced, in which an access

support mechanism is formed according to the timestamps on the compressed data. The

proposed compression technique is a lossless compression technique for floating point

time-series data, which has the advantage of binary-bit representation, bit-padding and

bit-block. The existing technique of bit-padding was improved, and it was optimized by

adding less bits to get multiples of 8-bit for bit-block creation.

Several sets of experiments were conducted with a single IoT data source and the ca-

pability of our storage reduction was demonstrated. Using the proposed compression

technique (based on the real number of bit blocks and Huffman coding), the optimiza-

tion is 97.88% of the storage space, whereas earlier techniques can only save 95.06% of

the storage space at best.

A streaming pipeline was built to demonstrate the applicability of the framework with

multiple IoT sources in real time. The results of the experimental setup using the Apache

Kafka streaming environment showed that the framework can be effectively used in prac-

tice. Overall, the new compression framework can be applied to integrate different time-

series data from streaming data sources.

In the next chapter, the time-based access mechanism will be further optimised by con-

structing indexing structures to efficiently and effectively respond to users’ queries. The

aim of this optimisation is to delay the decompression of the data as far as possible by

getting the smallest sub-set of compressed data to decompress for the search.



Chapter 6

IoT Streaming Data Indexing and

Query Optimisation

In the previous chapters, the underlying techniques are discussed to deal with some of the

identified issues in streaming data processing (chapter 3), including IoT data alignment

from multiple sources with different timing conflicts, different streaming data mapping

from multiple sources to a single unified schema and data redundancy and subsequent

de-duplication when retrieving data from sources. To address these issues, a framework

ISDI is developed in Chapter 4 with a new window-based approach.

A model is then introduced to facilitate data access efficiently with streaming data com-

pression and indexing (Chapter 5). In detail, an existing bit-padding technique is adopted

and it is improved as a lossless compression for IoT data. Also, an indexing mechanism

based on timestamps is built, which supports access to compressed data without full

decompression.

In this chapter, a variety of queries is firstly identified from a scenario, and then a

framework, namely ISDI-CI, is developed to optimise the way to access and retrieve

these data per the users’ queries. This framework reduces the search space by finding

the smallest sub-dataset that needs to be searched on to delay the decompression of data

as far as possible. Finally, the optimisation is evaluated by conducting experiments on

the response for each query using different indexing schemes.

78
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6.1 Proposed Indexing Approach for Query optimisation

As introduced in the previous chapter, this thesis develops a framework to collect and

integrate IoT streaming data from multiple sources and store these data under a com-

pressed version. This framework adapts the abilities of both streaming data integration

and storage space. However, it is not easy to access this form of data for ad-hoc queries

or a variety of queries with different search keys. Therefore, it is necessary to have a

mechanism to organize and structure data in an optimal way so that it is effortless to

access data and respond to users’ queries. In this section, we re-describe the scenario of

how data is processed and its pre-processing flow before index schemes are constructed

to access data. We also give examples of queries with responses taken from the records in

this form. After this, the optimised model with an extended data structure is explained,

and the performance of the query responses is improved.

6.1.1 Scenario and Data Representation

In this scenario, we extract IoT streaming data sources and treat this information as

useful numerical values or a preview of the potential power of IoT devices. For example,

one of the advantages of these values is that healthcare professionals can track patient

health in real time and provide on-demand care; manufacturing is able to understand

the details of production lines and predict issues before they happen; the automotive

industry is able to leverage sensors not only for self-driving but also to provide deeper

and real-time insights. Furthermore, it is critical to access historical information from

these data to analyse the prediction models. Hence, the previous chapter introduced a

compression and indexing model to both store and facilitate data access in nearly real-

time. It is noted that streaming data from sources is processed in windows. Because all

the information of each window is compressed, a window record contains details of the

compressed data, a timestamp and the location of sources, as shown in Table 6.1.

Table 6.1: Old Data Representation

Timestamp - starting time
of a window (TS)

Location of the data
source (SL)

Detailed data of the
window - Compressed
(CD)
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In the following discussion, examples of the expected queries from the measurement

source/sensors are given, and then these are generalized into possible scenarios.

• Example 1: Obtain all the useful/summarized information of a streaming data

source, for example, the average temperature for a period of time, say last Sunday.

This query is interested in the summarized information but not the entire data set,

and it looks for the timestamp of streaming data to get the results. Hence, the

expected response is day-windows of data.

• Example 2: Investigate when the average temperature of a machine is equal to or

greater than 100 degrees Celsius in a period of time (last year) at several locations.

In this case, the summarized information or the user-defined function (UDF) is the

average temperature (AvgTemp). To obtain the result, we need to search on the

timestamps (all the timestamps for the year 2019), the summarized information

(the average temperature greater than 100 Celsius) and the location of sources.

The expected response is timestamps.

• Example 3: Investigate how a heartbeat rate changed hourly last month where

the maximum heartbeat rate is > 120 bpm. The UDF is to get the maximum

heartbeat rate. This is the same as in example 2 with the search keys being the

summarized information and timestamps but the expected result is the whole data

at that period of time. To do this, we need to decompress the compressed data to

get this information.

Using the aforementioned examples, we identify the following two scenarios as below:

1. Scenario 1: Search for all the information of IoT streaming data information from

the sources in a period of time.

2. Scenario 2: Search for one or more features of the data in a period of time, for ex-

ample, properties/features including timestamp, temperature, humidity and other

attributes.

These two scenarios generally cover search query situations from applications. Simple

queries with a timing search fall into scenario 1. More complicated ones, including ad-hoc
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queries, belong to scenario 2. To respond to all the queries from the aforementioned ex-

amples or to obtain the results from the two scenarios, we can only search on timestamps,

even search keys are non-timestamp attribute in the scenario 2, and then decompress all

the data, that is, as many records as we have in that period of time to obtain the in-

formation. It is expensive to fully decompress the entire data set for the certain period

of time. To improve the query performance, we need to reduce the number of records

to be decompressed for many of the common queries. To do this, some features need

to be considered as directed access keys in queries, not just timestamps; however these

features are compressed and become invisible. To address this issue, useful/summarized

information or extra properties of the data can be extracted to support the search. We

illustrate our optimisation using the definition of the summarized information and a

window record along with the following examples:

Definition 6.1. (Summarized Information). Summarized information (SI) comprises the

new attributes/properties extracted from the detailed data of a window. It is functioned

by users to extract from the range of data and obtain useful information. For example,

a function could be the average or minimum or maximum temperature of the window.

SI = < f1(dt), f2(dt), ..., fn(dt) >

In the above relation,

• SI represents the summarized/useful information of a window,

• dt represents the detailed data of a window which is all the records in the window,

and

• f() represents a user-defined function from the data in the window.

Definition 6.2. (Window Record). A window record (Re) is a record obtained after

the compression of a sliding window. Its properties include timestamp, source location,

compressed data of the window and attributes from the compressed data.

Re = < TS, SL, CD, SI >

In the above relation,
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• TS represents the timestamp which is the starting time of a window,

• SL represents the source location of the window record,

• CD represents the compression of the detailed data of a window, and

• SI = < f1(CD), f2(CD), ..., fn(CD) > represents the summarized information of

the compressed data in the window.

The following is an example of a window record with some functions defined from specific

attributes.

TS SL CD D1 D2 D3 E1 E2 E3 ...

where

1. TS is the timestamp of the window record,

2. SL is the data source location,

3. CD is compressed data for the whole window,

4. D1 is related to a property of the data, for example the average temperature of the

window,

5. D2 is the minimum temperature of the window,

6. D3 is the maximum temperature of the window,

7. E1 is the average humidity of the window,

8. E2 is the minimum humidity of the window,

9. E3 is the maximum humidity of the window, and

10. etc.

In this example, to facilitate the search queries, each field, with the exception of CD, will

be indexed according to a certain scheme, e.g., B-plus tree. Notice that, the index on

each field depends on the query. To elaborate on the optimisation, we take an example

of a record where the summarized information is minimum temperature and maximum

temperature, and a query is "Retrieve records whose time is between t1 and t2 and
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whose temperature is between T1 and T2." Without optimisation, we need to search on

the timestamp first, and then decompress all the found records before matching their

temperatures with the temperature in the query. In contrast, with optimisation, we can

filter out the information by taking the records with minimum temperature less than T1

and maximum temperature greater than T2, so the number of records which need to be

decompressed are reduced and the search space on the timestamp is smaller as well.

6.1.2 Framework

In the previous subsection, we introduced a new data structure to improve query perfor-

mance. For greater practicality, we propose a framework to optimise on data access to

return results.

The components shown in Figure 6.1 are described as follows:

- Multiple IoT sources from S1, S2 to Sn, for example, sensors, industrial wearables, mon-

itoring system, business applications, and so on. In our research, we focus on numerical

values of the generated sources.

- Features are properties extracted from widows including attributes of objects and sum-

marized information. For example, they are timestamps, source locations, average tem-

perature, minimum temperature, maximum temperature (summarized from each win-

dow) and so on.

- An index scheme based on the search key from queries, for example, B-Plus tree on

timestamps and/or maximum temperature. To deal with multiple sources, the location

of sources is also the entry of the index.

- Storage contains compressed data which has been transformed in window-wise records

and index schemes. In the case of streaming processing, the index schemes are instanta-

neously created as long as data are coming, and it can be accessed to respond to queries

in nearly real time.
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Figure 6.1: A Framework of Streaming Data Indexing from Multiple Sources with
Optimisation

6.2 Illustrative Queries

In this section, we give some illustrative queries and indicate how these queries can

support our claims about query optimisation.

For the purpose of optimisation, the framework needs to evaluate the performance of

many common queries or satisfy as many query predicates as it can. Common queries

are those which cover as many search keys and different types of results as possible.

Therefore, we focus on the types of results and search keys to categorize queries to

explore the performance when obtaining a response. Also, the processes that affect query

performance need to be taken into account. In our scenario, we need to consider if the

process of decompression is necessary for the search or not. In particular, because data

is in window-wise records, queries could find either specific single windows or multiple

windows either with or without the need to decompress the data. In addition, the

query search keys are based on the attributes of records which are timestamps or non-

timestamp attributes. Following is a discussion of the features that contribute to our

common queries.

Table 6.2 shows the three features which are chosen to make common queries, namely

search keys, types of results from the queries, and the requirement of decompression

during the search, which is a factor impacting query performance. Search keys are
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Table 6.2: Identified Features for Common Queries

Search Keys Types of
Results

Requirement
of Decom-
pression

timestamp,
location (e.g.
url), non-
timestamp

attributes (e.g.
Temp.,

Humidity and
so on)

single
windows,
multiple
windows

yes, no

the attributes of the queries, so in our scenarios, they are timestamps, locations and

non-time attributes. While it is obvious that a timestamp is a typical attribute or

key, many locations represent multiple sources of streaming data. The common query

search keys also contain other non-timestamp attributes such as temperature, humidity,

machine vibrations and so on. In terms of the query results, their types actually depend

on the search keys and their ranges, which also contribute to the differences in query

performance. For example, a result of a single window from a specific timestamp in the

query is retrieved faster than retrieving a result from multiple windows. It is noted that

our pre-processed data contains mostly compressed information, with very specific search

keys or non-timestamp attributes in queries, so it is possible that the data needs to be

decompressed before the real search is performed. The process of decompression is very

costly in every search.

As discussed, we categorize the common queries based on the identified features into four

groups as follows:

Group 1: retrieve a single window with a specific timestamp.

Group 2: retrieve multiple windows in a period of time.

Group 3: retrieve single windows based on timestamps and non-timestamp attributes

during a search which does not require decompression.

Group 4: retrieve single windows based on timestamps and non-timestamp attributes

during a search which requires the decompression.
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All these types of queries support our claims of query optimisation. By addressing the

issues related to searching on compressed data with common queries and comparing them

with an existing model, the optimisation of the framework is proved. We describe this

task in the following section.

6.3 Experiment

This section demonstrates the ability to search on timestamp and non-timestamp at-

tributes which are the original properties of data or are summarized from streams as

useful information per the users’ requirement. Some test cases are performed to measure

the response time of the identified queries with different time ranges. The test cases are

evaluated against a set of general searching queries to determine the effectiveness of the

optimized framework in comparison to the earlier non-optimized version. The results of

the evaluation show that the optimized framework is able to: i) facilitate quicker data

access to the compressed data sources, and ii) reduce search space by removing record

candidates which subsequently improve searching performance time.

The experiment data is the outcome of the previous chapter (our previous work [101]).

The original data is a set of IoT streaming data, and each record is generated every

second. The attributes of the data set are the timestamp and the temperatures of

the compressors in the construction industry. We process the data set of 10.8 billion

second-based records (each record is generated in one second) into 3 million windows.

This means a window of an one-hour size contains the information of 3600 records, and

its attributes are timestamp, compressed data and summarized information including

average temperature, maximum temperature and minimum temperature of each window

(Table 6.3). In the experiment, we specify the identified queries to measure the response

time as follows:

Query 1 (single window): Retrieve all records in one specific hour.

Query 2 (multiple windows): Retrieve all records in a day or a few hours.

Query 3 (single windows, temperature (non-timestamp attributes), timestamp, no-decompression):

Retrieve records whose time is between t1 and t2 and whose average temperature is

between T1 and T2
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Query 4 (multiple windows, temperature (non-timestamp), timestamp, decompression):

Retrieve records whose time is between t1 and t2 and whose temperature is between

T1 and T2.

Query 5 (single windows, temperature (non-timestamp attributes), timestamp, location,

no-decompression): Retrieve records whose timestamp is between t1 and t2 and maxi-

mum temperature is between T1 and T2 from a particular set of sources {s1, s2

and s3}

Table 6.3: Set of Streaming Data

original data processed data
10.8 billion records 3 million window

records
second-based one-hour size
timestamps,
temperatures and
other attributes

timestamps, source
location (url),
compressed data,
summarized
information
(avgTemp,
minTemp,
maxTemp)

6.3.1 Response for Query 1 (Selection on specific timestamp)

In this experiment, the performance of different scenarios is compared with the processing

time. First, we investigate the performance of a non-optimisation approach, the ISDI-C

framework with compression [101], responding to query 1. In this case, we pre-process

the streaming data in the windows and extract and summarize the information from the

window as its new attributes. Note that, because we search data on ordered timestamps,

this is a linear search. The second scenario is applied with optimisation. A B-plus tree

is taken as a representation of the index on the timestamp. The tree is constructed with

keys being timestamps and values being the rest of each window record. In contrast to

the complexity of the previous scenario, the complexity of this search depends on the

height of the tree, which is O(log n), where n is number of keys or the number of window

records.
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Algorithm 6: optimisation Response for Query 1
Input: BPlusTreeOnTimeStamp, timeStamp
Output: records

1 w ← BPlusTreeOnTimeStamp.retrieve(timeStamp);
2 return decompression(windows);

     Timestamp Compressed data Summarized Information 

t1 Block_1 Info_1 

t2 Block_2 Info_2 

             …           …                          …   

tn Block_n Info_n 

 

Linear Search: 

t1, t2, … tn 

… 

t1 … …       …    tn 

VS 

B-Plus Tree: 

… … … … 

… 

Figure 6.2: Scenario 1 vs Scenario 2 for Query 1

Figure 6.2 demonstrates the implementation scenarios to respond to query 1. Scenario

1 is the linear search on timestamps, and scenario 2 is the optimisation search on the

B-Plus Tree which is created to index the timestamps of the data. The optimisation

algorithm is shown in Algorithm 1. The results are retrieved when searching on the

B-plus tree based on a specific timestamp.

The results are shown in Table 6.4. For the first scenario, the average case on the linear

search is performed, taking 1,132.973 milliseconds to obtain the response. However, it

retrieves data very quick in 1000 testing cases in the scenario 2, with an average of 0.01

milliseconds.

Table 6.4: Results for Query 1 (Selection on specific timestamp)

Scenario 1: ISDI-C Framework with Compression [101]
Average Case 1132.973
Scenario 2: Optimisation with Indexing
Average time (1000 tests) 0.01
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6.3.2 Response for Query 2 (Selection on timestamp interval)

In this experiment, we measure the performance of the same scenarios in the previous

sub-section. As the results of the search are larger in volume, we investigate the search

with different ranges of time periods in the queries. However, as shown in the result

of Query 1 above, there is a big difference between the performance of scenario 1 with

average case vs scenario 2, so in this subsection, we take the best case of linear search

on the scenario 1 to compare with the average time of our optimised framework.

The optimisation implementation is shown in Algorithm 2. The inputs are the B-Plus

tree on the timestamp and a period of time is defined by a pair of timestamps (t1, t2).

The first window record can be retrieved by a specific timestamp t1 (line 3), which is the

same in Algorithm 1. It is noted that all the leaf nodes of the B-Plus tree are linked-list

and those nodes contain the index of the timestamps which are in order, so the other

records are traced from the node containing t1 to the node containing t2 (lines 6-10).

The results are shown in Figure 6.3 and Table 6.5. For both scenarios, we perform

test cases with a different range of window sizes, from one to ten days. The ideal

case performance in scenario 1 is worse than the performance of the framework with

optimisation. In particular there are small differences between the two performances

with small window sizes of one and two days, which are 0.001 and 0.997 milliseconds

vs 0.002 and 0.98 milliseconds. However, the differences are incrementally larger with

larger window sizes. While the processing time is 0.999 ms with windows size of 3 days

in scenario 1, it doubles to 1.971 ms with windows of the same size in scenario 2. The

difference in the performance is much bigger even much bigger when the window size is

10 days, this being 2.05 ms in scenario 1 vs 9.994 ms in scenario 2 in Table 6.5. Also,

in Figure 6.3, the processing time of the ISDI-C framework in scenario 2 is gradually

increasing with the increase in the windows size while there is a slow increase in the

performance of our optimisation framework with different window sizes.
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Algorithm 7: Optimisation Response for Query 2
Input: BPlusTreeOnTimeStamp, t1,t2
Output: records

1 Declare a collection of windows windows;
2 Declare a timestamp timeStamp;
3 nodeW ← BPlusTreeOnTimeStamp.retrieve(t1);
4 windows.add(nodeW.data);
5 Declare and initialize a temporary node newNode← nodeW ;
6 while timeStamp < t2 do
7 newNode← newNode.nextNode;
8 windows.add(newNode.data);
9 timeStamp← newNode.timeStamp;

10 end
11 return decompression(windows);

 

1 2 3 4 5 6 7 8 9 10

Optimization with Indexing 0 0.997 0.999 1.003 1.019 1.507 1.966 1.9995 2.028 2.05

ISDI (best) 0 0.98 1.971 2.964 3.969 5.951 6.948 7.969 8.944 9.994
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Figure 6.3: Results for Query 2

6.3.3 Response for Query 3 (Selection on timestamp and aggregated

non-timestamp attributes)

In this experiment, we demonstrate the effectiveness of the response to query 3. Again,

we compare the performance between the ISDI-C framework (Scenario 1) and the opti-

misation framework, ISDI-CI, (Scenario 2) with the following different index schemes.

- optimisation index scheme 1: B-plus tree on average temperature

- optimisation index scheme 2: Hash table on average temperature
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Table 6.5: Results for Query 2 (Selection on timestamp interval)

Scenario 1: ISDI-C Framework with compression [101]
Days 1 2 3 4 5 6 7 8 9 10
ms 0.002 0.98 1.971 2.964 3.969 5.951 6.948 7.969 8.944 9.994
Scenario 2: optimisation with Indexing
Days 1 2 3 4 5 6 7 8 9 10
ms 0.001 0.997 0.999 1.003 1.019 1.507 1.966 1.999 2.028 2.05

B-Plus Tree on Avg Temp.: Scheme 1 
Scheme 2 

Hash Table on Avg Temp.: 

Timestamp Compressed data Summarized Information 

t1 Block_1 Min_1 Avg_1 Max_1 

t2 Block_2 Min_2 Avg_2 Max_2 

             …       …                          …    … 

tn Block_n Min_n Avg_n Max_n 

 

 

 

 

 

 

 

 

 

Min_of_Avg to T1 {t} 

T1 to T2 {t} 

T2 to T3 {t} 

T3 to Max_of_Avg {t} 

Linear Search: 

t1, t2, … tn 

& 

Avg_1, Av_2,…Avg_n 

 

… 

Avg_k … …  …   Avg_m 

VS 

… … … … 

… 

 

VS 

Figure 6.4: Index Scheme for Query 3

Figure 6.4 demonstrates the different searching strategies on the timestamps and the

average temperatures of a window slide. From the left side at the bottom of the figure,

the basic search (scenario 1) is a linear search on the timestamp to match with the other

search key, average temperature. The optimisation framework with scheme 1 and 2 are

illustrated.

In contrast to searching on the timestamp only, which is a linear search on a sorted

collection, the search in scenario 1 on temperature requires the whole data set to be

searched. Therefore, when we consider temperature as another search key, we need to

optimise the search by constructing an index for this key as mentioned in the previous

section. Algorithm 3 demonstrates the optimisation response for query 3. In this case,

the implementation is same as in Algorithm 2. However, instead of indexing based on

the timestamp, the index schemes in this experiment are based on average temperature.

Table 6.6 shows the performance results of the different strategies. Without optimi-

sation, the search time to obtain result is 466.755 ms while the performances improve

significantly by using indexing schemes 1 and 2 , at 74.766 ms and 96.778 ms, respectively.
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Algorithm 8: optimisation Response for Query 3
Input: IndexSchemeOnAvgTemp, T1, T2
Output: records

1 Declare a collection of windows windows;
2 Declare a variable of average temperature avgTemp;
3 nodeW ← IndexSchemeOnAvgTemp.retrieve(T1);
4 windows.add(nodeW.data);
5 Declare and initialize a temporary node newNode← nodeW ;
6 while avgTemp < T2 do
7 newNode← newNode.nextNode;
8 avgTemp← newNode.avgTemp;
9 windows.add(nodeW.data);

10 end
11 return decompression(windows);

Table 6.6: Results for Query 3 (Selection on timestamp and aggregated non-
timestamp attributes)

ISDI 466.755 ms
Idx Scheme 1 74.766 ms
Idx Scheme 2 96.778 ms

6.3.4 Response for Query 4 (Selection on timestamp and actual non-

timestamp attributes)

Query 4 is much more complicated than the other queries and proves the ability of our

optimised approach. Note that, the search is on the value of the temperature, which is

compressed in pre-processing. Hence, without optimisation, we need to decompress all

the data in the period of time in the query and then find the temperatures that match

the ones from the query. It is costly to decompress; however, with the optimisation

schemes, scheme 1 and scheme 2, we filter out some of the data that are out of the query

interest based on the summarised information then decompress the rest, hence reducing

the cost of decompression significantly. The search strategies are shown in Figure 6.5

and described as follows:

- ISDI: performs a linear search on the timestamp in the query, then decompresses each

record to find the temperatures that match T (between T1 and T2) from the query.

- Scheme 1: a B-plus tree on the maximum Temp to retrieve a subset of records Sub1, a

B-plus tree on minimum Temp to retrieve a subset of records Sub2. Take the intersection

of S1 and S2, and then filter them further on the timestamp.
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- Scheme 2: a hash table for the maximum Temp to retrieve the subset of records Sub1,

a B-plus tree on the minimum Temp to retrieve a subset of records Sub2. Take the

intersection of S1 and S2, and then filter them further on the timestamp.

Algorithm 4 demonstrates the implementation of the search on index schemes. The

results windowsMin and windowsMax are retrieved by the index scheme on minimum

temperature and maximum temperature, respectively. In this case, Algorithm 3 can

be implemented with the two arguments being a pair of lower bound timestamp (minT

or T2) and upper bound timestamp (T1 or maxT) in line 1 and 2. After filtering all

the records which need to be compressed by taking the intersection of windowsMin and

windowsMax (line 4), the results are retrieved by filtering further through T1 and T2

(line 5 to 7).

Algorithm 9: optimisation Response for Query 4
Input: IndexSchemeOnMax, IndexSchemeOnMin, T1,T2
Output: records

1 windowsMin← Algorithm3(IndexSchemeOnMin,minT, T1);
2 windowsMax← Algorithm3(IndexSchemeOnMax, T2,maxT );
3 windows← windowsMin ∩ windowsMax;
4 decompressedRecords← decompression(windows);
5 if decompressedRecords.temperature between (T1 and T2) then
6 records← decompressedRecords;
7 end
8 return records;

Table 6.7 shows the results of the query using different strategies. With the same data

used in previous queries (3 million windows), there is a memory error for the linear

search because of being overloading in decompression processing. However, the outcome

of schemes 1 and 2 are delivered, and it is seen that the performance of a tree based

index is better than the performance of hashing techniques, these being 452573.961 ms

and 817199.855 ms, respectively. When the data set is reduced to 1 million windows, the

results are much better, the performance of non-optimisation, optimisation with scheme 1

and optimisation with scheme 2 being respectively 1,044,397 ms, 147,495 ms and 300,410

ms.

The results of this query illustrate the benefit of our optimisation. While a traditional

search requires full decompression of the entire data set to find the exact required tem-

perature, the optimisation approach scans and filters the candidate records or a subset of
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Figure 6.5: Index Scheme for Query 4

the data that mostly satisfies the predicate of the query. With the optimised approach,

not only are fewer decompression processes performed, the search space is also reduced.

Table 6.7: Results for Query 4 (Selection on timestamp and actual non-timestamp
attributes)

3 million windows 1 million windows
Linear Search on ISDI Memory Error 1044397 ms
Idx Scheme 1 452573.961 ms 147495 ms
Idx Scheme 2 817199.855 ms 300410 ms

6.3.5 Response for Query 5 (Selection from multiple sources)

Query 5 is performed to illustrate its ability to search data on multiple sources so the

locations of the sources are taken into account. The demonstration of the implementation

for the query is shown in Figure 6.6 and described as follows:

- ISDI: Linear search on location and timestamp to retrieve the maximum temperatures

that match the search keys in the query.

- Scheme 1: B-plus tree on the maximum Temp to retrieve the initial subset of records,

and then filters them further on timestamp and location.
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- Scheme 2: A hash table for maximum Temp to retrieve the initial subset of the records

and then filters them further on timestamp and location.
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Figure 6.6: Index Scheme for Query 5

Table 6.8: Results for Query 5 (Selection from multiple sources)

ISDI 480.560 ms
Idx Scheme 1 80.235 ms
Idx Scheme 2 102.560 ms

Table 6.8 shows the running time to respond to query 5. Without optimisation, it

takes 480.560 milliseconds to perform the query but the results are delivered in 80.235

milliseconds and 102.560 milliseconds with the optimisation schemes.

6.4 Summary

In this chapter, we describe the improvement of the ISDI-C framework for streaming

data integration into ISDI-CI with indexing strategies. We first analyse the scenario of

streaming data, which is pre-processed in a window-wise compression version and useful

information is attached to facilitate later queries. Then, an optimisation framework with

indexing schemes from multiple sources is introduced, and some common and illustrative

queries are discussed to prove our claim of optimisation. Finally, we perform experiments

on five queries to illustrate the ability of optimisation framework on a wide range of

different query scenarios. The results prove that the optimisation (ISDI-CI) is much

better than the existing framework, ISDI.



Chapter 7

Conclusion and Future Research

The aim of this thesis is to address the challenges associated with streaming data inte-

gration by developing a new framework for integrating IoT streaming data from multiple

sources and facilitating quick data access for future analysis purposes. The thesis first

reviews the existing works related to the issues of streaming data processing and IoT

streaming data integration. The thesis then discusses the research motivation and prob-

lem statement. The limitations of the existing related research are discussed, followed

by details on the general requirements for successful IoT streaming data integration and

the problem statement, after which a novel framework of streaming data integration is

introduced. The framework incorporates the data integration process, data storage op-

timization and data access optimization to provide an entire picture of information flow

from multiple sources to respond to clients’ queries.

In this chapter, firstly the major contributions are summarized, then some interesting

research directions are discussed, which may be explored further in the future.

7.1 Contributions

In this thesis, a new streaming data integration framework has been introduced for data

analysis. It includes a general and extensible model to represent and reason about IoT

streaming data integration from multiple sources, a compression approach to facilitate

storage optimization, and a data access model with index schemes. This thesis makes

a number of research contributions regarding the design and implementation of this

96
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novel streaming data integration framework for both industry and academic areas. In

the following, the research contributions in relation to IoT streaming data integration

processes are summarized.

• IoT streaming data integration model (ISDI integrator model)

For the streaming data integration framework, the ISDI integrator model adopts

and extends basic windowing processing on streaming data. It is a generic in-

tegrator model which has two components, namely ‘managers’ and ‘integrator’.

The former component processes data from sources and maps them into a unified

format, and the latter component collates the streaming data, handles data re-

dundancy and is responsible for controlling the time of the incoming multiple IoT

data through different managers. In this work, the key concepts of timing align-

ment, de-duplication and window-based integration were introduced along with

their implementation algorithms. Several sets of experiments were conducted and

an empirical comparison of the model with the existing work on data integration

were presented to demonstrate the applicability of the ISDI approach. The re-

sults obtained in an experiment setup in the Apache Spark streaming environment

showed that this approach can be effectively used in practice. Overall, the pro-

posed approach can be applied to integrate different time-series data from multiple

streaming data sources.

• Integration of IoT streaming data with storage optimization

In this work, a new version framework for IoT streaming data was proposed. A

time-series data compression technique was introduced, in which an index is formed

according to the time-stamps on the compressed data. The proposed compression

technique was a lossless compression technique for floating point time-series data,

which has the advantage of binary-bit representation, bit-padding and bit-block.

An existing technique of bit-padding was extended and optimized the storage ratio

by adding less bits to get multiples of 8-bit for bit-block creation. Several sets

of experiments were conducted with a single IoT data source and demonstrated

the storage reduction capability. Using the proposed approach (based on the real

number of bit blocks and Huffman coding), the framework optimised 97.88% of the

storage space, whereas earlier techniques can only save 95.06% storage space at

best. A streaming pipeline was also built to demonstrate the applicability of the
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framework with multiple IoT sources in real time. The results of the experiment

setup using the Apache Kafka streaming environment showed that the framework

can be effectively used in practice. Overall, the novel framework can be applied to

integrate different time-series data from streaming data sources.

• IoT Streaming Data Indexing and Query Optimization

This thesis improves streaming data integration using indexing strategies. Firstly,

the scenario of streaming data was analyzed, which is pre-processed in a window-

wise compression version and useful information is attached to facilitate user queries.

Then, an optimization framework with indexing schemes from multiple sources was

introduced, and some common and illustrative queries were presented for better

optimization. A set of experiments on five queries was performed to illustrate the

ability of the optimization framework on a wide range of scenarios. The results

proved that the optimization is much better than the existing ISDI framework.

In summary, the proposed framework has addressed the key requirements of streaming

data processing and integration, i.e., addressing the timing conflicts of data streams by

time alignment; reducing the redundancy and merging information into data instances

by de-duplication; integrating streaming data and performing those operations using

window-based processing; optimizing data storage by lossless compression; and facilitat-

ing data access by structuring data compression and attaching index schemes efficiently.

These research contributions improved data access from multiple sources in terms of inte-

grating IoT streaming data, storing the data and indexing them efficiently and effectively.

In the following section, suggestions for future work are discussed with the purpose of

improving and enhancing the IoT streaming data integration framework more compre-

hensively.

7.2 Future Research

Much work can be done to further enhance the integration of IoT streaming data from

multiple sources. The following several interesting research directions might be explored

in the future.
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• Query Optimization with a Focus on Query Patterns

With the convergence of physical-digital systems, an increasing number of data

fields have been generated and are available for industry and research use. It is a

significant challenge to effectively exploit many data fields and manage the perfor-

mance. In this context, the strategy of IoT data indexing is introduced, which is

based on various query patterns which can subsequently result in better optimiza-

tion, such as artificial intelligence (AI) indexing approaches [75]. In particular,

AI indexing approaches observe patterns and categorize objects (i.e., data fields)

with similar traits. These approaches also support the identification of patterns

between terms in an unstructured data set. Hence, in future work, these kinds of

indexing approaches can be investigated to improve the mass volume of data fields

from multiple IoT sources.

• Privacy Issue in Integrating IoT Streaming Data from Multiple Sources

A significant research problem is how to preserve privacy and how much is pri-

vacy worth when data integration is performed by utilizing multiple IoT streaming

sources. Future research can explore different privacy control algorithms and poli-

cies to address this issue, such as differential privacy and k-anonymity [102], and

subsequently investigate the boundary between privacy and utility in IoT data

integration from multiple sources.

• Capturing Semantic Relationships between Multiple Data Sources

In this thesis, at the early stage of extracting streaming data from multiple sources,

data was transformed into ‘key-value pairs’ without considering the semantic re-

lationships between the data stored in these sources. Therefore, a semantic-based

approach can be utilised to work in the front-end of the framework for data mod-

elling and information retrieval. Different semantic approaches, such as ontology

and schema matching/mapping, can be adapted to represent a shared, agreed and

detailed data model for better integration [103]. Thus, in future work, semantic

approaches can be adapted to process and integrate data comprehensively from

multiple IoT sources.

• Dynamic Windowing and Optimal Window Size

In this research, several experiments were conducted with predefined window sizes.

The performance of streaming data processing was affected by the different window
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sizes, with growing window sizes (Chapter 4) and data volume in a window affecting

the data transferred through a streaming pipeline (Chapter 5). Different factors

can influence performance, such as the speed and time interval of data streams

and the number of records in a window. Hence, future research could explore

dynamic windowing with an optimal window size in the streaming data integration

framework.

• Future Prototype Framework for Mobile Platforms

Users nowadays are becoming increasingly dependent on applications and various

mobile devices. The integration of IoT streaming data in mobile devices such as

cellphones, PDAs or laptops has been receiving increasing attention in pervasive

and mobile computing environments [104]. As future work, the existing prototype

framework can be extended and applied to support mobile platforms. Although the

experimental evaluation in this thesis demonstrates the feasibility of the framework

in the desktop platform, it may not sufficient for mobile platforms. Leveraging the

scalability of the framework in mobile platforms will be another future direction.
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