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Abstract

Medical image classification and segmentation are often challenging for two rea-

sons: a lack of labelled examples due to expensive and time-consuming annotation

protocols; imbalanced class labels due to the relative scarcity of disease-positive in-

dividuals in the wider population for the classification task and a larger amount of

background pixels compared to foreground pixels for the segmentation task. Existing

semi-supervised learning (SSL) methods can take advantage of unlabelled data to im-

prove performance, but they generally do not address the problem of class imbalance.

Hence in this thesis we propose Adaptive Blended Consistency Loss (ABCL), a drop-in

replacement for consistency loss in perturbation-based SSL methods. ABCL counter-

acts data skew by adaptively mixing the target class distribution of the consistency

loss between the prediction made from the original versus augmented data samples.

Our experiments involving two medical image classification and two segmentation

datasets reveal ABCL consistently outperforms existing state-of-art semi-supervised

learning algorithms including one which is designed to address the class imbalance

problem.
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Chapter 1

Introduction

In recent years, computer aided diagnosis whose common underlying technology

is machine learning has emerged as one of essential and promising tools in medical

treatment. By automatically analysing various medical imaging modalities, machine

learning has assisted doctors to diagnose diseases more efficiently. The two main tasks

for computer aided diagnosis are segmentation and classification. At the early stages

of a disease, tumors or lesions may be very small on patient scans and therefore easy

for a radiologist or doctor to miss, hence a computer assisted image segmentation

method can be used to highlight any tumors or lesions found. Medical classification

techniques can automatically analyse and output a disease diagnosis from a patient’s

scans.

Recently, many supervised machine learning methods have achieved promising

results in medical image classification [2, 3, 4, 5, 6, 7, 8] and in medical image seg-

mentation [9, 10, 11, 12]. However supervised learning requires a substantial amount

of fully labelled medical images, while in reality there may be many unlabelled images

that can be used to boost accuracy. Therefore semi-supervised learning is an ideal

method to make use of all scanned medical images including labelled and unlabelled

samples. There is another common characteristic of medical image datasets. Medical

image datasets often have very skewed data distributions such as a large number of

negative disease cases versus a small number of positive disease cases. In terms of

medical segmentation datasets, the proportion of pixels belonging to the disease of

interest (e.g. tumor) is often substantially larger than the background (e.g. normal

tissue). Therefore, It is critically important to address this class imbalance problem

for medical images. The reason is if we don’t develop methods to tackle this problem

then the minor class (often the disease class) may be missed leading to potential fatal

consequences. Although there are several studies focused on semi-supervised learn-

ing [13, 14, 15, 16] for medical images classification and [17, 18, 19, 20, 21] for medical

image segmentation, none of these studies focused on addressing the class imbalance

problem. Hence, we address this gap in the literature by studying explicitly the class

imbalance problem for semi-supervised learning (SSL) for medical image classifica-

1



Chapter 1. Introduction

tion and semantic segmentation. For classification we conduct our experiments using

the HAM10000 skin cancer dataset [22] and the retinal fundus REFUGE Challenge

dataset [23]. For semantic segmentation we use the Nerve Ultrasound dataset [24]

and Breast Cancer Ultrasound dataset [25]. Our approach is designed to work with

any image datasets which have imbalanced class distributions.

There are many different types of semi-supervised learning algorithms. However,

recently all state of the art semi-supervised learning algorithms [1, 26, 27, 28, 29] are

perturbation based. Most perturbation based algorithms augment unlabelled data

and then apply a consistency loss to make the predicted class distribution from the

original and augmented unlabelled samples similar. We focus our study on modifying

the consistency loss on one of the best performing perturbation based SSLs, called

Unsupervised Data Augmentation (UDA) [1]. However, it is important to note the

method we developed to address class imbalance can be used with any perturbation

based SSL method that uses consistency loss.

The standard consistency loss (CL) used in UDA has two shortcomings. 1) It

degrades the classification performance of the minor classes and 2) it always sets the

target as the original example instead of a blend of the augmented and original ex-

amples. Hence, we propose the Adaptive Blended Consistency Loss (ABCL) method

which tackles both shortcomings of standard CL by generating a target class distribu-

tion which is a blend of the original and augmented class distributions. The blended

target class distribution skews towards either the original or augmented example de-

pending on which predicted the minor class. In this thesis we apply our ABCL method

on both medical image classification and semantic segmentation. Semantic segmen-

tation requires each pixel (2D) or voxel (3D) of an image to be classified. We apply

our ABCL method on the grain pixel or voxel rather than the whole image.

We performed extensive experiments comparing our ABCL method against rival

methods on both medical image classification and segmentation datasets. For the

HAM10000 skin cancer classification dataset ABCL achieved an unweighted average

recall (UAR) of 0.67 versus 0.59 for the baseline implementation of UDA. Further-

more, ABCL also significantly outperformed the state-of-the-art Suppressed Consis-

tency Loss (SCL) [82] method for the same dataset. For the retinal fundus glaucoma

classification dataset, ABCL significantly outperformed SCL, increasing UAR from

0.57 to 0.67. For the segmentation problem, ABCL outperforms the baseline mea-

sured by the Dice Coefficient score on both the Nerve Ultrasound and Breast Cancer

Ultrasound datasets. These results show that ABCL is able to consistently improve

performance of consistency loss based SSL methods for class imbalanced classification

and segmentation tasks. This thesis makes the following key contributions:

• We identify the importance of handling class imbalance for semi-supervised clas-

sification and segmentation of medical images. In contrast, no existing work

explicitly addresses this problem for medical images.

2



Chapter 1. Introduction

• We propose the Adaptive Blended Consistency Loss (ABCL) as a replacement

for the consistency loss of perturbation based SSL algorithms such as UDA and

Mean Teacher [26] in order to tackle the class imbalance problem in SSL.

• We conduct extensive experiments on two classification and two segmentation

medical image datasets to demonstrate the advantages of ABCL over standard

consistency loss and other existing methods designed for addressing the class

imbalance problem in both supervised learning and SSL.

1.1 Thesis structure

The structure of the thesis is as follows:

• Chapter 2 - Background: This chapter will provide the background knowl-

edge required to understand the existing work and the contributions of this

thesis.

• Chapter 3 - Related Works: This chapter will review related works in the

area of semi-supervised classification and segmentation for general and medi-

cal imaging tasks, works relating to using Convolutional Neural Networks for

medical image classification.

• Chapter 4 - Problem Definition: This chapter will define the problem stud-

ied in this thesis.

• Chapter 5 - Methodology: This chapter will describe proposed approaches

to handle the problem.

• Chapter 6 - Experiment Setup: This chapter will list all materials needed

in experiments and describe how experiments are implemented.

• Chapter 7 - Experiment Results: This chapter will show the results ob-

tained and also evaluate and analyse those results.

• Chapter 8 - Conclusion: This chapter will summarise the achievement in

this thesis and propose ideas for future works.

3



Chapter 2

Background

2.1 Supervised versus unsupervised learning

In the era of the digital world, machine learning has been playing a crucial role

across many different industries and research fields such as medical research, biol-

ogy, robotics, manufacturing, etc. Machine learning has been used to solve numerous

problems and achieved near human accuracy. Moreover, beyond the limitation of

computation and amount of data, machine learning becomes a more powerful tech-

nique than ever. Machine learning is a subset of artificial intelligence which trains

models using data rather than explicit instructions in order to map inputs to out-

puts or make decisions [30]. Machine learning is mainly divided into three branches:

supervised learning, unsupervised learning and reinforcement learning. To confine

the scope of this literature survey, we will only discuss supervised and unsupervised

learning. In supervised learning, a learnt model takes input data and predicts the

output. The model learns the mapping from the input to the output by comparing

the predicted output against the desired output. Importantly, the key requirement

of supervised learning is that for every training sample, an input and desired output

(known as the label) pair is provided. So, to make supervised models perform well, it

is necessary to gather a large amount of labelled data. Moreover, two main categories

of supervised learning are classification and regression. For classification, the output

of the model should be a categorical class label. For regression, the goal is to output

a numerical value. Another important branch of machine learning is unsupervised

learning, which instead of knowing the explicit output label, it only receives the input

data. The two important techniques of unsupervised learning are clustering and di-

mensionality reduction. The common goal of clustering is to find the pattern of a set

of data points and cluster them into a group. Dimensionality reduction is the process

of reducing the number of features or variables, also known as the dimension, in a

dataset without impacting on the meaning of the data.
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2.2 Semi-supervised learning

The brief review of the two popular paradigms of both supervised and unsuper-

vised learning exposes different shortcomings, for supervised learning it is expensive

to obtain a large amounts of labelled data and for unsupervised learning it is hard

to extract the meaningful information from unlabelled data. Thus, one promising

paradigm that overcomes these obstacles is semi-supervised learning (SSL) [31] which

makes use of a small amount of labelled and a large amount of unlabelled data to

optimize the training of models. The goal of semi-supervised learning is to learn pat-

terns from unlabelled data and augment the prediction of the model by these patterns.

More intuitively, by leveraging the unlabelled data, the model produces a better deci-

sion boundary for different classes which reflects the data’s underlying structure [32].

Over the history of machine learning, researchers have invented various approaches

to semi-supervised learning which mostly refer to either transductive learning or in-

ductive learning. Specifically, given the data set of labelled (xL,yL) and unlabelled

xU data, the objective of the inductive learner is to make the prediction for any data

points, whereas the transductive learner will only produce the label for unlabelled

data points. In the broad perspective, the inductive semi-supervised learning gen-

eralise a model that can output the label for unseen instances, on the other hand,

transductive semi-supervised learning is only able to make the label for unlabelled

data, known instances, during training phase [33]. Figure 2.1

2.3 Convolutional Neural Network for image

classification

Computer vision is one of the most important domains for the application of

machine learning and includes various tasks such as object detection [34] or image

classification [35], etc. Recently, many researchers have achieved state of the art results

for these tasks on public datasets such as ImageNet [36], CIFAR 10 or CIFAR 100 [37].

To achieve such successful results, almost all of them have used one breakthrough type

of neural networks, called Convolutional Neural Networks (CNNs) [38, 39]. This type

of model has the ability to help the machine understand the representation of image

better and also automatically learn features from the image.

Specifically, the architecture of CNNs is designed as a series of blocks and followed

by a classification module [41]. Each block contains three layers: filter bank layer,

non-linearity layer and pooling layer. In addition, the main characteristic of CNNs is

the feature map which is the input and output of layers in each block. For example in

Figure 2.2, the very first layer receives the RGB image of a dog and outputs features

of the image such as eyes, ears, etc. The filter bank layer is a set of filters, which are
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Figure 2.1: Visualization of the semi-supervised taxonomy [33].

Figure 2.2: Inside Convolutional Neural Networks [40].
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Figure 2.3: The example of filter over the image [42].

matrices of weights having dimensions (width,height) or (width,height,depth) corre-

sponding to input of black and white image or color image respectively. Each filter

scans through the image and makes the sum of element-wise operation with each

scanned portion of the image. Intuitively, the filter is a window, which slides horizon-

tally from top left to bottom right of the image and returns the feature map output,

as shown in Figure 2.3. In addition, the filter often is called a feature detector and

its weights sometimes is predefined to reflect what features it wants to detect such as

vertical or horizontal edge.

Moreover, two important settings of filter banks are padding and stride. Padding is

the process of adding zero pixels around the border of an image. Sometimes, the filter

does not fit well with the image, that means the filter would be missing some parts

of the image. Thus, doing padding into the image makes sure the filter captures all

the information from the image. Stride is the number of pixels indicating how far the

filter should move from current position on the image. The output of the filter bank

layer is the input of the non-linearity layer which consists of an activation function.

Most researchers use the Rectified Non-Linear Unit (ReLU) [43] which returns the

direct input if it is not negative, otherwise returns zero. The purpose of non-linear

activation function is to prevent the model from becoming a linear model and help the

model to deal with the complex task. The last layer of CNNs block is the pooling layer

which also uses the approach of scanning images. It applies the specific function with

the filter size (width,height) as the parameter such as max pooling, average pooling

or sum pooling onto every region of feature maps. For example, applying max pooling
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Figure 2.4: An example of semantic and instance segmentation [44].

with the filter size 2x2, the function will output the highest value of a specific region.

That means, pooling layer can reduce the dimensionality of feature maps and also

keep the most important information out of the region. In the higher level view, the

two key benefits of CNNs are parameter sharing and sparsity of connections. With

parameter sharing, a filter bank is useful in one part of the image and is probably

useful in another part, thus it can reduce the parameter needed. With sparsity of

connections, in each layer, each output value depends only on a small number of

inputs.

Lastly, all feature maps captured from a series of blocks are flatten out into input

units and fed into the classification module, called fully connected layer. This layer

is like a normal neural network which outputs the score for each class. CNNs are

normally back-propagated as neural networks and noticeably the weight of filters also

be trained.

2.4 Deep learning for semantic segmentation

Image segmentation can be divided into two main tasks of semantic segmentation

and instance segmentation. Semantic segmentation techniques label each pixel of an

image with the class it belongs to. For example, label a pixel as belonging to a tumor

or the background. Instance segmentation extends semantic segmentation by further

separating pixels based on if they belong to different instances of the same class.

Figure 2.4 shows an example of 2 types of segmentation.

From the earliest days, image segmentation techniques have centralized on tradi-

tional algorithms such as thresholding, region-growing, k-means clustering, etc. How-

ever, due to the success of deep learning models (especially CNNs), image segmenta-

tion methods have significantly improved in accuracy via CNN based methods such

as DeepLab [45], U-Net [46]. To confine the scope of this review, we will focus our

attention on semantic segmentation methods that use deep learning models.

As discussed in Section 2.3, CNNs are a dominant approach in computer vision, es-

pecially in the image classification task with the ability to automatically learn features

and output the class prediction for the entire image (global prediction). Therefore,

researchers have adapted the deep CNN approach to solve the semantic segmentation
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task by making it output the class prediction for each pixel of the image (local predic-

tion), known as the prediction mask. Early methods used CNNs to classify the center

pixel for a given patch of input [47]. The image patch is slid across the image in order

to output a prediction for each pixel of the image thus achieving the required output

for semantic segmentation. However this approach is not efficient since the same CNN

kernel is applied to the overlapping regions of nearby patches multiple times.

In order to improve the efficiency of applying CNNs to semantic segmentation,

an intuitive idea [48] is to use fully convolutional neural networks to process the

entire image in a single pass through the CNN. To do so, the CNN architecture is

modified to keep the output size the same as the input image by using downsampling

and upsampling layers within a fully convolutional neural network. This idea not

only brings computational efficiency by downsampling layers but also produces the

required output size using the upsampling layers. Moreover, the approach can obtain

the global spatial information of the image. Due to their effectiveness and efficiency,

fully convolutional neural networks are used in all current state of the art semantic

segmentation methods.

2.4.1 Popular existing models

Fully Convolutional Networks

Long et al. [48] proposed a fully convolutional model by modifying existing state

of the art CNN classification models such as VCG16, GoogleNet. The author replaced

fully connected layers with fully convolutional layers including up-sampling layers. It

allows the model to process an arbitrary input image size and produce a prediction

mask of the same size as the input. Figure 2.5 illustrates the model. Notably, up-

sampling layers include learnable deconvolution filters that up-sampling is performed

using bilinear interpolation. Additionally, to refine semantics and spatial accuracy of

the output, the author used skip of connections which combines the coarse, high level

information of feature maps in middle layers with the lower level information from

the earlier layers, Figure 2.6. The methods achieved 67.2% mean IoU on PASCAL

VOC 2012 [49] dataset, establishing a new state of the art result at the time.

Deconvolution Network (DeConvNet)

The Deconvolution Network (DeConvNet) is another well-known CNN based model

for pixel-wise segmentation which is inspired by encoder-decoder networks. Noh et

al. [50] have proposed a novel segmentation network consisting of the convolution

network (acts like an encoder network that encodes an input image into a vector of
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Figure 2.5: Fully convolutional networks for semantic segmentation. [48]

Figure 2.6: Skip connections: allows the model to use high level information from the
middle layers to inform the final fine grained predictions. [48]
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Figure 2.7: Overall architecture of the deconvolution network, based on the VGG
16-layer CNN model [50]

features) and the deconvolution network (acts like a decoder network) that trans-

forms the encoding vector of features to a dense pixel-wise class prediction map of

the same size as the original image. The model architecture for DeConvNet is shown

in Figure 2.7. Notably, the convolution network (encoder) is not fully convolutional

because it includes 2 fully connected layers which are augmented at the end to impose

class-specific projection. The highlight part of this study is the deconvolution network

which contains a sequence of trainable deconvolution, unpooling and rectified linear

units (RELU) layers. The motivation for proposing a complete deconvolution network

is the absence of real deconvotion in previous models (FCNs [48]) which is one of the

main limitations. The network achieved 72.5% on PASCAL VOC 2012 dataset and

outperformed all rival networks at the time.

SegNet

Badrinarayanan et al. [51] proposed an interesting fully deep convolutional Encoder-

Decoder network for image segmentation, named SegNet. The network architecture

is quite similar to DeconvNet which consist of the convolution network (encoder) and

deconvolution network (decoder), however the author removes 2 fully connected lay-

ers of the VGG16 encoder network to make SegNet become fully convolutional. The

novelty of SegNet is how the decoder network upsamples the feature maps from the

encoder network. Specifically, the decoder network uses pooling indices obtained in

the max-pooling step of the corresponding encoder to perform unpooling like Decon-

vNet, but without learnable deconvolution filters. Therefore, the upsampling stage

requires no learning. After each upsampling, the upsampled maps which are sparse

are convolved with trainable filters to produce dense feature maps. The network is

illustrated in Figure 2.8.
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Figure 2.8: The SegNet network architecture. [51]

UNet

So far we have discussed popular existing models for general image segmentation.

In contrast the UNet [46] was initially proposed to solve medical image segmentation

and then be used in general tasks. Ronneberger et al. [46] built a U-shaped fully con-

volutional network for semantic segmentation comprising a contracting path (down-

sampling) to capture the context and a symmetric expanding path (up-sampling) to

localize objects. The contracting path architecture is similar to a typical convolution

network which obtains feature maps and reduces its resolution. While the expanding

path is deconvolution network-like, that upsamples feature maps. At every upsam-

pling layer, by using the skip connections, upsampled feature maps and the corre-

spondingly cropped feature maps from the contracting path are concatenated. Then

these concatenated feature maps are convolved by two consecutive 3 x 3 convolutional

filters to halve the number of channels, hence yields U-shape network, illustrated in

Figure 2.9.

DeepLab

Chen et al. proposed a series of DeepLab models including DeepLabv1 [45],

DeepLabv2 [52], DeepLabv3 [53] and DeepLabv3+ [54], which have become one of

the most popular models for semantic segmentation.

DeepLabv1 [45] uses a fully convolutional neural network architecture (with VGG

16 as backbone) for semantic segmentation. It has the two important features which

are dilated convolutions in the convolutional layers and fully connected Conditional

Random Field (CRF) (probabilistic graphical model) at the output stage. With no

extra computational cost, dilated convolutions enlarge the receptive field of the kernel

by using gaps when applying the kernel to the input. By applying dilated convolutions,

the author claims it can reduce the degree of signal downsampling, as well as condition

on larger context. Applying the fully connected CRF on the segmentation score map

refines the segmentation result and achieves better object localization. As illustrated

in Figure 2.10, the downsampled feature map from the fully convolutional network
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Figure 2.9: UNet network architecture. The left is the contracting path and the right
is the expanding path. [46]

is first upsampled to the original image resolution using bilinear interpolation and

then refined by the fully connected CRF to produce the final prediction mask. At

publication time DeepLabv1 achieved the state of the art result of 71.6% IoU at the

PASCAL VOC-2012 semantic image segmentation task.

One year later, Chen et al. [52] proposed DeepLabv2 by updating DeepLabv1 with

2 major improvements. First, DeepLabv2’s fully convolutional layers used a ResNet

CNN as backbone. Second, the author also proposed atrous spatial pyramid pool-

ing (ASPP) to robustly segment objects at multiple scales, illustrated in Figure 2.11.

Specifically, the incoming convolutional feature layers are filtered using multiple par-

allel dilated convolutional layers with different dilated rates, hence segmenting objects

as well as image context at multiple scales. This work established the new state of

the art result on PASCAL VOC2012, achieving 79.7% IoU.

Chen et al. again updated DeepLabv2 to propose a better variant of DeepLab

which is DeepLabv3 [53] by revisiting the use of dilated convolution and removing

the use of fully connected CRF. The author experimented with DeepLabv3 with 2

main ideas: Going Deeper with Atrous Convolution, illustrated in Figure 2.12

the design is to have more blocks with atrous convolution in cascade. The dilation

introduced in the convolutional kernels makes it easier to capture long range infor-

mation in the deeper blocks. The modified Atrous Spatial Pyramid Pooling

(ASPP), proposed in DeepLabv2 is illustrated in Figure 2.13. The new ASPP is

added with learnable batch normalization, image-level features and 1x1 convolutions.
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Figure 2.10: The overall model architecture of DeepLabv1. [45]

Figure 2.11: The illustration of ASPP [52]

Figure 2.12: The overview of atrous convolution designed in cascade in
DeepLabv3. [53]
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Figure 2.13: The overview of new ASPP in DeepLabv3. [53]

Figure 2.14: The overall architecture of encoder-decoder-like semantic segmentation
network of DeepLabv3+ [54]

All feature maps produced from multi-parallel dilated convolution with different rates

and image-level features are concatenated and processed by the 1x1 convolution, then

passed through the final 1x1 convolution to produce final logits. DeepLabv3 achieved

a significant improvement on the PASCAL VOC 2012 dataset with 85.7% IoU.

Chen et al. extended DeepLabv3 to release DeepLabv3+ [54] by adapting the

system into encoder-decoder semantic segmentation architecture and using atrous

convolution layers separable. Figure 2.14 shows the architecture of DeepLabv3+.

The DeepLabv3 network is used as an encoder network with the Xception network as

backbone to the fully convolutional layers and still employs the ASPP. Moreover, a

new effective decoder network is added to refine the segmentation results especially for

large objects. The encoding features are first upsampled using bilinear interpolation

and then concatenated with the corresponding and same resolution low-level features

from Xception FCNs backbone. Then these concatenated features are convolved and

enlarged again to produce the final prediction map. DeepLabv3+ achieved a 3.3%

improvement on the results of DeepLabv3, reaching 89% IoU on PASCAL VOC 2012

dataset.
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2.5 Data Augmentation for image classification

Recently, data augmentation for images have played a very significant role in the

successful training of deep CNN models which typically require a large amount of

data. This is a technique of creating more images from information of existing images

without changing the meaning of images, hence making the data set more diverse.

Applying data augmentation helps the model frequently see more unseen data, con-

sequently tackle the overfitting issue and make the model generalise better. Data

augmentation for images is mainly divided into three groups: normal augmentation,

neural network based method and augmentation search.

2.5.1 Normal Augmentation

In normal augmentation, the additional images are generated by using simple

mathematical functions that transform various aspects of images such as texture,

shape and color. Below we describe some of the most popular data augmentation

methods:

Rotation: The image is rotated clockwise or counter-clockwise by a random

angle between 0 to 360 degree. This means the object in the image will be rotated

but its shape will not change. Figure 2.15

Flipping: We can flip the direction of the image either horizontally or vertically.

That means the transformed image is horizontally or vertically symmetrical with

respect to the original image. Figure 2.15

Shifting: Shifting augmentation is also known as translation augmentation that

moves all pixel values of the image in the left,right,top and bottom direction. In

the case that the object in the image moves too far, the image may lose too much

information, thus making it impossible to make a correct prediction on its label.

Figure 2.15

Crop: A region of the image is randomly cropped with a determined size. This

technique generates new images of smaller size. Figure 2.15

Cutout [55]: Inspired by the dropout regularization technique [56], cutout is the

technique that randomly removes a fixed sized region from images and replaces it

with random pixel values. It helps the computer vision machine model to see more

simulated situations where the object in the image is partially occluded. Moreover,

this technique is also relatively similar to Random Erasing [57]. Figure 2.15

Colour Transformation [58]: For grayscale images, each pixel contains one

intensity value in the range of 0-255 inclusive. For color images, each pixel contains 3

intensity values of color channels represented in a particular color space system such

as RGB (Red-Green-Blue), CMY (Cyan-Magenta-Yellow) and HSI (Hue-Saturation-
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Intensity). To do colour augmentation, four aspects (hue, saturation, brightness and

contrast) are manipulated. The most popular methods of colour transformation are

histogram equalisation, and adjusting the following: brightness, contrast, white bal-

ancing, sharpening and blurring [59]. Figure 2.16

Noise Injection [58]: The image is injected with an amount of noisy pixel value,

usually from Gaussian noise in order to help the model to learn more robust features.

Figure 2.15

Figure 2.15: Examples of normal augmentation method on dermatoscopic skin lesion
image.

2.5.2 Neural Network Based method

In this method, the new image is generated from a trained neural network and it

will preserve the semantic of its label.

Generative Adversarial Networks(GANs) [60]: The idea of GANs is that

having the generative model and the discriminative model, the discriminative model

is trained with real data to be able to detect the sample data whether is real or fake.

Then, the generative model is trained to pit against the trained discriminative model,

that means the generative model releases the sample that is detected as real data by
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Figure 2.16: Examples of colour augmentation [58].

Figure 2.17: Samples are drawn from a generator. The yellow box is the latest version
of each sample [60].

the discriminative model. Figure 2.17

Neural Style Transfer [61]: This technique is not only known as the creation of

artistic images, but is also a very useful technique for image augmentation such that

augmented images have the same content as original images but different styles. The

idea is to feed two images into two CNNs, one of those contains the content for the

new image and the other contains the style. The CNNs will separate and recombine

the content and style in order to generate new images. Figure 2.18

2.5.3 Augmentation Search

Manually applying many different random normal augmentation techniques to the

training process at the same time makes it hard to figure out which one improves the

model’s performance. Thus, augmentation search algorithms automatically find an
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Figure 2.18: The artistic image B is generated by CNNs. The image A is the content
image and the small image at bottom-left is style image [61].

optimal data augmentation policy which determines for a given data set the best set

of normal augmentation methods to use and their corresponding best settings.

AutoAugmentation [62]: This method consists of two components: a search

algorithm and a search space. The search algorithm uses a reinforcement learning

algorithm which finds the best data augmentation policy from the search space. In

the search space, a policy consists of many sub-policies. Moreover, each sub-policy

has two normal image transformations corresponding with the probability of applying

transformations and the magnitude of transformations.

RandAugmentation [63]: AutoAugmentation is computationally expensive due

to its focus on finding augmentation policies using a separate search phase performed

on proxy tasks which include searching different models and dataset sizes. In contrast,

RandAugmentation directly evaluates the impact of the data augmentation on the

target model and dataset. This results in a much smaller search space involving the

set of available operations, magnitude of all operations and just two hyperparameters

(N and M) to tune.

2.6 Imbalanced Class

2.6.1 Image classification

For supervised learning

Training data often do not have balanced distribution. For example fraud clas-

sification from transactional data, fraud transactions are much rarer than non fraud
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transactions. Another example task in healthcare is cancer detection where there are

usually many more healthy samples than cancer samples. Therefore, in the testing

phase, the machine learning model mostly predicts the majority class in the train-

ing set rather than the minority class, leading to much lower accuracy for predicting

the minority class. Many methods have been proposed to address class imbalance,

which can be grouped into three categories: data-level, algorithm-level and hybrid

approaches [64].

Data-level Approach: Before feeding the data into the model during train-

ing, the dataset is resampled to create a balanced distribution across classes. This

randomly reduces the number of majority class samples and randomly increases the

sampling of the minority class. However there are some downsides of these techniques,

according to [64] under-sampling the majority class might substantially reduce the

amount of information from the eliminated data. Over-sampling will increase training

time and may cause the model to over-fit. To overcome these downsides, several ad-

vanced sampling methods have been proposed in the literature. For under-sampling,

in [65, 66, 67], intelligent methods are used to efficiently select which majority class

samples are eliminated. For oversampling in [68, 69, 70], intelligent methods are used

to create new artificial minority class samples from existing minority class samples.

Algorithm-level Approach: Instead of resampling the data distribution, this

method modifies the model’s algorithm to give more emphasis on the minority class

and can be divided into 3 approaches [64]: new loss function, cost-sensitive learning

and threshold moving. Mean False Error [71], Focal Loss [72], Weighted Cross Entrpy

Loss [73] are new loss functions that reduce the effect of majority class on the loss.

In cost-sensitive learning [74, 75, 76] the model learns from the classification cost

matrix, that means each class is assigned different costs. Lastly, in the threshold

moving technique [77, 78, 79], the idea is to adjust the decision threshold to reduce

bias on easy samples, in other words, make more correct predictions on hard samples.

Hybrid-level Approach: There are several hybrid methods [80, 81] that com-

bine both of the above approaches that firstly resamples data distribution and then

applies algorithmic approaches such as cost-sensitive learning.

For semi-supervised learning

All of the above methods which alleviate skewed data distribution only works

for supervised learning where we know the labelled data distribution. It is really

challenging to use a semi-supervised learning approach where the distribution of the

unlabelled data is unknown.

Suppressed Consistency Loss: For SSL perturbation based methods, Minsung

[82] has proposed an algorithm level method which is Suppressed Consistency Loss

(SLC). In the imbalanced class learning environment, the decision boundary is more
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likely to move into the low-density areas of the minor class with consistent regular-

ization that causes the model to misclassify the minor class. Therefore, SLC will

suppress the consistency loss of minor classes which in turn tends to push the decision

boundary against the low-density areas.

2.6.2 Semantic segmentation

While classification suffers from class imbalance at the whole image grain, semantic

segmentation suffers from the same problem at the pixel grain. Especially in binary

medical image segmentation, the number of background class pixels is often much

larger foreground class pixels. The methods to deal with class imbalance in semantic

segmentation are also divided into 2 main groups: data level and algorithmic level

approaches.

Data level: It is difficult to use oversampling or undersampling methods devel-

oped for image classification for semantic segmentation. According to [83], it would

be meaningless to undersample an image by removing some major class pixels/voxels

because it would remove a lot of information from the image. For patch-based seg-

mentation approaches, there are several existing works [47, 84] that use the patch

selection algorithm to balance the number of patches from major and minor classes.

Algorithmic level: Algorithmic approaches are more commonly used to address

class imbalance for segmentation tasks. These methods include Weighted Cross En-

tropy Loss [73], Focal Loss [72], Dice Loss [85] which is built from Dice Coefficient

metric and aims to maximize the similarity of two images, Tversky Loss [86] which

modifies Dice Coefficient metric in a way that weigh False Negative more than False

Positive and pre-compute weight map for the ground truth in UNet [46].

To our knowledge there are no studies that mainly focus on dealing with class

imbalance in the context of semi-supervised semantic segmentation. Therefore, we

address this gap in the literature.
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Related Works

3.1 Semi-supervised learning

Our focus is on intrinsically semi-supervised methods, a subclass of inductive semi-

supervised learning. In order to make use of unlabelled data, these methods often

follow smoothness and low-density assumptions. The low-density assumption states

that the decision boundary should pass through low-density areas in the data space.

The smoothness assumption states that if two data points are close, it should have the

same predicted label [31]. Based on the assumption, the perturbation based method

increases the robustness of the model by utilizing noise on unlabelled data. That

means the original input and the input perturbed with noise should both produce

the same predicted label. There are several techniques based on this approach which

recently achieved state of the art results, mostly on various classification tasks, such as

Temporal Ensembling [27], Mean Teacher [26] and Virtual Adversarial Training [28].∏
-MODEL [27]: Inspired by ensemble learning, the idea is to encourage the

consistency of a model to two of its outputs z and z̃, which is produced from the

same input by applying different dropout and data augmentation conditions, over

each batch training. Figure 3.1 shows the learning framework. The model is learned

from two losses, the supervised loss on z prediction of only labelled inputs by using the

cross entropy loss function and mean squared loss between the z and z̃. On CIFAR-10

with only 4000 labels, the
∏

-MODEL achieved an error rate of 12.36%.

Temporal Ensembling [27]: This technique is built on top of the
∏

-MODEL

with the difference being the model only produces one output z and the prediction z̃

is based on the model’s output in the previous epoch. The learning framework has

shown in the same figure of
∏

-MODEL, Figure 3.1. After every training epoch, the

model’s output z is accumulated into an ensemble of outputs Z by updating Z ←
αZ + (1− α)z and calculating z̃ by dividing Z by factor (1−αt). By only producing

one output at the time, the Temporal Ensembling learning method is faster than
∏

-
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Figure 3.1: [27] Learning framework of
∏

-MODEL and Temporal Ensembling
method.

Figure 3.2: [26] Learning framework of Mean Teacher method.

MODEL. Moreover, the output z̃ calculated in the previous epoch can be expected

to have less noise than the one in
∏

-MODEL. The slightly better result is reported

on 4000 labels of CIFAR-10 with 12.16% error rate.

Mean Teacher [26]: This technique consists of the dual student and teacher

models which produce z and z̃ prediction from all inputs X by applying two types of

stochastic noise. Figure 3.2 illustrates the learning framework. The weights θ of the

student model is updated by the supervised loss on only labelled data of student’s

output z and the consistency loss which is the distance between student’s output z and

teacher output z̃ from the entire input. Whereas, the teacher’s weight θ’ is updated

by the exponential moving average of the student’s weight over each batch training,

which computed as follows: θ′t = αθ′t−1 + (1 − α)θt. On 4000 labels of CIFAR-10 and

trained on ResNet, the Mean Teacher achieved the state of the art result with 6.28%

error rate.

23



Chapter 3. Related Works

Virtual Adversarial Training [28]: Most perturbation based methods apply

stochastic augmentation to the input. However, in this approach, the authors directly

applied small directional noise to the corresponding input which makes the model‘s

prediction change the most, also known as adversarial example [87]. Basically, the

method is inspired by Adversarial Training [87] which uses the following loss function:

Ladv(xl, θ) := D[q(y|xl), p(y|xl + radv, θ)] (3.1)

where radv := arg max
r;||r||≤ε

D[q(y|xl), p(y|xl + r, θ)] (3.2)

The goal of the loss function is to minimize the divergence between the true distri-

bution of output label q(y|xl) and the model’s output distribution p(y|xl + radv, θ)

by applying adversarial noise radv to inputs xl. However, the adversarial training

only works well on supervised tasks. To transfer to the semi-supervised task, the loss

function is reformulated as:

L(x∗, θ) := D[p(y|x∗, θ̂), p(y|x∗ + radv, θ)] (3.3)

where radv := arg max
r;||r||2≤ε

D[p(y|x∗, θ̂), p(y|x∗ + r)] (3.4)

Where x∗ is either unlabelled xu or labelled xl. Indeed, we can not obtain q(y|xu),
therefore the authors proposed the term called virtual labels which replaces q(y|x∗)
with its current output p(y|x∗, θ̂). This is the reason for the use of the terms “virtual”

on all of the techniques reported by the paper including virtual adversarial train-

ing, virtual adversarial noise. On 4000 labels of CIFAR-10, the Virtual Adversarial

Training achieved the state of the art result with 10.55% error rate.

Unsupervised Data Augmentation [1]: the authors found applying advanced

data augmentation on unlabelled samples could effectively make the model more in-

variant to noisy input in the semi-supervised learning approach. Instead of applying

only some normal data augmentations such as flip, rotation in Temporal Ensembling,

Mean Teacher or virtual adversarial noise in Virtual Adversarial Training, they used

an auto augmentation method called RandAugmentation [63] to find policies and

magnitudes of chosen transformations which yield the best performance on labelled

samples and then apply these to unlabelled samples. As a result, on CIFAR 10 with

4000 labels, this approach achieved a 5.29% error rate which is near the state of the

art result for supervised learning approach.

MixMatch [29]: This approach does not fully belong to perturbation based

method because it just utilizes the idea of perturbation based semi-supervised method

as a part of the algorithm. MixMatch unifies current dominant approaches such as

perturbation based semi-supervised learning methods discussed above, entropy min-
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Figure 3.3: [29] Diagram of the label guessing process in MixMatch.

imization which encourages the model to make low entropy prediction on unlabelled

samples and MixUp [88], a technique that combines samples for training. Moreover,

these approaches are combined to generate a new set of labelled data X’ and unla-

belled data U ’ with predicted labels. In more detail, firstly, apply data augmentation

on a batch of labelled samples X and unlabelled samples U , to create augmented

batches X̂ and Û . Then, construct the predicted labels for augmented Û by applying

a Sharpening function to reduce the entropy of the average model’s predictions on

augmented Û Figure 3.3. Next, to prepare for the MixUp step, shuffle X̂ and Û

with predicted labels to create set W . After that, apply the MixUp function on Û

and a part of W samples, X̂ and the rest of W samples to produce a new set of

labelled data X’ and unlabelled data U ’. Finally, the authors just used the standard

semi-supervised learning loss framework which uses the cross entropy loss function for

MixUp X’ model’s prediction of labelled data, L2 loss for MixUp U ’ model’s predicted

outputs on unlabelled data. With 4000 labels on CIFAR 10, this technique achieved

the state of the art result of 4.95% error rate.

Another subcategory of intrinsically semi-supervised learning is generative models.

The primary characteristic of this method is to generate new unlabelled data for

classification.

Categorical Generative Adversarial Networks [89]: The idea is to build on

top of GANs [60] which consists of the discriminator and generative functions and

only work on unsupervised tasks. To deal with semi-supervised tasks, the authors

made an extension to the discriminator so that classifies K class for all samples from

the labelled dataset and discriminates real versus fake samples from the generator.

Intuitively, the job of the generator is changed from “generate samples that belong

to the real dataset” to “generate samples that belong to the K class dataset”. Addi-

tionally, cross entropy loss term is also added to penalize the error of discriminator’s

prediction on real data and corresponding labels. As a result, on standard 4000 labels

CIFAR, the network achieved a 19.58% error rate.
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Figure 3.4: DeepLab model training methodology using a combination of pixel-level
(strong labels) and image-level (weak labels) annotations. [90]

3.2 Semi-supervised learning in semantic

segmentation

In this section, we review several popular semi-supervised semantic segmenta-

tion frameworks which combine small amounts of pixel-level labelled data with large

amounts of data that are either weakly labelled or not labelled. Weak labels include

bounding boxes or image-level labels.

3.2.1 Weakly- and Semi-Supervised Learning of a Deep

Convolutional Network for Semantic Image

Segmentation (2015)

Papandreou et al. [90] propose a semi-supervised framework for semantic seg-

mentation by using DeepLab as a segmentation network and proposing Expectation-

Maximization (EM) algorithm to estimate the segmentation mask from weakly la-

belled data. The total loss has two components, illustrated in Figure 3.4: one on

strongly labelled data is from the prediction map produced by DeepLab network with

its pixel-level annotations; another loss on weakly labelled data is from the prediction

map produced by DeepLab network with its estimated pixel-level map which is gener-

ated from the EM algorithm. They conducted their experiments using the PASCAL

VOC 2012 dataset, with 1400 strong labels and 9000 weak labels (image-level labels)

which is generated by summarizing the pixel-level annotations. The proposed method

achieved 66% IoU.
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Figure 3.5: Diagram illustrating the semi-supervised semantic segmentation method
proposed by Wei et al. [91]

3.2.2 Revisiting Dilated Convolution: A Simple Approach

for Weakly and Semi -Supervised Semantic

Segmentation (2018)

Wei et al. [91] proposed the semi-supervised semantic segmentation method that

uses the dilated convolutions for object localization. The training framework includes

two modules using shared Fully Convolutional Networks(FCNs) as the segmentation

network backbone, shown in Figure 3.5:

The first module works on image-level labelled data. The proposed augmented

classification network that has a VGG16 backbone with multi-dilated convolutional

(MDC) blocks produces the dense localization map. The dense localization map is

then further processed to generate the segmentation mask. This segmentation mask

serves as supervision in the loss function with the segmentation mask produced by

FCNs and the ground truth image-level label.

The second module is the normal supervised FCNs segmentation which employs

pixel-level labelled data. The loss from two modules is combined to perform the semi-

supervised learning. This method achieved 67.6% IoU on the PASCAL VOC 2012

dataset with 1400 strong labels and 9000 weak labels.
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Figure 3.6: Diagram illustrating the Adversarial semi-supervised semantic segmenta-
tion framework [92]

3.2.3 Adversarial Learning for Semi-Supervised Semantic

Segmentation (2018)

Exploiting the success of GANs [60], Hung et al. [92] proposed the adversarial

learning for semi-supervised semantic segmentation. The framework contains two net-

works, segmentation network which is DeepLabv2 and discriminator network, shown

in Figure 3.6. Instead of classifying an image as real or fake, the author designed the

FCN discriminator to distinguish between the predicted probability maps from the

ground truth segmentation maps. In the semi-supervised training process, the method

uses strong labelled data and unlabelled data which is a new feature in this study.

When using strong labelled data, the segmentation network is trained using two loss

functions: Cross-entropy loss (Lce) on the segmentation ground truth and adversarial

loss (Ladv) to fool the discriminator. When using unlabelled data, the segmentation

network is trained with Cross entropy semi-supervised loss (Lsemi). Specifically, the

predicted segmentation map of the unlabelled image produced by the segmentation

network is passed through the discriminator network to obtain the confidence map.

Then, in the context of self-training, this confidence map serves as a target for the

previous segmentation prediction in the Lsemi loss. Notably, the discriminator net-

work is only trained with the strongly labelled data. The study achieved 69.5% IoU

on PASCAL VOC 2012 dataset using 1400 strong labelled images and 9000 unlabelled

images.

3.2.4 Semi-Supervised Semantic Segmentation with High

and Low-level Consistency (2019)

Mittal et al. [93] proposed a semi-supervised segmentation framework that contains

two branches which are illustrated on Figure 3.7. Their method is called the Semi-

Supervised Semantic Segmentation GAN-based network (s4GAN) which improves the
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Figure 3.7: Diagram illustrating the semi-supervised semantic segmentation method
proposed by Mittal et al. [93] called the s4GAN + Multi-label MeanTeacher classifier.

low-level details in the segmentation output using semi-supervised multi-label clas-

sification via the MeanTeacher approach. s4GAN exploits class-level information to

remove false-positive predictions from the segmentation map. The s4GAN branch

consists of a DeepLabv2 segmentation network and a discriminator network. The

segmentation network acts as a generator to produce the segmentation maps from

input images and is trained together with a discriminator network responsible for

distinguishing the ground truth segmentation maps from the generated ones. The

segmentation network is trained with three loss functions: the Cross Entropy loss ap-

plied on the pixel level labels; the feature matching loss and self-training loss applied

on the unlabelled data. The discriminator network is trained with the original GAN

loss: learns to differentiate between the real ground truth maps and the prediction

segmentation maps of unlabelled data. The MLMT branch is the semi-supervised

classification MeanTeacher network [26] which is backed by ResNet101 and works on

both image-level labelled data and unlabelled data. Notably, the s4GAN and Mean

Teacher network branches are trained separately.

The output of the Mean Teacher network is the predicted classification score for all

classes. This is then used to refine the predicted segmentation maps from s4GAN to

produce the final prediction segmentation mask. The prediction segmentation mask

for a particular class is removed from the maps if its classification score is less than

the predefined threshold. This method achieved 71.4% IoU on the PASCAL VOC

data set using 1400 strongly labelled data samples and 9000 unlabelled data samples.
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Figure 3.8: Semi-Supervised Encoder-Decoder Semantic Segmentation with Cross-
Consistency Training [94].

3.2.5 Semi-Supervised Semantic Segmentation with

Cross-Consistency Training (2020)

Ouali et al. [94] presented a cross-consistency based training method for semi-

supervised semantic segmentation. The idea is to use the encoder-decoder as the

segmentation architecture and perturbation-based approach, discussed in Section 3.1,

for semi-supervised learning. Specifically, there is one encoder and one main decoder

and multiple auxiliary decoders, as shown in Figure 3.8. The encoder and main

decoder are trained using supervised Cross Entropy loss with pixel level targets. For

the unlabelled examples, the encoder and all auxiliary decoders are trained using

unsupervised loss by applying a consistency loss between the main decoder predictions

and all auxiliary decoder predictions which are produced from different types of noise

applied to the inputs of the auxiliary decoders. Notably, the unsupervised loss is not

back-propagated through the main-decoder. The study established a new state of the

result of 69.4% IoU on the PASCAL VOC 2012 dataset.
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3.2.6 Semi-supervised semantic segmentation needs strong,

varied perturbations (2020)

French et al. [95] proposed a perturbation based semi-supervised semantic

segmentation method that uses the MeanTeacher framework [26]. The method used

strong varied perturbations such as CutOut, CutMix. The segmentation network

used is DeepLabv2 and DenseUnet trained on 2 losses: the supervised Cross Entropy

loss on pixel-level labelled data and unsupervised consistency loss on unlabelled data.

Specifically for the unlabelled data, the unsupervised consistency loss enforces the

consistency between the target, which is the prediction segmentation maps of the

Teacher network on the original image, and the predicted segmentation maps of the

Student network. The input to the student network is strongly augmented data using

methods such as CutOut and CutMix. With this simple semi-supervised framework,

the study achieved 67.6% IoU on the PASCAL VOC 2012.

3.3 CNNs for medical image classification

Medical imaging has played a crucial diagnostic role in modern medicine. The

common types of medical image can be divided as follows: Ultrasound which is the

safest method for the patient’s health and is generated by using sound waves; X-

Ray which is the oldest technology and generated by using electromagnetic radiation;

CT (Computer tomography) which builds the 3D image based on X-Rays; and MRI (

Magnetic Resonance Imaging) which is generated by using a strong magnetic field and

radio waves 3.9. Besides the four common imaging types listed above, there is another

type of medical image used for skin lesions that generate dermoscopy images using skin

surface microscopy. In addition, medical image is obtained to visualize the information

of the internal human body in order to support pathologists, radiologists or clinicians

to make a diagnosis about the disease. The final diagnosis of a patient’s health should

be made by doctors based on combined evidence from various processes and scans of

the patient. Manually analysing medical images for multiple patients is a laborious,

repetitive task and error prone task for doctors. Therefore automated diagnosis would

help doctors work more efficiently. One of the most common underlying technologies of

these systems is deep learning which leverages a substantial amount of medical imaging

data. Deep convolutional neural networks (CNNs) are the dominant technique for

this task. There are many applications of using deep CNNs in medical imaging tasks

including tumor segmentation, cancer detection, cancer classification, image guided

therapy, medical image annotation, and image retrieval [96]. To confine the scope

in this section we only describe the application and research in the area of cancer

classification using supervised CNNs. The result and objective of each study can vary

depending on such factors as quantity and quality of the dataset, number of classes
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Figure 3.9: Medical imaging modalities [96].

to classify and CNN network architecture used.

3.3.1 Skin cancer classification

Han et al. [3] worked on classifying 12 skin diseases which include basal cell car-

cinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, sebor-

rheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma,

hemangioma, dermatofibroma and wart. They used the ResNet152 CNN model [97]

to train on roughly 19000 clinical images from the Asan, MED-Note and Alas dataset.

They tested on the Asan test dataset which achieved 0.91, 86.4, 85.5 for AUC, Sensi-

tivity, Specificity respectively. When using the Edinburgh test dataset, they achieved

0.89, 85.1, 81.3 for AUC, Sensitivity, Specificity respectively.
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Amirreza et al. [2] experimented on dermoscopy images ( [22]HAM10000: 10015,

[98]PH2 : 120) which includes 8 types of skin diseases: melanoma, melanocytic nevi,

basal cell carcinoma, benign keratosis, actinic keratosis and intraepithelial carcinoma,

dermatofibroma, vascular lesions, and atypical nevi. They tried to use 4 different CNN

models pre-trained on ImageNet including: Google’s Inception v3 [99], InceptionRes-

Netv2 [100], ResNet152 [97], and DenseNet201 [101]. As a result, they reported that

the DenseNet201 model achieved the best accuracy among the 4 models in terms of

micro and macro averaged precision (89.01% - 85.24%), F1 - Score (89.01% - 85.13%),

and ROC AUC (98.79% - 98.16%), even outperforming expert dermatologists’s per-

formance.

Bi et al. [4] worked on the problem of classifying the 3 skin diseases of melanoma,

seborrheic keratosis and nevus on 3600 dermoscopy images including 1600 from the

ISIC Archive dataset [102]. The final CNN classification model is assembled from 3

separated classification models such that one outputs 3 skin disease classes and the

two others output the binary classification of melanoma versus others and seborrheic

keratosis versus others. The reported result on AUC is 91.5%.

Achim et al. [5] involved a combination of the deep learning and skin cancer experts

to build a superior skin cancer classification algorithm. Firstly, a ResNet CNN model

is trained on 11,444 dermoscopic images, obtained from HAM10000 and ISIC Archive,

to classify 5 skin diseases. Then both the CNNs trained model and dermatologists

of German university hospitals will classify 300 test biopsy-verified images. Finally,

a gradient boosting method is used to produce a new classifier from the confident

outputs of the CNN model and the dermatologists. This method achieved accuracy,

sensitivity and specificity results of (82.95%, 89%, 84%), compared to standalone

dermatologists test results of (42.94%, 66%, 62%) and CNN model results of (81.59%,

86.1%, 89.2%).

3.3.2 Digital pathology classification

Digital pathology is a field that uses computer-based technology to manage in-

formation generated specimens on slides. With the evolution of Whole Slide Images

(WSI) technology which transforms the specimens on glass slides into digital high res-

olution images, known as histopathology image, digital pathology brings a new way to

potentially help pathologist’s diagnosis more efficiently by using deep learning. How-

ever, one of the challenges in applying deep learning, specifically deep CNNs on WSI,

is the very high dimensionality of the input, for example millions of pixels. Therefore,

besides configuration of the model, the successful deep CNNs on pathology task also

heavily depend on WSI image preprocessing.

Stomach and colon cancers are common cancers that cause high numbers of deaths

worldwide, and in a 2018 report, there are 782,685 and 551,269 deaths due to stomach
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and colon cancer respectively. In addition, new research by Osamu et al. [6] used deep

learning techniques to perform histopathological classification of stomach and colon

cancer. There were three classes: adenocarcinoma, adenoma and non-neoplastic. The

dataset consists of 4,128 and 4,036 whole slide images (WSIs) of the stomach and

colon respectively collected from Hiroshima University and Haradoi Hospital. CNN

Google’s Inception v3 model is trained on millions of patches extracted from WSIs to

classify the three classes above. Then a max-pooling approach and a recurrent neural

network (RNN) is used to predict the final label for the particular WSI by aggregating

all it’s patch predictions. The model achieved the following AUC results, 0.97 and 0.99

for gastric adenocarcinoma and adenoma, 0.96 and 0.99 for colonic adenocarcinoma

and adenoma.

Lung carcinoma is also a dangerous cancer that causes death to humans and the

process of histologic pattern analysis in lung carcinoma is a very significant process

in lung cancer diagnoses. Jason et al. [103] collected 422 WSIs from the Dartmouth-

Hitchcock Medical Center in Lebanon.They used deep CNN Resnet architecture to

classify histologic patterns on resected lung adenocarcinoma WSIs. The CNN model

classifies patches extracted from the given WSI into histologic subtype patterns. Then,

a heuristic is used to infer predominant and minor histologic patterns for the given

WSI by aggregating its patch predictions. At the testing phase combined with experts,

this method achieved a kappa score of 0.525 and an agreement of 66.6% with three

pathologists, slightly higher than the inter-pathologist kappa score of 0.485 and an

agreement of 62.7%.

Another health problem which also receives high attention from researchers is the

breast cancer. Kun et al. [104] applied the pipeline framework, which uses the high-

light from a heat-map to classify whether the WSI contains breast cancer metastases

on the Camelyon-16 grand challenge dataset. Firstly, the deep CNN Google’s Incep-

tion v3 architecture is trained to classify patches extracted from WSIs as tumor or

normal. Then each WSI is slided into many patches and fed into the trained CNN to

build the tumor probability heat-map. After that, a Support Vector Machine classifier

is trained on WSIs’s heat-map to finally produce the label for the entire WSI. As a

result, this system achieved 90.23% of AUCs.

3.3.3 X-ray Classification

X-ray image is one of the most frequently used medical imaging modality. It is

used for diagnosing patients because it is cheap and quick to obtain. Therefore using

deep learning to diagnose disease from X-rays is well motivated.

Worawate et al. [7] performed binary classification on the presence of lung cancer.

They used a pre- trained deep CNN DenseNet architecture to firstly retrain on the

ChestX-ray14 dataset (112,120 non-cancer chest X-ray images) and then fine-tuned

on the JSRT dataset (247 chest X-ray images that have 100 lung cancer) in order to
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Figure 3.10: [104] The framework of cancer metastases detection.

alleviate the problem of small samples in the target classification task. The proposed

method yielded 74.43% of mean accuracy, 74.96% mean specificity and 74.68% mean

sensitivity.

Lung pneumonia is a cause of death in humans. In 2017 a group from Stanford

University [8] proposed CheXNets, which uses a DenseNet 121 trained on ChestX-

ray14 dataset to classify X-ray images into 14 disease classes of lung pneumonia. In

the testing phase, the model achieved 0.435 F1 score which outperformed the F1 score

of 0.387 achieved from averaging 4 scores from radiologists.

3.4 Semi-supervised learning in medical imaging

classification

In the real world, doing annotations for medical imaging usually is very time

consuming for the doctors, especially when the diagnosis of multiple doctors needs to

be averaged. Therefore, it is practical to apply semi-supervised learning on medical

imaging classification that alleviate the problem of small amounts of labelled medical

images and high availability of unlabelled medical images.

For skin cancer classification on ISBI and PH2 dataset, Xin et al. [13] used Cat-

egorical Generative Adversarial networks [89] in a semi-supervised manner to

solve two tasks, the first one is to classify the real image into melanoma or benign

class, the second one is to generate synthetic images that assist the training. With

only 140 labelled images, the method yielded an average precision of 0.424.

In another study of skin cancer classification, Antonia et al. [14] proposed a SSL

approach called Denoising Adversarial AutoEncoder that combines the Adver-

sarial Net and AutoEncoder Net. Unlabelled samples are utilized in the generative

and decoder part to help the model learn the representation of skin cancer such as

color, shape and texture. labelled samples are encoded by the encoder and then are
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classified as either benign or malignant by the discriminator. Due to the heavy class

imbalance (0.9,0.1), the classification loss is weighted for each class. On the ISIC

dataset with 5000 labelled samples, the SSL approach achieved 0.82 for sensitivity

and 0.85 for specificity.

In the study of nucleus classification task, Hai et al. [15] integrated the current

state of the art SSL approach of Mean Teacher [26] and the graph, which is generated

by the Label Propagation algorithm [105], that transfers the label information from

labelled samples to unlabelled samples. Then the student model is learnt from clas-

sification loss, consistency loss and Siames loss which is based on the graph. On the

MoNuseg dataset of 22462 nuclei including 4 types of nucleus Epithelial, Inflamma-

tory, Fibroblast and Miscellaneous, the model yielded 75.79% for F1 score using only

10% of the labelled samples from the dataset.

Moreover, Wenkai et al. [16] combined Semi-supervised Generative Adversarial

Nets sGANs, Conditional Generative Adversarial Nets cGANs and Semi-Supervised

Support Vector Machine S3VM to construct the model called DScGANs (dual-path

semi-supervised conditional generative adversarial networks) to solve the thyroid nod-

ule classification task. Notably, the DScGANs is trained under conditional constraint

Domain Knowledge (DK) which is acquired from the processed patches called OS,

which has 225 pixel value for nodule region and 0 pixel value for non-nodule region,

based on consultation with experienced radiologists. The role of DK can be sum-

marized as follows: provide the auxiliary information to help the generator improve

image quality; make the connection between information of labelled data and unla-

belled data; and acts as a condition to constrain the S3VM to classify the lesion image

as benign or malignant. With only 35% labelled samples from 3090 ultrasonography

thyroid nodule lesion images, the proposed method achieved 90.5% for accuracy and

91.4% for AUC.

3.5 Semi-supervised learning in medical semantic

segmentation

For semantic segmentation of medical images, obtaining pixel-level annotation of

2D images or 3D volumes by medical experts is costly and time-consuming, lead-

ing there to be much more unlabelled data compared to labelled data. Therefore,

semi-supervised learning is a promising learning framework for medical images that

leverages a limited amount of pixel-level labelled data and a large amount of unlabelled

data. There have been many semi-supervised frameworks proposed for semantic seg-

mentation of medical images. They can be grouped into 2 broad types: adversarial

training [106, 107, 108, 17] and consistency training [109, 110, 111]. These meth-

ods use the same basic methodology as those used for general semantic segmentation

methods that were described in Sections 3.2.3, 3.2.4 for adversarial training and Sec-
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Figure 3.11: Illustration of ASDNet [106].

tions 3.2.5, 3.2.6 for consistency training.

3.5.1 Semi-supervised adversarial training in medical

semantic segmentation

Nie et al. [106] proposed Attention Based Semi-supervised Deep Networks (ASD-

Net). Their experiments were conducted on 50 labelled and 20 unlabelled T2-weighted

MRI images of prostate cancer patients from a cancer hospital. The problem was to

segment the prostate, bladder and rectum. As shown in Figure 3.11, the solution

consists of two networks: the segmentation network and the confidence network. The

segmentation network is a simplified V-Net that outputs a predicted segmentation

mask. The confidence network is a fully convolutional discriminator. The Segmenta-

tion Network is trained on three losses: the supervised loss which is a newly proposed

Sample Attention Multi-class Dice loss that is designed to alleviate the problem of

class imbalance and dominance of easy samples; the Binary Cross Entropy adversarial

loss which improves the Segmentation Network to produce segmentation masks that

are more consistent with ground-truth segmentation masks in order to fool the Con-

fidence Network; the semi-supervised loss on unlabelled data which is the multi-class

Dice loss on the segmentation map and its confident map processed by the Confident

Network. The confidence network is trained on the Binary Cross Entropy adversarial

loss using the segmentation output from the Segmentation Network and its corre-

sponding ground truth.

Li et al. [17] proposed a shape aware semi-supervised segmentation method on 3D

atrial gadolinium-enhanced MRIs. The term “shape aware” is used to describe the

segmentation network’s ability to capture the global shape of each object class more

effectively. To do so, the authors designed a segmentation network with 2 heads, one

head produces a segmentation map and the other head produces a signed distance map
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Figure 3.12: Shape aware semi-supervised semantic segmentation of medical images
[17].

(SDM) which assigns the signed distance value to the nearest boundary of a target

object for each pixel. The segmentation network with V-Net backbone is trained on

two losses, shown in Figure 3.12 and described as follows:

• For labelled samples, the supervised loss consists of the Dice loss on the predicted

segmentation map and its corresponding ground truth mask; the Mean Squared

Error on the predicted SDM and its corresponding ground truth SDM. Notably,

the ground truth SDM is generated from the ground truth segmentation mask.

• The adversarial loss induced from the fixed discriminator network aims to dis-

tinguish the predicted SDM from labelled samples or unlabelled samples. In

particular, the discriminator network (CNN binary classification like) receives

the fusion of predicted SDM and its 3D original images from labelled or unla-

belled data and then produces the class probability of being labelled data. As

a result, learning from adversarial loss helps the segmentation network obtain

better shape-aware features that generalize well to the unlabelled data.

3.5.2 Semi-supervised consistency training in medical

semantic segmentation

Bortsova et al. [109] proposed a semi-supervised semantic segmentation method

that uses consistency training to segment left and right lung fields, left and right

clavicles and the heart from chest X-rays. The segmentation network uses a U-Net

backbone and follows a Siamese architecture with two identical branches, as shown

in Figure 3.13. Each labelled or unlabelled sample is transformed by 2 random data

augmentation methods. Then each transformed version is fed into two branches of

the segmentation network to obtain two predicted segmentation maps. The network

is trained using the supervised loss on labelled data and unsupervised consistency

loss on both labelled and unlabelled data. To perform the consistency loss, the first
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Figure 3.13: The training pipeline of the semi-supervised semantic segmentation
method of [109] that uses consistency training.

predicted segmentation map is processed by a differentiable transformation layer in

order to align it with the second predicted segmentation map.

Yu et al. [111] proposed another semi-supervised consistency training model for

3D Left Atrium Segmentation with the uncertainty-aware feature. The authors used

Mean Teacher as the semi-supervised framework and V-Net as the segmentation net-

work, as illustrated in Figure 3.14. The student segmentation network is learnt from

the supervised loss which is based on labelled samples and the proposed uncertainty-

aware consistency loss which is based on both labelled and unlabelled samples. The

uncertainty-aware consistency loss enforces the consistency between predicted segmen-

tation map from the student network and estimated uncertainty segmentation map

with Monte Carlo Dropout technique from the teacher network as the target. Us-

ing estimated uncertainty on the prediction of the teacher network helps the student

network learn from the more reliable targets.
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Figure 3.14: Diagram illustrating semi-supervised the consistency training model with
the uncertainty-aware feature [111].
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Problem Definition

As a result of our thorough literature review, we found there is no prior work

addressing the class imbalance problem in semi-supervised learning (SSL) of medical

images for either classification or segmentation. Therefore in this thesis we will address

the class imbalance problem for both semi-supervised medical image classification and

segmentation.

Semi-supervised learning for medical images is of practical importance. Large

numbers of labelled training images are necessary for training highly accurate deep

learning classification and segmentation models. However, it is costly and time-

consuming for medical experts to manually annotate the required number of images at

either image-level or pixel-level. Hence, semi-supervised learning is an ideal method

to tackle this obstacle. It only requires a small portion of all scanned images to be

labelled and automatically exploits statistical patterns from the rest. Medical im-

age datasets often contain studies that involve imbalanced datasets which the model

trained on often favour the majority image class (usually negative cases), such as for

the HAM10000 skin cancer dataset [22] where the majority of the images are classified

as benign versus a small number of malignant images, for ChestX-ray14 dataset [112]

where the majority of the images are for healthy lungs versus unhealthy lungs, or

for the Nerve Ultrasound segmentation dataset [24] where the number of background

pixels is heavily larger than foreground pixels. Hence in this study we address the

class imbalance issue for semi-supervised classification and segmentation of medical

images.

As stated earlier our problem of class imbalance in semi-supervised learning for

medical images has not been explored directly in the past. There are still several

studies of SSL medical images on skewed data distributions [13, 14, 106, 108] but they

are not focused on addressing the class imbalance problem. There has also been work

addressing the class imbalance problem for supervised learning such as resampling

[65, 66, 67, 68, 69, 70, 47, 84], distribution-based loss [72, 73], region-based loss [85,

86], cost-sensitive learning [74, 75, 76], threshold moving [77, 78, 79] and using a

pre-compute weight map for ground truth [46], but none of these works study SSL.
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We found one study [82] that proposed a new loss function for addressing the class

imbalance issue for SSL. However, the authors conduct their experiments on standard

image datasets and as such the efficacy of their proposed approach remains unproven

on medical image datasets where minimising the number of false negative predictions

is extremely important. Furthermore they artificially made their datasets imbalanced

by introducing synthetic skew into the class distribution. In contrast, our study will

use a medical image dataset which contains a real skewed class distribution.

More formally we define our problem as follows. Given a set of n labelled train-

ing examples L = {l1, l2, ...ln} and a set of m unlabelled training examples U =

{u1, u2, ...um}, with m >> n. The class distribution of labels in L and U are highly

skewed, so both class distributions have low entropy. We further assume that samples

in both L and U are drawn from the same population, and hence the class distributions

of L and U are similar.

For the image classification task, the aim is to train a model using both L and U

such that the model achieves high average recall for all classes (the standard metric

for judging the success of models on class imbalanced datasets). Hence we aim to

maximize the unweighted average recall ( UAR) metric on a test data set of z examples

T = {t1, t2, ...tz}. UAR is defined as follows:

UAR =

C∑
C=1

RecallC

C

where C is the number of classes.

For the image segmentation task, the aim is to train a model using both L and

U such that the model achieves high Dice Coefficient score for minor class on a test

data set of z examples T = {t1, t2, ...tz}. Dice Coefficient is defined as follows:

Dice =
2 ∗ TP

2 ∗ TP + FP + FN

Further details of the UAR and Dice Coefficient can be found in 6.3.

We assume that T has the same class distribution as L and U . By using the UAR

metric, we evaluate the model based on the contribution of all classes equally rather

than favoring the major classes. Furthermore, it will make sure the minor classes

which are really important for us (normally ones with disease) get an equal share of

the error metric. Similarly the Dice Coefficient fairly measures performance of every

class regardless of class distribution skew.

Justification for assuming labelled and unlabelled data have the

same class distribution : Our new loss function mainly depends on the information

of the predicted class‘s frequency of unlabelled data. We can not measure the class

distribution of the unlabelled dataset. Therefore, in our study, we assume that the

class distribution of the unlabelled dataset is the same as the labelled dataset. This

assumption is also supported by statistical theory. That is, the data distribution of a
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population can be represented by the data distribution of a uniform random sample

from the population. In our problem, the labelled dataset is a sample taken from the

population. We can use its class distribution to represent the population. Hence, it

is reasonable to assume the unlabelled data has the same class distribution as the

labelled data for a sufficiently large number of samples.
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Methodology

5.1 Semi-supervised learning architecture

We will base our research on perturbation based semi-supervised learning (SSL)

methods as described in Section 3.1 since all state of the art SSL methods [1, 26, 27,

28, 29] use this approach. The solution we developed for this study can be applied to

any perturbation based SSL that uses the consistency loss. To simplify our analysis we

will focus on a particular perturbation based SSL called the Unsupervised Data Aug-

mentation [1] (UDA) method. We describe how UDA works in detail in Section 5.1.1.

In our experiments we also implemented our proposed method for addressing class

skew on top of the Mean Teacher SSL method. Hence in Section 5.1.2 we describe

how the Mean Teacher method works in detail.

5.1.1 Unsupervised Data Augmentation (UDA)

UDA is one of the best performing recent SSL methods. Figure 5.1 shows a diagram

of how UDA works. The model is trained using two losses: a supervised loss (cross-

entropy loss) and an unsupervised loss (consistency loss). The aim of consistency loss

is to enforce the consistency of two prediction distributions. The key idea of UDA is to

use optimal data augmentation on unlabelled samples to increase the effectiveness of

the consistency loss. To obtain optimal data augmentation they applied an algorithm

called RandAugmentation [63] on the labelled dataset. The total loss for the UDA

architecture consists of two terms (see Figure 5.1): supervised loss for labelled data

and consistency loss for unlabelled data. The loss formula can be summarized as

follows:

L = LS(pθ(y|l)) + Lcon(pθ(y|u), pθ(y|û)) (5.1)

Where LS is a supervised cross entropy loss function that takes input as the predicted

probability distribution pθ(y|l) of y for a labelled sample l produced by the model M

with parameters θ. Lcon is a consistency loss function that uses the Kullback-Leibler

divergence to steer the predicted class distribution of the augmented unlabelled image
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Figure 5.1: The architecture used by the Unsupervised Data Augmentation (UDA) [1]
perturbation SSL method. In the diagram M is the shared CNN model used for
classifying both the labelled and unlabelled images.
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Figure 5.2: [33] Illustration of the decision boundary based on the smoothness and
low-density assumption.

û towards the target predicted class distribution of the original unlabelled image u.

As we discussed in the related works chapter, perturbation based methods such as

UDA are based on the smoothness and low-density assumption. With the smoothness

assumption, two data points which are close in the input space should have the same

label. That means, a labelled sample and an unlabelled sample who are close to each

other will have the label information propagated to the unlabelled sample. Another

important property of the smoothness assumption is that the original input and the

augmented input should be close to each other in the embedded space and hence

should be assigned the same label. This idea is captured by the consistency loss

Lcon which ensures the model produces the same predicted probabilities between the

original and noise input, leading to the model being robust to noise.

The low-density assumption is implicitly followed by the perturbation method due

to the relation with the smoothness assumption [33]. Figure 5.2 illustrates the decision

boundary based on the smoothness and low-density assumptions. Data points having

the same label should be relatively close to each other, thus becoming a cluster with

high density. Therefore, under the low-density assumption, the decision boundary

should not lie in the high density region of the embedding.

There have been various existing approaches [65, 66, 67, 68, 72, 73, 74, 75, 76, 85,

86, 46, 47, 84] to tackle class imbalance for the supervised learning problem. These
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approaches are complementary to our solutions since they work on improving super-

vised loss while ours works to improve the unsupervised loss component of the overall

loss. The unsupervised loss is particularly important since the number of unlabelled

examples is typically much larger than labelled examples. As shown in Figure 5.1,

UDA uses the consistency loss to exploit the information from the unlabelled loss by

making the class distribution of the augmented unlabelled data match the original

unlabelled data. Hence to alleviate the class imbalance problem in UDA, we focus

on modifying UDA’s consistency loss (shown in Equation 5.1). In particular, UDA’s

consistency loss is replaced by our new novel loss function, Adaptive Blended Con-

sistency Loss (ABCL). Hence the total loss is reformulated with ABCL replacing the

unsupervised term:

L = LS(pθ(y|l)) + ABCL(pθ(y|u), pθ(y|û)) (5.2)

5.1.2 Mean Teacher

Mean Teacher [26] is another well-known perturbation based SSL method which is

the underlying framework for many semi-supervised classification and segmentation

studies. As discussed in Section 3.1, the framework consists of the dual teacher with

weights θT and student with weights θS models which produce two predictions from

all labelled and unlabelled inputs X = L ∪ U by applying two types of stochastic

noise. Following UDA and the study of semi-supervised semantic segmentation using

the Mean Teacher method [95], the teacher model takes original examples x as the

input and the student model takes augmented examples x̂ as the input. Figure 3.2

illustrates the learning framework. The weights θS of the student model is updated by

the supervised loss on only labelled data of student’s output and the consistency loss

which is the distance between student’s output from the input x and teacher output

from the input x̂. Formally, the total loss of student model is formulated as follows:

L = LS(pθS(y|l)) + Lcon(pθT (y|x), pθS(y|x̂)) (5.3)

Where LS is a supervised loss function that receive the predicted pθS(y|l) probabil-

ity of y when given labelled samples l produced by the student model with parameters

θS. Lcon is a consistency loss function that minimizes the difference between the tar-

get probability distribution pθT (y|x) of y for given original samples x produced by the

teacher model with parameter θT and the pθS(y|x̂) probability distribution of y, given

augmented samples x̂ predicted by the student model with parameter θS. Notably, the

teacher model with parameter θT is not learnable, instead its parameter is updated by

the exponential moving average of the student’s parameter over each batch training,

which computed as follows:

θtT = αθt−1T + (1− α)θtS (5.4)
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Where α is a predefined smoothing coefficient hyperparameter and t is the training

step. This consistency loss can also be replaced with our Adaptive Blended Consis-

tency Loss (ABCL) to tackle class imbalance in semi-supervised learning. Hence the

total loss is reformulated as follows:

L = LS(pθS(y|l)) + ABCL(pθT (y|x), pθS(y|x̂)) (5.5)

5.2 Issues with existing consistency loss

formulations

In this section, we analyse problems with standard consistency loss (CL) in UDA [1]

and the state-of-the-art Suppressed Consistency Loss (SCL) [82] when training on

datasets with imbalanced class distributions. The problems will be analysed in the

context of the original sample’s prediction (OSP) and augmented sample’s prediction

(ASP) which represent the probability distributions pθ(y|u) and pθ(y|û) respectively

in Equation 5.1

Figure 5.3 illustrates how CL and SCL works. In UDA, the CL is a function that

sets the OSP as the target for ASP. That is the CL always pushes the class distribution

of ASP towards the class distribution of OSP. The idea behind SCL is to suppress

the minor class‘s consistency loss to move the decision boundary such that it passes

through a low-density region of the latent space. In practical terms, SCL suppresses

the CL when the OSP is the minor class and applies the CL when the OSP is the

major class. Like CL, SCL uses the OSP’s class distribution as the target irrespective

of whether OSP and ASP class distributions belong to the major or minor class.

Both standard CL and SCL have two shortcomings. Firstly they are both biased

towards targeting the major class in the presence of imbalanced training data. Sec-

ondly they do not target a blend of OSP and ASP but instead always target OSP only,

and thus do not exploit the augmented example to improve the model’s behaviour for

the original example.

Shortcoming 1: CL and SLC are more likely to target the major class.

When in doubt the model will more often predict the major class since the model is

trained on labelled data which is skewed towards major class samples. Consequently,

samples of the minor class are more likely to be mispredicted as the major class than

vice versa. In particular, when the original sample is incorrectly predicted as major

class and the augmented sample is correctly predicted as minor class, the CL and SCL

erroneously encourages the model to predict the sample as major class. As a result,

the model’s performance will degrade for minor class samples.

Shortcoming 2: CL and SLC do not target a blend of OSP and

ASP but instead always targets OSP only . Targeting a blend of OSP and ASP

reduces the harmful effects of targeting OSP only when OSP predicts the wrong class.
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Figure 5.3: An illustration showing how CL and SCL works. Note that the target class
distribution is always the class distribution for OSP. In addition, SCL down-weights
the loss if the predicted class of OSP is the minor class.

Unlike existing methods, we do not make the assumption that the model’s prediction

for the original sample is more accurate than for the augmented sample. Instead we

set the target as a blend of OSP and ASP to potentially average out some of the

harmful effects of a wrong OSP prediction. This is in some ways similar to the benefit

of ensembling the prediction of multiple models to minimize prediction error and the

established technique of test-time data augmentation [35].

The shortcomings mentioned above are all centered around what we should set as

the target distribution for the CL as a function of OSP and ASP. Hence, to provide

a more detailed analysis of the desired target class distribution we divide the analysis

into four separate cases depending on whether major or minor classes were predicted

by the OSP and ASP.

See Table 5.1 and Figure 5.4 for an illustration of the 4 different OSP and ASP

cases. In cases 1 and 2, OSP and ASP are in agreement. Unlike CL and SCL, we forgo

the assumption that the OSP is in any way more valid than the ASP. As a result, we

posit that it may be better to move the desired target class distribution to be a blend

of OSP and ASP instead of just to OSP. This is because we would like the target to

contain information in the predictions of both OSP and ASP. In case 3 CL and SCL

may unintentionally encourage the bias towards the major class to be stronger since it

is moving the desired target class distribution towards the major class although there

is no consensus between the two predictions. There is already a natural tendency to

predict the major class, a bias which is induced by the dataset skew. CL/SCL does

nothing to counteract this bias as it does not consider the frequencies of the predicted
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Case OSP ASP CL target SCL target ABCL target

1
Major
class

Major
class

OSP (major
class)

OSP (major
class)

Near the middle
between OSP and
ASP

2
Minor
class

Minor
class

OSP (minor
class)

OSP (minor
class)

Near the middle
between OSP and
ASP

3
Major
class

Minor
class

OSP (major
class)

OSP (major
class)

Closer towards
ASP

4
Minor
class

Major
class

OSP (minor
class)

OSP (minor
class)

Closer towards
OSP

Table 5.1: The analysis of the target class distribution of CL (standard consistency
loss), SCL (suppressed consistency loss), and our ABCL (adaptive blended consistency
loss) for 4 prediction cases. Figure 5.4 gives a diagrammatic illustration of the 4 cases.

Figure 5.4: An illustration of the target class distribution of CL, SCL and ABCL for
the 4 cases shown in Table 5.1.
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classes. Case 3 presents an opportunity to counteract this bias, as the model has

already indicated via the ASP that the minor class is likely correct since it made that

prediction despite its natural tendency to predict the major class. Unfortunately,

using CL/SCL in this situation is likely to encourage the model to mispredict the

minor class sample as the major class. It would be preferable to instead move the

desired target class distribution towards ASP, thus counteracting the dataset bias. In

case 4, OSP is the minor class, so there is no bias towards the major class and so both

CL and SCL do a good job of rewarding the minor class prediction in this case.

5.3 Adaptive Blended Consistency Loss (ABCL)

To address the drawbacks of CL and SCL, the desired target class distribution for

the consistency loss should be adaptively adjusted to be somewhere between OSP and

ASP depending on which of the 4 cases in Table 5.1 and Figure 5.4 has occurred. In

cases 1 and 2, OSP and ASP both are either the major or minor class. In this case

the desired target class distribution should be in the middle of OSP and ASP. In case

3 and 4, to discourage the bias towards predicting the major class, the desired target

distribution should be closer to the minor class depending on whether OSP or ASP

is the minor class.

We proposed a new consistency loss function called Adaptive Blended Consistency

Loss (ABCL) which captures the desirable properties listed above. Figure 5.5 illus-

trates how it works. ABCL uses the following loss function to generate a new target

class distribution which is a blend of OSP and ASP.

ABCL(z, ẑ) = Lcon(zblended, z) + Lcon(zblended, ẑ) (5.6)

z = pθ(y|u); ẑ = pθ(y|û) (5.7)

Lcon is the Kullback-Leibler divergence between the blended target probability distri-

bution zblended and either OSP (z) or ASP (ẑ). Hence ABCL pulls both the original

and augmented predictions towards the target distribution. For a model with param-

eters θ, pθ(y|u) and pθ(y|û) denote the predicted class probability distribution for an

original unlabelled example u and its augmented version û respectively. The gradi-

ent of the loss is not back-propagated through zblended during parameter optimisation.

This aims to enforce the augmented embedding closer to the zblended target embedding.

The blended target class distribution zblended is defined as follows:

zblended = (1− k) ∗ z + k ∗ ẑ (5.8)

Where k is the weighting value [0,1] that determines the proportion to which the

blended target moves towards OSP versus ASP. When k equals 0, the target will
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become OSP meaning ABCL will become the same as CL. On the other hand, as

k approaches 1, the target approaches ASP. k is calculated based on predicted class

frequencies with respect to the training dataset using the following formula:

k = max(0,min(γ ∗ (Noriginal −Naugmented) + 0.5, 1)) (5.9)

Noriginal and Naugmented are the class frequencies of the predicted class (class with

the highest predicted probability) for the OSP and ASP respectively. γ ∈ (0, 1] is

the class imbalance compensation strength that controls how strong the new blended

target class distribution skews towards either OSP or ASP. The value of k can be

interpreted as follows:

• When the OSP is the minor class and the ASP is the major class (case 4 in

Table 5.1 and Figure 5.4), the value of Noriginal will be smaller than the value of

Naugmented so the value of k will be smaller than 0.5. This indicates that the new

blended target class distribution will skew towards the minor class side (OSP).

• When the OSP is the major class and the ASP is the minor class (case 3 in

Table 5.1 and Figure 5.4), the value of Noriginal will be larger than the value of

Naugmented so the value of k will be larger than 0.5. This indicates that the new

blended target distribution will skew towards the minor class side (ASP).

• When OSP and ASP both are the major class or both are the minor class

(cases 1 and 2 in Table 5.1 and Figure 5.4), the value of Noriginal and Naugmented

are similar, so the value of k will be around 0.5. In this case OSP and ASP

contribute equally to the blended target distribution.

Class imbalance compensation strength γ. In ABCL (Equation 5.9), the

γ term is used to control how strongly the new blended target distribution is pushed

towards either OSP or ASP. As γ approaches 0, the impact of Noriginal−Naugmented on

the value of k will be smaller, and k will therefore be close to 0.5. This indicates that

the new blended target class distribution will skew only slightly to either OSP or ASP.

On the other hand, as γ approaches 1, the impact that Noriginal−Naugmented has on k

will be bigger. This indicates that the new blended target class distribution will skew

strongly to either the OSP or ASP. When γ is set to a high value, ABCL approaches

the standard CL in the case that Naugmented >> Noriginal, since zblended ≈ z. This

corresponds to CL, where OSP is wholly responsible for defining the target of the

unsupervised loss term.

ABCL for Mean Teacher The above ABCL is initially designed for the consis-

tency loss of UDA. Here, we present a different version of ABCL for the consistency

loss of Mean Teacher with only one consistency loss:

ABCL(z, ẑ) = Lcon(zblended, ẑ) (5.10)
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Figure 5.5: Diagram showing how ABCL works. The target distribution is blended
more towards the minor class, although it still retains some of OSP’s distribution.

z = pθT (y|x); ẑ = pθS(y|x̂) (5.11)

Where z and ẑ is the probability distribution output of the teacher and student

model respectively. There is only one consistency loss function, which is used to move ẑ

towards the blended target class distribution zblended, compared to two consistency loss

functions within ABCL for UDA. This is because the teacher model is not learnable

hence the consistency loss can not be applied on its output.

5.3.1 Semi-supervised learning for segmentation

The UDA (described in Section 5.1.1) and Mean Teacher (described in Section 5.1.2)

frameworks were initially designed for the semi-supervised classification problem, how-

ever we can easily adapt them to the semi-supervised semantic segmentation problem

which is actually just classification applied to the pixel instead of whole image grain.

Geometric consistency for applying noise (affine transformations). In

UDA, the consistency loss is applied on image-level class predictions of original and

augmented images. However, we need to be more careful when applying consistency

loss at the pixel level for semantic segmentation. In particular we need to correctly

map each pixel in the original image to the corresponding pixel in the augmented

image. For example, if the data augmentation rotates an image we need to perform

the inverse transformation to the model output before we can apply consistency loss.

This is because affine transformation will change the location of pixels from its original

space. Therefore, to make the class prediction of original and augmented images at
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Figure 5.6: An example of our “inverse transformation” approach to make consistency
loss geometrically consistent for the segmentation problem. In this example the data
augmentation operation is a 25 degree anti-clockwise rotation. The bottom row shows
the valid pixel mask in yellow and the invalid pixels in red. The image and mask are
both rotated by 25 degrees. Then the prediction mask and the rotated mask are
rotated by -25 degrees.

the pixel level geometrically consistent, we apply a masked inverse transformation

before computing the loss. This process is shown in Figure 5.6 and is described as

follows:

• Initialize a valid pixel mask that has the same size as the original image with all

its pixel values set to 1. This is used later to mask out invalid pixels (pixels whose

new locations are outside the original image size bounds after applied affine

transformation) when computing the loss. Apply the same affine transformation

that was applied to the original image (for data augmentation) to the valid pixel

mask. Set regions of the resultant mask that do not map to the original image

to invalid using a value of zero.

• Apply inverse affine transformation on the predicted segmentation map of aug-

mented image. (inverted prediction segmentation map)

• Apply inverse affine transformation on the transformed valid pixel mask.

The inverted prediction segmentation map of the augmented image and the class

prediction segmentation map of the original image are used to compute the consistency

loss. Then the portions of the loss corresponding to the invalid regions are canceled

out using the mask.
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5.4 CNN architecture used

5.4.1 For classification problem

We opted to use ResNet-34 as the backbone of our classification network, initial-

ising the model with weights that were pre-trained on the ImageNet [36] dataset.

ResNet-34 is the 34-layer variant of the popular ResNet CNN architecture [97], which

achieves excellent classification performance by alleviating a common issue with deep

neural networks known as the “vanishing gradient problem”. The vanishing gradient

problem is commonly observed when training deep models with back-propagation and

results in impeded training as gradients shrink to zero after passing through a large

number of layers. ResNet includes skip connections which permit back-propagated

gradients to flow more easily between distant layers, thus mitigating the vanishing

gradient problem.

5.4.2 For segmentation problem

We used the DeepLabv2 with ResNet101 backbone for our semantic segmentation

solution which was described in detail in Section 2.4.1. We chose this backbone since

it is the same backbone used in the semi-supervised semantic segmentation method

in [95].
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Experiment Setup

6.1 Dataset

We evaluate our proposed methodology on several medical imaging datasets se-

lected to cover a variety of diseases.

For classification:

• HAM10000 [22] (main dataset): contains 10015 RGB dermatoscopic skin lesions

images of size (450, 600) multiclass, divided into 7 classes: Pigmented Bowen’s

(AKIEC), Basal Cell Carcinoma (BCC), Pigmented Benign Keratoses (BKL),

Dermatofibroma (DF), Melanoma (MEL), Nevus (NV), Vascula (VASC).

• REFUGE Challenge [23] (supporting dataset): contains 1200 RGB retinal fun-

dus glaucoma images of various sizes. Each image is assigned a binary label of

glaucoma or non-glaucoma.

Figure 6.1 shows example images for each class. As is shown in Table 6.1, the class

distributions of both datasets are highly imbalanced.

For segmentation:

• Nerve Ultrasound segmentation dataset [24]: contains 5635 nerve ultrasound

Skin cancer dataset
MEL NV BCC AKIEC BKL DF VASC Total
1113 6705 514 327 1099 115 142 10015
0.11 0.67 0.06 0.03 0.11 0.01 0.01 1

Retinal fundus glaucoma dataset
Glaucoma Non-Glaucoma Total
120 1080 1200
0.1 0.9 1

Table 6.1: The class distribution of 2 experimental classification dataset. Both
datasets are very imbalanced. The number in brackets indicates the fraction of sam-
ples for the given class. The most and least class frequency is (0.67,0.01) for skin
cancer dataset and (0.9,0.1) for retinal fundus glaucoma dataset.
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(a)

(b)

Figure 6.1: Example images of the dermatoscopic skin lesions and retinal fundus
glaucoma dataset for each class.
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(a)

(b)

Figure 6.2: Example images of the Nerve Ultrasound and Breast Cancer Ultrasound
dataset, with their corresponding segmentation mask.

images and its corresponding segmentation masks of size (580,420) binary class,

which is whether an image has nerve or not.

• Breast Cancer Ultrasound segmentation dataset [25]: contains 780 breast ultra-

sound images and its corresponding segmentation masks of average size (500,500)

binary class, which is whether an image has breast tumor or not.

Figure 6.2 shows example images. Table 6.2 shows the class distribution of the dataset

in pixels which are highly imbalanced.

We split the datasets as follows: 70% training images, 20% test images and 10%

validation images. The validation and test dataset are used separately for the early

Dataset Background pixel Foreground pixel
Nerve Ultrasound segmentation 0.98 0.02
Breast Cancer Ultrasound seg-
mentation

0.9 0.1

Table 6.2: The class distribution of 2 experimental segmentation dataset. Both
datasets are very imbalanced in total pixels of background versus foreground.

58



Chapter 6. Experiment Setup

stopping to select the best model, otherwise they will be combined to evaluate the

model at final training epoch. For the classification task, 2/7 of the training dataset is

labelled images and 5/7 is unlabelled images. But for the segmentation task, we will

experiment with different amounts of labelled data in the training dataset. Notably,

the unlabelled training dataset is larger than the labelled training dataset because it

simulates the semi-supervised problem we stated earlier. That is, in medical image

data, it is often the case there is a small amount of labelled images with a much larger

set of unlabelled images. Additionally, we will ensure the class distribution across

each of the data splits are the same.

6.2 Data processing

6.2.1 For classification

For the HAM10000 dataset, the model is trained with the original image size

of (450, 600), in contrast, images of the REFUGE challenge dataset are resized to

(512,512). All images of both datasets have their color normalised. In particular, the

red and blue color channel will be normalised based on the green color channel. The

formula is described as follows:

R = R ∗ (
Gmean

Rmean

);B = B ∗ (
Gmean

Bmean

)

6.2.2 For segmentation

For the nerve segmentation dataset, the model is trained with the original image

size of (580,420) and images of the breast cancer segmentation dataset are resized to

(500,500)

6.3 Evaluation metrics

In this study, all metrics used to evaluate the model’s performance are derived

from the confusion matrix shown in Table 6.3.

6.3.1 For classification

Conventionally, a model’s performance is usually measured by the accuracy metric

indicating how many test samples are predicted correctly. In terms of confusion

matrix, it can be calculated as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
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Predicted Class
Positive Class Negative Class

Actual Class
Positive Class True Positive False Negative
Negative Class False Positive True Negative

Table 6.3: An example of a confusion matrix of the binary classification problem. True
Positive (TP) means the number of positive class samples are correctly predicted as
the positive class. False Positive (FP) means the number of negative class samples are
mispredicted as the positive class. False Negative (FN) means the number of positive
class samples are mispredicted as the negative class. True Negative (TN) means the
number of negative class samples are correctly predicted as the negative class.

Unweighted Average Recall. Due to the class imbalance in the testing dataset,

the model usually performs really well on the major classes and much worse on the

minor classes. Since overall accuracy is dominated by the major class, considering this

metric alone may conceal such poor performance on minor classes. However, minor

class accuracy is really important, especially for medical image analysis since often

the samples with disease belong to the minor class. Hence, the Skin Lesion Analysis

towards Melanoma Detection (ISIC 2018) [113] competition used an evaluation metric

that gives equal weight to all classes (called unweighted average recall (UAR)) to rank

the performance of the different models on the HAM10000 dataset (our experimental

dataset). Therefore, we also use UAR to measure our model’s performance across all

classes in a fair way. UAR is defined as follows:

Recall =
TP

TP + FN

UAR =

C∑
C=1

RecallC

C

where TP is the number of true positives, FN is the number of false negatives, and

C is the number of classes. The recall indicates the percentage of samples correctly

classified (TP ) over the total number of samples (TP+FN). By using this more class

balanced evaluation metric, we actually evaluate the model based on the contribution

of all classes equally rather than favoring the major classes. Since we are studying class

imbalance specifically, we additionally make use of more granular metrics to further

investigate the performance of our models, including the area under the receiving

operating charac- teristic curve and geometric mean. Additionally, these two metrics

are proposed because they were mostly used in studies of classification with class

imbalance which were reported in the review [114].

Geometric mean. The geometric mean (G-mean) is the n-th root of the product

of n-class recall. This is one of the most popular metrics for measuring the performance

of classification models on class imbalanced data. G-Mean score is maximized when
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the recall of all classes is balanced. The formula can be described as follows:

G-mean =
C
√
Recall1 ∗Recall2 ∗ ...RecallC

Where Recall is defined as above, C is the number of classes.

The Receiving Operating Characteristic (ROC) curve. The ROC curve

is a graph plotting the performance of a classification model at different classification

thresholds as a curve. Furthermore, this graph is plotted from 2 parameters:

• True Positive Rate (TPR), is a synonym for recall. TPR = TP
TP+FN

• False Positive Rate (FPR). FPR = FP
FP+TN

Intuitively, the ROC curve indicates how well the model classifies when classification

threshold is varied.

The Area Under the ROC curve (AUC). AUC is the entire area un-

derneath the ROC curve which is between 0 and 1 and the ideal value is 1. AUC

summarises a model’s performance across all classification thresholds. Furthermore

AUC can be interpreted as the probability that the model ranks a random positive

example higher than a random negative example [115].

6.3.2 For segmentation

Dice Coefficient. Dice Coefficient (Dice) is a very common metric to measure

a segmentation model’s performance. The Dice Coefficient score is a value between 0

and 1 which represents the similarity between the prediction segmentation mask and

the ground truth mask. Specifically, Dice Coefficient is described as the overlap of

the object in prediction segmentation mask and the object in the ground truth mask,

divided by the total size of the two objects, as calculated as follows:

Dice =
2 ∗ TP

2 ∗ TP + FP + FN

Notably, we use the Dice score of the foreground class to represent the overall perfor-

mance of experiments.

Sensitivity. The sensitivity, known as recall, indicates the percentage of the

number of foreground class pixels correctly classified (TP ) over the total number of

foreground class pixels (TP + FN), as calculated as follows:

Sensitivity =
TP

TP + FN
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6.4 Model training and model selection for

classification

All models were trained for 200 epochs with the static learning rate of 10−4. Fur-

thermore, the Stochastic Gradient Descent (SGD) optimizer with momentum 0.9 and

weight decay 5 x 10−4 was used. The model was trained using batches of 30 examples

per iteration, 8 of which were labelled and 22 of which were unlabelled.

We apply the early stopping technique to select the best model’s state. The model

will be evaluated with the validation dataset in every epoch. Then, the best model’s

state with the highest main metrics will be picked as the model evaluated on the test

set. Applying early stopping rather than always selecting the best model’s state at the

final epoch can prevent the chosen model’s state from overfitting. Eventually, the best

model’s state will be evaluated with the test dataset to obtain proposed measurement

metrics.

6.5 Model training and model selection for

segmentation

All models are trained for 20 epochs on the nerve segmentation dataset and 15

epochs on the breast cancer segmentation dataset with the static learning rate of 3

x 10−5. Furthermore, the Adam optimizer was used. For the nerve segmentation

dataset, a batch size of 20 training samples was used, 10 of the samples are labelled

and 10 were unlabelled. For the breast cancer segmentation dataset, a batch size of 4

training samples was used, 2 of the samples are labelled and 2 were unlabelled. For

experiments on both datasets, the model at final epoch is selected for the report.

6.6 Hardware and software

We considered Pytorch which is an open source machine learning library backed

by Facebook and TensorFlow which is an open source machine learning framework

backed by Google for our experimental software. The main difference between the

two is that TensorFlow uses static computation graphs versus Pytorch, which uses

dynamic computation graphs. That means in TensorFlow, we need to define the

whole computation graph before running the model. Whereas, Pytorch allows us

to flexibly modify the computation graph at runtime, hence it is easier to debug.

Therefore, we decided to use Pytorch to do our experiments.

Moreover, training a deep network is very time-consuming because it requires doing

a vast amount of mathematical operations. Therefore it is important to perform the

processing in parallel to reduce the training time. Indeed, Graphical Processing Units
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Task Dataset Data augmentation method
Classification HAM10000 and

REFUGE
Random horizontal flips, rota-
tions(between 0 and 180 degree),
erasing[26] (a random proportion
(0.02-0.33) of input image will be
erased) and color (jitter brightness,
saturation and contrast with a random
value in range of 0.9 to 1.1).

Segmentation
Nerve Ultrasound seg-
mentation

Crop (321,321), horizontal flip, rota-
tion (between 0 and 90)

Breast Cancer Ultra-
sound segmentation

Crop (490,490), horizontal flip, rota-
tion (between 0 and 90)

Table 6.4: Data augmentation methods for both tasks.

(GPUs) and CPUs with multiple cores can handle the parallel processing. Training

deep learning tasks on GPUs run much faster than CPUs due to the much higher

number of cores in GPUs compared to CPUs. Hence, we decided to run our experiment

on a NVIDIA GPU GeForce RTX 2080 TI.

6.7 Data Augmentation

Strong data augmentation via RandAugmentation [63] is a key component of the

UDA method, and the authors show that it can significantly improve the sample effi-

ciency by encouraging consistency on a diverse set of augmented examples. However,

experiments presented in Section 7.1.3 show ABCL performs poorly when strong data

augmentation is used. We attribute the poor performance of ABCL in the presence of

strong data augmentation to increased distance between the augmented and unaug-

mented examples in embedding space. ABCL assumes in cases 3 and 4 of Table 5.1

(one of the predictions belongs to a major class and the other belongs to a minor class),

it is more likely the actual class is the minor class. However, when using strong data

augmentation, the augmented major class sample may be moved far away from the

original example in feature space. As a consequence, there is a risk the augmented

sample may be predicted to be a different class. That is, samples belonging to the

major classes are more likely to be predicted wrongly since the strong augmentation

can make very significant changes to the appearance of the images. Consequently, the

main assumption behind ABCL is violated when strong data augmentation is used.

Hence, we use weak data augmentation for both labelled and unlabelled samples in

both tasks. Details of our data augmentation methods are listed in Table 6.4.
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6.8 Algorithms used in experimental study

6.8.1 Classification task

UDA baseline

The original UDA method is used as the baseline method using the standard cross

entropy loss as the supervised loss and the standard consistency loss (Kullback-Leibler

Divergence) as the unsupervised loss. This baseline is not designed to handle class

imbalance. All other methods implemented modify this baseline UDA method. As

default we use weak data augmentation for all algorithms implemented in this paper

including UDA baseline. However in Section 7.1.3 we show an experiment where

we compare the performance of strong versus weak data augmentation for UDA and

UDA+ABCL. The results show that ABCL with weak data augmentation is able to

outperform UDA using strong data augmentation. This shows that benefits of using

ABCL outweigh the performance loss from using weak data augmentation.

Sampling based method for the labelled dataset

As we mentioned in Section 2.6, undersampling the major class may lose infor-

mation from the major class samples and oversampling the minor class too much

might cause the model to overfitting. Therefore, to balance this trade-off, we can

combine oversampling the minor class and undersampling the major class to make a

class balanced dataset. We will resample the skewed labelled dataset by using the

intelligent methods Synthetic Minority Oversampling Technique (SMOTE) [68] and

random undersampling. SMOTE is a statistical method that oversample the minor

class in order to create a balanced dataset. Instead of just duplicating the existing

sample, SMOTE generates a new synthetic sample based on the feature of the target

class and its neighbours. On the other hand, the random undersampling method ran-

domly removes instances of the major class. In our labelled HAM10000 dataset, the

number of images of the most and least frequency class is 1320 and 22, respectively.

Hence, we balance the labelled dataset to 500 images for each class.

Weighted Cross Entropy Loss (WeightedCE)

This is an extension of the Cross Entropy loss function which weights the loss of

each class based on a given set of weights. The equation for this function loss is as

follows:

WeightedCE(weight, pt) = −weight[c] ∗ log(pt)
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Where pt is the predicted probability of a sample, weight is a given set of class weight

(0,1), weight[c] is the given weight of the predicted class c (class with highest predicted

probability). We define the set of class weight as follows:

• Class frequency: [0.11,0.67,0.06,0.03,0.11,0.01,0.01] for the HAM10000 dataset

and [0.1,0.9] for the REFUGE dataset

• weight = 1 - Class frequency

The objective of WeightedCE is to give higher loss for the minor class and lower

loss for the major class. Intuitively, it helps the model reduce the effect of the major

class.

Focal Loss [72]

This loss function is used for supervised learning to reduce the effect of the easy

samples. The idea is the major class are easy examples and hence should be given

lower weight in the loss function. The equation for focal loss is as follows:

FL(pt) = −(1− pt)γlog(pt)

where −(1 − pt)γ is a modulating factor, pt is the predicted probability of a sample,

γ is a focusing hyper parameter [0,5]. When γ = 0, the loss function is identical to

regular cross entropy loss, therefore the higher value of γ the increased effect of the

modulating factor. Intuitively, if the sample is misclassified with small pt, the loss of

the sample is applied as normal. Whereas, if the sample is well-classified with high

confidence of pt then it is more likely to belong to the major class, therefore the loss

of the sample is reduced. The default γ value used was 1 because we found this value

for γ gave the best UAR result when we did a hyperparameter search.

Suppressed Consistency Loss (SCL) [82]

This is the state-of-the-art semi-supervised learning method used to address class

skew that suppresses the consistency loss when the minor class is predicted. We

implemented this approach on top of UDA. The loss is formulated as follows:

LSCL(Xi) = g(Nc) ∗ Lcon(Xi),

where c = argmax(fθ(Xi))

g(Nc) is any function that is inversely proportional to Nc. The authors proposed it

as:

g(Nc) = β1− Nc
Nmax
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where β ∈(0,1], Nc is the number of unlabelled examples of class c and Nmax is the

number of unlabelled examples of the major class. The objective of g(Nc) is described

as follows: if the model predicts the sample as a major class, the consistency loss

of this sample is applied as normal however if the model predicts the sample as a

minor class, the consistency loss of this sample is suppressed. The default value used

was 0.8 because we found this value for gave the best UAR result when we did a

hyperparameter search.

Adaptive Blended Consistency Loss (ABCL)

This is our method for addressing the class imbalance problem for semi-supervised

learning. Our new method has only one hyperparameter that is class imbalance

compensation γ. The default γ value used was 0.4 because we found this value gave

the best overall result when considering UAR and the individual recall results for each

class.

UDA-WeightedCE-SCL and UDA-WeightedCE-ABCL

It is necessary to experiment with combinations of supervised and unsupervised

class imbalance methods to explore whether our ABCL method is beneficial along-

side established supervised methods. Therefore, we will experiment Weighted Cross

Entropy with ABCL and SCL.

6.8.2 Semantic segmentation task

UDA and Mean Teacher baseline

The original UDA and Mean Teacher method were both used as the baseline

method using the standard cross entropy loss as the supervised loss and the standard

consistency loss (Kullback-Leibler Divergence) as the unsupervised loss. All other

methods implemented modify the baseline UDA and Mean Teacher methods. The α

smoothing coefficient hyperparameter of Mean Teacher was set to 0.99 for all exper-

iments, since we found this gave the best results. All solutions for the segmentation

task used weak data augmentation.

Weighted Cross Entropy Loss (WeightedCE)

The WeightedCE was described in Section 6.8.1. For the segmentation task, we

applied the loss on each pixel’s predicted class distribution. After hyperparameter
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searching, we found the class weight [1,1.5] gives the best performance for both seg-

mentation datasets.

Dice Coefficient Loss (Dice) [85]

Inspired from Dice Coefficient metric, this is a region-based loss which maximizes

the similarity between two images, The equation for the loss is as follows:

DL(y, p̂) = 1− 2yp̂+ 1

y + p̂+ 1

Where y is the one-hot encoded ground truth for each pixel, p̂ is the prediction

probability for each pixel. 1 is added to avoid the function becoming undefined.

Adaptive Blended Consistency Loss (ABCL)

The default γ value used was 0.4 because we found this value gave the best overall

Dice score for the foreground class.

WeightedCE-ABCL and Dice-ABCL

We experimented with combinations of supervised and unsupervised class imbal-

ance methods to explore whether our ABCL method is complementary to supervised

methods. Therefore, we combined ABCL with WeightedCE and Dice loss.
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Experimental Results

7.1 Classification results

7.1.1 Results for the skin cancer (HAM10000) dataset

Table 7.1 shows the test set results (UAR as the main metric and G-mean, av-

erage AUC as supporting metrics) comparing our ABCL with other methods for the

HAM10000 dataset. All semi-supervised methods are based on the UDA method. Our

ABCL achieved the highest UAR, G-mean and average AUC values of 0.67, 0.62 and

0.95 respectively among all experimented methods. Existing class imbalance methods

designed for labelled data (Sampling and Focal) performed worse than the baseline

UDA method for the UAR and G-mean metric meaning they were not effective at

addressing the class imbalance problem in SSL. This is because these methods can

only make a small contribution to overall model quality since they can only be ap-

plied to the labelled data which in SSL is just a small portion of the total dataset. On

the other hand, class imbalance methods designed for unlabelled data (SCL and our

ABCL) outperformed the baseline UDA for the UAR and G-mean metrics meaning

these methods are more effective than methods which are only applicable to labelled

data. This is because these methods modify the consistency loss which is used for the

unlabelled data (occupies a larger proportion of all data for SSL).

When WeightedCE was used with ABCL and SCL, the UAR performance was

boosted from 0.67 to 0.68 and from 0.61 to 0.65 respectively. This can be explained

by the fact addressing class imbalance for the labelled data helps the model produce

lower bias of the major class for the pseudo target distribution in the unsupervised

consistency loss. Additionally, although the SCL outperformed the baseline UDA,

its performance was still worse than our ABCL in all experiments that involved both

methods. This is because as discussed in Section 5.2, SCL has the two problems of bias

towards major class and ignoring the augmented sample prediction when determining
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Algorithms UAR G-mean Average AUC

Supervised learning 0.75 0.71 0.98
UDA baseline 0.59 0.56 0.91
UDA-Sampling 0.51 0.44 0.89
UDA-WeightedCE 0.59 0.55 0.92
UDA-Focal 0.55 0.50 0.92
UDA-SCL 0.61 0.58 0.92
UDA-WeightedCE-SCL 0.65 0.64 0.94
UDA-ABCL (ours) 0.67 0.62 0.95
UDA-WeightedCE-ABCL (ours) 0.68 0.66 0.96

Table 7.1: Test set results of supervised learning, UDA baseline and various methods
designed for handling class imbalance on top of UDA for the HAM10000 dataset. The
results in bold show the best result for each column among the SSL methods.

Algorithms
MEL
(0.11)

NV
(0.67)

BCC
(0.06)

AKIEC
(0.03)

BKL
(0.11)

DF
(0.01)

VASC
(0.01)

UAR

UDA baseline 0.43 0.93 0.81 0.35 0.55 0.50 0.56 0.59
UDA-Sampling 0.44 0.84 0.69 0.52 0.53 0.36 0.12 0.51
UDA-Weighted
Loss

0.39 0.94 0.83 0.40 0.53 0.41 0.59 0.59

UDA-Focal 0.34 0.96 0.81 0.32 0.51 0.32 0.62 0.55
UDA-SCL 0.40 0.94 0.78 0.46 0.57 0.45 0.65 0.61
UDA-ABCL
(ours)

0.73 0.88 0.83 0.46 0.64 0.36 0.76 0.67

UDA-
WeightedCE-
SCL

0.5 0.96 0.73 0.58 0.59 0.55 0.65 0.65

UDA-
WeightedCE-
ABCL (ours)

0.68 0.9 0.79 0.51 0.67 0.45 0.74 0.68

Table 7.2: Test set recall results of the algorithms for each class of the HAM10000
dataset. The number in brackets under each class name shows the fraction of all
samples belonging to that class. Therefore the major class with most examples is NV.

the target class distribution.

To further understand the performance of ABCL against the rival methods, we

also reported the test set recall of each class in Table 7.2. This allows us to see how the

major and minor classes contribute to the UAR. ABCL performed the best among

all methods for almost all of the minor classes (MEL, BCC, BKL and VASC) and

performed worse than most methods for the major class NV. This result shows ABCL

is doing what it was designed to do, namely, it alleviates the bias towards the major

class unlike CL and SCL.

The importance of high recall for minor classes. In the medical domain

it is usually better to mistakenly report a false positive than to miss a true positive

disease diagnosis. This is because manual assessment or further testing can be used

to correct the misdiagnosis. However, missing a positive disease diagnosis may leave

a potentially fatal condition untreated. Additionally, in medical data, the amount
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Figure 7.1: Test set ROC and AUC results for each class of the HAM10000 dataset
using UDA baseline, SCL and ABCL methods. The number in the brackets next to
the class name is the fraction of examples that belong to that class.

of healthy cases is usually higher than the amount of diseased cases implying the

major class is usually the healthy case. In the skin cancer dataset, the NV class is the

benign class, which is also the only major class and the rest are minor classes. Based

on this principle, ABCL gives better performance than all its competitors. The test

set results in Table 7.2 shows that ABCL when compared to its nearest non-ABCL

rival achieves higher recall for the minor classes MEL, BCC, BKL and VASC. This

means ABCL is less likely to miss disease diagnosis than alternative losses.

Figure 7.1 shows our ABCL method compared against the SCL and UDA baseline

using the ROC and the corresponding AUC. ABCL’s AUC results are better than the

UDA baseline and SCL for all classes according to Table 7.3. This means ABCL is

better at separating between the positive and negative classes than the alternatives.
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Algorithms
MEL
(0.11)

NV
(0.67)

BCC
(0.06)

AKIEC
(0.03)

BKL
(0.11)

DF
(0.01)

VASC
(0.01)

Average
AUC

UDA base-
line

0.85 0.91 0.96 0.91 0.89 0.89 0.97 0.91

UDA-ABCL
(ours)

0.93 0.95 0.98 0.96 0.95 0.95 0.99 0.95

UDA-SCL 0.86 0.91 0.97 0.92 0.89 0.88 0.98 0.92

Table 7.3: Test set AUC results for each class of the HAM10000 dataset and its
average using UDA baseline, SCL and ABCL methods. The number in the brackets
next to the class name is the fraction of examples that belong to that class.

γ
value

MEL
(0.11)

NV
(0.67)

BCC
(0.06)

AKIEC
(0.03)

BKL
(0.11)

DF
(0.01)

VASC
(0.01)

UAR

0.2 0.66 0.92 0.82 0.47 0.65 0.32 0.68 0.65
0.4 0.73 0.88 0.83 0.46 0.64 0.36 0.76 0.67
0.5 0.74 0.86 0.84 0.51 0.64 0.41 0.71 0.67
0.6 0.73 0.83 0.84 0.51 0.66 0.36 0.76 0.67
0.8 0.75 0.78 0.86 0.49 0.63 0.45 0.76 0.68
1 0.78 0.76 0.83 0.53 0.64 0.41 0.82 0.68

Table 7.4: Test set recall results for each class of the HAM10000 dataset when the γ
hyper parameter value of ABCL is varied.

7.1.2 The effects of varying γ value

In this section we analyse the important γ parameter of ABCL according to re-

ported recall results for each class in Table 7.4. Important observations include the

following:

• As γ approaches 1, the recall of the major class NV decreases and the recall of

almost all minor classes increases.

• As γ approaches 0, the recall of the major class NV increases and the recall of

almost all minor classes decreases.

This implies that as γ is increasing, the model is compensating more towards

the minor classes than the major class, leading to the degradation of major class

performance. This can be explained by the case when the model correctly predicts

the OSP as the major class and mispredicts the ASP as the minor class, the blended

target class distribution is then skewed towards the ASP. As γ approaches 1, the

blended target class distribution moves closer to ASP. Therefore the γ term in ABCL

can be used to tradeoff decreased major class performance for increased minor class

performance.

From Table 7.4 we decided to choose a γ value of 0.4 as our default value since

it provided a good balance of recall for the minor classes while retaining most of the

recall for the major class NV.
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Algorithms
γ
value

MEL
(0.11)

NV
(0.67)

BCC
(0.06)

AKIEC
(0.03)

BKL
(0.11)

DF
(0.01)

VASC
(0.01)

UAR

ABCL
(always-
on
blending)

0.2 0.66 0.92 0.82 0.47 0.65 0.32 0.68 0.65
0.4 0.73 0.88 0.83 0.46 0.64 0.36 0.76 0.67
0.5 0.74 0.86 0.84 0.51 0.64 0.41 0.71 0.67
0.6 0.73 0.83 0.84 0.51 0.66 0.36 0.76 0.67
0.8 0.75 0.78 0.86 0.49 0.63 0.45 0.76 0.68
1 0.78 0.76 0.83 0.53 0.64 0.41 0.82 0.68

ABCL
(se-
lec-
tive
blending)

0.2 0.52 0.91 0.77 0.49 0.60 0.45 0.65 0.63
0.4 0.65 0.83 0.83 0.49 0.62 0.55 0.74 0.67
0.5 0.64 0.80 0.85 0.50 0.61 0.53 0.72 0.66
0.6 0.65 0.69 0.85 0.46 0.55 0.45 0.76 0.63
0.8 0.69 0.53 0.86 0.53 0.58 0.32 0.76 0.61
1 0.59 0.50 0.82 0.56 0.59 0.41 0.71 0.60

Table 7.5: Test set recall results selective target blending versus always-on blending
for each class of the HAM10000 dataset.

7.1.3 Ablation study

Selective versus always-on target blending

Here we compare ABCL with selective target blending versus ABCL with always-

on target blending using the HAM10000 dataset. In our experiments we use ABCL

with always-on target blending as our default method. This means even when the

original and augmented samples both are predicted as the minor or major class (cases

1 and 2 of Table 5.1), we still blend the two samples to produce the targets. However

in selective target blending we do not blend the original and augmented predictions

when they both predict the minor or major class, instead in this situation we resort

to the standard UDA method of just setting the target as the predicted output from

the original sample.

The results in Table 7.5 show that the version of ABCL that always blends targets

gives higher UAR (between 0.65 and 0.68) across the entire range of γ values. In

contrast, ABCL with selective target blending performs poorly for high γ values,

especially for the major class NV. ABCL improves the model’s performance on minor

classes by compensating more towards minor classes. As a consequence, in case 2

of Table 5.1 (the original and augmented samples both are predicted as the minor

class), there is a harmful effect to major classes that the actual major class might be

mispredicted as the minor class. Therefore, in this case, always selecting the original

distribution as the target distribution might exacerbate this harmful effect. On the

other hand, ABCL with always-on blending can mitigate this harmful effect, leading

to less degradation in the recall for the major class.

Weak versus strong data augmentation

In this section we compare the effects of different data augmentation strategies

for the baseline UDA method and our ABCL method on the HAM10000 dataset.
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Algorithms UAR G-mean Average AUC

UDA baseline + WeakAug 0.59 0.56 0.91
UDA baseline + StrongAug 0.61 0.56 0.92
ABCL + WeakAug 0.67 0.62 0.95
ABCL + StrongAug 0.50 0.42 0.91

Table 7.6: Test set UAR, G-mean and average AUC results of the HAM10000 dataset
comparing UDA baseline and ABCL with strong data augmentation and weak data
augmentation.

Algorithms UAR G-mean Average AUC

UDA baseline 0.55 0.37 0.82
UDA-WeightedCE 0.57 0.43 0.83
UDA-Focal 0.57 0.43 0.82
UDA-SCL 0.55 0.37 0.81
UDA-WeightedCE-SCL 0.55 0.37 0.82
UDA-ABCL (ours) 0.55 0.37 0.82
UDA-WeightedCE-ABCL (ours) 0.67 0.61 0.83

Table 7.7: Test set UAR, G-mean and AUC results for the REFUGE dataset.

Table 7.6 shows the results of this experiment. The results show that for the UAR,

G-mean and average AUC metrics, strong data augmentation works better than weak

data augmentation for the UDA baseline whereas the opposite is true for ABCL. As

discussed in Section 6.7, we believe the reason for this is when using strong data aug-

mentation, even samples belonging to major classes may be predicted wrongly since

the augmentation can make very significant changes to the appearance of the images.

Consequently, the main assumption behind ABCL is violated when strong data aug-

mentation is used. The results also show that ABCL with weak data augmentation is

able to outperform the baseline UDA using the strong data augmentation. This is an

important result since it shows ABCL is able to overcome any negative consequence

of not being able to use strong data augmentation.

7.1.4 Results for the retinal fundus glaucoma (REFUGE)

dataset

Table 7.7 shows the test set results of comparing ABCL with the other competing

methods for the glaucoma (REFUGE) dataset. ABCL does not improve the UDA-

baseline model’s performance when the standard cross entropy loss is used for the

supervised loss. However, using a combination of WeightedCE for the supervised

loss and ABCL for unsupervised loss, UDA-WeightedCE-ABCL is able to signifi-

cantly outperform UDA-WeightedCE and UDA-WeightedCE-SCL. As explained in

Section 7.1.1, WeightedCE can help the model produce lower bias of towards the ma-

jor class for the pseudo target distribution in the unsupervised consistency loss which
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is of benefit to both ABCL and SCL methods. However, UDA-WeightedCE-ABCL

outperforms UDA-WeightedCE-SCL because ABCL is able to adaptively blend the

target distribution between the original and augmented samples’s predicted distribu-

tions depending on which predicted the minor class. This helps ABCL better address

the class imbalance problem in the unlabelled data.

7.2 Segmentation results

7.2.1 Results for the Nerve Ultrasound segmentation

dataset

Table 7.8 shows the test set dice score result for experiments on top of Mean

Teacher and UDA SSL methods with three different amounts of labelled data. For

UDA experiments ABCL methods consistently outperformed non-ABCL methods.

These results are consistent with our classification results. An interesting observation

for the UDA experiments is that ABCL methods outperform non-ABCL methods by a

larger margin when there is a smaller amount of labelled data. This may be attributed

to the fact that directly addressing class imbalance in the consistency loss becomes

more important with a higher ratio of unlabelled compared to labelled data.

The Mean Teacher results show a less clear picture. For 500 and 980 labelled

data sizes ABCL methods perform either the same or a little better than its nearest

competitor. For 200 labelled data a non-ABCL method, MT-WeightedCE is the best

performer. The reason that ABCL does not perform as well when Mean Teacher SSL

is used compared to UDA can be explained by the violation of ABCL’s assumption.

In the scenario where OSP and ASP do not agree (case 3 and 4 of Table 5.1), ABCL

assumes it is more likely that the true class is the minor class. However, in the Mean

Teacher method, OSP and ASP are generated from two different models, Teacher

and Student respectively. For some examples, these two models might have different

latent representations for the original sample and augmented sample. This introduces

an additional source of mispredictions on true major class examples which ABCL is

unable to account for the behavioural difference between models. In such cases ABCL

will assume that the discrepancy is a result of data bias and attempt to correct it

by encouraging prediction of the minor class, which may be incorrect and lead to

increased false positives.

We also observe that replacing standard cross-entropy with Dice loss typically has

a positive or neutral effect on ABCL’s performance, with the exception of UDA on

980 labelled examples. This is consistent with our earlier discussion in Section 7.1.1

and illustrates that methods dealing with class imbalance for labelled examples are

complementary to ABCL.

Our ABCL method is designed to boost the recall of minor classes which is very

important in the medical domain. However, a higher dice score (our main metric)
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Algorithms 200 500 980

MT baseline 0.54 0.59 0.61
MT-WeightedCE 0.56 0.59 0.61
MT-Dice 0.54 0.60 0.61
MT-ABCL (ours) 0.55 0.59 0.61
MT-WeightedCE-ABCL (ours) 0.53 0.59 0.62
MT-Dice-ABCL (ours) 0.55 0.60 0.62

UDA baseline 0.44 0.53 0.58
UDA-WeightedCE 0.51 0.54 0.57
UDA-Dice 0.50 0.54 0.58
UDA-ABCL (ours) 0.55 0.58 0.61
UDA-WeightedCE-ABCL (ours) 0.55 0.58 0.60
UDA-Dice-ABCL (ours) 0.57 0.58 0.59

Table 7.8: Test set dice score result for experiments on top of Mean Teacher and UDA
methods with various amounts of labelled data for the Nerve Ultrasound segmentation
dataset. The numbers in bold indicate the best results for each column separated into
Mean Teacher and UDA methods.

does not guarantee a higher recall score. Hence in Table 7.9 we report the recall

scores for the various methods built on top of the UDA and Mean Teacher SSL.

These recall results show the combination of WeightedCE and ABCL achieved the

highest recall among all competing methods. This can be attributed to the fact that

ABCL is designed to reduce the bias towards the major class hence the higher recall

on the minor class. Also as mentioned in the results of Section 7.1.1 ABCL is able to

successfully work in a complementary fashion with the WeightedCE supervised loss

function.

7.2.2 Results for the Breast Cancer Ultrasound

segmentation dataset

Table 7.10 shows the test set dice score results of experiments on top of the Mean

Teacher and UDA on the Breast Cancer Ultrasound segmentation dataset. For all

three different amounts of labelled data, experiments with the ABCL method always

outperform experiments without the ABCL method for both Mean Teacher and UDA

SSL methods. The advantage of using ABCL is particularly significant for the UDA

SSL method. These results are consistent with the results for the Nerve Ultrasound

segmentation dataset presented in Section 7.2.1. Namely ABCL is clearly better than

competing methods for the UDA SSL but the advantage is less significant for the

Mean Teacher dataset. On 50 and 150 labelled examples, the combination of ABCL

with Dice or WeightedCE achieved the highest dice score among all experiments on

top of the UDA method. These results once again indicate ABCL and methods

designed to work on unlabelled data can be complementary to effectively tackle the

class imbalance problem in semi-supervised learning.
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Algorithms 200 500 980

MT baseline 0.62 0.63 0.62
MT-WeightedCE 0.66 0.65 0.65
MT-Dice 0.49 0.59 0.60
MT-ABCL (ours) 0.69 0.66 0.63
MT-WeightedCE-ABCL (ours) 0.71 0.67 0.66
MT-Dice-ABCL (ours) 0.66 0.66 0.64

UDA baseline 0.33 0.45 0.51
UDA-WeightedCE 0.43 0.48 0.52
UDA-Dice 0.43 0.47 0.52
UDA-ABCL (ours) 0.70 0.57 0.62
UDA-WeightedCE-ABCL (ours) 0.70 0.66 0.62
UDA-Dice-ABCL (ours) 0.62 0.52 0.52

Table 7.9: Test set recall results for experiments on top of UDA and Mean Teacher
with various amounts of labelled data for the Nerve Ultrasound segmentation dataset.

Algorithms 50 150 300

MT baseline 0.68 0.75 0.78
MT-WeightedCE 0.69 0.75 0.78
MT-Dice 0.57 0.73 0.78
MT-ABCL (ours) 0.71 0.76 0.79
MT-WeightedCE-ABCL (ours) 0.70 0.76 0.78
MT-Dice-ABCL (ours) 0.70 0.75 0.79

UDA baseline 0.53 0.63 0.66
UDA-WeightedCE 0.58 0.66 0.68
UDA-Dice 0.51 0.65 0.67
UDA-ABCL (ours) 0.59 0.70 0.72
UDA-WeightedCE-ABCL (ours) 0.64 0.71 0.72
UDA-Dice-ABCL (ours) 0.65 0.70 0.71

Table 7.10: Test set dice score results for experiments on top of the Mean Teacher
and UDA with various amounts of labelled data on the Breast Cancer Ultrasound
segmentation dataset. The numbers in bold indicate the best results for each column
separated into Mean Teacher and UDA methods.
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Datasets γ value

200 500 980

Nerve Ultrasound segmen-
tation dataset

0.4 0.55 0.69 0.59 0.66 0.61 0.63
0.9 0.46 0.74 0.57 0.70 0.61 0.66

50 150 300
Breast Cancer Ultrasound
segmentation dataset

0.4 0.71 0.72 0.76 0.74 0.79 0.75
0.9 0.68 0.78 0.75 0.76 0.78 0.76

Table 7.11: Test set dice score (on the left) and corresponding recall (on the right)
results for our ABCL method on top of the Mean Teacher SSL when γ is varied across
different amounts of labelled data for both segmentation datasets.

7.2.3 The effects of varied γ value of our ABCL method to

the segmentation task

In this section, we will analyse the effects of varying the γ parameter on the

performance of our ABCL method in terms of both dice score and recall. Table 7.11

shows the test set dice score result along with the recall of ABCL with γ set to 0.4

and 0.9. This result is reported for both segmentation datasets with three different

amounts of labelled data. We can make the following observations from the results in

Table 7.11:

• The dice score at γ = 0.9 is lower than at γ = 0.4

• The recall at γ = 0.4 is lower than at γ = 0.9

As discussed in Section 7.1.2, the γ parameter in ABCL can be used to tradeoff

decreased recall of the major class for increased recall of the minor class for the

classification task. The lower dice score when γ is at the higher value of 0.9 can be

explained as follows. The dice score penalises for false positives. At the higher γ

value of 0.9 the benefits of the high recall of the minor class is outweighed by the even

higher penalty of false positives for the minor class. Hence we choose a γ value of 0.4

as our default setting for the segmentation tasks since it provides a better balance

between recall of the minor class and false positive rate.
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Conclusion

In this study, we identified an important gap in the literature. Namely the need

to address the class imbalance problem within the context of semi-supervised classifi-

cation and segmentation for medical images. This is an important problem to study

since medical image datasets often have skewed distributions and missing positive

disease diagnosis can have fatal consequences. We address this gap by proposing a

new consistency loss function called Adaptive Blended Consistency Loss (ABCL). To

demonstrate the effectiveness of ABCL, we applied it to the perturbation based SSL

algorithm UDA and Mean Teacher. ABCL overcame the problem of the standard

consistency loss by generating a new blended target class distribution from the mix of

original and augmented sample’s class distribution in accordance to class frequency.

Extensive experiments showed ABCL consistently outperforms baseline SSL imple-

mentations such as UDA and Mean Teacher and methods designed to address the

class imbalance problem. For the skin cancer classification task, our proposed ABCL

method was able to improve the performance of the UDA baseline from 0.59 to 0.67

UAR, outperform methods that address the class imbalance problem for labelled data

(between 0.51 and 0.59 UAR) and the SCL method for addressing skew in unlabelled

data (0.61 UAR). On the imbalanced retinal fundus glaucoma dataset, combining

with Weighted Cross Entropy loss, ABCL achieved 0.67 UAR as compared to 0.57

to its nearest rival. For the two segmentation tasks, our ABCL method clearly out-

performed rival methods for the dice score when the UDA SSL was used. When the

Mean Teacher SSL was used ABCL performed the best or near the best depending

on the amount of labelled data used.

Overall the results show the effectiveness of ABCL to alleviate the class imbalance

problem for both semi-supervised classification and semi-supervised segmentation for

medical images.

8.1 Future work

As future work we would like to explore the following ideas:
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• Apply our ABCL method on top of other SSL methods that use the consistency

loss and in other domains apart from medical imaging.

• Test the effectiveness of our ABCL method when used with visual transformer

network backbone.

• Report the experimental results for segmentation algorithms using the Hausdorff

(95%) distance and specificity metrics.

• Compare the effect of our ABCL method on the convergence of model training

to the baselines.

• Apply our ABCL method with patch-based methods.

• Apply our ABCL method to 3D medical datasets.

• The value k in equation 5.9 is calculated based on a small number of labelled

data, which might not well represent the real distribution of the entire dataset in

some cases. Explore whether the proposed loss is still stable under the situations

when the class frequency in the labelled training dataset is not close to the entire

dataset.
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