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This study compared body position on the bicycle using manual and automatically 
determined body segments during stationary cycling. High speed video (120 fps) was 
obtained from 14 cyclists using their own bikes on a stationary cycle trainer in a single 
session. Torso, hip, knee and ankle angles were measured in two positions of the crank (3 
o’clock and 6 o’clock-dynamically) to determine body position on the bicycle. Significant 

differences (3-12°, d=0.38-1.92) were observed for all joints between the manual and 
automated method for both crank positions (except for the ankle at the 6 o’clock). Overall, 
the automated method overestimated torso and knee flexions and underestimated hip 
flexion and ankle dorsiflexion. Even though changes in angles were deemed meaningful, 
implications in terms of bicycle fitting are to be fully determined. 
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INTRODUCTION: The restrictions resulting from the COVID-19 pandemic have been limiting 
the work of clinicians in assessing athletes face-to-face in a number of countries. These 
limitations have affected the ability of bicycle fitters to support cyclists with service that could 
potentially prevent injuries (Estivalet, Brisson, Iriberri, Muriel, & Larrazabal, 2008; Fonda, 
Sarabon, & Li, 2014). Amongst the methods utilised for bicycle fitting, assessing body position 
on the bicycle using movement analysis technology has gained importance due to its potential 
to reduce fatigue and pain (Priego Quesada, Pérez-Soriano, Lucas-Cuevas, Salvador Palmer, 
& Cibrián Ortiz de Anda, 2016). As an alternative, videos taken remotely using online platforms 
(e.g. Zoom, Gmeet, etc.) could be used but it is not possible to manually mark-up cyclists’ bony 
landmarks to determine angles. Therefore, the use of novel automated methods to determine 
joint centres from video files can be explored. Recent studies using markerless video recording 
demonstrated similarities with criterion marker-based systems or potential for use in the field 
(Grigg, Haakonssen, Rathbone, Orr, & Keogh, 2018; Needham, Long, & Irwin, 2017). 
However, none of these studies compared the similarities of joint angles obtained from 
automated methods with those obtained using manually marked landmarks. Moreover, trained 
artificial intelligence (AI) technology using machine learning and large datasets of images could 
potentially improve the accuracy of automated methods in identifying human body segments 
in video frames. Moreover, it will be possible to reduce time taken to analyse videos using an 
automated method with AI assistance. However, the implications of the use of automated 
methods in determining body position on the bicycle have not been explored. Therefore, the 
purpose of this study was to compare body position on the bicycle during cycling using manual 
vs an automated method to determine joint angles. 
 
METHODS: Fourteen male cyclists (33±7 years of age, 176±6 cm of stature and 74±8 kg of 
body mass) ranging from recreational to competitive were assessed in a single session using 
their own bicycles. They were engaged in road and triathlon training covering 5±3 hours and 
128±65 km of cycling training per week at the time of the study. Before data collection, all 
cyclists signed an informed consent to participate in the study, which was approved by the 
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University Human Ethics Committee (HEC19001). After measurements of stature and body 
mass, reflective markers were positioned by a single investigator at the acromion, greater 
trochanter, lateral femoral epicondyle, lateral malleolus and at the pedal spindle (Figure 1). 
Cyclists then performed 2-min of cycling in their own bicycles attached to a home trainer (Active 
Intent Fitness Bike Trainer, NZ) at self-selected cadence. A high-speed camera (Exilim EX-
FC150, Casio Computer CO, Tokyo, Japan) was positioned at the height of their saddle, 4-m 
away from the bicycles to record movement in the sagittal plane. Reflective markers were 
positioned at the acromion, greater trochanter, lateral femoral epicondyle and lateral malleolus 
(Figure 1). Videos were recorded for 20-s at the end of the 2-min of exercise at 120 fps 
(640x480 of frame resolution). 
Raw video files were imported to a customised program adapted from a shared code. This 
code uses a pre-trained network in MATLAB (R2021a, MathWorks Inc, Natick, MA, USA) in 
identifying human body segments from images available in the COCO Consortium 
(cocodataset.org). New video files were generated where the joint centres were identified by 
the pre-trained neural network, which were later utilised to manually digitise torso, hip, knee 
and ankle angles in two parts of the crank cycle (3 o’clock and 6 o’clock). Raw videos and 
videos generated by the neural network were imported to ImageJ (National Institute of Health, 
USA) where a single experienced assessor measured the angles manually across five 
consecutive cycles for each participant in both videos. Differences in mean angles from each 
cyclist between manually placed markers and joint centre predicted by the neural network 
(automated method) were determined using paired samples t-tests for each crank position. 
Magnitude of differences were assessed using Cohen’s effect sizes (d). Whenever p<0.05 and 
d>0.80, practically important differences were assumed from the data. Statistical analyses 
were conducted using customised spreadsheets (Excel, Microsoft Inc, USA). 
  
RESULTS: Angles of the torso, hip, knee and ankle joints are illustrated in Figure 1, along with 
results obtained by each method (manual vs. automated). 
 

 
Figure 1. Illustration of the measured angles (torso-T, hip-H, knee-K and ankle-A) and data from 
each method (Manual-left and Automated-right). * Indicates practically important differences 
between methods. 
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At the 3 o’clock crank position, significant differences between methods were observed for the 
torso (~3°, p<0.01, d=0.38), hip (~9°, p<0.01, d=1.93), knee (~12°, p<0.01, d=1.52) and ankle 
(~8°, p=0.01, d=1.05). At the 6 o’clock crank position, the torso (~4°, p<0.01, d=0.67), the hip 
(~2°, p=0.01, d=0.52) and the knee (~4°, p=0.02, d=0.46) were different between methods, 
without differences for the ankle angle (~3°, p=0.10, d=0.35). 
 
DISCUSSION: This study demonstrated that body position on the bicycle was significantly 
different when assessed from an automated method compared to a manual method of 
determining joint angles in cycling. Differences in joint angles ranged from 3-12° at the 3 o’clock 
crank position and 3-4° at the 6 o’clock crank positions. Ong et al. (2017) observed differences 
of <1° for various joint angles using a markerless tracking system during walking and jogging. 
During cycling, typical errors in joint angles intra-session have been shown to range between 
<1-3° (Bini & Hume, 2020), which suggest that differences between methods are mostly 
meaningful. 
During bicycle fitting, changes in setup affect movement patterns, which can be determined 
via analysis of joint angles (Bini, Hume, & Kilding, 2014; Menard, Domalain, Decatoire, & 
Lacouture, 2020). Therefore, if angles cannot be identified properly, it is difficult to ensure that 
body position on the bicycle can be reliably determined. On the other hand, differences of less 
than ~10-14° were associated with no differences in knee forces when saddle position was 
changed (Bini & Hume, 2014), which suggest that errors in determining knee angles may not 
result in large differences in bicycle setup. It is possible though that, changes in bicycle setup 
from errors by the automated method may not result in differences in perceived comfort (Bini, 
2020; Priego Quesada et al., 2016) or may only result in differences in joint angles in parts of 
the crank cycle where joint forces are low (Bini, 2021). 
Only two positions of the crank cycle were explored in the current study, which limits the 
conclusion on whether the automated method can accurately track motion. It may be possible 
that, in some parts of the cycle, errors in identifying body segments may be larger. As an 
example, the 3 o’clock position presented larger errors than the 6 o’clock position. One 
potential reason could be that right and left limbs have a very distinct position at the 6 o’clock 
but a more similar position at the 3 o’clock, which leads the automated method to swap sides 
of the skeleton. In addition, the neural network was trained with mainly gait data, and having 
the leg straight at 6 o’clock is potentially easier to identify than with a hip and knee angles not 
observed during walking (at 3 o’clock). Another source of error could be the manual digitisation 
of joint angles. However, this element has been shown to add a trivial component (i.e. <1.5°) 
to measurements of joint angles in cyclists (Bini & Hume, 2016) and should be equivalent 
between methods as both involved manual digitisation of angles. Therefore, future studies 
should compare intra-cycle data between methods to assess the extent of differences. It is also 
important to note that cyclists pedalled at self-selected sub-maximal intensity and cadence, 
which limits the assumption that the automated methods will perform similarly during sprints. 
Clean background was used but it is unclear if the automated method would cope with unclear 
difference between the cyclists and the background, particularly when videos are collected 
remotely or outdoors. Moreover, with the use of online video recording methods (e.g. Zoom, 
Gmeet, etc), webcams with low frame rate (e.g. 30 fps) could result in poor quality video where 
distortions are observed in body segments. The implications of the use of low-quality video in 
the accuracy of the automated method should be explored further. 
This study used a pre-trained neural network based on a range of images available at a public 
repository. It is important to note though that these images rarely involve the positions of the 
body used in this study, which suggest that further training of neural networks may improve the 
accuracy of artificial intelligence to determine body position on the bicycle. In addition, 
corrections of joint centres based on the expected movement pattern (i.e. cyclical) should also 
be implemented to further improve the accuracy of automated methods (Serrancolí et al., 
2020). 
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CONCLUSION: This study demonstrated that an automated method to determine body 
segments and joint centres using a pre-trained neural network for walking and running gait 
overestimated torso and knee flexions and underestimated hip flexion and ankle dorsiflexion. 
However, given changes in angles were not always practically meaningful, implications in 
terms of bike setup are to be fully detailed. Moreover, it seems unlikely that errors from the 
automated method will result in large differences in joint forces based on outcomes from prior 
research. 
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