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Abstract

Ecological theory suggests that habitat disturbance differentially influences distributions of habitat generalist and specialist
species. While well-established for macroorganisms, this theory has rarely been explored for microorganisms. Here we
tested these principles in permeable (sandy) sediments, ecosystems with much spatiotemporal variation in resource
availability and physicochemical conditions. Microbial community composition and function were profiled in intertidal and
subtidal sediments using 16S rRNA gene amplicon sequencing and metagenomics, yielding 135 metagenome-assembled
genomes. Community composition and metabolic traits modestly varied with sediment depth and sampling date. Several
taxa were highly abundant and prevalent in all samples, including within the orders Woeseiales and Flavobacteriales, and
classified as habitat generalists; genome reconstructions indicate these taxa are highly metabolically flexible facultative
anaerobes and adapt to resource variability by using different electron donors and acceptors. In contrast, obligately anaerobic
taxa such as sulfate reducers and candidate lineage MBNT15 were less abundant overall and only thrived in more stable
deeper sediments. We substantiated these findings by measuring three metabolic processes in these sediments; whereas the
habitat generalist-associated processes of sulfide oxidation and fermentation occurred rapidly at all depths, the specialist-
associated process of sulfate reduction was restricted to deeper sediments. A manipulative experiment also confirmed habitat
generalists outcompete specialist taxa during simulated habitat disturbance. Together, these findings show metabolically
flexible habitat generalists become dominant in highly dynamic environments, whereas metabolically constrained specialists
are restricted to narrower niches. Thus, an ecological theory describing distribution patterns for macroorganisms likely
extends to microorganisms. Such findings have broad ecological and biogeochemical ramifications.

Introduction

These authors contributed equally: Ya-Jou Chen, Pok Man Leung

In macroecology, species are broadly classified as habitat
generalists and specialists depending on their niche breadth
[1, 2]. Both deterministic and stochastic factors control the
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differential distributions of such species and in turn the
maintenance of diversity [3, 4]. With respect to determi-
nistic factors, a pervasive ecological theory is that gen-
eralists and specialists differ in performance traits, for
example resource utilization. Habitat generalists are thought
to be more versatile but less efficient than habitat specialists,
whereas specialists perform fewer activities more effec-
tively; by extension, it can be predicted that specialists will
outcompete generalists in their optimal habitats, whereas
generalists will be favored in environments with high spatial
and temporal heterogeneity [1, 5]. The degree of habitat
specialization may also predict responses to disturbance,
given increasing evidence that both natural and anthro-
pogenic habitat disturbance favors generalists and promotes
homogenization of community composition [6-8]. Other
factors, notably dispersal traits and life history strategies,
also influence distribution patterns [3, 9]. While these tenets
are well-established for animals and plants, few studies have
extended them to microbial communities [10-12].

The key ecological processes governing macroorganism
community assembly are thought to extend to microorgan-
isms. Both environmental selection and stochastic factors
such as dispersal limitation contribute to microbial com-
munity assembly [13-15]. These processes lead to an
uneven prevalence of microbial taxa across ecosystems,
with most community members having low to intermediate
ranges (habitat specialists) and a small proportion of taxa
tending to be highly prevalent and often abundant across
space and time (habitat generalists) [16—18]. The perfor-
mance traits that differentiate microbial habitat generalists
and specialists, including those that allow key taxa to
dominate across a wide variety of habitats, have been
scarcely explored. It is probable that, like macroorganisms,
a key factor that governs distribution patterns is the capacity
and efficiency of resource utilization. In this regard, an
important trait that distinguishes microorganisms is meta-
bolic versatility [19]; whereas plants and animals are
respectively restricted to photoautotrophic and chemohe-
terotrophic growth, many microorganisms can use multiple
energy sources, carbon sources, and electron acceptors
either simultaneously or alternately [12]. Likewise, the
capacity for microorganisms to transition between active
and dormant states contributes to the maintenance of
diversity [20, 21]. It is increasingly realized that such
flexibility in resource usage contributes to the dominance of
certain taxa, but it remains unclear whether metabolic
flexibility is a general feature of microbial habitat general-
ists [22-29].

Permeable (sandy) sediments are ideal sites to explore the
concepts of habitat generalism and specialism in micro-
organisms. These ecosystems, spanning at least half the
continental shelf, are important regulators of oceanic bio-
geochemical cycling and primary production [30-32]. Their

uppermost sediments (i.e., mixing layer) are continuously
disrupted, primarily due to porewater advection in con-
junction with tide- and wave-driven hydrodynamic dis-
turbance [33-35]. As a result, microorganisms living in
mixing layers experience large variations in the availability
of light, oxygen, and other resources across short spatial and
temporal scales [30, 36]. In contrast, microbial communities
in the deeper sediment layers are infrequently disturbed and
are generally exposed to dark anoxic conditions [37].
Overall, permeable sediments are known to harbor abundant,
diverse, and active microbial communities [27, 38-42].
Previous studies have indicated that there is a rapid com-
munity turnover across depth and season in Wadden Sea
sediments [38]. However, some lineages such as the Woe-
seiaceae appear to be abundant and prevalent residents of all
permeable sediments sampled worldwide [23, 43, 44]. The
functional basis for their dominance is unclear. We have
recently published evidence that metabolic flexibility,
including the ability of bacteria to shift from aerobic
respiration to hydrogenogenic fermentation in response to
oxic-anoxic transitions, is an important factor controlling the
ecology and biogeochemistry of the communities in the
mixing layer [43, 45]. Due to these dynamics, fermentation
and respiratory processes are uncoupled in well-mixed
permeable sediments, in contrast to most sedimentary eco-
systems where these processes are closely coupled and fol-
low a redox cascade [43, 45, 46].

In this study, we investigated the spatiotemporal dis-
tributions and metabolic traits of habitat generalists and
specialists in permeable sediments from Middle Park
Beach, Port Philip Bay, Australia. Given the above con-
siderations, we hypothesized that the mixing and deep
layers of permeable sediments would select for different
metabolic traits. The mixing layer, reflecting its spatio-
temporal variability, would select for habitat generalists
with broad metabolic capabilities. In contrast, the less
frequently disturbed deep layer would allow establish-
ment of relative habitat specialists with constrained but
efficient anaerobic lifestyles. To test this, we used high-
resolution community profiling to determine the spatio-
temporal distribution of bacterial and archaeal commu-
nities in shallow, intermediate, and deep sands. While
various concepts and definitions have been developed to
describe ecological specialization [47, 48], here we
defined species as ‘habitat generalists’ and ‘habitat spe-
cialists’ based on their distribution (i.e., coefficient of
variance of their relative abundance as described [6]),
rather than by functional traits. We used genome-resolved
metagenomics, biogeochemical assays, and phylogenetic
analysis to determine the metabolic capabilities of the
most dominant habitat generalists and specialists, reveal-
ing most habitat generalists were highly metabolically
flexible. Perturbation experiments were used to validate
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the environment-competition dynamics predicted for
habitat generalists and specialists from our hypothesis.

Materials and methods
Sampling of permeable sediments

Permeable sediments were sampled from Middle Park Beach,
Port Phillip Bay. Samples for microbial community profiling
were collected from the same location (37.851342°S,
144.954377°E) over eight different dates over the course of a
year (A: 28/10/2016; B: 13/12/2016; C: 19/1/2017; D: 28/3/
2017; E: 9/5/2017; F: 30/6/2017; G: 23/8/2017; H: 19/10/
2017). Cores of 30 cm were used to collect sediments from
the subtidal zone (~1 m deep at low tide) and intertidal zone
(~1 m deep at high tide); one sediment core was collected at
high tide and low tide respectively on the same sampling
date. The sampled sediments mainly comprise sands and
gravels with a median grain size of ~0.55 mm [49]. Tide and
weather details for each of the sampling dates are provided in
Table S1. Cores were kept on ice until delivery to the
laboratory and were then immediately sectioned into shallow
(0-3cm), intermediate (14-17 cm), and deep (27-30cm)
samples. All samples were subsequently stored at —20 °C
until further processing.

Amplicon sequencing

For amplicon sequencing, total community DNA was
extracted from 0.25g of sediment using the modified
Griffith’s protocol [50]. The yield, purity, and integrity of
DNA from each extraction was confirmed using a Qubit
Fluorometer, Nanodrop 1000 Spectrophotometer, and
agarose gel electrophoresis, respectively. For each sample,
the V4 hypervariable region for 16S rRNA gene was
amplified using the universal Earth Microbiome Project
primer pairs F515 and R806 [51] and subjected to Illumina
paired-end sequencing at the Australian Centre for Ecoge-
nomics, University of Queensland. Paired-end raw reads
were demultiplexed and adapter sequences were trimmed,
yielding 1,362,535 reads across all samples. Forward and
reverse sequences were merged using the q2-vsearch plugin
[52]. A quality filtering step was applied using a sliding
window of four bases with an average base call accuracy of
99% (Phred score 20). The reads were truncated down to
250 base pairs to remove low quality reads before de-
noising using the deblur pipeline [53] in QIIME 2 [54]. Six
samples with read counts <1000 were removed for down-
stream analysis, leaving a total of 42 samples. 270 ASVs
that only occurred once (i.e., singletons) and 301 ASVs
flagged using the decontam R package [55] were removed
from the dataset, resulting in the retention of a total of
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12,265 ASVs (Table S2). For taxonomic assignment, all
reference reads that matched the F515/R806 primer pair
were extracted from the Genome Taxonomy Database
(GTDB) release 89 [56] and used to train a naive bayes
classifier by using the fit-classifier-naive-bayes function
with default parameters (Table S3).

Biodiversity analysis

All statistical analysis and visualizations were performed
with R software version 4.0.2 (June 2020) using the
packages phyloseq [57], vegan [58], and ggplot2 [59]. Prior
to statistical analysis, all sequences were rarefied at
5000 sequences per sample. Alpha diversity was calculated
using several metrics, including Shannon index, which
measures both species richness and evenness. We tested for
significant differences in Shannon index between depth,
tidal zone, and date using a one-way ANOVA with Tukey’s
post hoc tests (p < 0.05). Beta diversity was calculated using
weighted UniFrac distances [60] of logg-transformed data
and visualized using principal coordinate analysis (PCoA)
and nonmetric dimensional scaling (NMDS). A pairwise
analysis of similarities (ANOSIM) was used to test for
significant differences in community similarity between
depths, tidal zone, and date. First, permutational multi-
variate analysis of variance was performed using 999 per-
mutations to test for significant differences. Second, a beta
dispersion test (PERMDISP) was used to ascertain if
observed differences were influenced by dispersion. The
occupancy of each ASV, i.e., number or proportion of
samples in which they were present, was computed by the
average of 200 different rarefactions of the datasets at
5000 sequences per sample. We also applied the new
incidence-based diversity metric zeta diversity, which
quantifies the average number of ASVs shared across
multiple samples. Zeta decline, which compared the average
number of shared taxa between two and eight samples at
each depth, was computed using the function Zeta.decline.
mc in zetadiv [61] with 1000 bootstraps. Similarly, zeta
temporal decay was computed using the function Zeta.
ddecay with 1000 bootstraps to show turnover of commu-
nities with sampling time at each depth. Values were nor-
malized by the Jaccard method to account for sample
richness differences. Based on AIC values and p values,
zeta decline better fitted a power law rather than exponential
form (Table S4). Thus, a power law regression was applied
to visualize both zeta decline and zeta temporal decay.

Classification of habitat generalists and specialists
The degree of habitat specialization of each taxon (i.e.,

whether they were relative ‘habitat generalists” or ‘habitat
specialists’) was calculated based on their frequency in the
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16S rRNA gene amplicon profiles of the 48 samples from
the Middle Park Beach cores (Table S5). Specifically, we
calculated a specialization index for all taxonomically
assigned orders, families, and genera as previously descri-
bed [6]. This specialization index is calculated as the
coefficient of variation (i.e., standard deviation divided by
mean) of taxon densities across samples. It also includes a
bias correction procedure to correct for undersampled (rare)
taxa whereby, assuming taxa follow a Poisson distribution,
the expected bias can be calculated as:

number of habitat classes (K)
v total individuals in a given taxa (N)

Thus, bias values will decrease with increasing sampling
efforts (N). Final SI scores are calculated as raw SI score
minus the expected SI bias. While habitat specialization occurs
on a spectrum, we took the mean community specialization
index (order level: 0.64; family level: 0.65, genus level: 0.66)
as a cut-off below which to qualitatively define taxa as relative
‘habitat generalists’. It should be noted that the data from
metagenomic sequencing and ex situ manipulative experiment
were not used to classify habitat specialization; instead,
genome-resolved metagenomics was used to infer metabolic
traits of the relative ‘habitat generalists’ and ‘habitat specia-
lists’, whereas ex situ manipulative experiments were used to
test whether taxa behaved as predicted following simulated
environmental disturbance.

Quantitative PCR

Quantitative PCR (qPCR) was used to absolutely quantify
the copy number of the 16S rRNA genes in the samples.
Amplifications were performed using a 96-well plate in a
pre-heated LightCycler 480 Instrument IT (Roche, Basel,
Switzerland). Each well contained a 10 pl reaction mixture
comprising 1 ul DNA template, 5 ul Platinum SYBRGreen
gPCR SuperMix-UDG with ROX, 0.5 ul each of the uni-
versal 16 S rRNA gene V4 primers F515 and R806 (10 uM)
[51], and 3 pl UltraPure Water (Thermo Fisher Scientific,
Waltham, MA, USA). Each amplification was performed
in technical triplicate. Cycling conditions were as follows:
3 min denaturation at 94 °C followed by 40 cycles of 45 s
denaturation at 94 °C, 60s annealing at 50 °C, and 90 s
extension at 72 °C. Copy number was quantified against a
serially diluted pMA plasmid standard containing a single
copy of the Escherichia coli 16S rRNA gene. Plasmid
dilutions ranged from 10° to 10% copies ul~! and the gPCR
amplification efficiency ranged from 85 to 94% (R>>0.99).

Chlorophyll a measurements

Chlorophyll a was extracted using a previously described
method [62]. Briefly, 5 mL of 90% acetone (v/v) was added

to 5g of sediments in 50 ml Falcon tubes. Samples were
then stored overnight in the dark at 4 °C. All samples were
subsequently centrifuged at 550 x g for 15 min and 3 mL of
supernatant was transferred into cuvettes. Chlorophyll
absorbance was measured spectrophotometrically using a
Hitachi U-2800 spectrophotometer (Hitachi High-
Technologies Corporation, Tokyo, Japan) at five different
wavelengths (630, 647, 664, 665, and 750 nm). Spectra
were read before and after acidification with 10 uL of 1 M
HCI (v/v). After calculating the difference in absorbance
between the first and second measurement, chlorophyll a
concentration was determined using the equation of Lor-
enzen [62].

Shotgun metagenome sequencing

Table S6 summarizes details of the metagenomic datasets.
For this study, we sequenced eight new metagenomes
(subtidal deep A, intertidal deep A, subtidal shallow C,
intertidal shallow C, subtidal intermediate C, intertidal
intermediate C, subtidal deep C, intertidal deep C) and
analyzed five previously reported metagenomes (subtidal
shallow A, subtidal intermediate A, intertidal shallow A,
intertidal intermediate A, flow-through reactor) [43]. DNA
was extracted from the 0.3 g of sediment, collected during
the October 2016 (A samples) and January 2017 (C sam-
ples) field trips, using the MoBio PowerSoil Isolation kit
according to manufacturer’s instructions. Metagenomic
shotgun libraries were prepared for each sample using the
Nextera XT DNA Sample Preparation Kit (Illumina Inc.,
San Diego, CA, USA) and sequencing was performed on a
NextSeq500 platform with a 2 x 150bp High Output run.
Sequencing yielded 574,093,137 read pairs across the eight
metagenomes. To supplement the 16S rRNA gene amplicon
sequencing data, community profiles in permeable sedi-
ments were independently generated from metagenome
reads that mapped to the universal single copy ribosomal
marker gene rplP using SingleM v.0.12.1 (https://github.
com/wwood/singlem) (Table S7).

Shotgun metagenome assembly and binning

The BBDuk function of the BBTools v38.51 (https:/
sourceforge.net/projects/bbmap/) was used to clip con-
taminating adapters (k-mer size of 23 and hamming distance
of 1), filter PhiX sequences (k-mer size of 31 and hamming
distance of 1), and trim bases with a Phred score below 20
from the raw metagenomes. 482,529,838 high-quality read
pairs with lengths over 50 bp were retained for downstream
analysis. Reads were assembled individually and collectively
with MEGAHIT v1.2.9 [63] (--k-min 27, --k-max 127, --k-
step 10). Bowtie2 v2.3.5 [64] was used to map short reads
back to assembled contigs using default parameters to
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generate coverage profiles. Subsequently, genomic binning
was performed using CONCOCT vl1.1.0 [65], MaxBin2
v2.2.6 [66], and MetaBAT2 v2.13 [67] and bins from the
same assembly were then dereplicated using DAS_Tool v1.1
[68]. Applying a threshold average nucleotide identity of
99%, bins from different assemblies were consolidated to a
non-redundant set of metagenome-assembled genomes
(MAGs) using dRep v2.3.2 [69]. Completeness and con-
tamination of MAGs were assessed using CheckM v1.1.2
[70]. In total, 38 high quality (completeness>90% and
contamination < 5%) and 97 medium quality (completeness
>50% and contamination < 10%) [71] MAGs were recov-
ered. Their corresponding taxonomy was assigned by
GTDB-Tk v1.0.2 [56] with reference to GTDB r89 [56].
Open reading frames (ORFs) in MAGs were predicted using
Prodigal v2.6.3 metagenomic setting [72].

Shotgun metagenome functional analysis

To estimate the metabolic capability of the sediment
communities, metagenomes and derived MAGs were
searched against custom protein databases of representative
metabolic marker genes (https://doi.org/10.26180/c.
5230745) using DIAMOND v.0.9.22 [73] (query cover >
80%) with default settings (Table S8—S10). Searches were
carried out using all quality-filtered unassembled reads
with lengths over 140 bp. In addition, we searched ORFs
from the 135 MAGs retrieved from this study and 12
MAGs that were previously reported [43]. These genes are
involved in aerobic respiration/detoxification (CoxA,
CcoN, CyoA, CydA), oxidative phosphorylation (AtpA),
NADH oxidation (NuoF), sulfur cycling (AsrA, FCC, Sqr,
DsrA, Sor, SoxB), nitrogen cycling (AmoA, HzsA, NifH,
NarG, NapA, NirS, NirK, NrfA, NosZ, NxrA, NorB), iron
cycling (Cyc2, OmcB), formate oxidation (FdhA), arsenic
cycling (ARO, ArsC), selenium cycling (YgfK), reductive
dehalogenation (RdhA), photophosphorylation (PsaA,
PsbA, energy-converting microbial rhodopsin), methane
cycling (McrA, MmoA, PmoA), hydrogen cycling (large
subunit of NiFe-, FeFe-, and Fe-hydrogenases), carbon
monoxide oxidation (CoxL, CooS), succinate oxidation
(SdhA), fumarate reduction (FrdA), and carbon fixation
(AclB, AcsB, HbsC, HbsT, Mcr, RbcL) [74-76]. Results
were further filtered based on an identity threshold of 50%,
except for group 4 [NiFe]-hydrogenases, [FeFe]-hydro-
genases, CoxL, AmoA, NxrA and NuoF (60%), AtpA,
YgfK, HbsT, ARO, and PsbA (70%), and PsaA (80%).
Subgroup classification of reads was based on the closest
match to the sequences in databases. Read counts to each
gene were normalized to reads per kilobase per million
(RPKM) by dividing the actual read count by the total
number of reads (in millions) and then dividing by the
individual gene length of the best hit (in kilobases). In
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order to estimate the gene abundance in the microbial
community, high-quality unassembled reads were also
screened for the 14 universal single copy ribosomal marker
genes used in SingleM v.0.12.1 and PhyloSift [77] by
DIAMOND (query cover>80%, bitscore >40) and nor-
malized as above. Subsequently, the average gene copy
number of a gene in the community can be calculated by
dividing the read count for the gene (in RPKM) by the
geometric mean of the read count of the 14 universal single
copy ribosomal marker genes (in RPKM). One-way
ANOVAs were used to test for significant differences in
the abundance of metabolic marker genes between shallow
and deep sediments, and p values were adjusted for false
discovery rates with the base R function p.adjust. Given
that variable completeness of MAGs leads to under-
estimation of genes present in the microbial group, the
percentage occurrence of metabolic marker genes for each
order was normalized to inferred genome completeness of
the MAGs from each order. Raw data and normalized data
are provided in Table S9. To support functional prediction
using metabolic marker genes, we further analyzed the
completeness of corresponding pathways in MAGs using
METABOLIC v.4.0 [78]. A pathway is considered present
if over 70% of genes involved were detected (Table S9).

Phylogenetic analysis

Phylogenetic trees were constructed to verify the presence
of key genes involved in energy conservation and carbon
fixation in the permeable sediment MAGs and to determine
which lineages were present. Trees were constructed for
subunits of dissimilatory sulfite reductase (DsrA), sulfide-
quinone oxidoreductase (Sqr), flavocytochrome c sulfide
dehydrogenase (FCC), thiohydrolase (SoxB), acetyl-CoA
synthase (AcsB), form I carbon monoxide dehydrogenase
(CoxL), group 1 [NiFe]-hydrogenases (large subunit),
group 3 [NiFe]-hydrogenases (large subunit), two nitrate
reductases (NarG, NapA), three nitrite reductases (NirS,
NirK, NrfA), nitric oxide reductase (NorB), nitrous oxide
reductase (NosZ), decaheme iron reductase (MtrB), reduc-
tive dehalogenase (RdhA), fumarate reductase (FrdA),
photosystem II (PsbA), energy-converting microbial rho-
dopsins, and RuBisCO (RbcL). In all cases, protein
sequences retrieved by homology-based searches from the
MAG:s, and for PsbA also from the unbinned contigs, were
aligned against a subset of reference sequences from the
custom protein databases using ClustalW [79] in MEGA7
[80]. Evolutionary relationships were visualized by con-
structing maximume-likelihood phylogenetic trees; specifi-
cally, initial trees for the heuristic search were obtained
automatically by applying Neighbour-Join and BioNJ
algorithms to a matrix of pairwise distances estimated using
a JTT model, and then selecting the topology with superior
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log likelihood value. All residues were used and trees were
bootstrapped with 50 replicates.

Biogeochemical experiments

Slurry experiments were performed to investigate the func-
tional capacity of surface and deep intertidal sands. Each
slurry comprised a 160 mL serum vial containing 30 g of
sieved sand (wet weight) and 70 mL of seawater (filtered on
0.45 um Whatman membrane filters). The serum vials were
sealed with butyl rubber stoppers and Wheaton closed-top
seals. Anoxic slurries were used to measure hydrogenogenic
fermentation and sulfate reduction in shallow and deep sands
collected on November 12, 2018. Briefly, the slurries were
purged with high-purity helium and the headspace was
amended with 100 ppmv H,. Glucose was added to a final
concentration of 1 mM for the glucose addition group. All
vials were incubated on a shaker (100 rpm) at room tem-
perature (carefully maintained at 21 °C). For H, measure-
ments, a 2mL subsample was collected from headspace
every 24h and analyzed by gas chromatography. Three
independent slurries were measured for each timepoint and
treatment condition. To measure the sulfide produced, one
serum vial for each of the six timepoints (0, 48, 96, 144, 196,
360 h) was destructively sampled; a total of 8 mL of sea-
water was extracted from each slurry and filtered for spec-
trophotometric analysis. Oxic slurries were used to measure
aerobic sulfide oxidation in shallow and deep sands collected
on December 6, 2018. The serum vials were aerated with lab
air and sodium sulfide (Na,S.9H,0) was added to a final
concentration of 500 uM. All vials were incubated on a
shaker (100 rpm) at room temperature. To measure the sul-
fide consumed, one serum vial for each of the six timepoints
(1, 2, 4, 8, 24, 48 h) was destructively sampled; a total of 8
mL of seawater was extracted from each slurry and filtered
for spectrophotometric analysis. The autoclaved vial was
used as the control group to control for the photochemical
oxidation of sulfide in aqueous solution. The amount of
biogenic sulfide oxidation that occurred between each
timepoint was determined by calculating the difference
between the treatment and control groups.

Molecular hydrogen and sulfide measurements

To measure molecular hydrogen (H,), 2 mL gas samples
extracted during the slurry experiments were injected into a
VICI Trace Gas Analyser Model 6K (Valco Instruments Co.
Inc., USA) fitted with a pulsed discharge helium ionization
detector as previously described [81]. Ultra-pure helium
(99.999% pure, AirLiquide) was used as a carrier gas at a
pressure of 90 psi. The temperatures of column A (HayeSep
DB), column B (Molesieve SA), and the detector were
55 °C, 140 °C and 100 °C respectively. The instrument was

calibrated using standards of ultra-pure H, (99.999% pure,
AirLiquide) in ultra-pure He. Sulfide concentrations were
quantified through the methylene blue method with GBC
UV-Visible 918 Spectrophotometer at 670 nm as previously
described [82].

Microcosm experiments

Microcosm experiments were performed to compare how
habitat stability and variability affects the community
structure of permeable sediments. Surface (0-3 cm) and
deep (20-25 cm) intertidal sediments were collected from
Middle Park beach on October 9, 2019. They were incu-
bated in slurries comprising a 160 mL serum vial containing
30 g of sieved sand (wet weight) and 70 mL of seawater
(filtered on 0.45 ym Whatman membrane filters). The vials
were sealed with butyl rubber stoppers and Wheaton closed-
top seals. All vials were incubated on a shaker (100 rpm) at
room temperature. Three different treatments were applied
for both surface and deep. For the light oxic slurries, vials
were aerated daily with laboratory air and continuously
exposed to 60 umol photons m~2 s~!. For the dark anoxic
slurries, vials were purged with high-purity nitrogen gas and
covered with aluminum foil. For the oxic-anoxic transition
slurries, vials were transferred between light oxic to dark
anoxic conditions every 24 h. All incubations were per-
formed in triplicate. DNA was extracted from the original
sediments (control group) and each slurry after 14 days of
incubation. Community composition was determined by
16S rRNA gene amplicon sequencing as described above,
with a total of 19,572 ASVs retained (Table S11).

Results

Habitat generalists dominate permeable sediments,
but coexist with depth-restricted specialists

We used the 16S rRNA gene as a marker to profile the
diversity, abundance, and composition of the bacterial and
archaeal communities in permeable sediments. Forty-eight
sand samples were profiled that were collected from intertidal
and subtidal zones at three different depths (shallow: 0-3 cm,
intermediate: 14—17 cm, deep: 27-30cm) and across eight
different dates over the course of a year (Table S2). Alpha
diversity indices indicated that the sands support the co-
existence of diverse microorganisms (Fig. la); Shannon
indices were high across the samples (6.78 +0.31), with no
significant differences observed with sediment depth, tidal
zone, or sampling time (Fig. S1; Table S4). However, there
was a significant decrease in bacterial abundance with depth
(inferred from 16S rRNA gene copy number by qPCR)
across the samples (Fig. 1b). This correlated with the
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transition from the mixing layer (above 20cm) to the sus-
tained aphotic anoxic zone (below 20 cm), as indicated by a
sharp decrease in chlorophyll a abundance (Fig. 1c) and an
increase in acid-volatile sulfide concentrations (from below
detection limits to 0.16 umol g 1).

At the amplicon sequence variant (ASV) level, we
observed mild differentiation in community composition
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between samples. Based on pairwise comparisons (weighted
UniFrac), community composition was moderately correlated
with sediment depth (R*=0.29) and weakly correlated with
sampling date (R2 =0.08) (Fig. 1d; Table S4). In PCoA and
NMDS ordinations (Fig. 1d; Fig. S2), there was tight clus-
tering and insignificant differences in community composi-
tion between shallow and intermediate sands (p =0.961),
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Fig. 1 Composition, diversity, and distribution of bacterial and
archaeal taxa in permeable sediments. Results are shown based on
16S rRNA gene sequencing for 48 samples covering two tidal zones
(intertidal, subtidal), three sediment depths (0-3cm, 13-17cm,
27-30 cm), and eight sampling times (between Oct 2016 and Oct
2017). Variations in (a) Shannon index (alpha diversity), (b) 16S
rRNA gene copy number, and (c¢) chlorophyll a concentration are
shown with depth; error bars show standard deviations of the mean and
significance was tested using one-way ANOVAs. d Principal coordi-
nates analysis (PCoA) plot visualizing pairwise dissimilatory (beta
diversity) of communities using weighted UniFrac. Colors and shapes
differentiate samples by sediment depth and sampling date respec-
tively. e Zeta decline showing how the average number of ASVs
shared between sites decreases as more samples are added. Zeta
diversity was calculated for each sediment depth and was normalized
to account for differences in richness between samples (Jaccard nor-
malization). P values and R? values are shown for a power law
regression for each depth. f Zeta decay showing how the average
number of ASVs shared between pairs of sites decreases with sam-
pling date at each sediment depth. Power law regression curves and
95% confidence intervals are shown. g Relative abundance of the 20
most abundant orders within the sediments, as well as binned candi-
date lineage MBNT15; error bars show standard deviations of the
mean and significance was tested using linear regression analyses with
depth treated as a continuous variable (*p <0.05, **p <0.01, ***p <
0.001. ns p>0.05 (not significant)). The above heatmap shows the
specialization index (SI) for each taxon based on the coefficient of
variance of their relative abundance across the dataset; SIs below the
community-wide SI means of 0.64 (order level) indicate relative
habitat generalists, SIs above these means indicate relative habitat
specialists. h Occupancy-abundance relationship of ASVs for ten of
the most abundant orders. Each dot shows the abundance (based on
total sequence counts) and occupancy (i.e., number of samples present)
for each ASV. Further analyses of beta diversity, zeta diversity,
occupancy-abundance relationships, specialization indices, and genus-
and family-level distributions are provided in the supplementary fig-
ures and tables.

whereas the deep communities were distinct (p = 0.008) and
showed greater temporal variation. Based on zeta diversity
analysis (i.e., average number of ASVs shared across mul-
tiple samples [83, 84]), niche differentiation processes were
predicted to be dominant drivers of community assembly at
all depths (Table S4). Sediments in the mixing zone showed
consistently higher zeta diversity (i.e., more taxa shared
between samples) than deeper sediments, particularly when
increasing number of samples were considered (Fig. le;
Table S4). There was minimal variation in number of shared
taxa over time for the shallow and intermediate samples,
based on both pairwise (Fig. 1f) and multisite comparisons
(Fig. S3), suggesting community members in the mixing
zone are relatively resilient to disturbance. In contrast,
community composition in the deep sands exhibited a steep
temporal decay (Fig. 1f; Fig. S3), indicating rapid taxonomic
turnover. In combination, these results support the theory that
disturbance increases homogenization between communities.

Community profiling indicated that the sediment com-
munities were dominated by habitat generalists (Table S2 &
S4). In line with previous observations [43], the most

abundant orders were Woeseiales and Flavobacteriales
(respectively comprising 8.2 +3.7% and 11.1 +5.0% of the
total community), both of which were detected across all
samples (Fig. 1g; Fig. S4). Concordant findings were also
made at the family, genus, and ASV levels. UBA1844
(Woeseiales) and FEudoraea (Flavobacteriales) were the
most abundant taxonomically assigned genera detected
(Fig. S5). Likewise, the 11 most abundant ASVs and ten
most prevalent ASVs all affiliated with these two orders
(including UBA1844 and Eudoraea) and uncultured gam-
maproteobacterial lineage GCA-1735895 (Fig. 1h; Fig. S4
& S6). Nevertheless, within each of these orders, there were
also multiple narrowly distributed and less abundant ASVs
(Fig. 1h; Fig. S6). Various ASVs within the orders Pseu-
domonadales, Pirellulales, Microtrichales, Chitinophagales,
and Nitrososphaerales were also highly abundant and pre-
valent (Fig. 1g & 1h; Fig. S4). We calculated specialization
indices for each order, family, and genus, based on the
coefficient of variance of their relative abundance across
samples as previously described [85], to predict whether
they have strong or weak habitat preferences (Table S5).
The specialization indices of the eight aforementioned
orders were two-to fivefold lower than the mean for the
community, indicating they are habitat generalists. The
perpetual abundance of these lineages suggests they can
withstand large variations in physicochemical conditions
and resource availability in these sands. Note the 16S rRNA
gene analysis used a set of primers known to introduce
some bias in community profiling [51] and have recently
been superseded by new primer sets [86]. However, these
bacterial groups were also the most abundant in metagen-
omes (Table S6), based on community profiling using a
conserved single-copy ribosomal protein gene (Table S7 &
Fig. S7).

The specialization indices of some lineages were above
the mean for the community, suggesting they are relative
habitat specialists (Table S5). Most notably, Desulfo-
bacterales, Desulfobulbales, and Bacteroidales greatly
increased in relative abundance with depth (Fig. 1g) and
drove much of the community differentiation observed
between the deep samples compared to those in the mixing
zone (Fig. 1d). This indicates that the anoxic conditions of
these sediments have selected for expansion of anaerobic
specialists, including sulfate-reducing bacteria. However,
their relative abundance greatly varied within the commu-
nity across sampling dates; for example, while Desulfo-
bacterales and Desulfobulbales comprised up to 15% and
6% of the community in deep intertidal sediments, they
were both absent from such sediments at the penultimate
sampling point. Likewise, while the candidate lineage
MBNT15 was generally rare in the sediments (Table S2;
Fig. S4), it became transiently abundant in deeper samples
based on amplicon (Fig. 1f) and metagenome (Fig. S5)
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sequencing data. While the reason for these differences is
unclear, it is possible that these more specialist taxa are
relatively sensitive to the disturbance events (e.g., oxyge-
nation) that still occasionally affect deeper sediments, in
contrast to the habitat generalists they coexist with. Alter-
natively, temporal variations in habitat conditions (e.g., due
to seasonality) may select specialist taxa in hydro-
dynamically stable deep sediments, as inferred by a steeper
temporal decay of zeta diversity (Fig. S3). Aerobic specia-
lists (i.e., taxa with high specialization indices that pre-
dominated in the mixing zones) were less abundant, and
included genera within the order Enterobacterales (e.g.,
Psychrosphaera) (Fig. 1f; Table S5). Concordant findings
were observed at finer taxonomic resolution; ASVs from the
five most abundant specialist orders had significantly lower
average and maximum occupancies (i.e., proportion of
sampled sites in which they were detected) than those from
the most abundant habitat generalist orders (Fig. S4 & S6).

Metabolic flexibility differentiates habitat
generalists and specialists

We used genome-resolved metagenomics to gain an insight
into the metabolic traits of the habitat generalists and spe-
cialists detected. Sequencing, assembly, and binning of
metagenomes of intertidal and subtidal sands from each
sediment depth (Table S6 & S8) yielded 38 high-quality and
97 medium-quality MAGs [71] (Table S9). We additionally
reanalyzed the 12 MAGs that we previously reported from
this study site [43]. Together, the resultant genomes span 13
phyla and 43 orders, including 17 of the 20 most abundant
orders detected by 16S rRNA gene profiling (Fig. 1). We
profiled the abundance of 51 metabolic marker genes in the
short reads (Table S8), derived MAGs (Table S9), and
unbinned contigs (Table S10) to gain insights into the
functional capabilities of the habitat generalists and spe-
cialists (Fig. 2). Based on the short reads, the percentage of
total bacterial cells that perform each metabolic process was
calculated based on the ratio of metabolic marker genes to
universal single-copy ribosomal protein marker genes (both
in RPKM) (Table S8).

Most community members are predicted to be aerobic
heterotrophs capable of using organic and inorganic energy
sources. Based on short reads (Table S8) and assemblies
(Table S10), most bacteria encoded enzymes for sulfide or
thiosulfate oxidation, i.e., sulfide-quinone oxidoreductase
(Sqr, 54% of total community), flavocytochrome ¢ sulfide
dehydrogenase (FCC, 12%), reverse dissimilatory sulfite
reductase (rDsrA, 9%), and thiosulfohydrolase (SoxB, 16%)
(Fig. 2). Concordantly, a similar proportion of the MAGs
encoded these enzymes (Fig. 2; Table S6) and phylogenetic
trees confirmed all binned sequences affiliated with cano-
nical clades (Fig. 3; Fig. S8-S11). Diverse Sqr sequences
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were detected, including in Woeseiales, Flavobacteriales,
Rhodobacterales, and Microtrichales MAGs (Fig. 2;
Table S9), with particularly high abundance of the type III
Sqr clade (Fig. 3a) known to support sulfide-dependent
growth [87, 88]. Also widespread were the genes for con-
sumption of carbon monoxide (CoxL, 19%; Fig. S12) and
hydrogen gas (group 1 and 2 [NiFe]-hydrogenases, 47%;
Fig. S13). Most bacteria also appear to have a large capacity
to withstand variations in electron acceptor availability. In
addition to encoding terminal oxidases for aerobic respira-
tion (Fig. 2), many are predicted to mediate stepwise
denitrification through nitrate (NarG and NapA, 40%; Figs.
S14 & S15), nitrite (NirS and NirK, 32%; Figs. S16 & S17),
nitric oxide (NorB, 14%; Fig. S18), and nitrous oxide
(NosZ, 31%; Fig. S19), with fewer mediating dissimilatory
nitrate reduction to ammonium (DNRA via NrfA, 7%;
Fig. S20) (Fig. 2). As we previously reported [43], hydro-
genotrophic sulfur reduction (group le [NiFe]-hydro-
genases, 17%; Fig. S13) and facultative hydrogenogenic
fermentation (group 3 [NiFe]-hydrogenases, 61%; Fig. S21)
are also common. Diverse community members were also
capable of reducing other compounds (Table S8 & S9),
such as ferric iron (MtrB, 20%; Fig. S22) and organohalides
(RdhA, 19%; Fig. S23). By contrast, few are predicted to
mediate the specialist traits of ammonia, iron, nitrite, or
methane oxidation, methanogenesis, acetogenesis, and, in
the mixing zone, sulfate reduction (Fig. 2; Tables S8-S10).

Further analysis of the reconstructed genomes revealed
that the most prevalent taxa are highly metabolically flex-
ible (Fig. 2; Table S9). The Woeseiaceae MAGs, repre-
senting one of the most abundant and prevalent families in
the sediments, encode enzymes for aerobic heterotrophy,
sulfide oxidation, hydrogenotrophic sulfur reduction, deni-
trification, FrdA (Fig. S24), iron reduction, hydrogenogenic
fermentation, and for one MAG, chemosynthetic carbon
fixation (Fig. S25). Flavobacteriaceae are similarly flexible,
for example with Fudoraea MAGs encoding genes to har-
ness energy from organic carbon, sulfide, hydrogen, and
sunlight via proteorhodopsin (Fig. S26), as well as switch-
ing between aerobic respiration, anaerobic respiration, and
fermentation. Other inferred habitat generalists, including
within highly abundant orders Pseudomonadales, Pir-
ellulales, Microtrichales, Rhodothermales, and GCA-
1735895 (Fig. 1g), are also predicted to be able to use
multiple energy sources and electron acceptors in these
sediments (Fig. 2). Altogether, these data suggest that most
community members can accommodate environmental
fluctuations in the availability of oxygen and other electron
acceptors by switching between different respiratory and
fermentative processes. Moreover, they can take advantage
of a wide range of organic and inorganic energy sources that
are likely to be abundant in these sediments. While most of
the bacteria in the sediments were predicted to be flexible,
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Metabolism Marker Protein ANOVA
NADH oxidation NuoF
Sulfide oxidation to sulfur FCC,Sqr
Sulfide oxidation to sulfite rDsrA
Thiosulfate oxidation SoxB
Ammonia oxidation AmoA
Nitrite oxidation NxrA *
Iron (11) oxidation Cyc2 **
Hydrogen oxidation NiFe-ox *
Anaerobic carbon monoxide oxidation CooS e
Aerobic carbon monoxide oxidation CoxL
Methane oxidation PmoA,MmoA *
Formate oxidation FdhA *
Aerobic respiration (high O, ) CoxA,CyoA
Aerobic respiration (low O5) CydA,CcoN
Sulfate reduction DsrA,AsrA il
Fumarate reduction FrdA *
Nitrate reduction NarG,NapA **
Nitrite reduction to nitric oxide NirS,NirK
Nitrite reduction to ammonium NrfA
Nitric oxide reduction NorB
Nitrous oxide reduction NosZ .
Iron (I1l) reduction MtrB,OmcB * .-. .
Reductive dehalogenation RdhA i
Methanogenesis McrA
Hydrogen production NiFe-re e
Oxygenic photosynthesis PsaA,PsbA
Anoxgenic phototrophy PsaA,PsbA
Energy-converting rhodopsin RHO * .
Reductive TCA cycle AclB
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Fig. 2 Metabolic capacity of microbial communities in permeable
sediments. Homology-based searches were used to detect key meta-
bolic genes in 12 metagenomes (Table S6 & S10) and 147 derived
metagenome-assembled genomes (MAGs; Table S10). The left col-
umns show the proportion of community members in each metagen-
ome predicted to encode each gene based on the short reads; hits were
normalized to gene length and single-copy ribosomal marker genes.
Hits were summed for each process where more than one gene was
searched for (up to 100%), with the exception of oxygenic photo-
synthesis where PsaA and PsbA hits were averaged (reflecting both
genes are required for this process to occur). The right columns show

we detected no lithotrophy or anaerobic respiration path-
ways across multiple near-complete Sphingomonadales and
Verrucomicrobiales MAGs (Table S9), suggesting they are
constrained to an aerobic organotrophic lifestyle, in line
with their habitat preference for surface sands (Fig. 1g;
Table S2). We also annotated the MAGs using the more
extensive, but less curated, reference databases provided
with the tool METABOLIC [78]; this produced largely
concordant findings, confirming high completeness of the
pathways identified through our marker gene approach
(Table S9).

The metagenomes also provide insights into the meta-
bolic capabilities of community members with more
restricted distributions (i.e., relative habitat specialists).

the proportion of MAGs estimated to encode each gene, with results
shown by order; hits are normalized based on estimated genome
completeness of each order. Metabolic marker genes involved in the
oxidation of electron donors (top rows), reduction of electron accep-
tors (middle rows), and fixation of inorganic carbon (bottom rows) are
shown. NiFe-ox and NiFe-re denotes [NiFe]-hydrogenases involved in
H, oxidation (group 1 and 2a) and H, production (group 3 and 4)
respectively. One-way ANOVAs were used to test whether there were
significant differences in relative abundance of genes between depths
(*p<0.05, **p <0.01, ***p <0.001, blank = not significant between
shallow and deep sediments).

Whereas the relative abundance of many genes associated
with habitat generalists (e.g., sulfide oxidation) did not
change with depth, there was a significant tenfold increase
in the relative abundance (p <0.001) of the marker genes
for dissimilatory sulfate reduction (DsrA) (Fig. 3c; Fig.
S10) and the Wood-Ljungdahl pathway (AcsB, CooS) (Fig.
S27) in the metagenomes of deep sands compared to shal-
low and intermediate sands. This strongly correlates with
the increased abundance of sulfate-reducing bacteria from
the orders Desulfobulbales and Desulfobacterales at these
depths (Fig. 1f) that encode these genes (Fig. 2). These
bacteria are likely able to thrive in this niche by coupling
the oxidation of the fermentative endproducts hydrogen (via
group 1b and 1c [NiFe]-hydrogenases; Fig. S13) and acetate

SPRINGER NATURE
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Fig. 3 Phylogenetic trees of genes mediating sulfur cycling.
Maximum-likelihood phylogenetic trees are shown for (a) sulfide-
quinone oxidoreductase (Sqr), (b) flavocytochrome ¢ sulfide dehy-
drogenase (FCC), and (c) dissimilatory sulfite reductase A subunit
(DsrA). The tree shows sequences from permeable sediment
metagenome-assembled genomes (colored) alongside representative
reference sequences (black). The trees were constructed using the JTT
matrix-based model, used all sites, and were midpoint-rooted. The four
Sqr clades and two DsrA clades present in the MAGs are differentiated

(through the oxidative Wood-Ljungdahl pathway; Fig. S27)
to sulfate reduction. As shown by the metabolic heatmap in
Fig. 2 and phylogenetic trees of Fig. 3, the genes for the
inferred specialist process of sulfate reduction were far less
abundant and less taxonomically widespread than those for
sulfide oxidation. These sulfate-reducing orders never-
theless possess some respiratory flexibility, including the
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shaded. Note Sqr, FCC, and the oxidative clade of DsrA (rDsrA;
encompassing Proteobacteria MAGs) are known to mediate aerobic
sulfide oxidation (MAGs colored in blue), whereas the reductive clade
of DsrA (encompassing Desulfobacterota MAGs) mediate anaerobic
sulfite reduction (MAGs colored in red). Node junctions represent
bootstrap support from 50 replicates. Full linear trees with accession
numbers are provided in Fig. S8 (Sqr), Fig. S9 (FCC), and Fig. S11
(DsrA).

ability to use nitrate (Fig. S15) and organohalides
(Fig. S23), suggesting they can accommodate some changes
in resource availability. They also possess cytochrome bd
and cytochrome cbb; oxidases that can scavenge trace
levels of oxygen (Fig. 2); however, given previous reports
that terminal oxidases support oxygen detoxification rather
than aerobic growth in sulfate-reducing bacteria, these
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bacteria are likely to be inhibited rather than stimulated by
oxygen in contrast to the facultative anaerobes that they
coexist with [89, 90]. Similarly, genome annotations based
on homology-based searches and METABOLIC profiling
indicate MBNTI15 bacteria are obligate anaerobes that
couple H, and acetate oxidation to nitrate reduction (Fig. 2;
Table S9). Thus, these members of the Desulfobacterales,
Desulfobulbales, and MBNT15 appear to be relative habitat
specialists that thrive in anoxic deep sediments, but lack the
metabolic capabilities to compete in transiently oxygenated
surface sediments.

Metabolic processes associated with habitat
generalists and specialists show depth variations in
permeable sediments

The above findings suggest that several alternative meta-
bolic pathways, such as sulfide oxidation and hydro-
genogenic fermentation, allow habitat generalists to adapt to
changes in resource availability. The relative abundance of
community members that mediate these processes, as well
as the metabolic genes that they encode, is similar across
depth (Figs. 1g & 2). Thus, it can be expected that these
processes occur in both shallow and deep sediments. To test
this, we first measured rates of sulfide oxidation in intertidal
sediments spiked with sodium sulfide under oxic condi-
tions. Sulfide was rapidly consumed in a first-order kinetic
process to below detection limits in both shallow and deep
sediments (Fig. 4c). We also measured hydrogenogenic
fermentation in sands under anoxic conditions; glucose
addition stimulated rapid accumulation of molecular
hydrogen to micromolar levels in both surface and deep
sands (Fig. 4a).

In contrast, the community and metagenomic data indi-
cate that sulfate reducers are habitat specialists that pre-
ferentially reside in the deeper sediments. To verify this, we
measured rates of hydrogenotrophic sulfate reduction in
anoxic H,-supplemented surface and deep intertidal sedi-
ments. As anticipated given the abundance of hydro-
genotrophic sulfate reducers (Fig. 1f) and dsrA genes
(Fig. 2), the microbial communities in deep sediments
consumed most H, within 48 h (Fig. 4a), concomitant with
accumulation of 10 uM sulfide (Fig. 4b). In contrast, fer-
mentation and respiration became uncoupled in surface
sediments following the onset of anoxia; rates of fermen-
tation initially exceeded respiration, resulting in net H,
accumulation and no detectable sulfide production within
48 h. This is in line with our previous in situ and ex situ
observations that fermentation dominates carbon miner-
alization in well-mixed permeable sediments irrespective of
the availability of anaerobic electron acceptors [43, 45].
Hydrogenotrophic sulfate reduction only became dominant
after prolonged incubations under anoxia (Fig. 4a & 4b),

likely due to growth of sulfate-reducing bacteria under these
stable conditions.

Metabolically flexible bacteria outcompete
specialists during simulated disturbance events

In combination, the community, metagenomic, and bio-
geochemical profiles suggest that metabolic flexibility
facilitates habitat generalism of microorganisms in perme-
able sediments. We performed a manipulative incubation
experiment to test whether this inference is valid. Samples
collected from shallow and deep intertidal sediments were
incubated for 14 days under one of three conditions: con-
tinual light oxic conditions, continual dark anoxic condi-
tions, and disturbed conditions (24 h cycles between light
oxic and dark anoxic conditions). It should be noted that
these microcosms do not fully capture the conditions and
complexity of the natural ecosystem, and some selection
may have been introduced due to temperature differences,
physical shaking, and bottle effects. Nevertheless, we
observed significant changes in the relative abundance of
many key taxa previously highlighted in the analysis of
community composition (Fig. 1) and function (Fig. 2)
between the three incubation conditions (Fig. 5; Table S11).

Although most taxa exhibited significant changes in
relative abundance during the incubations, those predicted
to be metabolically flexible were perpetually abundant.
Taxa inferred to be metabolically flexible habitat generalists
were dominant in all samples, and were most abundant
compared to taxa inferred to be metabolically constrained
habitat specialists in the original samples and disturbed
incubations (Fig. 5). Modest changes in the relative abun-
dance of Woeseiales, Microtrichales, Rhodothermales, and
GCA-1735895 lineages were observed between the time of
sampling and following two weeks of incubations. We also
monitored the patterns of lineages predicted to be aerobic
specialists (from orders Enterobacterales, Verrucomicro-
biales, and Sphingomonadales) and anaerobic specialists
(from orders Desulfobacterales, Desulfobulbales, and Bac-
teroidales) based on their constrained metabolic capabilities
(Fig. 2) and high specialization indices (Fig. 1g; Table S5).
The three lineages of inferred aerobic specialists, while
always relatively minor constituents of the community,
were most abundant in oxic incubations (total 3.3% relative
abundance) and least in anoxic sediments (1.2%). Inferred
anaerobic specialists showed the opposite pattern. They
bloomed to one-sixth of the community in the anoxic
incubations (16%), with large enrichments in the sulfate-
reducing families Desulfocapsaceae, Desulfosarcinaceae,
and Desulfobacteraceae, but declined during oxygen expo-
sure (5.6%) (Fig. 5; Fig. S28). Under stable anoxic condi-
tions, these anaerobic specialists likely rapidly mobilize
available resources through their sulfate reduction and
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Fig. 4 Metabolic activities of a

microbial communities in
permeable sediments. a & b
Capacity of sands to mediate
hydrogenogenic fermentation
and hydrogenotrophic sulfate
reduction under anoxic
conditions. Shallow and deep
sediments were incubated in
nitrogen-purged slurries in the
presence of 100 ppmv H, and,
for spiked samples, 1 mM
glucose. Changes in (a) H,
concentration and (b) sulfide
concentration were measured
during the experiment. For H,
measurements, error bars show
standard deviations for three
independent slurries. ¢ Capacity
of oxic sands to mediate sulfide
oxidation. Shallow and deep 14
sediments were each incubated
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fermentation pathways. The relative abundance of most
aerobic and anaerobic specialists declined in the disturbed
slurries compared to the original samples, suggesting cell
death (Fig. 5). An exception was Alteromonadaceae
(Enterobacterales) (Fig. 5; Fig. S28), potentially reflecting
that this family symbiotically associates with diatoms in
permeable sediments [43, 91].

Remarkably, some taxa thrived in response to disturbance.
Flavobacteriales sampled from deep sediments increased in
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relative abundance by 1.9-fold in the disturbed incubations
(Fig. 5), largely driven by expansions of the genus Eudoraea
(Fig. S28). Based on the metabolic capabilities of the three
MAGs from this genus (Table S9), such bacteria may take
advantage of necromass released during oxic-anoxic transi-
tions by switching between aerobic respiration and hydro-
genogenic fermentation pathways. Likewise, there were
significant enrichments in the two dominant lineages har-
boring photosystems (Fig. S29), namely photoheterotrophic
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Fig. 5 Responses of different orders to simulated environmental
disturbance. The relative abundance of the 26 most abundant
microbial orders from surface (top) and deep (bottom) sands is
depicted with red bars. The changes of their relative abundance is
shown after sands were incubated in slurries for 2 weeks in one of
three conditions: continual light oxic conditions (light blue bars),
continual dark anoxic conditions (green bars), or disrupted conditions
(dark blue bars) in which slurries were shifted between light oxic and
dark anoxic conditions every 24 h. Error bars show standard deviations
of the mean and significance was tested using one-way ANOVAs (*p
<0.05, **p<0.01, ***p<0.001, ****p<(0.0001, ns p>0.05 (not
significant)). The heatmap depicts the specialization index (SI) for
each taxon based on the coefficient of variance of their relative

Rhodobacteraceae and photoautotrophic diatoms (detected by
chloroplast 16S rRNA gene sequences) (Table S11; Fig. 5).
These taxa likely benefit from the increased light availability
under both the light oxic and disturbed conditions compared

abundance across the longitudinal study depicted in Fig. 1; SIs below
the community-wide SI means of 0.64 (order level) indicate relative
habitat generalists, SIs above these means indicate relative habitat
specialists. Shapes next to taxon names predict metabolic capabilities
of each order based on the obtained MAGs: facultative anaerobes
(dark blue circles), obligate aerobes (light blue triangles), and obligate
anaerobes (green diamonds). Given no MAGs were obtained for
Cyanobacteriales (chloroplasts), Chromatiales, Morl, Gp7-AAS,
Opitulales, Cytophagales, Bacteroidales, and Enterobacterales, meta-
bolic capabilities are predicted based on their cultured closest relatives
(open shapes). Results are shown at family and genus levels in Fig.
S28.

to natural sediments, but also possess genes that enable
adaptation to dark anoxic conditions (Table S9). Such flex-
ibility is apparent from the diverse repertoire of the Rhodo-
bacteraceae lineages Sulfifobacter and Silicimonas, which
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encode the determinants of aerobic anoxygenic photo-
heterotrophy [92] together with those for sulfur compound
oxidation, reductive dehalogenation, and variably denitrifica-
tion (Fig. 2; Table S9). These inferences are also supported by
previous studies inferring benthic diatoms survive dark anoxic
conditions through nitrate respiration [93] and microbiota-
mediated hydrogenogenic fermentation [43, 45]. Although
this experiment generally substantiated metagenome-based
inferences, a few taxa behaved contrary to predictions. Most
notably, Chitinophagales significantly decreased under anoxic
conditions despite being predicted to be habitat generalists
based on specialization index (Fig. 1g; Table S5) and har-
boring genes for hydrogenogenic fermentation (Fig. S20;
Table S9), suggesting members of this order either cannot
survive in these conditions or are outcompeted by more
efficient anaerobes; these observations are nevertheless con-
sistent with the decrease in the relative abundance of this
order with depth (Fig. 1f).

Discussion

In combination, these results provide multifaceted evidence
that environmental disturbance influences distributions of
microbial habitat generalists and specialists. The microbial
communities in the mixing zone of permeable sediments
experience frequent but irregular spatiotemporal variations
in oxygen, sunlight, nutrients, and redox state [30]. Based
on ecological theory, it would be expected that these var-
iations would differentially affect generalists and specialists
[1, 5]. For the specialists, these changes would promote
continual cycles of growth and death as conditions alternate
between favorable and unfavorable. In contrast, generalists
are expected to maintain more stable populations given they
are more adaptable to environmental change. We observed
that habitat generalists are indeed more competitive in these
environments. Large and stable populations of ASVs from
orders such as Woeseiales, Flavobacteriales, and Pseudo-
monadales were present in both the mixing and deep layers
of the sampled sediments across sampling times, and were
enriched under simulated disturbance conditions in the
manipulative incubations. Thus, in line with observations
for macroorganisms, environmental disturbance appears to
favor bacterial habitat generalists and promote some degree
of homogenization of composition between microbial
communities.

Some relative habitat specialists nevertheless coexist
with such generalists in these environments. Numerous taxa
were detected with low occupancies and abundances, sev-
eral of which bloomed under favorable conditions, most
notably MBNT15. The manipulative incubation experi-
ments confirmed that these inferred specialists were only
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enriched under more stable conditions (light oxic for aero-
bes, dark anoxic for anaerobes). Most notably, Desulfo-
bacterales were the most abundant order in deep sediments
at certain sampling times and during prolonged dark anoxic
incubations, reflecting that sulfate-reducing bacteria thrive
in stable hydrogen- and sulfate-rich environments. These
taxa and other anaerobic specialists nevertheless exhibited
sharp variations in relative abundance across the sampling
dates, as well as significant declines under oxic and dis-
turbed incubations. Consistent with ecological theory, this
suggests that such habitat specialists are sensitive to the
disturbances that define the mixing zone and occasionally
affect deeper sands, whereas the generalists that they coexist
with are more adaptable. More sampling is required across
various spatial and temporal scales to resolve the physico-
chemical pressures and biological interactions that drive
these differences, as well as resolve seasonal changes in
community composition. However, it is probable that
oxygen availability is the most significant factor that
influences composition, for example through causing poi-
soning of strictly anaerobic habitat specialists or by allow-
ing habitat generalists able to switch between aerobic and
anaerobic growth to outcompete strictly anaerobic or aero-
bic specialists [43]. The relative stability of
deeper sediments may also promote formation of physico-
chemically distinct microenvironments, which would be
ideally suited for certain habitat specialists, that would be
lost during occasional mixing events.

In turn, our study lends strong support to the hypothesis
that microbial habitat generalists and specialists have distinct
metabolic capabilities. Based on the reconstructed genomes,
the habitat generalists in the community possess much
metabolic versatility. Most notably, the Woeseiaceae lineages
that dominate these sands are particularly versatile, given their
predicted use of a wide spectrum of electron donors (organic
carbon, sulfide, hydrogen), oxidants (oxygen, nitrite, fuma-
rate, sulfur, fermentation), and carbon sources (heterotrophy,
autotrophy). Flavobacteriaceae and Rhodobacteraceae linea-
ges have similar metabolic breadth, likely facilitating their
expansion in response to disturbance. By contrast, relative
habitat specialists from the Desulfobacterales and Desulfo-
bulbales are distinguished by their capacity to the use the
abundant electron acceptor sulfate, but also their inability to
grow by aerobic respiration [89]. These bacteria possess some
metabolic flexibility, likely explaining why these orders were
detected in low levels even in most surface sediments and
oxygenated slurries; indeed, habitat generalism and metabolic
flexibility alike should be considered as continuous traits.
However, such obligate anaerobes are outcompeted by
facultative anaerobes under disturbed conditions. These
inferred differences were strongly supported by biogeo-
chemical assays showing that, whereas sulfate reduction is
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limited to sediments under prolonged anoxia, metabolic traits
associated with habitat generalists are active through sediment
zones. Further culture-dependent and culture-independent
work, however, is required to fully understand the meta-
bolic capabilities of permeable sediment bacteria and their
responses to environmental changes.

More broadly, these findings have consequences for
understanding the processes controlling co-existence of
habitat generalists and specialists. Current macroecological
theory suggests that the co-existence of generalists and
specialists can be understood via interactions between dis-
turbance, niche breadth, and dispersal ability, whereby
disturbance creates extinction-colonization events. As dis-
turbance increases, the habitat niches of specialists become
increasingly limited and disconnected. In this scenario, only
specialists with high dispersal abilities will be able to
colonize available niches and persist in the metacommunity
[85]. Our findings may be congruent with this model if it is
assumed that microbiota subject to porewater advection and
sediment mixing have an inherently high dispersal ability
due to the physical mixing of the environment. In our study,
specialist taxa never dominated real or simulated sediment
environments, but exhibited an increased competitive abil-
ity under conducive stable conditions. Such observations
are in line with classical /K selection theory [94, 95], in
which specialist taxa are traditionally associated with K-
selection and are predicted to dominate in stable environ-
ments due to an investment in competitive abilities. Similar
studies in environments where there is selection for dis-
persive traits, such as pelagic ocean microbial communities,
could be used to integrate dispersal ability into the under-
standing of generalist-specialist co-existence dynamics for
microbes. In turn, this provides further avenues to investi-
gate the congruence between classical ecological frame-
works and microbial communities [96].

These findings also have important implications for how
we conceive and model biogeochemical processes. Models
describing these processes can either take an organism-
centric approach or a systems perspective [97]. In the first
case, the presence or absence of a particular organism will
determine the process taking place and emphasis is placed
on modelling the growth of that organism. In the second
case, thermodynamics and physical conditions determine
the processes taking place. Biogeochemists typically use the
second approach to predict and model sediment processes
[46]. Under conditions of continual disturbance, we show
that habitat generalists dominate, and the energy conserva-
tion pathways that are used (particularly under anaerobic
conditions) will not be those predicted from thermo-
dynamics until habitat specialists dominate (such as sulfate
reduction). Under disturbed conditions, therefore, commu-
nity structure and the presence of habitat generalists (the

organism-centric view) becomes an important consideration
for predicting ecosystem processes. Consistent with this, it
has been shown that physicochemical variables are the
strongest predictors of microbially driven ecosystem pro-
cesses, but that microbial community structure can improve
these predictions in some cases [98]. Future studies should
incorporate disturbance as a co-variate when comparing the
efficacy of organism and system scale models (both statis-
tical and deterministic).

In summary, we conclude that habitat generalists thrive
in the disturbed environments of permeable sediments and
generally outcompete specialists. This reflects their greater
metabolic flexibility, particularly their capacity to shift
between electron acceptors during oxic-anoxic transitions.
Relative habitat specialists have narrower niches, but are
highly competitive under more stable conditions. These
findings are substantiated through community and metage-
nomic profiling, biogeochemical measurements, and
manipulative experiments. Thus, a long-standing ecological
theory explaining differential distribution patterns of mac-
roorganisms appears to extend to microorganisms and we
provide a mechanistic rationale for these observations.
Though further studies are required to extend these findings
beyond permeable sediments, it is probable that metabolic
flexibility is a key factor governing distributions of gen-
eralist and specialist taxa across ecosystems.
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