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Abstract
Context. Functional genomics studies have highlighted genomic regions with regulatory and evolutionary

significance. Such information independent of association analysis may benefit fine-mapping and genomic
selection of economically important traits. However, systematic evaluation of the use of functional information in
mapping, and genomic selection of cattle traits, is lacking. Also, single-nucleotide polymorphisms (SNPs) from the
high-density (HD) panel are known to tag informative variants, but the performance of genomic prediction using HD
SNPs together with variants supported by different functional genomics is unknown.

Aims. We selected six sets of functionally important variants and modelled each set together with HD SNPs in
Bayesian models to map and predict protein, fat and milk yield as well as mastitis, somatic cell count and temperament
of dairy cattle.

Methods. Two models were used, namely (1) BayesR, which includes priors of four distribution of variant effects,
and (2) BayesRC, which includes additional priors of different functional classes of variants. Bayesian models were
trained in three breeds of 28 000 cows of Holstein, Jersey and Australian Red and predicted into 2600 independent bulls.

Key results. Adding functionally important variants significantly increased the enrichment of genetic variance
explained for mapped variants, suggesting improved genome-wide mapping precision. Such improvement was
significantly higher when the same set of variants was modelled by BayesRC than by BayesR. Combining
functional variant sets with HD SNPs improves genomic prediction accuracy in the majority of the cases and such
improvement was more common and stronger for non-Holstein breeds and traits such as mastitis, somatic cell count and
temperament. In contrast, adding a large number of random sequence variants to HD SNPs reduces mapping precision
and has a worse or similar prediction accuracy, compared with using HD SNPs alone to map or predict. While BayesRC
tended to have better genomic prediction accuracy than did BayesR, the overall difference in prediction accuracy
between the two models was insignificant.

Conclusions. Our findings demonstrated the usefulness of functional data in genomic mapping and prediction.
Implications. We have highlighted the need for effective tools exploiting complex functional datasets to improve

genomic prediction.
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Introduction

Emerging evidence shows that genomic variants with causal
roles in biology can be used to improve genomic prediction of
complex traits. The biological function of genomic variants
provides information independent of genotype-trait associations
that are usually confoundedby linkage disequilibrium (LD). Such
independent information can be exploited to identify informative
variants. Once identified, informative variants can be used to
improve genomic prediction (Xiang et al. 2021).While the use of
functionaldata in improvinggenomicmappingandpredictionhas

been reported in humans (Amariuta et al. 2020; Weissbrod et al.
2020), using functional data in predicting the genetic merit of
animal traits has not been comprehensively examined. However,
there is evidence in cattle supporting the advantage of the use of
functional information in genomic mapping and prediction with
the linearmixedmodel (Fang et al. 2017a, 2017b; Liu et al. 2019;
Xiang et al. 2019; Xu et al. 2020).

The Functional Annotation of ANimal Genomes
(FAANG) consortium (Clark et al. 2020) provides many
types of sequencing data indicating the functionality of
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genome-wide sites (examples reviewed in Clark et al. 2020).
While these public datasets await exploitation, the structure
and information content of different functional datasets vary
significantly. For example, we recently showed that among
all analysed functional datasets, a set of 300 000+ sequence
variants within sites highly conserved across 100 vertebrate
species had the strongest enrichment with cattle trait
heritability (Xiang et al. 2019), which primarily influences
genomic prediction accuracy. Additionally, a few thousand
variants affecting the concentration of milk fat metabolites,
i.e. metabolic quantitative trait loci (mQTLs), also had
significantly higher variance than did single-nucleotide
polymorphisms (SNPs) in the 50 K panel for cattle traits.
Millions of variants that change gene-expression levels
(geQTLs) or RNA splicing (sQTLs) are also enriched with
complex-trait QTL (Li et al. 2016; Lopdell et al. 2017; Xiang
et al. 2018; Fink et al. 2020; Silva et al. 2020). However,
recent studies have shown that variants close to genes with
high or specific expression patterns have limited improvement
in prediction accuracy (de las Heras-Saldana et al. 2020; Fang
et al. 2020). Another common type of functional data are peaks
from ChIP-seq for histone modifications, which are enriched
with promoters and/or enhancers regulating gene activities
(Carey et al. 2009). Our work showed that hundreds of
thousands of variants under ChIP-seq peaks are enriched for
complex-trait QTL in cattle (Xiang et al. 2019; Prowse-
Wilkins et al. 2021). In addition, variants within the gene-
coding regions are expected to have a high impact on complex
traits. However, we and others previously found that coding-
related variants (~100 000) have limited contributions to cattle
trait heritability (Koufariotis et al. 2018; Xiang et al. 2019),
although their use in improving genomic prediction has not
been studied.

One way to assess the information content of functional
data is to compare variants prioritised by functional data with
SNPs from standard genotyping panels. We have previously
performed such assessment using the standard 50 K bovine
SNP chip and showed that functional information can improve
genomic prediction accuracy compared with the 50 K chip
SNPs (Xiang et al. 2021). However, denser panels such as the
high-density (HD) SNP chip containing ~700 000 SNPs across
the genome may be able to tag many functional elements via
LD, although it is not routinely used in animal genomic
evaluation. With the development of animal breeding, the
HD panel may be intensively used in the future genomic
evaluation. Therefore, it is of interest to know whether
functional information can provide any advantage in genomic
mapping and prediction when HD SNPs are used. Also, since
causal variants are expected to have similar phenotypic
effects across different breeds, we aim to compare the use of
functionally important variants in genomic prediction across
different breeds.

In the present study, we evaluate sequence-variant sets
prioritised by six types of functional and evolutionary data
in combination with the standard HD SNPs in genomic
mapping and prediction of six dairy cattle traits. We train
the prediction equations by using the BayesR method (Erbe
et al. 2012), which fits a mixture of four distributions of variant
effects, and by using the BayesRC method, which fits different

distributions for each functional class of variant classifications
(MacLeod et al. 2016). Genomic predictors were trained
using 28 000 cows that included three breeds, namely,
Holstein, Jersey and Australian Red. Genomic estimated
breeding values (gEBVs) were predicted and validated in
2500 Holstein, Jersey and Australian Red bulls. We
compare the results of mapping and genomic prediction
across the above-described scenarios, discuss these results
and provide suggestions for future studies.

Materials and methods

The phenotype data analysed in the present study were
collected by DataGene Australia (http://www.datagene.com.
au/) and no further live-animal experimentation was required
for our analyses. A set of 28 049 Australian cows was used as
the discovery population and a set of 2567 bulls was used as
the validation population. The bull phenotypes were obtained
as daughter trait deviations, that is, the average trait deviations
of a bull’s daughters pre-corrected for known fixed effects
by DataGene. The cow phenotypes were measured on
themselves. Note that these bulls and cows were not
included in the 44 000+ animals used to discover functional
variants (Xiang et al. 2019, 2020, 2021). We also checked the
pedigree to make sure that bulls used in the validation
population were not the sires of cows from the discovery
population. Cows in the discovery set included 24 305
Holstein, 2486 Jersey, and 1258 Australian Red. Bulls in
the validation datasets contained 2091 Holstein, 385 Jersey
and 91 Australian Red. Traits considered in the analysis
included protein yield, fat yield, milk yield, mastitis (Mas),
somatic cell count (Scc) and temperament (Temp).

The genotypes used in the study were imputed sequence
variants based on Run7 of the 1000-Bull Genomes Project
(Daetwyler et al. 2014; Hayes and Daetwyler 2018), based on
the ARS-UCD1.2 reference bovine genome (https://www.
ncbi.nlm.nih.gov/assembly/GCF_002263795.1/; Rosen et al.
2020). Variants with Minimac3 (Howie et al. 2012;
Fuchsberger et al. 2015) imputation accuracy R2 > 0.4 and
minor allele frequency of >0.005 in bulls and cows. Most bulls
were genotyped with a medium-density SNP array (50 K) or a
high-density SNP array and most cows were genotyped with a
low-density panel of ~6900 SNPs overlapping the standard-50
K panel (BovineSNP50 beadchip, Ilumina Inc.). The low-
density genotypes were first imputed to the Standard-50 K
panel and then all 50 K genotypes were imputed to the HD
panel using Fimpute v3 (Sargolzaei et al. 2014; Xiang et al.
2019). Then, all HD genotypes were imputed to sequence
using Minimac3 with Eagle (v2) to pre-phase genotypes
(Howie et al. 2012; Loh et al. 2016).

We aimed to test whether variant sets selected from
different functional and/or evolutionary information, in
addition to the standard HD SNP panel, can be useful for
genomic prediction. Therefore, we first included a baseline set,
which is 610 764 SNPs from the standard bovine HD panel.
There were six functional and/or evolutionary variant sets:
549 007 variants under multiple ChIP-seq peaks (Kern et al.
2021; Prowse-Wilkins et al. 2021; ChiPseq), 106 538 variants
annotated as related to coding activities by Ensembl Variant
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Effect Predictor (McLaren et al. 2016; Coding), 943 315
variants affecting RNA splicing sQTLs from four cattle
tissues (Chamberlain et al. 2018; Xiang et al. 2018;
Daetwyler et al. 2019; sQTL), 65 394 finely mapped
variants with pleiotropic effects genome-wide (Xiang et al.
2021; Finemap80k), 4871 variants affecting milk fat
metabolite mQTLs (Xiang et al. 2019; mQTL) and 317 279
conserved sites across 100 vertebrates (Xiang et al. 2019;
Cons100w). Note that some of these functional variant sets
were initially determined on the UMD3.1 genome and were
from different cattle populations. These sets were lifted over
from the older genome to ARS-UCD1.2 and filtered with
imputation accuracy and minor allele frequency in the new
cattle populations.

The model training of the above-described data used
BayesR (Erbe et al. 2012) and BayesRC (MacLeod et al.
2016), which are now implemented via BayesR3, with
improved efficiency using blocks. BayesR jointly models all
variants together, with different effect distribution priors.
BayesRC follows the same approach but, in addition,
allows a C prior which models classes of variants. Another
aim is to see whether there are differences in genomic
prediction accuracy by modelling the same variants by
using BayesR and BayesRC. To aid this comparison, we
combined each functional variant set with the HD variants,
which led to the following six combined variant sets: (1) ChIP-
seq peak-tagged variants + HD SNPs (ChiPseq_HD), (2)
coding variants + HD variants (Coding_HD), (3) sQTL
variants + HD SNPs (sQTL_HD), (4) finely mapped variants +
HD SNPs (‘Finemap80k_HD’), (5) mQTL variants + HD SNPs
(mQTL_HD) and (6) conserved variants + HD SNPs
(Cons100w_HD). The average minor allele frequency of these
sets of variants was 0.22 (�0.00014) for ChiPseq_HD, 0.25
(�0.0002) for Coding_HD, 0.24 (�0.0001) for sQTL_HD,
0.27 (�0.0002) for Finemap80k_HD, 0.27 (�0.0002) for
mQTL_HD, 0.23 (�0.0002) for Cons100w_HD, and 0.27
(�0.0002) for HD alone.

In single-trait BayesR, we directly model these six variant
sets one set at a time. To create a reference baseline, we also
used single-trait BayesR to fit the HD variant set (HD) alone.
In single-trait BayesRC, for each of the same six combined
variant sets, we specified the following two different variant
classes: (1) variants appeared in the functional and/or
evolutionary set and (2) variants appeared only in the HD
variant set.

Both BayesR and BayesRC modelled variant effects as a
mixture distribution of four normal distributions, including a
null distribution, Nð0; 0:0s2

gÞ, and three others, namely,
Nð0; 0:0001s2

gÞ, Nð0; 0:001s2
gÞand Nð0; 0:01s2

gÞ, where
s2

g is the additive genetic variance for the trait. The
starting value of s2

g for each trait was estimated using
GREML implemented in the MTG2 (Lee and Van der Werf
2016), with a single genomic relationship matrix made of all
sequence variants. The statistical model used in the single-trait
BayesR and BayesRC was

y ¼ Wvþ Xbþ e ð1Þ
where y is a vector of phenotypic records, W is the design
matrix of marker genotypes, centred and standardised to have a

unit variance, v is the vector of variant effects, distributed as a
mixture of the four distributions as described above; X is the
design matrix allocating phenotypes to fixed effects; b is the
vector of fixed effects, including breeds; e is vector of residual
errors. As a result, the effect b for each variant jointly
estimated with other variants was obtained for further analysis.

BayesRC used the same linear model as did BayesR. The C
component of BayesRC had two categories c(c = 2) as
described above. Within each category, c, an uninformative
Dirichlet prior (a) was used for the proportion of effects in
each of the four normal distributions of variant effects: Pc~Dir
(ac), where ac = [1,1,1,1, ]. ac was updated for each iteration
within each category: Pc~Dir(ac + bc), where bc was the
current number of variants in each of the four distributions
within category c, as estimated from the data.

Two metrics were evaluated for mapping results. One is the
mixing proportion, i.e. the proportion of variants with small
effect N 0; 0:0001s2

g

� �
, medium effect N 0; 0:001s2

g

� �
and

large effect N 0; 0:01s2
g

� �
for each BayesRC run across the

functional variant class and theHDSNPclass. Thismetric shows
the information content of the two classes. The other metric was
the percentage of 50 kb segments needed by themodel to explain
50% of the cumulative sum of posterior probability (PP), which
indicated the mapping precision. For each variant, PP was
calculated as 1 – P0, where P0 is the probability for the
variant to be within the zero-effect distribution N 0; 0:0s2

g

� �
.

The sumofPPacross all variants estimates thenumberofvariants
causing genetic variance in the trait. The smaller the amount of
genomic segments needed to explain a cumulative sumof PP, the
higher the mapping precision. We also compared genomic
prediction accuracy, defined as the Pearson correlation r
between gEBV and phenotype in the validation populations.
gEBV of the validation animals was calculated as

gEBV ¼ Zŝ ð2Þ
where Z is a matrix of the standardisd genotypes of animals in
the validation set, and ŝ is the vector of variant effects from the
training model. In addition, to test whether adding a large
number of random variants to the HD panel can increase
mapping precision and prediction accuracy, a random set
of 944 616 variants matching the size of the largest set of
functional variants (sQTL, 943 315 variants) was also selected
and added to the HD panel (Random_HD). This random set
was analysed for BayesR, mapping precision and prediction
accuracy in the same fashion as were other variant sets
described above.

Results

Information content in the functional variant sets

Averaged across mixing proportions from single-trait
BayesRC, we show that compared with HD SNPs, the
finely mapped variants had consistently higher enrichment,
with variants showing small, medium and large effects
(Fig. 1). Variants within coding regions showed higher
enrichment than did HD SNPs for large- and medium-effect
variants. Interestingly, mQTLs, which were variants affecting
the concentration of milk-fat metabolites (Benedet et al. 2019;
Xiang et al. 2019), had lower enrichment of small-effect
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variants than did HD SNPs, but had higher enrichment of
medium- and large-effect variants than did HD SNPs.

Mapping precision

Across traits, we have shown that all models using functional
variants, except mQTL, needed a smaller amount of genome-
wide segments to explain 50% of the cumulative sum of PP,
than did HD SNPs (Fig. 2). This means that when adding to the
HD SNPs, most functional variants increased mapping
precision. In contrast, adding randomly selected 944 000
variants to HD SNPs increased the amount of genome-wide
segments (by 2.82%� 0.13%) across scenarios to explain 50%
of the cumulative sum of PP, compared with using only HD
SNPs. This suggested that adding random variants to HD
decreases mapping precision. It is worth noting that when
using 106 538 coding variants and 65 394 finely mapped
variants, BayesRC provided a further increase in mapping
precision over HD SNPs from BayesR. In contrast, when using
549 007 ChIP-seq-tagged variants and 943 315 sQTL variants,
BayesRC had less increase in mapping precision over HD
SNPs than did BayesR. This could be due to the reduced
signal-to-noise ratio in large variant sets of ChIP-seq-tagged
variants and sQTLs.

Genomic prediction of traits

In total, we evaluated the genomic prediction accuracy in 216
scenarios, across six single-trait analysis, six functional
categories, four breeds in the validation population, and two
Bayesian methods. Out of these 216 scenarios, 142 (66%)
times, HD SNPs combined with functional variants increased
genomic prediction accuracy, compared with the prediction
using only the HD SNPs (Figs 3, 4). In 51 of 216 times (24%),
the increase in prediction accuracy ( rfunctional � rHD

� �
·100%)

was greater than 1%. These 51 cases were almost all accounted
for by Jersey (15/51) and Australian Red (34/51), with only
two cases in Holstein cattle. In 29 analyses (14%), the increase
in prediction accuracy over HD SNPs was greater than 2%. All
these 29 cases were for non-Holstein breeds. Among tested
functional sets, genomic prediction accuracy was the best
when the HD variants were combined with conserved
variants (Cons100w_HD). In contrast, averaged across
tested scenarios, adding randomly selected 944 000 variants
to HD had a slightly worse or no improvement in prediction
accuracy (–0.5% � 0.49%) compared with using only the HD
panel to predict.

As shown in Fig. 3, the genomic prediction accuracy of
milk production traits using HD SNPs in Holstein cattle was

Functional variants HD SNPs 
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Fig. 1. The proportion of small-effect, medium-effect and large-effect variants in functional variants and HD SNPs.
The means and standard error bars are averaged across six traits. ChiPseq_HD, ChIP-seq peaks + HD SNPs.
Coding_HD, coding variants + HD SNPs. mQTL_HD, mQTLs + HD SNPs. sQTL_HD, sQTL variants + HD
SNPs. Cons100w_HD, conserved variants across 100 vertebrates + HD SNPs. Finemap80k_HD, finely mapped
variants + HD SNPs.

Functional genomic prediction of cattle traits Animal Production Science 1821



already high (~0.7) and the increases in accuracy from
functional variants were very small. However, larger
increases were evident in Jersey and Australian Red. For
milk production traits, 10 times of 18, the genomic
prediction accuracy was the most improved by conserved
variants and coding variants combined with HD SNPs,
followed by finely mapped variants combined with HD
SNPs (4/18), ChIP-seq-tagged variants (3/18) combined
with HD SNPs. sQTL combined with HD variants had the
highest accuracy when predicting protein yield in Holstein.

As shown in Fig. 4, the greatest increases in prediction
accuracy for traits Mas, Scc and Temp were again seen in
non-Holstein breeds. Chip-seq peak-tagged variants combined
with HD SNPs (5/18 times) and conserved variants combined
with HD SNPs (5/18 times) had the best performances in
predicting Mas, Scc and Temp.

Across all scenarios, we did not see a clear distinction in
prediction accuracy between BayesR and BayesRC in the
current study. There may be some tendencies where
BayesRC had a higher accuracy than did BayesR for Scc,
Mas and Temp. However, none of these differences was
significant.

Discussion

Our systematic evaluations showed that functional information
can improve genomic mapping and prediction of cattle traits,
even when HD SNPs are used, although there were times
where HD SNPs alone still had robust performances. It is
usually the less represented breeds, such as Jersey and
Australian Red, that benefit the most from the
improvements using functional data. This suggests that
functional information can well complement HD SNPs,
especially in breeds with smaller training sets. Adding
randomly selected variants to the HD panel reduced
mapping precision and provided no improvement in
prediction accuracy, compared with using only the HD
panel. This supports that the the benefit provided via
selecting variants based on functional importance cannot be
achieved simply by adding more sequence variants.

We showed that the biological information content, which
can be used to benefit mapping and/or prediction, is different
among functional datasets. One of the top-performing
functional variant sets in mapping large-effect variants was
the finely mapped 80 000 variants (Xiang et al. 2021). This
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result was somewhat expected as these variants combined
information from multiple functional datasets and also
included variants affecting multiple dairy cattle traits. These
finely mapped 80 000 variants outperformed the SNPs from the
50 K panel in previous evaluations (Xiang et al. 2021).
Furthermore, finely mapped 80 000 variants showed
enhanced enrichment of large-effect variants and
improvement in mapping precision when modelled with
BayesRC. This suggests that this much more refined set of
variants (chosen because they were more relevant to the traits
of interest) is likely to be more enriched for variants that are
more strongly associated with the trait or are causal. BayesRC
would only outperform BayesR when there is strong
enrichment for QTL in at least one of the defined classes.
The other functional groups tested are not trait specific (except
mQTL for fat), and so are likely to be less enriched than each
trait.

Previous results showed that coding-related variants did not
explain a significant amount of heritability (Koufariotis et al.
2018; Xiang et al. 2019). In the current study, coding-related
variants combined with HD SNPs showed enhanced
enrichment with large-effect variants and improvement in
mapping precision. This implies that variants affecting
protein coding may not necessarily be good at capturing all
the genetic variance of polygenic traits. The small set of
mQTLs, derived from milk fat, showed strong enrichment
of large-effect variants but did not show improvement in
mapping precision over HD SNPs. This set of variants
needs future investigations.

Unlike the results in mapping large-effect variants, for
genomic prediction, the top-performing variant set is the
conserved variants combined with HD SNPs. The advantage
of adding conserved variants to HD SNPs was particularly
evident when predicting Scc, Mas and Temp of non-Holstein
breeds (Fig. 4). In fact, in these scenarios, HD SNPs alone did
not perform so well and this leaves more room for functional
variants to improve the prediction accuracy. Another variant
set that performed well in genomic prediction is the set of
ChIP-seq peak-tagged variants. Again, such an advantage was
the most evident when predicting Scc, Mas and Temp in non-
Holstein breeds. Interestingly, ChIP-seq variants combined
with HD SNPs appear to show some particular advantages
in predicting Temp. There may be some large-effect variants
for Temp captured by ChIP-seq peaks.

We found that sQTL variants combined with HD SNPs had
variable performances in mapping and prediction. This set did
not show good performance in detecting enrichment of
informative variants, but, overall, significantly increased
mapping precision over HD SNPs. In genomic prediction,
its performance was not impressive. This is somewhat
different from previous studies, which showed that sQTLs
are enriched with complex-trait QTLs (Li et al. 2016; Xiang
et al. 2018, 2019). One explanation is that sQTLs or any other
eQTLs were not trait specific and are plagued by LD, which
is particularly strong for Holstein breeds that dominated the
discovery population. Another explanation is that the sample
size with which we used to discover sQTLs is still small
(N = ~120) and we should re-discover and re-evaluate this set
of variants when there is a larger sample size.

As mentioned earlier, BayesRC would outperform BayesR
only when there is strong enrichment for QTL in at least one of
the defined classes. It would also require functional
information to be trait-specific. We saw advantages in
BayesRC over BayesR in detecting enrichment with large-
effect variants by using finely mapped variants, coding
variants and mQTLs. BayesRC also had advantages over
BayesR in mapping precision when used with finely
mapped variants and coding variants. While these functional
data are expected to be informative, they did not provide
consistent advantages for BayesRC to predict traits over
BayesR. Across all tested cases, we did not see strong
advantages in BayesRC over BayesR in genomic prediction
(Fig. 4). BayesRC may have some tendencies to better predict
Scc, Mas and Temp than does BayesR. However, the
differences were not statistically significant. The reason
behind these observations may be complex.

We know that not all variants in the functional datasets are
informative and many sequence variants are in strong
LD. BayesR and BayesRC both have limitations where
variants are in very strong LD. In addition, if most causal
variants are quite well tagged by HD variants and if validation
animals are highly related to the discovery animals, the room
to improve prediction accuracy is limited. Also, there may be
less common variants that are not tagged by HD SNPs, but
these variants are not well imputed. Further, the optimal tissues
and/or experimental conditions to generate functional data
that can be better used for improving genomic prediction
are usually not known. Therefore, the marriage between
functional data and genomic prediction is still at its very
early stage.

We therefore suggest two future research directions to
improve on the current results. The first is to increase the
information content in functional datasets. This can be
achieved by either increasing the sample size (biological
replicates, tissues and experimental conditions) of functional
datasets or by developing better bioinformatic tools to increase
the signal-to-noise ratio in functional datasets before they can
be processed by genomic prediction models. The second
direction is to improve the current genomic prediction
models. Because the type and complexity of functional data
will keep growing, it will be necessary to develop more
sophisticated and flexible methods to better extract
information from complex functional data. For example, an
extended BayesRC that can model quantitative biological
priors, instead of qualitative classes, will be needed.
Similarly, in the future we will use larger sample sizes and
diverse breeds in the training model to reduce LD between
sequence variants. This will also increase the need for
Bayesian methods to be more efficient.

In conclusion, our evaluation of Bayesian genomic
prediction using functional and evolutionary information
with HD SNPs provides novel insights into this emerging
area. We show that functional datasets of conserved variants,
coding variants, ChIP-seq peaks and previously finely mapped
variants can improve genomic mapping and/or genomic
prediction, even when HD SNPs are used. Such
improvements usually benefit non-Holstein breeds, given
the current available functional datasets. We found that by
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using informative biological priors, BayesRC has significant
advantages over BayesR in detecting enrichment with large-
effect variants and in mapping precision. However, the
advantage of BayesRC over BayesR for genomic prediction
was not consistent. Our results highlighted the need to develop
better tools to extract information from complex functional
datasets, which will benefit genomic prediction in large
datasets. Fusing functional genomics with genomic selection
presents great opportunities to develop new technologies that
improve animal breeding and genetics.
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