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ABSTRACT

The dairy industry has been scrutinized for the en-
vironmental impact associated with rearing and main-
taining cattle for dairy production. There are 3 pos-
sible opportunities to reduce emissions through genetic 
selection: (1) a direct methane trait, (2) a reduction in 
replacements, and (3) an increase in productivity. Our 
aim was to estimate the independent effects of traits 
in the Australian National Breeding Objective on the 
gross methane production and methane intensity (EI) 
of the Australian dairy herd of average genetic poten-
tial. Based on similar published research, the traits 
determined to have an effect on emissions include pro-
duction, fertility, survival, health, and feed efficiency. 
The independent effect of each trait on the gross emis-
sions produced per animal due to genetic improvement 
and change in EI due to genetic improvement (intensity 
value, IV) were estimated and compared. Based on an 
average Australian dairy herd, the gross emissions emit-
ted per cow per year were 4,297.86 kg of carbon dioxide 
equivalents (CO2-eq). The annual product output, ex-
pressed in protein equivalents (protein-eq), and EI per 
cow were 339.39 kg of protein-eq and 12.67 kg of CO2-
eq/kg of protein-eq, respectively. Of the traits included 
in the National Breeding Objective, genetic progress 
in survival and feed saved were consistently shown to 
result in a favorable environmental impact. Conversely, 
production traits had an unfavorable environmental 
impact when considering gross emissions, and favorable 
when considering EI. Fertility had minimal impact as 
its effects were primarily accounted for through sur-
vival. Mastitis resistance only affected IV coefficients 
and to a very limited extent. These coefficients may be 
used in selection indexes to apply emphasis on traits 
based on their environmental impact, as well as applied 
by governments and stakeholders to track trends in 
industry emissions. Although initiatives are underway 

to develop breeding values to reduce methane by com-
bining small methane data sets internationally, alterna-
tive options to reduce emissions by utilizing selection 
indexes should be further explored.
Key words: sustainability, environmental impact, 
methane, emission intensity, gross emissions

INTRODUCTION

In 2016, Australia committed to reduce greenhouse 
gas (GHG) emissions by 26 to 28% of 2005 levels by 
2030 (UNFCCC, 2016). This target relies largely on a 
decrease in the 3 major GHG, carbon dioxide (CO2), 
methane (CH4), and nitrous oxide, which account for 
81%, 10%, and 7% of the global GHG inventory, respec-
tively (EPA, 2020). For the Australian dairy sector, 
the primary GHG targeted to reduce its environmental 
impact is CH4 as it accounts for 57% of the industry’s 
emissions (UNFCCC, 2018).

Methane is associated with DMI as 90% is generated 
as a by-product of feed fermentation, with 6% to 11% 
of the energy in feed being lost to the production of 
CH4 (Appuhamy et al., 2016). The genetic correlation 
between CH4 and DMI has been previously estimated 
between 0.3 and 0.6 (Difford et al., 2020; Richardson 
et al., 2021b; Manzanilla-Pech et al., 2021), suggesting 
that the genetic architecture of these traits is similar. 
However, the relationship between the general selection 
criteria for methane emissions and feed efficiency, of 
which CH4 and DMI are component traits, is contested 
in dairy cattle (Løvendahl et al., 2018; González-Recio 
et al., 2020). Some studies have shown that CH4 per unit 
of feed decreases with increasing levels of DMI (Jentsch 
et al., 2007) and that improving feed efficiency causes a 
decrease in CH4 (Basarab et al., 2013). However, Flay 
et al. (2019) reported no decrease in daily CH4 with 
increasing feed efficiency, but did show increases in CH4 
per unit feed. This indicates that mitigation strategies 
focused on solely reducing CH4 emission through ge-
netic improvement in feed efficiency traits may not be 
satisfactory in lowering dairy cattle emissions, and that 
additional methods are required.
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Large-scale research initiatives (such as the Efficient 
Dairy Genome Project, 2016) are focused on devel-
oping genetic strategies to mitigate dairy cattle CH4 
emissions; however, EBV for CH4 are not yet widely 
available. Measuring CH4 is expensive and labor inten-
sive, leading to small data sets. Additionally, recording 
protocols vary between studies, limiting the ability to 
combine data sets (nationally or internationally), as 
has been done successfully for traits with similar is-
sues, such as DMI (de Haas et al., 2017; Hristov et al., 
2018). Therefore, until reliable CH4 EBV are ready for 
industry application, other mitigation options should 
be explored. Many traits, direct and proxy, have been 
suggested to decrease CH4. However, Wall et al. (2010) 
suggested that the environmental impact of livestock 
may also be decreased by improving individual animal 
productivity and efficiency, and by reducing overall 
waste at the herd level.

Selection indexes are traditionally comprised of 
traits with direct economic benefit to the producer, 
including production, fertility, and health. Therefore, a 
value must be assigned to CH4 to give it a comparative 
weight in a selection index. In the case of CH4, defining 
an economic value is challenging as only marginal value 
directly related to improve feed efficiency exist, and 
many have recorded the economic value as zero (FAO, 
2013). In regions where a carbon tax has been placed 
on agriculture, the market value of carbon may be used. 
However, no such tax currently exists in Australia, so 
this approach cannot be applied to estimate a direct 
value for the Australian dairy industry.

Amer et al. (2018) developed a methodology of moni-
toring and estimating the independent effect that index 
traits have on the environment for any GHG or produc-
tion system. This method has since been adapted to 
investigate the environmental impact of the dairy and 
beef industry, and to estimate possible environmental 
index weights in beef and dairy systems internationally 
(Quinton et al., 2018; Zhang et al., 2019; Richardson et 
al., 2021a).

The aim of this research was to calculate coefficients 
that describe the change in CH4 attributed to each index 
trait in the Australian dairy selection index described 
in gross methane and methane intensity, which may be 
applied as weights in a selection index to account for 
the environmental impact of traits.

MATERIALS AND METHODS

The method used in this study was based on the 
approach used by Amer et al. (2018) and adapted to 
calculate the independent effects of traits in the Aus-
tralian National Breeding Objective (NBO), on the 
gross methane production and methane intensity of an 

Australian dairy herd of average genetic merit. Briefly, 
this method estimates the change in total emissions 
and product output caused by a 1-unit change in each 
index trait, resulting from either a direct emissions 
trait (methane yield), changes in herd structure (fewer 
replacements), or the dilution effect of higher yields 
(milk production) and proliferation (more offspring/
dam). A primary assumption of this study is that the 
CH4 emitted is directly proportional to the total feed 
consumed, as approximately 90% of the CH4 emitted 
by cattle is produced as a by-product of feed fermenta-
tion and released as enteric CH4 (Ellis et al., 2008).

Average Australian Herd

Parameters in this study (Table 1) were assumed to 
be representative of the average Australian dairy herd, 
consisting of cows with an average 305-d production of 
6,861.00 kg milk per cow at 4.00% fat, 3.30% protein 
and 4.80% lactose (DataGene Ltd., 2017). The average 
feed required per lactating cow was taken as a weighted 
average of the feed energy required per parity (7,207.58 
kg of DM; Méndez et al., 2020). The estimated total 
feed required by a growing heifer (3,526.75 kg of DM) 
was determined based on the feed required to reach 
90% of adult BW (Williams et al., 2011), the average of 
which was estimated to be 600 kg (Byrne et al., 2016). 
The energy contents of lactating cow and replacement 
heifer diets were assumed to be 11.91 MJ ME/kg of 
DM and 9.27 MJ ME/kg of DM, respectively (Williams 
et al., 2011; Pryce et al., 2015).

Richardson et al.: METHANE COEFFICIENTS FOR AUSTRALIAN DAIRY CATTLE

Table 1. Constants, conversion factors, and industry parameters 
based on an Australian herd of average genetic merit used to estimate 
base emissions, product output, changes in gross emissions due to each 
trait, and changes in emission intensity

Parameter Value

Production1  
 Milk yield, kg 6,861.00
 Fat, % 4.00
 Protein, % 3.30
 Lactose, % 4.80
Feed required2  
 Heifer, kg of DM 3,526.76
 Cow, kg of DM 7,207.58
BW,2 kg 600.00
Herd proportion1  
 First parity, % 27.00
 Second parity, % 22.00
 Third parity, % 51.00
CH4 yield,3 kg/kg of DMI 19.00
CH4 global warming potential4 28.00
1Values obtained from DataGene Ltd. (2017).
2Williams et al. (2011) and Pryce et al. (2015).
3Richardson et al. (2021b).
4UNFCCC (2016).



Journal of Dairy Science Vol. 104 No. 10, 2021

10981

Traits Under Investigation

The Australian national selection index, the Bal-
anced Performance Index (BPI), was released in 2016. 
Details of the index development are given by Byrne et 
al. (2016). The policy in Australia is for the national 
selection index to be updated periodically (every 5 yr). 
Based on the work of Zhang et al. (2019) and Bell et al. 
(2013), the traits previously determined to have an im-
pact on emissions are production traits (milk, fat, and 
protein), fertility, survival, health, and feed efficiency.

Methane Coefficient for Carbon Dioxide Equivalents

The methane coefficient, defined as the environmen-
tal impact of CH4 per unit of feed, was derived from 
the Australian methane production to DMI ratio previ-
ously calculated (19.00 g of CH4/kg of DM; Richardson 
et al. 2021b) and from the global warming potential 
(GWP) of CH4 (28.00 kg of CH4/kg of CO2-eq; Ger-
ber et al., 2013). The methane coefficient, expressed in 
CO2 equivalents (CO2e) was determined to be 0.532 
kg of CO2-eq/kg of DM (19.0 g of CH4/kg of DM × 
28 g of CH4/g of CO2-eq) The relationship between 
methane production and DMI was previously reported 
to be linear (Richardson et al., 2019). Methane emis-
sions coefficients were calculated on the basis of gross 
CH4 per animal and CH4 intensity per unit of milk 
protein equivalents (protein-eq). Both of these CH4 
trait definitions represent an important goal and pos-
sible future breeding objective for CH4. Defining a CH4 
breeding objective is specific to the reduction goals of 
each system and possible considerations for each CH4 
definition are further described in the discussion.

Protein Conversion Factor of Product Classes

In line with previously published studies (Zhang et 
al., 2019; Richardson et al., 2021a), the product classes 
considered in this study are milk and its components 
(fat and protein). Similar to the concept that GWP 
is used to convert methane into CO2 equivalents, 
protein-eq conversion factors, kj, convert milk and its 
component traits into a single output, protein-eq. This 
allows for multiple product classes to be considered and 
evaluated, while maintaining a single product class for 
comparison. Protein-equivalent conversion factors were 
based on component values of $6.76, $2.08, and −$0.11, 
for protein, fat, and milk, respectively (Byrne et al., 
2016). The resulting conversion factors were determined 
to be 1.00, 0.31, and −0.02 for protein, fat, and milk, 
respectively. The protein-eq value for milk volume is 
constituted by the milk volume percentage of lactose 

(4.8%) to avoid double counting the value of milk fat 
and milk protein, when milk volume is increased.

Gross Methane of the Average Dairy System

Yearly gross CH4 emissions produced by an average 
Australian dairy breeding cow, before genetic gain, 
were estimated using the following equation:

 E n F Y
i

c
i i i=

=∑ 1
α ,  [1]

where E is the total gross CH4 emitted before genetic 
change per breeding cow across c classes (replacement 
heifers and cows), ni is the number of animals in a 
given stock class i per breeding female in the average 
Australian dairy herd, α is the methane carbon dioxide 
equivalent coefficient per kg of DMI (0.532 kg of CO2/
kg of DM), Fi is the amount of feed (in kg of DM) per 
animal of the stock class i, and Yi is a binary indica-
tor variable that takes a value of 1 or 0 depending on 
whether the class i is considered in the total definition 
of CH4 emissions, respectively. In this case, the animal 
classes considered were dairy cows and replacement 
heifers as male calves have marginal value in the Aus-
tralian dairy industry.

System Gross Emissions

Table 1 summarizes the parameters of an average 
Australian dairy herd, which were used to estimate 
E. The total gross emissions per cow, considering the 
average Australian dairy herd and only methane GHG 
emissions, is calculated as an aggregate of the emissions 
produced by the cow and the emissions produced by 
the replacement animals required on average per lac-
tating cow to maintain the milking herd. The average 
herd replacement rate was defined as the proportion of 
first parity animals in the herd, which in Australia is 
currently approximately 27% (E. Ooi, Bundoora, VIC, 
Australia, personal communication). The feed require-
ment for each stock class was based on previous studies 
as described above (Williams et al., 2011; Pryce et al., 
2015).

Gross Emission Per Unit Change in Trait

The independent effect of each trait on the gross 
emissions produced per animal due to genetic improve-
ment (GV) can be described by the first derivative of 
the above equation, with respect to a 1-unit genetic 
improvement in each trait, such that

Richardson et al.: METHANE COEFFICIENTS FOR AUSTRALIAN DAIRY CATTLE
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∂

n g
g
i  is the change in number of animals as a 

function of a 1-unit change in genetic trait g, 
∂ ( )
∂

F g
g
i  is 

the change in feed intake (kg of DM) as a function of a 
1-unit change in g, and α, ni, Fi, and Yi are as described 
above.

Change in Gross Emission Due to Genetics

The emissions generated by a 1-unit increase in pro-
duction traits (milk volume, fat, and protein) are as-
sumed to be directly proportional to the feed required 
to increase each production trait by 1 unit. For fat and 
protein, the emissions generated were calculated as the 
CH4 associated with the additional feed intake required 
(Table 2) to support an additional 1 kg of fat (6.00 
kg of DM × 0.532 kg of CO2e/kg of DM = 3.19 kg of 
CO2e) or protein (3.70 kg of DM × 0.532 kg of CO2e/
kg of DM = 1.97 kg of CO2e). When considering the 
total feed energy required for a 1-unit increase in milk 
production, only the feed required to support the ad-
ditional lactose production was considered. The basis 
of this analysis assumes that the trait under investiga-
tion changes 1 unit, whereas all other traits are held 
constant. By accounting for milk production through 
the fluid (or lactose) portion of milk, we capture the 
independent effect of each production trait and avoid 
double counting the effects of fat and protein, as milk 
volume is osmotically driven by lactose. Therefore, the 

emissions generated by a 1-unit increase in milk volume 
were 2.60 kg of DM × 0.532 kg of CO2e/kg of DM × 
4.80% lactose = 0.07 kg of CO2e.

Survival has a dual effect on CH4 emissions. Improve-
ments in survival change herd structure, as higher sur-
vival rates result in fewer replacements being required 
to maintain the milking herd. Therefore, increased sur-
vival rates reduce the feed requirements and emissions 
associated with rearing replacements. However, lower-
ing in the replacement rates will in turn increase the 
average age of the herd and the feed energy required 
for milking, as later parity cows require more feed to 
sustain a higher production level than the first parity 
counterparts (Haile-Mariam et al., 2003). The expected 
change in replacement rate due to a 1% increase in 
survival was modeled in a base herd with an average 
replacement rate of 27% (E. Ooi, Bundoora, VIC, Aus-
tralia, personal communication) and compared with 
a herd where the survival rate was improved by 1%, 
using methods described in Zhang et al. (2019). The 
change in replacement rate per unit increase in survival 
was estimated as −0.0069 (Table 3) with the associated 
emissions of −24.62 kg of CO2e (−0.0069 × 3,526.76 kg 
of DM per replacement × 0.532 CO2e/kg of DM). The 
change in feed required per unit change in survival was 
modeled (Zhang et al., 2019) as the difference in feed 
per day required to sustain the increased milk produc-
tion of a herd with 1% improved survival. The emis-
sions associated with this increase in an average herd 
age was calculated as 8.55 kg of DM additional feed 
required × 0.532 CO2e/kg of DM = 4.55 kg of CO2e.

Much of the change in CH4 due to fertility is directly 
related to survival, as poor fertility status is a major 
reason for culling (Workie et al., 2019). The increased 
survival rates generally observed with improved herd 
fertility are assumed to be largely captured by the 
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Table 2. Trait-specific effects of feed intake per stock class, number of animals in the stock class, and average 
feed energy produced per day

Item

∂

∂

n g
g
i ( )

1

 

∂

∂

F g
g
i ( )

2

Replacement Cow Replacement Cow

Milk protein, kg     3.70
Milk fat, kg     6.00
Milk yield, L     0.066
Survival, % −0.0069    8.55
Fertility, %     6.08
Feed saved, kg     −1.00
Mastitis resistance, %     0.00

1
∂

∂

n g
g
i ( )

 is the change in number of animals per unit change in each trait.

2
∂

∂

F g
g
i ( )

 is the change in the kg of feed required per unit change in each trait.
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survival EBV. However, fertility also has a direct ef-
fect on emissions. In Australia, approximately 35% of 
herds practice seasonal calving (Byrne et al., 2016), 
a system that is defined by a clearly defined mating 
season, which results in large numbers of cows calving 
in a short period of time to match peak herd energy 
requirements with maximum pasture availability. In 
this system, improved fertility results in cows calving 
earlier in the season and therefore having a longer lac-
tation than cows that calve later. This in turn results 
in a higher feed requirement and higher emissions. The 
emissions produced due to a change in fertility were 
calculated as the additional feed required to maintain 
milk production during the extended lactation, where 
the additional production days associated with a 1% 
increase in fertility was modeled as 0.9985 d (Zhang et 
al., 2019). Therefore, the emissions associated with a 
1-unit change in fertility are 0.9985 d × 17.37 kg of DM 
× 35% seasonal calving herds × 0.532 kg of CO2e/kg of 
DM = 3.24 kg of CO2e.

Feed saved is the Australian feed efficiency trait 
that consists of a lifetime residual feed intake, genomic 
EBV, and BW EBV (Pryce et al., 2015). Feed saved 
is calculated by subtracting the animal’s residual feed 
intake from the feed required to maintain 1 kg of extra 
BW and expressed so that a larger value represents a 
more efficient animals due to the lower maintenance 
costs of lesser-weight cows. Animals that are either not 
Holstein or not genotyped have their feed saved EBV 
approximated by BW only. The emissions associated 
with a 1-unit change in feed saved is the emissions gen-
erated by the 1-unit difference in feed intake (1 kg of 
DM × 0.532 kg of CO2-eq/kg of DM).

It is expected that a direct CH4 trait will become 
available in the future (Manzanilla-Pech et al., 2021; 
Richardson et al., 2021b). In Australia, a residual 
methane trait that corrects for production and intake 
has been developed (Richardson et al., 2021b). The 
emissions associated with a 1-unit increase in a residual 
methane trait is equivalent to the CO2e produced by a 
1-unit increase in CH4 (1 kg of methane × 28 GWP = 

28 kg of CO2e), assuming that the trait is defined as a 
1-kg decrease in residual methane per lactation.

Emission Intensity of the Average Dairy System

The per cow environmental impact can also be ex-
pressed through emissions intensity, which is defined as 
the total gross emissions generated, E, divided by the 
total number of product output equivalents per cow 
(M). In this scenario, product outputs are expressed in 
protein-eq and all other product classes are converted 
to protein-eq based on value ratios. Total product out-
put, in protein-eq, before genetic change was calculated 
as follows:

 M k n m X
j

p
j i

c
ij ij ij=

= =∑ ∑ ,
1 1

 [3]

where M is the total product output, expressed in pro-
tein-eq, produced per breeding cow across all product 
classes, p, included in the product definition objective, 
before genetic change, nij is the number of animals 
per breeding female (specific to both stock class i and 
product type j), mij is the product output per animal in 
product type j, Xij is the indicator variable that takes 
a value of either 1 or 0 depending on whether type j 
should be considered in the total definition of product 
output, and kj is the protein equivalent conversion fac-
tor. Therefore, the emission intensity (EI) per animal 
product, before genetic change, is

 EI E
M
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Emission Intensity Per Unit Change in Trait

The independent effect of each trait on EI due to 
genetic improvement can be determined using methods 
adapted from Amer et al. (2018). By taking the first 
derivative of Equation 4 with respect to a 1-unit ge-
netic improvement of each trait, the change in EI due 
to a unit change in each trait, termed intensity value 
(IV), is described as

 IV
M
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Table 3. Genetic trends of index traits with an effect on dairy 
industry emissions

Trait 5-yr annual genetic trend1

Milk protein, kg 6.5
Milk fat, kg 9.25
Milk volume, L 121.29
Survival, % 2.09
Fertility, % 0.82
Feed saved, kg 4.49
Mastitis resistance, % 0.16
1Provided by DataGene Ltd. (Bundoora).
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where 
∂ ( )
∂

m g
g
ij  is the change in the animal product, j, 

per unit change in a genetic trait for stock class i, and 
all other variables are as previously described.

Change in Product Output Due to Genetics

The product output for production traits (milk, fat, 
protein) is directly equivalent to the protein-eq for a 
1-unit improvement in the production trait under in-
vestigation. Therefore, the change in product output 
associated with each trait is the 1-unit change in the 
trait converted into protein-eq (Table 4). The product 
output was calculated as −0.02 kg of protein-eq for 
milk volume, 0.31 kg of protein-eq for fat, and 1 kg of 
protein-eq for protein.

A change in survival affects product output as a 
decrease in replacement rate translates to an older av-
erage herd with higher milk production, because later 
parity animals generally produce more than first parity 
animals. Therefore, the change in product output due 
to genetic gain in survival is the increased production 
expected from a herd where survival has increased by 

1%. This change in product output associated with a 
1-unit increase in survival was modeled as described by 
Zhang et al. (2019), where production of a base herd 
was compared with an improved-survival herd.

As survival accounts for the product output associ-
ated with changes in herd structure, the independent 
effect of improved fertility on product output is the ad-
ditional production associated with extended lactation 
in seasonal calving systems. Therefore, the change in 
production due to fertility is the additional days of lac-
tation due to a 1% increase in fertility (0.99 d; modeled 
as Zhang et al., 2019) × the proportion of Australian 
herds following a seasonal calving pattern (35%) × the 
average daily production at the end of lactation (12.5 
kg of milk; Abdelsayed et al., 2015), converted into pro-
tein-eq based on the assumed percentage composition 
of each milk component (4.0% fat and 3.30% protein).

Mastitis resistance (MR) affects product output as 
higher MR EBV relates to lower cases of mastitis and 
less milk dumped due to mastitis treatment protocols. 
The change in product output due to MR is equivalent 
to the discarded milk not recovered for calf feeding 
(8.13 kg of milk solids; Byrne et al., 2016) × the clinical 
mastitis incident rate per unit change in MR (0.03; G. 
Nieuwhof, Bundoora, VIC, Australia, personal commu-
nication) × the number of treatments per incident (1.20; 
Byrne et al., 2016), converted into protein equivalents 
based on the assumed percentage composition of each 
milk component (4.0% fat and 3.30% protein).

Annual Emissions Response

To put the GV and IV coefficients into perspective, 
the annual expected CO2e change in gross emissions 
and emissions intensity was estimated (Table 5). The 
GV and IV coefficients estimated for each trait were 
multiplied by the respective 5-yr average annual trait 
genetic trends (Table 2). Genetic trends were supplied 
by DataGene Ltd. and expected to be representative of 
the Australian dairy response to selection.

Richardson et al.: METHANE COEFFICIENTS FOR AUSTRALIAN DAIRY CATTLE

Table 4. Trait-specific change in animal product, j, as a function of 
change in trait, g

Item

∂

∂

m g
g
ij ( )

1

Milk  
protein

Milk  
fat

Milk  
yield

Milk protein, kg 1.00   
Milk fat, kg  1.00  
Milk yield, L   1.00
Survival, % 0.25 0.20 3.66
Fertility, % 0.21 0.17 4.87
Feed saved, kg    
Mastitis resistance, % 0.17 0.14 2.53

1
∂

∂

m g
g
ij ( )

 is the change in product output, mij (milk, fat, and protein), 
generated by a unit change in each trait.

Table 5. Change in gross emissions and emissions intensity due to a unit change in each trait and expected annual change due to each trait1

Trait
GV, kg of CO2e/ 

unit trait
Expected annual 

change in kg of CO2e
2

IV, kg of CO2e/kg 
protein-eq

Expected annual change 
in CO2e/kg of protein-eq

Milk protein, kg 1.97 12.79 −0.032 −0.205
Milk fat, kg 3.19 29.52 −0.002 −0.020
Milk volume, L 0.04 4.27 0.001 0.086
Survival, % −8.55 −17.88 −0.035 −0.070
Fertility, % 3.24 2.65 0.004 0.003
Feed saved, kg −0.53 −2.39 −0.002 −0.007
Mastitis resistance, % 0.00 0.00 0.006 −0.001
1CO2e = CO2 equivalents; protein-eq = protein equivalents; GV = genetic improvement; IV = intensity value.
2Calculated using genetic trends supplied in Table 2 and provided by DataGene Ltd. 
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Sensitivity Analysis

A sensitivity analysis was performed to account for 
the variation in product value ratio and feeding systems 
in Australia, which contribute to the total product out-
put and methane coefficient, respectively. The value of 
fat relative to protein varies throughout and between 
financial years and different countries assume substan-
tially different relative prices for fat in their national 
selection indexes (Miglior et al., 2017). To demonstrate 
the effects of this value ratio on M and EI, protein-eq 
conversion factors were tested at fat to protein ratios 
of 0.2, 0.95, and 1.25. When testing the sensitivity of 
modeled outcomes to the relative values of milk fat to 
milk protein (parameter kfat), we simultaneously manip-
ulated the assigned value of protein to keep a constant 
overall milk return to the farmer and avoid artificially 
inflating the value of the milk components. There are 
5 feeding systems actively used in Australia, each with 
a varying level of forage to concentrate ratio, affecting 
the subsequent methane coefficient (kg of CH4/kg of 
DMI). To account for this, a high and low methane 
coefficient was used to stress the system at ±5%, 10%, 
and 20%.

RESULTS

System Emissions Without Genetic Change

Based on an average Australian dairy herd, the gross 
emissions emitted per breeding cow were 4,297.86 kg 
of CO2-eq per year. The annual product output and 
emissions intensity per breeding cow were 339.29 kg 
of protein-eq and 12.67 kg of CO2-eq/kg of protein-eq, 
respectively.

Change in Gross Emissions Attributed to Genetics

Results are presented in Table 5, with values for in-
termediate calculations for changes in herd structure 
and feed requirements presented in Table 3. When 
considering the change in gross emission associated 
with a unit change in each trait, survival (−8.55 kg of 
CO2-eq) had the most favorable GV with feed saved 
(−0.53 CO2-eq) being the only other trait that lowered 
emissions. Milk, fat, and protein had unfavorable GV 
of 0.04, 3.19, and 1.97 kg of CO2-eq, respectively, and 
fertility had the largest unfavorable effect of 3.24 kg of 
CO2-eq kg of CO2-eq.

To estimate the expected change in emissions related 
to each trait relevant to the expected response to se-
lection, each GV was multiplied by its respective 5-yr 
annual genetic trend (Table 2). Under this perspective 
(Table 5), survival and feed saved had the most favor-

able environmental impacts (−17.88 and −2.39 kg of 
CO2-eq/year, respectively). Fertility, milk volume, and 
milk protein had unfavorable environmental impacts of 
2.65, 4.27, and 12.79 kg of CO2-eq/year. The largest 
unfavorable annual change in emissions was due to milk 
fat at 29.53 kg of CO2-eq/year.

Change in Emissions Intensity Attributed to Genetics

Results are presented in Table 5, with values for 
intermediate calculations for changes in gross emis-
sions and product outputs presented in Tables 3 and 
4, respectively. Without considering the magnitude of 
the annual genetic improvement of each trait, survival 
(−0.034 kg of CO2-eq/kg of protein-eq) had the most 
favorable EV. Milk protein (−0.032 CO2-eq/kg of 
protein-eq) had the second largest favorable effect with 
MR having a moderate favorable effect of −0.006 CO2-
eq/kg of protein-eq. Fat and feed saved also lowering 
emissions intensity, both with the smallest favorable EV 
of −0.002 CO2-eq/kg of protein-eq (Table 5). Contrast-
ingly, fertility and milk yield had unfavorable effects of 
0.004 and 0.001 CO2-eq/kg of protein-eq, respectively.

Multiplying the 5-yr annual genetic trend by each 
trait EI value, the expected annual change in emissions 
intensity related to each trait was presented in Table 
5. Under this perspective, milk protein and survival 
had the most favorable environmental impacts (−0.21 
and −0.07 kg of CO2-eq/kg of protein-eq per year, re-
spectively). Additionally, milk fat and feed saved had 
favorable annual reductions in EI of −0.02 and −0.007 
CO2-eq/kg of protein-eq per year, respectively. Fertility 
and MR had very minimal effects on EI with annual IV 
of 0.002 and 0.001 kg of CO2-eq/kg of protein-eq per 
year, respectively.

Sensitivity Analysis

The effects of changing fat to protein ratio values 
as well as variations in methane coefficients on E, M, 
and EI are presented in Table 6. The EI calculated 
under the protein-eq conversion ratios, which represent 
the 2-extreme scenarios (0.20 and 1.25), were 12.50 
CO2-eq/kg of protein-eq per year and 10.03 CO2-eq/
kg of protein-eq per year, respectively. However, the 
emissions per kg of protein-eq compared with the base 
estimation of EI (12.67 CO2-eq/kg of protein-eq per 
year) varied by only 0.0025% when the protein-eq con-
version ratio was increased to 0.95, in agreement with 
the current global trend. As the fat to protein value 
ratio approaches 1.00, the value of fat more becomes 
more equivalent to protein and the IV for fertility be-
comes negligible due to the increased product output 
being realized. The change in E and EI was directly 
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proportional to the ±5%, 10%, or 20% change in the 
methane coefficient when compared with the base.

DISCUSSION

The aim of this research was to calculate coefficients 
that describe the change in methane attributed to 
traits under selection in Australian dairy cattle in gross 
methane and methane intensity. Our results estimate 
gross emissions per breeding cow of 4,297.86 kg and an 
emissions intensity of 12.67 kg of CH4/kg of protein-eq, 
and consistently showed the importance of selection for 
survival, production, and efficiency through the esti-
mated coefficients. Using the gross methane per breed-
ing cow value estimated in our study, we estimated 
a national inventory due to dairy cattle methane of 
6.02 Mt of CO2e, assuming that the Australian dairy 
cattle inventory was 1.4 million milking and dry cows 
(Newton et al., 2020). These values are reasonably 
consistent with the current Australian national emis-
sions inventory for the dairy industry of 8.6224 Mt of 
CO2e (UNFCCC, 2018), of which methane constitutes 
approximately 57% at 4.914 Mt of CO2e.

Indirect Methods to Reduce Emissions

The BPI is the national dairy cow selection index 
in Australia (Byrne et al., 2016) and includes traits 
that contribute to profitability including production, 
survival, fertility, MR, and feed efficiency. Currently 
the index does not include methane directly, but it does 
include traits such as longevity and feed saved that, as 
we have shown in the present study, can have a favor-
able effect on methane emissions.

As suggested by Wall et al. (2010), there are 3 pos-
sible opportunities to reduce emissions per unit of prod-

uct through genetic selection: (1) a direct CH4 trait, 
(2) a reduction in replacements, and (3) an increase in 
product output per animal. However, opportunities 1 
and 2 may also be applied to reduce gross emissions. 
In this paper we explored options that did not require 
a direct CH4 trait, but rather relied on existing EBV. 
Consistent with Wall et al. (2010), our results imply 
that reducing replacements through selection for lon-
gevity and fertility and increasing production efficiency 
through feed saved may be effective strategies to reduce 
gross emissions and emissions intensity. Additionally, 
the dilution effect of product output achieved through 
gains in production traits and MR may also be effective 
in reducing emissions intensity. However, unless the 
increase in production output results in fewer overall 
animals, such as is the case with supply management 
(Richardson et al., 2021a), the effect may not be envi-
ronmentally beneficial. As the rate of genetic gain in 
production traits is increasing (Cole et al., 2020), so is 
the feed requirement and gross emissions. This trend 
is likely to mean that while CH4 intensity is decreas-
ing, gross emissions are increasing, consistent with the 
unfavorable gross emissions environmental weights for 
production traits estimated in our study.

Independent Trait Effects

Of the traits included in the Australian NBO, genetic 
progress in survival and feed saved were consistently 
shown to result in a favorable environmental impact. 
Conversely, production traits had an unfavorable en-
vironmental impact when considering gross emissions, 
and favorable when considering emissions intensity. 
These conflicting results were expected as genetic gain 
in production traits will lead to high yielding cows 
with increased feed requirement, resulting in higher 
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Table 6. Sensitivity analysis accounting for the variation in product value ratio and feeding systems in 
Australia, where protein-equivalent conversion factors were stressed at a fat to protein value ratio (kfat) of 0.2, 
0.95, and 1.25, and a high and low methane coefficient was used to stress the system at ±5%, 10%, and 20%

Item Base (kfat = 0.31) kfat = 0.20 kfat = 0.95 kfat = 1.25

E1 4,297.86 4,297.86 4,297.86 4,297.86
M2 339.29 343.75 385.40 428.62
EI3 12.67 12.50 11.15 10.03
 Base +5% +10% +20%
E 4,297.86 4,512.76 4,964.03 5,157.44
M 339.29 339.29 339.29 339.29
EI 12.67 13.30 14.63 15.20
 Base −5% −10% −20%
E 4,297.86 4,082.97 3,868.08 3,438.29
M 339.29 339.29 339.29 339.29
EI 12.67 12.03 11.40 10.13
1E is the total gross methane emitted before genetic change per breeding.
2M is the total product output, expressed in protein-equivalents, produced per breeding.
3EI is the emission intensity before genetic change.
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gross emissions and an unfavorable environmental im-
pact. However, when methane intensity is considered, 
the negative effect of increased feed requirement is 
overbalanced by the product output of milk and its 
components, resulting in a favorable environmental im-
pact when the number of animals is reduced. A key as-
sumption of the present study is that the independent 
effect of each trait is estimated, while all other traits 
remain static, to avoid double counting. For example, 
if changes in milk production were to be accounted for 
through ECM, then we would be assuming that fat and 
protein are increasing proportionally to the milk BV, 
contrasting to our model assumptions and resulting in 
double counting.

The challenge of calculating the independent effect 
of each trait, when the change in emissions cannot be 
isolated to a single trait, is also observed in traits with 
an effect on herd structure. Survival and fertility are in-
tertwined at the management level, creating challenges 
when calculating the effect of each trait independently. 
Improved fertility at the herd level has a positive ef-
fect on the environment. However, this is primarily due 
to higher survival rates and the requirement of fewer 
heifers, which is captured through the survival BV. In 
the case of fertility and survival, a 1-unit increase in 
either trait results in a reduction of emissions through 
a change in herd structure, as fewer replacements are 
required. Additionally, in the case of emissions inten-
sity, an older herd will have a higher production level, 
and therefore lower emissions intensity. As fertility is 
a primary reason for culling, the effects of the 2 traits 
are confounded (Workie et al., 2019). To avoid double 
counting, we attributed these effects solely to survival. 
This confounding factor may be overcome by using 
a survival trait that accounts for voluntary culling, 
such as herd life (Richardson et al., 2021a) or residual 
survival (Zhang et al., 2019). This is shown in New 
Zealand where the survival is represented through re-
sidual survival, a survival trait that is independent of 
fertility. In Zhang et al. (2019), the positive impacts 
of replacement reductions could be attributed to each 
trait separately.

Sensitivity Analysis

Similar to Zhang et al. (2019), our results showed 
that varying the protein to fat value ratio influences 
EI through the protein-eq value and concluded that in-
creasing the protein-eq value ratio reduced EI through 
increasing M. Thus, changing the protein-eq value 
changes the magnitude of the milk protein equivalent 
units, but not the overall trend in EI due to genetic 
gain. The exception to this is fertility as the effect of 
the fertility IV on EI became negligible with more 

equivalent values of fat to protein. This change is due 
to the trait definition of fertility used in the current 
study. As the change in herd structure due to fertility 
is accounted for by the survival EBV, only the change 
in production due to extended lactation is captured 
by fertility. Therefore, the fertility IV is affected by 
the change in the protein-eq ratio value. However, the 
overall effect of the fertility IV on EI is minimal and 
therefore does not strongly affect the overall trend.

Comparison to International Studies

Using adapted methods of the approach proposed 
by Amer et al. (2018), production, survival, and fertil-
ity were identified as key traits to reduce emissions in 
the New Zealand dairy (Zhang et al., 2019), Canadian 
dairy (Richardson et al., 2021a), and Irish dairy and 
beef (Amer et al., 2018; Quinton et al., 2018) indus-
tries. These industry cases differ in breeding objective, 
feeding system, housing system, and product output; 
however, the traits identified as having the largest envi-
ronmental impact were consistent.

Bell et al. (2013) used a bio-economic model to in-
vestigate the environmental impact of Australian dairy 
traits. While they included nitrogen output and manure 
management in addition to methane, our results are 
remarkably similar. It is noteworthy that the weights 
developed in our study account for relationships be-
tween traits and therefore could be applied to EBV to 
estimate methane emissions, whereas those of Bell et al. 
(2013) were not designed to do this. This is particularly 
evident in the fertility and survival values, which is 
further discussed below.

Application of Gross and Intensity Weights

Genetics is an option that offers a permanent solution 
to reduce emissions and there are several strategies that 
can be simplistically incorporated in breeding programs 
to target a reduction in emissions, one of which is the 
application of environmental weights. Gross methane 
weights and methane intensity weights are 2 definitions 
of emission coefficients that quantify the effect of cur-
rent traits on the environment. These weights may be 
used in selection indexes to apply emphasis on traits 
based on their environmental impact.

In terms of breeding objectives, gross CH4 production 
is currently the metric used by the Intergovernmental 
Panel on Climate Change in the Paris Agreement to es-
timate and report national GHG inventories on a global 
scale. Using gross CH4 coefficients in selection indexes 
allows for the changes in methane achieved through 
genetic selection to be clearly conceptualized by many 
stakeholders, such as researchers, dairy producers, and 
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government. Gross CH4 is a linear trait definition with a 
conceptually clear response to selection as it represents 
the direct, independent change in methane associated 
with each index trait. However, considering gross emis-
sions does not take into consideration that for some 
industries, such as the dairy industry, we require the 
industry to continue to grow, thereby increasing the 
challenge to reduce emissions at an industry level.

Methane intensity coefficients are designed to esti-
mate the environmental productivity of traits, when 
considering both product output and the environment. 
This EBV has the benefit of ensuring the industry re-
mains sustainably productive, leaning toward a more 
net neutral system. However, methane intensity is a 
ratio trait and the response to selection associated 
with its component traits (gross emissions and product 
output) are more challenging to attribute. It is unclear 
whether a reduction in methane intensity due to genetic 
improvements is from a decrease in gross emissions or 
a dilution effect through increases in production, which 
unless animal numbers decrease as a result (such as 
with supply management in Canada), is not environ-
mentally advantageous.

The development of future indexes should consider 
the possible environmental responsibilities of farmers. 
A major factor for continual genetic improvement is 
the index adoption rate by farmers. Methane intensity 
coefficients may be more appealing to farmers as the 
estimated coefficients do not penalize high (solids) 
producing cows; however, if the industry is required to 
reduce net emissions, a gross methane coefficient may 
be more favorable as genetic progress is conceptually 
clear and a direct reduction is simple to report.

Inventory Application of Methane Coefficients

The results from this study can be used by geneticists 
and stakeholders. For geneticists, the weights could be 
used to develop indexes that farmers can apply to se-
lect for reduced methane emissions, whereas for other 
stakeholders, such as government, the weights could be 
used to capture the genetic and phenotypic changes 
in methane emissions over time, offering an additional 
use for these weights. Due to the limitation of methane 
data collection on-farm, it is challenging to estimate 
emissions at the farm or individual animal level. These 
coefficients can be applied to the EBV of an individual 
animal or the farm average genetic gain to more accu-
rately estimate current GHG inventories, as more of the 
variation between animals is captured compared with 
current Intergovernmental Panel on Climate Change 
methods. This method may also be applied to other 
GHG or product outputs to calculate coefficient that 
would allow for a more robust inventory estimate to be 

made. This may assist stakeholders or governments to 
trace farm-specific methane emissions, instead of using 
simplistic methods that count the number of cows, and 
assume constant emissions per cow both across farms, 
and over time. The method used in our study requires 
minimal inputs and less computational complexity to 
estimate a cow-specific emissions value and may im-
prove long-term tracing of changes in dairy industry 
methane emissions.

Future Strategies

This method offers one strategy to reduce emissions; 
another is by selecting for a direct CH4 trait. Many stud-
ies have aimed to define the optimal CH4 trait to select 
for lower emissions. However, the trait definitions cur-
rently proposed for inclusion in a breeding program are 
not adequate as they are derived from small data sets 
and challenging to predict accurately. Previous studies 
aimed at predicting EBV for expensive or difficult to 
measure traits, such as DMI (Berry et al., 2014), have 
successfully increased data set size by combining data 
sets internationally. Methane introduces new challenges 
when implementing this approach as the analysis relies 
on many small data sets using different measurement 
techniques, introducing additional error. As methane 
for each country must be considered an independent 
trait, multitrait models are used which increases com-
putational complexity (Manzanilla-Pech, 2021).

It is expected that a direct CH4 EBV may become 
available in the near future (Manzanilla-Pech et al., 
2021; Richardson et al., 2021b). In Australia, a residual 
methane trait that corrects for production and intake 
is most likely to be implemented (Richardson et al., 
2021b). However, due to the limitation of data (n = 
420, Richardson et al., 2021a) and challenges associ-
ated with combining data sets (Manzanilla-Pech et 
al., 2021), it is expected that the accuracy of genomic 
predictions will be low (González-Recio et al., 2020). 
Therefore, the optimal method to reduce emissions may 
be to develop a subindex comprised of a direct methane 
trait and the traits shown to have the largest effect on 
emissions, weighted using the coefficients estimated in 
the current study.

CONCLUSIONS

This paper describes estimated methane coefficients 
that describe the expected change in methane per unit 
change in each trait, defined in gross emission and emis-
sions intensity. Of the traits included in the Australian 
NBO, genetic progress in survival and feed saved were 
consistently shown to result in a favorable environmen-
tal impact. Conversely, production traits had an unfa-
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vorable environmental impact when considering gross 
emissions, and favorable when considering emissions 
intensity. Fertility had minimal effect as its effects were 
primarily accounted for though survival, with MR only 
affecting EI coefficients. These coefficients may be used 
in selection indexes to apply emphasis on traits based 
on their environmental impact, as well as applied by 
government and stakeholders to track trends in industry 
emissions. Although current initiatives are underway to 
develop EBV for methane by combining small methane 
data sets internationally, they are hampered by small 
numbers and different ways of measuring methane. 
Therefore, alternative options to reduce emissions by 
utilizing selection indexes should be further explored.
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