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With the rise of privacy concerns in traditional centralized machine learning services, federated learning, which incorporates
multiple participants to train a global model across their localized training data, has lately received significant attention in both
industry and academia. Bringing federated learning into a wireless network scenario is a great move. The combination of them
inspires tremendous power and spawns a number of promising applications. Recent researches reveal the inherent
vulnerabilities of the various learning modes for the membership inference attacks that the adversary could infer whether a
given data record belongs to the model’s training set. Although the state-of-the-art techniques could successfully deduce the
membership information from the centralized machine learning models, it is still challenging to infer the member data at a
more confined level, the user level. It is exciting that the common wireless monitor technique in the wireless network
environment just provides a good ground for fine-grained membership inference. In this paper, we novelly propose and define
a concept of user-level inference attack in federated learning. Specifically, we first give a comprehensive analysis of active and
targeted membership inference attacks in the context of federated learning. Then, by considering a more complicated scenario
that the adversary can only passively observe the updating models from different iterations, we incorporate the generative
adversarial networks into our method, which can enrich the training set for the final membership inference model. In the end,
we comprehensively research and implement inferences launched by adversaries of different roles, which makes the attack
scenario complete and realistic. The extensive experimental results demonstrate the effectiveness of our proposed attacking
approach in the case of single label and multilabel.

1. Introduction updates a global model by aggregating all local parameters

from participants, so that the federated model can benefit

With the revolution of decentralized machine learning,
researches on collaborative learning technologies such as fed-
erated learning for resource-constrained devices on mobile
edge networks [1] have been increasing and expanding the
landscape of use cases. Federated learning [2] enables mobile
devices to collaboratively learn a shared prediction model
while keeping all the training data locally instead of in the
cloud, which may be at risk of privacy leakage. Unlike other
collaborative learning frameworks, federated learning

from a wide range of non-IID [3] and unbalanced data distri-
bution among diverse participants. In keeping with the vigor-
ous development of 5G network technology, as demonstrated
in Figure 1, federated learning empowered by wireless net-
works stimulates the potential of some applications around
us, making them smarter and more powerful. Furthermore,
edge wireless networks for content caching and data calcula-
tion are a promising way to reduce backhaul traffic load. Fed-
erated learning, based on a model that uses local training
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FIGURE 1: Federated learning for mobile networks.

instead of direct access to participants’ data, seems like a per-
fect fit for content popularity prediction in proactive caching
in wireless networks [4].

Although federated learning can provide a basic privacy
guarantee with localized training, privacy issues still exist
during the aggregation and communication process. Emerg-
ing attacking methods, including membership inference,
have been undermining the security of federated learning
and even the entire artificial intelligence technology. Basi-
cally, the membership inference problem is a classification
problem that the adversary needs to tell whether the data
with unknown ownership is part of a certain collection or
not. Although this is an indirect privacy stealing, when
membership inference attacks are used as preattacks for
other attack scenarios, such as the reconstruction attack
[5], the membership information makes these attacks more
targeted and disruptive. Shokri et al. [6] first proposed the
membership inference against a black-box machine learning
API In this case, the adversary can construct a “shadow
model” by obtaining the fluctuation difference in the confi-
dence of the black-box output of similar data obtained from
the target model (e.g., “MLaa$S” platform), thereby approxi-
mating the behavior of the target model to spy the privacy
of the training set. In this way, the adversary does not need
to get the internal structure and parameters of the target
model. However, this attack has many assumptions that
the adversary can directly call the API, which is equivalent
to the adversary’s unauthorized access to the model, and
use it in a centralized learning environment. Moreover, the
adversary has a dataset from the same distribution as the tar-
get model’s training data.

For the recent researches on the security issues of artifi-
cial intelligence, Salem et al. [7] improved Shokri et al’s
method by containing multiple neural network models in a
stack, which is sensitive to the membership information. In
this way, the attack model can only focus on the relationship

between the membership information and the classification
results, even if the data is from different distributions. Nasr
et al. [8] proposed a membership inference attack launched
from the participant side. The core technique of the scheme
was the stochastic gradient ascent (SGA). The adversary
extracted the parameters of the target model during the
training process, including gradients and loss rates, into fully
connected layers to train the neural network. When the gra-
dients of data are forced to increase by SGA every time, the
gradients of member data will be forcibly decreased by the
stochastic gradient descent (SGD) [9], while the gradients
of nonmember data still rise. By detecting this distinction,
the membership information is transformed into a score,
which is used as a new feature to construct unsupervised
learning to distinguish member data from nonmember data.

However, although the above inference attacks can
reveal the privacy of training data to varying degrees, there
are some limitations when they are transplanted to federated
learning. Firstly, in the previous centralized learning, the
dataset used to train the attack model had the same distribu-
tion as the dataset belonging to the target model, and even
these datasets have a certain proportion of intersection. Sec-
ondly, there is no research on the possible existence of mali-
cious participants launching the membership inference,
which is divorced from the real situation. Usually, the pre-
requisite for the successful operation of federated learning
is that all participants and servers are honest, but as long
as there are malicious members in the cluster, such as doing
poisoning attacks, this perfect mechanism will be out of bal-
ance. After all, no one can guarantee that federated learning
is always perfect. Thirdly, even if an attack is to be launched
from the client side, the inherent privacy protection mecha-
nism of federated learning, aggregated algorithm, will pre-
vent it from succeeding. Fortunately, in a wireless
environment, with a wireless monitor mode, the situation
has changed a lot. Motivated by the function of the wireless
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monitor and those shortcomings in existing inference
approaches, we give a deep analysis of active and targeted
membership inference attacks in the federated learning with
a white-box access model. We are established on the wireless
network environment to implement all the elements from
the perspective of a malicious participant and a malicious cen-
tral server. We name our scheme as the user-level membership
inference. The reason why we call it “user-level” is that we have
refined the target of inference from the previous global model
to a certain participant (victim), caring more about his mem-
bership privacy. We try to play two roles of malicious partici-
pant and server, respectively, in the federated learning mode to
launch inference (see Figure 2). Based on the traditional mem-
bership inference in centralized and distributed learning, we
take a more practical threat assumption that the adversary
does not need to know any prior knowledge about the training
datasets. Stuck by the model averaging algorithm and the lack
of training data for the membership inference, we make full
use of the characteristics of the wireless monitor to further
propose a local-deployed data augmentation method relying
on the generative adversarial networks (GANs) to generate
high-quality fake samples.

Our contributions in this paper can be summarized as
follows.

(i) User-Level Membership Inference. We further dis-
close the security hole of the current federated
learning enabled by 5G wireless networks with
novelly launching fine-grained membership infer-
ence attacks and encouraging more researches on
preventing participants from leaking privacy.

(ii) Data Augment Using GANs. To gain insight into the
data distribution of other participants to perform
the membership inference, we use the information
obtained by a wireless monitor and innovatively
develop local-deployed generative adversarial net-
works (GANs) to generate samples with all labels.

(iii) Systematic Analysis in All Positions. We progres-
sively launch membership inference from a mali-
cious participant in federated learning. In addition,
we investigate and validate the possibility of launch-
ing inferences from the server side.

(iv) Excellent Performances in Experiment. In experi-
ments, we set two major indexes, the accuracy of
the membership inference and the learning task, to
measure the effectiveness of our scheme. We also
performed multiple sets of comparative experiments
to prove the impact of the number of labels on the
membership inference attack.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 briefs some background
knowledge and introduces the threat model. Section 4
describes the proposed method framework along with an
analysis of the membership inference. The performance
evaluation results are presented in Section 5. Section 6 dis-
cusses the limitations of our method and gives some ideas.
Finally, Section 7 concludes this paper.

2. Related Work

In this section, we will introduce the privacy protection
methods for distributed deep learning and federated learn-
ing. After that, we will refine the issue of privacy leakage to
the membership inference attack. Finally, we present the
various attacks against a specific victim in the federated
learning scenario.

2.1. Privacy-Preserving Distributed Learning and Federated
Learning. The traditional centralized machine learning,
where the data holder trains the model locally, is limited
by the computing resources and data volume. It is difficult
to meet the current needs for massive data calculations, data
diversity, and storage performance. As a result, the distrib-
uted learning framework emerges, providing a collaborative
training scenario. But once the third party involves, there
will be a problem of privacy leakage. To protect distributed
learning, an algorithm named as distributed selective sto-
chastic gradient descent (DSSGD) was proposed by Shokri
and Shmatikov [10]. The results showed that even if only
1% of the parameters are shared, collaborative learning will
bring a higher accuracy than centralized learning. Moreover,
Shokri and Shmatikov [10] utilized differential privacy [11]
to effectively prevent data privacy that may be indirectly
leaked. Based on the previous article, Phong et al. [12] pro-
posed four cases of indirect privacy leakage and pointed
out that even if some gradients are uploaded randomly, there
are still significant hidden privacy risks. The author intro-
duced homomorphic encryption technology [13] in the
large-scale distributed neural network to ensure that the
cloud server cannot steal the privacy of data during the
entire process of model training. The only drawback was
computationally expensive and time-consuming. Zhang
et al. [14] present BatchCrypt, which is a system solution
for cross-silo federated learning. In the scheme, they encode
a batch of quantized gradients into a long integer and
encrypt it in one go, instead of encrypting individual gradi-
ents with full precision. BatchCrypt substantially reduces
the communication overhead caused by homomorphic
encryption.

The difference between collaborative learning and fed-
erated learning is that the central server of federated
learning will average the updates (i.e., the weight matrix)
after each communication round. Even so, the privacy vio-
lation remains a challenge. In the user-level differential
privacy algorithm proposed by [15], this average is chan-
ged and approximated using a random mechanism. This
is done to hide the contributions of individual participants
in the collection, thereby protecting the entire distributed
learning process. Truex et al. [16], in order to compensate
for the impact of differential privacy on model accuracy,
combining differential privacy with secure multiparty cal-
culations, reduced the noise injection caused by the
increase in the number of participants and maintained
the accuracy and privacy of the model. Inspired by these
efforts, we began to focus on privacy preserving in feder-
ated learning.
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FIGURE 2: Multiple membership inference methods in federated learning under wireless network.

2.2. Membership Inference Attack. The membership infer-
ence attack means that when a record is given to the infer-
ence model, the model can tell whether the record belongs
to a target’s training set. As centralized learning evolves to
distributed learning, there are many variants of the member-
ship inference, which can be divided into active attacks and
passive attacks, including those launched by a malicious
server and by malicious participants [8]. Not surprisingly,
the more participants are involved, the less information that
adversary can learn from another participant. In other
words, the accuracy of the membership inference attack will
decrease as the number of participants increases. Taking into
the situation of numerous participants, the active local
adversaries are facing challenges of lacking training data.
Besides, the research found that even a model with differen-
tial privacy protection still has the risk of leaking member-
ship privacy [17]. The main reason for the leakage of
membership information is model overfitting [18-20]. At
present, membership inference has become the third largest
attack against AI systems, accounting for 3.5%. Our work
focuses on membership inference in federated learning. But
what needs to be distinguished from the membership infer-
ence mode under centralized learning is that the goal of our
proposed method under federated learning is to infringe the
privacy of a certain participant, not the privacy of the entire
training dataset. We summarize this more fine-grained anal-
ysis as the membership inference attack under federated
learning. This takes the membership inference a step further
in the field of study.

2.3. Attacks against a Specific Victim in the Collaborative and
Federated Learning. In addition to stealing membership
information, there are many attacks on a certain participant
in federated or centralized learning. These attacks, for exam-
ple, the poisoning attack [21], the model inversion attack
[22], the representative inference [23], the model stealing
attack [24], and the capturing of extra properties [25],
mainly assume that the adversary, whether a malicious
server or a malicious participant, actively launches attacks
and tries to induce the victim to output more private infor-
mation to achieve the purpose. However, attacks from the
client side in federated learning are limited to recovering
class-wised representatives rather than mining user-level
privacy because the malicious participant can only access
updates aggregated by the server (contributed by all the par-
ticipants). Therefore, to launch these attacks, more auxiliary
information is often required, e.g., class labels or other
participant-wise properties. Our method cuts into the crux
of this nodus from the wireless monitor technique and the
generative adversarial networks (GANS).

3. Preliminaries

In this section, we introduce the background knowledge and
the other preliminaries, including assumptions and the
threat model of our method.

3.1. Federated Learning. Federated learning [26] is a distrib-
uted deep learning solution first proposed by Google in
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2016. In the selection phase of the federated learning, the
server will randomly and partly select participants to partic-
ipate in this round of training. In the reporting phase, the
server will wait for each participant to return the trained gra-
dient parameters. After the server receiving parameters, it
will use an algorithm to aggregate them and notify partici-
pants of the next request time. If there are enough partici-
pants returning gradients before the timeout, this round of
training is successful; otherwise, it fails. In the entire system,
there is a pace control module (Pace Steering), which can
manage the connection of all the participants. For the
small-scale federated learning training, Pace Steering guar-
antees that sufficient participants are involved in each round
of training. For the large-scale federated learning training,
Pace Steering will randomize the request time of the partic-
ipants to avoid a large number of simultaneous requests,
which may cause problems. By the way, the models trained
by each participant do not interfere with each other during
the training process.

In 2017, Google’s Mcmahan et al. proposed the FedAvg
algorithm, which is a synchronous protocol [27]. The
updates are averaged and accumulated to the current shared
model. Equation (1) demonstrates the process. M, denotes
the shared model at the tth iteration, M,,; means the newest
model, and u¥ indicates the update from the kth client at
iteration t:

1S
M =M, + _Z”r- (1)
Nk:l

All participants execute Equation (2) in each epoch,
where # is the learning rate and b means the batch. Finally,
every participant returns his w, weights, to the server:

W =W —nVL(W;b). (2)

On the one hand, federated learning can effectively
enrich the diversity of training sets and allow more data to
participate in calculations. On the other hand, federated
learning allows data to be stored locally, which meets some
data-sensitive requirements, such as medical and military
scenarios. But this does not mean that privacy will not be a
problem in federated learning. Inference against a certain
participant’s data and output greatly threatens the security
of the federated learning.

3.2. Wireless Monitor Mode. By default, the wireless network
card and the wireless access point (WAP) [28] are in a man-
aged mode after establishing a connection. In this mode, the
wireless network card only serves to receive data sent to itself
from the WAP. If you want the wireless network card to
monitor all communication information in the wireless
environment, you can set the wireless network card to mon-
itor mode (also called REMON mode [29]) and then use
software such as Wireshark to capture data packets for anal-
ysis, as shown in Figure 3. Under the normal setting, the net-
work card will only accept data packets sent to itself and
discard all other packets. Of course, the network card can

accept all the messages unconditionally; this is the so-
called promiscuous mode. However, unlike the promiscuous
mode, the monitor mode does not require a connection to a
WAP or ad hoc network [30]. The monitor mode is special
unique to the wireless network card, and the promiscuous
mode is applied to the wired and wireless network cards.
With the help of the wireless monitor mode, it is convenient
for us to collect auxiliary information for the client-side’s
membership inference.

3.3. Generative Adversarial Networks. Generative adversarial
nets (GANs) were first proposed by Mirza and Osindero
[31], which is a neural network trained in an adversarial
manner. GANs contain two competing neural network
models. One is a generator G that draws random samples z
from a prior distribution (e.g., Gaussian or uniform distribu-
tion) as the inputs, and then, G generates samples from z
that approximate the input distribution. Another model is
a discriminator D. Given a training set, the discriminator
D is trained to distinguish the generated samples from the
training (real) samples. Equation (3) shows the objective
function of GANSs. Briefly speaking, GANs are trained to
minimize the divergence between the generated and real
data distribution.

min maxV (D, G) = 8, (. log (D(x))] + & _p, log (1~ D())]

(3)
V(D,G) = J Paya (%) log (D(x)) + Py(x) log (1 = D(x))dx,

(4)

_ P ata (X)
D)= po )+ Py

The Pg,,, and P, denote the training (real) distribution
and prior distribution, respectively. P, indicates the distribu-

(5)

tion of generated samples. These two models G and D are
trained alternately until this minimax game achieves Nash
equilibrium [32], where the generated samples are difficult
to be discriminated from the real ones. The proof of Equa-
tion (4) shows that there is an optimal discrimination model.
According to the nature of JS divergence [33], if and only if
the generation distribution P, is equal to the real data distri-

bution Py, JSD(Pgyl|P,) =0, we can obtain the optimal

discriminator, as shown in Equation (5). It should be noted
that the GANs originally set by Mirza and Osindero [31]
were defined only in the real number (continuous data, such
as images), because the output gradient of the discriminator
D would give feedback on how to make it more realistic by
slightly changing the generated data. However, when it
comes to discrete data (e.g., text), the variation among
tokens is much greater than that of images. In addition,
the GANs can only evaluate the entire sequence, not the
quality and trend of the partial sequence.

Committed to overcoming this problem, the new idea is
to introduce reinforcement learning (e.g., SeqGAN [34]).
The generator is an agent, the state is the generated token,
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and the action is the next generated token. Monte Carlo Tree
Search (MCTS [35]) is used to estimate the state behavior
value and complete the various possibilities of each action.
D generates a reward for these complete sequences, as shown
in Equation (6), passes it back to G, and updates G through
reinforcement learning to train generative networks that can
produce the next optimal action. The completed Q function
is shown in Equation (7):

Q= (a=yp 5= Yiry =Dy(Yir), ©)

1 N
— Y Dy(Yhy), Vi e MCO(Y,sN), t<T,
G, LT 1:T 1:t
Qpy=(s=Yy, pa=yt)= Nngl ‘

Dy(Y1.0)s t=T.
(7)

Unfortunately, the experimental results prove that this
idea does work, and the loss of synthetic data does decrease,
but the quality of the generated text is very poor on the real
Chinese poetry, which directly affects how this batch of data
should be labeled and then becomes the training data of the
membership inference attack model. This is currently a bot-
tleneck. The work of Fedus et al., MaskGAN [36], may point
out a direction for improving the quality of the generated
text.

3.4. Assumptions. As done in previous works, participants
will declare the labels of the local data before they start train-
ing, which can be verified through a wireless monitor. In
fact, this behavior does not reveal valuable privacy about
the training set. Because the label cannot reflect the attri-
butes of the data, our scheme is based on a preliminary
assumption that the sample labels owned by participants
do not overlap. Taking the MNIST dataset as an example,
we assume that participant P, has data samples with labels
“0,” “1,” and “5”; participant P, has data samples with labels
“2” and “77; and so on. Under these circumstances, the
declared label “1” cannot reflect the attribute of digit “1” in
the picture, such as whether the font is inclined to the right

or the left. The purpose of this nonintersecting setting is to
facilitate the attack model to compare the results of the
attack with the previously declared information to imple-
ment the membership inference attack. For example, in
training medical data, in order to enrich the training set, dif-
ferent hospitals label the data according to their different
pathological information. In this way, the federated model
can obtain more pathological classes. Of course, there should
be samples with the same label between different hospitals.
The membership inference in this case will be discussed in
Section 6.

3.5. Threat Model. Here, we will elaborate on the conditions
that the adversary has.

3.5.1. Adversary’s Objectives. In our settings, the ultimate
objective of the adversary is to obtain indirect information
about the target victim’s dataset. So, we set two indexes in
the context of classification tasks to evaluate our attack
model: (1) membership inference accuracy: means the classi-
fication confidence of the target dataset; (2) main task accu-
racy: denotes that the global model should maintain a high
prediction accuracy without overfitting.

3.5.2. Adversary’s Observations. What the adversary can
observe depends on which role he plays. When the adversary
is a malicious participant, he can obtain the aggregated
white-box global model that is fed back from the central
server after each iteration. Besides, with the help of the wire-
less monitor mode, the adversary can see the communica-
tion of other participants. And if we set the adversary as a
malicious server, then he can clearly know which participant
a certain parameter comes from at this round. (1) For the
adversary from the client side, a white-box model and mon-
itored information are sufficient to launch the inference
attack. Since the honest server distributes updated models
to various participants during each iteration, the adversary
will keep the latest model snapshot with him. Therefore,
everything of the global model is exposed to the adversary,
such as the structure of the model, the algorithm L, and
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the parameters 0 of multiple versions. This is beneficial for
us to use GANSs to launch the membership inference attack.
(2) For the adversary from the server side, the acquisition of
target parameters is also divided into active acquisition and
passive acquisition. Referring to the work of Wang et al.
[23], the adversary can actively obtain the parameters of
the victim and then use GAN for data recovery. The details
of our proposed scheme will be introduced in the next
section.

3.5.3. Adversary’s Capabilities. This topic is also divided into
two roles to elaborate. We will list what the adversary can do
and cannot do to assess his capabilities. As a malicious par-
ticipant, on the one hand, the adversary can (1) have a snap-
shot of each updated model, (2) fully control his local data
and training procedure, (3) arbitrarily modify the hyper-
parameters, (4) randomly select local parameter updates
over communication rounds, and (5) silently monitor the
communication content of the entire wireless network envi-
ronment. On the other hand, the adversary cannot (1)
directly access other participants’ local data. From the per-
spective of a malicious server, the adversary can (1) proac-
tively obtain parameters uploaded by the victim and
unearth useful information from them, (2) aggregate all the
collected parameters, and (3) optionally feedback special
models to the victim. Besides, the adversary cannot (1) see
the data owned by participants diametrically.

4. Proposed Membership Inference Attack

In this section, we describe the detail of the user-level mem-
bership inference attack in federated learning. Specifically,
we focus on some malicious situations in federated learning
where a participant and the central server are separately con-
sidered an insider, who will silently bypass the attention of
others in the cluster to complete the task of differentiating
the record’s ownership.

4.1. Malicious Participant’s Perspective

4.1.1. Attack Overview. Figure 4 overviews the first approach
we designed: participant’s inference attack. This is an active
attack by the adversary. We suppose that in a wireless local
area network (WLAN) environment, there are N partici-
pants, where the victim V is the target participant, and the
adversary A is also on the client side. In the kth iteration,
both A and V download the same parameters 6,. V nor-
mally uses parameters to update the local training model,
then performs training, and finally returns the training
update 0, to the server. Since the server could honestly aver-
age the parameters received from various participants before
updating the global model, it is hard for the adversary to
explicitly get clues of the target victim to launch the mem-
bership inference even with the wireless monitor mode.
Therefore, we take GANs as a tool for attack. Except using
parameters for local training, A will also copy the parameter
0, to discriminator D in GANs for updating synchronously,
so that the generator G can continuously generate samples
closer to the real samples. These generated samples will be
used to train the ultimate attack model with the correspond-

ing classification algorithm. When the target dataset is
obtained, the attack model will predict results. If a sample
whose prediction result is consistent with the declaration
information, we can judge it as “IN”; otherwise, judge it as
“OUT.”

4.1.2. Reconstruction Data with GANs. The goal of our data
augmentation phase is to make the training set for the attack
model complete. The structure of GANs and details of the
data augmentation phase are shown in Figure 5. The gener-
ative network g(z;6;) is initialized and generates data
records from random noise. In the discriminative network
f(x30p), the discriminator D is initialized with the global
model. In this way, replacing the network parameters of D
with global model parameters is equivalent to training D
directly on the overall training data. Let x; be the original
image in the training set and x,., be generated images. We
apply the optimization algorithm based on the approach
proposed by Mirza and Osindero [31] and formulate the
problem as

min Helale log (f(x;56p)) + Zl log (1= f(9(xgen366) 56p))
(8)

Z6(0,) = Eopz[log (D(G(2)))]- )

The generator G wants to generate samples x,, of class m
» which belongs to one of the training sets. G yields x,., to
discriminator D. If D can classify x,, as class m, then the

data augmentation phase sets x,, «— x,, and returns x,,.

Otherwise, it will update the generator G to minimize its loss
Z(8,) as shown in Equation (9). The pseudocode of the

data augmentation phase is shown in Algorithm 1. We first
initialize the generation network G and use the current fed-
erated learning model as the discriminator D to calculate the
gradient to distinguish the generated data from the original
data. Until that the discriminator is unable to distinguish
the generated data, we get the eligible generated samples
Xgen-
4.1.3. Attack Algorithm. The pseudocode of the attack phase
is shown in Algorithm 1. After generating samples with all
labels, we begin to train a classification model. The selection
of the inference algorithm can be determined after analyzing
the specific generated samples as we described in Section 6.
In our experimental scenario, we take the MNIST dataset
as an example, and we use the CNN model accordingly.
After the model training is completed, the adversary
launches the membership inference attack against a bunch
of data, named target dataset, which contains the training
data of the victim and other participants. After the attack
is over, we compare the prediction result with the label
information declared by the victim. The data with the same
comparison result is regarded as the victim’s training data,
marked as “IN.” Other data, which has different comparison
results, are marked as “OUT.” To calculate the accuracy of
our membership inference attack, we divide the number of
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FIGURE 5: Data augmentation phase.

Input: The GANS iteration round i, the federated learning model f(), generator G, discriminator D.
Output: The generated dataset Data*" :(x,y) and the inference result ‘IN or ‘OUT".

: Procedure Adversary Execution.

: Initialize G

: Set D f()

sfor (i=1i< =i ,;i++) do

Run G to generate sample X gen

Update G based on Eq (8)

: end for

2y :f (xgen)

9: Output: D" : (x, y)

10: DI, = D9 - (x,)

11: Attack Phase:

12: Train CNN model using D%

attack
13: Perform membership inference attack against D;‘;:f:,: dataset.
14: Compare the inference results with the claimed information.
15: Output: Mark every record as ‘IN’ or ‘OUT’, where ‘IN’represents the Victim’s training sample.

© N U AW~

dataset.

ALGorITHM 1: Participant’s attack procedure.
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data marked “IN” by the number of victim’s data in the tar-
get dataset. Detailed experimental results are presented in
the next section.

4.2. Malicious Server’s Perspective

4.2.1. Attack Overview. Figure 6 shows the second attack
architecture: the server’s inference attack. It should be
emphasized that this is still an active attack from the server
side. The so-called active denotes that the server is highly
proactive, e.g., without undermining federated learning, the
malicious server can cunningly employ unfair tricks to
accomplish the purpose. We also assume that there are a
total of N participants, including the victim V and the
adversary A at this time on the server side. To achieve a bet-
ter inference accuracy, from the beginning, the malicious
server isolates the victim from other participants [8]. In this
situation, the adversary can control the victim individually
by sending the victim a quarantined version of the shared
model, M, . Naturally, the adversary intentionally obtains
valuable parameter information for reconstructing the vic-
tim’s data. We adopt a similar approach to that used by
Wang et al. [23], using an affiliated server that the victim
V will connect to it without his knowledge. So that the
shared model of each communication round between them
is M, instead of M. There are two points to note: (1) with
this setting, M, is still sharing weights with D in local-
deployed GANs; (2) M, ’s aggregation update is not syn-
chronized with M, which means the target participant’s
model does not get aggregate with the parameters of other
parties. It is aimed to let more membership privacy informa-
tion be stored in the victim’s model.

The next step is to train the membership-oriented GANs
on the affiliated server, where the training process is the
same as the normal GANs. But since the malicious server
simply trains on the real data of the target victim at this time,
the generated samples X,, are of higher quality and easier

to identify. When participants have multiple labels, but there
is no label overlap between them, we can divide the data of
these labels into “IN” according to the labels of X,.,. After
acquiring a new batch of data, we can determine the
membership.

In summary, while the server is doing evil, as we
described in Section 3.5, the adversary’s ability does not
exceed the limit of the server’s own ability. A lot of previous
work has realized this situation.

4.2.2. Reconstruction Data with GANs in Affiliated Server. In
the work of Phong et al. [37], the participant’s data is
restored based on the weight. The malicious server can
access the updated parameters under federated learning.
But the disadvantage of this scheme is that the shared model
has to be a fully connected network. Besides, the update is
needed to be obtained by training on a single sample. It is
apparent that these constraints obstruct the applicability of
the scheme to other algorithm models. Inspired by this solu-
tion, we break through the limitations of the shared model
by introducing GANs deployed on the affiliated server to
secretly access the victim’s data privacy. In this attack mode,

the operation of GANS is basically the same as that described
above. The white-box model of the target victim will serve as
the discriminator of GANs, gradually promoting the genera-
tor to output high-quality samples with the target labels.

4.2.3. Attack Algorithm. As the pseudocode described in
Algorithm 2, at the beginning of federated learning, M, is
initialized consistently with M, but these two models gradu-
ally become asynchronous. The affiliated server simply cop-
ies the parameters uploaded by the victim for use with
GANsS, so it will not interfere with the global model’s train-
ing and will mislead the victim into thinking that he is con-
tributing to global training. After the whole federated
learning period, a fully functional global model held by the
malicious server can be utilized to identify the generated
samples and obtain labels, y,.,. The complete generated data

with labels, X oo, * (Xgens Vgen)> are then marked as “IN,” and

the rest are marked as “OUT.” In this way, they are supplied
to build the attack model. The experimental results are also
detailed in the next section.

5. Performance Evaluation

In this section, we evaluate our proposed methods, including
GANSs and the membership inference, in different ways.

5.1. Datasets and Evaluation Goals. In the participant infer-
ence experiment, we use two datasets, MNIST [38] and
CIFAR-10, to verify the indicators of the program. Then,
we put the AT&T dataset [39] into an application to test
the performance of GANs in the server inference experi-
ment. Our prepared data are mainly images because we
believe that image data has a very special property; that is,
the label of the image cannot fully reflect the content of
the image. From a privacy perspective, this should be a loop-
hole in the data used for training. Text data has also been
considered to be introduced to enrich the experiment, but
GANSs did not achieve surprising results in natural language
processing (NLP) tasks, which hindered the application of
text data in our scheme. Many reasons are discussed above.
Details of experimental datasets are described in Table 1.

(i) MNIST. This dataset includes ten classes of hand-
written digits from “0” to “9,” which is widely used
for training and testing in the field of machine
learning. It is commonly used in training various
image processing models. A total of 70,000 images
is divided into the training set (60,000 images) and
the testing set (10,000 images). The grayscale image
is normalized into 28 x 28, a total of 724 pixels.

(ii) CIFAR-10. It consists of a training set of 60,000
images and a testing set of 10,000 images with 32
x 32 pixies in ten classes. These images are mainly
cats, dogs, horses, etc.

(iii) ATe»T. The AT&T dataset (a.k.a. Olivetti dataset of
faces) contains 40 topics, each with 10 pictures, and
a total of 400 samples. The subject is Olivetti
employees or Cambridge University students. The
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FIGURE 6: Overview of server-side membership inference using GANs on the affiliated server.

Input: The iteration round of GANSs deployed on affiliated server i,,, the federated learning model f(), The iteration round of normal
training i,,,,,,» generator G, discriminator D, isolated model M, , and victim’s updated parameters u,.
Output: The generated dataset X_,, :(x,y) and the inference result ‘IN’ or ‘OUT".
Procedure Adversary Execution.
2: Initialize G
Deceptively connect the affiliated server with M, , to the victim
4:Set De—M;, «—M
for i=Li< = nmmal,z ++) do
6: Train global model f() by collecting all parameters from all participants
Synchronize the following ‘for’ loop
8: Update f() based on Eq (1)
end for
10: for (i=1;i< =i, ;i++) do
Copy u, to affiliated server
12: Run G to generate sample Xgen in a targeted manner
Update G based on Eq (8)
14: end for

y :f(xgen)

16:yother :f(xother)

Output: Xy ¢ (Xgens ¥ gen) — IN

18: Output Xother : (xother’yother) — OUT
szrt?lanck _X (x’y) + Xufher : (x’y)

20: Attack Phase

Train CNN model using D74, dataset.

attack
22: Perform membership inference attack against DZ:Z:; dataset.

Compare the inference results with the claimed information.
24: Output: Mark every record as ‘IN’ or ‘OUT’, where ‘IN’represents the Victim’s training sample.

gen *

ALGORITHM 2: Server’s attack procedure.

age of the subjects was concentrated between 20 and are used for training, and five images are used for
35 years old. Among them, 36 are males and 4 are testing, a total of 200 training images and 200 test
females. The subject’s picture allows only limited images.

lateral movement and limited tilt. So for most

objects, the images are taken at different times and To comprehensively illustrate our Rroposed attack
under different lighting conditions. The image was mpdel, we set the folloyvmg two goals: (1) mimic data gener-
manually cropped and rescaled to 92 x 112 resolu- ation: means the effectiveness of our proposed data augmen-

tion, 8-bit gray levels. Five images of each object ~ tation algorithm and data reconstruction in server side using
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TaBLE 1: Summary of datasets used in our experiments. TaBLE 2: Neural network structure.

Dataset  Labels Input size Tramllng Testl?g Classifier MNIST CIFAR-10
samples samples Conv2D(16,5,5)+ReLU  Conv2D(32,3,3)+ReLU

MNIST 10 28281 60000 10000 MaxPooling2D(2,2) Conv2D(32,3,3)+ReLU

CIFAR- 10 32%32%3 50000 10000 Conv2D(32,5,5)+ReLU MaxPooling2D(2,2)

10 Struct MaxPooling2D(2,2) Conv2D(64,3,3)+ReLU

ructure
AT&T 40 92112 200 200 FCL(1000)+ReLU Conv2D(64,3,3)+ReLU
FCL(10)+Softmax MaxPooling2D(2,2)
GAN:S; (2) attack success rate: indicates the accuracy of our FCL(512)+ReLU
membership inference in federated learning settings as we FCL(10)+Softmax

described in Section 4. In particular, the main task accuracy
is the ratio of the correct classification of all samples through
the global model.

5.2. Experimental Settings

5.2.1. Experimental Environment. We implemented the data
augmentation and the membership inference in federated
learning by using the PyTorch1.0, Tensorflow2.0, and Keras
framework. All experiments are done on an RHEL7.5 server
with NVidia Quadro P4000 GPU with 32GB RAM and
Ubuntu 16.04LTS OS. The Python version is 3.6. The router
device is Redmi router AX6 supporting WIFI6. The experi-
mental wireless network parameters are download
rate=32.81 Mbps, upload ratex7.41 Mbps, delay=10 ms, and
signal strength=-40dBm. In the participant attack experi-
ment, we set up five participants, one of whom is assumed
as the adversary, while the remaining participants are
benign. They are all subordinate to the same central server.
In each round of the federated training, participants’ local
models are trained separately. Then, they synchronously
upload their updates into a new global model. There are sim-
ilar settings in the server attack experiment. One of the five
participants is a victim, but their common server is mali-
cious. The training process is still local training, and the vic-
tim will also participate in federated training, but its local
model update is not synchronized with other participants,
and this model is consistent with the affiliated server.

5.2.2. Model and Training Configurations. Considering the
dataset used in our first part of the experiment about
client-side inference, we applied a CNN-based model archi-
tecture to construct our membership inference classifier.
Table 2 shows the neural network structure for two datasets.
The model of MNIST consists of two convolutional layers
and two dense layers. The kernel size of these convolution
layers is 5x 5. The number of filters for the first convolu-
tional layer is 16 and for the second convolution layer is
32. The model for the CIFAR-10 dataset is set up as shown
in Table 2. There are four convolutional layers with the 3
x 3 kernel size and 32 x 32 input shape. The number of fil-
ters for the first two convolutional layers is 32 and for the
other convolution layers is 64. The activation function
applied to all the neural network models is ReLU. In the sec-
ond part of the experiment, the server-side inference, our
GAN network structure refers to Table 3. We build a convo-
lutional neural network consisting of three convolutional

layers and three maximum pooling layers and set a fully con-
nected layer at the end. The activation function is Tanh. The
output of the model has 40 categories, corresponding to 40
categories of human faces. In the more complex situation
of reconstructing face data, the generator G queries the dis-
criminator D more times (the size of the adversary’s training
data divided by the batch size). Tanh in G is applied to set
the output to the range of [-1, +1]. Since the AT&T image
is large (64 x 64), G has an additional (5th) convolutional
layer. G accepts a 100-dimensional uniform distribution as
input and converts it to AT&T’s image (64 x 64).

The training configurations for two datasets are the
following:

(i) Participants train MNIST dataset for epoch E =30
with the initial learning rate #=0.01

(ii) Participants train CIFAR-10 dataset for epoch E =
60 with the initial learning rate # = 0.0001

(iii) Participants train AT&T dataset for epoch E =60
with the initial learning rate # = 0.0002

Besides, we run all the experiments for 400 communica-
tion rounds of the federated learning.

5.3. Performance of Data Augmentation. To illustrate the
effectiveness of the data augmentation phase and data recon-
struction using generative adversarial networks (GANSs) in
the malicious inference period, we visualize the process of
sample generation. The total number of participants and
the samples are not changed. The generator G is formatted
as random noise with 100 lengths, and its output size is
reshaped to 28 x 28 and 64 x 64 severally. In addition, we
set the adversary to start generating samples after the global
model accuracy reaches 80%.

Figures 7 and 8 show the visualization images of the
sample reconstruction process as the number of iterations
(communication rounds) increase and real samples for com-
parison. In Figure 7, the blurred contours of the recon-
structed samples of 100 iterations can be recognized. As
shown in the middle, in 400 iterations, the contours of the
generator samples become clearer, because, with the update
of the discriminator D, the performance of the generator G
becomes better. Therefore, by deploying GANSs, the adver-
sary can successfully simulate real samples of all participants
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TaBLE 3: Neural network structure of GANG.
Discriminator Generator
Conv(l — 32,5 x 5)+Tanh Conv(100 — 512,4 x 4)
MaxPooling(3 x 3,3,3) BatchNormalization
Conv(32 — 64, 5 x 5)+Tanh ReLU
MaxPooling(2 x 2,2,2) Conv(512 — 256, x 4,2,2,1,1)
Conv(64 — 128,5 x 5)+Tanh BatchNormalization
MaxPooling(2 x 2,2,2) ReLU
Reshape(512) Conv(256 — 128, x 4,2,2,1,1)
Structure . L
Linear(512 — 400) BatchNormalization
Tanh ReLU
Linear(400 — 40) Conv(128 — 64, x 4,2,2,1,1)
SoftMax BatchNormalization
ReLU
Conv(64 —> 1,x 42,2,1,1)
Tanh

FiGure 8: Reconstruction of AT&T based on GAN.

like the image on the right. Figure 8 selects the pictures of
the three sequential stages generated by GANSs in the mali-
cious server using the isolation method. The four pictures
in the first block preliminarily outline the cheek features of
these people. The quality of pictures in the second block
gradually becomes better. The four images in the third block
are very close to the real samples on the far right.

5.4. Performance of Membership Inference. In the member-
ship inference evaluation, the indexes are the main task (fed-

erated learning) and the accuracy of the membership
inference.

As shown in Figure 9, with the secret membership infer-
ence attack, the accuracy of the models corresponding to
three datasets, respectively, reaches 94.45%, 92.71%, and
84.48%, which are drawn with solid lines of three colors.
In order to prove that the membership inference does not
affect the normal training efficiency too much, we use the
dotted lines with similar colors to draw the ordinary training
process of these models as a baseline. Obviously, all three
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models are accurate enough to complete the main task of
correctly predicting all test data:

TP

Precision =+, 10
recision TP n FP ( )
TP
Recall= — . 11
T TPy EN (1)

Simultaneously, behind the normal federated learning,
the adversary is subtly acquiring enough fake samples
through GANs and trained the attack model. After the
membership inference, we evaluate the attack from the per-
spective of the class. Figure 10 illustrates our attack effective-
ness on the three datasets. In order to fully demonstrate the
inference results, we use the values of precision and recall to
visualize the effect. The calculation formulas are shown in
formulas (10) and (11), where TP means true positive, FN
means false negative, and FP means false positive. We take
the number of labels each participant has into account, sup-
posing that the victim holds data with more than one label,
which may disrupt the membership inference. We observe
the effectiveness of attacks under the conditions of one label,
two labels, three labels, and five labels. As is distinctly exhib-
ited in the diagram, when participants hold more labels, the
effect of membership inference launched by adversary pre-
tending to be a participant will be worse, just as the values
of precision and recall both drop from more than 80% to
around 50%. But the adversary as a central server is not
influenced by multiple classes, which benefits from restoring
a designated participant’s data pertinently. Contrast can be
seen in these two modes, server-side’s directive membership

inference breaks through the bottleneck of being a client-
side adversary that has no idea about the source of the fake
data with multiple classes. We also draw some ROC curves
to highlight this difference, where the variable is still the
number of labels. Figures 11 and 12 show that when the tar-
get victim owns one or two labels around, the inference
model on the client side can mark the member data as
“IN” and the nonmember data as “OUT” with relative preci-
sion. However, with more classes, the false positive rate goes
up a lot. Next, we will focus on trying to solve the problem of
how to identify member data when there is data overlap
between participants.

To highlight the advantages of our scheme, we compare
the scheme with the active inference attacks based on the
SGA method designed by Nasr et al. [8]. The inference accu-
racy of experiments based on the SGA method can reach
about 76% on the CIFAR-100 dataset, which is close to the
case where the participant holds one label in our CIFAR-
10 experiment. But the biggest innovation is the attack
objective. Nasr et al. [8] stated that the local adversary per-
forms the inference against all other participants. In other
words, this is the membership inference for the entire train-
ing data of the federated learning, which is not specific
enough in our opinion. Our method can invoke membership
inference directed to an individual participant under feder-
ated learning.

6. Discussion

This paper concentrates on the scenario of data instances
where different participants do not have the data with the
same class. This is reasonable because, in the federated
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learning field, there are cases where different participants
uphold a common training objective but possess very confi-
dential (not shared) data with different labels. For example,
if multiple variants of a virus are found in different countries
and research institutions are reluctant to share data records
with other foreign virologists for analysis, federated learning
can play a huge role. At this time, the data with different
labels are scattered across countries without any overlap,
which is in line with our hypothetical scenario. However,
what needs to be soberly aware is that the adversary’s prepa-

ratory knowledge of the label information is not the end of
our solution. Frankly speaking, in this paper, analyzing and
classifying the ownership of target data are still at the pri-
mary stage of an ideal membership inference for federated
learning. It is relatively easy for the adversary to get the
answer. In fact, when some different data with the same label
are scattered among the participants, the attack model can
still give the data attribution, which is the advanced stage.
Back to our proposed method, the ultimate goal of the data
augmentation architecture we built is to simulate the
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victim’s training data as much as possible to achieve
advanced federated learning inference. At present, we have
not been able to achieve this function. But we firmly believe
that the introduced data augmentation architecture is the
prototype of the possible technology for solving the
advanced inference of federated learning in the future. We
designed it as a reference to lay the foundation for future
research. Currently, one potential breakthrough is to extract
other “nontarget features” of the participants as the distin-
guishing elements [40], which need to be analyzed based
on specific data. For a common example, the federated
learning training bases on a globally distributed face dataset
and the target representative are “whether wearing glasses or
not.” At this point, the face samples from the target area can
be further filtered according to “complexion.” Accordingly,
the key feature of the membership inference model is chan-
ged to “complexion.” Another possible way is the “conspir-
acy” that the server is colluding with the adversary or
multiple adversaries are colluding. Demonstrating the feasi-
bility of these conceptions will be put into our future work.

It is worth adding that, with the continuous training of
massive data, the artificial intelligence algorithm model we
adopted can better mine the intrinsic correlation of data,
which may have better or even unexpected results.

Last but not least, in view of the instability and risk of the
federated learning mechanism disclosed in this paper, we
would like to propose some defense methods for the feder-
ated learning training process as our research contribution.
We envision that the declaration information can be
encrypted before participants start training. In this way, with
the exception of the central server, the label information of
all participants is unknown to each other, and it is difficult
for the client-side adversary to distinguish the ownership

of data. Obviously, asynchronous federated learning might
be a more recommended privacy-preserving approach in
more scenarios.

7. Conclusion

This paper is aimed at exploring an active and targeted
membership inference attack model for federated learning
in the wireless network environment. We proposed a fine-
grained membership inference mode in the wireless environ-
ment, called the user-level membership inference. Given the
traditional membership inference in centralized and distrib-
uted learning, we release the assumptions of some previous
researches and launch membership inference from the client
side and server side against a specific participant’s data pri-
vacy. In order to counteract the influence of the privacy pro-
tection mechanism of federated learning posed to
membership inference, where the adversary in the client side
could only access an aggregated global model, we propose a
data augmentation method using GANs with wireless mon-
itor technique to obtain the high-quality generated samples
with all labels. Not only that, we comprehensively study
the case of a malicious server and successfully complete the
membership inference task when participants hold data with
multiple labels. Through the extensive experiments on three
classic datasets, MNIST, CIFAR-10, and AT&T, we manage
to prove that our proposed membership inference attack
model can practically compromise the victim’s privacy at
the user level.

At last, we discuss the hypothetical premises of this
paper and come up with some possible ideas. In future work,
we will study these promising aspects, especially the
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duplicated samples in the training sets, to prove their ratio-
nalities through experiments.

Data Availability
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MNIST:  http://yann.lecun.com/exdb/mnist/, CIFAR-10:
https://www.cs.toronto.edu/~kriz/cifar.html, and AT&T:
https://www.kaggle.com/kasikrit/att-database-of-faces.
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