
Constructing experimental designs with
the edibble R-package

Presenter: Emi Tanaka

 Department of Econometrics and Business Statistics,
 Monash University, Melbourne, Australia

 emi.tanaka@monash.edu

 @statsgen

 9 Nov 2021 @ Applications of Statistical Procedures in Biological Data

https://twitter.com/statsgen

 Table of Contents

1 Experimental design basics

2 Current state of experimental design tools

3 Software design for an everyday user

4 The grammar of experimental designs with edibble

 These slides made using R powered by HTML/CSS/JS can be found at

emitanaka.org/slides/stats4bio2021/edibble

https://emitanaka.org/slides/stats4bio2021/edibble

1

Experimental design basics

Experiment
Essential scientific endeavors to collect data to

explore, understand or verify phenomena.

4/76

Experimental data
The gold standard in data collection.

(provided that experimental design is satisfactory)

5/76

Comparative experiments
Collecting data to compare the effects of different
conditions under a controlled environment with the

goal of drawing generalisable conclusions

6/76

Designing comparative experiments

Planning the controlled environment such that there is a higher
confidence that effects can be attributed to selected conditions

... to identify data-collection schemes that achieve sensitivity and specificity requirements despite biological
and technical variability, while keeping time and resource costs low.

— Krzywinski & Altman (2014)

“

Krzywinski, M., Altman, N. Designing comparative experiments. Nat Methods 11, 597–598 (2014). https://doi.org/10.1038/nmeth.29747/76

https://doi.org/10.1038/nmeth.2974

Basic terminology in comparative experiments modi�ed versions of Bailey (2008)

A treatment is the entire description of
the condition applied to an experimental unit.

 ()

Experimental unit is the smallest unit that
the treatment can be independently applied to.

 (Ω)

Observational unit is the smallest unit in
which the response will be measured on.

Not to be confused with responses .

May or may not be the same as
experimental unit.

 ()Ωo

Y

Block, also called cluster, is the unit that group
some other units (e.g. experimental units) such
that the units within the same block (cluster)
are more alike (homogeneous).

A design is the allotment of
treatments to particular set of units.

 (D : Ω →)

A plan or layout is the design translated into
actual units. Randomisation is usually involved
in the translation process.

Bailey, R. (2008). Design of Comparative Experiments (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge: Cambridge University Press.
doi:10.1017/CBO9780511611483 8/76

Experimental structures as de�ned by Bailey (2008)

Unit structure means meaningful ways of
dividing up experimental units and
observational units .

For example:

Unstructured

Blocking

(Ω)

()Ωo

Treatment structure means meaningful ways
of dividing up .

For example:

Unstructured: no grouping within

Factorial: all combinations of at least two
factors

Factorial + control

Bailey, R. (2008). Design of Comparative Experiments (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge: Cambridge University Press.
doi:10.1017/CBO9780511611483 9/76

Unreplicated experiments

Experimental units: 3 cows

Observational units: 3 cows

Observation: milk yield

Treatments: 3 types of supplements

Allotment: supplements cows

Replication: 1 each

Conclusion: produces most therefore is the most
effective supplement for higher milk yield from cows out of
the three supplements tested

 How confident will you be of this
conclusion?

No individual experimental units are the same
(with some exceptions)

10/76

Treatment replications

Experimental units: 6 cows

Observational units: 6 cows

Observation: milk yield

Treatments: 3 types of supplements

Allotment: supplements cows

Replication: 2 each

Conclusion: produces most on average therefore is
the most effective supplement for higher milk yield from
cows out of the three supplements tested

 How confident will you be of this
conclusion now?

Treatment replications here allow us to estimate
experimental unit (or error) variation

11/76

Plan 1 Treatment allocation for nested unit structure

Units: 2 pens with 3 cows each

Observational units: 6 cows

Treatments: 3 types of supplements

Allotment: supplements cows

 Are the treatment means of say,
 and comparable?

 How would you distribute the
treatments?

12/76

Plan 2 Treatment allocation for nested unit structure

Every treatment appears once in each pen

This is a better design since each treatment appears in
every pen so you can be more confident that the
treatment means are not due to the conditions of
particular pens

13/76

Systematic designs

Experimental units: 6 cows

Observational units: 6 cows

Observation: milk yield

Treatments: 3 types of supplements

Allotment: supplements cows

Replication: 2 each

Assignment: systematic order

 What could go wrong with this?
The order of the experimental units may be confounded
with some extraneous factor

Like say, the order of the experimental units was
determined by the speed (fast to slow) of the cow to get
to the feed

This means that the more active cows are given and
leasat active ones are given

14/76

Randomised designs

Experimental units: 6 cows

Observational units: 6 cows

Observation: milk yield

Treatments: 3 types of supplements

Allotment: supplements cows

Replication: 2 each

Assignment: random order

Randomisation protects you against bias and potential
unwanted confounding with extraneous factors

Bias comes in many forms: obvious to not-so obvious,
known to unknown, and so on.

Randomisation doesn't mean it'll completely shield you
from all biases!

You can get a systematic order by chance! This
doesn't mean you should keep on randomising your
design until get the layout you want! You should instead
add another unit structure before randomisation.

15/76

Factorial treatment structure 1

Experimental units: 12 plots

Observational units: 12 plots

Observation: wheat yield

Treatments: combination of:

Water: irrigated or rain-fed

Fertilizer: type A or type B

Allotment:

Water plots

Fertilizer plots

Assignment: random order

 How many treatments
are there?

Treatment Replication

3

3

3

3

Treatment factor Count

6

6

6

6 16/76

Factorial treatment structure 2

Experimental units: 12 plots

Observational units: 12 plots

Observation: wheat yield

Treatments: combination of:

Water: irrigated or rain-fed

Fertilizer: type A or type B

Allotment:

Water and fertilizer plots

Assignment: random order

Treatment Replication

3

3

3

3

Treatment factor Count

6

6

6

6 17/76

Factorial treatment structure, nested unit structure, and treatment constraint

Units: 6 strips with 2 plots each

Observational units: 12 plots

Observation: wheat yield

Treatments: combination of:

Water: irrigated or rain-fed

Fertilizer: type A or type B

Allotment:

Water strip

Fertilizer plot

Assignment: random order

18/76

 Some classical "named" experimental designs

A Completely Randomised Design

B Randomised Complete Block Design

C Factorial Design

D Split-Plot Design

A Completely Randomised Design (CRD)

Experimental units: 6 cows

Observational units: 6 cows

Observation: milk yield

Treatments: 3 types of supplements

Allotment: supplements cows

Replication: 2 each

Assignment: random order
20/76

B Randomised Complete Block Design (RCBD)

Units: 2 pens with 3 cows each

Observational units: 6 cows

Treatments: 3 types of supplements

Allotment: supplements cows,
with restriction such that each
treatment appears once in each pen

Assignment: random order
21/76

C Factorial Design

Experimental units: 12 plots

Observational units: 12 plots

Observation: wheat yield

Treatments: combination of:

Water: irrigated or rain-fed

Fertilizer: type A or type B

Allotment:

Water and fertilizer plots

Assignment: random order

22/76

D Split-Plot Design

Units: 6 strips with 2 plots each

Observational units: 12 plots

Observation: wheat yield

Treatments: combination of:

Water: irrigated or rain-fed

Fertilizer: type A or type B

Allotment:

Water strip

Fertilizer plot

Assignment: random order

23/76

2

Current state of experimental
design tools

CRAN Task View of
Design of Experiments

& Analysis of Experimental Data
contains

📦 109 R-packages
based on the ctv package version 0.8.5

 In contrast, only a handful of libraries exist in Python
(namely pyDOE, pyDOE2, dexpy, experimenter and GPdoemd). 25/76

Design of experiments area appear to have the least collaboration

Thanks to Dewi Lestari Amaliah for the graph!

Authors tend to work in silos
limited knowledge sharing across
silos perhaps

Topic
of

packages

% of
packages

connected
within
topic

Averag
o

author

Analysis of
Pharmacokinetic
Data

18 16.67 3

Hydrological
Data and
Modeling

96 21.88 3

Design of
Experiments
(DoE) & Analysis
of Experimental
D t

109 24.77 2

26/76

Top downloaded R-packages in the design of experiments
Top 5 in 2016

Package Downloads

agricolae 73,521

AlgDesign 57,037

ez 37,488

lhs 23,518

DoE.base 20,651

Top 5 in 2020

Package Downloads

agricolae 171,813

lhs 165,415

AlgDesign 153,582

DiceKriging 92,287

DiceDesign 88,160

agricolae is one of the top downloaded
(total download based on logs from the RStudio CRAN mirror scrubbed by Danyang Dai)

27/76

https://twitter.com/Daidaidai2014

agricolae
a case of classical named randomised designs

A agricolae::design.crd
Completely randomised design for treatments with replicates each

trt <- c("A", "B", "C")
agricolae::design.crd(trt = trt, r = 2)

$parameters
$parameters$design
[1] "crd"

$parameters$trt
[1] "A" "B" "C"

$parameters$r
[1] 2 2 2
##

t = 3 2

29/76

design sketch

B agricolae::design.rcbd
Randomised complete block design for treatments with blocks

trt <- c("A", "B", "C")
agricolae::design.rcbd(trt = trt, r = 2)

$parameters
$parameters$design
[1] "rcbd"

$parameters$trt
[1] "A" "B" "C"

$parameters$r
[1] 2
##

t = 3 2

30/76

design sketch

C agricolae::design.ab()
Factorial design for treatments with replication for each treatment

agricolae::design.ab(trt = c(3, 2), r = 2, design = "crd")

Note not A/B testing!

$parameters
$parameters$design
[1] "factorial"

$parameters$trt
[1] "1 1" "1 2" "2 1" "2 2" "3 1" "3 2"

$parameters$r
[1] 2 2 2 2 2 2
##

t = 3 × 2 2

31/76

design sketch

D agricolae::design.split()
Split-plot design for treatments with replication for each treatment

trt1 <- c("I", "R"); trt2 <- LETTERS[1:4]
agricolae::design.split(trt1 = trt1, trt2 = trt2, r = 2, design = "crd")

$parameters
$parameters$design
[1] "split"

$parameters[[2]]
[1] TRUE

$parameters$trt1
[1] "I" "R"

t = 2 × 4 2

32/76

design sketch

Good design considers units and treatments first, and
then allocates treatments to units. It does not choose
from a menu of named designs.

—Rosemary Bailey (2008)

“

33/76

AlgDesign
a case of optimised (model-based) designs

AlgDesign::gen.factorial()
First, a helper function to create the treatment (and replicate) combinations:

dat <- AlgDesign::gen.factorial(levels = 3,
 nVars = 3,
 center = FALSE,
 varNames = c("irrigation",
 "fertilizer",
 "variety"),
 factors = "all")
dat

irrigation fertilizer variety
1 1 1 1
2 2 1 1
3 3 1 1
4 1 2 1
5 2 2 1
6 3 2 1

35/76

AlgDesign::optFederov
Optimum design with 14 trials using Federov's exchange algorithm

AlgDesign::optFederov(frml = ~ ., # assume additive effects
 data = dat,
 nTrials = 14,
 criterion = "D")

$D
[1] 0.2343815

$A
[1] 6.25

$Ge

36/76

AlgDesign::optBlock()
An optimal design with 3 blocks of size 9.

AlgDesign::optBlock(frml = ~ ., # assume additive effects
 withinData = dat,
 blocksizes = rep(9, 3),
 criterion = "D")

$D
[1] 0.1924501

$diagonality
[1] 0.866

$Blocks

37/76

What were the experiments about?

Context is key in
experimental design

Units and allocation are often implicitly understood

38/76

3

Software design
for an everyday user

Bene�ts of programming
Computational reproducibility1

Allows greater flexibility2

Can promote higher order thinking
if the software is designed with the
user in mind

3

40/76

Software design for users
A user interacts with the software
interface
The interface design can make a
huge difference to an everyday user

41/76

 Drawing faces 1 Speci�c instructions for the computer
Drawing a happy face
library(grid)
face shape
grid.circle(x = 0.5, y = 0.5, r = 0.5)

eyes
grid.circle(x = c(0.35, 0.65),
 y = c(0.6, 0.6),
 r = 0.05,
 gp = gpar(fill = "black"))

mouth
grid.curve(x1 = 0.4, y1 = 0.4,
 x2 = 0.6, y2 = 0.4,
 square = FALSE)

42/76

 Drawing faces 1 Speci�c instructions for the computer
Drawing a sad face
library(grid)
face shape
grid.circle(x = 0.5, y = 0.5, r = 0.5)

eyes
grid.circle(x = c(0.35, 0.65),
 y = c(0.6, 0.6),
 r = 0.05,
 gp = gpar(fill = "black"))

mouth
grid.curve(x1 = 0.4, y1 = 0.4,
 x2 = 0.6, y2 = 0.4,
 square = FALSE,
 curvature = -1)

43/76

 Drawing faces 2 Functional instructions for the computer
Use functions to draw faces
face1 <- function() {
 grid::grid.circle(x = 0.5, y = 0.5, r = 0.5)
 grid::grid.circle(x = c(0.35, 0.65),
 y = c(0.6, 0.6),
 r = 0.05,
 gp = gpar(fill = "black"))
 grid::grid.curve(x1 = 0.4, y1 = 0.4,
 x2 = 0.6, y2 = 0.4,
 square = FALSE)
}

face2 <- function() {
 grid::grid.circle(x = 0.5, y = 0.5, r = 0.5)
 grid::grid.circle(x = c(0.35, 0.65),
 y = c(0.6, 0.6),
 r = 0.05,
 gp = gpar(fill = "black"))
 grid::grid.curve(x1 = 0.4, y1 = 0.4,
 x2 = 0.6, y2 = 0.4,
 square = FALSE,
 curvature = -1)
}

face1()

face1()

face2()

face2()

face1()

face1()

44/76

 Drawing faces 3 Human-centered design
Adapt computational systems for human use with syntactic sugar
face1() face2() face3()

?
Alternative function names:

face_happy() face_sad() face_angry()

 Now what do you expect for the output?
Functions are named after emotions

Emotion is a surrogate for describing the entire face

45/76

What if you want to draw a face that is winking?
... with a grin?
... or with the tongue out?

The differences between facial features are small, but
you need an entire new function that contains
instructions for the whole face and a new function
name.
 How would you design the system to draw faces?

46/76

 Drawing faces 4 Rethinking function arguments as facial parts
Let's reframe how we think

47/76

 Drawing faces 4 Rethinking function arguments as facial parts
Let's reframe how we think
 https://github.com/emitanaka/portrait

library(portrait)

Let's reframe how we think

A face is made up of:

eyes

mouth

shape

48/76

https://github.com/emitanaka/portrait

 Drawing faces 4 Rethinking function arguments as facial parts
Let's reframe how we think
 https://github.com/emitanaka/portrait

library(portrait)

Let's reframe how we think

A face is made up of:

eyes

mouth

shape

face(eyes = "googly",
 mouth = "smile",
 shape = "round")

face(eyes = "round",
 mouth = "sad",
 shape = "oval")

We can easily make large number of faces with a single function

It makes users think about faces based on facial features

 But what about hair, nose and other facial features?
49/76

https://github.com/emitanaka/portrait

 Drawing faces 4 Rethinking function arguments as facial parts
Let's reframe how we think

A face is made up of:

eyes

mouth

shape

hair

nose

Adding more arguments:

face(eyes = "googly",
 mouth = "smile",
 shape = "round",
 hair = "none",
 nose = "simple")

face(eyes = "googly",
 mouth = "smile",
 shape = "round",
 hair = "mohawk",
 nose = "simple")

 But about other facial features?
50/76

 Drawing faces 5 Object oriented programming
Rethink everything as an object

51/76

 Drawing faces 5 Object oriented programming
Rethink everything as an object
library(portrait)
face()

52/76

 Drawing faces 5 Object oriented programming
Rethink everything as an object
library(portrait)
face() +
 cat_shape()

53/76

 Drawing faces 5 Object oriented programming
Rethink everything as an object
library(portrait)
face() +
 cat_shape() +
 cat_eyes()

54/76

 Drawing faces 5 Object oriented programming
Rethink everything as an object
library(portrait)
face() +
 cat_shape() +
 cat_eyes() +
 cat_nose()

55/76

 Drawing faces 5 Object oriented programming
Rethink everything as an object
library(portrait)
face() +
 cat_shape() +
 cat_eyes() +
 cat_nose() +
 cat_whiskers()

56/76

 Drawing faces 5 Object oriented programming
Rethink everything as an object
library(portrait)
face() +
 dog_shape() +
 cat_eyes(fill = "red") +
 cat_nose() +
 cat_whiskers()

57/76

 Drawing faces 5 Object oriented programming
Rethink everything as an object
library(portrait)
face() +
 dog_shape() +
 cat_eyes(fill = "red") +
 cat_nose() +
 cat_whiskers(size = 6,
 color = "brown") +
 sketch_mouth(smile = 0.3,
 size = 3)

58/76

Software design for everyday users

The tool you choose to use can enforce a certain way
of thinking and may restrict you on what you can do.

Imperative instructions for the computer more work for humans1

Recipe functions One function to draw one complete face2

Syntactic syntax Make it easier for humans to read code3

A function with multiple arguments
One function to draw multiple complete faces

4

Finite number of functions to draw
infinite possible incomplete and complete faces

5

59/76

4

The grammar of experimental
designs with edibble

The grammar of experimental design with edibble
library(edibble)
start_design("My experiment") My experiment

61/76

The grammar of experimental design with edibble
library(edibble)
start_design("My experiment") %>%
 set_units(wholeplot = 4)

My experiment
└─wholeplot (4 levels)

62/76

The grammar of experimental design with edibble
library(edibble)
start_design("My experiment") %>%
 set_units(wholeplot = 4) %>%
 set_units(subplot = nested_in(wholeplot, 2))

My experiment
└─wholeplot (4 levels)

└─subplot (8 levels)

63/76

The grammar of experimental design with edibble
library(edibble)
start_design("My experiment") %>%
 set_units(wholeplot = 4,
 subplot = nested_in(wholeplot, 2))

My experiment
└─wholeplot (4 levels)

└─subplot (8 levels)

64/76

The grammar of experimental design with edibble
library(edibble)
start_design("My experiment") %>%
 set_units(wholeplot = 4,
 subplot = nested_in(wholeplot, 2)) %>%
 set_trts(water = c("irrigated", "rainfed"),
 fertilizer = c("A", "B"))

My experiment
├─wholeplot (4 levels)
│ └─subplot (8 levels)
├─water (2 levels)
└─fertilizer (2 levels)

65/76

The grammar of experimental design with edibble
library(edibble)
start_design("My experiment") %>%
 set_trts(water = c("irrigated", "rainfed"),
 fertilizer = c("A", "B")) %>%
 set_units(wholeplot = 4,
 subplot = nested_in(wholeplot, 2))

My experiment
├─water (2 levels)
├─fertilizer (2 levels)
└─wholeplot (4 levels)

└─subplot (8 levels)

66/76

The grammar of experimental design with edibble
library(edibble)
start_design("My experiment") %>%
 set_trts(water = c("irrigated", "rainfed")) %>%
 set_units(wholeplot = 4) %>%
 set_trts(fertilizer = c("A", "B")) %>%
 set_units(subplot = nested_in(wholeplot, 2))

My experiment
├─water (2 levels)
├─wholeplot (4 levels)
│ └─subplot (8 levels)
└─fertilizer (2 levels)

67/76

The grammar of experimental design with edibble
library(edibble)
start_design("My experiment") %>%
 set_units(wholeplot = 4,
 subplot = nested_in(wholeplot, 2)) %>%
 set_trts(water = c("irrigated", "rainfed"),
 fertilizer = c("A", "B")) %>%
 allot_trts(water ~ wholeplot,
 fertilizer ~ subplot)

My experiment
├─wholeplot (4 levels)
│ └─subplot (8 levels)
├─water (2 levels)
└─fertilizer (2 levels)
Allotment:
• water ~ wholeplot
• fertilizer ~ subplot

68/76

The grammar of experimental design with edibble
library(edibble)
start_design("My experiment") %>%
 set_units(wholeplot = 4,
 subplot = nested_in(wholeplot, 2)) %>%
 set_trts(water = c("irrigated", "rainfed"),
 fertilizer = c("A", "B")) %>%
 allot_trts(water ~ wholeplot,
 fertilizer ~ subplot) %>%
 assign_trts("random", seed = 1)

My experiment
├─wholeplot (4 levels)
│ └─subplot (8 levels)
├─water (2 levels)
└─fertilizer (2 levels)
Allotment:
• water ~ wholeplot
• fertilizer ~ subplot
Assignment: random

69/76

The grammar of experimental design with edibble
library(edibble)
start_design("My experiment") %>%
 set_units(wholeplot = 4,
 subplot = nested_in(wholeplot, 2)) %>%
 set_trts(water = c("irrigated", "rainfed"),
 fertilizer = c("A", "B")) %>%
 allot_trts(water ~ wholeplot,
 fertilizer ~ subplot) %>%
 assign_trts("random", seed = 1) %>%
 serve_table()

An edibble: 8 x 4
wholeplot subplot water fertilizer
<unit(4)> <unit(8)> <trt(2)> <trt(2)>

1 wholeplot1 subplot1 irrigated A
2 wholeplot1 subplot2 irrigated B
3 wholeplot2 subplot3 irrigated A
4 wholeplot2 subplot4 irrigated B
5 wholeplot3 subplot5 rainfed B
6 wholeplot3 subplot6 rainfed A
7 wholeplot4 subplot7 rainfed B
8 wholeplot4 subplot8 rainfed A

70/76

The grammar of experimental design with edibble
library(edibble)
start_design("Modified design") %>%
 set_units(block = 2,
 subplot = nested_in(block, 4)) %>%
 set_trts(water = c("irrigated", "rainfed"),
 fertilizer = c("A", "B")) %>%
 allot_trts(water:fertilizer ~ subplot) %>%
 assign_trts("random", seed = 1) %>%
 serve_table()

An edibble: 8 x 4
block subplot water fertilizer

<unit(2)> <unit(8)> <trt(2)> <trt(2)>
1 block1 subplot1 irrigated A
2 block1 subplot2 irrigated B
3 block1 subplot3 rainfed B
4 block1 subplot4 rainfed A
5 block2 subplot5 rainfed A
6 block2 subplot6 irrigated B
7 block2 subplot7 rainfed B
8 block2 subplot8 irrigated A

The resulting design is what
we call "randomised complete
block design"

71/76

The grammar of experimental design with edibble
library(edibble)
start_design("Modified design") %>%
 set_units(block = 2,
 subplot = nested_in(block, 4)) %>%
 set_trts(water = c("irrigated", "rainfed"),
 fertilizer = c("A", "B")) %>%
 allot_trts(water:fertilizer ~ subplot) %>%
 assign_trts("random", seed = 1) %>%
 set_rcrds_of(subplot = c("yield", "disease"),
 block = "manager") %>%
 serve_table()

The functions are reminiscent of the fundamental experimental
terminology

An edibble: 8 x 7
block subplot water fertilizer yield disease manager

<unit(2)> <unit(8)> <trt(2)> <trt(2)> <rcrd> <rcrd> <rcrd>
1 block1 subplot1 irrigated A ■ ■ ■
2 block1 subplot2 irrigated B ■ ■ x
3 block1 subplot3 rainfed B ■ ■ x
4 block1 subplot4 rainfed A ■ ■ x
5 block2 subplot5 rainfed A ■ ■ ■
6 block2 subplot6 irrigated B ■ ■ x
7 block2 subplot7 rainfed B ■ ■ x
8 block2 subplot8 irrigated A ■ ■ x

72/76

The grammar of experimental design with edibble

export_design(out, file = "design-layout.xlsx", overwrite = TRUE)

The exported file has data validation features embedded

out <- start_design("Modified design") %>%
 set_units(block = 2,
 subplot = nested_in(block, 4)) %>%
 set_trts(water = c("irrigated", "rainfed"),
 fertilizer = c("A", "B")) %>%
 allot_trts(water:fertilizer ~ subplot) %>%
 assign_trts("random", seed = 1) %>%
 set_rcrds_of(subplot = c("yield", "disease"),
 block = "manager") %>%
 expect_rcrds(yield = to_be_numeric(with_value(">=", 0)),
 disease = to_be_factor(levels = c("none", "moderate", "severe"))
 serve_table()

73/76

There are more (not-well documented) features in edibble
More on those on Thursday!

74/76

Our understanding of experimental design is
growing and so the tool should evolve with better
understanding
The idea for edibble was conceived early 2019, the
code base was released publicly on 31st Dec 2020.
Since its initial public realease, underlying structure
in edibble has evolved drastically for the better
The development of a good tool is a community
effort so... 75/76

Get in touch!

The purpose of edibble is to help you plan experiments better

edibble gets better with feedback

Feature requests or issues with edibble? Submit or upvote here:
github.com/emitanaka/edibble/issues, send me an email or tell me
now!

Slides: emitanaka.org/slides/stats4bio2021/edibble

Package documentation: edibble.emitanaka.org

Source code: github.com/emitanaka/edibble

emi.tanaka@monash.edu @statsgen

76/76

https://github.com/emitanaka/edibble/issues
https://emitanaka.org/slides/stats4bio2021/edibble
https://edibble.emitanaka.org/
https://github.com/emitanaka/edibble
mailto:emi.tanaka@monash.edu
https://twitter.com/statsgen

