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Example 1  trees: consider a multiple linear regression

Consider the trees data with measurements of

diameter (Girth) in inches (x1),

Height in ft (x2) and

Volume in cubic ft (y).

Different forms of the model equation:

Index format:

yi = β0 + β1x1i + β1x2i + ei

for i = 1, . . . , n with assumption ei ∼ N(0, σ2).

1

Vector format:

y = β01n + β1x1 + β2x2 + e

where y = (y1, . . . , yn)
⊤, x1 = (x11, . . . , x1n)

⊤, 1n is a vector of 1s with length n, 
x2 = (x21, . . . , x2n)

⊤ and e = (e1, . . . , en)
⊤.

2

Matrix format:

y = Xβ + e

where X = 1n x1 x2  and β = (β0, β1, β2)
⊤.

3

[ ]

equation
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Example 1  trees: consider other models
You normally consider more than one model...

 So how do you specify these models in software?

Vector format:

A  y = β01n + β1x1 + β2x2 + e1 

B  y = β01n + β1log(x1) + β2x2 + e2 

C  √y = β01n + β1log(x1) + β2x2 + e3

equation

Matrix format: y ′ = Xβ + e

A  y ′ = y and X = 1n x1 x2  

B  y ′ = y and X = 1n log(x1) x2  

C  y ′ = √y and X = 1n log(x1) x2

[ ]
[ ]
[ ]

equation
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Design matrix input A
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Design matrix input C  transformations
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Symbolic model formulae A
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Symbolic model formulae C  transformations
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Example 2  Rice yield experiment

yield: Grain yield in kg/ha

rep: Replicate number

nitro: Nitrogen fertilizer in kg/ha

gen: Rice variety

col: Column index of the plot

row: Row index of the plot

library(edibble)
replicate(3, {
  start_design("Schema") %>% 
    set_units(row = 6,
              col = 3,
              plot = ~row:col) %>% 
    set_trts(gen = c("G1", "G2", "G3", "G4", "G5", "G6"),
             nitro = c(0, 60, 120)) %>% 
    allot_trts(gen ~ row,
               nitro ~ col) %>% 
    assign_trts() %>% 
    set_rcrds(yield = plot) %>% 
    serve_table() })

##       [,1]         [,2]         [,3]        
## row   Character,18 Character,18 Character,18

Kevin Wright (2018). agridat: Agricultural Datasets. R package version 1.16. https://CRAN.R-project.org/package=agridat 
Gomez, K.A. and Gomez, A.A.. 1984, Statistical Procedures for Agricultural Research. Wiley-Interscience. Page 110. 10/87
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Example 2  Rice yield experiment: categorical variable
 What model are we fitting below?

For i = 1, . . . , 6 and j = 1, . . . , 9,

yij = μ + αT ( i , j ) + eij

where:

yij is the yield of the plot on i-th row and j-th column

μ is the overall mean

αk is the k-th genotype effect on yield

T(i, j) is the function that maps the (i, j)-th plot to genotype index

eij is the (i, j)-th error, and

assuming α1 = 0 and eij ∼ N(0, σ2).

lm(yield ~ 1 + gen, data = agridat::gomez.stripplot)

code in R
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Example 2  Rice yield experiment: equivalent model with matrix input

X <- model.matrix(~ 1 + gen, data= agridat::gomez.stripplot)
y <- agridat::gomez.stripplot$yield

lm.fit(X, y)

## $coefficients
## (Intercept)       genG2       genG3 
##   5417.2222    869.2222    662.8889 
## 
## $residuals
##  [1] -3044.22222 -1341.22222  1836.7
##  [7] -3460.11111 -1404.11111  1585.8

lm(yield ~ 1 + gen, data = agridat::gomez.stripplot)

code in R
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Example 2  Rice yield experiment: interaction effects
 What model are we fitting below?

Remember nitro is encoded as a numerical variable!

This is like fitting a simple linear regression to every genotype note: error variance estimate is pooled here though

For i = 1, . . . , 6 and j = 1, . . . , 9,

yij = μ + αT ( i , j ) + βxij + βT ( i , j )xij + eij

where:

xij is the nitrogen applied on the plot on i-th row and j-th column

β is the slope for the nitrogen value,

βk is the slope of the k-th genotype for nitrogen value, and

assuming α1 = 0 and eij ∼ N(0, σ2) again.

lm(yield ~ 1 + gen +  nitro + gen:nitro, data = agridat::gomez.stripplot)

code in R
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Operators in symbolic formula for linear models
Simplification:

A + B + A = A + B and

A:B:A = A:B

Distributive: (A + B):C = A:C + B:C

Crossing operator: A * B = A + B + A:B

Nesting operator: A / B = A + A:B

Deletion operator: A * B - A:B = A + B

Exponentiation operator: (A + B + C)^2 = A + B + C + A:B + A:C + B:C

Therefore the two models are the same:

lm(yield ~ 1 + gen + nitro + gen:nitro, data = agridat::gomez.stripplot)
lm(yield ~ 1 + gen * nitro, data = agridat::gomez.stripplot)

Chambers, John, and Trevor Hastie. 1993. Statistical Models in S. Chapman & Hall. 
Wilkinson, G. N., and C. E. Rogers. 1973. “Symbolic Description of Factorial Models for Analysis of Variance.” Journal of the Royal Statistical Society. Series C, Applied Statistics 22 (3): 392–99.14/87



Example 2  Rice yield experiment: interaction effects
 What model are we fitting below?

For i = 1, . . . , 6 and j = 1, . . . , 9,

yij = μ + αT ( i , j ) + γS ( j ) + (αγ)T ( i , j ) S ( j ) + eij

where:

αk and γl are the main effects of k-th genotype and l-th nitrogen level,
respectively

(αγ)kl is the interaction effect of the k-th genotype and l-th nitrogen level,

S(j) is the function that maps the j-th column to the nitrogen level, and

assuming α1 = 0, γ1 = 0, (αγ)1l = 0, (αγ)k1 = 0 and eij ∼ N(0, σ2).

lm(yield ~ 1 +  gen * factor(nitro), data = agridat::gomez.stripplot)

code in R
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Example 2  Rice yield experiment: interaction effects
 What changed in this model?

For i = 1, . . . , 6 and j = 1, . . . , 9,

yij = μ + (αγ) ′
T ( i , j ) S ( j )

⏟

αT ( i , j ) + βS ( j ) + (αβ )T ( i , j ) S ( j )

+ eij

where:

(αγ) ′
kl is the sum of the main effects and interaction effect of

the k-th genotype and l-th nitrogen level, and

assuming (αγ) ′
11 = 0, and eij ∼ N(0, σ2).

lm(yield ~ 1 +  gen:factor(nitro), data = agridat::gomez.stripplot)

code in R
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Example 2  Rice yield experiment: random effects

Alternatively: δ = (δ1, δ2, δ3)
⊤

∼ N(0, σ2
rI3) and e ∼ N(0, σ2I54).

 So how do we fit random effects model in R?

yij = μ + (αγ) ′
T ( i , j ) S ( j ) + δR ( j ) + eij

where:

δk is the k-th replicate block effect for k = 1, 2, 3, and

assume δk ∼ NID(0, σ2
r ) and eij ∼ NID(0, σ2).

equation

17/87
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Different names for "mixed models"
Random effects are special case of mixed models

Mixed-effects models are mixed models

Multi-level models are mixed models

Hierarchical models are mixed models

Panel data models are mixed models

Factor analytic models are particular types of mixed models

Latent variable models are generalised versions of factor analytic models ...

19/87



Linear mixed models

Estimate of fixed effects and prediction of random effects is given by:  

Source: Morota (2015) The Origin of BLUP
and MME. 
First appearance of MME and BLUP:

Henderson (1949) Estimation of
changes in herd environment. Journal
of Dairy Science (Abstract) 32 706

Henderson (1950) Estimation of
genetic parameters. Ann Math Stat
(Abstract) 21 309-310

The formal proof that solutions in
Henderson (1949, 1950) are BLUE and
BLUP:

Henderson et al. (1959) The
Estimation of environmental and
genetic trends from records subject to
culling. Biometrics 15 192–218

Henderson (1963) Selection index and
expected genetic advance. In
Statistical Genetics and Plant Breeding
141-163. NAS-NRC 982, Washington,
DC

20/87
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About ASReml
ASReml is a commercial software that fit linear mixed models
using residual maximum likelihood with average information
algorithm.

ASReml-SA refers to the standalone software with the core
written in Fortran.

ASReml-R refers to the asreml R-package that prepares the
input to ASReml-SA and reads the output from ASReml-SA back
into R.

Both ASReml-SA and ASReml-R require the purchase of a license
from VSN International to use it 
 https://www.vsni.co.uk/software/asreml

Current ASReml-R is version 4 but the syntax I will show is
version 3 (the longest version and many papers use this so
syntax is still worth knowing).

Check out Navigating from ASReml-R Version 3 to 4 if you want
to transition to version 4.

Seminal paper for REML: Patterson & Thompson
(1971) Recovery of inter-block information when
block sizes are unequal. Biometrika 58(3) 545-
554

First appearance of AI algorithm: Johnson &
Thompson (1995) Restricted Maximum
Likelihood Estimation of Variance Components
for Univariate Animal Models Using Sparse
Matrix Techniques and Average Information.
Journal of Dairy Science 78(2) 449-456

AI algorithm in ASReml: Gilmour et al. (1995)
Average Information REML: An Efficient
Algorithm for Variance Parameter Estimation in
Linear Mixed Models. Biometrics 51(4) 1440-
1450

Gilmour et al. (1999) ASREML reference manual.
NSW Agriculture Biometric bulletin no. 3; (2002)
ASReml User Guide Release 1.0; (2006) Release
2.0; (2009) Release 3.0; (2015) Release 4.1.

Butler et al. (2007) ASReml-R reference manual.
Release 2.00; (2009) Version 3; (2018) Version 4

Also see Morota (2015) Variance Component
Estimation.
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Example 3  An illustrative multi-environmental �eld trial

Data:

3 genotypes j

3 site i

2 replicates k

Response: yield yijk

Proposed model*:

We show how to fit this model with different variance
structures.
*This is not to say this is the best model! 22/87

info summary data

file:///Users/etan0038/Dropbox/presentations/20211116-ICF/index.html?panelset4=info5#panelset4_info5
file:///Users/etan0038/Dropbox/presentations/20211116-ICF/index.html?panelset4=summary5#panelset4_summary5
file:///Users/etan0038/Dropbox/presentations/20211116-ICF/index.html?panelset4=data5#panelset4_data5


Model �tting in ASReml-R

Random effects are specified in the argument random.

Redisual effects are specified in the argument rcov (or residual in version 4).

The arguments of random and rcov are one-sided formulas.

The terms in random_expr and rcov_expr can be wrapped with a "function" that specify the variance
structure.

Basic syntax structure of ASReml-R:

asreml(response ~ fixed_expr, random=~ random_expr, rcov=~ rcov_expr)

code in R
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Model 1  Simple Model Part 1

In vector format:

u = (u11, . . . , u33)
⊤

∼ N(0, σ2
geI9)

e = (e111, . . . , e332)
⊤

∼ N(0, σ2I18)

dat library(asreml)
fit1 <- asreml(Yield ~ 1 + Site,
               random=~ idv(Site):id(Geno),
               rcov=~ idv(units),
               data = dat)

##    Row Col Site Geno       Yi
## 1    1   1    A   G3  6.46204
## 2    2   1    A   G2  7.90339
## 3    1   2    A   G1  1.54295
## 4    2   2    A   G3  8.24052
## 5    1   3    A   G1  1.58360
## 6    2   3    A   G2  8.82721 24/87



Model 1  Simple Model Part 2

library(asreml)
fit1 <- asreml(Yield ~ 1 + Site,
               random=~ idv(Site):id(Geno),
               rcov=~ idv(units),
               data = dat)

units is a special reserved "word" in asreml equivalent to factor(1:nrow(dat)).

idv(term) refers to the variance structure σ2
termIk where k is the number of levels in the factor term.

id(term) refers to the variance structure Ik where k is the number of levels in the factor term.

If no "function" is wrapped around the random or residual term then the default is idv (or id if in
separable form and idv is unidentiable).

If no argument is supplied for rcov then the default is idv(units).

So the above model is the same as

asreml(Yield ~ Site, random=~ Site:Geno, data = dat)
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ASReml-R model output
Variance parameter estimates

summary(fit1)$varcomp

##                        gamma component std.error  z.ratio constraint
## Site:Geno!Site.var 6.6122518 6.6122518 4.0993384 1.613005   Positive
## R!variance         1.0000000 1.0000000        NA       NA      Fixed
## R!units.var        0.9546142 0.9546142 0.4500094 2.121320   Positive

or a nicer print out:

lucid::vc(fit1)

##              effect component std.error z.ratio constr
##  Site:Geno!Site.var    6.612      4.099     1.6      P
##          R!variance    1             NA      NA      F
##         R!units.var    0.9546     0.45      2.1      P

E-BLUE

coef(fit1)$fixed

##                effect
## Site_A       0.000000

E-BLUP

coef(fit1)$random

##                    effect
## Site_A:Geno_G1 -3.9141343 26/87



Separable variance-covariance structure

"Interaction" effects in the random argument assumes a separable variance-covariance structure

The above is equivalent to var(uge) = σ2
geI3 ⊗ I3 = σ2

geI9

So below is the same as above model:

fit1 <- asreml(Yield ~ 1 + Site,
               random=~ id(Site):idv(Geno),
               data = dat)

var(uge) = I3 ⊗ σ2
geI3 = σ2

geI9

fit1 <- asreml(Yield ~ 1 + Site,
               random=~ idv(Site):id(Geno),
               data = dat)

code in R
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Separable variance-covariance structure: more generally
Given a random term A:B where A and B are factors then the generic
form is f(A):g(B) where

f(A) generates a variance matrix GA say, and

g(B) generates a variance matrix GB say.

Then the corresponding random effects, uA :B, has properties:

var(uA :B) = GA ⊗ GB; and

cov(uij, ukl) = gAi , j
× gBk , l

.

Note assumption of separability

differs to assuming a completely unstructured variance 
var(uA :B) = GAB; and

greatly reduces computational load.

⊗  Kronecker Product

Given general matrices:

 and B.

Then 

Note: gAi,j means the (i,j)-th entry of matrix

GA. Similar definition for gBk,l.
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Variance vs. correlation structure
id() is a correlation structure In

idv() is a variance structure with common
(homogeneous) variance σ2In

idh() (which is the same as diag()) is a
variance structure with a separate
(heterogeneous) variance for each level of factor 
diag(σ2

1, . . . , σ
2
n).

Appending the name of the correlation function with:

v results in adding a homogeneous variance or

h results in heterogeneous variance.

The full list of pre-defined correlation structures
Time Series Type Metric Based General
ar1 exp cor
ar2 gau corb
ar3 iexp corg
sar igau id
sar2 ieuc us
ma1 sph chol
ma2 cir cholc
arma aexp ante

agau fa
mtrn rr

29/87



Model 2  MET Unstructured Model

Same genotype across sites

 General idea: borrow strength across sites to
get more accurate Site:Geno prediction.

Note: below value is rubbish. More on this later.

summary(fit2, nice=T)$nice

## $`Site:Geno`
##           A            B           C
## A  0.150000 -0.030000001 1.581138802
## B -0.030000  0.009486833 1.581138802
## C  1.581139  1.581138802 0.009486833

fit2 <- asreml(Yield ~ Site, 
              random=~ us(Site):id(Geno)
              data = dat)
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Model 3  G-BLUP Model
Genotypes are often related with its relatedness
inferred from pedigree or genetic markers.

This known structure (denoted Gg here) is fitted
in the variance structure as follows:  

 

Say,  

where Ginv is:

Ginv

##   Row Column Value
## 1   1      1   1.5
## 2   2      1   0.5
## 3   2      2   1.5
## 4   3      1  -1.0
## 5   3      2  -1.0
## 6   3      3   2.0

attr(Ginv, "rowNames")

## [1] "G1" "G2" "G3"

fit3 <- asreml(Yield ~ Site, data=dat,
            random=~ us(Site):giv(Geno),
            ginverse=list(Geno=Ginv))

31/87



Model 4  Multi-Trait MET Model
It is perhaps more realistic to fit a model where the
residual error variance differ at different trials.

at(f,l) conditions on level l of factor f. If l is
not specified, conditions on each level of f.

Rules for residual error term:

fit4 <- asreml(Yield ~ Site, data=dat,
            random=~ us(Site):giv(Geno)
            ginverse=list(Geno=Ginv),
            rcov=~at(Site):units)

The number of effects in rcov must be equal to
the number of obeservational units included in
the analysis.

1

Where a compound model term is specified in
rcov, each combination of levels of the simple
model terms comprising this term must uniquely
identify one unit of the data.

2

The data must be ordered to match the rcov
specified.

3
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Single site analysis
fit4A1 <- asreml(Yield ~ Site, random=~Site:Geno, 
                 data=dat, subset=Site=="A")

fit4A2 <- asreml(Yield ~ 1, random=~ Geno,
                 data=dat, subset=Site=="A")

dataA <- subset(dat, Site=="A")
fit4A3 <- asreml(Yield ~ Site, random=~Site:Geno, 
                 data=dataA)

Residuals

resid(fit4A1)

A quick check to see if the (deviance) residual
are the same:

all.equal(resid(fit4A1), 
          resid(fit4A2))

## [1] TRUE

all.equal(resid(fit4A2), 
          resid(fit4A3))

## [1] TRUE

all.equal(resid(fit4A1), 
          resid(fit4A3))

## [1] TRUE

## [1] -0.8496724 -0.3971285 -0.1246779  0.9288109 -0.08
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Equivalence of single site and MET analysis

lucid::vc(fit4)

##                effect component std.error z.ratio constr
##  Site:Geno!Site.A.var   13.13     13.47      0.97      P
##  Site:Geno!Site.B.var    2.524     3.259     0.77      P
##  Site:Geno!Site.C.var    4.182     4.605     0.91      P
##       Site_A!variance    0.6697    0.5468    1.2       P
##       Site_B!variance    1.373     1.121     1.2       P
##       Site_C!variance    0.8214    0.6706    1.2       P

lucid::vc(fit4A)

##         effect component std.error z.ratio constr
##  Geno!Geno.var   13.13     13.47      0.97      P
##     R!variance    0.6697    0.5468    1.2       P

lucid::vc(fit4B)

##         effect component std.error z.ratio constr
##  Geno!Geno.var     2.524     3.259    0.77      P
##     R!variance     1.373     1.121    1.2       P

lucid::vc(fit4C)

##         effect component std.error z.ratio constr
##  Geno!Geno.var    4.182     4.605     0.91      P
##     R!variance    0.8214    0.6706    1.2       P

fit4A <- asreml(Yield ~ 1, random=~ Geno,
                data=dat, subset=Site=="A")
fit4B <- asreml(Yield ~ 1, random=~ Geno,
                data=dat, subset=Site=="B")
fit4C <- asreml(Yield ~ 1, random=~ Geno,
                data=dat, subset=Site=="C")

fit4 <- asreml(Yield ~ Site, data=dat, 
      random=~ diag(Site):Geno, # idh(Site):Geno
      rcov=~ at(Site):units)
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Linear mixed models largely involves thinking 
about the variance-covariance structure

 Specifying the model doesn't mean it correctly fits the model. 

An algorithm tries to estimate the model parameters, however, for
complex models this can be difficult or may not be possible.
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Example 4  Wheat Yield in South Australia

A (near) randomised
complete block experiment
of wheat in South Australia.

The numbers represent the
genotype number.

The color represent the yield
with darker green higher
yield and yellow the lowest.

Gilmour et al. (1997) Accounting for natural and extraneous variation in the analysis of field experiments. Journal of Agricultural, Biological, and Environmental Statistics 2
269-293. 37/87
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Example 4  Baseline analysis
library(asreml)
fit_base <- asreml(yield ~ 1 + gen,
                   random = ~rep,
                   data = gilmour.serpentine,
                   trace = FALSE)

summary(fit_base)$varcomp

##                gamma component std.error    z.ratio constraint
## rep!rep.var 0.953382  12736.29 12857.737  0.9905543   Positive
## R!variance  1.000000  13359.06  1270.851 10.5118980   Positive
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Spatial modelling: Local Trend
General idea: plots that are geographically closer, should be more similar.

First prepare the data in required format:

library(tidyverse)
df <- gilmour.serpentine %>%
  mutate(rowf = factor(row),
         colf = factor(col)) %>% 
  arrange(row, col)

Then fit

fit_ar1xar1 <- asreml(yield ~ 1 + gen,
                      random = ~rep, 
                      rcov = ~ar1v(rowf):ar1(colf),
                      data = df, 
                      trace = FALSE)
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Why AR1 ×  AR1?
rcov = ~ar1v(row):ar1(col)

Low additional number of parameters (three) to estimate but yet the
structure is flexible and anisotropic.

For positive autocorrelation, the structure captures the general idea that
the plots that are geographically close together are more similar.

The AR1 ×  AR1 structure generally fits well in practice.

The distance of plots are
typically measured by the row
and column position with
distance in the row and column
direction thought to be
equidistant respectively.

Anisotropic means correlation in
all directions can be different.

For example, the correlation of
plots that are two rows apart
and three column is ρ2rρ

3
c.
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Other separable processes
If you don't believe that plots are similar in say a column direction then you can model such that the plots
are uncorrelated in column direction.

rcov=~ ar1v(row):id(col)

You can of course do other combinations:

rcov=~ id(row):ar1v(col)
rcov=~ idv(row):id(col)
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(Residual) likelihood ratio test
fit_base$loglik

## [1] -1235.222

fit_ar1xar1$loglik

## [1] -1103.19

lrt(fit_ar1xar1, fit_base)

## Likelihood ratio test(s) assuming nested random models.
## Chisq probability adjusted using Stram & Lee, 1994.
## 
##                      Df LR statistic Pr(Chisq)    
## fit_ar1xar1/fit_base  1       264.06 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Likelihood ratio test(s) assuming nested random models.
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Residual Plot
There is clearly a pattern in the column direction!

This indicates there is some effect in relation to
the column we have not removed.
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Sample varigorams for residuals

Sample variogram is made of:

Variogram is a popular method to detect spatial
dependence.

The idea here is that if we have modelled the
spatial dependence appropriately in the model, the
residuals should not exhibit any spatial
dependence.

In theory, variogram will start with (0,0) and if no
spatial dependence is exhibited then it should
flatten out.

In practice, there is high variability for sample
variogram of plots furthest away due to less
information so it may not be as flat as you like.
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Sample varigorams for residuals
vario_df <- variogram(fit_ar1xar
x <- 0:max(vario_df$colf)
y <- 0:max(vario_df$rowf)
z <- matrix(vario_df$gamma, 
            nrow=length(x), 
            ncol=length(y))
plotly::plot_ly(x=x, y=y, z=z, 
                type="surface")
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Smooth global trend
Smooth global trend is incorporated using cubic smoothing
spline indexed by the column number.
df <- df %>% mutate(lcol=scale(col, scale=F)[,1])
fit_spl <- asreml(yield ~ lcol + gen, 
               random=~rep + spl(lcol), 
               data=df, trace=F,
               rcov=~ar1v(rowf):ar1(colf))
fit_spl <- update(fit_spl)
lucid::vc(fit_spl)

##       effect component std.error z.ratio constr
##  rep!rep.var     0            NA      NA      B
##    spl(lcol)  3275      3231         1        P
##   R!variance     1            NA      NA      F
##   R!rowf.cor     0.794     0.034    24        U
##   R!rowf.var  8697      1501         5.8      P
##   R!colf.cor     0.27      0.077     3.5      U
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Extraneous Variation
We fit a random column effect.
fit_rcol <- asreml(yield ~ lcol + gen, 
               random=~rep + spl(lcol) + colf, 
               data=df, trace=F,
               rcov=~ar1v(rowf):ar1(colf))
fit_rcol <- update(fit_rcol)
lucid::vc(fit_rcol)

##         effect component std.error z.ratio constr
##    rep!rep.var     0            NA      NA      B
##      spl(lcol)  3068     3088         0.99      P
##  colf!colf.var  4167     1984         2.1       P
##     R!variance     1            NA      NA      F
##     R!rowf.cor     0.431    0.0688    6.3       U
##     R!rowf.var  3590      444.6       8.1       P
##     R!colf.cor     0.359    0.0692    5.2       U
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Possible other extraneous variation?

Could management practice have impacted the yield?
Each plot were sprayed with one of the four directions:

, ,  and .

df <- df %>% mutate(colcode=case_when(
  col%%4==1 ~ "updown",
  col%%4==2 ~ "downdown",
  col%%4==3 ~ "downup",
  col%%4==0 ~ "upup"))
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Extraneous Variation
We fit a fixed colcode effect.
fit_colcode <- asreml(yield ~ lcol + gen + colcode, 
               random=~rep + spl(lcol) + colf, 
               data=df, trace=F,
               rcov=~ar1v(rowf):ar1(colf))
fit_colcode <- update(fit_colcode)
lucid::vc(fit_colcode)

##         effect component std.error z.ratio constr
##    rep!rep.var     0            NA      NA      B
##      spl(lcol)  2236     2055          1.1      P
##  colf!colf.var  1382      909.9        1.5      P
##     R!variance     1            NA      NA      F
##     R!rowf.cor     0.433    0.0686     6.3      U
##     R!rowf.var  3597      446.2        8.1      P
##     R!colf.cor     0.36     0.0692     5.2      U
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Extraneous Variation
We fit a random row effect.
fit_rrow <- asreml(yield ~ lcol + gen + colcode, 
               random=~rep + spl(lcol) + colf + rowf, 
               data=df, trace=F,
               rcov=~ar1v(rowf):ar1(colf))
fit_rrow <- update(fit_rrow)
lucid::vc(fit_rrow)

##         effect component std.error z.ratio constr
##    rep!rep.var    0             NA      NA      B
##      spl(lcol) 2250      2050          1.1      P
##  colf!colf.var 1326       906.8        1.5      P
##  rowf!rowf.var  531       265.1        2        P
##     R!variance    1             NA      NA      F
##     R!rowf.cor    0.4775    0.0694     6.9      U
##     R!rowf.var 3015       397.1        7.6      P
##     R!colf.cor    0.1956    0.0922     2.1      U
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Possible more extraneous variation?

The tractor harvested 3 rows at a time. L indicates the
left of the tractor; M is middle and R is right. If the
driver misaligns the center, it may affect the observed
yield.

df <- df %>% mutate(rowcode=case_when(
  row%%3==0 ~ "M",
  TRUE ~ "LR"))
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Extraneous Variation
We fit a random row effect.

##         effect component std.error z.ratio constr
##    rep!rep.var    0             NA      NA      B
##      spl(lcol) 2235      2037          1.1      P
##  colf!colf.var 1319       914.7        1.4      P
##  rowf!rowf.var  235.8     180          1.3      P
##     R!variance    1             NA      NA      F
##     R!rowf.cor    0.5012    0.0676     7.4      U
##     R!rowf.var 3142       419.7        7.5      P
##     R!colf.cor    0.1994    0.0917     2.2      U

0

2000

4000
fit_rowcode <- asreml(yield ~ lcol + gen + colcode + rowcode
               random=~rep + spl(lcol) + colf + rowf, 
               data=df, trace=F,
               rcov=~ar1v(rowf):ar1(colf))
fit_rowcode <- update(fit_rowcode)
lucid::vc(fit_rowcode)
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Extraneous Variation
We fit a nugget/measurement error effect.

##           effect component std.error z.ratio constr
##      rep!rep.var    0             NA      NA      B
##        spl(lcol) 2163      2131         1         P
##    colf!colf.var  811.6    1340         0.61      P
##    rowf!rowf.var  200.6     148.9       1.3       P
##  units!units.var 1315       259.1       5.1       P
##       R!variance    1             NA      NA      F
##       R!rowf.cor    0.9076    0.0851   11         U
##       R!rowf.var 3153      1936         1.6       P
##       R!colf.cor    0.3818    0.1706    2.2       U
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fit_nugget <- asreml(yield ~ lcol + gen + colcode + rowcode,
        random=~rep + spl(lcol) + colf + rowf + units, 
        data=df, trace=F,
        rcov=~ar1v(rowf):ar1(colf))
fit_nugget <- update(fit_nugget)
lucid::vc(fit_nugget)
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All models �tted
Model # of Variance Parameters Log Residual Likelihood

rep 2 -1235.2

rep + AR1xAR1 4 -1103.2

rep + lcol + spl(lcol) + AR1xAR1 5 -1092.2

rep + lcol + spl(lcol) + col + AR1xAR1 6 -1075.7

rep + lcol + spl(lcol) + col + colcode + AR1xAR1 6 -1058.8

rep + lcol + spl(lcol) + col + colcode + row + AR1xAR1 7 -1053.6

rep + lcol + spl(lcol) + col + colcode + row + rowcode + AR1xAR1 7 -1047.6

rep + lcol + spl(lcol) + col + colcode + row + rowcode + units + AR1xAR1 8 -1041.5

Some models have different fixed effects and thus comparison of models based on residual likelihood
will be inappropriate.

The models fitted are not entirely the same as Gilmour et al. (1997), e.g. I did not choose to fit a linear
row effect as I felt that was an overkill but I chose to continue fitting the rep effect as this was part of
the experimental design. The effect of rep is essentially zero so it does not make much difference.
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Key References
Gilmour et al. (1997) Accounting for Natural and Extraneous Variation in the Analysis of Field
Experiments. Journal of Agricultural, Biological, and Environmental Statistics 2(3) 269-293

Extra References
These were not covered in the workshop but statistical tools good to be aware of.

Stefanova et al. (2010) Enhanced diagnostics for the spatial analysis of field trials. Journal of Agricultural,
Biological, and Environmental Statistics 14(4) 392-410

Velazco et al. (2017) Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-
spline mixed model. Theoretical and Applied Genetics 130(7) 1375-1392

Rodríguez-Álvarez et al. (2018) Correcting for spatial heterogeneity in plant breeding experiments with P-
splines. Spatial Statisitcs 23 52-71 Note

Remember: "All models are wrong but some are useful." -George Box

More complex models generally fit the data well but model selection seek to find a parsimonious model.

Model selection is a hard statistical problem especially for linear mixed models. There is no universal
model selection tools that work for every data.
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 List of topics
Symbolic formula for linear models
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Spatial analysis of field experiments

Factor analysis models for multi-environmental field trials



MET Model
We saw before that we can fit a model that borrows strength across sites for a more accurate prediction of
genotype by site effects:

fit2 <- asreml(Yield ~ Site, 
               random=~ us(Site):id(Geno),
               data=dat)
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The general MET Model
Assume that there are m genotypes across t sites (not all genotypes appear in each site). We can write
the model more generally as

where we assume a separable variance structure for genotype-by-environment effects:

Ge may be assumed a general matrix such as unstructured matrix that is usually estimated from the data.

Gg is a known genotype relationship matrix.
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Unstructured Covariance Model
Trials Parameters

2 3

3 6

5 15

10 55

25 325

50 1275

100 5050

t t(t+1)/2

The number of parameters to be estimated grows
quadratically with the number of trials so it quickly
becomes too many parameters to estimate.

Recall covariances are symmetric so there is no
need to estimate the parameters in the upper (or
lower) triangle of covariance matrices.
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Factor Analytic Model
For some order k, you can replace the unstructured
covariance with factor analytic form:  

Due to identifiability, some constraints are applied
to the loading matrix.

asreml constrains such that the upper triangle of
the loading matrix are zeroes.

So in effect there are  
(k + 1)t − k(k − 1) /2  
parameters to estimate.
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The number of variance parameters to estimate in a FA model
Trials US FA1 FA2 FA3 FA4 FA5 FA6

2 3 4 5

3 6 6 8 9

5 15 10 14 17 19 20

7 28 14 20 25 29 32 34

10 55 20 29 37 44 50 55

25 325 50 74 97 119 140 160

50 1275 100 149 197 244 290 335

100 5050 200 299 397 494 590 685

The number of variance
parameters to estimate for
FA model grows linearly with
the number of trials.

FA model can be considered
a lower order approximation
to the US model.

As FA model is to offer a
simpler model then it does
not make sense to have
more parameters to
estimate in FA model than
the US model.
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Condition to use FA model over US model

1
2
t(t + 1)

⏟

# of parameters in US model

− (k + 1)t −
1
2
k(k − 1)

⏟

# of parameters in FA model

=
1
2

(t − k)2 − (t + k) ≥ 0

We expect t > k.

[ ] [ ]
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Latent Variable Model

FA Model is a special case of latent variable model when the responses are conditionally normally
distributed.

Note: our FA model is different to the standard FA model due to the separable structure of Gge.
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Latent Variable Model

Notice that this is like a linear regression model except the covariates are estimated from the data.

The loadings represent some latent environmental covariate.

The common factor represent how the genotype responds to that covariate.

The specific factor represent an effect specific to that environment.
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How to choose the order, k, of FA model?

The first approach is akin to using coefficient of determination R2 in linear regression.

Pragmatically, you can use some threshold for overall percentage of between genetic variances explained
by the k factors:

1

You can use a hypothesis testing approach or use of information criterion.2

You can use OFAL penalty proposed in Hui et al. (2018).3

Hui et al. (2018) Order Selection and Sparsity in Latent Variable Models via the Ordered Factor LASSO. Biometrics 65/87



Non-uniqueness of factor loadings
If we do not impose some constraints, there there are many possible solutions for the factor loadings.

 So what do we do?
Many solutions.

asreml constrains upper triangle of loading matrix to zero

We may then rotate the estimated loaded matrix such that:

the first rotated factor accounts for the maximum amount of estimated genetic covariance,

the second accounts for the next largest amount of estimated genetic covariance and so on.
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How is this different principal component analysis?
The two may be the same under certain cases.

Principal component analysis (PCA) is a
transformation of the data.

PCA transforms the variables to principal
components.

Factor analytic model assumes that the data
comes from a well-defined model where the
underlying factors satisfy assumptions mentioned
before.

The emphasis in factor analysis is that the factors
map to the variables but specific factors are
explicitly assumed to be "noise".
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Between environment genetic correlation matrix
Negative genetic correlation estimate indicate
cross-over interaction.

Positive genetic correlation estimate indicate
noncross-over interaction.

Estimating the between environment genetic
covariance is dependent on the number of
varieties in common between trials (which we
refer to as connectivity).
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Notes on FA model
If trials are completely disconnected then between environment genetic covariance cannot be reliably
computed.

The genetic regression residuals represent non-repeatable variety effects for the given the model and set
of environments.

 What set of trials for MET analysis?
You would want a representative sample of environments, both in a geographic and seasonal sense, a
relevant set of varieties and reasonable connectivity between pairs of trials.
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Example 5  CAIGE 2017 MET Bread Wheat Yield Trials

Source: CIMMYT Australia ICARDA Germplasm Evaluation (CAIGE) Project 70/87

info summary data

http://www.caigeproject.org.au/
file:///Users/etan0038/Dropbox/presentations/20211116-ICF/index.html?panelset6=info7#panelset6_info7
file:///Users/etan0038/Dropbox/presentations/20211116-ICF/index.html?panelset6=summary7#panelset6_summary7
file:///Users/etan0038/Dropbox/presentations/20211116-ICF/index.html?panelset6=data7#panelset6_data7


Example 5  Get to know your data

Get to know your data well before modelling!

Check for outliers and follow up with the data manager.

For this, we will assume the data is well behaved and there are no outliers to keep it simple, but of course,
in practice that should not be the case.
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Example 5  Genotype replication per trial
## # A tibble: 235 × 8
## # Groups:   Geno [235]
##    Geno  Balaklava Horsham Junee Narrabri Northstar Roseworthy Toodyay
##    <chr>     <int>   <int> <int>    <int>     <int>      <int>   <int>
##  1 G1            2       2     2        2         2          2       2
##  2 G10           2       2     2        2         3          2       2
##  3 G100          1       1     2        2         2          2       1
##  4 G101          1       0     1        1         1          1       0
##  5 G102          2       2     2        2         2          2       2
##  6 G103          1       1     1        2         1          1       1
##  7 G104          2       2     2        2         2          2       2
##  8 G105          2       2     2        2         2          2       2
##  9 G106          1       1     1        2         1          1       1
## 10 G107          2       1     2        2         2          2       2
## # … with 225 more rows

The trials employ a partially replicated design.
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Example 5  Percentage of replicates at each trial
##    
##     Balaklava Horsham Junee Narrabri Northstar Roseworthy Toodyay
##   1      44.1    48.4  32.8     21.4      38.9       35.9    44.8
##   2      54.0    51.6  66.8     77.8      59.3       64.1    55.2
##   3       1.9     0.0   0.4      0.9       1.8        0.0     0.0

Most genotype is replicated 1-2 times at each trial with small portion replicated 3 times.

73/87



Example 5  Genotype Concurrence Matrix
Sometimes simply referred to as "connectivity".

Diagonal entries show the number of
genotypes at the corresponding trial.

Off diagonal entries show the number
of genotypes common between the
trials shown in the row and column
labels.

The connectivity between all pairs of
trial is good so we should not have
much problem estimating the genetic
covariance between trials.
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Modelling: DIAG model
fit_diag <- asreml(Yield ~ Trial, data=caige, trace=F,
 random=~at(Trial):Row + at(Trial):Column +
   diag(Trial):Geno,
 rcov=~at(Trial):ar1(Column):ar1(Row))
fit_diag <- update(fit_diag)
vc_diag <- lucid::vc(fit_diag) %>% rename(Gamma=effect)

E�ect Balaklava Horsham Junee Narrabri Northstar Roseworthy T

Column 0.016
(0.010)

0.144
(0.071)

0.001
(0.003)

0.027
(0.012)

0.171
(0.055)

0.000 ( NA)

Geno 0.031
(0.006)

0.343
(0.046)

0.145
(0.015)

0.221
(0.024)

0.185
(0.025)

0.123
(0.017)

Residual 0.053
(0.007)

0.147
(0.026)

0.035
(0.005)

0.063
(0.008)

0.087
(0.012)

0.240
(0.037)

rhoc -0.007
(0.097)

0.109
(0.148)

0.083
(0.120)

0.118
(0.099)

0.015
(0.114)

0.365
(0.078)

In the first instance, we will normally do spatial modelling
however we have not here and assume that the addition of
random Row and random Column effects along with
separable autoregressive process of order one are
sufficient.

Balaklava, Roseworthy and Toodyay exhibit concerns
with low heritability. There could be more done (e.g.
discussing with trial managers and experts) to address this
point before proceeding with the FA model.

For simplicity, we shall assume there is no concern and
proceed on.
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Modelling: Initialising the FA1 model
Recall bad starting values in Newton-Raphson can make convergence go stray.

When fitting complex model, we will build it up from simpler ones using the fit of the simpler models as
initial values for complex ones.

sv_fa1 <- asreml(Yield ~ Trial, data=caige,
 random=~at(Trial):Row + at(Trial):Column +
   fa(Trial, 1):Geno, start.values=T,
 rcov=~at(Trial):ar1(Column):ar1(Row))

# replacing some initial values from the DIAG model
sv_fa1$gammas.table <- sv_fa1$gammas.table %>% 
  left_join(vc_diag, by="Gamma") %>%
  mutate(Value=ifelse(!is.na(component), component, Value)) %>% 
  select(Gamma, Value, Constraint)

This step is not absolutely critical but can be helpful in particular with larger data, as starting from a value
closer to the solution, there is likely less iteration needed.
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Modelling: FA1 model

E�ect Balaklava Horsham Junee Narrabri Northstar Roseworthy Toodyay

2 FA1 0.129 (0.016) 0.510 (0.042) 0.317 (0.024) 0.357 (0.031) 0.146 (0.036) 0.148 (0.029) 0.178 (0.020)

7 Speci�c 0.016 (0.005) 0.087 (0.027) 0.043 (0.009) 0.089 (0.015) 0.167 (0.023) 0.102 (0.015) 0.026 (0.006)

3 Residual 0.051 (0.007) 0.147 (0.024) 0.033 (0.005) 0.063 (0.008) 0.084 (0.012) 0.234 (0.036) 0.238 (0.047)

4 rhoc -0.064 (0.087) 0.141 (0.125) 0.103 (0.114) 0.143 (0.098) 0.022 (0.112) 0.331 (0.079) 0.303 (0.082)

5 rhor 0.487 (0.065) 0.453 (0.092) 0.579 (0.068) 0.332 (0.083) 0.271 (0.107) 0.767 (0.041) 0.862 (0.031)

1 Column 0.014 (0.008) 0.137 (0.067) 0.001 (0.002) 0.028 (0.012) 0.173 (0.055) 0.000 ( NA) 0.000 ( NA)

fit_fa1 <- asreml(Yield ~ Trial, data=caige, trace=F,
 random=~at(Trial):Row + at(Trial):Column +
   fa(Trial, 1):Geno,
 rcov=~at(Trial):ar1(Column):ar1(Row),
 G.param=sv_fa1$gammas.table, R.param=sv_fa1$gammas.table)
vc_fa1 <- lucid::vc(fit_fa1) %>% rename(Gamma=effect) %>% mutate(Gamma=as.charac
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Percentage between genetic variance explained
sum_fa1 <- myf::summary.fa(fit_fa1)
sum_fa1$gammas[[1]]$`site %vaf`

##               fac_1
## Balaklava  51.67980
## Horsham    74.87380
## Junee      70.12005
## Narrabri   58.74877
## Northstar  11.26292
## Roseworthy 17.74837
## Toodyay    55.19469

sum_fa1$gammas[[1]]$`total %vaf`

## [1] 52.26278
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Modelling: initialising FA2 model
sv_fa2 <- asreml(Yield ~ Trial, data=caige,
 random=~at(Trial):Row + at(Trial):Column +
   fa(Trial, 2):Geno, start.values=T,
 rcov=~at(Trial):ar1(Column):ar1(Row))

# need to change fa(Trial, 1) to fa(Trial, 2) so it will match up
vc_fa1 <- vc_fa1 %>% mutate(
  Gamma=ifelse(
    grepl("fa(Trial, 1)", Gamma, fixed=T), 
    gsub("fa(Trial, 1)", "fa(Trial, 2)", Gamma, fixed=T),
    Gamma))
# replacing some initial values from the FA1 model
sv_fa2$gammas.table <- sv_fa2$gammas.table %>% 
  left_join(vc_fa1, by="Gamma") %>%
  mutate(Value=ifelse(!is.na(component), component, Value)) %>% 
  select(Gamma, Value, Constraint)

As the first factor only explained 52% of the overall between trial genetic variance, we proceed to increase
the order of the FA model.

The threshold is arbitrary but you may use 80%.

Recall for 7 trials, the maximum order of the FA model we allow for is 3.
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Modelling: FA2 model

E�ect Balaklava Horsham Junee Narrabri Northstar Roseworthy Toodyay

2 FA1 0.138 (0.016) 0.446 (0.051) 0.288 (0.026) 0.304 (0.041) 0.192 (0.037) 0.230 (0.034) 0.186 (0.020)

3 FA2 0.000 ( NA) -0.279 (0.064) -0.104 (0.039) -0.259 (0.049) 0.098 (0.047) 0.167 (0.048) 0.004 (0.030)

8 Speci�c 0.013 (0.005) 0.067 (0.027) 0.050 (0.009) 0.057 (0.017) 0.141 (0.023) 0.044 (0.021) 0.023 (0.006)

4 Residual 0.051 (0.006) 0.145 (0.023) 0.033 (0.005) 0.063 (0.008) 0.085 (0.012) 0.232 (0.035) 0.237 (0.048)

5 rhoc -0.061 (0.085) 0.120 (0.120) 0.110 (0.114) 0.137 (0.097) 0.054 (0.109) 0.331 (0.077) 0.273 (0.084)

6 rhor 0.461 (0.065) 0.432 (0.092) 0.573 (0.069) 0.332 (0.082) 0.267 (0.106) 0.766 (0.041) 0.867 (0.031)

fit_fa2 <- asreml(Yield ~ Trial, data=caige, trace=F,
 random=~at(Trial):Row + at(Trial):Column +
   fa(Trial, 2):Geno,
 rcov=~at(Trial):ar1(Column):ar1(Row),
 G.param=sv_fa2$gammas.table, R.param=sv_fa2$gammas.table)
fit_fa2 <- update(fit_fa2)
vc_fa2 <- lucid::vc(fit_fa2) %>% rename(Gamma=effect) %>% mutate(Gamma=as.charac
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Percentage between genetic variance explained
sum_fa2 <- myf::summary.fa(fit_fa2)
sum_fa2$gammas[[1]]$`site %vaf`

fac_1 fac_2 all

Balaklava 50.7 9.7 60.4

Horsham 78.9 1.7 80.7

Junee 65.1 0.3 65.4

Narrabri 67.4 6.2 73.5

sum_fa2$gammas[[1]]$`total %vaf`

## [1] 64.3899
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Modelling: initialising FA3 model
sv_fa3 <- asreml(Yield ~ Trial, data=caige,
 random=~at(Trial):Row + at(Trial):Column +
   fa(Trial, 3):Geno, start.values=T,
 rcov=~at(Trial):ar1(Column):ar1(Row))

# need to change fa(Trial, 2) to fa(Trial, 3) so it will match up
vc_fa2 <- vc_fa2 %>% mutate(
  Gamma=ifelse(
    grepl("fa(Trial, 2)", Gamma, fixed=T), 
    gsub("fa(Trial, 2)", "fa(Trial, 3)", Gamma, fixed=T),
    Gamma))
# replacing some initial values from the FA1 model
sv_fa3$gammas.table <- sv_fa3$gammas.table %>% 
  left_join(vc_fa2, by="Gamma") %>%
  mutate(Value=ifelse(!is.na(component), component, Value)) %>% 
  select(Gamma, Value, Constraint)

The two factors explain 64% of the overall between trial genetic variance.

We increase the order of the FA model to the final possible one.

My coding is quite clumsy for such a repetitive task. I recommend you make into a function for many
repetitive task such as this.
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Modelling: FA3 model

E�ect Balaklava Horsham Junee Narrabri Northstar Roseworthy Toodyay

2 FA1 0.138 (0.016) 0.442 (0.049) 0.292 (0.034) 0.346 (0.044) 0.196 (0.040) 0.230 (0.036) 0.176 (0.021)

3 FA2 0.000 ( NA) -0.222 (0.064) -0.142 (0.060) -0.265 (0.060) 0.127 (0.048) 0.181 (0.053) 0.000 (0.033)

4 FA3 0.000 ( NA) 0.000 ( NA) 0.171 (0.074) -0.166 (0.051) -0.012 (0.060) 0.027 (0.067) 0.058 (0.029)

9 Speci�c 0.013 (0.005) 0.099 (0.025) 0.009 (0.030) 0.000 ( NA) 0.132 (0.025) 0.038 (0.024) 0.023 (0.007)

5 Residual 0.050 (0.006) 0.146 (0.023) 0.033 (0.005) 0.063 (0.008) 0.085 (0.012) 0.232 (0.035) 0.238 (0.047)

6 rhoc -0.057 (0.084) 0.112 (0.118) 0.114 (0.114) 0.131 (0.097) 0.058 (0.109) 0.329 (0.077) 0.283 (0.083)

fit_fa3 <- asreml(Yield ~ Trial, data=caige, trace=F,
 random=~at(Trial):Row + at(Trial):Column +
   fa(Trial, 3):Geno,
 rcov=~at(Trial):ar1(Column):ar1(Row),
 G.param=sv_fa3$gammas.table, R.param=sv_fa3$gammas.table)
vc_fa3 <- lucid::vc(fit_fa3) %>% rename(Gamma=effect) %>% mutate(Gamma=as.charac

83/87



Percentage between genetic variance explained
sum_fa3 <- myf::summary.fa(fit_fa3)
sum_fa3$gammas[[1]]$`site %vaf`

fac_1 fac_2 fac_3 all

Balaklava 51.5 7.2 0.8 59.4

Horsham 70.7 0.5 0.1 71.3

Junee 72.5 0.7 20.4 93.6

Narrabri 81.0 12.7 6.3 100.0

sum_fa3$gammas[[1]]$`total %vaf`

## [1] 71.5777
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Between Environment Genetic Correlation

The trials are ordred by agnes clustering
algorithm based on the estimated between
environment genetic correlation matrix.

sum_fa3$gammas[[1]]$Cmat

Balaklava Horsham Junee Narrabri Northstar

Balaklava 1.000 0.582 0.593 0.572 0.350

Horsham 0.582 1.000 0.723 0.775 0.232

Junee 0.593 0.723 1.000 0.623 0.226

Narrabri 0.572 0.775 0.623 1.000 0.180

Northstar 0.350 0.232 0.226 0.180 1.000

Roseworthy 0.503 0.299 0.344 0.165 0.444

Toodyay 0.566 0.554 0.674 0.459 0.326

sum_fa3 <- myf::summary.fa(fit_fa3,
                           heatmap.ord="cluster", 
                           g.list=c("G124", "G148", "G8", "G
sum_fa3$heatmaps$`fa(Trial, 3):Geno`
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Latent Regression Plots
sum_fa3$regplots$`fa(Trial, 3):Geno` To get the (regression) BLUP:

sum_fa3$blups[[1]]$blups.inmet

To get the (rotated) scores:

sum_fa3$blups[[1]]$scores.inmet

To get the rotated loadings:

sum_fa3$gammas[[1]]$`rotated loads`
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 List of topics

Slides available at emitanaka.org/slides/stats4bio2021/asreml

Thanks for listening!

If you have questions about asreml, happy to take them now or please
direct them at VSN forum or Stackoverflow.

Symbolic formula for linear models

Introduction to asreml

Spatial analysis of field experiments

Factor analysis for multi-environmental field trials
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