
Visualising experimental designs with the
edibble and deggust R-packages

Presenter: Emi Tanaka

 Department of Econometrics and Business Statistics,
 Monash University, Melbourne, Australia

 emi.tanaka@monash.edu

 @statsgen

 11 Nov 2021 @ Applications of Statistical Procedures in Biological Data

https://twitter.com/statsgen

 today's menu
1 Experimental design in reality

2 Overview of edibble

3 Grammar of graphics with ggplot2

4 Visualising experimental designs with deggust

 These slides made using R powered by HTML/CSS/JS can be found at

emitanaka.org/slides/stats4bio2021/deggust

https://emitanaka.org/slides/stats4bio2021/deggust

1
Experimental design in reality

An experiment generally
involves more than one

person

4/64

Meet the cast starring today

The "domain expert"

The "statistician"

The "analyst"

The "technician"

Stick person images by OpenClipart-Vectors from Pixabay
5/64

https://pixabay.com/users/openclipart-vectors-30363/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=151793
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=151793

The "domain expert"

The "domain expert" drives the experimental
objective and has the intricate knowledge about
the subject area

6/64

The "analyst" analyses the
data after the data is
collected.

The "statistician"

The "analyst"

The "statistican" creates
the experimental design
layout after taking into
account the statistical and
practical constraints.

7/64

The "technician" carries
out the experiment and

collects the data.

The "technician"

8/64

See the props

The statistical software
to design experiments

Good old pen and paper

The software to enter
and store data

Missing prop: the statistical software to analyse experimental data

9/64

The actors are purely illustrative.

In practice:

multiple people can take on each role,

one person can take on multiple roles, and/or

a person in the role may not specialise in that
role (e.g. the statistician role can be acted out
by a non-statistician).

10/64

How we expect experiments are run

Hey, I need to run an experiment.
Can you test irrigation and fertilizer
effect on plant growth? Bla bla bla...

Okay. I got the experimental structure
perfectly. I'll go generate the
experimental design layout.

11/64

How we expect experiments are run

I have a complete understanding of the
experimental structure so I shall enter
it in the software to generate the
experimental design

12/64

How we expect experiments are run

Here is the design layout

I'll execute this experiment exactly as
planned and enter the data with
absolutely no mistake

13/64

But

— Littlejohn et al. (2017)

communication is complex, fraught with tensions, misunderstandings, and
problems — rather than a simple process of creating shared meaning“

Littlejohn, Stephen W., Karen A. Foss, and John G. Oetzel. 2017. Theories of Human Communication. Waveland Press, Inc. 14/64

What happens in reality
Misunderstandings or incomplete understandings

Hey, I need to run an experiment.
Can you test irrigation and fertilizer
effect on plant growth? Bla bla bla...

Okay. I think I got it. I'll go see what we
can do for the experimental design.

15/64

What happens in reality
A lot of back-and-forth to be on the same page
(which is completely natural and okay)

Okay how about this plan.

Actually, we can't apply different
irrigation methods to these set of plots
so we have to change this part. Bla bla.

Okay, I'll write this in my notebook.

16/64

What happens in reality
OR limited communication and decisions made in silo

Oh actually,
we didn't
have enough
seedlings
for the
test line. Oh
well, we'll

just leave that empty
when we get the plan.

Hmm, I'm not
sure about
this but I
guess this
will do for

the experimental design.

Oh no! One
side of the
green house
gets more

sunlight than the other!
Let's move the pots
around so that they
get the same amount
of sunlight.

17/64

What happens in reality
Implicit decisions never explicitly transcribed

Why is the experimental design like this?

I think I had a good reason at the time
but I can't remember!

Why are we always on a handstand anyway?

There's no good reason for that!

18/64

What happens in reality
Knowledge lost

How was the experimental design
constructed?

The statistician left a bunch of notes
before leaving us for another position
but I don't know what's what, so I don't
know.

19/64

What happens in reality
Thinking analysis will save you

I think we may have data quality issues
in this experimental data.

Oh cool data! I can try this fancy
statistical model! Hmm, what did you
say?

I'm saying that the data may be rubbish.

But I got some numbers from fitting
this model.

20/64

Garbage in, garbage out
No statistical model, however complex it is,

can make any sense of the data if the
collected data is rubbish

Redoing an experiment is
expensive

There's a higher stake in getting the experiment design
wrong compared to getting the analysis wrong.

In some cases, redoing an experiment is not every possible!

What most statistics (and data science) research is about

(with disproportionate amount in Model)

Grolemund, G., & Wickham, H. (2017). R for Data Science. O'Reilly Media. 23/64

World of data collection
But there is a whole world of data collection before importing data!

There is probably more gain in extracting information in ensuring the quality of the data than analysis.

Experimental design research is generally concerned about generating the experimental design layout

edibble aims to complement many great experimental design research to design the whole experiment
24/64

2

Overview of edibble

The grammar of experimental designs

 Package documentation:

edibble.emitanaka.org

 Source code:

github.com/emitanaka/edibble

 Name origin: produce experimental design table (or tibble)

An abstract computational framework that maps
fundamental experimental components to an object
oriented system to build and modify experimental designs.
Currently implemented as the edibble R-package.

Kirill Müller and Hadley Wickham (2021). tibble: Simple Data Frames. R package version 3.1.5. https://CRAN.R-project.org/package=tibble 26/64

https://edibble.emitanaka.org/
https://github.com/emitanaka/edibble
https://cran.r-project.org/package=tibble

Lifecycle

 https://lifecycle.r-lib.org/articles/stages.html
experimental

stable superseded

deprecated

Currently edibble is lifecyclelifecycle experimentalexperimental

Some functions like allocation_trts and randomise_trts have
become lifecyclelifecycle deprecateddeprecated in favour of allot_trts and assign_trts

Lionel Henry and Hadley Wickham (2021). lifecycle: Manage the Life Cycle of your Package Functions. R package version 1.0.1. https://CRAN.R-
project.org/package=lifecycle 27/64

https://lifecycle.r-lib.org/articles/stages.html
https://lifecycle.r-lib.org/articles/stages.html#experimental
https://lifecycle.r-lib.org/articles/stages.html#deprecated
https://cran.r-project.org/package=lifecycle

Reframing how you think about experimental designs

edibble encourages users to think about designs exactly as Bailey
(2008) suggests

Nevertheless named experimental designs are very prevelant and can
be useful to describe particular designs succintly!

So let's have the best of both worlds

Good design considers units and treatments first, and then allocates treatments to units. It does not choose
from a menu of named designs.

—Rosemary Bailey (2008)

“

Bailey, R. (2008). Design of Comparative Experiments (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge: Cambridge University Press.
doi:10.1017/CBO9780511611483 28/64

Example 1 Completely randomised design
library(edibble)
code_classical("crd", t = 3, n = 6)

set.seed(648)
start_design("crd") %>%
 set_units(unit = 6) %>%
 set_trts(treat = 3) %>%
 allot_trts(treat ~ unit) %>%
 assign_trts("random") %>%
 serve_table()

Note: currently only limited named experimental designs are supported

 this function name and arguments will likely change in near future

29/64

Example 2 Randomised complete block design
library(edibble)
code_classical("rcbd", t = 3, b = 2)

set.seed(231)
start_design("rcbd") %>%
 set_units(block = 2,
 unit = nested_in(block, 3)) %>%
 set_trts(treat = 3) %>%
 allot_trts(treat ~ unit) %>%
 assign_trts("random") %>%
 serve_table()

 this function name and arguments will likely change in near future

30/64

Example 3 Factorial design
library(edibble)
code_classical("factorial", trt = c(2, 4), n = 16)

set.seed(289)
start_design("factorial") %>%
 set_units(unit = 16) %>%
 set_trts(treat1 = 2,
 treat2 = 4) %>%
 allot_trts(~ unit) %>%
 assign_trts("random") %>%
 serve_table()

 this function name and arguments will likely change in near future

31/64

Example 4 Split-plot design
library(edibble)
code_classical("split", t1 = 2, t2 = 4, r = 2)

set.seed(566)
start_design("split") %>%
 set_units(mainplot = 4,
 subplot = nested_in(mainplot, 4)) %>%
 set_trts(treat1 = 2,
 treat2 = 4) %>%
 allot_trts(treat1 ~ mainplot,
 treat2 ~ subplot) %>%
 assign_trts("random") %>%
 serve_table()

 this function name and arguments will likely change in near future

32/64

Example 5 Sptrip-plot design
library(edibble)
start_design("Strip-plot") %>%
 set_trts(diet = 4,
 breed = 5) %>%
 set_units(hen = 5,
 order = 4,
 chick = ~hen:order) %>%
 allot_trts(breed ~ hen,
 diet ~ order) %>%
 assign_trts("random") %>%
 serve_table()

An edibble: 20 x 5
diet breed hen order chick
<trt(4)> <trt(5)> <unit(5)> <unit(4)> <unit(20)>
1 diet1 breed3 hen1 order1 chick1
2 diet1 breed4 hen2 order1 chick2
3 diet1 breed1 hen3 order1 chick3 33/64

Experimental context is important
Name the variables so it always reminds you of the context

An edibble: 16 x 4
mainplot subplot water variety
<unit(4)> <unit(16)> <trt(2)> <trt(4)>
1 mainplot1 subplot1 irrigated variety3
2 mainplot1 subplot2 irrigated variety1
3 mainplot1 subplot3 irrigated variety4
4 mainplot1 subplot4 irrigated variety2
5 mainplot2 subplot5 irrigated variety2
6 mainplot2 subplot6 irrigated variety4

start_design("My animal experiment") %>%
 set_units(pen = 4,
 cow = nested_in(pen, 4)) %>%
 set_trts(diet = c("low-card", "high-fat"),
 breed = 4) %>%
 allot_trts(diet ~ pen,
 breed ~ cow) %>%
 assign_trts("random", seed = 1) %>%
 serve_table()

An edibble: 16 x 4
pen cow diet breed
<unit(4)> <unit(16)> <trt(2)> <trt(4)>
1 pen1 cow1 low-card breed3
2 pen1 cow2 low-card breed1
3 pen1 cow3 low-card breed4
4 pen1 cow4 low-card breed2
5 pen2 cow5 low-card breed2
6 pen2 cow6 low-card breed4

start_design("My plant experiment") %>%
 set_units(mainplot = 4,
 subplot = nested_in(mainplot, 4)) %>
 set_trts(water = c("irrigated", "rain-fed"),
 variety = 4) %>%
 allot_trts(water ~ mainplot,
 variety ~ subplot) %>%
 assign_trts("random", seed = 1) %>%
 serve_table()

34/64

Example 6 Calf feeding experiment
start_design("Calf feeding") %>%
 set_context(location = "Wagga Wagga") %>%
 set_trts(feed = 3) %>%
 set_units(pen = 6,
 calf = nested_in(pen, 4)) %>%
 allot_trts(feed ~ pen) %>%
 assign_trts("random") %>%
 set_rcrds_of(calf = c("milk", "weight")) %>%
 expect_rcrds(milk = to_be_numeric(with_value(">=", 0)),
 yield = to_be_numeric(with_value(">=", 0))) %>%
 serve_table() %>%
 export_design("calf-design.xlsx", overwrite = TRUE)

Loading required package: openxlsx

Wagga Wagga

✓ Calf feeding has been written to 'calf-design.xlsx'

35/64

Example 7 Chick weight
An experiment was conducted on a prairie in Western Canada to find out if
insecticides used to control grasshoppers affected the weight of young
chicks of ring-necked pheasants, either by affecting the grass around the
chicks or by affecting the grasshoppers eaten by the chicks.

Three insecticides were used, at low and high doses.

The low dose was the highest dose recommended by the department of
agriculture; the high dose was four times as much as the recommended
dose, to assess the effects of mistakes.

The experimental procedure took place in each of three consecutive weeks.

On the first day of each week a number of newly-hatched female pheasant
chicks were placed in a brooder pen.

On the third day, the chicks were randomly divided into twelve groups of six
chicks each.

Each chick was given an identification tape and weighed.

On the fourth day, a portion of the field was divided into three strips, each of
which was divided into two swathes.

The two swathes within each strip were sprayed with the two doses of the
same insecticide.

Two pens were erected on each swathe, and one group of pheasant chicks
was put into each pen.

For the next 48 hours, the chicks were fed with grasshoppers which had
been collected locally.

Half the grasshoppers were anaesthetized and sprayed with insecticide; the
other half were also anaesthetized and handled in every way like the first
half except that they were not sprayed.

All grasshoppers were frozen.

The experimenters maintained a supply of frozen grasshoppers to each pen,
putting them on small platforms so that they would not absorb further
insecticide from the grass.

In each swathe, one pen had unsprayed grasshoppers while the other had
grasshoppers sprayed by the insecticide which had been applied to that
swathe.

At the end of the 48 hours, the chicks were weighed again individually.

😵 😵 😵

Experiment based from Martin et al. (1996) Effects of grasshopper-control insecticides on survival and brain acetylcholinesterase of pheasant (Phasianus colchicus)
chicks. Environmental Toxicology and Chemistry 15(4) 518-524. 36/64

Example 7 Chick weight: the edibble code
start_design("Chick weight") %>%
 set_trts(insecticide = 3,
 dose = c("low", "high")) %>%
 set_units(week = 3,
 strip = nested_in(week, 4),
 swathes = nested_in(strip, 2),
 pen = nested_in(swathes, 2),
 chick = nested_in(pen, 6)) %>%
 set_trts(food = c("spray", "no-spray")) %>%
 allot_trts(insecticide ~ strip,
 dose ~ swathes,
 food ~ pen) %>%
 assign_trts("random") %>%
 set_rcrds(weight = chick) %>%
 serve_table()

An edibble: 288 x 9
insecticide dose week strip swathes pen 37/64

Example 7 Chick weight: closer look

38/64

Example 8 Unbalanced designs

All designs thus far have been balanced (i.e. equal replicate) and
complete (each treatment appears the same number of times in each
block)...

What about unbalanced and/or incomplete designs?
Reference level by its name:

start_design("unbalanced & incomplete") %>%
 set_units(site = c("Horsham", "Narrabri",
 "Wagga", "Roseworthy"),
 plot = nested_in(site,
 "Horsham" ~ 6,
 "Narrabri" ~ 3,
 . ~ 4)) %>%
 set_trts(breed = 4) %>%
 allot_trts(breed ~ plot) %>%
 assign_trts("random") %>%
 serve_table()

Reference level by number:

start_design("unbalanced & incomplete") %>%
 set_units(site = c("Horsham", "Narrabri",
 "Wagga", "Roseworthy"),
 plot = nested_in(site,
 1 ~ 6,
 2 ~ 3,
 . ~ 4)) %>%
 set_trts(breed = 4) %>%
 allot_trts(breed ~ plot) %>%
 assign_trts("random") %>%
 serve_table() 39/64

— Littlejohn et al. (2017)

communication is complex, fraught with tensions, misunderstandings, and
problems — rather than a simple process of creating shared meaning“

What can help to communicate more effectively?40/64

3
Grammar of graphics with

ggplot2

Grammar of graphics: origin and implementations
Initial instances of the grammar of graphics was mentioned by William C. Brinton

A full computational framework was developed by Leland Wilkinson with implementation in SYSTAT.

An interpretation of the grammar of graphics by Hadley Wickham (as part of his PhD, 2008) was
implemented in R as the ggplot2 package.

Emulation of ggplot2 in python started to be developed:

ggpy (defunct)

plotnine by Hassan Kibirige,

seaborn by Michael Waskom (this one is not quite trying to emulate ggplot)

In Julia, Gadfly by Daniel C. Jones implements the grammar of graphics.

In Matlab, gramm by Pierre Morel implements the grammar as a toolbox.

In Javascript, G2 by AntV team, adding also interactivity, with this version emulated in R as g2r package.

ggplot2 is arguably the most popular interpretation of grammar of graphics with over 35,000 citations

Brinton (1914) Graphic methods for presenting facts
Wilkinson (1999) The Grammar of Graphics. Statistics and Computing. Springer, 1st edition. 42/64

Data 1 Crop production in Australia

In Australia, total production of each crop nationally are

Crop Production ('000t)
barley 13,414
sorghum 1,208
maize 467
oats 1,879
triticale 247
wheat 35,134

Data source: ABARES Australian Crop Report, 2017, No. 181 43/64

Plotting with "base R"
df

crop prod
1 barley 13414
2 sorghum 1208
3 maize 467
4 oats 1879
5 triticale 247
6 wheat 35134

barplot(as.matrix(df$prod),
 legend = df$crop)

pie(df$prod, labels = df$crop)

 R Core Team (2020) R: A Language and Environment for Statistical Computing https://www.R-project.org/

Single purpose functions to generate
"named plots"

44/64

https://www.r-project.org/

Plotting with the ggplot2 R-package
df

crop prod
1 barley 13414
2 sorghum 1208
3 maize 467
4 oats 1879
5 triticale 247
6 wheat 35134

ggplot(df, aes(x = "", # dummy
 y = prod,
 fill = crop)) +
 geom_col(color = "black")

ggplot(df, aes(x = "", # dummy
 y = prod,
 fill = crop)) +
 geom_col(color = "black") +
 coord_polar(theta = "y")

The difference between a stacked barplot and a pie chart is
that the coordinate system is transformed from the
Cartesian coordinate to polar coordinate.

45/64

Making publication ready plots with ggplot2
ggplot(cochran.crd, aes(col, row, fill = inf)) +
 geom_tile(color = "black", size = 1.3) +
 scale_fill_gradient(low = "white", high = "firebrick") +
 labs(title = "Potato scab infection with sulfur\ntreatme
 x = "Column", y = "Row",
 caption = "Data source: Tamura, R.N. and Nelson, L
 theme(text = element_text(size = 20),
 plot.caption = element_text(size = 12),
 plot.title.position = "plot",
 plot.caption.position = "plot",)

46/64

Making publication ready plots with ggplot2
ggplot(cochran.crd, aes(col, row, fill = inf)) +
 geom_tile(color = "black", size = 1.3) +
 scale_fill_gradient(low = "white", high = "firebrick") +
 labs(title = "Potato scab infection with sulfur\ntreatme
 x = "Column", y = "Row",
 caption = "Data source: Tamura, R.N. and Nelson, L
 theme(text = element_text(size = 20),
 plot.caption = element_text(size = 12),
 plot.title.position = "plot",
 plot.caption.position = "plot",
 panel.background = element_blank())

47/64

Many extension packages exists for ggplot2

https://exts.ggplot2.tidyverse.org/gallery/
ggplot(cochran.crd, aes(trt, inf, color = trt)) +
 ggbeeswarm::geom_quasirandom() +
 theme_bw(base_size = 18)

48/64

https://exts.ggplot2.tidyverse.org/gallery/

4
Visualising experimental

designs with the deggust R-
package

Visualising experimental designs

 Currently under developed!

 Package documentation:

deggust.emitanaka.org

 Source code:

github.com/emitanaka/deggust

 Name origin: deggust as in degust, and
  make design of experiments into ggplot objects

The deggust R-package aims to convert edibble
designs to ggplot objects seamlessly.

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. 50/64

https://deggust.emitanaka.org/
https://github.com/emitanaka/deggust

Example: Pig diet experiment
library(edibble)
plan <- start_design("Pig diet experiment") %>%
 set_trts(diet = c("carb", "protein", "fat")) %>%
 set_units(pig = 50) %>%
 allot_trts(diet ~ pig) %>%
 assign_trts("random", seed = 1) %>%
 serve_table()

plan

An edibble: 50 x 2
diet pig
<trt(3)> <unit(50)>
1 carb pig1
2 carb pig2
3 protein pig3
4 carb pig4
5 protein pig5 51/64

Visualising designs with ggplot2
library(ggplot2)
plan %>%
 edibble::as_data_frame() %>% # in the future this step will not be needed
 ggplot(aes(pig, "1", fill = diet)) +
 geom_tile(color = "black")

Slightly painful if you want to quickly visualise your design.

Also not a great visualisation

52/64

deggust::autoplot() Part 1

Just autoplot it!

library(deggust)

autoplot(plan)

53/64

deggust::autoplot() Part 2

It makes some decision for you of how to plot which can be customised in two ways:
modify scale and theme like any ggplot objects!1

as arguments in the autoplot function2

54/64

deggust::autoplot() Part 3

It makes some decision for you of how to plot which can be customised in two ways:

autoplot(plan) +
 # ggplot2 functions below
 theme_void() +
 scale_fill_viridis_d(option = "A")

modify scale and theme like any ggplot objects!1

as arguments in the autoplot function2

55/64

deggust::autoplot() Part 4

It makes some decision for you of how to plot which can be customised in two ways:

autoplot(plan,
 shape = "hexagon",
 text = TRUE,
 aspect_ratio = 0.5)

modify scale and theme like any ggplot objects!1

as arguments in the autoplot function2

56/64

deggust::autoplot() Part 5

autoplot(plan,
 image = "images/pig.png") +
 theme_void()

57/64

deggust::autoplot() Part 6

Nested design

start_design() %>%
 set_units(pen = 10,
 pig = nested_in(pen, 5)) %>%
 set_trts(breed = c("A", "B", "C")) %>%
 allot_trts(breed ~ pig) %>%
 assign_trts("random", seed = 2021) %>%
 serve_table() %>%
 autoplot()

58/64

deggust::autoplot() Part 7

What changed here?

start_design() %>%
 set_units(pen = 10,
 pig = nested_in(pen, 5)) %>%
 set_trts(breed = c("A", "B", "C")) %>%
 allot_trts(breed ~ pen) %>%
 assign_trts("random", seed = 2021) %>%
 serve_table() %>%
 autoplot()

59/64

deggust::autoplot() Part 8

Factorial experiment

start_design() %>%
 set_units(pig = 40) %>%
 set_trts(breed = c("A", "B", "C"),
 feed = c("X", "Y", "Z")) %>%
 allot_trts(breed:feed ~ pig) %>%
 assign_trts("random", seed = 2021) %>%
 serve_table() %>%
 autoplot()

Note: scale will be fixed so it's easier to distinguish
between different treatment factors

60/64

deggust::autoplot() Part 10

Is your design too big to fit in the plot?

start_design() %>%
 set_units(pen = 100,
 pig = nested_in(pen, 10)) %>%
 set_trts(breed = c("A", "B", "C")) %>%
 allot_trts(breed ~ pig) %>%
 assign_trts("random", seed = 2021) %>%
 serve_table() %>%
 autoplot()

61/64

deggust::autoplot() Part 10

Is your design too big to fit in the plot?

Subset it!

start_design() %>%
 set_units(pen = 100,
 pig = nested_in(pen, 10)) %>%
 set_trts(breed = c("A", "B", "C")) %>%
 allot_trts(breed ~ pig) %>%
 assign_trts("random", seed = 2021) %>%
 serve_table() %>%
 dplyr::filter(pen %in% c("pen1", "pen2", "pen3", "pen4
 autoplot() +
 annotate("text", x = 10, y = 4.7, label = "x 25 more")

62/64

Summary
The grammar of experimental designs is an abstract
computational framework that encourages a higher-order
thinking by enforcing the experimental structure and context

edibble is designed to be user friendly and accommodate
natural order of thinking for specifying experimental structure

The grammar makes each step modular... you can easily
extend it (like deggust) or mix-and-match methods

This makes it easier to leverage existing functionalities in
edibble so other developers can focus on what they want to
do the most

And hopefully this framework becomes a common base that
promotes collaboration and knowledge sharing

63/64

Thanks for listening!

Feature requests or issues with edibble or deggust? Submit or
upvote here: github.com/emitanaka/edibble/issues,
github.com/emitanaka/deggust/issues, send me an email or tell me
now!

Slides: emitanaka.org/slides/stats4bio2021/deggust

edibble package documentation: edibble.emitanaka.org

edibble source code: github.com/emitanaka/edibble

deggust package documentation: deggust.emitanaka.org

deggust source code: github.com/emitanaka/deggust

emi.tanaka@monash.edu @statsgen

64/64

https://github.com/emitanaka/edibble/issues
https://github.com/emitanaka/deggust/issues
https://emitanaka.org/slides/stats4bio2021/deggust
https://edibble.emitanaka.org/
https://github.com/emitanaka/edibble
https://deggust.emitanaka.org/
https://github.com/emitanaka/deggust
mailto:emi.tanaka@monash.edu
https://twitter.com/statsgen

