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Abstract 43 

Phosphorus is an essential element for plant growth often limiting agroecosystems. To 44 

identify genetic determinants of performance under variable phosphate supply, we conducted 45 

genome-wide-association studies on five highly predictive phosphate starvation response traits in 46 

200 Arabidopsis (Arabidopsis thaliana) accessions. Phosphate concentration in phosphate-limited 47 

organs had the strongest, and primary root length had the weakest genetic component. Of 70 trait-48 

associated candidate genes, 17 responded to phosphate withdrawal. The PHOSPHATE 49 

TRANSPORTER1 gene cluster on chromosome 5 comprised PHT1;1, PHT1;2 and PHT1;3 with 50 

known impact on phosphorus status. A second locus featured uncharacterized endomembrane-51 

associated auxin efflux carrier encoding PIN-LIKES7 (PILS7) which was more strongly suppressed 52 

in phosphate-limited roots of phosphate-starvation sensitive accessions. In the Col-0 background, 53 

phosphate uptake and organ growth were impaired in both phosphate-limited pht1;1 and two pils7 54 

T-DNA insertion mutants, while phosphate-limited pht1;2 had higher biomass and pht1;3 was 55 

indistinguishable from wild type. Copy number variation at the PHT1 locus with loss of the PHT1;3 56 

gene and smaller scale deletions in PHT1;1 and PHT1;2 predicted to alter both protein structure 57 

and function suggest diversification of PHT1 is a key driver for adaptation to phosphorus limitation. 58 

Haplogroup analysis revealed a phosphorylation site in the protein encoded by the PILS7 allele 59 

from stress-sensitive accessions as well as additional auxin-responsive elements in the promoter 60 

of the ‘stress tolerant’ allele. The former allele’s inability to complement the pils7-1 mutant in the 61 

Col-0 background implies the presence of a kinase signaling loop controlling PILS7 activity in 62 

accessions from phosphorus-rich environments, while survival in phosphorus-poor environments 63 

requires fine-tuning of stress-responsive root auxin signaling.  64 

  65 
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Introduction 66 

Phosphorus (P) is an essential macronutrient for plant growth and development. However, in 67 

most soils, the concentration of Pi is limiting due to its low solubility and mobility (Raghothama, 68 

1999). Pi deficiency commonly impairs plant growth and affects about 70% of cultivated land 69 

globally (Cakmak, 2002; Hinsinger, 2001; López-Arredondo et al., 2014). Thus, P-containing 70 

chemical fertilizers are essential to sustain sufficient plant growth, as well as high grain quality and 71 

yield in most agroecosystems. Plants have evolved an array of strategies to cope with variable Pi 72 

environments, including remodeling of root system architecture (RSA) and metabolic adjustments 73 

(Bhosale et al., 2018; Plaxton & Tran, 2011; Shahzad & Amtmann, 2017). Auxin plays an important 74 

role in altering root system architecture. Application of auxin mimics the root’s response to low Pi 75 

supply, with a shorter primary root, and increased lateral root and root hair elongation (Bates & 76 

Lynch, 1996; Nacry et al., 2005). This phenotype was abolished in the auxin signaling mutants 77 

auxin resistant (axr)1-7, axr2-1 and axr4-1, auxin response factor (arf)7, arf19 and transport 78 

inhibitor response (tir)1 (Huang et al., 2018; Nacry et al., 2005; Perez-Torres et al., 2008). Plants 79 

grown under P-limiting conditions not only accumulate more auxin in roots but are also more 80 

responsive to auxin (López-Bucio et al., 2002; Nacry et al., 2005; Perez-Torres et al., 2008). 81 

The molecular mechanisms by which plants respond to Pi limitation are well studied. They 82 

consist of MYB transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), microRNA 83 

MIR399, E2 ubiquitin conjugase PHOSPHATE2 (PHO2), Pi exporter PHOSPHATE1 (PHO1) and 84 

the PHOSPHATE TRANSPORTER1 (PHT1) family – often referred to as the PHO regulon (Aung 85 

et al., 2006; Hamburger et al., 2002; Muchhal et al., 1996; Rubio et al., 2001). Auxin affects Pi 86 

starvation signaling by regulating the expression of PHR1, which is the transcriptional master 87 

regulator of phosphate starvation response (PSR) (Huang et al., 2018). Exogenous auxin 88 

application induces PHR1 expression while auxin transport inhibitors suppress it. Phosphate 89 

transporters are responsible for Pi acquisition from the environment and translocation between 90 

organs, cell types or organelles. In Arabidopsis (Arabidopsis thaliana), nine plasma membrane 91 

located PHT1 family members have been characterized, and at least eight of them are expressed 92 

in P-limited roots (Mudge et al., 2002; Shin et al., 2004). PHT1;1, PHT1;2, PHT1;3 and PHT1;6 are 93 
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collocated in a gene cluster on chromosome 5 indicating a series of recent gene duplication events 94 

(Ayadi et al., 2015). Amongst PHT1 genes, PHT1;1 shows the highest expression in P-replete 95 

organs, suggesting an important role in bulk Pi uptake. The pht1;1 mutant shows a 60% reduction 96 

of Pi uptake by P-replete roots. Compared to PHT1;1, both PHT1;2 and PHT1;3 have lower 97 

transcript abundance in Pi-rich media but are highly transcribed under Pi starvation (Shin et al., 98 

2004). PHT1;2 and PHT1;3 together contribute about 30% of the Pi uptake in P-limited roots, while 99 

PHT1;1 contributes between 15 to 20% (Ayadi et al., 2015).  100 

Genome-Wide Association Studies (GWAS) are a powerful tool for identifying genetic 101 

variants associated with phenotypic traits. Several GWAS have investigated traits related to plant 102 

nutrition (Bouain et al., 2019; Jia et al., 2019; Kawa et al., 2016; Kisko et al., 2018; Rosas et al., 103 

2013; Satbhai et al., 2017). PHO1 was associated with root plasticity in heterogeneous 104 

environments, impacting the distribution of lateral roots along the primary axis (Rosas et al., 2013). 105 

Given the importance of the PHO regulon in regulating Pi acquisition and use in the A. thaliana 106 

reference accession Col-0, it is quite surprising that no natural genetic variation in PHT1 or PHO1 107 

transporters has been directly associated with adaptation to variable P environments thus far.  108 

In this study, we investigate the genetic basis of the response to changes in Pi availability 109 

among 200 highly diverse ecotypes of the model plant Arabidopsis thaliana. Focusing on 110 

physiological (organ biomass and primary root length) and metabolic traits (organ Pi, shoot 111 

anthocyanin and shoot elemental composition), we test the expectation that variation in PSR is 112 

primarily mediated by allelic variation at transporter-encoding loci. We leverage the power of 113 

GWAS combined with haplogroup structure analysis and functional validation to establish PHT1 114 

and PILS7 as important loci underlying natural variation in low phosphate tolerance. 115 

Results 116 

Arabidopsis thaliana accessions display highly diverse responses to Pi withdrawal 117 

The accessions used in this study were selected based on a previous study (Li et al., 2010) 118 

to minimize genetic redundancy and family relatedness of accessions and to ensure maximum 119 

genetic diversity within the population (Supplemental Table 1). We first assessed the impact of 120 
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varying Pi supply on critical growth parameters using developmentally synchronized seedlings 121 

(Materials and Methods, Supplemental Figure 1). We observed reductions in organ biomass, organ 122 

Pi concentration, and primary root growth as well as anthocyanin accumulation in P-limited shoots 123 

(Figure 1, Supplemental Tables 2 and 3) and altered shoot elemental composition (Supplemental 124 

Figure 2A, Supplemental Table 2). Within these general trends, accessions showed large 125 

qualitative and quantitative differences in the degree of PSR (Figure 1, Supplemental Tables 2 and 126 

3). For instance, on average, Pi withdrawal resulted in a 42% reduction of shoot fresh weight, while 127 

it only conferred a 12% reduction of root fresh weight. Pi concentrations in P-limited organs ranged 128 

from 0.73 to 4 µmol g-1 FW in shoots, and from 0.6 to 5.3 µmol g-1 FW in roots (Figures 1C and 1D). 129 

Total P (i.e., the sum of inorganic and organic P) concentration in P-limited shoots ranged from 3 to 130 

30 µmol g-1 FW (Supplemental Figure 2A, Supplemental Table 2). Large variation in shoot 131 

anthocyanin concentration reflected differences in P-limited shoot P status (Figure 1F). The 132 

variation in Pi concentration of P-limited organs was largely due to higher Pi acquisition in P-133 

replete condition, with Pi concentrations ranging from 5.5 to 39.6 µmol g-1 FW in P-replete shoots, 134 

and from 3.7 to 19.1 µmol g-1 FW in P-replete roots (Figures 1C and 1D, Supplemental Table 2). 135 

Total P concentration in P-replete shoots ranged from 12 to 55 µmol g-1 FW (Supplemental Figure 136 

2A). An inhibition of primary root growth, often described as a generalized response of A. thaliana 137 

roots to Pi limitation (Gutiérrez-Alanís et al., 2018), was not universal across accessions. Similar to 138 

findings by Chevalier and colleagues (2003), some accessions did not arrest their primary root 139 

growth upon Pi withdrawal and 30 accessions even showed increased root growth (Figures 1A and 140 

1E, Supplemental Tables 2 and 3). By contrast, a reduction in shoot biomass was always observed 141 

across all accessions in the P-limited treatment (Figure 1B). Thus, shoot -P/+P biomass ratio was 142 

positively correlated with Pi concentration in P-limited shoots (r = 0.29, p = 3.21E-4, Supplemental 143 

Figure 2B). Accessions with the lowest shoot total P levels in P-limited conditions generally also 144 

had the highest iron concentration in leaves (Supplemental Figure 2A, Supplemental Table 2). 145 

Counter-intuitively, -P/+P root biomass ratio and Pi concentration in P-limited roots were negatively 146 

correlated (r = -0.21, p = 2.52E-3). This is most likely due to dilution of the root Pi pool by lateral 147 

root growth, resulting in lower root and higher shoot Pi concentration. Together, these data show 148 

that P resources accumulated during seedling establishment are crucial to support RSA changes 149 
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during Pi limitation while iron accumulation in shoots restricts P-limited root growth. Albeit 150 

significant, correlations were very low overall, again indicating strong variability between 151 

accessions.  152 

Overall, the considerable variation of quantified traits across accessions allowed for a highly 153 

resolved genetic analysis of underlying determinants by GWAS.  154 

GWAS reveals candidate genes involved in a more efficient Pi starvation response 155 

To identify genes regulating individual PSR traits, we performed GWAS using SNP data from 156 

the RegMap panel and the 1001 Genome Project (Materials and Methods; Alonso-Blanco et al., 157 

2016; Horton et al., 2012). Using the 1001 Genome SNP panel, we identified 154 significant SNPs 158 

(-log10(P) ≥ 7) that showed strong genetic association with Pi concentration in P-limited roots and 159 

shoots, anthocyanin concentration in P-limited shoots, and effective primary root length under P-160 

replete conditions (Supplemental Figure 3, Supplemental Table 4). Using the RegMap panel SNPs, 161 

we identified seven significant SNPs for two PSR traits (-log10(P) > 6.4), including one genomic 162 

region associated with root biomass ratio (-P/+P). SNPs in the same genomic region were also 163 

associated with root biomass ratio with the 1001 Genome SNP panel but fell just below the 164 

selection threshold (-log10(P) of 6.95 and 6.83, respectively; Supplemental Figure 3; Supplemental 165 

Table 4). These significant SNPs resided in 70 candidate genes (Supplemental Figure 3; 166 

Supplemental Table 4). To narrow down the candidate list, we cross-referenced the expression 167 

profile of these candidate genes using published RNA-seq data (Linn et al., 2017, Supplemental 168 

Table 5). A combination of SNP P value, SNP impact, trait-of-interest and RNA-seq expression 169 

profile of associated genes was considered to select two loci for further analyses: Five SNPs with 170 

significant association to Pi concentration in P-limited shoots were located on chromosome 5 171 

(Figure 2A to 2C). This locus contains four PHT1 genes (PHT1;6, PHT1;1, PHT1;3, and PHT1;2), 172 

with the latter three genes in the 12 kb region surrounding the lead SNP. We will therefore refer to 173 

this locus as the PHOSPHATE TRANSPORTER1 (PHT1) locus. In agreement, reverse 174 

transcription quantitative PCR (RT-qPCR) confirmed that all three genes were significantly induced 175 

in P-limited Col-0 roots (2-fold induction of PHT1;1, 85-fold induction of PHT1;2, 354-fold induction 176 

of PHT1;3; Figure 2D). Another locus on chromosome 5 was associated with Pi concentration in P-177 
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limited roots, a trait that is of great interest due to its negative correlation with -P/+P root biomass 178 

ratio and its wider implications for RSA (Supplemental Figure 2B). This locus contains two Pi 179 

starvation responsive genes: one encodes a putative auxin efflux carrier family protein, PIN-180 

LIKES7 (PILS7), and the other one encodes the amino acid transporter protein AMINO ACID 181 

VACUOLAR TRANSPORTER3 (AVT3) (Figure 2E to 2G). A third gene of unknown function, 182 

AT5G66000, showed no transcriptional response to Pi withdrawal (Figure 2H, Supplemental Table 183 

5). RT-qPCR confirmed that PILS7 is suppressed and AVT3 is induced in P-limited over P-replete 184 

Col-0 roots (Figure 2H). We will refer to this locus as PILS7 because nine out of 11 significant 185 

SNPs are in the genomic sequence of PILS7 (Supplemental Table 4). Considering the important 186 

roles of both Pi and auxin transport for P status, organ growth and RSA (Bhosale et al., 2018; 187 

Perez-Torres et al., 2008), we focused on PHT1 and PILS7 loci for further analysis of causal 188 

mechanisms.  189 

Loss-of-function alleles of PHT1;1, PHT1;2, and PILS7 in Col-0 affect plant growth and 190 

organ Pi levels 191 

To characterize the impact of genes in the PHT1 and PILS7 loci on acclimation of the Col-192 

0 reference genotype to low Pi supply, T-DNA insertion mutants of the five PSR genes (PHT1;1, 193 

PHT1;2, PHT1;3, PILS7, AVT3) were tested for their Pi starvation response (Supplemental Figure 194 

4, Material and Methods). In agreement with a previous study (Shin et al., 2004), the pht1;1 mutant 195 

showed a significant reduction in shoot fresh weight compared to that of wildtype in both Pi 196 

conditions (Figures 3A). Pi concentrations in P-replete pht1;1 roots and shoots were significantly 197 

reduced by 35 % and 70 % compared to wildtype, respectively, reaffirming the prominent role of 198 

PHT1;1 in Pi uptake (Figures 3C and 3D). The pht1;2 mutant had the opposite effect on growth as 199 

its shoot biomass was significantly higher than that of wildtype under P-replete conditions, as was 200 

root biomass under P-limiting conditions (Figures 3A and 3B). However, there was no significant 201 

difference in organ Pi accumulation between pht1;2 and wildtype (Figures 3C and 3D). Loss of 202 

function in Pi transporters causes retarded plant growth (Nagarajan et al., 2011; Remy et al., 2012), 203 

so enhanced organ biomass of the pht1;2 mutant suggests that PHT1;2 may either be a Pi 204 

exporter, expressed in cell types associated with Pi translocation or have functions beyond Pi 205 
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transport. The pht1;3 mutant showed no trait difference compared to wildtype. Across accessions, 206 

the PHT1 locus was associated with Pi concentration in P-limited shoots (Figure 2), however, in 207 

the Col-0 background, there was no significant difference in shoot Pi concentrations between P-208 

limited pht1 mutants and the control. Knock-out of PHT1;1 seemed to impact P status of P-replete 209 

seedlings instead (Figures 3C and 3D). In line with the GWAS results, the pils7-1 allele caused 210 

higher Pi accumulation in P-limited roots (25 %, Figure 3D). Both P-replete PILS7 loss-of-function 211 

mutants showed significant reductions in root biomass (32 %) and root Pi concentration (20 %, 212 

Figures 3B and 3D). The avt3 mutant did not display any P status-dependent physiological 213 

changes compared to wildtype. These data suggest that PILS7 is associated with Pi concentration 214 

in P-limited roots, and that impaired PILS7 activity leads to reduced Pi uptake and / or Pi 215 

translocation from root to shoot.  216 

pht1;1 and pils7 mutant alleles are impaired in Pi acquisition 217 

To determine whether changes in organ Pi accumulation were a result of altered Pi uptake 218 

by roots, we conducted a Pi depletion assay using PHT1 and PILS7 locus mutants and compared 219 

those to the pho2-2 / ubc24-1 (SAIL_47_E01) (Aung et al., 2006) and phr1-2 (SALK_067629C) 220 

mutants (Nilsson et al., 2007). Consistent with the earlier reports, the pho2-2 mutant exhibited 221 

significantly enhanced Pi uptake, while uptake tended to be lower in the phr1-2 mutant compared 222 

to wildtype (Figure 3E). Similar to results by Shin and colleagues (2004), Pi uptake capacity of P-223 

limited pht1;1 was reduced to 70% of that of wildtype under P-limited conditions, but we did not 224 

observe significant differences compared to wildtype in P-replete condition. The pht1;2 and pht1;3 225 

mutants behaved like wildtype (Figure 3E), as did the avt3 mutant. Both pils7 mutant alleles 226 

showed impaired Pi uptake under P limitation, with P-limited pils7-1 and pils7-2 having only 71% 227 

and 70% of the wildtype uptake capacity, respectively (Figure 3E). Similar Pi uptake capacity 228 

between pht1;1, pils7 mutants and wildtype under P-replete conditions clashes with the 229 

observation of a lower Pi concentration in P-replete pht1;1 and pils7 roots (Figure 3D). This could 230 

be other Pi transporters compensating for the pht1;1 knockout in the short term (Pi depletion from 231 

the media in Figure 3E was measured after 8 h), but not in the long term (accumulative effect in 232 

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiab441/6372701 by serials@

latrobe.edu.au user on 21 Septem
ber 2021



 

10 
 

Figure 3D was measured seven days after transfer). In P-replete pils7 mutants this effect could 233 

either be achieved by impairing PHT1;1 function, or by altering root-to-shoot Pi translocation.  234 

Large scale rearrangement of the PHT1 locus corresponds with lower Pi concentration in P-235 

limited shoots of haplogroup 2 accessions 236 

Next, we assessed how the allelic variation in PHT1;1, PHT1;2 or PHT1;3 identified by 237 

GWAS is causal of the variation in shoot Pi concentration across the 200 accessions under low Pi 238 

supply. Using the RegMap panel’s 250K SNP data, we performed a haplotype analysis on the 239 

genomic region encompassing PHT1;1, PHT1;3 and PHT1;2 (Figure 4A). The two haplogroups 240 

showed significant difference in the Pi concentrations in P-limited shoots, with Pi levels in 241 

haplogroup 1 accessions higher than those in haplogroup 2 (p = 0.00632, Figure 4B, Supplemental 242 

Table 6). SNP patterns of those accessions that were sequenced by the 1001 Genome Project 243 

revealed many variants segregating among accessions from haplogroup 2 compared to those of 244 

haplogroup 1 as well as the Col-0 reference allele (Figure 4A). For both the PHT1;1 and PHT1;2 245 

coding regions, one SNP shared by representative accessions of haplogroup 2 led to a 246 

conservative amino acid change in each (Figure 4A). Strikingly, representative haplogroup 2 247 

accessions featured deletions in promoters, exons and introns (grey bars in Figure 4A, dotted red 248 

boxes in Supplemental Figures 4A and 4C). Consequences of these SNPs and deletions for the 249 

amino acid composition of PHT1;1 and PHT1;2 proteins from haplogroup 2 accessions and their 250 

predicted membrane topology are presented in Supplemental Figure 5: Exon 2 deletions in 251 

haplogroup 2 alleles of PHT1;1 and PHT1;2 cause a loss of the second last extracellular loop at 252 

the transporters’ C-termini which will dramatically alter overall membrane topology. Given that the 253 

C-terminus contains two phosphorylation sites (S514 and S520 of PHT1;1) that affect 254 

PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR (PHF1)-mediated PHT1 exit from the 255 

endoplasmic reticulum (ER), as well as the predicted ER exit site itself (Bayle et al., 2011), these 256 

deletions are expected to dramatically affect PHT1 activity and / or regulation. The PHT1;1 allele is 257 

likely to be further functionally compromised due to two deletions in transmembrane domain VII 258 

and the preceding cytoplasmic loop (dotted grey boxes in Supplemental Figure 5B). In haplogroup 259 

2 accessions, PHT1;2 would be the only remaining, fully functional Pi transporter of the PHT1 260 
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locus. Even more striking, the entire PHT1;3 gene is missing from haplogroup 2 accessions (Figure 261 

4A). Expression profiling of PHT1;3 in roots of select haplogroup 1 and haplogroup 2 accessions 262 

across Pi treatments confirmed that the transcript could not be detected in the latter (Figure 5A). 263 

Alignment of whole genome sequencing reads for these accessions against the Col-0 PHT1 locus 264 

confirmed the deletion of the PHT1;3 gene in haplogroup 2 accessions (Figure 5B).  265 

In conclusion, copy-number variation with loss of PHT1;3 and major rearrangement of the 266 

remaining two PHT1 genes in haplogroup 2 accessions dramatically reduces Pi acquisition 267 

resulting in lower shoot Pi concentration and higher sensitivity to Pi limitation. Differences in PHT1 268 

gene content and sequence variation may reflect adaptations of haplogroups to Pi availability in 269 

their habitats with haplogroup 2 most likely originating from a P-rich environment. 270 

Allelic variation at the PILS7 locus is associated with root Pi concentration in P-limited 271 

accessions 272 

For the PILS7 locus, the Pi concentration in P-limited roots of haplogroup 1 accessions was 273 

significantly lower than that of haplogroup 2 accessions (Figure 4D, Supplemental Table 6). Due to 274 

the negative correlation between Pi concentration in P-limited roots and root biomass ratio 275 

(Supplemental Figure 2B), haplogroup 1 accessions are likely to be more tolerant to Pi withdrawal 276 

than those of haplogroup 2. To identify causal sequence polymorphisms, we compared 1001 277 

Genome Project derived PILS7 locus SNP information for select accessions in two contrasting 278 

haplogroups: Across the genomic region haplogroup 2 accessions harbor 22 common SNPs that 279 

are absent from those of haplogroup 1 (Figure 4C). Of the SNPs in the PILS7 coding region, eight 280 

reside in exons and seven in introns of the haplogroup 2 allele (Figure 4C). Of the eight exonic 281 

SNPs, only one leads to a non-synonymous change from alanine (Ala) to threonine (Thr). The 282 

other seven SNPs are silent mutations (Figure 4C). Sanger sequencing of genomic PILS7 283 

sequences PCR-amplified from representative haplogroup 1 accession HSm and haplogroup 2 284 

accession Liarum confirmed these SNP locations (Supplemental Figure 6). It furthermore revealed 285 

extensive insertions and deletions within the promoter and the 1st intron of these two PILS7 alleles 286 

(blue boxes in Supplemental Figure 6). 287 
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There is very little information available on functional domains within PILS proteins, but 288 

transmembrane helices are highly conserved among PILS family members, and thus may have 289 

central roles in auxin carrier function. The cytosolic loops display a lesser degree of conservation 290 

and may have regulatory functions (Barbez et al., 2012). The non-synonymous amino acid change 291 

is located in the longest cytosolic loop of PILS7 (Supplemental Figure 7). Substitution of the Ala 292 

residue at position 197 with Thr in group 2 accessions may change the regulation of PILS7, 293 

possibly through protein phosphorylation at Thr197. This posttranslational modification could alter 294 

PILS7 activity or turnover, subsequently affecting auxin sequestration in the endoplasmic reticulum 295 

(ER) and nuclear auxin signaling (Beziat et al., 2017; Feraru et al., 2019). Changes in auxin 296 

gradients would then impact lateral root and root hair formation, and either directly or indirectly 297 

impact on Pi uptake and / or Pi translocation.  298 

SNPs and indels in the promoter and 1st intron could alter the expression and / or splicing of 299 

PILS7, resulting in altered PILS7 protein abundance. Promoter analysis using PlantPAN 3.0 (Chow 300 

et al., 2019) identified a key transcription factor (TF) binding region (Supplemental Figure 6, 301 

Supplemental Table 7) that was unique to the HSm (haplogroup 1) PILS7 allele. It featured binding 302 

sites for transcription factors of the APETALA2 (AP2) / ETHYLENE RESPONSE FACTOR (ERF) 303 

and AUXIN RESPONSE FACTOR (ARF) families. AP2/ERF transcription factors have been 304 

associated with auxin-sensitive abiotic stress signaling in roots promoting the transcription of ARF-305 

family AUXIN / INDOLE ACETIC ACID (Aux/IAA) repressors in response to desiccation and 306 

osmotic stress (Shani et al., 2017). All of the ARF transcription factors predicted to bind to the HSm 307 

PILS7 promoter (ARF2, ARF4, ARF5, ARF6, ARF7, ARF8 and ARF11, Supplemental Table 7) 308 

have been associated with auxin-controlled root hair as well as primary and lateral root 309 

development (Choi et al., 2018; Dastidar et al., 2019; Santos Teixeira & Ten Tusscher, 2019; Yin 310 

et al., 2020). While ARF5 and ARF11 stimulated root hair elongation, ARF2 and ARF4 acted as 311 

repressors (Choi et al., 2018). ARF7 – together with ARF19 – targets the PHR1 promoter which 312 

features three auxin-response elements that confer auxin-stimulated lateral root formation and 313 

increased Pi uptake in P-limited A. thaliana seedlings (Huang et al., 2018). These findings suggest 314 

increased auxin-sensitive abiotic stress responsiveness of the HSm (haplogroup 1) but not the 315 

Liarum (haplogroup 2) PILS7 allele. We therefore measured PILS7 expression in roots of select 316 
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haplogroup 1 and 2 accessions under P-replete and P-limiting conditions (Supplemental Figure 8). 317 

While across accessions, expression was higher in P-replete and lower in P-limited roots, PILS7 318 

transcripts were significantly less abundant in P-limited roots of haplogroup 2 accessions by about 319 

2-fold. Thus, the additional TF binding site in the haplogroup 1 / HSm allele may help sustain 320 

PILS7 expression in P-limited roots. To test whether differential PILS7 expression was associated 321 

with expression changes in genes associated with Pi uptake or translocation, PHT1;1, PHT1;4, 322 

PHO1 and MIR399D transcript profiles were also determined (Supplemental Figure 8). The four 323 

genes showed the typical expression profile reported for P-limited Col-0 roots, with strong induction 324 

of MIR399D and PHT1;4, moderate induction of PHT1;1 and no change in PHO1 expression. None 325 

of these genes showed differences in expression between haplogroups, indicating that observed 326 

changes were PILS7 specific.  327 

Taken together, extensive allelic variation across the entire PILS7 genomic sequence leads 328 

to altered PILS7 abundance and possibly altered post-translational regulation which would affect 329 

root auxin signaling under stressful versus non-stressful conditions and cause the observed natural 330 

variation in root Pi concentration and organ growth. It is unlikely that altered transcript expression 331 

of PHO regulon components is responsible for trait variation. 332 

Elemental composition differs in the two contrasting haplogroups associated with PHT1 333 

and PILS7 loci 334 

Shoot elemental composition data for each accession (Supplemental Figure 2A, 335 

Supplemental Table 2) offered the opportunity to investigate the interaction of P with other 336 

nutrients across the contrasting P-related haplogroups. Across accessions, the PHT1 locus was 337 

associated with variation of Pi concentration in P-limited shoots (Figure 4B). The elemental profiles 338 

showed that total P (sum of inorganic and organic P) levels in P-limited shoots were similar 339 

between haplogroups. However, P-replete haplogroup 1 accessions had higher leaf Pi and total P 340 

concentration than haplogroup 2 accessions (Supplemental Figure 9A). This may suggest that due 341 

to their three functional PHT1 paralogs, haplogroup 1 accessions are able to build up higher 342 

organic P pools to boost growth under Pi limiting conditions.  343 
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For the PILS7 locus, P-limited haplogroup 1 accessions had lower root Pi concentration 344 

(Figure 4D). These accessions also have higher Pi concentration in P-replete organs and higher 345 

root biomass irrespective of Pi supply (Supplemental Figure 9B). Total elemental composition 346 

analysis revealed that their P-replete shoots also had higher total P levels (Supplemental Figure 347 

9B), again suggesting higher mobilization capacity upon Pi withdrawal. Unlike PHT1 locus 348 

associated haplogroups, contrasting PILS7 haplogroup accessions also differed in their leaf iron 349 

and copper content. In P-limited environments, root architecture is also modified by iron and 350 

copper availability (Perea-Garcia et al., 2013; Ward et al., 2008). Higher iron content in P-limited 351 

leaves of haplogroup 2 accessions is consistent with lower shoot Pi and total P levels and confirms 352 

their higher sensitivity to Pi withdrawal (Supplemental Figure 9B). Irrespective of P status, copper 353 

concentration is always higher in leaves of haplogroup 2 accessions which can be an indicator of 354 

altered PIN1-mediated auxin distribution (Yuan et al., 2013). High copper concentrations cause 355 

primary root length inhibition via auxin depletion of the root apical meristem, a phenotype similar to 356 

that seen here for pils7 mutants (Figure 3B).  357 

Despite similar nutrient allocation profiles, overlap in accessions between haplogroups 1 and 358 

2 of PHT1 and PILS7 loci was low – with only three out of the 23 and 19 accessions shared in 359 

haplogroup 1, and eight out of 30 and 29 accessions shared in haplogroup 2, respectively 360 

(Supplemental Table 6). This would indicate that there has been no common selection for these 361 

genetic marks. 362 

The PILS7 allele of haplogroup 2 accessions fails to complement PILS7 knockout in Col-0 363 

To further assess the impact of the contrasting Hsm and Liarum alleles on PILS7 function, 364 

their genomic sequences were used for the complementation of the pils7-1 mutant (Supplemental 365 

Figure 10A). The CaMV 35S promoter-driven coding sequence of the Col-0 allele of PILS7 was 366 

also transformed into the pils7-1 mutant background for comparison. The latter construct resulted 367 

in strong (at least 435-fold) PILS7 overexpression compared to Col-0 (Supplemental Figure 10B). 368 

35S::PILS7Col-0 overexpression led to poor seedling and lateral root development as well as 369 

stronger anthocyanin accumulation in shoots (Supplemental Figure 11E and 11F). Ectopic 370 

expression of PILS7 which – under its native promoter – is much more strongly expressed in Col-0 371 
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roots than shoots (Supplemental Figure 11G), thus appears to severely impair root auxin 372 

distribution, perception or signaling, leading to growth impairment. 373 

Across all progeny obtained for the two haplogroup alleles, the haplogroup 1 allele PILS7HSm 374 

led to distinctly higher expression than the haplogroup 2 allele PILS7Liarum (Supplemental Figures 375 

10C and 10D). With each T1 line representing an independent T-DNA insertion, this could already 376 

be an indication of differences in the relative promoter strengths of these two alleles. For each 377 

allele, we chose two complementation lines for further characterization (high-lighted in 378 

Supplemental Figures 10C and 10D). While pils7-1 mutants expressing the haplogroup 1 allele 379 

PILS7HSm to similar levels as the wild type allele in Col-0 were able to restore organ biomass and 380 

Pi concentration of the pils7-1 mutant back to Col-0 levels, the haplogroup 2 allele PILS7Liarum failed 381 

to complement the pils7-1 mutant when expressed at levels similar to the wild type allele or at 382 

more than 150-fold higher levels (Figure 6; Supplemental Figure 10D). Despite strong 383 

overexpression, the latter complementation line did also not lead to the retarded growth phenotype 384 

observed in the 35S::PILS7Col-0 lines. 385 

These results demonstrate that the two contrasting alleles not only have different promoter 386 

strengths, but also result in functionally distinct PILS7 proteins. Genetic differences between them 387 

are likely the result of adaptation to local P environments with haplogroup 1 PILS7 alleles providing 388 

improved auxin signaling in roots. This promotes more vigorous (lateral) root growth and higher Pi 389 

uptake capacity enabling plants to actively seek out and exploit P-rich topsoil patches. 390 

Discussion 391 

Complexity of genome-wide associations with key PSR traits 392 

In this study, we performed a GWAS on a number of traits associated with acclimation to low 393 

Pi availability using Arabidopsis thaliana accessions of high genetic diversity (Li et al., 2010). 394 

Unlike other studies that germinate seeds on media with contrasting Pi levels, our experimental 395 

design aimed at identifying key determinants of more efficient Pi acquisition and utilization in the 396 

presence of Pi, as seedlings were established on P-replete media prior to transfer to either low or 397 

high Pi media. The selected traits showed variation across accessions, but only five traits showed 398 

significant association with SNPs (Figure 2, Supplemental Figure 3, Supplemental Table 4). One 399 
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explanation for the limited number of associations with some traits might be that these are 400 

controlled by a large number of genetic variants, each with only a modest contribution to the total 401 

phenotypic variation. These minor-effect loci are only detectable when the size of study population 402 

is big enough (Visscher et al., 2017). The fact that we found strong genetic determinants of root but 403 

not shoot biomass ratio in P-limited over P-replete plants came as a surprise, given that root 404 

growth relies on exported assimilate from shoots, and in non-stressed plants, a strong genetic 405 

coupling between root and shoot growth has been found (Bouteillé et al., 2012). The requirement 406 

to respond to environmental challenges would have made this relationship more complex over time. 407 

The resulting complex genetic architecture of shoot growth can be a major challenge for GWAS 408 

(Bouteillé et al., 2012; Marchadier et al., 2019). Nutrient limitation causes the strongest allocation 409 

responses, with large increases in root biomass at the expense of stem and leaf biomass and no 410 

significant difference between species from nutrient-poor and nutrient-rich habitats (Poorter et al., 411 

2012). The lack of variability in shoot biomass reduction across P-limited A. thaliana accessions 412 

found in this study supports this hypothesis. 413 

Variation in copy number and protein topology of Pi transporters as potential sources of adaptation 414 

to low phosphorus conditions 415 

Pi transporters of the PHT1 family are essential for Pi acquisition and Pi translocation, 416 

however studies on their function have so far focused on the A. thaliana accession Col-0. Here, we 417 

detected an association between the PHT1 locus on chromosome 5 and Pi concentration in P-418 

limited shoots across 200 A. thaliana accessions. The locus identified on chromosome 5 contains 419 

four PHT1 paralog genes, most likely derived from a series of duplication events (Poirier & Bucher, 420 

2002). From an evolutionary standpoint, gene duplication events in rate-limiting ion transporter 421 

families, such as the PHT transporters, are sometimes associated with increased dosage, but 422 

many are subjected to stronger purifying selection in the long term (Hudson et al., 2011). However, 423 

so called ‘fate determining mutations’ can sub- or neofunctionalize duplicates and reduce selection 424 

pressure whilst maintaining the original functional copy (Carretero-Paulet & Fares, 2012; Fournier-425 

Level et al., 2011; Innan & Kondrashov, 2010). Copy-number variants have been detected in 426 

Arabidopsis accessions (Bush et al., 2014; Göktay et al., 2021; Jiao & Schneeberger, 2020; Long 427 
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et al., 2013; Zmienko et al., 2020). The most recent study of 1135 whole-genome sequenced 428 

accessions from the 1001 Genomes Project identified copy-number variants associated with 18.5 % 429 

of protein-coding regions, in particular regions of tandem duplications (Zmienko et al., 2020). Loss 430 

of PHT1;3 has been captured as CNV_18358. In haplogroup 2 accessions, the loss of PHT1;3 and 431 

substantial deletions in promoter and exon regions of PHT1;1 and PHT1;2 associated with 432 

progressive loss of function could be an adaptation to environments with reliable Pi availability 433 

(Figures 4A and 5, Supplemental Figure 5). Our finding that these accessions have lower Pi and 434 

total P levels in P-limited shoots than those of haplogroup 1 confirms their reduced Pi uptake 435 

capacity and higher sensitivity to Pi starvation (Supplemental Figure 9). In high P environments, 436 

the PHT1;3 gene might not be under the same selection pressure as in low P environments, and 437 

its loss in haplogroup 2 accessions does not impact in situ performance (Supplemental Figure 9A). 438 

The extra control loop that prevents hyperaccumulation of Pi in variable P environments by 439 

phosphorylating the C-terminus of excess PHT1 proteins and retaining them in the ER (Bayle et al., 440 

2011) is not needed in habitats with more readily available Pi that incur only a moderate 441 

expression of PHT1 protein in the first place (Supplemental Figure 5). In Col-0, PHT1;2 and 442 

PHT1;3 are considered redundant (Ayadi et al., 2015) but only PHT1;3 has been lost in haplogroup 443 

2 accessions. We found that unlike other Pi transporter mutants in Col-0, pht1;2 had higher organ 444 

biomass than P-replete wildtype, and higher root biomass in P-limited conditions (Figure 3). Its 445 

retention may therefore be due to its positive impact on plant growth. In wheat, the expression of Pi 446 

transporters, and in particular TaPHT1;2, in response to Pi limitation differed between P-447 

acquisition-efficient and -inefficient cultivars, which also showed marked differences in organ- and 448 

tissue-specific PSR traits (Aziz et al., 2014; de Souza Campos et al., 2019). In summary, 449 

haplogroup 2 accessions carry genome modifications that are likely to reduce overall PHT1 450 

transporter abundance at the plasma membrane as a reflection of adaptation to their local 451 

environment.  452 

Hormonal signaling during PSR-induced changes in root system architecture  453 

Several phytohormones are involved in PSR, for example auxin, jasmonic acid and ethylene 454 

(Bhosale et al., 2018; Borch et al., 1999; Khan et al., 2016; Perez-Torres et al., 2008; ). Recent 455 
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studies show that auxin signaling is crucial for Pi starvation induced modifications of root system 456 

architecture (Bhosale et al., 2018; Huang et al., 2018). The PIN-LIKES (PILS) family of auxin 457 

transporters is comprised of seven members (PILS1 to PILS7) (Barbez et al., 2012). Individual 458 

members of this family have recently been functionally characterized as ER-localized auxin carriers 459 

that sequester auxin in the ER (Feraru et al., 2019), which in turn promotes auxin conjugation and 460 

dampens nuclear auxin signaling. PILS2 to PILS7 transcript abundance increased with external 461 

auxin application (Barbez et al., 2012). Overexpression of PILS1 or PILS3 led to shoot 462 

developmental defects and dwarf plants. Knock-out of PILS2 and PILS5 promoted hypocotyl, 463 

primary and lateral root growth (Barbez et al., 2012). This and other studies support a role of PILS 464 

proteins as negative regulators of plant growth and development (Barbez et al., 2012; Beziat et al., 465 

2017; Feraru et al., 2019). By contrast, our results suggest that PILS7 is a positive regulator of 466 

organ growth and Pi allocation as well as Pi acquisition by P-limited roots (Figure 3). Lack of 467 

complementation of the pils7-1 mutant by constitutive PILS7 expression suggests a highly dose-468 

dependent, stress- and / or cell-specific role. Given its role in nuclear auxin depletion, PILS7 469 

function could be associated with short-distance auxin transport and signaling during abiotic stress 470 

(Korver et al., 2018). Its function could be to establish the cytokinin-dependent auxin minimum 471 

needed to promote root cell differentiation and / or auxin oscillations required for lateral root 472 

formation (De Rybel et al., 2010; Di Mambro et al., 2017). Similar to pils7 mutants (Figure 6), 473 

haplogroup 2 accessions have lower PILS7 expression (Supplemental Figure 8) and higher Pi 474 

concentration in P-limited roots (Figures 4D and Supplemental Figure 9B). The PILS7 protein of 475 

haplogroup 2 is furthermore predicted to carry an extra phosphorylation site in its central 476 

cytoplasmic loop (Supplemental Figure 7). These genomic modifications render the haplogroup 2 477 

PILS7 allele incapable of rescuing the pils7-1 mutant in the Col-0 background (Figure 6). The 478 

negative correlation between P-limited root Pi concentration and root biomass ratio (-P/+P) 479 

(Supplemental Figure 2B) would suggest that haplogroup 2 accessions come from P-rich habitats 480 

and are more sensitive to Pi limitation. This is supported by their reduced capacity to take up Pi in 481 

replete condition and the higher iron accumulation in P-limited shoots (Supplemental Figure 9B). 482 

Selection pressure to sustain stress responsive PILS7 promoter activity in these habitats may have 483 

been low. The phosphorylation site in the haplogroup 2 PILS7 protein may be part of an additional 484 
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kinase/phosphatase signaling loop to help regulate auxin transporter activity in response to other 485 

environmental or developmental clues. Haplogroup 1 accessions are more stress tolerant and 486 

maintain higher organ Pi levels in P-replete conditions to support root growth upon Pi withdrawal 487 

(Supplemental Figure 9B). The haplogroup 1 PILS7 allele can complement the pils7-1 mutant in 488 

the Col-0 background (Figure 6). Unlike the Col-0 allele, its promoter is targeted by stress 489 

responsive CBFs/ERFs and early ARF-dependent auxin signaling modules for lateral root 490 

development (Santos Teixeira & Ten Tusscher, 2019) that help to sustain PILS7 expression upon 491 

Pi withdrawal (Supplemental Figure 8). The regulatory elements involved would suggest that – in 492 

stress tolerant haplogroup 1 accessions - PILS7 is part of the TIR1- and ARF19-dependent 493 

signaling cascade that stimulates the first asymmetric divisions in pericycle cells to promote lateral 494 

root formation upon Pi withdrawal (Perez-Torres et al., 2008). How exactly PILS7 activity impacts 495 

on nuclear auxin levels and ARF-dependent auxin and PSR signaling to promote root hair and 496 

lateral root growth remains to be elucidated.  497 

Conclusion 498 

The results of this study revealed that higher Pi acquisition, Pi translocation from shoot to 499 

root and higher investment in root biomass are critical for successful adaptation to a low Pi 500 

environment. A switch in PHT1 isoform use, together with altered transcriptional and post-501 

translational regulation of PHT1 isoforms and PILS7 are tightly associated with these traits. 502 

Interactions between these two loci are complex, however, with only a limited number of either 503 

phosphate limitation tolerant or sensitive accessions sharing both genetic marks. The initial SNP 504 

association led to the identification of more substantial genomic variation in alleles of individual 505 

accessions that allowed us to identify additional aspects in the regulation of known players (PHT1 506 

isoforms) and another player (PILS7) as key determinants of P efficiency that can inform plant 507 

selection and improve fertilizer use in agronomic production systems. 508 
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Materials and Methods 509 

Plant materials and growth conditions 510 

The 200 Arabidopsis (Arabidopsis thaliana) accessions were kindly provided by Justin 511 

Borevitz (Research School of Biology, The Australian National University, Canberra, Australia). In 512 

order to identify differences in PSR without interference from seed quality, accessions were 513 

propagated in the same temperature-controlled glasshouse and seeds were harvested from 514 

individual plants showing the expected growth habit according to the germplasm details provided 515 

by The Arabidopsis Information Resource (www.arabidopsis.org). Accessions requiring 516 

vernalization (Supplemental Table 1) were transiently transferred to a temperature-controlled 517 

cabinet for cold treatment. Names and identities of accessions as well as vernalization information 518 

are provided in Supplemental Table 1.   519 

T-DNA insertion lines were obtained from the Nottingham Arabidopsis Stock Centre (pht1;2 / 520 

SALK_110194C; pht1;3 / GK-557C09; pils7-1 / GK-768F05; pils7-2 / SALK_069485; avt3 / 521 

SALK_010447C). Genotyping was carried out using primer combinations listed in Supplemental 522 

Table 8A. T-DNA insertion sites in either the first or second exon of each mutant were confirmed 523 

by Sanger sequencing (Supplemental Figure 4). Transcript abundance was determined via RT-524 

qPCR (Supplemental Figure 4). Previously published mutants, pht1;1-2 (SALK_088586C, Shin et 525 

al., 2004), phr1-2 (SALK_067629C, Nilsson et al., 2007) and pho2-2/ubc24-1 (SAIL_47_E01, Aung 526 

et al., 2006) and Col-0 (N70000) were used as controls in the phenotyping experiments.  527 

Plants for genotyping and propagation were grown in soil with 0.5 L coarse Vermiculite, 0.33 528 

L Perlite, 33 g NutricoteTM controlled-release fertilizer, 28 g ammonium nitrate, 25 g water-holding 529 

granules, 15 g trace elements, and 7 g garden lime added per kg of standard potting mix (Van 530 

Schaik’s BioGro, Australia) under a 16-/8-hour light-dark cycle with 120 µmol m−2 s−1 light intensity, 531 

at 22°C/19°C (light/dark), and 55 % relative humidity.  532 

For the accession screen as well as phenotyping of T-DNA mutants and transgenic lines, 533 

seeds were sterilized with chlorine gas for 2 hours, and then stratified at 4°C for 2 days in the dark. 534 

Seedlings were germinated and grown on 10-cm square Petri dishes filled with 50 mL agar-535 

solidified Murashige & Skoog (MS) medium (Murashige & Skoog, 1962). After sowing of seeds, the 536 
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Petri dishes were placed in a near vertical position. The environmental settings were the same as 537 

for soil-grown plants. The MS medium had the following composition: 0.61 g L-1 MS Modified Basal 538 

Salt mixture (M407; Phytotech Laboratories), 20.6 mM NH4NO3, 18.8 mM KNO3, 1 mM KH2PO4, 539 

0.1% (w/v) MES, and 0.9% (w/v) DifcoTM Granulated Agar (LOT 6173985). For Pi depletion, 1 mM 540 

KH2PO4 were replaced by 1 mM KCl. The solution was adjusted to pH 5.8 using 5 M KOH. The 541 

residual Pi concentration of the agar used was 6.5 µM.  542 

Accessions were established on MS medium, before seedlings with 2-cm-long primary roots 543 

were transferred to either P-replete (1 mM Pi) or P-limited (6.5 M Pi) medium and assessed after 544 

seven days of growth (Supplemental Figure 1). Using seedlings of similar size across accessions 545 

aimed at reducing the bias arising from maternal effects around seed quality and / or inherent 546 

genetic differences in germination. Following an initial growth study, accessions were put into eight 547 

groups defined by the number of days after sowing when the primary root length reached 548 

approximate 2 cm (Supplemental Table 1). The seedlings were established for 4+x days in P-549 

replete medium, with x equaling the group number. To characterize T-DNA mutants in the Col-0 550 

background, as well as PILS7 overexpression and pils7-1 complementation lines, seedlings were 551 

established in P-replete medium until the primary root length reached approximate 2 cm, and then 552 

transferred to either P-replete or P-limited medium and grown for another seven days prior to 553 

harvesting root and shoot material. 554 

Tissue collection 555 

In the accession screen, one plate containing ten seedlings constituted one biological 556 

replicate. Most accessions had three biological replicates per treatment and genotype, and a few 557 

accessions only had two biological replicates due to poor germination (Supplemental Table 3). For 558 

each plate, seedlings were separated into root and shoot for harvesting. Five individual shoots and 559 

ten roots were combined into one sample for measuring Pi and anthocyanin (shoots only) 560 

concentrations. For the characterization of transgenic lines, one plate containing eight seedlings 561 

constituted one biological replicate. Each genotype had three biological replicates per treatment 562 

and fresh weights were recorded for all samples, prior to shock-freezing in liquid N2 and storing at -563 

80°C.  564 
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Primary root length measurement 565 

Primary root length was determined as described earlier (Linn et al., 2017). Root images 566 

were analyzed in the ImageJ software using the SmartRoot plugin (Lobet et al., 2011). The 567 

effective primary root length was calculated by subtracting root length before transfer from root 568 

length at final harvest. The effective primary root lengths of P-replete or P-limited seedlings was 569 

used for GWAS. 570 

Determination of Pi and anthocyanin concentration 571 

To determine Pi and anthocyanin concentration, the frozen plant samples were ground and 572 

extracted with 1% (v/v) acetic acid at 4C in the dark. Pi concentration was measured using the 573 

colorimetric ammonium molybdate assay as described earlier (Jost et al., 2015). Anthocyanin 574 

concentration in leaf samples was determined using a pH-differential method as described 575 

previously (Wrolstad et al., 2005). 576 

Total P and elemental composition analysis 577 

Accessions were grown as described (Supplemental Figure 1). Three shoot replicates were 578 

pooled to generate sufficient dry weight for acid digestion. The method for elemental analysis was 579 

adapted from Foroughi and colleagues (2014). Dry shoot material (ca. 10 mg) was digested with 580 

300 µL of HCl : HNO3 (3:1) at 70C for 3 hours. Tomato (Lycopersicon esculentum) leaf reference 581 

material (Sigma Aldrich, NIST1573A) was used to validate the method accuracy. The digested 582 

samples were adjusted to a final volume of 10 mL of Milli-Q water and quantified by inductively 583 

coupled plasma mass spectrometry (ICP-MS).  584 

Correlation analysis 585 

The average of each measured trait was used for the correlation analysis, with two to three 586 

biological replicates for each accession (Supplemental Table 2). Correlation coefficients between 587 

the traits were calculated using the ‘cor’ function for Pearson’s correlation in R (www.r-project.org). 588 

p values were calculated using ‘cor_pmat’ function in the ggcorrplot package (Version 0.1.3) in R.  589 
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Pi depletion assay 590 

Seedlings were grown on P-replete MS medium for seven days and transferred to P-replete 591 

or P-limited medium for another seven days. Seedlings were then transferred to 2.5 mL of liquid P-592 

replete MS medium in 24-well plates (Greiner CELLSTAR®, M9312), with five seedlings in each 593 

well. Aliquots of 200 L MS medium were sampled prior to and eight hours after seedling addition. 594 

The Pi concentration of the medium was measured as described above to calculate the amount of 595 

Pi absorbed by the plants.  596 

Statistical analysis of the measured traits 597 

To account for possible batch effects, the best linear unbiased prediction (BLUP) of the 598 

phenotypic data was obtained, and the linear mixed effect function ‘lmer’ in the lme4 package of R 599 

(version 3.5.3) was used to fit the model (Borevitz et al., 2002). The model for the phenotypic trait 600 

was Yij= u + Groupi + Genotypej + eij, where u is the total mean, Groupi is the random group effect 601 

of the ith group, Genotypej is the random genetic effect of jth genotype, eij is a random error. The 602 

genotypic (breeding) value for each accession was computed as the Best Linear Unbiased 603 

Predictor (BLUP) of the genotype effect.  604 

Genome wide association analysis 605 

Out of the 200 accessions used in this study, 194 were covered by the RegMap panel and 606 

104 by the 1001 Genome Project (Alonso-Blanco et al., 2016; Horton et al., 2012). BLUP values 607 

for each trait were used as phenotypic input for the GWAS analysis. GWAS was performed on the 608 

easyGWAS website (https://easygwas.ethz.ch) using the Efficient Mixed-Model Association 609 

eXpedited (EMMAX) algorithm that accounts for population structure (Grimm et al., 2016; Kang et 610 

al., 2010; Yu et al., 2006). SNPs with a minor allele frequency (MAF) of less than 0.05 were 611 

excluded from the analysis. The effective number of independent SNPs was calculated using a 612 

method described by Li and colleagues (2012). The effective number of independent SNPs for this 613 

study was calculated as 461,582 and 126,433 for the 1001 Genome Project and RegMap panel, 614 

respectively. A significance threshold of α = 0.05 was used after Bonferroni correction for multiple 615 
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testing. Manhattan plots were generated using the qqman package in R (version 3.5.3). The 616 

location of genes closest to these significant SNPs were visualized by PhenoGram (Wolfe et al., 617 

2013).   618 

Haplotype analysis 619 

Haplotype analysis was performed as described previously (Li et al., 2014). Briefly, for the 620 

194 accessions from the RegMap panel, SNPs located in the PHT1 loci (from PHT1;1 to PHT1;3) 621 

and PILS7 genes including a 3 kb promoter region were extracted (Horton et al., 2012). These 622 

SNPs were used as the input for fastPHASE version 1.4.0 (Scheet & Stephens, 2006). The results 623 

were analyzed and visualized in R (version 3.5.3). 624 

Analysis of public sequencing data  625 

Raw sequencing data of accessions (Ag-0, Wt-5, Do-0, Kelsterbach-4, and Sorbo) were 626 

download from the NCBI Sequence Read Archive (Leinonen et al. & International Nucleotide 627 

Sequence Database, 2011, https://www.ncbi.nlm.nih.gov/sra/?term=SRP056687). Sequencing 628 

adapters and low-quality reads were trimmed with Trimmomatic (Version 0.32) (Bolger et al., 2014). 629 

The trimmed reads were mapped to the A. thaliana reference accession Col-0 genome (TAIR 630 

version 10) using HISAT2 (Version 2.1.0) and sorted using Samtools (Version 1.6) (Kim et al., 631 

2015; Li et al., 2009). The aligned sequences of Bay-0 (TAIR version 10) were downloaded from 632 

the 1001 Genome project data center (Alonso-Blanco et al., 2016, 633 

http://1001genomes.org/projects/JGIHeazlewood 2008/). Aligned sequences were 634 

visualized using the Integrative Genomics Viewer (IGV) (Thorvaldsdottir et al., 2013). 635 

Plasmid construction and plant transformation 636 

To generate 35S::PILS7 overexpression lines, binary plasmids were constructed using 637 

GATEWAY® cloning technology (ThermoFisher Scientific, Karimi et al., 2007). The coding 638 

sequence without the PILS7 stop codon was amplified from Col-0. Transgenic plants were selected 639 

on MS medium containing 50 µg mL-1 kanamycin.  640 
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For complementation of the pils7-1 mutant, the Gibson Assembly Cloning Kit (New England 641 

Biolabs) was used for all constructs (Gibson et al., 2009). The PILS7 gene, along with a 1928 bp 642 

promoter fragment according to the Col-0 reference genome, was amplified from HSm and Liarum 643 

genomic sequences. Primers used for cloning and sequencing of PILS7 genomic sequences from 644 

these two accessions are listed in Supplemental Table 8C. The amplified genomic fragments were 645 

assembled into the binary vector pCAMBIA1300 (Hajdukiewicz et al., 1994) linearized with EcoRI 646 

and HindIII (New England Biolabs). Transgenic plants were selected on 20 µg mL-1 hygromycin-647 

containing MS medium (Harrison et al., 2006).  648 

All binary vector constructs were verified by sequencing (primers listed in Supplemental 649 

Table 8C) and transformed into Agrobacterium tumefaciens strain GV3130. The floral dipping 650 

technique was used to introduce all of the above constructs into the pils7-1 mutant (Clough & Bent, 651 

1998).  652 

Promoter analysis 653 

To identify binding motifs for A. thaliana transcription factors, promoter sequences of HSm 654 

and Liarum PILS7 alleles obtained from amplified genomic fragments (see cloning section above) 655 

were used as input for the promoter analysis tool from PlantPAN 3.0 (Chow et al., 2019). Binding 656 

motifs located on the sense strand of indels that discriminated between haplogroup alleles were 657 

chosen for downstream analyses. 658 

RNA Isolation and Reverse Transcription Quantitative PCR 659 

Total RNA was isolated from root and shoot samples using the Spectrum Plant Total RNA kit 660 

with on-column DNaseI digest according to the manufacturer (Sigma-Aldrich). The Tetro cDNA 661 

Synthesis Kit (Bioline) was used for cDNA synthesis using 1 g of total RNA as input. Quantitative 662 

PCR was performed in a total reaction volume of 10 L on the QuantStudio 12K Flex Real-Time 663 

PCR system (Applied Biosystems). UBIQUITIN CONJUGATING ENZYME9 (UBC9, AT4G27960) 664 

and UBC21 (AT5G25760) were used as reference genes. Relative expression level was calculated 665 

using the 40-Ct method (Bari et al., 2006). Primers used for RT-qPCR are listed in Supplemental 666 

Table 8B. 667 

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiab441/6372701 by serials@

latrobe.edu.au user on 21 Septem
ber 2021



 

26 
 

Statistical analysis 668 

Statistical analyses were performed in R (version 3.5.3) using ANOVA, followed by Tukey’s 669 

pairwise multiple comparison of means. Unless stated otherwise, differences were considered 670 

significant at p < 0.05, detailed statistical reports can be found in Supplemental Table 9.  671 

Accession Numbers 672 

Sequence data for the genes characterized in this article can be found in the Arabidopsis 673 

Genome Initiative or GenBank / EMBL databases under the following accession numbers: 674 

AT4G28610 (PHOSPHATE STARVATION RESPONSE1, PHR1), AT3G23430 (PHOSPHATE1, 675 

PHO1), AT2G33770 (PHOSPHATE2, PHO2), AT2G34202 (MICRORNA399D, MIR399D), 676 

AT5G43350 (PHOSPHATE TRANSPORTER1;1, PHT1;1), AT5G43370 (PHOSPHATE 677 

TRANSPORTER1;2, PHT1;2), AT5G43360 (PHOSPHATE TRANSPORTER1;3, PHT1;3), 678 

AT5G65980 (PIN-LIKES 7, PILS7), AT5G65990 (AMINO ACID VACUOLAR TRANSPORTER 3, 679 

AVT3), AT5G66000 (unknown protein). 680 

Supplemental Data 681 

Supplemental Figure S1: Experimental setup for accession screen. 682 

 683 

Supplemental Figure S2: Shoot elemental composition and trait correlations in response to 684 

Pi availability.  685 

 686 

Supplemental Figure S3: Location of genes significantly associated with five key PSR traits.  687 

Supplemental Figure S4: Characterization of T-DNA insertion mutants for ‘PHT1’ and ‘PILS7’ 688 

loci genes in Col-0. 689 

 690 

Supplemental Figure S5: Impact of indels on PHT1;1 and PHT1;2 protein sequences in 691 

haplogroup 2 accessions.  692 

 693 
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Supplemental Figure S6: Genomic sequence variation in PILS7 alleles from contrasting 694 

haplotypes. 695 

 696 

Supplemental Figure S7: Impact of the amino acid sequence variation in contrasting 697 

haplogroups on PILS7 protein topology.  698 

 699 

Supplemental Figure S8: Expression of PILS7 and key PSR genes in ten accessions from 700 

two distinct haplogroups. 701 

 702 

Supplemental Figure S9: Natural variation in PHT1 and PILS7 loci corresponds to root fresh 703 

weight, organ Pi, shoot total P, iron and copper concentrations. 704 

 705 

Supplemental Figure S10: Generation and selection of PILS7 overexpression and pils7-1 706 

complementation lines. 707 

 708 

Supplemental Figure S11: Overexpression of PILS7 in the pils7-1 background does not 709 

restore seedling growth and root Pi levels. 710 

 711 

Supplemental Table S1. Information on A. thaliana accessions screened in this study. 712 

Supplemental Table S2. Summary of physiological and metabolic traits quantified in this study. 713 

Supplemental Table S3. Raw data of fresh weight, primary root length, phosphate, and 714 

anthocyanin concentrations. 715 

Supplemental Table S4. List of GWAS candidate genes identified. 716 

Supplemental Table S5. Expression profile of GWAS candidate genes in RNA-seq data set of P-717 

replete and P-limited Col-0 seedlings. 718 

Supplemental Table S6. Haplotype analysis of genomic sequences of PHT1 and PILS7 loci. 719 

Supplemental Table S7. cis-element analysis of PILS7 promoters from HSm and Liarum 720 

accessions. 721 
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Supplemental Table S8. List of primers used in this study. 722 

Supplemental Table S9. Statistical reports for this study. 723 
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Figure Legends 733 

Figure 1. A. thaliana accessions vary significantly in their physiological and metabolic 734 

response to Pi withdrawal. 735 

A and B, Violin plots of root (A) and shoot (B) biomass in P-replete and P-limited seedlings of 200 736 

genetically diverse accessions. C and D, Violin plots of root (C) and shoot (D) Pi concentration in 737 

P-replete and P-limited seedlings. E, Effective primary root length in P-replete and P-limiting 738 

condition. F, Anthocyanin concentration in P-limited shoots. Anthocyanin concentrations in P-739 

replete shoots were below the assay’s detection limit. G, Root and shoot biomass ratios (fresh 740 

weight of P-limited versus P-replete organs). For reference, Col-0 data are highlighted in red. ND: 741 

not determined. For each accession, the mean of two to three independent replicates was used 742 

(Supplemental Table 2). The dot in the middle of the Violin plot indicates the mean of all 743 

accessions and the vertical bar represents means ± SE. Statistical significance between treatments 744 

was determined by one-way ANOVA. ** p < 0.01, *** p < 0.001. 745 

 746 
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Figure 2. Genome-wide association reveals loci responsible for variation in organ Pi levels 747 

in P-limited A. thaliana accessions. 748 

A, Manhattan plots for association with Pi concentration in P-limited shoots. The dashed 749 

horizontal line indicates the Bonferroni-adjusted significance threshold (-log10(p) = 7.0). SNPs 750 

located within 5 kb of the lead SNP are labelled as red dots. B, Quantile–Quantile plot (Q-Q plot) 751 

for Pi concentration in P-limited shoots. C, Magnification of the genomic region surrounding the 752 

‘PHT1’ locus (12.3 kb). SNPs above the Bonferroni threshold are marked as red dots, gene 753 

models in this genomic region are shown below the x-axis. D, Transcript abundance of the 754 

candidate genes at the ‘PHT1’ locus in P-replete (black bars) and P-limited (grey bars) roots of 755 

Col-0. E and F, Manhattan plot (E) and Q-Q plot (F) for genetic association with Pi concentration 756 

in P-limited roots, annotated as in panels A and B. G, Close-up of the genomic region surrounding 757 

the ‘PILS7’ locus (12.3 kb). Annotations are the same as in panel C. H, Transcript levels of the 758 

candidate genes at the ‘PILS7’ locus in P-replete and P-limited roots of Col-0. See panel D for 759 

detailed annotation. In D and H, each dot represents a biological replicate comprising eight 760 

seedlings grown vertically on a plate. Data are means ± SE. Statistical significance was 761 

determined by one-way ANOVA, ** p < 0.01, *** p < 0.001. 762 

 763 

Figure 3: pht1;1, and pils7 mutants show impaired growth, organ Pi accumulation and root 764 

Pi acquisition. 765 

A and B, Fresh weight of shoots and roots of 14-day-old P-replete and P-limited seedlings. C and 766 

D, Phosphate concentration in shoots and roots of 14-day old seedlings. Experiments in panels A 767 

to D were performed in two separate batches, one for PHT1 locus mutants and one for PILS7 768 

locus mutants. Each dot represents a biological replicate comprising eight seedlings grown 769 

vertically on a plate. Data are means ± SE. E, Pi acquisition by P-replete and P-limited roots. 770 

Results are from two independent experiments with three replicates of five seedlings each, with 771 

pht1;1, pht1;3 and avt3 only included in one experiment. Data are means ± SE. Asterisks indicate 772 

significant differences from Col-0 under each Pi treatment (One-way ANOVA and Tukey’s HSD 773 

test, p < 0.05). 774 

 775 
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Figure 4: Sequence variation in PHT1 and PILS7 loci is associated with natural variation in 776 

organ Pi concentrations in P-limited seedlings. 777 

A and C, Genomic sequence surrounding the PHT1 (A) and the PILS7 locus (C) in five 778 

representative accessions from the two most distinct haplogroups. Gene models (shown in green 779 

at the top) represent those in Col-0. Colored vertical lines show single-bp substitutions with the 780 

letter of the nucleotide shown next to the line; black vertical lines indicate single-bp deletions; grey 781 

horizontal bars indicate larger deletions. Text and arrows below each panel indicate nucleotide and 782 

amino acid substitutions shared by the five haplogroup 2 accessions; the non-conservative amino 783 

acid change in PILS7 is labelled in red. SNPs shared uniquely by either haplogroup 1 or 784 

haplogroup 2 accessions are indicated by # and vertical lines at the top and bottom of the 785 

alignment, respectively. The large deletion within the PHT1 locus encompassing PHT1;3 is 786 

highlighted by a red box. Pictures were generated from 787 

http://signal.salk.edu/atg1001/3.0/gebrowser.php. B and D, Boxplots of normalized Pi 788 

concentration in P-limited shoots (B) and roots (D) of accessions forming two distinct haplogroups 789 

with respect to the PHT1 (B) and PILS7 locus (D). The lower and upper box edges correspond to 790 

the first and third quartiles, the horizontal line indicates the median, the whiskers extend to 791 

minimum and maximum values within 1.5× interquartile ranges. Statistical significance was 792 

determined by one-way ANOVA (p < 0.05). LP: P-limited (6.5 μM). Hap1: Haplogroup 1; Hap2: 793 

Haplogroup 2. 794 

 795 

Figure 5: The PHT1;3 gene is absent from the genome of representative haplogroup 2 796 

accessions. 797 

A, Pi-dependent PHT1;3 expression in four representative accessions of the two most distinct 798 

PHT1 haplogroups. Each dot represents a biological replicate comprising ten seedlings grown 799 

vertically on a plate. Data are means ± SE. In P-replete conditions, PHT1;3 expression was 800 

detected in two replicates of Ag-0, Bay-0, Wt-5, and only one replicate in Gu-0. Note that some of 801 

the accessions chosen here differ from those shown in Figure 4A (For haplogroup 2, PHW-33 and 802 

UKSE06-278 were not sequenced by 1001 Genome Project). B, Read coverage of sequenced 803 

PHT1 loci of three accessions from each of the two distinct haplotypes. Haplogroup 1 and 2 804 
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accessions are marked in blue and orange, respectively. ND: not detected. Hap1: Haplogroup 1; 805 

Hap2: Haplogroup 2. 806 

 807 

Figure 6: Natural allelic variation in PILS7 impacts Pi-dependent growth and organ Pi 808 

allocation. 809 

A and B, Shoot (A) and root (B) fresh weights of 14-day-old Col-0, pils7-1 mutant and 810 

complementation lines carrying HSm or Liarum PILS7 alleles. C and D, Organ Pi concentration of 811 

seedlings shown in A and B. HSm and Liarum are accessions from haplogroup 1 and haplogroup 812 

2 accessions, respectively (Figure 4C). For pils7-1 complementation, two individual lines for each 813 

haplotype allele were selected. Data are from two independent experiments with three biological 814 

replicates. Each dot represents a biological replicate comprising ten seedlings, the lower and upper 815 

box edges correspond to the first and third quartiles, the horizontal line indicates the median, the 816 

whiskers extend to minimum and maximum values within 1.5× interquartile ranges. Lines carrying 817 

the same PILS7 allele were compared with Col-0 as one group. Asterisks indicate significant 818 

differences from Col-0 under each Pi-supply condition (One-way ANOVA and Tukey’s HSD test, *, 819 

p < 0.05, **, p < 0.01, ***, p < 0.001). 820 

  821 
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