
  

Abstract—A new Discrete Cosine Transform (DCT) domain 

Perceptual Image Hashing (PIH) scheme is proposed in this 

paper. PIH schemes are designed to extract a set of features from 

an image to form a compact representation that can be used for 

image integrity verification. A PIH scheme takes an image as the 

input, extracts its invariant features and constructs a fixed length 

output, which is called a hash value. The hash value generated by 

a PIH scheme is then used for image integrity verification. The 

basic requirement for any PIH scheme is its robustness to non-

malicious distortions and discriminative ability to detect minute 

level of tampering. The feature extraction phase plays a major 

role in guaranteeing robustness and tamper detection ability of a 

PIH scheme.  The proposed scheme fuses together the DCT and 

Noise Resistant Local Binary Pattern (NRLBP) to compute 

image hash. In this scheme, an input image is divided into non-

overlapping blocks. Then, DCT of each non-overlapping block is 

computed to form a DCT based transformed image block. 

Subsequently, NRLBP is applied to calculate NRLBP histogram. 

Histograms of all the blocks are concatenated together to get a 

hash vector for a single image. It is observed that low frequency 

DCT coefficients inherently have quite high robustness against 

non-malicious distortions, hence the NRLBP features extracted 

from the low frequency DCT coefficients provide high 

robustness. Computational results exhibit that the proposed 

hashing scheme outperforms some of the existing hashing 

schemes as well as can detect localized tamper detection as small 

as 𝟑% of the original image size and at the same time resilient 

against non-malicious distortions.  

 
Index Terms— Discrete cosine transform, local binary pattern, 

perceptual image hashing, robust hash, transform domain 

hashing  

 

I. INTRODUCTION 

ERCEPTUAL Image Hashing (PIH) has become a 

prominent research domain primarily due to speedy 

developments in image modification techniques that can 

easily alter digital images. The improvement in digital devices 

and networking schemes enables a user to create, broadcast, 

distribute, and store digital media including images and videos 
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daily over social media networks very easily. Digital media 

can be easily replicated by means of copying and hence it is 

easy to illegally distribute or forge data. Conventionally, 

multimedia content integrity is accomplished by utilization of 

cryptographic hashing schemes. Cryptographic hashing 

schemes, for example, SHA-1, SHA-256 and MD5 translate 

original input media, for example, an image, into a fixed size 

binary string. Cryptographic hashing schemes in some cases 

may not be appropriate for image authentication. The main 

reason behind cryptographic hashing schemes opposition for 

image authentication is their sensitiveness for a single bit 

alteration in the input stream. This simply means that two 

images having only one-bit alteration will produce hash 

vectors with an immense Hamming distance. Generally, 

images undergo non-malicious distortions, such as, lossy 

JPEG compression, additive and multiplicative noise, 

Gaussian blurring, motion blurring, gamma correction, 

scaling, etc. Hence traditional cryptographic hash functions do 

not generate similar hash vectors for perceptually identical 

images [1, 2]. Consequently, cryptographic hashing schemes 

[3-5] are not suitable for integrity verification of image 

content. In order to resolve this problem, PIH algorithms are 

utilized for image authentication [6, 7]. The main objective of 

a PIH scheme is to extract robust, stable and unique features 

available in any image [8-11]. The extracted features are then 

employed to compute the hash. An image hash does not 

implant any watermark in the image and hence has the 

advantage of zero image degradation [12]. Specific functions 

are applied to compare hash values of original content and 

query content for the sake of image verification [13].  

II. RELATED WORK 

There are several interesting and novel hashing schemes 

proposed in the literature for image integrity verification 

because digital images [14, 15] are modified with ease in this 

current era. Broadly speaking, these schemes are categorized 

into three major types as descriped below. 

A. Techniques Based on Statistical Data 

Statistical data, such as mean, variance, higher moments, 

and image intensity, etc., exhibit invariance to minute 

variations in an image. An image statistics vector-based 

scheme has been proposed by Venkatesan et al. to generate 

hash through numerous sub-bands obtained by wavelet 

decomposition of the image [16]. The authors observed that 

statistics like averages of coarse sub-bands and variances of 

other sub-bands are invariant under many non-malicious 
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distortions. In this technique, a randomization is performed by 

first dividing each sub-band into random regions utilizing a 

secret key and then extracting statistics from all the regions. 

The quantized statistics are subsequently given to a decoding 

stage of a Reed-Muller error-correcting code to generate the 

final hash vector. Tang et al. [17] used histogram of color 

vector angles for hash generation. This scheme is robust 

against rotation with an arbitrary degree, but mistakenly view 

17.05% different images as similar images while the ratio of 

correct detection of the scheme is 98% [18]. Zhao et al. [19] 

generate hash vector from Zernike moments of the inscribed 

circle of the pre-processed square image. The hash is robust to 

a number of non-malicious distortions. As the Zernike 

moments are computed from the inscribed circle, hence is 

responsible for loss of information in image corners. This 

phenomenon eventually reduces sensitivity to tamper 

detection [20]. Karsh et al. [21] have proposed a PIH 

technique that exhibits invariance to rotation, scaling and 

translational perturbations. The hash is formed using local and 

global features. Local features are extracted from salient 

regions of an image using Markov absorption probabilities. 

Global features are extracted using some statistics measure. 

The two set of features help in finding small and big tampered 

areas with good robustness against content preserving 

manipulations. Eskenazi et al. [22] generate image hashes for 

hybrid document security. This algorithm can secure graphical 

objects with good performance using a small image digest. 

The main contribution of this work is that the generated hash 

can be identified in print and scan noise environment. In this 

scheme, a normalization of input image is first performed 

followed by second-order moments computation to construct 

hash vector of the query image. The hash vector contains 

several components such as moments, index mapping and 

color mapping table. 

B. Techniques Based on Dimensionality Reduction 

These hashing schemes are based on reducing the number 

of random variables by acquiring a set of uncorrelated 

variables [23]. A robust image hashing method utilizing ring 

partition and Non-negative Matrix Factorization (NMF) has 

been presented in [18]. In this approach, the authors construct 

a rotation-invariant transformed image with ring partition and 

apply the NMF to the transformed image for hash generation. 

Their results show good performance to non-malicious 

distortions for large angle rotation. The image hash generated 

by dimensionality reduction methods depends on the creation 

of secondary images. Therefore, a trade-off between 

efficiency and classification performance would need to be 

considered when designing an image hashing algorithm using 

dimensionality reduction technique. Hassan et al. [24] 

proposed a secure and robust PIH algorithm by utilizing 

Discrete Wavelet Transform (DWT) and NMF. DWT is 

applied to the input image to generate image features, which 

are largely invariant under perceptually small non-malicious 

distortions. The image features are then reduced by utilizing 

the NMF. Their algorithm is robust against non-malicious 

distortions, like JPEG compression, Gaussian noise, image 

scaling, and filtering. Hernandez et al. [25] proposed an image 

hashing algorithm by first performing image normalization 

and then utilizing singular value decomposition. This scheme 

has very good robustness performance against geometric 

distortions but exhibits poor results to other non-malicious 

distortions [26]. 

C. Techniques Based on Invariant Properties in the 

Transformed Domains 

This type of hashing technique is based on invariance in the 

transformed domains (like DCT, DWT, or Discrete Fourier 

Transform (DFT)). Different schemes use different invariant 

properties in different domains to construct robust image 

hashes. Ahmed et al. [12] proposed a secure and robust 

hashing technique for image integrity verification. The 

proposed technique utilizes the properties of DWT and SHA-

1. This technique is robust to non-malicious distortions like 

JPEG compression and low pass filtering. The advantage of 

the scheme lies in detection of minute level malicious 

tampering. Swaminathan et al. [27] have proposed a robust 

PIH technique using the magnitudes of two dimensional 

Fourier transform coefficients as features to produce a hash 

vector. This algorithm is resilient to numerous non-malicious 

distortions like JPEG compression, filtering, and basic 

geometric operations up to 10° of rotation and 20% of 

cropping. It also exhibits high discriminative capability and 

can recognize malicious tampering like a cut-and-paste type 

of tampering.  Lei et al. [28] have presented a robust PIH 

algorithm that calculates the DFT of the invariant moments of 

significant Radon transform coefficients and normalizes the 

DFT coefficients to generate hash vector for image integrity 

verification. Recently, Davarzani et al. [29, 30] have 

presented image hashing algorithms utilizing Center 

Symmetric Local Binary Pattern (CSLBP), which is applied to 

matrices obtained using Singular Value Decomposition (SVD) 

of the input image. The main drawback of CSLBP features is 

its weak agreement between tamper detection and robustness. 

This leads to an observation that CSLBP based scheme is not 

able to identify minute tampering in an image. Chen et al. [31] 

have utilized block truncation coding along with CSLBP for 

hash generation. The experimental findings exhibited in [31] 

shows limited robustness. Further, the authors have not 

elaborated tamper detection ability of their scheme.  

Digital images [32, 33] can be easily altered by means of 

digital tools, which has been developed with the advancement 

of technology and hence it is quite possible to illegally tamper 

the image. The key concern regarding any image hashing 

scheme is the selection of robust features, which do not alter 

in case of non-malicious manipulations and at the same time 

vary for deliberate tampering. To accomplish these conditions, 

a novel PIH scheme is proposed in which a variant of the 

Local Binary Pattern (LBP) is applied to image structure in 

the DCT domain. Following are the contributions of this 

paper: 

• We have developed a novel DCT-NRLBP PIH 

scheme, which exploits DCT domain’s structural 

information for image integrity verification. The 

proposed DCT-NRLBP scheme identifies minute 

localized tampering if exists in the image under 

consideration. 

• We have analysed the effect of variable size 

secondary image, which is achieved by changing the 



size of DCT coefficients, on the performance of the 

DCT-NRLBP scheme. 

• We have compared the performance of DCT-NRLBP 

scheme with some of the of the schemes from 

literature by varying content preserving manipulation 

parameters over a range of different values and ROC 

curves. 

The LBP operator, as a hashing scheme, has certain 

drawbacks when employed in the spatial domain. One of the 

limitations is that it does not generate stable features required 

for image integrity verification against most of the content 

preserving manipulations (with some exceptions like gamma 

correction). This is due to the fact that inherently, the LBP 

operator does not have any noise resistive phenomenon 

incorporated in it. LBP code generated by the LBP operator 

changes considerably in case of non-malicious distortions. 

The effect of non-malicious distortions is to disrupt all pixel 

values in the image, while on the other side, the LBP code 

does not change a lot in case of minute malicious distortion, 

because the minute malicious distortion disturbs LBP code 

slightly. Hence, it is difficult to differentiate malicious 

tampering from non-malicious content preserving 

manipulations by merely using the LBP operator in the spatial 

domain, as evident from the comparative analysis section. 

The variant of LBP that has been utilized to overcome the 

LBP drawback, is Noise Resistance Local Binary Pattern 

(NRLBP) and this LBP variant has inherently noise catering 

phenomena built in it [34]. In this paper, the DCT domain of 

an image, which is the transformed version of spatial domain, 

is referred to as secondary image and sometimes also known 

as transformed image. The proposed hashing technique has 

the ability to detect localized small-scale deliberate tampering 

and at the same time exhibits robustness against non-

malicious distortions. Trivially, NRLBP (or any variant of 

LBP) is normally applied in spatial domain. One aspect of 

novelty of this paper is that NRLBP is applied in the DCT 

domain (i.e. upon secondary image), since DCT domain has 

certain specific structure, which can be exploited for image 

integrity verification [35]. The primary reason to select DCT 

over DFT is its inherent energy compaction capability, which 

allows the construction of secondary image with fewer DCT 

coefficients and ultimately provides the trade-off between 

robustness for content preserving manipulations and minute 

tamper detection capability. In addition, the DCT assumes the 

periodicity to be twice as compared to DFT for generating 

transformed image, which reduces the artifacts induced by 

image transformation due to boundary discontinuities [36]. 

Similarly, the DCT is preferred over DWT simply because of 

its high inherent energy compaction capability and 

computational efficiency. In case of DWT, the image is 

decomposed into four sub-bands known as LL, LH, HL and 

HH sub-bands, where LL sub-band holds approximately the 

same input image but having half the original spectral 

resolution, while LH, HL and HH sub-bands contain 

horizontal, vertical and diagonal edges available in the image 

respectively. In this paper, we are applying low level feature 

extraction scheme i.e. NRLBP for hash generation, so only LL 

sub-band of DWT is suitable for this purpose. The potential 

issue in generating hand crafted features after applying 

NRLBP to LL sub-band is poor tamper detection capability 

due to reduced spectral resolution of LL sub-band. 

The comparison of the proposed scheme with SVD-NRLBP 

[37] is also performed and it has been found out that the 

proposed algorithm shows superior performance than SVD-

NRLBP, because DCT domain has much more stable features 

than SVD domain. In [37], the secondary image formed gets 

disturbed more than the secondary image formed in the DCT 

domain in case of non-malicious distortions. Therefore, it can 

be said that the proposed scheme has more stable features due 

to DCT inherent compaction power.  In addition to this, the 

secondary image formation in the DCT domain selects only a 

handful of coefficients and discards high frequency 

coefficients that are usually associated with non-malicious 

content preserving manipulations. The proposed scheme 

considers only a few low frequency coefficients that normally 

have a higher rate of change with deliberate tampering. In 

short, it can be stated that the proposed scheme selects more 

stable features while generating image hash, as compared to 

the schemes reported in the literature and subsequently 

exhibits exceptional Receiver Operating Characteristics 

(ROC) curves. The proposed algorithm is also compared with 

SVD based CSLBP which is proposed by Davarzani et al. [29, 

30]. The authors reported in their paper that malicious 

deliberate tampering must at least be 10% of the original 

image size for positive detection. This, therefore restricts the 

use of the algorithm proposed in [29, 30] to identify malicious 

deliberate tampering in images having smaller than 10% 

corrupted area. In addition, it has lower values of non-

malicious distortion parameters since the scheme does not 

have any noise resistive mechanism. This results in difficulties 

for suitable threshold selection to differentiate between 

deliberate tampering and content preserving manipulations. 

Consequently, the scheme proposed in [30] can work 

effectively if tampering is at least 10% of image size, 

otherwise the scheme will not detect tampering. 

The hashing results in this paper exhibits the effectiveness 

of DCT domain based NRLBP technique. The next section 

elaborates the NRLBP algorithm. This is followed by the 

proposed scheme. Then, there is a comparative analysis 

Algorithm-I: NRLBP Scheme 

Input: Read gray-scaled bmp format image. 

Output: NRLBP image histogram. 
for All the pixels in an image: 

1. Calculate 8-bit binary pattern (𝐶𝑁𝑅𝐿𝐵𝑃) using (1). 

2. Compute number of uncertain bits (𝑢𝑏) in 𝐶𝑁𝑅𝐿𝐵𝑃. 

2. Calculate uniformity measure (𝜆). 

3. Construct histogram (𝐺ℎ𝑖𝑠𝑡): 

if 𝑢𝑏  =  0 and 𝜆 ≤ 2; 

Increment the relevant bin of 𝐶ℎ𝑖𝑠𝑡 by 1. 

else 

if 𝑢𝑏  =  0 and 𝜆 > 2; 

Increment non-uniform bin of 𝐶ℎ𝑖𝑠𝑡 by 1. 

else 

Calculate maximum number of possible uniform patterns 

(𝑈𝑝) generated from 𝐶𝑁𝑅𝐿𝐵𝑃. 

if 𝑈𝑝  =  0; 

 Increment non-uniform bin of 𝐺ℎ𝑖𝑠𝑡 by 1. 

else 

1/𝑈𝑝 times increment all relevant uniform bins. 

end for 

 

 



section, in which the proposed algorithm is compared with the 

LBP operator [38] in the spatial domain as an hashing 

technique, Singular Value Decomposition (SVD) domain 

NRLBP hashing [37], SVD based CSLBP hashing scheme 

[30] and Weber Local Binary Pattern Color Angle 

Representation (WLBP-CAR) hashing scheme [2]. The last 

section concludes the paper highlighting strengths and added 

advantage of the proposed hashing scheme. 

III. NOISE RESISTANT LOCAL BINARY PATTERN (NRLBP) 

In this paper, we utilize NRLBP algorithm to generate hash 

vector for an image. The proposed image hashing scheme can 

detect localized minute level deliberate tampering 

accompanied by exhibition of robustness against commonly 

prevalent non-malicious distortions. 

The NRLBP scheme preserves local structure of an image 

in a noisy environment. This is due to the fact that NRLBP 

has an inbuilt phenomenon to reduce noise effect by utilizing 

the idea of uncertain bits [34]. A bit is categorized as an 

uncertain bit if the NRLBP scheme is unable to categorically 

declare it as 0 or 1. The scheme allocates a special symbol 𝑋 

to indicate uncertain bits and a corrective mechanism is 

utilized subsequently to discover the possible original state of 

these bits. The NRLBP code (𝐶𝑁𝑅𝐿𝐵𝑃) is generated for every 

pixel available in an image under consideration. The 𝐶𝑁𝑅𝐿𝐵𝑃 

generation is an area processing operation with a sliding 

window size of 3 × 3 pixels. The pixel under consideration 

(𝐼𝑐) is subtracted from all neighboring pixels (𝐼𝑝) one by one 

in a clockwise direction. The result of each subtraction is 

thresholded with the help of  (1) to acquire an 8-bit binary 

code (𝐶𝑁𝑅𝐿𝐵𝑃). Each bit of binary code is represented by 𝑎𝑝
𝑛, 

where n denotes total number of neighboring pixels (𝐼𝑝)  

around 𝐼𝑐 and 𝑝 represents neighboring pixel number during 

subtraction operation. In an area processing operation, a 

kernel of 3 × 3 means that the total number of neighboring 

pixels are eight (𝑛 = 8), and the value of 𝑝 indicates pixel 

number 𝑝 = 0,1,2, … ,7. The subtraction parameter 𝑑 is equal 

to 𝐼𝑐 − 𝐼𝑝. Let the 8-bit 𝐶𝑁𝑅𝐿𝐵𝑃 is represented as 𝐶𝑁𝑅𝐿𝐵𝑃 =

{𝑎7
8, 𝑎6

8, 𝑎5
8, 𝑎4

8, 𝑎3
8, 𝑎2

8, 𝑎1
8, 𝑎0

8}, where 𝑎7
8 is the MSB and 𝑎0

8 is 

the LSB of 𝐶𝑁𝑅𝐿𝐵𝑃 binary code. 

 

𝑎𝑝
𝑛 = {

0     𝑖𝑓    𝑑 ≤ −𝑡;
1     𝑖𝑓     𝑑 ≥ 𝑡  ;

𝑋     𝑖𝑓    |𝑑| < 𝑡.
                                 (1)               

The third condition denoted by 𝑋 in (1) represents an 

uncertain bit, and its value is predicted after calculating 8-bit 

binary 𝐶𝑁𝑅𝐿𝐵𝑃 code for one 𝐼𝑐. The algorithm assigns a value 

of either 0 or 1 to the uncertain bit (𝑋). The assignment of 

either 0 or 1 is not random but based on the algorithm attempt 

to form an 8-bit uniform pattern. The 8-bit 𝐶𝑁𝑅𝐿𝐵𝑃 code is 

considered as a uniform code pattern if the maximum value of 

its uniformity measure (𝜆) is equal to 2 [39]. The uniformity 

measure is defined as the number of binary bit transitions 

existing in a binary code in a circular order. For instance, a 

binary code 00010000 is uniform as there are only two 

binary bit transitions. In other words, the binary code pattern 

has a uniformity measure of 2. Similarly, in another instance, 

the binary code pattern 01010101 contains 8 binary 

transitions, therefore the 𝜆 for this code is 8. Consequently, 

this type of code is considered as a non-uniform. The total 

number of unique uniform LBP codes are 58 as illustrated in 

Fig. 1. A hollow circle in Fig. 1 denotes 0 and a filled circle 

denotes 1. All the 58 uniform codes illustrated in Fig. 1 

exhibit a maximum of 2-bit transitions in a circular direction.   

The histogram of NRLBP algorithm has a total of 59 bins, 

where 58 bins are reserved for uniform code patterns while 

only one bin (i.e. 59th) is for non-uniform code patterns. The 

contribution of all non-uniform code patterns is recorded in 

this 59𝑡ℎ bin. Now moving to a situation, where a 𝐶𝑁𝑅𝐿𝐵𝑃 

pattern has some uncertain bits (𝑋). The NRLBP scheme will 

attempt to generate all likely uniform codes by replacing 𝑋 

bits with either 0’s or 1’s to make the 𝐶𝑁𝑅𝐿𝐵𝑃 a uniform 

pattern. Hence, all generated uniform codes will increment 

their corresponding histogram bins by 
1

Total no.of uniform codes generated
. Let the total number of 

uncertain bits in an 8-bit 𝐶𝑁𝑅𝐿𝐵𝑃 code pattern be 𝑢𝑏 and the 

total number of uniform patterns generated from an 8-bit 

𝐶𝑁𝑅𝐿𝐵𝑃 be 𝑈𝑝. For example, let 𝐶𝑁𝑅𝐿𝐵𝑃 = 1111𝑋000, the 

code pattern contains only one uncertain bit (𝑢𝑏  =  1).  The 

NRLBP algorithm can generate a maximum of two (i.e. 𝑈𝑝  =

 2) uniform codes; i.e. 11111000 and 11110000. The 

increment in histogram bins is 1/𝑈𝑝 (where 𝑈𝑝  =  2) relevant 

to these two generated uniform patterns. In a contrasting 

situation, the 𝐶𝑁𝑅𝐿𝐵𝑃 pattern would contain some uncertain 

bits in such a way that due to the location of the uncertain bits, 

no uniform code pattern can be generated. In this situation, the 

algorithm increments just the non-uniform bin (i.e. the 59th 

bin) by 1. For example, it is impossible for                    

𝐶𝑁𝑅𝐿𝐵𝑃 = 0011𝑋0𝑋1 to generate even one uniform code. 

This is because 𝑈𝑝  =  4 and is treated as a non-uniform 

pattern. Thus, only the 59th bin is incremented by 1. In a 

nutshell, it can be reiterated that the NRLBP histogram 

generation involves comparison of each pixel’s gray level to 

its surrounding neighbors and the number of occurrences of 

uniform and non-uniform patters are recorded in a histogram. 

The main objective of all the PIH schemes is to select 

robust features. Robust features provide robustness against 

non-malicious tampering alongside high discriminative 

capability against malicious tampering. In literature, the 

NRLBP technique is normally applied in the spatial domain, 

while in this paper we are applying NRLBP algorithm to the 

low frequency coefficients that are acquired by calculating the 

 
 
Fig. 1. The 58 uniform code patterns [39]. 



DCT of the gray scale image. DCT based NRLBP hashing 

scheme also provides features that are useful, computationally 

simple, have high discrimination and good robustness. In this 

paper, we exhibit the fusion of DCT and NRLBP schemes to 

generate distinctive features, which are able to detect localized 

small-scale tampering and at the same time exhibiting high 

robustness against major types of non-malicious distortions. 

 

IV. PROPOSED ALGORITHM 

The complete flow chart of the proposed algorithm is 

depicted in Fig. 2. There are four main steps in the hash 

generation phase, while image integrity verification phase has 

one additional step for hash comparison. During hash 

generation stage, the first step is pre-processing. The pre-

processing step involves color space conversion, image 

resizing, Wiener filtering and dividing the input image into 

smaller portions. The second step involves conversion of 

image space from spatial domain to the DCT domain. In the 

third step, stable features are selected for robust hash 

generation. The fourth and last step involves combining 

features which are extracted in the third step for final hash 

generation. The image integrity verification stage involves all 

the steps of hash generation and an additional hash 

comparison step. The first four steps of integrity verification 

stage work the same way as the steps of hash generation. In 

the additional step, the hash generated locally from the input 

image through the proposed algorithm and the hash received 

are compared with each other. If both the hashes are identical 

or closely related, then the image is declared as authentic 

otherwise it is considered as forged/tampered and its 

authenticity is questionable. The proposed algorithm’s pseudo 

code is shown in Algorithm-II. 

The block diagram of the proposed DCT-NRLBP hashing 

scheme is illustrated in Fig. 3. There are some preprocessing 

steps involved in the proposed scheme, which include image 

resizing to 256 × 256 pixels, color space to gray scale 

conversion, and dividing into non-overlapping blocks of size 

32 × 32 pixels. The reason for resizing input image to 

256 × 256 pixels is to acquire consistent input image 

dimensions. The whole idea to uniformize image size is to 

acquire consistency during image sub-blocking, which is 

subsequently used to divide the input image into 64 non-

overlapping sub-blocks, where each sub-block consists of 

32 × 32 pixels. If the original image is not resized to standard 

dimensions of 256 × 256 pixels before sub-blocking stage, 

then the non-overlapping block size may vary and depends on 

the dimensions of input image,  e.g. for an image of size 

300 × 300 pixels produces 81 blocks of size 32 × 32 pixels 

and 9 blocks of size 12 × 32 pixels, 9 blocks of size 32 × 12 

pixels and one block of size 12 × 12 pixels. Hence non-

standardized input image size generates so many 

unsymmetrical non-overlapping image blocks, which produce 

hinderance in exhibiting uniform temper detection capability. 

Even if the non-overlapping block division is made adaptable 

to adjust variable input image sizes and having uniform 

number of pixels in non-overlapping blocks, still tamper 

detection capability of any block-based image integrity 

verification scheme is affected due to a trade-off between 

 
 
Fig. 3. The proposed image hashing scheme. 

Algorithm-II: Proposed Image Hashing Scheme 

Input: Read computer vision’s general dataset // The dataset contains 

RGB color space, bmp format images having different 
dimensions. 

Output: Generated image hash. 

for All the images in dataset 
do 

1. Read input image. 

2. Conversion of color space to grayscale. 

3. Resize grayscale image to 256 × 256. 

4. Divide the resulting image into non-overlapping blocks of size 

32 × 32 pixels. 

5. Apply Wiener filter at each non-overlapping block. 

6. Construct DCT transformed image block of size 15 × 15 by using 

(4). 

7. Apply NRLBP algorithm at each Γ𝑖  of image under consideration 

to get a histogram of size 1 × 59. 

8. Concatenate histograms of all 64 image blocks to get a final hash 

vector. 

end for 

 

 

 
 

Fig. 2. The complete flow diagram of the proposed algorithm. 



block size and tamper detection capability, as increasing block 

size reduces this capability and vice versa. 

In order to exhibit consistent results and dividing input 

image to fixed non-overlapping blocks, it is necessary to 

resize the input image to standard dimensions of 256 × 256 

pixels across all input images. In addition, the non-consistent 

input image generates variable size sub-blocks, which 

ultimately generates variable length concatenated NRLBP 

codes during hash generation stage. The generated variable 

length hash code violets the definition of hash itself, which 

states that the generated hash should have fixed size string [3]. 

For example, an image with size 512 × 512 pixels can be 

divided into 256 non-overlapping sub-blocks of size 32 × 32 

pixels and the NRLBP generated code length be 𝐿1 = 15104 

bytes with the concatenated histogram size of 59 × 256. Let’s 

assume the input image has undergone an image scaling 

distortion due to channel noise and the image integrity 

verification stage receives a resized image having dimensions 

of 128 × 128 pixels. Now the sub-blocking stage divides this 

received image into non-overlapping blocks of 32 × 32 

pixels, resulting in generating a total of 16 sub-blocks. The 

NRLBP code length (𝐿2) for this recalled image having 16 

sub-blocks be 𝐿2 = 944 bytes with the concatenated 

histogram size of 59 × 16. Now it is not possible to compare 

𝐿1 and 𝐿2 during hash comparison stage, although both these 

codes lengths correspond to same image. Similarly, it is 

essential for any block-based image hashing scheme to have a 

uniform image size during hash generation and integrity 

verification stage to generate consistent and comparable hash 

lengths. In this regard, we have uniformed the image size in 

hash generation and image integrity verification stages with 

dimensions of 256 × 256 pixels. In addition, image resizing 

does neither induce image cropping nor translation and 

rotation artifacts [40]. Since image resizing only aims to 

exhibit same image content in different dimensions that 

preserves the global image configuration and does not affect 

the robustness and tamper detection capability of the proposed 

DCT-NRLBP scheme. Subsequently, every pre-processed 

image is divided into 64 sub-blocks, each having dimensions 

of 32 × 32 pixels is transformed into DCT domain by using 

(2) and (3). 

 

𝐹𝑖(𝑎, 𝑏)

=
2𝐶(𝑎)𝐶(𝑏)

√32 × 32
∑ ∑ 𝑓𝑖(𝑥, 𝑦)

31

𝑦=0

31

𝑥=0

cos
(2𝑥 + 1)𝑎𝜋

2𝑀
cos

(2𝑦 + 1)𝑏𝜋

2𝑁
, 

                                                                                                            (2) 

 

        𝐶(𝛽) = {
√2

2
      𝑖𝑓     𝛽 = 0,

1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
   ,                       (3) 

 

where 𝑎 =  0, 1, . . . , 31, 𝑏 =  0, 1, . . . , 31 while 𝑓𝑖(𝑥, 𝑦) 

represents the ith image block of size 32 × 32 pixels in the 

spatial domain and 𝐹𝑖(𝑎, 𝑏) represents DCT transformation of 

the ith image block. The primary benefit of utilizing block-

based method is to locate malicious tampered areas in an 

image. Then, the image is processed through Wiener filter to 

smooth its texture. A DCT transformation is subsequently 

applied to each image block of size 32 × 32 pixels. 

Since each image block 𝑓𝑖(𝑥, 𝑦) is of size 32 × 32 pixels, 

therefore the size of 𝐹𝑖(𝑎, 𝑏) is also 32 × 32. It is important to 

decide which DCT coefficients should be selected to form the 

DCT transformed block (Γ𝑖). Since DCT is an energy 

compaction technique, therefore its low frequency coefficients 

along with a few high frequency coefficients generally 

preserve the image structure [41]. It is also important to note 

that if all the DCT coefficients (i.e. 32 × 32) are collected 

from the ith block of size 32 × 32 pixels to form Γ𝑖, then the 

robustness of the proposed scheme would decrease. On the 

contrary, tamper detection ability of the hashing scheme 

deteriorates if very few DCT coefficients are selected. Hence, 

the selection of DCT coefficients plays vital part in the 

performance of the proposed scheme. It is observed after a lot 

of experimentations that if the first 15 × 15 DCT coefficients 

are selected, then in terms of tamper detection capability and 

robustness to non-malicious operations of proposed scheme 

exhibits exceptionally good results. The first 15 × 15 DCT 

coefficients of ith image block are used to form DCT 

transformed block (Γ𝑖), as given by (4). 

Γ𝑖 =

[
 
 
 
 
𝐹𝑖(0,0) 𝐹𝑖(0,1) 𝐹𝑖(0,2) … 𝐹𝑖(0,14)

𝐹𝑖(1,0) 𝐹𝑖(1,1) 𝐹𝑖(1,2) … 𝐹𝑖(1,14)

𝐹𝑖(2,0) 𝐹𝑖(2,1) 𝐹𝑖(2,2) … 𝐹𝑖(2,14)
⋮ ⋮ ⋮ ⋱ ⋮

𝐹𝑖(14,0) 𝐹𝑖(14,1) 𝐹𝑖(14,2) … 𝐹𝑖(14,14)]
 
 
 
 

(4) 

 

The DCT transformed block Γ𝑖 contains a stable structure of 

the image block i that would provide robustness to non-

malicious distortions and localized minute level tamper 

detection capability. Equation (4) illustrates the collection of 

DCT coefficients to form the transformed image block Γ𝑖. For 

illustration, the transformation procedure of the 16th image 

block (𝑖 =  16) is shown in Fig. 4. 

The size of the DCT transformed block (Γ𝑖) is significantly 

small in comparison to the size of the original image block. 

The NRLBP algorithm is applied to the DCT transformed 

blocks. After rigorous experiments with abundant images, it 

has been observed that the value of 𝑡 in (1) should be selected 

as 40 for effectively applying NRLBP in the DCT domain. 

The selection of an appropriate value of 𝑡 is extremely vital, 

as the robustness and tamper detection ability of the proposed 

 
 

Fig. 4. Example of DCT transformed block illustrating transformation of the 

16th image block. 

block. 



scheme depends on it. It is important to note that a high value 

of 𝑡 tends to generate high number of uniform code patterns 

(𝑈𝑝). Consequently, the contribution of one 𝐶𝑁𝑅𝐿𝐵𝑃 code to a 

single bin will be very marginal as well as its spread will be 

above much wider histogram bins. This eventually decreases 

tamper detection ability of the proposed algorithm because of 

histogram distribution. Similarly, small value of 𝑡 will exhibit 

small number of uncertain bits (𝑢𝑏), resulting in fewer 

number of uniform code patterns generated from the 𝐶𝑁𝑅𝐿𝐵𝑃. 

This results in reduction of inherent noise resistive 

phenomenon and consequently the robustness capability of the 

proposed scheme will decrease. We have observed that by 

taking 𝑡 =  40, it is possible to achieve high level of 

robustness and at the same time minute level of localized 

malicious tamper detection ability. 

V. EXPERIMENTAL RESULTS 

There are two basic characteristics of a good image hashing 

scheme, robustness against non-malicious distortions and 

localized tamper detection ability. The content preserving 

manipulations may include, for example, lossy JPEG 

compression, additive noise, blurring, luminance changes, 

scaling, etc. To compare hash vectors coming from two sets of 

images, the normalized correlation coefficient is used. The 

normalized correlation coefficient, 𝑟 is defined as: [30]: 

 

𝑟 =
∑ ∑ ((𝐻𝑢𝑣

′ − 𝜇′)(𝐻𝑢𝑣
′′ − 𝜇′′))𝑣𝑢

√∑ ∑ ((𝐻𝑢𝑣
′ − 𝜇′)2) ×𝑣𝑢 ∑ ∑ ((𝐻𝑢𝑣

′′ − 𝜇′′)2)𝑣𝑢

   ,      (5) 

 

where 𝐻′ is the hash vector of the original image block, 𝜇′ 

is the mean value of this hash vector (𝐻′), 𝐻′′ is the hash 

vector of the distorted/tampered image block and 𝜇′′ is the 

mean value of this hash vector (𝐻′′). The length of each hash 

vector is 1 × 59 for an arbitrary image block of size 32 × 32. 

Generally, the expected value of normalized correlation 

coefficient is approximately equal to 1 for two visually 

identical image pairs, while its value starts to decrease with 

the increase in variances between image pairs. An appropriate 

value of 𝑟 must be selected between 0 and 1 to distinguish 

deliberate tampering and non-malicious manipulations. Let 

the value of 𝑟 that discriminate deliberate tampering from 

content preserving manipulations be represented by the 

threshold, 𝑡𝑟.  The non-malicious manipulations produce less 

alteration in an image block than deliberate tampering. This 

means that the value of 𝑟 decides whether there is deliberate 

tampering or non-malicious manipulations occur, such that the 

value of 𝑟 must be greater than the threshold 𝑡𝑟 for successful 

authentication and less than 𝑡𝑟 when deliberate tampering 

exists  in the image under consideration. 

In our experiments, we have used computer vision’s online 

General-100 dataset containing variable resolution images 

available online [42]. The characteristics of this database are 

given in Table I. All the images in this dataset are of good 

quality with clear edges. 

A. Tamper Detection 

To establish the tamper detection ability of the proposed 

technique, the Cameraman, Pentagon and the Baboon images 

are taken. These images are shown in Fig. 5(𝑎), Fig. 5(𝑑) and 

Fig. 5(𝑔), respectively. In case of the Cameraman image, a 

minute tampering in the lens of the camera was made as 

shown in Fig. 5(𝑏). In case of the Pentagon image, a minute 

tampering in the lower end is made as shown in Figure 5(𝑒) 

and in case of the Baboon image, the left eyeball was 

tampered as shown in Figure 5(ℎ). One of the novelties of 

this paper is the ability of the hashing algorithm to detect 

minute level tampering. Therefore, malicious tampering area 

in the images are restricted to only 3% of the total image area. 

 All three of the tampering are successfully detected as 

exhibited in Fig. 5(𝑐), Fig. 5(𝑓) and Fig. 5(𝑖), respectively. 

The reason to select these three images as a test case is due to 

the texture available in these images, as Fig. 5(𝑎), shows light 

texture, Fig. 5(𝑑) shows moderate texture and Fig. 5(𝑔) 

                                                       
  

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 5. Original images along with respective tampering. (a) Cameraman 
image. (b) Malicious tampering of the Cameraman image. (c) Localized 

tamper detection for the Cameraman image. (d) Pentagon image. (e) 
Malicious tampering of the Pentagon image. (f) Localized tamper detection 

for the Pentagon image. (g) Baboon image. (h) Malicious tampering of the 
Baboon image. (i) Localized tamper detection for the Baboon image. 

         
(a) Cameraman image. 
 

 

    
(b) Tampering is shown 

inside the circle. 

    
(c) Localized tamper 
detection for the 
Cameraman image. 

         
(d) Pentagon image. 

 
 

    
(e) Tampering is shown 
inside the circle. 

    
(f) Localized tamper 

detection for the 

Pentagon image. 

         
(g) Baboon image. 
 

 

    
(h) Tampering is shown 
inside the circle. 

(i) Localized tamper 
detection for the 

Baboon image. 

TABLE I 
 CHARACTERISTICS OF GENERAL-100 DATASET COLLECTED FROM CVONLINE: 

IMAGE DATABASES 

Number of 

images 

Image 

Format 

Color 

space 

Minimum 

resolution  

Maximum 

resolution 

100 
BMP 

(uncompressed) 
RGB 131 × 112 710 × 704 

 



shows rich texture. The value of normalized correlation 

coefficient for malicious tampering in case of the Cameraman, 

Pentagon and Baboon images were 0.4643, 0.4416 and 

0.2638, respectively. 

B. Robustness 

A comparison of the hash vector between an undistorted 

untampered image and its corresponding distorted version is 

performed to illustrate the robust characteristics of the 

proposed scheme. The Cameraman, Pentagon and Baboon 

images are exposed to certain non-malicious manipulations. 

For the purpose of illustration, the original Cameraman image 

and its non-malicious distorted manipulations are shown in 

Fig. 6. As there are 64 blocks in a single image of size 

256 × 256, hence there are 64 values of 𝑟 for each image 

under consideration. The minimum value of 𝑟 for a block out 

of all the 64 blocks for the Cameraman, Pentagon and the 

Baboon images after applying non-malicious manipulations 

are given in Table II. The minimum value of 𝑟 in all listed 

non-malicious manipulations for three test images is 0.5747. 

This result suggests that the value of threshold (𝑡𝑟) must be 

less than 0.5747 for positive authentication. 

C. Threshold Selection 

The minimum value of 𝑟 for Cameraman, Pentagon and the 

Baboon images for content preserving distortions is 0.5747, 

while the maximum value of 𝑟 among these three images for 

malicious tampering is 0.4643. It is visible that a remarkable 

gap of 0.1104 is available between malicious tampering and 

non-malicious manipulations. Consequently, it becomes a 

trivial procedure to select threshold 𝑡𝑟 to differentiate between 

malicious tampering and content preserving manipulations. 

The value of 𝑡𝑟 may be adjusted between 0.4643 and 0.5747. 

To reach a solid conclusion, the proposed hashing scheme was 

applied to the image set given in [42], the results suggest that 

𝑡𝑟 =  0.53 is suitable to differentiate between malicious 

tampering and content preserving manipulations. 

D. Localized Tamper Detection Capability 

Images can easily be modified to change their original 

contents with the help of image alteration software. A number 

of techniques are utilized to detect localized tampered regions, 

for example, passive forgery detection and fragile 

watermarking, etc; [43, 44]. The key benefit of the proposed 

scheme is that it does not degrade image content. The 

localized tamper detection in this paper is accomplished by 

employing block-based comparison of hash values. In block-

based comparison, each image is first divided into non-

overlapping blocks. Then, the hash vector of each image block 

is generated with any PIH scheme and is embedded into the 

header of that image. During the image integrity verification 

stage, the hash of each image block is computed again from 

the image blocks and compared with the hash vector in the 

header file. 

The selection of a suitable block size is very vital in the 

localized tamper detection. The block size manages the 

tradeoff between the hash size and the size of localized 

tampered region, as well as between the hash size and tamper 

detection performance. A larger block size generates hash of 

small size as an advantage, but large localized region and high 

false detection as a disadvantage, and vice versa. Hence, the 

selection of a suitable block size is very essential. In the 

proposed algorithm, a block size of 32 × 32 pixels is selected 

in order to have suitable hash size, appropriate localized 

tampering and low false detection [29, 30]. Figure 7 shows the 

Lena image, its tampered version (splicing image forgery) and 

localized tamper detection. It is important to note that the 

proposed scheme identifies the localized tampered regions 

despite small tampering in the image. 

                                                       
  

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
Fig. 6. Non-malicious distorted versions of the Cameraman image. (a) 

Original Cameraman image. (b)~(h) non-malicious distortions. (b) JPEG 

compression. (c) Scaling effect. (d) Gaussian noise. (e) Gamma correction.    

(f) Gaussian blurring. (g) Speckle noise. (h) Motion blurring. 

         
(a) Original Cameraman 

image. 
 

    
(b) JPEG compression 

of 𝑄 =  20%. 

    
(c) Scaling effect 40%. 

         
(d) Gaussian noise of 

𝑚 =  0, 𝑣 =  0.003 

 

    
(e) Gamma correction 

of  𝛾 = 1.5. 

 
(f) Gaussian blurring 

𝐹 = 9 × 9, 𝜎 =  1. 

         
(g) speckle Noise of 

𝑁𝑣 = 0.008. 

 

 

    

(h) Motion blurring of 

𝐿 =  4, 𝜃 =  90 

TABLE II 

MINIMUM CORRELATION COEFFICIENT VALUE R FOR THE IMAGE BLOCK OUT 

OF THE 64 BLOCKS. 

Non-malicious distortions along with 

their selected parameters 
Correlation Coefficient (𝑟) 

 

 

 

Cameraman 

Image 

Pentagon 

Image 

Baboon 

Image 

JPEG compression: 𝑄 =  20% 0.8701 0.6735  0.8495  

Gaussian noise: m =  0, v =  0.003 0.8445 0.7350 0.7859 

Speckle noise: Nv = 0.008  0.8578 0.7640  0.8060  

Gaussian blurring: Fs = 9 × 9, σ =  1  0.7372 0.5859 0.6150 

Motion blurring: L =  4, θ =  90 0.7496 0.6151 0.6390 

Gamma correction: γ =  1.5 0.6622 0.8471 0.7928 

Scaling: s = 40%  0.5747 0.5838 0.6529 

 



E. Receiver Operating Characteristics Curve 

Receiver Operating Characteristics (ROC) analysis is used 

to gauge the performance of the proposed algorithm in terms 

of robustness and tamper detection. The ROC curve is a plot 

between false positive probability (PFP) and false negative 

probability (PFN) as the threshold is varied. These two 

probabilities are defined by Equations (6) and (7), respectively 

[12]. 

𝑃𝐹𝑃 =
𝑁𝐴

𝑇

𝑁𝑇
                                                (6) 

𝑃𝐹𝑁 =
𝑁𝑇

𝐴

𝑁𝐴
                                                (7) 

In (6), 𝑁𝐴
𝑇 denotes the total number of tampered image 

blocks categorized as true, whereas 𝑁𝑇 denotes the total 

number of tampered image blocks. Likewise, in (7), 𝑁𝑇
𝐴 

denotes the total number of true image blocks detected as 

tampered and 𝑁𝐴 denotes the total number of true image 

blocks. 

There is always a tradeoff between 𝑃𝐹𝑃  and 𝑃𝐹𝑁. This trade-

off is the basis to quantify tamper detection capability of any 

PIH scheme. The 𝑃𝐹𝑃  and the 𝑃𝐹𝑁 probabilities are inversely 

proportional. Consequently, it becomes challenging to select 

an appropriate value of 𝑡𝑟 as both the probabilities need to be 

balanced. For a hashing system having a higher false positive 

probability implies that there is a risk of wrong image 

integrity verification. Similarly, a system having a higher false 

negative probability would reject genuine samples frequently. 

There is a need to balance robustness and tamper detection 

capability at some desired level. The operating point for the 

ROC curve may vary depending upon the application scenario 

of a hashing system. For instance, if a user wants the hashing 

system to have zero false positive probability so that a 

tampered image block would never get authenticated, then the 

false negative probability would increase. The ROC operating 

point for the proposed system is selected in such a way that 

both the probabilities are small enough to use it in real life 

image integrity verification applications.  

Figure 8 shows the ROC performance of the proposed 

algorithm for different types of content preserving distortions. 

The database in [42] is used to obtain the ROC curves. It is 

quite encouraging that for low 𝑃𝐹𝑃 , low 𝑃𝐹𝑁 is accomplished. 

In cases of JPEG compression, Gaussian noise, speckle noise, 

Gaussian blurring and motion blurring, if we operate at values 

of 𝑃𝐹𝑃 = 0.035 then 𝑃𝐹𝑁 is less than 0.04. Similarly, for 

image scaling and gamma correction at 𝑃𝐹𝑃 = 0.05, the 𝑃𝐹𝑁 is 

approximately equal to 0.04 and 0.125, respectively. In short, 

the values of 𝑃𝐹𝑃  and 𝑃𝐹𝑁 are much better for JPEG 

compression, Gaussian noise, speckle noise, Gaussian 

blurring, motion blurring and image scaling, while the values 

of 𝑃𝐹𝑁  are a bit higher in case of gamma correction. It is also 

important to note that in the current scenario, the false positive 

probabilities and false negative probabilities are calculated for 

a block of size 32 × 32 pixels, taken from an image of size 

256 × 256 pixels. Hence, the false acceptance of the 

proposed scheme, for a complete image of size 256 × 256 

pixels would be very small than the individual block's false 

acceptance probability because all the 64 blocks need to be 

falsely accepted for a false verification of the complete image. 

F. DCT coefficient selection 

The selection of appropriate number of DCT coefficients 

for each image sub-block is very important parameter, which 

affects the performance characteristics of the proposed DCT-

NRLBP hashing scheme. We have selected first 15 × 15 DCT 

coefficients for forming Γ𝑖 according to (4). The main reason 

to select these particular coefficients is to achieve best 

robustness and minute tamper detection capability. In this 

regard, we observe the performance of the DCT-NRLBP 

scheme against varying number of DCT coefficients, and 

 
Fig. 9. The ROC performance comparison by changing size of DCT 

coefficients. The curves indicate best performance when first 15 × 15 DCT 

coefficients are selected for an image sub-block of size 32 × 32 pixels. 

 

 
Fig. 8. The receiver operating characteristics curves for non-malicious 

distortions. 

 

                                                       

  

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 7. (a) Lena image. (b) Tampered version of Lena image. (c) Localized 
tamper detection. 

         
(a) Original Lena 

image. 

 

    
(b) Tampering is shown 

inside the circle. 

Maximum tampered 
area is approximately 

3% of the image 

    
(c) Localized tamper 
detection. 



accomplish the best ROC performance when the first 15 × 15 

DCT coefficients are selected for an image sub-block of size 

32 × 32 pixels as shown in Fig. 9. The curves in Fig. 9 are 

plotted with three different number of DCT coefficients, i.e. 

10 × 10, 15 × 15 and 20 × 20. All these coefficients that 

form secondary image blocks are generated using (4). The 𝑃𝐹𝑁 

in Fig. 9 is computed by assuming original images [42] and 

their non-malicious distorted versions as pair of similar 

images. The employed parameters to generate non-malicious 

distorted versions are the same as given in Table II. The 𝑃𝐹𝑃 is 

calculated by assuming each original image to be visually 

different from all other images available in [42]. This means 

that each sub-block in one image acts as tampered sub-block 

for the other image. Then ROC performance is plotted 

between 𝑃𝐹𝑃 and 𝑃𝐹𝑁 with different dimensions of Γ𝑖 as shown 

in Fig. 9. In Fig. 9, it is evident that the best performance is 

achieved when the size of  Γ𝑖 be selected as 15 × 15 

coefficients. It is also important to note Γ𝑖 always include low 

frequency coefficients and exclude high frequency 

coefficients because low frequency DCT coefficients are 

primarily responsible for preserving image structure [41], and 

their exclusion will not represent the actual image semantics. 

VI. COMPARATIVE ANALYSIS 

A. Performance Comparison using Distribution of 

Correlation Coefficient 

The performance comparison using distribution of 

correlation coefficients is performed to reinforce the fact that 

the value of 𝑡𝑟 is able to differentiate between deliberate 

tampering and non-malicious manipulations. In this regard, a 

comparison is made to evaluate the performance of the 

proposed algorithm DCT-NRLBP with competing schemes 

namely LBP, SVD-NRLBP, SVD-CSLBP and WLBP-CAR 

in terms of distribution of correlation coefficients. To assess 

robustness against non-malicious distortions and minute 

tamper detection capability a comparison among the 

distribution of correlation coefficient is performed with the 

LBP [38], SVD-NRLBP [37], SVD-CSLBP [30], WLBP-

CAR [2] and the proposed DCT-NRLBP scheme. For the sake 

of simplicity, each image in the dataset [42] is modified by 

non-malicious distortions like JPEG compression, Gaussian 

noise, speckle noise, Gaussian blurring, motion blurring, 

gamma correction and image scaling as per non-malicious 

distortion parameters listed in first column of Table II. All the 

original images and their non-malicious distorted versions are 

considered as pair of similar images. Due to the fact that the 

LBP [38], SVD-NRLBP [37], SVD-CSLBP [30] and the 

proposed DCT-NRLBP schemes are block based, hence for 

the sake of evaluation, each image is first subdivided into 

blocks (block size 32 × 32) and then each block is converted 

to its corresponding hash code, while WLBP-CAR [2] scheme 

takes the whole image as input and does not divide into blocks 

for computing hash code. The correlation coefficient (𝑟) 

given by (5) is calculated between the hash of the original 

image block and the hash of its corresponding non-malicious 

distorted version (for example, JPEG compression, etc.). 

There are 64 blocks of size 32 × 32 pixels for comparison 

between the original image and its non-malicious distorted 

form for [30, 37, 38] and proposed DCT-NRLBP. 

Subsequently, the total number of blocks (𝐵𝑁) are counted 

against a particular value of 𝑟. The values of 𝑟 are quantized 

to the following discrete steps {0.1, 0.2, 0.3,0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0}. In the end, a bar graph is plotted 

between the quantized values of 𝑟 against 𝐵𝑁. The distribution 

of correlation coefficients for [2, 30, 37, 38] and DCT-

NRLBP is shown in Fig. 10. As WLBP-CAR hashing scheme 

[2] is not a block based scheme. This results a reduction in 

total number of entries by factor of 64 incomparison to [38], 

[37], [30] and proposed DCT-NRLBP scheme. which makes a 

bit doubous to compare quantity of correlation coefficients of 

[2] with [30, 37, 38] and proposed DCT-NRLBP but 

nevertheless the overall distribution of correlation coefficients 

for [2] is illustrated in Fig. 10. 

                                                
  

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Fig. 10. Distribution of correlation coefficients for LBP, SVD-NRLBP, SVD-

CSLBP, DCT-NRLBP and WLBP-CAR PIH schemes. (a)~(g) Distribution of 

correlation coefficients between the original image blocks and perceptually 
similar image blocks for different non-malicious distortions. (h) Distribution 

of correlation coefficients between dissimilar image blocks. 

 
 (a) JPEG compression: 𝑄 =  20%. 

 
 

 
 (c) Speckle noise: 𝑁𝑣  =  0.008. 

 

 

 
(e) Motion blurring:  

𝐿𝑒𝑛 =  4;  𝜃 =  90. 

 

  
 (f) Gamma correction:  

 𝛾 =  1.5. 

 

 
(g) Image scaling: 𝑠 =  40%. 

 

 

 
 (h) Dissimilar image blocks. 

 
 

  
(b) Gaussian noise: 

𝑚 = 0, 𝑣 =  0.003. 

 
(d) Gaussian blurring: 

𝐹 =  9 × 9;  𝜎 = 1. 



Figure 10𝑎~10𝑔 shows the distribution of correlation 

coefficients for JPEG compression, Gaussian noise, speckle 

noise, Gaussian blurring, image scaling, motion blurring and 

gamma correction, respectively.Similarly, the distribution of 

correlation coefficient for dissimilar image pairs is computed 

as shown in Fig. 10ℎ. The x-axis represents quantized values 

of 𝑟 and the y-axis represents 𝐵𝑁. In case of dissimilar image 

blocks as shown in Fig. 10ℎ, the bar graph should be in such a 

way that it shows high concentration of image blocks close to 

𝑟 = 0.1 and 𝐵𝑁 should decrease towards increasing values of 

𝑟. The rate of decay for 𝐵𝑁 for different images should be fast, 

so that there are small number of dissimilar blocks having 

high value of correlation coefficient (𝑟), or in other words 

high similarity index. It is evident from the Fig. 10ℎ that the 

proposed scheme exhibits lower concentration of 𝐵𝑁 for 

distinct image pairs for higher values of 𝑟, indicating low 𝑃𝐹𝑃  

as compared to other algorithms [30, 37, 38]. On the other 

hand, a good PIH scheme should have highest concentration 

of image blocks close to 𝑟 = 1 for non-malicious distortions 

and the concentration of blocks should increase towards 

higher values of 𝑟, as visually similar images should have 

high similarity index. It is quite clear from Fig. 10(𝑎)~(𝑑) 

that the proposed scheme has highest rate of decay for JPEG 

compression, Gaussian noise, speckle noise and Gaussian 

blurring, while in case of motion blurring, gamma correction 

and image scaling Fig. 10(𝑒)~(𝑔) 𝐵𝑁  decays at such fast rate 

that there are very few blocks left beyond 𝑡𝑟 value. It is also 

noted that in case of gamma correction, the LBP scheme 

exhibits exceptional performance having small values of 𝐵𝑁 

other than at 𝑟 = 1. 

B. Performance Comparison by Varying Non-malicious 

Distortion Parameters 

The performance comparison by varying non-malicious 

distortion parameters is performed to demonstrate the 

effectiveness of the DCT-NRLBP over a range of different 

non-malicious parameter settings. Fig. 11 shows the scatter 

plot for the proposed DCT-NRLBP scheme alongside with 

some schemes from the literature [2, 30, 37, 38] to determine 

the maximum bounds of robustness against varying non-

malicious distortions. The x-axis represents varying non-

malicious distortion parameter and the y-axis depicts average 

minimum correlation coefficient value. Each non-malicious 

distortion parameter is varied numerous times to validate the 

performance of the DCT-NRLBP algorithm. In Fig. 11, JPEG 

quality factor, Gaussian noise variance, speckle noise 

variance, Gaussian blurring, motion blurring, gamma 

correction and image scaling are varied 10, 6, 8, 4, 8, 5 and 7 

times respectively to check the robustness of the proposed 

DCT-NRLBP scheme. For a single image under evaluation, 

there exists 64 image blocks to be compared for [30, 37, 38] 

and proposed DCT-NRLBP scheme while WLBP-CAR is not 

a block based scheme, so it produces a single value of 𝑟 for 

one image under consideration. This means, there are be 64 

correlation coefficients for one comparison involving two 

images, each having a size of 256 ×  256 pixels for [30, 37, 

38] and DCT-NRLBP scheme. Only single value corresponds 

to minimum correlation coefficient out of 64 values is taken 

(to illustrate worst case scenario). After calculating minimum 

correlation coefficients for all the images of dataset [42], the 

average value was computed to plot the average minimum 

correlation coefficient against a set of varying non-malicious 

parameters. The value of 𝑟 against all these contents 

preserving manipulation should ideally be 1, or close to 1, but 

in practical scenarios it is always less than 1 and at the same 

time must always be greater than the threshold (𝑡𝑟) as a good 

performance benchmark.  It is observed that average 

minimum block correlation coefficients for JPEG 

compression, Gaussian noise, and Speckle noise for the 

proposed algorithm is better when compared to other hashing 

schemes [2, 30, 37, 38] as shown in Fig. 11. In case of 

Gaussian blurring, motion blurring, gamma correction and 

image scaling the value of 𝑟 is always greater than the 

selected 𝑡𝑟. If we compare the proposed scheme with the LBP 

operator [38], it looks like that in some situations like Fig. 

                                                

  

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 

Fig. 11. Performance comparison of LBP, SVD-NRLBP, SVD-CSLBP, 

DCT-NRLBP and WLBP-CAR by varying content preserving manipulations 

parameters over a range of values. The x-axis and y-axis correspond to 
variable non-malicious distortion parameters and average of minimum block 
correlation coefficients respectively. 

  
 (a) JPEG compression. 

 

  
 (c) Speckle noise. 
 

 
 (b) Gaussian noise. 

 
(d) Gaussian blurring. 

 
(e) Motion blurring. 

 

  
(f) Gamma correction. 

 

 

(g) Image scaling. 

 



11𝑓 and 11𝑔, the LBP operator shows better performance as 

the values of 𝑟 are higher than their counterparts. However, 

the overall performance can only be revealed through the 

ROC graphs, presented in the next sub-section due the false 

positive constraint of any algorithm. As, in case of LBP 

operator there are high values of 𝑃𝐹𝑃.  Similarly, the average 

minimum block correlation coefficients for the SVD-NRLBP 

scheme should always be above 0.65, as the reported 

threshold for this algorithm is 𝑡𝑟 = 0.65. However, it is 

visible from Fig. 11𝑏 that in case of Gaussian noise, the value 

of 𝑟 is less than 0.65 at all varying noise variance levels. 

Finally, in case of SVD-CSLBP’s and WLBP-CAR schemes, 

the results always show smaller values of 𝑟 against all sort of 

non-malicious distortions in all situations, potentially 

indicating poor performance in terms of robustness.  

C. Performance Comparison using the ROC Curves 

The Receiver operating characteristics (ROC) is an excellent 

way to visualize the best performing scheme under defined 

malicious and non-malicious parameters. ROC curves 

measure the tradeoff between robustness and tamper detection 

ability of a PIH technique. Figure 12 provides a comparison 

between the proposed DCT-NRLBP and previously reported 

hashing schemes [2, 30, 37, 38] in terms of the ROC curves. 

The DCT-NRLBP scheme exhibits high level of supremacy 

over the other three schemes. It is quite clear from the ROC 

curves that the DCT-NRLBP scheme demonstrates superior 

performance against competing schemes for JPEG 

compression (Fig. 12𝑎), Gaussian noise (Fig. 12𝑏), speckle 

noise (Fig. 12𝑐), Gaussian blurring (Fig. 12𝑑) motion 

blurring (Fig. 12𝑒)  and image scaling (Fig. 12𝑔). In case of 

gamma correction (Fig. 12𝑓), the LBP operator outperforms 

others by a fine margin. The reason for LBP operator’s 

exceptional performance in this case is hidden in its ability to 

cancel the effect of constant level gray scale added or 

subtracted from the image, provided that the image does not 

get saturated (i.e. either becomes full white or full black). As 

gamma correction distortion is the one which controls the 

brightness of the image, hence any change in brightness effect 

is cancelled by inherent ability of the LBP operator, indicating 

                                                
  

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 12. The ROC comparison for LBP, SVD-NRLBP, SVD-CSLBP, DC-NRLBP and WLBP-CAR. Proposed DCT-NRLBP scheme demonstrates superior 

performance against competing schemes for (a) JPEG compression, (b) Gaussian noise, (c) speckle noise, (d) Gaussian blurring, (e) motion blurring and (g) image 

scaling. In case of (f) gamma correction, the LBP operator outperforms all competing techniques. 

 

(b) Gaussian noise: 𝑚 = 0, 𝑣 =  0.003 

 

 (c) Speckle noise: 𝑁𝑣  =  0.008. 

 
(a) JPEG compression: 𝑄 =  20%. 

 

 (d) Gaussian blurring: 𝐹 =  9 × 9;  𝜎 = 1. 

 
(e) Motion blurring: 𝐿𝑒𝑛 =  4;  𝜃 =  90. 

 
(f) Gamma correction:  𝛾 =  1.5. 

 

(g) Image scaling: 𝑠 =  40%. 

 



excellent performance against gamma correction distortion 

Fig. 12(𝑓). The reason why our scheme does not outperform 

LBP operator is due to the fact that the proposed scheme takes 

DCT of input image and the first component of DCT domain 

represents DC level available in an image, hence any change 

in brightness of image may affect the DC coefficient, although 

we have incorporated NRLBP alongside DCT but any 

distortion coming from brightness changes is not nullified as 

efficiently as done by the LBP operator. It is also due to the 

fact that we are only looking for uniform patterns in the code 

while the LBP operator considers all the available 256 

patterns in an image. As the noise in case of gamma 

correction is only due to brightness change and the relevant 

LBP code does not get affected by brightness change in the 

image, hence LBP outperforms the DCT-NRLBP scheme for 

gamma correction as evident from Fig. 12𝑓. This is the only 

scenario where LBP operator outperforms the DCT-NRLBP 

scheme, while in all other situations, the proposed DCT-

NRLBP scheme performs well above the performance of LBP 

operator. This is due to the fact that the proposed scheme does 

not only cater spatial domain variations through DCT 

domain’s AC coefficient but also utilizes its DC coefficient 

that holds information regarding image’s gray level available 

in spatial domain, which is essential for robustness during 

JPEG compression, gaussian blurring, motion blurring and 

image scaling type of non-malicious distortions. 

D. Comparison in-terms of Hash Length 

In order to generate hash using LBP operator [38], there are 

64 histograms of size 1 × 256 corresponding to 64 image 

blocks (the size of each image block is 32 × 32 pixels). The 

length of the hash vector for a single image block is 1 × 256 

because there are 28 = 256 unique labels that exist in the 

LBP scheme. Consequently, the total hash length of an input 

image having 256 × 256 pixels will be 64 ×
256 (16384 bytes). In case of SVD-NRLBP [37] and the 

proposed DCT-NRLBP image hashing schemes, there are 64 

histograms of size 1 × 59 because there are only 59 bins 

available in the NRLBP algorithm, hence the length of the 

hash vector for a single image block of size 32 × 32 pixels is 

1 × 59. The length of hash vector for the input image of size 

256 × 256 pixels would be 64 ×  59 (3776 bytes). Similarly, 

in case of SVD-CSLBP [30] scheme, there are a total of 64 

histograms corresponding to 64 image blocks and the length 

of hash vector for each block is 1 × 64 as reported in [30], 

therefore, the hash length for a complete image of size 

256 × 256 is 4096. The authors reported a 90 digit long 

hash length for WLBP-CAR [34] hashing scheme. A 

comparison on hash lengths between LBP operator [38], 

SVD-NRLBP [37], SVD-CSLBP [30], WLBP-CAR [34] and 

the proposed DCT-NRLBP is given in Table III, which 

indicates that the hash length of proposed DCT-NRLBP is 

smaller than hash lengths of schemes reported [30, 38] and is 

equal to scheme reported in [37], while the hash length of 

scheme reported in [2] is smaller than DCT-NRLBP, because 

the reported scheme in [2] is not a block based scheme.  

VII. CONCLUSION 

 

In this paper, a novel DCT-NRLBP PIH scheme is proposed 

that utilizes block based NRLBP features. Experimental 

results reveal that the proposed scheme exhibits good 

robustness to non-malicous manipulations and can detect 

minute level tampering with tamper localization. The ROC 

curves suggest that the proposed scheme is able to 

differentiate between deliberate malicious tampering and non-

malicious manipulations, provides high robustness and tamper 

detection capability. To the best of our knowledge, this is the 

first time that NRLBP method is employed in the DCT 

domain for image hashing. The proposed algorithm can detect 

localized deliberate malicious tampering as small as 3%. of 

the image size successfully. The proposed DCT-NRLBP 

technique is observed to be robust against JPEG compression, 

Gaussian noise, speckle noise, Gaussian blurring, motion 

blurring, gamma correction and image scaling. The DCT-

NRLBP calculates image hash by analyzing complete image 

irrespective of the fact that there is any texture available or 

not, unlike the PIH technique proposed in [45] that exploits 

only a specific image region where feature points are used to 

calculate an image hash. 

The comparative analysis using the ROC curves reveals that 

the proposed DCT-NRLBP scheme's threshold can be selected 

in such a way that both the probability of false positive and 

probability of false negative are minimal. The selection of a 

suitable threshold becomes easy because there is sufficient 

gap between malicious tampered images and non-malicious 

distorted versions. The scatterplot for varying content 

preserving manipulation parameters exhibits that the proposed 

PIH algorithm can withstand a wide range of content 

preserving manipulations. The hash size comparison shows 

that the proposed scheme requires less memory to store hash 

values in comparison to other block based schemes. 
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