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Abstract

Ultrasonography is widely used to measure gastrocnemius muscle architecture; however, it

is unclear if values obtained from digitised images are sensitive enough to track architectural

responses to clinical interventions. The purpose of this study was to explore the reliability

and determine the minimal detectable change (MDC) of gastrocnemius medialis (GM) and

gastrocnemius lateralis (GL) muscle architecture using ultrasound in a clinical setting. A

trained sonographer obtained three B-mode images from each of the GM and GL muscles

in 87 volunteers (44 males, 43 females; 22±9 years of age) on two separate occasions.

Three independent investigators received training, then digitised the images to determine

intra-rater, inter-rater, and test-retest reliability for fascicle length (FL), pennation angle (θ)

and muscle thickness. Median FL, θ, and muscle thickness for GM and GL were 53.6–55.7

mm and 65.8–69.3 mm, 18.7–19.5˚ and 11.9–12.5˚, and 12.8–13.2 mm and 15.9–16.9 mm,

respectively. Intra- and inter-rater reliability of manual digitisation was excellent for all

parameters. Test-retest reliability was moderate to excellent with intraclass correlation coef-

ficient (ICC) values�0.80 for FL,�0.61 for θ, and�0.81 for muscle thickness, in both GM

and GL. The respective MDC for GM and GL FL, θ, and muscle thickness was�12.1 mm

and�18.00 mm,�6.4˚ and�4.2˚, and�3.2 mm and�3.1 mm. Although reliable, the rela-

tively large MDC suggest that clinically derived ultrasound measurements of muscle archi-

tecture in GM and GL are more likely to be useful to detect differences between populations

than to detect changes in muscle architecture following interventions.

Introduction

Skeletal muscle architecture is described by the geometrical arrangement of muscle fibre bun-

dles relative to the force-generating axis of the muscle [1]. The arrangement influences con-

traction velocity and force-generating capacity of a muscle, as well as the range of

reciprocating motion, known as excursion [1–5]. In pennate muscles, fibre bundles known as
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fascicles, insert obliquely into aponeuroses. The angle derived from the insertion of a fascicle

into an aponeurosis defines the pennation angle (θ), and the distance between aponeuroses

defines anatomical muscle thickness. These parameters of skeletal muscle architecture have

been measured in studies of muscle physiology and biomechanics to determine anatomical

and contractile properties of muscles [2, 3, 6–10]. Fascicle length (FL), θ, and muscle thickness,

can be measured through in vivo, two-dimensional (2D) B-mode ultrasound imaging [11–14].

B-Mode ultrasound is non-invasive, readily available in research and clinical settings, and pro-

vides superior spatial resolution of images obtained in real time. This modality provides

detailed visualisations of hypoechoic fibre bundles with hyperechoic septations within the

muscle, separated by hyperechoic fibroadipose tissue [3, 7, 8, 15–18]. Once a single image

frame or set of images are acquired, measurements are traditionally made using manual digiti-

sation with custom-written computer software [2, 8, 19–27] or by using automatic tracking

[28–31].

Several limitations should be considered when using ultrasound to measure skeletal muscle

architecture. Ultrasound is operator-dependent, and potential sources of error stem from

probe placement or location, probe pressure, and probe orientation [32, 33]. Freehand probe

placement allows for manual adjustments of the probe parallel to the fascicle plane to obtain

the clearest possible image, although this ‘field-based’ approach is subject to operator bias and

can reduce reliability of repeated measurements on the same subject [2, 32–38]. Misalignment

of the probe plane with respect to the fascicle plane can lead to over- or under-estimation of

FL and θ [32, 37]. Excessive probe pressure can lead to tissue deformation and reduce the accu-

racy of measurements [32]. Standard configurations, which are most cost-effective, include a

transducer sized between 4 to 6 cm. These transducer field of view dimensions are often too

narrow to simultaneously view both a fascicle’s origin on one aponeurosis and its insertion on

the other. Specialised long transducers (10 cm) can be employed; however, these transducers

are more costly and increase susceptibility to uneven probe pressure spread across the underly-

ing tissues that can cause deformation [39, 40]. More advanced extended-field-of-view tech-

niques, where entire fascicles are imaged by moving the probe with a continuous scan,

increase the risk of technical error during digital reconstruction of the image [41]. In cases

where the above techniques are not available and fascicles extend beyond the ultrasound’s field

of view, the external segment can be estimated by linear extrapolation of the fascicle to its

intersection with the aponeuroses [2, 24, 25, 42]. Linear extrapolation assumes a fascicle fol-

lows a linear path and does not account for fascicle or aponeurosis curvature, which has

important implications for the accurate calculation of architecture [43, 44]. Consequently, the

reproducibility of conventional B-mode ultrasound measures of skeletal muscle architecture

requires investigation.

Authors of a systematic review found that, with appropriate operator training, ultrasound

measures of muscle architecture are highly reliable and valid [11]. However, most of the stud-

ies in the review described strict protocols to reduce operator bias and error, used expensive

machines, or used equipment that cannot be transported to other relevant sites where sports

medicine services are engaged, such as athletic clubrooms [45]. The procedures that standard-

ise: (1) positioning of the subject and ultrasound transducer, (2) scan parameters, (3) image

processing, and (4) digitisation analysis are time consuming, which poses a challenge to the

suitability of the use of ultrasound in a clinical setting where time and equipment are often

limited [40]. Therefore, the reproducibility of findings in a controlled environment might not

translate to a clinical setting, where high resolution stationary ultrasound machines or retest

aids are not universally available. Exploration of the reproducibility of an ultrasound method

applicable to a clinical sports medicine context has not been performed. Regardless of this,
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conventional B-mode ultrasound imaging remains the most widely used modality to measure

skeletal muscle architecture in clinical settings due to its practicality and affordability [39].

The gastrocnemius medialis (GM) muscle architecture has been determined to relate

closely to force production capacity and ankle joint kinematics during gait [25]. The muscle is

located superficially relative to skin [3, 11], and contains shorter fascicles that can be measured

with a single commercial transducer sized 4–6 cm. Because of the GM’s locomotor significance

and ease of identification of muscle architecture under ultrasound, it has been frequently tar-

geted in interventional studies aimed at improving biomechanical function, as well as in clini-

cal studies of muscle disorders [46], and immobilisation studies exploring bed rest [25] or

exposure to microgravity [47]. The GM combines with the gastrocnemius lateralis (GL) as well

as the soleus combine to form the triceps surae muscle group, the dominant plantar flexors of

the ankle [48]. The gastrocnemius muscles have different architectural properties; GL is char-

acterised by longer FLs and smaller θs whereas the GM comprises shorter FLs and larger θs

[7, 47].

The reliability of measuring GM architecture using ultrasonography has been reported as

being between good to excellent for FL (ICC = 0.81–0.99) and θ (ICC = 0.85–1.00) following a

review of studies [11] where researchers applied strict protocols with step-by-step instructions

[2, 8, 24, 25, 42, 43, 46, 49]. Across these studies, different measures were repeated for the pur-

poses of reporting reliability, and sample sizes were relatively small, which might compromise

the conclusions that can be drawn. Authors analysed the reliability of image acquisition, image

analysis, or both of these steps with repeated measurements, however these were performed

either within a single session, across multiple sessions, or across multiple investigators [11].

These variations have made it difficult for inter-study comparisons of the values reported.

When simplified to the step of image analysis alone, specifically the method of manual digitisa-

tion, studies have reported excellent reliability following a single investigator repeating the

digitisation step on two occasions (intra-rater), or between multiple investigators (inter-rater)

[2, 8, 11, 24, 25, 32, 42, 43, 46, 49]. However, when investigating responses to interventions, it

is more valuable to determine whether the method of both image acquisition and digitisation

repeated on multiple occasions is reliable and sensitive enough to track adaptations.

Historically, GM measurements are more vulnerable to error when measured between ses-

sions [11]. Two studies revealed large discrepancies in GM FL and θ results after being scanned

with ultrasound twice, and recommended caution regarding small changes in FL and θ in clin-

ical studies as the relevant changes were likely smaller than the measurement error [32, 50].

Existing literature does not address whether the magnitude of measurement error of ultraso-

nography exceeds the potential changes in FL, θ, and muscle thickness following clinical inter-

ventions such as immobilisation, chronic exercise training, or disuse. The reliability of

imaging the GL is far less known [11], and it cannot be assumed that the method of ultrasound

imaging for GM will prove reliable for GL in the same individual or group [7, 51]. Separate

analysis is required, particularly test-retest reliability estimates including the minimum detect-

able change. This new knowledge can inform the appropriateness of tracking architectural

adaptations to both heads of the gastrocnemius muscle in individuals using ultrasound.

The primary purpose of this study was twofold: (1) to determine the reliability of ultrasound

image acquisition and manual digitisation of GM and GL muscle architecture parameters in

resting conditions in a clinical setting, and (2) to estimate the magnitude of difference that

would be required to detect real change between or within individuals and groups. The authors

hypothesised that: (a) the intra-rater and inter-rater reliability of the manual digitisation step

would be excellent and align with results from previous studies, and (b) that the test-retest

reproducibility of the muscle architecture results between ultrasound sessions using methods

repeated in a clinical setting would be lower than previously described results in the literature
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that applied stricter conditions or used equipment not readily available to the sports medicine

clinician.

Methods

Study design and participants

Fifty-six adults and 31 adolescents aged between 13 and 63 (44 males and 43 females:

mean ± SD, 22 ± 9 years, 175 ± 12 cm, and 73 ± 16 kg) provided signed consent and attended

two data collection sessions at least 7 days apart. An additional 2 adult and 4 adolescent partici-

pants attended a single data collection session but did not attend the second data collection

session and were not included in the test-retest reliability analysis. For participants aged <18

years, written informed consent was given by a parent or legal guardian. Participants were

screened for eligibility using a questionnaire. The questionnaire covered demographic infor-

mation, such as age, gender, previous lower limb injuries, and activity levels. Participants were

excluded if they were aged 12 or younger, had a history of an acute or chronic lower limb

injury within the previous 12 months, or if they had exercised their calf muscles earlier on the

day of the assessment (prolonged walking, jogging, running, sprinting, hopping, skipping,

jumping, or performing heel raises). The study was approved by La Trobe University Human

Ethics Committee (Reference: S17-114) and was conducted according to the National State-

ment on Ethical Conduct in Human Research.

Procedures

Anthropometry was undertaken in accordance with procedures described by the International

Society for the Advancement of Kinanthropometry [52]. Body mass was recorded to the near-

est 0.1 kg using a portable analogue floor-scale (Model 762; Seca, Germany), and stretch stat-

ure was measured to the nearest 0.1 cm using a portable stadiometer (Model 213; Seca;

Germany). The muscle architecture of both left and right GM and GL muscles were assessed

during resting conditions to reduce fascicle curvature [2, 43]. B-mode ultrasound images were

taken from each participant on two occasions using a portable ultrasound (LOGIQ V2; GE

Healthcare, Australia) with a 38 mm wide linear probe and a standardised frequency of 12–13

MHz. This portable machine was selected as this is attractive for clinical use given its lower

cost and smaller size compared to large, stationary, high-precision machines [53].

Participants lay prone on an examination table with the lower leg supported on an inclined

foam wedge angled at 20˚ so that the knee was flexed to within the desired range of 20–30˚

[54]. The wedge was consistently placed in the same position with the thin edge adjacent to the

tibiofemoral joint lines to ensure the retest position would be maintained; the knee angle was

confirmed on the first 20 participants with a manual goniometer. The gastrocnemius bridges

both the knee and ankle joint and is under full tension when the knee is extended because the

muscle origin is furthest from its insertion [54]. Knee flexion of at least 20˚ eliminates the

effect of ankle dorsiflexion restraining the gastrocnemius, and ankle dorsiflexion and gastroc-

nemius tension remains unchanged between 20˚ and 75˚ of knee flexion [54]. The ankle was

secured at approximately 90˚ using a night splint and confirmed with a manual goniometer

(Fig 1). A trained sonographer used a measuring tape to find the initial probe site at one-third

of the distance from the popliteal crease of the knee to the tip of the medial malleolus for the

GM and the lateral malleolus for the GL, at the mid-muscle belly which was determined via

inspection and palpation [7, 27, 32, 47, 49, 53, 55]. The sonographer applied ample conductive

gel to ensure acoustic enhancement and reduce probe pressure against the skin. The probe was

then orientated by freehand to the plane of fascicles that were visibly inserting into either the

superficial or deep aponeurosis, and where the aponeuroses were close to parallel [23, 33, 37].
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This positioning around the initial placement site appreciates learned clinical practice where a

structure is targeted and visualised in real time using pattern recognition [56, 57]. Depth of

scanning was manually adjusted to 3–6 cm from the surface of the transducer, until both outer

borders of the superficial and deep aponeuroses were visible. Multiple ultrasound images were

obtained at the site where the muscle belly was widest, where FLs are thought to be homoge-

nously distributed [8, 58]. The probe was lifted between image captures to ensure each mus-

cle’s architecture was represented by several different measures of FL, θ and muscle thickness.

This resulted in three ultrasound images captured from each GM and GL at the left and right

limb on the same day within one session, totalling 12 images per participant. This process was

repeated at a second session held at least 7 days later, resulting in a total of 24 images captured

per participant.

Images underwent de-identification and randomisation (https://www.randomizer.org).

The following anatomical structures were digitised frame-by-frame (Fig 2), using software

designed in LabVIEW (version 16; National Instruments, USA): (1) superficial aponeurosis

external and internal borders; (2) deep aponeurosis external and internal borders; and (3)

proximal and distal endpoints of three muscle fascicles within the imaging plane per image. FL

was defined by the length of a linear fascicle path between the superficial aponeurotic junction

and the deep aponeurotic junction. Investigators received one hour of training and were pro-

vided with step-by-step training manuals that instructed investigators to prioritise selection of

fascicles that were straight with visible endpoints at the junction of either the deep or superfi-

cial aponeurosis. Where the fascicles extended beyond the captured image, the software

extrapolated to the aponeuroses and estimated FL, like that described in model V by Ando

et al. [59]. The intersection of the line of the selected fascicle inserting obliquely with the deep

aponeurosis defined θ. An average of these three measurements was used to represent FL and

θ [60]. Muscle thickness was defined as the mean vertical distance between the internal borders

Fig 1. Position of lower limb during ultrasonography.

https://doi.org/10.1371/journal.pone.0258014.g001
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of the superficial and deep aponeuroses measured on either side of the image. One investigator

reviewed all 2184 de-identified images and removed 39 images (1.7%) due to poor quality,

determined by inability to visualise the borders of deep aponeurosis (incorrect depth), or an

unacceptable degree of curvature in the aponeuroses.

Fig 3 describes the methods used to determine reliability for the steps of the procedure.

Intra-rater reliability of the digitisation method was analysed using one blinded investigator

(Investigator A) repeating digitisation on 100 randomly sampled images on two occasions.

Three blinded investigators (A, B and C) analysed all 2145 images to provide comparisons for

inter-rater reliability of the digitisation method. The images were divided into images of GM

(1081 images) or GL (1064 images), and reliability analyses were performed for these groups

separately. For test-retest reliability of the ultrasound image acquisition and digitisation

method combined, results were re-identified for each of the 87 participants and separated into

Fig 2. Ultrasound image from a right medial head of gastrocnemius of a participant, showing an example of the

points plotted (�) for superficial aponeurosis borders, deep aponeurosis borders, and a selected fascicle length

and corresponding pennation angle.

https://doi.org/10.1371/journal.pone.0258014.g002

Fig 3. Protocols for reliability analyses.

https://doi.org/10.1371/journal.pone.0258014.g003
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image number (1, 2 or 3) and test session (1 or 2). Intra-rater between-image reliability was

measured by comparing Investigator A’s results from session 1 image 1, to session 1 image 3.

Intra-rater-test-retest reliability was determined by comparing Investigator A’s averages from

test session 1 images to test session 2. The average of the three investigators (A, B and C) results

from test session 1 was also compared against their average of results from test session 2 to

determine inter-rater-test-retest reliability.

Statistical analysis

FL, θ, and muscle thickness were assessed for normality using the Shapiro-Wilk test, alongside

assessment of skewness, kurtosis, and distribution curves. The majority of data breached the

assumption of normality (p< 0.05), and group data are presented as median and inter-quartile

range (IQR).

Relative consistency was quantified using intraclass correlation coefficients (ICC) according

to guidelines defined by McGraw and Wong (1996) with 95% confidence intervals (95% CI)

[61]. The ICC values were calculated for intra-rater (ICC; two-way mixed-effects model, abso-

lute definition, single rater type), inter-rater (ICC; two-way random-effects model, absolute

definition, single rater type), and test-retest reproducibility (two-way mixed-effects model,

absolute definition, average rater type) [61, 62]. ICC values were classified according to Koo

and Li (2016) as excellent (�0.90), good (0.75 to 0.89) moderate (0.50 to 0.74), and poor

(�0.49) [62]. Absolute reliability was determined using the methods of Bland and Altman

(1999) [63]. Heteroscedasticity was examined through visual inspection of the Bland-Altman

plots and the correlation between the absolute differences and their respective means. The cor-

relation was significant for the majority of comparisons, and data were log transformed prior

to further analysis of the agreement between measures [63]. Consequently, mean bias and 95%

ratio limits of agreement (RLOA) relative to the mean were calculated to provide an indication

of systematic error and random error, respectively. These values show how much two scores

varied between investigators or between sessions; mean bias values closer to 0 indicate higher

reliability, and narrower RLOA are preferable [64].

Test-retest reliability was further assessed by calculating the standard error of the measure-

ment (SEM), as follows: SEM ¼ SD
ffiffiffi
1
p
� ICC, where SD is the standard deviation of the mea-

sure [65]. The minimal detectable change (MDC) defines the smallest change in the scores

between two sessions that needs to be observed in order to be 95% confident that the observed

change in muscle architecture is real and not a product of measurement error or random vari-

ation in the method [66]. The SEM was used to calculate the MDC with the equation:

MDC ¼ SEM �
ffiffiffi
2
p
� z scoreð95% CIÞ, where the z score equals 1.96, and the multiplier of

p
2 is

to account for the uncertainty introduced by using difference scores from measurements at 2

points in time [67, 68]. In addition, Cohen’s d effect size, measures the proportion of variance

shared by groups, and was calculated as the difference in group mean values divided by the

square root of the pooled variance (population SD) [69]. An effect size of 0.20 was considered

to be small, 0.50 medium, and 0.80 large [70]. Results were considered significant at p� 0.05,

and statistical analyses were performed using IBM SPSS (V25.0; Armonk, NY: IBM Corp.)

[71].

Results

Analysis of manual digitisation

Intra-rater reliability. Intra-rater reliability was excellent for FL (ICC = 0.99, 95% CI:

0.98–0.99), θ (ICC = 0.99, 95% CI: 0.98–0.99), and for muscle thickness (ICC = 0.99, 95% CI:
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0.99–0.99). Systematic bias was small, with mean differences (MD) of 0.3%, 0.7% and 0.1%,

respectively. In absolute values, MD were 0.3 mm, 0.1˚, and 0.1 mm. The RLOA were -8.1% to

8.0% for FL, -9.4% to 11.9% for θ, and -2.7% to 3.0% for muscle thickness.

Inter-rater reliability. Table 1 displays median (IQR) values and inter-rater reliability

analyses for the acquired images of GM and GL. For all comparisons, the ICC values were

excellent (� 0.91), with the widest 95% CI being 0.90–0.92. The ICC values were strongest for

muscle thickness comparisons, with ICC values of 0.99 to 1.00. Mean differences between

Investigators A, B and C were small in magnitude for both GM and GL. For all parameters,

there was no evidence of systematic bias (Fig 4), and the mean bias ranged from 0.1% to 0.5%

for GM and 0.2% to 1.5% for GL. For example, the mean bias for GM FL equates to small abso-

lute values (� 0.3 mm) in proportion to the median FL of 54.6 mm. For GL FL, the difference

in absolute values was again small (� 0.5 mm) against a median FL of 67.6 mm. The GL θ
showed the largest systematic difference which was found between Investigators A and B: MD:

2.2% (RLOA: -12.1%– 18.7%), as well as between Investigators A and C being MD: 2.2%

(RLOA: -13.3%– 20.5%) (S1 Table). This equates to 0.1˚ for both, corresponding to 0.8% of the

median angle. For both muscles, muscle thickness was the most reliable parameter measured

with the tightest RLOA (-3.1% to 3.4% for GM and -3.9% to 4.5% for GL). Cohens d statistic

was small (< 0.20) in all comparisons.

Analysis of image acquisition and manual digitisation

Intra-rater between image reliability. Relative reliability was excellent for FL

(ICC = 0.95, 95% CI: 0.94–0.96), θ (ICC = 0.94, 95% CI: 0.93–0.95), and for muscle thickness

(ICC = 0.97, 95% CI: 0.97–0.98). Systematic bias between image 1 to image 3 was small, with

mean differences (MD) of 0.2%, 1.1% and 0.1% respectively. The RLOA were wide, within the

range of -14.9% to 17.2% for FL, -19.1% to 26.2% for θ, and 10.0% to 10.8% for muscle

thickness.

Test-retest reliability. The results of the image acquisition and digitisation inter-rater-

test-retest and intra-rater-test-retest analyses are presented in Table 2. GM inter-rater and

intra-rater comparisons for FL was the most reliable measure, with good to excellent relative

reliability (ICC range: 0.88 to 0.92). ICCs were moderate to good for θs with the widest values

ranging from 0.63 to 0.76, and good for muscle thickness (ICC range: 0.83 to 0.86). Similar

findings were seen for GL (Table 2); FL was less reliable (ICC range: 0.80 to 0.84). Mean results

and MDC values were similar between intra-rater and inter-rater analyses. Mean bias

was� 3.6% for all parameter comparisons in both muscles, and there were no systematic dif-

ferences between the left limb and right limb. The left limb results are represented in the

Table 1. Gastrocnemius medialis and gastrocnemius lateralis median (IQR) values and inter-rater reliability results for fascicle length, pennation angle and muscle

thickness lengths.

Gastrocnemius Medialis (1081 images) Gastrocnemius Lateralis (1064 images)

Median (IQR) ICC (95% CI) Mean Bias (RLOA) Cohens Median (IQR) ICC (95% CI) Mean Bias (RLOA) Cohens

Fascicle Length
54.6 mm (49.1–62.9) 0.95 (0.95 to 0.96) -0.5% (-12.3 to 12.8) 0.07 67.6 mm (59.6 to 77.3) 0.91 (0.90 to 0.92) -0.8% (-16.5 to 17.7) 0.08

Pennation Angle
19.1˚ (16.4–21.5) 0.95 (0.94 to 0.96) 0.3% (-11.4 to 13.5) 0.05 12.2˚ (10.1 to 13.9) 0.94 (0.94 to 0.95) 1.5% (-13.6 to 19.2) 0.18

Thickness
16.4 mm (14.6–18.7) 1.00 (1.00 to 1.00) 0.1% (-3.1 to 3.4) 0.07 13.0 mm (11.0 to 14.8) 0.99 (0.99 to 1.00) 0.2% (-3.9 to 4.5) 0.11

IQR = interquartile range; ICC = intra-class correlation coefficient; CI = confidence interval; RLOA = ratio limits of agreement, 95% CI; mm = millimetres; ˚ = degrees.

https://doi.org/10.1371/journal.pone.0258014.t001
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Bland-Altman plots in Fig 5. The mean bias was close to zero for all parameters. In contrast,

the 95% RLOA were wide, demonstrating random error in the method. In terms of precision,

absolute reliability was stronger when measuring muscle thickness in both the GM

(SEM = 1.1–1.2; MDC = 3.2 mm) and the GL muscles (SEM = 0.9–1.6; MDC = 2.6–3.1 mm).

The largest inter-rater GM FL MDC was 12.1 mm, which represents 22.0% the median 54.9

mm. For the GL, the greatest inter-rater FL MDC was 17.3 mm, or 25.9% of the associated FL

median of 66.7 mm. Cohens values were < 0.29 for all parameter comparisons.

Discussion

The findings confirm that reliability is excellent when using manual digitisation to measure

gastrocnemius FL, θ and muscle thickness on images derived from ultrasound, within a single

investigator on two occasions, and between multiple investigators (ICCs� 0.91). Inter-rater

digitisation results for the GL were slightly less reliable when compared to the GM, likely due

to the anatomical differences between the two muscles. Reliability is reduced when ultrasound

image acquisition is repeated within a session which required the probe to be removed and

replaced between scans. Reliability is further reduced when participants attend re-scanning on

Fig 4. Bland-Altman plots showing the differences between Investigator A and Investigator B log10

measurements in relation to the mean of Investigator A and Investigator B measurements. Dashed lines indicate

the mean bias and the upper and lower 95% limits of agreement. Fascicle length, pennation angle, and muscle

thickness measurement comparisons for the gastrocnemius medialis are represented by a. b. and c. respectively, and

the gastrocnemius lateralis represented by d. e. and f.

https://doi.org/10.1371/journal.pone.0258014.g004
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Table 2. Test-retest reliability for fascicle length, pennation angle and muscle thickness of the gastrocnemius medialis and gastrocnemius lateralis muscles.

Gastrocnemius Medialis (n = 87)

Test1 Median (IQR) Test2 Median (IQR) ICC (95% CI) Mean Bias (RLOA) SEM MDC Cohens

Inter-rater-Test-retest

Fascicle Length
Left 55.7 mm (49.5–62.3) 54.0 mm (49.5–61.5) 0.88 (0.81–0.92) 1.5% (-21.7–31.6) 4.4 12.1 0.11

Right 53.7 mm (49.3–63.6) 54.6 mm (49.6–62.6) 0.92 (0.87–0.94) 0.1% (-18.9–23.5) 3.5 9.8 0.03

Pennation Angle
Left 18.7˚ (15.8–21.5) 19.4˚ (16.8–22.2) 0.75 (0.62–0.84) -3.4% (-34.4–42.1) 2.1 5.9 0.15

Right 19.0˚ (15.8–20.7) 19.1˚ (16.8–21.1) 0.64 (0.45–0.77) -3.4% (-36.2–46.2) 2.3 6.3 0.14

Thickness
Left 15.9 mm (14.0–18.1) 16.5 mm (14.9–18.7) 0.86 (0.78–0.91) -2.7% (-24.0–24.6) 1.1 3.2 0.22

Right 16.3 mm (14.5–18.3) 16.8 mm (14.9–18.6) 0.83 (0.74–0.89) -3.4% (-25.6–25.5) 1.2 3.2 0.27

Intra-rater-Test-retest

Fascicle Length
Left 55.4 mm (48.8–62.3) 54.2 mm (48.8–62.0) 0.88 (0.82–0.92) 1.2% (-21.8–30.9) 4.3 12.0 0.09

Right 53.6 mm (48.5–62.7) 54.1 mm (48.8–61.9) 0.91 (0.86–0.94) -0.1% (-20.1–24.9) 3.7 10.3 0.01

Pennation Angle
Left 18.7˚ (16.3–21.9) 19.5˚ (17.0–22.3) 0.76 (0.63–0.84) -2.9% (-33.2–41.3) 2.1 5.7 0.13

Right 19.2˚ (16.3–20.9) 19.1˚ (17.2–21.3) 0.63 (0.43–0.76) -3.2% (-36.1–46.6) 2.3 6.4 0.13

Thickness
Left 15.9 mm (14.1–18.2) 16.5 mm (14.9–18.9) 0.86 (0.78–0.91) -2.8% (-24.1–24.6) 1.1 3.2 0.23

Right 16.4 mm (14.5–18.3) 16.9 mm (15.0–18.7) 0.83 (0.73–0.89) -3.6% (-25.8–25.2) 1.2 3.2 0.29

Gastrocnemius Lateralis (n = 87)

Test1 Median (IQR) Test2 Median (IQR) ICC (95% CI) Mean Bias (RLOA) SEM MDC Cohens

Inter-rater-Test-retest

Fascicle Length
Left 68.4 mm (59.5–77.2) 68.7 mm (62.4–77.3) 0.84 (0.75–0.89) -2.0% (-26.3–30.5) 5.7 15.9 0.13

Right 67.1 mm (59.5–77.8) 66.3 mm (58.0–73.4) 0.80 (0.70–0.87) 2.8% (-25.6–42.0) 6.2 17.3 0.15

Pennation Angle
Left 12.3˚ (9.8–13.6) 11.9˚ (9.6–13.7) 0.79 (0.68–0.87) 3.6% (-21.3–56.2) 1.4 3.8 0.16

Right 12.0˚ (10.9–14.0) 12.3˚ (10.5–13.9) 0.61 (0.41–0.75) -1.7% (-37.1–53.8) 1.5 4.2 0.09

Thickness
Left 12.8 mm (11.0–14.3) 12.8 mm (10.4–14.5) 0.88 (0.82–0.92) 1.3% (-22.9–33.2) 0.9 2.6 0.06

Right 13.2 mm (11.4–15.0) 12.8 mm (10.9–14.5) 0.81 (0.71–0.88) 3.2% (-23.0–38.5) 1.6 3.1 0.20

Intra-rater-Test-retest

Fascicle Length
Left 67.3 mm (59.8–76.9) 69.3 mm (61.4–76.5) 0.82 (0.73–0.89) -1.9% (-27.4–32.5) 5.9 16.5 0.13

Right 67.1 mm (59.2–78.8) 65.8 mm (57.2–74.3) 0.80 (0.69–0.87) 2.0% (-27.4–43.3) 6.5 18.0 0.08

Pennation Angle
Left 12.4˚ (10.0–13.8) 12.1˚ (9.8–14.1) 0.79 (0.67–0.86) 3.3% (-32.3–57.4) 1.4 3.9 0.14

Right 12.4˚ (10.9–14.2) 12.5˚ (10.8–14.1) 0.63 (0.43–0.76) -0.9% (-36.4–54.4) 1.5 4.1 0.06

Thickness
Left 12.8 mm (11.0–14.3) 12.8 mm (10.5–14.8) 0.88 (0.81–0.92) 1.2% (-23.1–33.2) 0.9 2.6 0.05

Right 13.2 mm (11.6–15.0) 12.9 mm (11.0–14.5) 0.81 (0.71–0.88) 3.3% (-22.9–38.3) 1.6 3.1 0.21

n = participant number; Test1 = first test session; IQR = interquartile range; Test2 = second test session; ICC = intra-class correlation coefficient; CI = confidence

interval; RLOA = 95% ratio limits of agreement; SEM = standard error of measurement; MDC = minimal detectable change; mm = millimetres; ˚ = degrees.

https://doi.org/10.1371/journal.pone.0258014.t002
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a second occasion. Therefore, this method for test-retest analysis is unlikely to accurately track

changes to an individual’s gastrocnemius muscle architecture in interventional studies.

Manual digitisation is a simple process that is repeatable with excellent reliability within a

single investigator and between investigators, which suggests that subjectively choosing differ-

ent fascicles within a single image does not reduce reliability. Selecting three fascicles and

using the average of these further improves reliability. Where direct comparisons could be

made with previous studies that reported inter-rater reliability of manual digitisation of the

GM but only selected one single fascicle, this study’s ICCs of 0.95, 0.95, and 1.00 surpassed the

reported ICCs of 0.93, 0.82, and 0.96 for FL, θ, and muscle thickness, respectively [32]. Selec-

tion of three fascicles is time efficient, only requiring an additional 5–10 seconds to complete.

Future studies should consider this method rather than choosing one single fascicle. Further-

more, the lack of previous digitisation experience of investigators in this study demonstrates

that manual digitisation is easy to learn with a set of instructions explaining a systematic

approach to identifying anatomical landmarks. The digitiser does not need prior medical

training, but basic computer skills are necessary. Of all the parameters, relative and absolute

reliability was strongest for muscle thickness comparisons with narrowest RLOA. This

Fig 5. Inter-rater-test-retest Bland-Altman plots of the differences of log-transformed measurements between

test session 1 and test session 2 in relation to the mean of test session 1 and test session 2 measurements. Dashed

lines indicate the mean bias and the upper and lower 95% limits of agreement. Fascicle length, pennation angle, and

muscle thickness measurement comparisons for the gastrocnemius medialis are represented by a. b. and c. respectively,

and the gastrocnemius lateralis represented by d. e. and f.

https://doi.org/10.1371/journal.pone.0258014.g005
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precision could be derived from the direct pinpointing of aponeurotic borders to find mea-

surements of thickness, rather than selecting three random fascicles out of many to calculate

FL and θ readings.

Specific to the GM, findings for FL and θ are similar or stronger than previous findings

measuring reliability within investigators, where ICCs were between 0.87–0.99 for FL and

between 0.85–0.99 for θ [8, 24, 25, 43, 49, 53, 72]. Between multiple investigators, this study’s

results for FL agree with previously reported ICCs > 0.91 [11, 32, 50]. The results for θ are

stronger than previously reported values between 0.72 and 0.96 [50]. It should be noted that

the reliability data presented here are specific to the protocol that this study designed. This is

the first study that measures reliability of manual digitisation of FL, θ and muscle thickness

between multiple investigators using the averages of 3 FLs and 3 θs from one image. The GL

FLs were less reliable than the GM following repeated manual digitisation, although still excel-

lent (ICCs > 0.95 for GM and> 0.91 for GL). This finding is likely to reflect the architectural

structure of the GL muscle with longer FLs [7, 47], meaning that the ultrasound transducer

field of view was often too narrow to view a long GL fascicle’s origin on one aponeurosis and

its insertion on the other. The transducer configuration of 4 cm to 6 cm is considered standard

size and is often the cheapest and most accessible option, however when fascicles extend out-

side of the ultrasound image, estimating the length of the missing portion of fascicle can

increase the random error in both FL and θ calculations. In specific muscles where fascicle

lengths are longer, such as the GL or those in the thigh, this limitation can be overcome with

specialised long transducers (10 cm) or extended-field-of-view techniques, however increased

cost or time required to learn and reliably perform this technique poses some additional chal-

lenges to the clinician.

Specific to absolute test-retest reliability analyses of combined image acquisition and man-

ual digitisation, this study found wide RLOA, indicating a large degree of variability in the

method particularly when a participant returned on a separate occasion for a repeat scan.

While there is some variability due to manual manipulation of the probe as it is replaced and

repositioned on a participant within a single scanning session, random error was most signifi-

cant when a participant was ‘reset’ between sessions. Skin markers, acetate paper, or plastic

sheets have been used as retest aids in previous studies [25, 27, 73]. Nevertheless, this study

preferentially used a system of using landmarks to set probe location, with the sonographer

visually adapting the probe to obtain the best quality images per participant. Additional factors

such as the amount of recent exercise to the calf, the participant inadvertently changing knee

angle by self-shifting leg position on the examination table against the carefully placed foam

wedge, or the size of foot in the splint impacting the angle of the ankle joint are all potential

contributors to the variability between sessions and the resulting test-retest reliability. How-

ever, the small differences in the mean bias for all parameters, as well as small effect sizes

between the compared groups indicates that there is no systematic error in the method used

for image acquisition or manual digitisation. In terms of relative reliability, the test-retest find-

ings align with past studies that measured GM FL and muscle thickness using protocols that

use retest aids (ICC > 0.81) [8, 42, 46, 49, 53]. The comparative strength in relative reliability

without the use of retest aids could be explained by the uniqueness in the current method in

that the average of three images was used for session one and then compared to the average

results from three images from session two. Measurements of θ were less consistent, with

wider RLOA between sessions and test-retest reliability scores between moderate to good

which is lower than previously reported for the GM [8, 42, 46, 49, 53]. As the analysis of man-

ual digitisation within and between investigators revealed strong results across the three

parameters, and the intra-rater between-image reliability for θ remained excellent, it can be

pinpointed that θ measurements are more greatly affected by error from re-positioning of
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participants and loss of precision of the location of the probe between sessions, rather than

transducer orientation and rotation.

This study found that the magnitude of error of the measurement between sessions out-

weighs the small changes to muscle architecture that are typically seen when clinically relevant

interventions are applied to gastrocnemius muscles in individuals. The changes that have been

previously described to the GM muscles following interventions are frequently reported in

percentages in past studies. Comparisons to previous studies can be drawn, because the

descriptive measurements (median + IQR) obtained agree well with previous measurements

of GM architecture in healthy adults using B-mode ultrasonography [2, 25, 35, 42, 72, 74–76].

Historically, changes seen within GM muscles following interventions are typically less than

20% for muscle thickness and even smaller values for fascicle length. One such study per-

formed in a clinical setting found that changes to muscle thickness following 10 days of immo-

bilisation were -15.69% in the GM, equating to approximately -2.8 mm of the mean thickness

17.9 mm (± 2.8 mm), although this was not statistically significant [74]. This study found that

the MDC, or smallest change that can be detected beyond measurement error, was 3.2 mm for

intra-rater-test-retest and inter-rater-test-retest analysis of GM muscle thickness. This corre-

sponds to approximately 20% of the median muscle thickness width determined in this study

of 16.4 mm (IQR: 14.6 mm to 18.7 mm). A further example can be made by exploring changes

to the GM θ, which reportedly should be at least 6–7% [32] to be valid differences. One inter-

ventional study that concluded that after 5 weeks of bed rest, the GM θ declined by 14.3% [25].

An additional study found that disuse atrophy following injury (compared with uninjured leg;

time period of injury not reported) resulted in a 12.7% decrease in FL, and a 16.4% decreased

in θ [77]. A separate group of investigators measured GM fascicle length plasticity following 7

weeks of eccentric training in ten adult males, and showed that FL and θ significantly increased

by average 7.6% and 6.8% respectively [21]. The MDC values determined in this study for GM

θs ranged from 5.7˚ to 6.4˚ following the intra-rater-test-retest and inter-rater-test-retest anal-

ysis, equating to a range of 29.2% to 33.3% of the median angle values. MDC values for GM

FLs ranged from 9.8 mm to 12.1 mm, or to 17.9% to 22.4% of the corresponding median FLs.

These MDC values indicate that the magnitude of measurement error in using the method in

this study most likely exceeds the potential changes in muscle architecture in an individual fol-

lowing clinical intervention such as immobilisation or eccentric training. Changes within

these MDC values could not be interpreted as real although changes beyond would be consid-

ered valid. Clinicians should be aware of these MDC values when interpreting results obtained

using similar techniques and consider implementing more rigorous test-retest procedures if

the intention is to monitor test-retest changes in muscle architecture. An alternative and

appropriate use of this method in clinical practice is to compare results between populations.

The absence of systematic differences represented by the narrow mean bias supports the clini-

cal value of evaluating differences in GM architecture between adolescent and adult group

populations in a clinical setting [27].

Less data is available on plasticity of GL muscle architecture following intervention, and it

cannot be assumed that adaptations observed for the GM represents the GL as different

mechanical loads have been observed for the different components of the triceps surae muscle

[72, 78]. The descriptive analysis highlights the differences between GM and GL architecture,

consolidating the findings of previous studies that have shown that there exists a relationship

between pennation angle and muscle thickness [15, 79, 80]. Muscles with greater thickness

have larger pennation angles, such is seen in the GM compared to the narrower GL muscle,

with corresponding smaller θs [79]. This study also confirmed that GL FLs are longer [7, 47].

One of few studies investigating changes specific to GL following training interventions found

that 14 weeks of eccentric training resulted in no significant increase in FL with the change
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reported to be 10%, from 86 mm ± 18 mm to 95 mm ± 28 mm [81]. A more recent study con-

trastingly found that adaptations were significant following 12 weeks of eccentric training,

with FLs increasing by 8.8% [72]. Reductions in FL following lower limb immobilisation have

also been observed in the lateral gastrocnemius with approximately 9% decrements in fascicle

length after 23 days of lower limb suspension [60]. The test-retest analysis revealed that the

MDC for GL FL ranged from 15.9 mm to 18.0 mm following the intra- and inter-rater analysis.

This corresponds to a range of 23.1% to 27.3% of the average length of a fascicle. These MDC

values for the GL are greater than the size of adaptations that have been reported in the litera-

ture. Therefore, the methods used in this study cannot confidently be used to observe true

changes in muscle architecture in individuals following clinical intervention unless the

changes were significantly larger than what has previously been reported in interventional

studies. Including procedures employed between sessions to further standardise the probe

location, such as including individualised limb moulds marked with anatomical landmarks,

are likely to improve reproducibility but might be less pragmatic for use in clinical practice.

Additional limitations of this study should be acknowledged. A single trained sonographer

obtained all the images used in the analysis, so this study was unable to assess inter-rater-test-

retest reliability with multiple investigators performing both the image acquisition step as well

as the manual digitisation step. The choice of 2D B-mode ultrasound to obtain data at-rest has

been validated against cadaveric measurements; however, this modality does have a restricted

field of view and uses mathematical equations to extrapolate lengths, as well as cannot appreci-

ate the often curved, three-dimensional nature of a fascicle or aponeurosis. We followed the

approach by previous authors to use the distance between two points of attachment to aponeu-

roses and to prioritise fascicles that were straight and parallel to the image plane to reduce the

influence of omitting fascicle curvature on findings [82]. A simple model was designed to stan-

dardise the process and minimise error, which meant only GM and GL muscles were mea-

sured, with participants at rest in one position. The application of the reliability results to

other positions, dynamic conditions, or other muscle groups is not recommended.

Conclusion

In summary, the protocol employed in this study using 2D B-mode ultrasound in a clinical set-

ting can be used to reliably measure muscle architecture of the GM and GL muscles, in a

healthy adolescent or adult population. This study presented a range of reliability statistics and

divided the protocol into stages for reliability analysis that allows wider comparison to previ-

ous and future literature. Within a single investigator, repeating manual digitisation alone is

most reliable, followed by obtaining measures with image acquisition combined with manual

digitisation within one session, then lastly obtaining measures with image acquisition com-

bined with manual digitisation between two sessions. Comparisons between multiple investi-

gators undertaking manual digitisation remains reliable both between images and between

sessions. However, between session measurements have a high degree of variability both

within an investigator or between investigators. Therefore, the ability of this protocol to deter-

mine true change to GM or GL architecture following a clinical intervention is unreliable on

an individual level, as the large MDCs and RLOAs observed are greater in magnitude than the

typical changes previously reported in gastrocnemius muscles after intervention. The reliabil-

ity of measurements between sessions can be improved by using stricter protocols that stan-

dardise the probe location using retest aids. Further research is required to determine whether

2D B-mode ultrasonography is sensitive enough to track adaptations to muscle architecture in

individual gastrocnemius muscles in a clinical setting. However, the current protocol is useful

for comparisons of two population groups and can be used for this purpose in future research.
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