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Abstract

Abstract
Onchocerca volvulus, the cause of river blindness, shows variation in response to the drug

used to treat it (ivermectin). Genome Wide Association Studies (GWAS) revealed

association between sub-optimal response (SOR) and genotype in adult female worms

and suggested that SOR is a polygenic quantitative trait. However, previous genome

sequencing either used pooled DNA or a limited number of single worms, due to a small

number of worms and because of DNA quality. The primary aim of this thesis was to

improve diagnostic capability of SOR in O. volvulus and aid elimination goals. In Chapter

2, I took an amplicon approach to validate candidates and improve sample size. I reported

the findings from a pilot study that aimed to test whether 26 non-synonymous SNPs that

fell within an ~7kb region from 14 quantitative trait loci (QTLs) defined in the GWAS

were associated with ivermectin response. None of those chosen SNPs were in strong

association with SOR and were therefore not predictive of ivermectin response by O.

volvulus and unlikely to play a causative role in the SOR phenotype. However, the

evolution study showed variation in selection across the loci studied. In Chapter 3, I

explored an alternative approach to laborious resequencing of SNPs by exploring the

localised and broad patterns of linkage disequilibrium (LD) and haploblock structure in

the O. volvulus genome. The study gave a detailed insight into the SNP density required

for designing a SNP array for future use in developing diagnostic tools. The genome-wide

pattern of LD also confirmed that soft selection was driving SOR in O. volvulus and it left

a weak LD signature in the genome which was characterised by clusters of small

fragmented haploblocks of low to moderately elevated LD that correlate with peaks of

FST. In Chapter 4, I explored the feasibility and success of genomic imputation (a novel

tool in helminth parasites genomics) in improving the density of SNPs available for

GWAS. Evidence shows that genomic imputation could improve the probabilities of

association for GWAS and could be employed in helminth’s genomics at large. However,

a larger reference panel that takes population structure into account should be considered.

The findings in this thesis have, therefore, provided new insights into the essential

requirements needed to finally eliminate onchocerciasis from Africa.
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Chapter One

Chapter One

General Introduction.

1.1.Onchocerca volvulus – The parasite, disease, control, and

elimination.

Onchocerca volvulus is a parasitic nematode which causes the disease onchocerciasis

(known commonly as river blindness). The disease is called river blindness because the

blackfly that transmits the infection lives and breeds near fast-flowing streams and rivers,

mostly near remote rural agricultural areas where at-risk people live and work (Centers

for Disease Control, 2019), and because the most severe pathology caused by the disease

is irreversible blindness (Little et al., 2004).

Onchocerciasis is among the Neglected Tropical Diseases (NTDs) with its main burden in

31 countries in sub-Saharan Africa and some parts of South America and in Yemen in the

Middle East. Onchocerciasis is a serious public health problem and the second leading

cause of infectious blindness in Africa (World Health Organization, 2019). At least, 20.9

million people are infected worldwide, of which 14.6 million have skin disease and 1.15

million have vision loss (Centers for Disease Control, 2019).

Endemicity levels of onchocerciasis comprises of three categories: first, hypoendemic –

areas or foci where nodule prevalence is found in <20% of adults and corresponds to skin

microfilarial prevalence of <30–35%, second, mesoendemic - areas or foci where nodule

prevalence is between 20-40% of adults and skin microfilariae prevalence is between

30–35% and 60%, and third, hyperendemic - areas or foci where nodule prevalence is

>40% of adults and skin microfilariae prevalence ≥60%. A microfilarial prevalence ≥80%

has also been used to indicate holoendemicity (Noma et al., 2002, UNICEF and

UNDP/World Bank/WHO Special Programme for Research and Training in Tropical

Diseases, 1996).

Figure 1.1 shows the life cycle of the parasite - O. volvulus - as it migrates through its

hosts at different filarial stages (Centers for Disease Control, 2019). The third-stage

filarial larvae are transmitted by repeated bites of infected Simulium spp. blackflies into

the human host (Figure 1.1) (Centers for Disease Control, 2019). In the human host, the
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third-stage filarial larvae develop into adult worms, which commonly reside in nodules

under the skin and continue reproducing for approximately 15 years (Plaiser et al. 1991).

This is the maximum reproductive lifespan of the adult worm which is characterized by

the age at which 95% of the adult worms have ceased reproduction and it is an important

determinant of the period during which vector control must be continued to minimize the

risk of recrudescence of onchocerciasis (Plaiser et al. 1991). The fertilised adult female

worm’s fecundity starts after a pre-mature period of one year on average (Duke, 1980).

Following this period, microfilariae production only takes place when worms mate

(Schulz-Key and Karam, 1986) and the microfilariae output decreases with age after a

few years of productivity (Karam et al. 1987).

2
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Figure 1.1. The life cycle of O. volvulus (Centers for Disease Control, 2016).
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The microfilariae are unsheathed, can live up to two years and migrate to the skin, eyes,

and the lymphatics of connective tissues in the human host (World Health Organization,

2019) (Figure 1.1). In the intermediate host (blackfly), the microfilariae are ingested by a

blackfly during a blood meal migrates from the blackfly’s midgut through the hemocoel

to the thoracic muscles where they develop into first-stage larvae and subsequently into

third-stage infective larvae. The third-stage infective larvae migrate to the blackfly’s

proboscis and can infect another human host when the fly takes a blood meal (Figure 1.1)

(Centers for Disease Control, 2019).

1.1.1. Symptoms

The symptoms of onchocerciasis are caused by the microfilariae (detectable in the skin

12–18 months after the initial infection). However, some people do not experience

symptoms while infected with O. volvulus, as the microfilariae can migrate through the

human body without provoking a response from the immune system (Centers for Disease

Control, 2019). The adult female worms, which produce thousands of new microfilariae

daily, live relatively sheltered from the human immune response in fibrous nodules under

the skin and sometimes near muscles and joints. These nodules are formed around the

adult worms as part of the interaction between the parasite and its human host. (Centers

for Disease Control, 2019). The produced microfilariae move around the human host in

the subcutaneous tissue and induce intense inflammatory responses when they die (World

Health Organization, 2019). In addition to visual impairment and blindness, the

symptoms include debilitating and disfiguring skin disease with depigmentation, severe

unrelenting itching with inflammation which results into long-term damage to the skin,

and nodules under the skin. The inflammation caused by microfilariae that die in the eye

results initially in reversible lesions on the cornea that without treatment progress to

permanent clouding of the cornea, and eventual blindness. There can also be

inflammation of the optic nerve resulting in vision loss, particularly peripheral vision, and

eventually blindness (Centers for Disease Control, 2019). Increasing evidence have also

associated high O. volvulus infection with different forms of epilepsy and nodding

syndrome (a condition in the epilepsy spectrum) in onchocerciasis foci (Chesnais et al.,

2018).
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1.1.2. O. volvulus genomes

The genomes of the parasitic nematode causing onchocerciasis, O. volvulus, include the

nuclear genome, the mitochondrial genome, and the genome of an intracellular bacterial

endosymbiont of the genus Wolbachia. The nuclear genome size is approximately 97 Mb

and is divided into three autosomes (OM1, OM3, and OM4) and the X-Y sex

chromosomes (OM2 and OM5; OM5 is part of the X chromosome and represents the

homologous sequence that matches to the Y chromosome and allows pairing during

meiosis). OM1 comprises two contigs – OM1a and OM1b – with a sequence gap of at

least 50 kb (Cotton et al., 2016). The nuclear genome contains at least one repeat

sequence family of a 150 bp repeat known as O-150, which is arranged in tandem arrays

and appears subject to concerted evolution (Arnheim, 1983). The mitochondrial genome

is compact and 13,747 bp in length (Crainey et al., 2016, Keddie et al., 1998). The

estimated Wolbachia genome size is 1.1 Mb (Choi et al., 2016, Klasson et al., 2008) and

may play a role in the parasite’s fecundity (Hoerauf et al., 1999). Cotton et al. described a

total of 12,143 predicted protein-coding genes in the O. volvulus genome, the majority

(∼91%) of which had orthologues in other nematodes and ∼9% (1,173) being O.

volvulus-specific, with little or no homology to genes annotated in other helminths

(Cotton et al., 2016).

I will give a brief historical account of the earlier work that described the evolutionary

history andgenetic variation in O. volvulus genome that was not based on whole genome

sequencing, and which suffered from small sample size and strong ascertainment bias.

Older work described genetic variation in O. volvulus based on markers such as O-150

and other repeat families as well as mitochondrial markers. The nuclear genome of O.

volvulus is very compact with relatively little non-coding DNA compared to most other

eukaryotic organisms. A proportion of non-coding sequences contains two families of

non-coding repeated sequences that are usually used as DNA probes to identify O.

volvulus in genomic screens (Meredith et al., 1991, Zimmerman et al., 1993). One of

which is the O-150 repeat family, which is specific to parasites in the genus Onchocerca,

is the best characterised of these tandemly repeated sequences, and represent roughly 1%

of the total O. volvulus nuclear genome (Erttmann et al., 1990, Meredith et al., 1989). The

O-150 repeat family was a very useful tool for the classification of the two strains of

O. volvulus in West Africa (rainforest and savanna bioclimes) as the location of the

parasites correlated with their pattern of O-150 sequence clustering. Similarly, the O-150

5
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repeat family was used to examine the relationship among different O. volvulus

populations (Zimmerman et al., 1994). However, the early attempts to use O-150 to

correlate genetic variation with ecological parameters (forest vs savannah) and disease

outcome (blinding vs non-blinding) proved unreliable (Kron and Ali, 1993). An attempt

to examine the level of genetic diversity in the mitochondrial genome of O. volvulus using

a combination of PCR-RFLP and direct sequencing of the hypervariable AT domain of

the mitochondrial genome revealed a very limited genetic variation in the mitochondrial

genome based on 11 individual parasites examined from East and West Africa (Zeng and

Donelson, 1992, Zimmerman et al., 1994). Unnasch and Williams (2000) reviewed that

the O. volvulus genome shows large-scale variation in gene density, GC content, and

repeat density, but argued based on limited data that intraspecific variation in both the

nuclear and mitochondrial genomes are limited.

One possible explanation for that low level of genetic diversity was that O. volvulus

suffered a huge genetic bottleneck about 5000 - 8000 years ago: since the members of the

genus Onchocerca were generally parasites of ruminant animals, while O. volvulus was an

obligate parasite of humans, O. volvulus likely developed because of a recent host switch

from one of the endemic ruminants in Africa to humans (Unnasch and Williams, 2000),

which would cause a genetic bottleneck. Also, because the O. volvulus lifecycle was

characterised by significant population (and mostly density-dependent) bottlenecks at

each transmission event (BasaÂ ñez et al. 2009). In contrast and based on whole genome

sequencing, Choi et al. show clearly that there is a lot of variation in O. volvulus genome

studied across a large geographic range including samples from Ecuador and several

countries in Africa but was also based on very few individuals. The samples were

geographically diverse but there was generally only a single individual per sample site, so

there were no conclusions concerning how the variation was distributed within and

between populations (Choi et al., 2016). The study of Cotton et al. (2016) additionally

presents evidence for extensive genetic variation. However, there was a relative lack of

information on how that variation was distributed at the population level but also, and

more importantly, how that variation was distributed within the genome (Cotton et al.,

2016). These more recent, genome-level studies, point to little genetic heterogeneity in

the parasite and highlight the need to expand sample size (both in terms of numbers of

individuals and in terms of the geographic range of sampling) to understand genetic

variation in the genome of O. volvulus.
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1.1.3. Treatment

The widely used treatment for onchocerciasis is an oral drug called ivermectin

(MectizanTM), from the class macrocyclic lactones (ML), which is given to all members of

a community irrespective of their infection status for the life span of the adult worms

(approximately, 15 years). Ivermectin was discovered in 1979 and has been shown to

have antiparasitic activity against a broad range of nematodes and arthropods (Geary,

2005). Ivermectin has been in use for onchocerciasis treatment since 1988 and has two

effects on two discrete stages of the life cycle of O. volvulus: the microfilariae and the

adult worms: (i) an acute microfilaricidal effect that results in the rapid and almost

complete removal of microfilariae from the skin within days to weeks after treatment

(Azis, 1982), and (ii) a sustained anti-fecundity effect that results in prolonged but

temporary inhibition of the release of new microfilariae from adult female worms into the

skin for approximately three to six months(Awadzi et al., 2004c, Duke et al., 1991,

Gardon et al., 2002, Grant, 2000, Kläger et al., 1996, Plaisier et al., 1995). Because of this

suppression of fertility, ivermectin reduced transmission and the overall incidence of

onchocerciasis by reducing the number of microfilariae available for uptake by feeding

blackflies (Figure 1.1 stage 5). It also prevents or possibly revert pathology by removing

microfilariae from the skin and eyes and delaying repopulation of these tissues with new

microfilariae. The recommendation for mass drug administration (MDA) is 15 – 17 years

of single annual (or biannual) treatment to interrupt transmission (Turner et al., 2013),

past the reproductive lifespan of the adult worms, because the adults survive many years

despite treatment and will resume microfilariae production if treatment is stopped.

Clinical trials and subsequent field experiences have shown that ivermectin is a rapidly

effective, well-tolerated, single dose microfilaricide, which causes little or no Mazzotti

reaction (that is, the severe inflammatory response from the immunological reaction of

the body to the death of the microfilariae) (Geary, 2005). Apart from its effectiveness in

disrupting transmission of onchocerciasis, it has the secondary effect of reducing

intestinal helminthiases in humans (Akogun et al., 2000). This excellent profile makes it

suitable for MDA.

1.1.4. Elimination goals

The worldwide burden and transmission of onchocerciasis has been reduced considerably

because of successful disease control programs led by the World Health Organisation
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(WHO), which were based on vector control and MDA of ivermectin to the affected

communities in the Americas and Africa (Centers for Disease Control, 2019, World

Health Organization, 2019). For example, in the Americas, four countries have been

verified by the WHO as free from onchocerciasis: Colombia, Ecuador, Mexico, and

Guatemala (Centers for Disease Control, 2019) and the burden of visual impairment and

blindness has been reduced in most of the West African regions affected by

onchocerciasis (Murdoch et al., 2002). Since its introduction, ivermectin has been the

principal component of control and elimination programs. These programs include the

Onchocerciasis Control Programme (OCP) (from 1989-2002; prior 15 years of vector

control measures only), the Onchocerciasis Elimination Program for the Americas

(OEPA) (1992-2007-2015), with biannual ivermectin treatment (and quarterly in some

places), the African Programme for Onchocerciasis Control (APOC) (1995-2009-2015),

primarily with single ivermectin treatment annually, and the Expanded Special Project for

the Elimination of Neglected Tropical Diseases in Africa (ESPEN) (2017-2025), set up to

cover the five preventive chemotherapy NTDs (World Health Organization, 2019).

As noted earlier, MDA of ivermectin and vector control have been successful for

controlling onchocerciasis as a public health problem in many foci; however, elimination

goals are more stringent and more difficult to achieve (Winnen et al., 2002). There are

questions as to whether elimination goals are achievable based on ivermectin MDA alone

(Winnen et al., 2002). In a conference about onchocerciasis held at The Carter Center, in

Atlanta GA, USA in 2002, it was concluded that eradication of onchocerciasis was not

feasible in the hyper- and mesoendemic foci (that is, where 20–40% and >40% of adults

respectively have subcutaneous nodules) in Africa with MDA of ivermectin only (Dadzie

et al., 2003) and that there was an urgent need to identify the challenges facing

elimination objectives. One of the challenges identified was the potential emergence of

resistance or sub-optimal response to ivermectin because of its repeated use in preventive

chemotherapy (Lazdins-Helds et al., 2003).

Although, resistance to ivermectin in human population infected with O. volvulus have

not been unequivocally shown, several reports have indicated persistent

microfilaridermia, with some patients having high microfilarial counts in the skin, in

Africa (Ali, et al. 2002; Awadzi, et al. 2004; LeAnne, 2006 and Churcher, 2009). In 2004,

O. volvulus were identified in Ghana that exhibited an ivermectin response phenotype

termed sub-optimal response (SOR) (Awadzi, et al. 2004c). These SOR parasites were
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characterised by the presence of live stretched microfilariae in the uteri of the adult

worms 90 days after treatment and were associated with repopulation of the skin with

microfilariae earlier/more extensively than expected based on prior data. Awadzi et al.

(2004c) observed reduction in the post-treatment embryostatic effect of the drug and

reappearance of microfilariae in the skin within 2-3 months after multiple doses of

ivermectin, even though they observed that the short-term microfilaricidal effect was not

affected. From their study, Awadzi et al. confirmed SOR in parasites from people in West

Africa collected at different days of ivermectin treatment based on skin microfilarial

counts, embryogram data taken at 90 days after treatment and the results of fly-feeding

experiments (Awadzi et al., 2004c). In another 30-month follow up study, Awadzi and his

collaborators reported persistent significant microfilaremia after several rounds of

ivermectin treatment in the worms. Based on embryograms of adult female O. volvulus,

there were adult worms that responded poorly to repeated doses of ivermectin, that is,

they resumed production of skin microfilariae 2-3 months after ivermectin treatment

(Awadzi et al., 2004b).

This posed a question on the effectiveness of the embryostatic properties of ivermectin on

the reproduction of adult female O. volvulus. One important limitation of work on O.

volvulus is that fertility of a single worm cannot be tracked. To quantify a particular

worm’s fertility/fecundity, the worm must be surgically removed and taken apart. In some

other nematode parasites (for example, Schisostoma mansoni), the complete life cycle can

be maintained in the laboratory (Valentim et al., 2013)). However, there are no analogous

methods for in vitro maintenance, or for doing controlled crosses or tracking the response

of an individual worm to a drug in O. volvulus. Thus, validating a hypothesis for

mechanism of SOR using the embryogram data is extremely challenging.

The work of Awadzi et al. was controversial and alternative explanations for the variation

in the timing and scale of microfilarial reappearance in the skin were proposed by several

authors. In response, Churcher et al. (2009) modelled the rate at which O. volvulus

microfilariae repopulate the skin, starting with the observation that the timing of

microfilarial reappearance in the skin following ivermectin treatment does indeed vary

considerably between hosts. Churcher et al. suggested that some of the variability may be

due to the limitations of the skin snip technique in estimating the true host's microfilarial

load (for example, small area of skin sampled and low number of samples per individual).

Using an individual-based onchocerciasis mathematical model, they quantified the
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variability in the post-treatment skin microfilarial repopulation rates among hosts (Figure

1.2) and used the model to generate testable hypotheses to identify whether the unusual

rates of skin repopulation by microfilariae was a result of low treatment coverage or

decreased ivermectin efficacy. The modelling established that distribution of microfilarial

repopulation rates (that is, variation in microfilariae repopulation rates) was primarily

affected by the limitations of the skin-snipping method for estimating parasite load, but

that time of reappearance was also a sensitive indicator of emerging SOR to ivermectin in

O. volvulus (Churcher et al., 2009) rather than treatment coverage, that is, modelling

support SOR as a likely contributor to variation in the timing of skin repopulation. It is

also worth noting that the best predictor of post-treatment microfilariae counts is the

count at the time of treatment, that is, a person with a high pre-treatment count will have

faster recovery of microfilariae in the skin to a higher level than a person with a low

pre-treatment count, and that the skin microfilarial count is the product of a population of

adult worms in an individual, that is, it is not a direct measure of individual worm fertility.
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Figure 1.2. The variability in post treatment microfilarial repopulation rates among

hosts after (A) their first ivermectin treatment (sample size = 1369) and (B) their

first four rounds of ivermectin treatment (sample size = 534). Figure adapted from

Churcher et al. (2009).
Individual lines represented the modelled dynamics for each host in the dataset. Lines in both

panels are coloured according to the cumulative distribution of responses seen at year 1: lowest

50% (dark blue), 50–60% (dark green), 60–70% (light blue), 70–80% (light green), 80–90%

(yellow), and 90–100% (red). The solid thick black line shows the arithmetic mean of all the

individual responses (Churcher et al., 2009). The figure indicates that the microfilariae load in the

skin decreased at a high rate but suddenly increased and repopulated immediately.
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A follow-up study by Osei-Atweneboana et al. (2011) investigated the reproductive

response of female worms to multiple treatments with ivermectin and reported evidence

that adult female worms were non-responsive or resistant to the anti-fecundity effects of

multiple treatments with ivermectin. They conducted this study in 10 endemic

communities in Ghana and classified the adult female worms into three categories based

on embryogram phenotype and the rate of skin microfilariae repopulation data. The

embryograms were taken at day 90 post-infection. The first category (good responders)

had the expected adult female response to ivermectin; that is, there was complete halt of

embryogenesis with barely any skin microfilariae repopulation. The second category

(moderate responders) had partial adult female response to ivermectin because there are

adult worms with microfilariae (and other stages) present in utero at day 90 when all

worms should have no viable embryos, and therefore, there existed low to moderate skin

microfilariae repopulation. The third category (poor responders) have large numbers of

live embryos and microfilariae at day 90 because the adult female worms retained their

ability to produce microfilariae and the rate of skin microfilariae repopulation was very

high (Osei-Atweneboana et al., 2011). The observation of this range of ivermectin

response in O. volvulus led to the hypothesis that the response phenotype has a genetic

basis, and provoked further research in the genetic profiles of the individual worms

obtained from categories of phenotypes (good responders, moderate responders, and poor

responders) to link the phenotypic poor responses to ivermectin treatment with parasite

molecular genetic markers to confirm drug resistance.

In response to this, further research was requested to understand the impact of emerging

resistance on control/elimination objectives, to quantify the probability of resistance

emerging and spreading within and across geographical areas, and to develop tools and

strategies for detecting resistance, and develop strategies to reduce the probability of

emerging resistance and to mitigate its impact (World Health Organization and UNICEF,

2018).

First, there is a need to understand what is informing variation between ivermectin

resistant and susceptible populations (that is, how did sub-optimal responder phenotype

come about). Maybe it was because of selection due to drug use or of standing genetic

variation in the original population (That is, how the population was made up by itself).

Although there has been some debate regarding the existence of SOR to ivermectin in O.

volvulus (Burnham, 2007; Cupp et al. 2007; Mackenzie, 2007; Remme et al. 2007; Hotez,
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2007), modelling of SOR, using individual-patient data on the rate of skin repopulation by

microfilariae following treatment in communities with different histories of control

(Frempong et al. 2016; Churcher et al. 2009) has provided support for the conclusion that

the early reappearance of microfilariae in the skin that defines SOR is most likely due to a

decreased susceptibility of the parasite to ivermectin's anti-fecundity effect.

However, from the first genome-wide analysis of ivermectin response by O. volvulus,

Doyle et al. (2017) suggested that genetic drift had created genetic differentiation between

different O. volvulus populations before initiation of ivermectin treatment. They observed

a strong, genome-wide genetic differentiation in the NLT populations (worms exposed to

a single experimentally controlled round of ivermectin treatment) between Ghana and

Cameroon (two endemic foci in Africa). This suggested that the standing genetic variation

from which SOR was selected varied significantly between Ghana and Cameroon and

may be the reason why there was no consonance between Ghana SOR and Cameroon

SOR populations. They also observed strong population structure between Cameroon and

Ghana worms which may be because the O. volvulus lifecycle was characterised by

significant population (and mostly density-dependent) bottlenecks at each transmission

event. At such, only a minute percentage of microfilariae under the skin of human hosts

are ingested by blackflies, and very few resulting infective larvae are subsequently

transmitted to humans and establish as adult worms. Such repeated bottleneck would

increase the severity of genetic drift by strongly enhancing the stochastic processes that

generate genetic diversity between O. volvulus populations, independent of ivermectin

treatment. This further, implies that subsequent soft selection of SOR genotypes observed

from these genetically distinct populations, from their study, led to SOR populations that

are genetically distinct despite their phenotypic similarity.

For selection to occur, there is a need for sufficient generations to have elapsed for the

good responder worms to die and be replaced preferentially by SOR worms. This is very

unlikely to have happened in O. volvulus since 1988 (when CDTI started), even if there

were strong pressure from it. Rather the selection pressure observed were almost certainly

weak as identified in the study of ivermectin response by O. volvulus by Doyle et al.

(2017) and Hedtke et al. (2017). When compared with other gastrointestinal nematodes

where ivermectin is routinely used (mostly every 3 months), ivermectin is being used

annually in O. volvulus and one of its roles is to cause temporary infertility in the adult

worm for a period of 3 – 6 months (Awadzi et al., 2004c, Duke et al., 1991) (which will
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increase generation time in O. volvulus). Hence, selection pressure would be more intense

in other gastrointestinal nematodes when compared to O. volvulus. In other

gastrointestinal nematodes, phenotype measure is qualitative (for example, survival vs

death), while it is quantitative in O. volvulus (that is, resistant and susceptible: about how

much microfilariae are being produced by adult over time) (Azis, 1982). Further to this,

there was a huge population bottleneck between 5000-8000 years ago, as a result of the

host switch of O. volvulus into humans, which left a significant linkage disequilibrium in

the genome (this is about 2000 or 3000 generations of O. volvulus). The blocks of LD

observed in chapter three of this study indicate the case of bottlenecks. Selection due to

drug would not leave such a strong LD in the genome. This strongly suggests that there

have been other forms of selection (that is not due to ivermectin, but simply as part of the

worms’ evolutionary history) that left signatures of LD.

1.2.Candidate gene approaches.

Initial studies took a candidate gene approach to investigate the genetic basis of SOR in

O. volvulus. Analyses were carried out on genes chosen based on specific hypotheses

concerning mechanisms of resistance to anthelmintic compounds (Ardelli et al., 2006,

Ardelli et al., 2005, Bourguinat et al., 2008, Nana-Djeunga et al., 2012,

Osei-Atweneboana et al., 2012). As reviewed by Doyle and Cotton (2019), a candidate

gene approach requires an understanding of the biological effects of the drug in question

and of the physiological response of the parasite to it. Genes encoding proteins that are

involved in these processes become candidates for analysis. An investigation of genetic

and biochemical differences between susceptible and resistant parasites is then undertaken

to obtain circumstantial evidence for a role for the pharmacologically relevant proteins in

conferring resistance. Further functional studies are carried out to prove a causal

relationship between a mutation in the candidate gene and the resistance phenotype

(Gilleard and Beech, 2007).

In previous helminth studies, it was hypothesized that with intensive use of ivermectin

and drug selection response, mutation can occur in several candidates ivermectin response

genes (chosen for analysis based on specific hypotheses concerning mechanisms of

resistance to the acute effects of ivermectin in them). For example, the P-glycoprotein

protein encoding genes and, in the genes, encoding glutamate-gated or ^-aminobutyric

acid (GABA)-gated chloride ions channels, leading to ivermectin resistance in both

14



Chapter One

intestinal helminths and arthropods (Currie, et al. 2004; Griffin, et al. 2005; Prichard,

2005). Xu, et al. (1998) discovered that the restriction patterns of P-glycoprotein

homologues from Haemonchus contortus differs between ivermectin-sensitive and

ivermectin-resistant strains, with its increased expression in the resistant strains. In other

parasitic nematodes, such as Haemonchus contortus and Cooperia oncophora, and in

free-living nematodes such as Caenorhabditis elegans, ivermectin resistance selected for

specific alleles of membrane transport genes such as P-glycoprotein (Blackhall et al.,

1998, Le Jambre et al., 1999, Xu et al., 1998), beta-tubulin, and glutamate-gated chloride

channel genes (Blackhall et al., 1998, Dent et al., 2000). Allele frequency change in those

candidates ivermectin response genes has also been demonstrated in O. volvulus

populations when sampled before and after several rounds of ivermectin treatment

(Ardelli et al., 2006, Ardelli et al., 2005, Bourguinat et al., 2008, Eng and Prichard, 2005,

Huang and Prichard, 1999, Nana-Djeunga et al., 2012, Osei-Atweneboana et al., 2012).

For example, a comparison of the genetic polymorphisms in populations of the worms

from ivermectin treated and untreated patients gave evidence of genetic selection in them

(Eng and Prichard, 2005). This selection was found to occur in ABC transporter gene

which functions as an energy-dependent efflux pump, similar to P-glycoprotein (Ardelli,

et al. 2006). Huang and Prichard (1999) also discovered that the restriction patterns of

P-glycoprotein homologue cloned from O. volvulus was expressed differently between the

larval and adult stages, and further studies suggested high selection pressure on that site

of the parasite and might be consistent with ivermectin resistance at that point

(Bermadette, et al., 2005; Eng and Prichard, 2005). Also, another study on tubulin gene

gave an evidence of genetic selection on the gene (Eng and Prichard, 2005). However, the

relationship between the genetic polymorphisms and suboptimal clinical response to

ivermectin was not yet determined and whether those genetic changes are an indicator of

developing ivermectin resistance or not (Bernadette, et al. 2005; Gomez-Priego, et al.

2005; LeAnne, 2006).

Eng and Prichard (2005), while comparing the genetic polymorphisms in 16 genes (six

genes which were previously suggested in other nematodes as having possible association

with ivermectin resistance and ten genes which were included as control genes) in

populations of the worms from ivermectin treated and untreated patients, presented

evidence of selection in an ABC transporter gene which functions as an energy-dependent

efflux pump, similar to P-glycoprotein, and β-tubulin (Eng and Prichard, 2005).
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Bourguinat et al. (2007) suggested in their study on the genetic selection of low fertile O.

volvulus by ivermectin treatment, that ivermectin-resistance selection in the parasite is

associated with a lower reproductive rate in the female parasites. In the study, the genetic

changes in parasites obtained from the same person prior to and after several levels of

ivermectin exposure (that is, after administering variation in the dose of ivermectin

treatment) were monitored, and they observed different genotype frequencies in the

following genes: β-tubulin, heat shock protein 60, and acidic ribosomal protein

(Bourguinat et al., 2007). Later, in 2008, they again argued that P-glycoprotein-like

protein is a possible genetic marker for SOR selection in the parasite because three of the

six polymorphic positions found in the P-glycoprotein-like protein amplicon showed

significant selection after 4 times per annum treatment with ivermectin (in a total of 13

ivermectin treatments) in female worms (Bourguinat et al., 2008). Similarly,

Nana-Djeunga et al. investigated the four single nucleotide polymorphisms (SNPs)

occurring in the β-tubulin gene of O. volvulus adult worms collected from the same

individuals before and after three years of ivermectin exposure and observed changes in

genotype frequencies in the O. volvulus β-tubulin gene associated with ivermectin

treatments (Nana-Djeunga et al., 2012). These studies have focused on the role of

candidate genes using simplistic models of single gene selection. However, evidence has

suggested that the evolution of macrocyclic lactone (ML) resistance in nematodes is more

complex and that there are several, perhaps many, different genetic mechanisms for

selection involved (that is, soft selection on a polygenic trait is acting on ML resistance in

nematodes, including O. volvulus) (Bourguinat et al., 2015, Choi et al., 2017, Doyle et al.,

2017, Hedtke et al., 2017). As a result, genome-wide association studies (GWAS)

could replace candidate gene approaches in studies regarding genetics of drug resistance

in helminth parasites (Doyle et al., 2017, Doyle and Cotton, 2019).

1.3.Soft selection and difficulties associated with candidate gene

approaches and the advantage of GWAS.

Candidate gene approaches face a number of challenges, particularly in parasitic

nematodes. The challenges of using candidate gene approach in O. volvulus are that (1)

functional validation steps cannot be done as detailed in Geary (2005). Functional

validation is difficult in parasitic nematodes regardless of how the candidate gene came to

be proposed. The strength of GWAS is that it is unbiased, and that, provided one takes
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appropriate steps to correct for population structure and multiple testing, it is less likely to

result in spurious associations that are frequently observed in single gene candidate

associations (which rarely take population structure or multiple testing into account), and

(2) because the evidence suggests soft selection on a polygenic trait is acting on ML

resistance in nematodes, including O. volvulus (Doyle et al., 2017, Doyle and Cotton,

2019) and GWAS gets around the problem of the candidate gene approach in terms of

being able to detect and describe multiple genes involved in soft selection and QTLs

(Gilleard, 2006). Single candidate gene approaches (or even those that may allow for two

or three genes) assume hard selection whereas GWAS makes no assumption as to the

mode of selection, although selection mode can impact GWAS results

GWAS has been used extensively to discover potential mechanisms and pathways that

underlie diseases and drug responses (Bourguinat et al., 2015, Choi et al., 2017, Doyle et

al., 2017, Gudbjartsson et al., 2015, Manolio, 2010, Manolio et al., 2008). If the trait of

interest is a drug resistance, then the locus/loci involved should be under selection in

populations exposed to drug. In principle, there are two ways in which selection could

bring about changes in allele frequencies at those loci. GWAS offers a method by which

those loci can be discovered without any information or prior assumptions about

mechanisms. Although, caution is needed. For example, pleiotropic interactions can

likely induce false positive signals in GWAS. In the wild, this is certainly the case if an

individual fitness is affected.

First, in a “hard” selective sweep, a rare beneficial mutation or resistance-conferring

allele arises (usually, during the period of initial application of the selective pressure, for

example, a drug) and increases in frequency rapidly, thereby drastically reducing genetic

variation in the population (Smith and Haigh, 1974). In a hard sweep, the lineages in the

sample that carry the resistance-conferring allele (or mutation) coalesce more recently

than the onset of positive selection, that is, the point in time when it first became

advantageous to carry the allele (or at the time of drug exposure). Figure 1.3A shows an

example of the genealogy of resistance-conferring alleles at a selected site after a typical

hard sweep. For example, if ivermectin response is a result of hard selection, all

resistance-conferring alleles in the sample will arise from a single mutation (depicted by x

in the figure) and coalesce after the onset of positive selection (drug exposure) (Figure

1.3A); that is, they will be monophyletic (Messer and Petrov, 2013).
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Figure 1.3. Definition of hard and soft selective sweeps. Image adapted from Messer

and Petrov (2013).

(A) In a hard sweep, all adaptive alleles in the sample arise from a single mutation (depicted by x)

and coalesce after the onset of positive selection (dotted line). Note that even if the mutation had

arisen prior to the onset of positive selection and was present as standing genetic variation, this

would still be considered a hard sweep if only a single lineage is ultimately present in the sample.

(B) In a soft sweep from recurrent de novo mutations, the adaptive alleles in the sample arose

from at least two independent mutation events after the onset of positive selection and the lineages

coalescence prior to the onset of positive selection. (C) In a soft sweep from the standing genetic

variation, adaptive alleles were already present at the onset of positive selection. The different

lineages in a population sample can originate from independent mutation events (i) or from a

single mutation that reached some frequency prior to the onset of positive selection, such that

several copies present at that time then swept through the population (ii). In this latter case, the

population genetic signatures of the sweep will depend on the time τ between coalescence and

onset of positive selection. If τ is short, the sweep will appear like a hard sweep, whereas when τ

is large, it will be like a soft sweep from several de novo mutations (Messer and Petrov, 2013).
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Moreover, since it takes several generations to emerge, recombination is rare around the

allele under selection. The surrounding region in the genome will be in strong linkage

disequilibrium (LD) with the resistance-conferring allele. Linkage disequilibrium refers to

the non-random association of alleles at two or more loci in a general population (Bates,

2005, Gusella et al., 1983, Qanbari, 2020). When loci are in LD, the frequency of

association of alleles is higher or lower than what would be expected if the loci were

independent and associated randomly (Slatkin, 2008). Aside selection or drift, LD

between two alleles is determined by two major factors: the physical distance between the

two loci on a chromosome (linkage) and the recombination rate in the region included

between the two loci (Goode, 2011, Gusella et al., 1983, Qanbari et al., 2010).

Recombination erodes LD over generations, but the rate at which that occurs depends on

three parameters: how many generations since the mutation arose or the hard selection

was applied, how far away a site is from the locus under selection, and how large the

population is. Linkage disequilibrium is maintained for many generations between alleles

close to the locus under selection, but for fewer generations between alleles much further

away from the locus under selection. The number of generations is the product of time

and population size (Messer and Petrov, 2013). Therefore, in the case of O. volvulus,

selection of resistance-conferring alleles at the resistance locus would cause regions of

strong LD around resistance-conferring alleles or increased genetic differentiation

(measured, for example, by Wright’s FST statistic) between GR and SOR worms. That

strong signal of genetic differentiation, with the same allele in the same “hitchhiking”

surrounding genomic environment, will be present in all survivors of treatment in that

population (SOR in this case) and their progeny provided they contain the resistance

conferring allele (Gilleard and Beech, 2007, Stephan et al., 2006).

A typical example of a hard selective sweep was observed in the human population in the

independent selection in Europe and Asia for persistence of lactase expression in adults

(Tishkoff et al., 2007). Lactase is the enzyme that catalyses the first step in lactose

metabolism, and, in most mammals, expression of lactase is much reduced or absent in

adults, resulting in lactose intolerance. The evolution of lactase expression in adults

followed the domestication of dairy animals and inclusion of dairy products in the human

diet. The same changes in lactase expression evolved independently in all human

populations that utilise dairy products, leaving strong signatures of hard selection in the

genomic region surrounding the lactase gene in the genomes of those populations
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(Tishkoff et al., 2007). Other well-known examples include the evolution of pesticide

resistance in insects (Daborn et al., 2001), colour patterns in beach mice (Hoekstra et al.,

2006), and freshwater adaptation in sticklebacks (Colosimo et al., 2005).

Second, a “soft” selection sweep: this describes the situation where multiple

resistance-conferring alleles at the same locus sweep through the population at the same

time (Hermisson and Pennings, 2005). Soft sweeps usually arise in two ways as

demonstrated in Figure 1.3 B&C: (a) the mutations can arise de novo after the onset of

positive selection (that is, the point in time when it first became advantageous to carry the

allele or at the time of drug exposure) (Figure 1.3B) or (b) the mutations were already

present previously as standing genetic variation (Figure 1.3C, top row). Finally, a

situation where the resistance-conferring allele arose only once but reached some

frequency prior to the onset of positive selection (via genetic drift, for example) and

several copies then swept through the population, is still considered a soft sweep if the

lineages coalesce prior to the onset of positive selection (Figure 1.3C, bottom row)

(Messer and Petrov, 2013). In a soft sweep, lineages collapse into more than one cluster

and several haplotypes can be frequent in the population at the adaptive locus. Such a

mutation may be present on several genomic backgrounds so that when it rapidly

increases in frequency, it does not erase all genetic variation in the population (Hermisson

and Pennings, 2005). Diversity is thus not necessarily reduced and deviations in the

frequency distributions of neighbouring neutral polymorphisms are typically very weak

compared to hard sweeps.

In the case of O. volvulus and ivermectin response, pre-existing alleles (as a result of

mutations) that have been present for a significant period prior to ivermectin exposure are

proposed to have accumulated and undergone recombination to generate a pool of

haplotypes (or QTLs) that all contain the resistance-conferring mutations (Gilleard,

2006). This feature of a QTL that is produced by soft selection means that the alleles

under selection generally occur on many different haplotypes, or genetic backgrounds, so

there is usually only weak, and variable, LD between the allele under selection and its

immediate genomic neighbourhood.

Soft selective sweeps may be more common in eukaryotes than previously recognized,

particularly for organisms with large census population sizes (Messer and Petrov, 2013).

For example, resistance to organophosphate insecticides in Drosophila melanogaster and
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Lucilia cuprina involve multiple independent resistance alleles at the acetylcholinesterase

and esterase loci, respectively (Claudianos et al., 1999, Daborn and Le Goff, 2004). Soft

sweeps have been documented in sticklebacks (Feulner et al., 2013) and beach mice

(Domingues et al., 2012). In humans, several cases of selection from standing genomic

variation have been reported (Bhatia et al., 2011, Peter et al., 2012, Seixas et al., 2012).

This pattern of selection is also evident in the GWAS of anthelmintic resistance in

helminths, including O. volvulus, Dirofilaria immitis and Teledorsagia circumcincta

(Bourguinat et al., 2015, Choi et al., 2017, Doyle et al., 2017, Doyle and Cotton, 2019,

Gilleard and Beech, 2007, Hedtke et al., 2017). For example, Doyle et al. (2017) reported

that soft selective sweeps contribute to loss of drug sensitivity in O. volvulus and that

ivermectin response does not involve a single mutational event that subsequently rapidly

sweeps through all parasite populations. Instead, it probably involves a mixture of

pre-existing mutations, recurrent recent mutations, and migration of resistance alleles

between populations (Doyle and Cotton, 2019, Gilleard, 2006). Ivermectin resistance is a

polygenic, quantitative trait. A good feature of a quantitative trait is that the same

phenotype (or trait value) can be achieved by the additive contributions of different alleles

at different loci (QTL), such that two individuals within a population may show the same

trait value (degree of anthelmintic resistance, phenotype) but have different genotypes

(Doyle et al., 2017, Doyle and Cotton, 2019). Anthelmintic resistance can arise because

of both modes of selection (hard and soft), and with appropriate analysis, the genetic

characteristics of both selections could be differentiated from each other (Redman et al.,

2015).

In the context of onchocerciasis elimination, Grant (2000) proposed that selection for

SOR of adult worms to ivermectin (that is, an early return to fertility by adult female

worms following a single treatment) might be more serious for O. volvulus control than

selection for microfilariae resistance (that is, a failure to clear microfilariae from the skin

at the time of treatment), and thus adult female worms can drive the potential for SOR

and should be the focus of study when considering the potential for SOR to ivermectin

(Grant, 2000).

1.4.Genome-wide Association Study (GWAS).

A Genome Wide Association Study (GWAS) is the examination of many genetic variants

distributed over the entire genome, using high-throughput genotyping technologies of
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hundreds of thousands of SNPs, across different individuals to determine if any variant is

statistically associated with a trait of interest such as drug response (Pearson and Manolio,

2008, Spencer et al., 2009). There are several alternative approaches to GWAS. First and

most common is a case-control study design: loci in the genome are interrogated for

association with a trait using SNPs by comparing allele frequencies in case (that is,

individuals displaying the phenotype of interest) and controls (individuals drawn from the

same population that do not display the phenotype (Manolio, 2010)). A second approach

is a cohort design, in which extensive baseline information for many individuals is

observed to assess the incidence of disease subgroups defined by genetic variants

(Weedon et al., 2007). A third option is the trio design in which affected case participants

and their parents are genotyped, and the frequency with which an allele is transmitted to

the affected offspring from heterozygous parents is then estimated (Connolly and Heron,

2015). Last is multistage design, in which genome-wide scans are performed on an initial

group of case and control participants and then a smaller number of associated SNPs is

replicated in a second or third group of case and control participants (Hirschhorn and

Daly, 2005). The non-hypothesis-propelled characteristics of GWAS makes it a step

beyond candidate gene studies (Pearson and Manolio, 2008). Due to the vast number of

tests of association required (at least one per SNP) in GWAS and stringent statistically

significant thresholds, there is a need to work with a very large number of samples

(Hunter and Kraft, 2007). Unfortunately, the issue of generating large sample size is a

typical problem in O. volvulus.

GWAS have proven successful in identifying variety of variants associated with common

and complex diseases (Hindorff et al., 2009). For example, the findings from large-scale

sequencing projects like the 1000 Genomes Project and the Exome Sequencing Project

(ESP) have given novel insight into deeper understanding of human genome diversity,

the structure and history of the human population and the tools to use in genetic discovery

(1000 Genomes Project Consortium, 2012, Fu et al., 2013, Tennessen et al., 2012). For

example, Gudbjartsson et al. shared the great insights gained from whole genome

sequencing of the Icelandic population. A “trio design” which used pedigrees of families

that were first identified in a cohort study of the whole population was implemented.

Twenty million SNPs and 1.5 million indels were observed. The density and frequency

spectra of sequence variants in relation to their functional annotation, gene position,

pathway and conservation score were described, and an excess of homozygosity and rare
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protein-coding variants were also revealed (Gudbjartsson et al., 2015). In addition,

Gudbjartsson et al. gave a comprehensive understanding of the basis of using imputation

to discover associations between variants in sequence and phenotypes because they were

able to impute variants in 104,220 individuals down to a minor allele frequency of 0.1%.

This study serves as an example for GWAS and because it demonstrates how GWAS can

discover causal relationships that would not be predicted by a candidate gene approach;

that is, GWAS is unbiased and facilitates discovery of novel mechanisms (Manolio, 2010,

Manolio et al., 2008).

GWAS, that is association study, and genome-wide scan of variation (that is FST analysis)

are both performed with genome-wide resolution but under different frameworks and

assumptions. GWAS is statistical test for association between a phenotype and SNP

one-at-a-time across the genome. The phenotype could be a binary or continuous trait. FST

is a measure of allele frequency differences, it could be one or a group of markers and two

or several populations, either across the genome or at some locations of the genome

(Holsinger and Weir, 2009). It is important to note that genome-wide scan is far from

perfect, especially when using limited population set, poorly defined phenotypes and

improving genomic resources. Both approaches are essential and needed to understand

how a drug works (candidate gene approach) and how selection for resistance emerges

under natural selection (QTL study) (Doyle and Cotton (2019).

1.5.Success of GWAS in helminths.

GWAS has helped in discovering genetic markers predictive for drug response

phenotypes, and in discovering plausible mechanisms that underpin variation in drug

response in helminths. For example, multiple loci have been identified as correlated with

ML resistance in multiple parasitic nematodes, including D. immitis (Bourguinat et al.,

2015) and T. circumcincta (Choi et al., 2017). Studies have indicated that loss of efficacy

(LOE) of MLs used as chemoprophylaxis for D. immitis infection in dogs has become

common in some locations in the USA (Blagburn et al., 2011, Bowman, 2012,

Hampshire, 2005, Pulaski et al., 2014). Bourginat et al. (2015) used GWAS to investigate

the loci that could be associated with the ML resistance phenotype in this parasite. They

compared the whole D. immitis genomes of the suspected (Loss Of Efficacy) and the

confirmed ML resistant isolates from a controlled efficacy study to the genomes of ML

susceptible heartworms. They concluded that ML resistance in D. immitis is a polygenic
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trait (that is, with many genes involved) as many loci showed highly significant

differences between pools of susceptible and LOE isolates of D. immitis (Bourguinat et

al., 2015). An interesting feature of this (and other) GWAS of ML LOE/SOR is that the

GWAS generally fail to detect candidate genes proposed in candidate gene association

studies. The discrepancy between the large number of candidate genes proposed and QTL

defined by GWAS has yet to be resolved. This simply points at the drawbacks of

candidate gene approach: Candidate genes usually come from screening assays that

identify the very receptor targeted by a molecule. It is not known how this mutation

provides additional fitness under the field conditions.

Similarly, to shed more light on the genetic architecture of multiple anthelmintic

resistance in parasitic nematodes, Choi et al. (2017) examined multidrug resistant T.

circumcincta, a major parasite of sheep, using a comprehensive whole-genome analysis.

A field-derived, multiresistant genotype of T. circumcincta was backcrossed into a

partially inbred susceptible genetic background (through repeated backcrossing and drug

selection), and genome-wide scans were conducted in the backcrossed progeny and

drug-selected second filial generation (F2) populations to identify the major genes

responsible for the multidrug resistance. Their findings identified several QTLs that

differentiate between the resistant and susceptible populations and may contribute to

variation in target site sensitivity, reduced target site expression, and increased drug efflux

(Choi et al., 2017). This reinforced the hypothesis that drug resistance in these parasites is

a multifactorial quantitative trait rather than a simple discrete Mendelian character. It is

interesting to note that the Choi et al. analysis of ML-resistance in T. circumcincta is the

only example to date of a candidate gene being validated independently by GWAS (the

Tcirc-pgp-9 gene). Possible causes for this discrepancy are discussed at length in Doyle

and Cotton (2019).

Another use of GWAS to discover genetic markers predictive for drug response

phenotypes in helminths is seen in the work from Tim Anderson’s lab on praziquantel

resistance in Schistosoma mansoni. Valentim et al. (2013) demonstrated how genome

sequence data can be leveraged for functional genomic analyses of a biomedically

important trait (drug resistance) in a neglected human helminth parasite. They combined

GWAS with genetic mapping and functional validation of candidate genes within QTL to

identify resistance loci and to determine the molecular basis for species-specific drug

action. Using crossed parental parasites differing approximately 500-fold in drug
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response, they determined drug sensitivity and marker segregation in clonally-derived F2s

and identified a single QTL (LOD=31) on chromosome 6. Using RNAi knockdown and

biochemical complementation assays, a sulfotransferase was identified as the causative

gene (but not the causative allele) and subsequently demonstrated independent origins of

loss-of-function mutations in field-derived and laboratory-selected resistant parasites

(Valentim et al., 2013). Studies on S. mansoni have an advantage over O. volvulus

research in that its complete life cycle can be maintained in the laboratory and clonal

expansion of larval parasites within the snail host is possible. This allows production of

thousands of genetically identical single sex parasites, making this organism well suited

to linkage mapping methods (Valentim et al., 2013).

Another important example in helminths where GWAS was used to identify novel causal

variants was the discovery of the mechanisms that gave rise to benzimidazoles (BZ)

resistance in the free-living nematode C. elegans. Hahnel et al. (2018) took an unbiased

genome-wide mapping approach in the free-living nematode species C. elegans to

identify the genetic underpinnings of natural resistance to albendazole (ABZ) (the

commonly used BZ). In concordance with the known mechanisms of BZ resistance in

parasites, they argued that most of the variation in ABZ resistance among wild C. elegans

strains was caused by variation in the β-tubulin gene ben-1. They further identified a

novel genomic region that is correlated with ABZ resistance in the C. elegans population

but independent of ben-1 and the other β-tubulin loci, suggesting that multiple

mechanisms underlie BZ resistance in C. elegans (Hahnel et al., 2018). Choi et al. in their

study on T. circumcincta, also included GWAS for BZ resistance, and showed that the

GWAS found the correct isotype-1 β-tubulin locus as the major determinant. Thus, the

known “candidate” for BZ resistance was confirmed by the GWAS (Choi et al., 2017).

Similarly, GWAS exposed different QTL underlying bleomycin (a medication used to

treat cancer) response variation in the recombinant strain of C. elegans other than the one

identified using linkage mapping approach, suggesting genetic complexity underlying the

bleomycin response phenotype in the worm (Brady et al., 2019). An advantage with C.

elegans is it serves as an excellent model for basic cellular and organismal processes

(Corsi et al., 2015) because of its well annotated reference genome (C. elegans

Sequencing Consortium*, 1998) and its broad genomic diversity across global

populations (Cook et al., 2017).
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In the first study to use genome-wide scan of variation using FST in O. volvulus, Doyle et

al. (2017) gave insights into the genetic variation that significantly differentiated GR and

SOR in adult female worms from Ghana and Cameroon using pooled next generation

sequence of worms that varied in ivermectin treatment history and response. They

proposed that ivermectin response is a polygenic quantitative trait in which similar

molecular pathways influence the extent of ivermectin response in the various parasite

populations, and not discrete genes. Doyle et al. specified that the variants that

differentiated GR and SOR parasites are gathered in about 31 QTLs and contain genes in

molecular pathways associated with neurotransmission, development, and stress

responses, although additional studies are necessary to validate the putative QTLs

identified. They also noted that previously proposed candidate ivermectin SOR genes

were largely absent in the regions identified as QTLs differentiating GR and SOR worms

(Doyle et al., 2017). An important key finding of this study is that the QTLs were

different between Ghana and Cameroon. Thus, this suggests that the genetics of SOR are

different between different populations (as would be expected for soft selection on a

quantitative trait from standing genetic variation), and that if SOR genetics are going to

be studied, then association studies will need to be done on each population. Further, the

study lends credence to the hypothesis that ivermectin response in O. volvulus is a

multi-gene trait under soft selection. However, the study of Doyle et al. was based on

limited number of low sequence coverage pool-seq worms, which resulted into stochastic

variation in allele detection in the worms. Additional GWAS would need to be done on

individual worms and multiple populations, raising the challenges of sequencing cost

when studying the genetics of SOR in O. volvulus.

1.6.Problems with implementing GWAS or genome-wide scans in O.

volvulus.

The main “problem” with genome-wide scan in O. volvulus is sample size, and there are

several factors that all contribute to the need for large sample size. One important factor is

that fertility of a single worm cannot be tracked. That is, to quantify a worm’s

fertility/fecundity, the worm must be surgically removed and dissected to examine the

uteri. This is a notable caveat because it is connected to the challenge of working with this

parasite in vitro compared to some other helminths (for example, the complete life cycle

of S. mansoni can be maintained in the laboratory and clonal expansion of larval parasites
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within the snail host is possible (Valentim et al., 2013)). In contrast, in O. volvulus there is

no mechanism for doing controlled crosses or for tracking the response of an individual to

a drug. Thus, making the validation of SOR mechanism in O. volvulus very challenging.

A related and equally important caveat is that nodulectomy, the surgical removal of

papular nodules surrounding adult worms from the infected person (Richards et al., 2000),

is random with respect to the worm(s) that are removed. That is, there is no way to ensure

that the worms that are phenotyped are responsible for the microfilariae in the skin. This

suggests that SOR worms may not be included in the sample, so there is the need for a

larger sample.

Due to population structure, genome-wide scan needs to be performed on individual

worms by populations, which is another major caveat. The first published genome-wide

scan of ivermectin response in O. volvulus using pooled worms noted that Cameroon

worms were different from Ghana, and as a result, the genetics of SOR are different

between them (Doyle et al., 2017). Thus, to study SOR genetics the genome-wide scan

should be done on single populations following first testing for population structure and

assigning individual worms to the correct population. Pool-seq is more economical but

leads to uncertainty in estimating allele frequency (and loss of haplotype information),

hence the need for a bigger sample. In addition, sequencing single worms instead of

pooled worms would increase statistical robustness for each population under study but

moving from pool sequencing to single worm sequencing is also limited by the cost of

whole genome sequencing of individual worms.

Hedtke et al. (2017) attempted to solve this challenge by performing additional

genome-wide scan on genome sequences of 48 individual phenotyped O. volvulus form

Ghana using Wright’s F statistics (FST) to identify regions with strong association with

SOR phenotype. The study revealed several QTLs distinguishing GR and SOR worms

from Ghana, but there is a need for a follow up study with larger sample size for

validation of the observed QTLs. Unfortunately, additional worms phenotyped from the

same population did not have sufficient quality from the genomic DNA extractions and

thus additional whole genome sequencing of single worms for genome-wide scan was not

possible. DNA quality is clearly an issue that limits sample size. An important practical

constraint on moving from pool to single worm sequencing is the frequently low yield

and/or poor quality of genomic DNA from adult worms. It is not clear which factors
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contribute to this poor quality, but they probably include the need to first remove nodules

from infected people under field conditions, transport and store the nodules while

maintaining a cold chain, digest nodules with collagenase to release the adult worms, and

only then preparing genomic DNA. The yield of genomic DNA is low and variable, as is

the quality. There is also a variable degree of host (human) DNA contamination that

compromises sequencing. An alternative approach would be to validate the putative QTLs

using PCR amplification of targeted regions, which is less sensitive to input DNA

quantity and quality.

Another caveat is that GWAS requires a vast number of association tests (at least one

per SNP) and stringent statistical thresholds to confidently match a genotype with

phenotype. And GWAS power also depends on LD between markers and the true QTL.

This requires a large number of samples (Hunter and Kraft, 2007, Spencer et al., 2009). In

O. volvulus, increasing the sample size to compensate for weak LD between a marker and

a causative QTL is impractical because of the overall lack of good quality genomic DNA,

the cost of genomic sequencing and uneven genome coverage of those worms already

sequenced, all of which limit the number of samples available for GWAS (Doyle and

Cotton, 2019, Hedtke et al., 2019).

Whole genome sequencing and genotyping of all the identified variants in the genome is

almost certainly impractical. However, because the genotypes at nearby markers are

usually correlated (that is, they are in LD), it may be possible to scan the genome using a

much smaller marker set with only a modest loss of power to detect selection while

minimising the amount and quality of DNA that is required. More importantly, the power

of a relatively small (compared to the whole genome) group of markers to detect selection

can be augmented significantly using methods that predict the genotype at

un-typed/missing loci from a set of reference genotypes (known as a ‘reference panel’) by

imputation (Nothnagel et al., 2009). To design such studies, it is necessary to have a

detailed understanding of the structure and extent of LD across the genome, both to

choose suitable reference and genotyping marker sets and to design appropriate methods

of statistical analysis (Li et al., 2009).

The development of a complete reference genome of O. volvulus opened the door for my

study which explored various methodologies to improve the problems facing GWAS of

ivermectin response. Even though the set of methodologies employed in this thesis did

28



Chapter One

not solve the problem of lack of statistical power, it has helped in improving the O.

volvulus reference genome by providing information on the distribution of variation

across the genome and the LD interval between an observed QTL and the surrounding

SNPs as we move along the chromosome. This will aid in pinning down the location of

the causative SNPs faster, understand the mechanism of SOR in the parasite and

eventually aid in achieving the timely elimination of onchocerciasis.

1.7.Linkage Disequilibrium (LD).

As mentioned earlier, QTLs that are associated with drug response have been identified in

O. volvulus (Doyle et al., 2017, Hedtke et al., 2017) and association mapping is the most

common approach to mapping QTLs that takes advantage of the historic LD to connect

phenotypes to genotypes. However, the design and the success of this study depends on a

detailed description of the LD across the organism’s genome (reviewed in Goddard and

Hayes, 2009).

All GWAS rely on LD between genetic markers that differ between phenotypic class and

the loci that are under selection. Selection is not the only mechanism for LD; for example,

admixing genetically distinct populations through migration creates association between

two loci with different allele frequencies even if they are unlinked. LD can also arise due

to population stratification and cryptic relationships within a population that result in

correlated allelic frequencies (reviewed in Hellwege et al., 2017). Factors, such as

inversion, that prevent alleles of genes from undergoing recombination through a

chromosomal abnormality also causes LD. Organisms that undergo a high level of

inbreeding, as through self-fertilization, may also display significant LD, owing to the

reduced opportunities for recombination (Hartl and Clark, 2007).

Information about the genome-wide distribution and extent of LD is critical for:

1. Adjusting estimates of statistical power in GWAS, in which an assayed

polymorphism may not itself be contributing to the phenotype under study but is

in LD with the causal polymorphism (Goode, 2011).

2. Selecting markers to locate QTLs in a GWAS (Carlson et al., 2004).

3. Estimating how many markers will be needed to achieve acceptable power in

genome-wide studies (Meadows et al., 2008); for example, if LD were extensive,

the number of markers needed for genome-wide test of association will be
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reduced, with low probability of missing the association (International HapMap

Consortium, 2005).

4. Designing statistical methods of analysis that make optimal use of the data such as

genotype imputation (Wall and Pritchard, 2003a).

5. Studying the evolutionary demographics of a population (García-Gámez et al.,

2012, Pavlidis and Alachiotis, 2017); for example, LD can be used to infer

changes in a population’s effective size (Ne) through generations (Hill, 1981,

Sved, 1971). Ne is an important population parameter which helps to explain how

populations evolved and expanded, and therefore needs to be incorporated into

studies about the genetic architecture underlying complex traits (Reich and

Lander, 2001). Populations with smaller Ne have experienced more genetic drift

than larger ones, and genetic drift causes LD between alleles at independently

segregating loci at a rate inversely proportional to Ne (Wang, 2005). In the same

vein, LD is a function of Ne in Sved’s model given that the inter-loci

recombination fractions are available (that is, Ne and the recombination rate are

used to predict LD) (Sved, 1971).

6. Tracing selective sweeps (Biswas and Akey, 2006, Stephan et al., 2006). The

signatures of genomic regions under positive selection can be identified by

studying the pattern of LD that emerges between SNPs in the vicinity of the target

site for positive selection (Pavlidis and Alachiotis, 2017) (Figure 1.3). Upon

fixation of the beneficial mutation, elevated levels of LD emerge on each side of

the selected site. The high LD levels on the different sides of the selected locus are

because a single recombination event allows existing polymorphisms on the same

side of the sweep to escape the sweep. On the other hand, polymorphisms that

reside on different sides of the selected locus need a minimum of two

recombination events to escape the sweep (Messer and Petrov, 2013, Pavlidis and

Alachiotis, 2017). Given that recombination events are independent, the level of

LD between SNPs that are located on different sides of the positively selected

mutation decreases (Pavlidis and Alachiotis, 2017, Doyle and Cotton, 2019).

LD is essential in association studies in which variants can be detected through the

presence of association at nearby sites (Wall and Pritchard, 2003b). If most affected

individuals in a population share the same mutant allele at a causative locus, it is possible
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to narrow the genetic interval around the locus by detecting disequilibrium between

nearby markers and the disease locus (Altshuler et al. 2008). This approach makes use of

the many opportunities for crossovers between markers and the locus during the many

generations since the first appearance of the mutation. As a result, there has been a

resurgence of interest in LD, owing largely to the belief that association studies offer

substantially greater power for mapping common disease genes than do traditional

linkage studies, and that LD can offer a shortcut to GWAS as it allows identifying genetic

markers that tag the actual causal variants to complex human diseases (Monteiro et al.,

2016).

The two most used measures to evaluate LD, for bi-allelic markers, are r2 and D’ (Hill

and Robertson, 1968). D′, as suggested by Lewontin and Kojima, is a normalized D

calculated by dividing D by its maximum possible value, given the allele frequencies at

the two loci (Lewontin and Kojima, 1960). As a result, complete LD, when D′ = 1, occurs

if, and only if, two SNPs have not been separated by recombination (or recurrent mutation

or gene conversion) during the history of the sample. Values of D′ < 1 indicate that

ancestral LD has been disrupted. However, the relative magnitude of values of D′ < 1 has

no clear interpretation and therefore should be avoided as a measure of LD, especially D’

values between 0.3 and 0.7 (Clark et al., 1998, Weiss and Clark, 2002).

LD has been widely studied in various domestic animal species (Khanyile et al., 2015,

Kim and Kirkpatrick, 2009, Meadows et al., 2008, Muñoz et al., 2019, Prieur et al.,

2017), and in many plant genomes (Andrade et al., 2019, Flint-Garcia et al., 2003,

Remington et al., 2001). In nematodes, there have only been a few (very limited) analyses

of LD. These include a comprehensive analysis of genetic diversity and the construction

of a first filial generation (F1) genetic map in the parasitic helminth, H. contortus, carried

out by Doyle et al. (2018). Another study by Cutter et al. (2006) revealed high nucleotide

polymorphism and rapid decay of LD in wild populations of C. remanei (Cutter et al.,

2006). Evans and Anderson (2020) used linkage mapping on recombinants derived from a

cross between the laboratory strain (N2) and a wild strain (CB4856) to identify a single

overlapping QTL on chromosome V that influences the responses of C. elegans to eight

chemotherapeutic compounds. They discovered that the drug-response QTL overlapped

with an expression QTL hotspot that contains the gene scb-1, previously implicated in

bleomycin response in the parasite (Evans and Andersen, 2020). A limited study in O.

volvulus focused on LD between short regions within and to either side of the
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P-glycoprotein gene by (Ardelli et al., 2006). However, the extent of LD and haploblock

structure has not been characterized across an entire chromosome of the parasitic

nematode O. volvulus.

1.8.Genome imputation.

Sample size is a limiting factor in association studies (Spencer et al., 2009), but large

increases in sample size to compensate for weak LD between a marker and a causative

QTL can be impractical for many organisms. This is particularly true for studies that aim

to use whole genome sequencing to identify QTLs associated with ivermectin response in

O. volvulus because the limited funding and ethical concerns for surgical removal of

worms from people in affected African countries, the difficulty of assessment of the

definitive drug response related phenotype (embryogram counts of microfilariae in uteri),

and the cost of genomic sequencing all limit the number of samples available for genome

association studies (Doyle and Cotton, 2019, Hedtke et al., 2019).

In addition, whole genome sequencing or genotyping of all the identified variants in the

genome is expensive and almost certainly impractical for most helminth parasites of

humans, given the often-poor quality and low concentration of genomic DNA that can be

prepared from worms isolated under field conditions in developing countries. However,

as the genotypes at nearby markers are usually correlated (that is, they are in LD), it may

be possible to scan the genome using a much smaller marker set with only a modest loss

of power to detect selection while minimising the amount and quality of DNA that is

required. More importantly, the power of relatively small (compared to the whole

genome) number of markers to detect selection can be augmented significantly using

methods that predict the genotype at un-typed/missing loci from a set of reference

genotypes (known as the ‘reference panel’) by imputation (Nothnagel et al., 2009). To

design such studies, it is necessary to have a detailed understanding of the structure and

extent of LD across the genome, both to choose suitable reference and genotyping marker

sets and to design appropriate methods of statistical analysis (Li et al., 2009).

GWAS using genomic imputation can be accurate and well calibrated if suitable

reference and genotyping panels are available for the populations of interest. It has been

used convincingly in many GWAS of complex human diseases (Marchini and Howie,

2010, Marchini et al., 2007, VanRaden et al., 2013). Examples include the HapMap

project, where a reduced number of SNPs allowed the successful prediction of human
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leukocyte antigen (HLA) class I and II gene alleles (International HapMap 3 Consortium,

2010, International HapMap Consortium, 2003), and a HapMap CEU-based imputation

study that reliably inferred missing genotypes in a population of northern European

descent, even in variable regions such as the extended major histocompatibility complex

(MHC) (Nothnagel et al., 2009). Another example is in a whole genome sequence study

of the Iceland population, described above in section 1.5 (Gudbjartsson et al. 2015).

Gudbjartsson et al. were able to impute variants into 104,220 individuals down to a minor

allele frequency of 0.1%. In addition to a comprehensive understanding of the structure of

the Icelandic population, this study demonstrated the use of imputation to discover

associations between variants in sequence and phenotypes (Gudbjartsson et al., 2015).

Imputation is also effective in livestock populations because of strong LD due to

inbreeding. It is also usually performed within breed as linkage phase does not necessarily

hold across more diverse populations (Nothnagel et al., 2009).

Imputation is new to filarial nematode population genetics studies, and reference panel

datasets has not been developed that could be used to impute missing genotypes in

these animals. Reference panels have been developed for other organisms where

genotype-phenotype associations are more routinely applied, including in humans (the

Human Genome Diversity Project (Cavalli-Sforza, 2005), the HapMap Consortium

(International HapMap 3 Consortium, 2010), and the 1000 Genomes Project (1000G)

(Sudmant et al., 2015)), Sheep - 5K, 50K, and HD panels (Ventura et al., 2016); and

cattle (the 1000 Bull Genomes Project (Run 6.0) (Daetwyler et al., 2014), BovineSNP50

(SNP50) BeadChip (Illumina, San Diego, CA) (Matukumalli et al., 2009), and the

BovineHD (Illumina, San Diego, CA) array (Wiggans et al., 2012)). However, genomic

imputation has not been tested in GWAS of parasitic nematodes even though, it could be a

powerful tool for minimizing costs associated with genetic-based screening for SOR in O.

volvulus or for drug resistance in other helminths.

1.9.Summary, Hypothesis and Aims of this Thesis.

To conclude, global control and elimination of helminth diseases relies on the efficacy of

anthelmintic macrocyclic lactone. Ivermectin is currently the only drug used by MDA

programs to eliminate O. volvulus transmission in endemic foci. However, the long-term

success of these MDA programs is limited by the emergence and spread of SOR of O.

volvulus to ivermectin in some of these foci. Consequential to continuous drug pressure
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and the potential migration among endemic regions, additional parasite populations have

the potential to develop SOR to the drug (or loss of efficacy or resistance). To face this

growing threat, detailed knowledge of ivermectin response mechanisms is required to

improve diagnostic tools for field identification of SOR and to subsequently update

elimination strategies used by MDA programs. Resistance to ML is already a problem in

controlling D. immitis (Bourguinat et al., 2015) infecting dogs and T. circumcincta (Choi

et al., 2017) infecting sheep, and GWAS has been used successfully to identify multiple

loci that are responsible for ML resistance in these parasitic nematodes. Similarly, QTLs

that are under selection for SOR have been identified in O. volvulus (Doyle et al., 2017,

Hedtke et al., 2017) using GWAS. That said, GWAS is complicated in O. volvulus

because of its life cycles which does not allow for functional studies, limited sample size

due to challenges with collecting high-quality parasite genomic DNA from humans in

low-resource settings and limited existing molecular and genetic tools. To alleviate this, I

leveraged the repository of O. volvulus single worm whole genome sequences generated

by Choi et al. 2016 and Hedtke et al. 2017 to develop a methodological framework that

could improve GWAS for ivermectin response in O. volvulus. This methodological

framework tests amplicon resequencing to validate putative QTLs, identifies LD structure

between QTLs and causative SNPs, and genotype imputation to increase the visibility of

the causative SNPs or loci.

In this thesis, I tested the hypothesis that SOR to ivermectin in O. volvulus is genetically

determined, such that LD will exist around ivermectin-response loci that are under

selection, and that this will allow rational experimental design for GWAS of O. volvulus. I

propose to test thesis hypothesis using three complementary approaches:

1) Determine the extent of genetic association between the ivermectin-response

phenotype and the genotype at non-synonymous SNP loci within QTLs that have

strong support from previous GWAS, using amplicon resequencing to increase the

sample size (Chapter two).

2) Characterize patterns of LD decay and structure surrounding QTLs and more

generally across O. volvulus autosomes, for the first time in O. volvulus (Chapter

three).

3) Explore the feasibility and accuracy of imputation by making use of two different

sets for reference panels and test the success of imputation in improving the power
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of association of SNPs with ivermectin response, which has not been previously

explored in filarial nematodes (Chapter four).

Chapter Five discusses the significance of each of the key results obtained from the

experimental chapters and suggests future directions for research on the mechanisms of

ivermectin response in O. volvulus.

35



Chapter Two

Chapter Two

Amplicon-resequencing to validate ivermectin resistance

candidate regions.

2.1. Introduction
Onchocerca volvulus, the cause of river blindness, shows variation in response to the drug

used in mass drug administration, ivermectin. Association Study using Wright’s

F-statistics to quantify genetic differentiation between worms with different ivermectin

response, identified associations between genotype and sub-optimal response to

ivermectin (SOR) in adult female worms from Ghana and Cameroon and suggested that

SOR is a polygenic quantitative trait (Doyle et al., 2017). However, this study used low

sequence coverage pool-seq data of a limited number of worms which resulted in a

stochastic variation in allele detection in the worms (Doyle et al., 2017). An additional

association study was performed on genome sequences of individual worms, also using

FST to identify regions with strong association with SOR phenotype in O. volvulus from

Ghana (Hedtke et al., 2017), but this study was also limited in sample size to only 48

worms. Neither study performed additional validation of the identified regions using

increased sample size. In part, this was because whole genome sequencing of single

worms was limited by the insufficient quality of the DNA extractions available. Thus, my

study aims to find options that could be useful in improving the sample size for GWAS in

O. volvulus.

FST is a widely used descriptive statistic in population genetics that has been used to

identify regions, or Quantitative Trait Loci (QTLs), of the genome that have been the

target of selection. Its application ranges from disease association mapping to forensic

science (Holsinger and Weir, 2009). QTL is a location in the genome identified as

associated with a quantitative trait in a population (in this case, SOR) (Doyle and Cotton,

2019). QTLs are often associated with polygenic traits and identifying them is important

because they inform the genetic architecture of the phenotype.

In this chapter, I explored an amplicon resequencing approach to improve sample size for

verifying the QTLs proposed by Hedtke et al. (2017). Amplicon sequencing enables

targeted analysis of genetic variation in a specific region and is less sensitive to the
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quality of the genomic DNA extractions. Strategic sequencing of QTLs that might contain

multiple genes and downstream/upstream regions of those gene can allow fine mapping

of regions, detecting a wider variety of polymorphism types (including insertions and

deletions), characterising rare alleles, and characterising linkage disequilibrium (LD)

(Goode, 2011). The primary reason for using amplicon resequencing in this study,

however, is because the genomic DNA was too degraded for whole genome sequencing.

Additional advantage to this approach compared to whole genome sequencing is the

reduced sequencing costs and shorter turnaround time. I targeted 20 regions for PCR

amplification and sequencing within the elevated FST regions (that is, regions with FST

values >5 standard deviation above the mean) identified in Hedtke et al. (2017) that

strongly differentiated SOR from good responder (GR) phenotypes.

In this chapter, I describe the first independent study to attempt to verify SOR-QTLs

observed in a GWAS of ivermectin resistance in O. volvulus from Ghana. My initial

intention was to sequence an entire QTL that showed strong association with SOR with

long-range amplicons. Long-range PCR is a flexible, fast, efficient, and cost-effective

choice for sequencing candidate genomic regions, especially when combined with

next-generation sequencing (NGS) platforms (Jia et al., 2014). Long range PCR allows

for amplification of genomic DNA lengths up to 22 kb which in most cases cannot be

amplified using conventional PCR methods or reagents (Theophilus and Rapley, 2002).

Sequencing of sufficiently long amplicons would also allow the prediction of phase and

estimation of LD within each amplicon (Guo et al., 2006). Unfortunately, the same DNA

quality that prevented effective whole genome sequencing also prevented amplification of

long fragments from the gDNA. As a result, I used much shorter amplicons (< 500 bp) to

target specific nonsynonymous mutations within those putative QTLs (that is, the

elevated FST regions) and not the entire QTL, as well as several that were not predicted to

be associated with SOR. This sequencing approach may validate candidate genetic

variants that would contribute to the phenotypic difference used to categorise worms as

GR or SOR.
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2.2. Materials and Methods

2.2.1. Study Data
The DNA templates used in this study consist of 218 adult female O. volvulus collected

from 14 communities and along five (5) rivers that form part of the Black Volta River

basin and Volta Lake in Ghana in West Africa (Figure 2.1). Worms were phenotyped

based on embryogram data examining presence/absence of stretched microfilariae in the

uteri of worms extracted via nodulectomy and were categorized into good, medium, poor,

or very poor (Osei-Atweneboana et al., 2011), which has been further binned into ‘good

responder’ (GR; that is, absence of microfilariae in the uteri) or ‘sub-optimal responders’

(SOR; medium, poor, or very poor; that is, presence of stretched microfilariae in the uteri)

in this study (Table 2.1). Whole genomic DNA (gDNA) extraction was done for

individual worms from the non-reproductive tissue as reported previously by (Armoo et

al., 2017). The gDNA were quantified using a Qubit Fluorometer (ThermoFisher

Scientific) and standardized to a concentration of 1ng/ul prior to use in PCR.

2.2.2. Choice and Location of Target Loci
Regions were chosen based on loci identified as associated with SOR in Ghana from a

preliminary GWAS (Hedtke et al., 2017), based on FST analyses of genome sequences

from 48 worms. To expand the number of worms that could be used for FST analysis, I

selected regions within elevated FST that strongly differentiated GR and SOR worms

(Figure 2.2) for targeted sequencing using PCR, as shown. I chose to focus on regions

where there were non-synonymous SNPs that might be functionally relevant. Initially, I

targeted the 3 QTLs located on two major autosomes, chromosome OM1 and OM4. I

designed three primer pairs of approximately 8kb each for those (Table 2.2) and they are

referred to as long-amplicons in this study.

Because difficulties were encountered when amplifying approximately 8kb from gDNA

extracts of variable quality, short amplicons of approximately 500 bp long were

developed to target SNPs that were non-synonymous within the same QTL as well as

others on the OM1 and OM4 chromosomes. Twenty-five (25) SNPs of interest from a list

of missense mutations within elevated-FST peaks (or QTLs) were captured for amplicon

resequencing (Figure 2.2). Primers were designed across OM4 chromosome (11

amplicons) and OM1 chromosome (9 amplicons) with no amplicon of more than 500 bp

(OM1 chromosome is represented by two large contigs, OM1a and OM1b) (Figure 2.2).
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The total combined length of the 20 amplicons was 7948 bp (approximately 0.008% of

the genome; Figure 2.2).

PCRs were performed on 138 phenotyped adult female worms using 3 long amplicons

and 218 using the 20 short amplicons. Finally, for the final pilot study, 71 worms from

which all short (<500bp) amplicons were consistently amplified were sequenced on the

Illumina MiSeq platform. Table 2.1 shows the study samples for amplicon resequencing

categorised by their phenotypes, community of origin, and river basin.
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Figure 2.1. The map showing the locations of the sampling areas on the map of

Ghana.
The highlighted areas are the communities where the O. volvulus were collected.
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Table 2.1: Study sample for pilot amplicon resequencing experiment on Illumina MiSeq

sequencer arranged by categories, code/ID and the number of worms in each category.

Categories Code/ID Number

Response Phenotype

Good responders (GR) 25

Sub-optimal Responders (SOR) 46

Total 71

Community

Agbelekame 1 (AB1) 5

Agbelekame 2 (AB2) 11

Asubende (ASU) 5

Baaya (BAY) 2

Jagbengbendo (JAG) 12

Kojoboni (KOJ) 2

Kyingakrom (KYG) 8

New Longoro (NLG) 2

Nyire (NYR) 6

Ohiampe (OHP) 2

Senyase (SEN) 1

Takumdo (TAK) 8

Wiae (WIA) 2

Wiae Chabbon (CHA) 5

Total 71

River basin

Black Volta (BV) 26

Daka (DK) 21

Pru (PRU) 10

Tain (TA) 8

Tombe (TM) 6

Total 71
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Figure 2.2. Physical location of amplicons on the nuclear genome.
Graph showing the degree of genetic differentiation (FST) between GR and SOR worms across the O. volvulus nuclear genome from previous GWAS by
Hedtke et al. (2017). “Panel A”: OVOC_OM4; “Panel B”: OVOC_OM1a and “Panel C”: OVOC_OM1b chromosome. The X-axis is the positions of SNPs
across autosomes in the O. volvulus nuclear genome. The Y-axis is the GR vs SOR Weir FST values. Blue points are the position of SNPs with corresponding
FST values. The red horizontal line is five-standard deviation above the mean FST. This serves as a threshold. Points above the line show genomic positions
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having strong differentiation between GR and SOR. The red dots and arrows point to the location of target SNPs. “SA” are amplicons of approximately 500bp
while “R” are amplicons of approximately 8kb.
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Table 2.2: Long (approximately 8kb) and Short (approximately 500bp) Amplicon ID,

description (long or short), chromosome, genomic coordinates, and size.

Amplicon ID Description Chromosome: Genomic coordinates Amplicon
size (bp)

R143 Long OVOC_OM1b: 25417588 - 25423102 5514

R145 Long OVOC_OM1b: 25753231 - 25761066 7835

R27 Long OVOC_OM4: 4189206 - 4197154 7948

SA1 Short OVOC_OM4: 4191754 - 4192133 380

SA2 Short OVOC_OM4: 4192145 - 4192597 476

SA3 Short OVOC_OM4: 4194013 - 4194465 453

SA4 Short OVOC_OM4: 4196327 - 4196666 340

SA5 Short OVOC_OM4: 4199230 - 4199498 268

SA6 Short OVOC_OM4: 4433648 - 4433886 239

SA7 Short OVOC_OM4: 4551496 - 4551744 248

SA8 Short OVOC_OM4: 5561435 - 5561781 347

SA9 Short OVOC_OM4: 13168575 - 13168898 324

SA10 Short OVOC_OM4: 13277211 - 13277600 390

SA11 Short OVOC_OM4: 1358710 - 1358979 270

SA12 Short OVOC_OM1a: 1436794 - 1437052 259

SA13 Short OVOC_OM1a: 2073406 - 2073762 357

SA14 Short OVOC_OM1a: 2577110 - 2577287 178

SA15 Short OVOC_OM1b: 907915 - 908231 317

SA16 Short OVOC_OM1b: 3194010 - 3194410 401

SA17 Short OVOC_OM1b: 11320747 - 11321065 319

SA18 Short OVOC_OM1b: 15299740 - 15300014 275

SA19 Short OVOC_OM1b: 24029442 - 24029781 340

SA20 Short OVOC_OM1b: 25758816 - 25759105 290

NB: “R” are amplicons of approximately 8kb.

“SA” are amplicons of approximately 500bp
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2.2.3. Primer design and dilution.
Primers were generated using National Centre for Biotechnology Information (NCBI)

PrimerBlast (Altschul et al., 1990) and CLC Genomics Workbench 20.0

(https://digitalinsights.qiagen.com). The qualities of the primers were confirmed using the

OligoAnalyzer tool by Integrated DNA Technologies (IDT) (https://sg.idtdna.com/).

Characteristics used for selecting primers are detailed in Table 2.3. Designed primer

sequences were compared to existing whole genome sequences for the presence of population

genetic variation using CLC Genomics Workbench. Primers that contained an identified SNP

were either excluded, or a degenerate primer used, or were re-designed to exclude the SNP.

2.2.4. PCR Optimization and Amplification.

2.2.4.1. Primer Optimization of PCR reaction conditions.

PCR reaction annealing temperature was optimized to reduce primer-dimer formation and to

increase the efficiency and specificity of the amplification process. A negative control (no

template control) was used to detect reagent contamination or background signal. Positive

controls (successful amplicons of the same size) were also used as quality control check. All

amplifications were carried out in a gradient PCR machine (TaKaRa PCR Thermal Cycler;

ThermoFisher Scientific, Waltham, Massachusetts, United States).

2.2.4.2. Amplification of the long (approximately 8kb)

amplicons.

GoTaq® DNA polymerase was used to amplify the long amplicons using the manufacturer’s

standard protocol. PCR reactions were performed in a final volume of 20 µl containing 2 ng

of genomic DNA, 10 µl of GoTaq® Long PCR Master Mix (2X) (Promega, US), and 0.1 µM

of each primer. The protocol comprises of an initial activation step of 95°C for 2 minutes,

30-35 cycles of 94oC denaturation for 30 s, annealing temperature (52oC, 58.6oC, and 56oC

for amplicons R145, R143, and R27, respectively (Table 2.4)) for 30 s, and 70°C extension

for 1 min / kb, with a final extension step at 72°C for 10 min. Samples were then chilled to

10°C.
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Table 2.3. Characteristics used for selecting primers.

Primer Length 18-20 bp

Annealing Temperature (Tm) 52 to 58 oC

GC content 40-60%

GC clamp < 3 G’s or C’s

Base-pair repeats no more than 4

Tm between primers < 5 oC

3’ end hairpin ΔG ≤ -2 kcal/mol

Internal self-dimer ΔG ≤ -6 kcal/mol

3' end cross dimer ΔG ≤ -5 kcal/mol

Internal cross dimer ΔG ≤ -6 kcal/mol
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2.2.4.3. Amplification of the Short (approximately 500bp)

amplicons.

PCR reactions were set up for the short amplicons as per the IMMOLASE PCR (Bioline

Reagents Ltd) protocol with 0.25 µM of each primer, 0.4mM of dNTPs, 3mM of MgCl2, 10X

buffer, and 1U IMMOLASE enzyme in a final 20 µl volume reaction containing 2 ng of

genomic DNA. PCR consisted of an initial denaturation step at 95°C for 10 minutes, 35

cycles of denaturation at 95 °C for 30 seconds, annealing at a temperature range of 52 to

61.2oC for 30 seconds depending on the amplicon (Table 2.4), and extension at 72oC for 30

seconds / kb. A final extension step was performed at 72°C for 5 minutes and samples were

chilled to 10oC.
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Table 2.4. Long and short amplicon primer sequences and optimal annealing temperature.

Amplicon ID Forward primer Sequence Reverse primer Sequence Optimal Tm

R145 5 '- GGACCAGCTTTGTTGGCTTC - 3' 5' - CCGTTGAAACACGACCAGGA - 3' 52 C

R143 5' - GTGAGTTTCTTCCTTCTGCTGC - 3' 5' - ACGACAACACGTCAAACCAC - 3' 58.8 C

R27 5' - TATTTCTGGACTGGTTGG - 3' 5' - CATGATTTTGGATTCGTTGG - 3' 56 C

SA1 5' - AGGTGCACGTCATTCAGTGT - 3' 5' - GGAAAGACGGGAATATYGACCA - 3' 58.8 C

SA2 5' - TGCGTAAAGCACTCAGGTGAT - 3' 5' - CCCTATTTTARCGGATTTGCTAGG - 3' 58.8 C

SA3 5' - GTTGTGGGAAATATTGAGC - 3' 5' - TCAAAAACCCTCATGCCG - 3' 58.8 C

SA4 5' - ATCAAGATTGGTTCCGAAGA - 3' 5' - TGGCCCATTTCACCATTACG - 3' 54 C

SA5 5' - TTTCCTCCCTGATTATTTCTGC - 3' 5' - TTCAATCCAAAACAGTCCACC - 3' 52 C

SA6 5' - ACCAATACTCCATGCTTGTGC - 3' 5' - AGGAATGGTTATGGGMGGGAAT - 3' 58.8 C

SA7 5' - TTTTTAGCAGCGAGCGGGA - 3' 5' - AACCTAACCTCCATGAAATTCTGC - 3' 58.8 C

SA8 5' - TGAGCACAGTATCAGAAGAC - 3' 5' - GGTTGCTTGGATAAAACTGG - 3' 56 C

SA9 5' - CGTTTTCGGCAATTCATCTT - 3' 5' - CAGGCATCTTCCGTTTCTTT - 3' 54 C

SA10 5' - TGGTCATCCTAACGAAATGG - 3' 5' - AGAAACCAACCTGGCAATAA - 3' 54 C

SA11 5' - ACAGCCTTTAGAATTTTCCCMGG - 3' 5' - TTTTTGTTGCAGCTTTCGGC -3' 58.4 C

SA12 5' - TCAGCCAGCGAATTGAACTT - 3' 5' - ACTGCCTGCTAAAATGCGAG - 3' 60.2 C

SA13 5' - GTTCGAGAGCCGTCACAAAA - 3' 5' - TGTCTGAAGTGAGAAAACCTCG - 3' 60.2 C

SA14 5' - TTTTATGTACCGAAGCAAAGGC - 3' 5' - TGTHTGTCTGGAATTGAGCGT - 3' 58.4 C

SA15 5' - TCTTTCCATGAAATTATTGCTCAAA - 3' 5' - GTTGGTTTAACCGCAGCATT - 3' 58.8 C

SA16 5' - ACGTAACAAATCTCGCCTGGA - 3' 5' - CATTCGTTGCTTTGACCTGGA - 3' 58.8 C

SA17 5' - AGGCTCAAGTCGTATGGCAA - 3' 5' - TGCTTTGGTACTTCGTCGCA - 3' 61.2 C

SA18 5' - TCAGTCTGGCATTGGTATTGGA - 3' 5' - CGCTTGCATCAATCTATCCGT - 3' 61.2 C

SA19 5' - GCTGCCTTCTCCCGAGTAAA - 3' 5' - TAGGACTTGAATTGCCCGTCG - 3' 61.2 C

SA20 5' - CAACATTCCCCACAAAACC - 3' 5' - TGGATGTGATATGGAAAAGG - 3' 56.5 C
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2.2.5. Confirmation, Quantification and Validation of Amplicons.
To verify the results of each PCR reaction and confirm yield, each product was visualised on

a 0.8% and 1% agarose gel for large and short amplicons respectively, with 0.03 μL/ml of

GelRed (Biotium, Hayward, California, United States) added for band visibility. After

running the gel at 80V or 100V for large and small amplicons respectively, they were viewed

under UV illumination with either a 1kb or 100 bp DNA ladder (New England Biolabs,

Ipswich, Massachusetts, United States) to confirm product size.

For the purpose of Sanger sequencing, amplicons that gave clean and clear bands were

excised from the gel and purified according to the Wizard R SV Gel and PCR Clean-up

System (Promega, Madison, Wisconsin, United States) protocol, with an extended incubation

period of 1 hour. After clean-up, the purified PCR products were quantified using the Qubit™

reagent on Qubit 3.0 Fluorometer (ThermoFisher Scientific, Waltham, Massachusetts, United

States).

2.2.6. Amplicon sequencing.

2.2.6.1. Sanger Sequencing.

For confirmation purposes, long-amplicon (1) and short-amplicon (9) were selected for

Sanger sequencing: 20 µl of each purified PCR product and 20 µl of 10 µM of the

corresponding forward primer was sent to Macrogen (Korea) for sequencing.

2.2.6.2. Next Generation Sequencing – MISEQ.

Twenty short-amplicons were prepared for each of 71 worm samples such that a total number

of 1420 PCR reactions were processed for sequencing using the Nextera® XT (Illumina, Inc.,

San-Diego, California, United States) library preparation kit, which is designed for

sequencing amplicons, small genomes, and plasmids, and then sequenced using 300-bp

paired-end chemistry on an Illumina MiSeq sequencer with v3 reagents and 0.01 flow cells.

To enable my target of interest with short amplicons to be sequenced, optimized primers were

made “NGS compatible” by adding the Illumina sequencing primer and flow-cell adapters

according to an in-house protocol. Next, index sequences were added to the samples before

multiplexing, using Nextera® XT (Illumina, Inc., San-Diego, California, United States)

indices followed by pooling of amplicons with amplicons from experiments on other species

so that they were each at approximately equal concentrations with a final concentration of 2

nM. Quantification was done using PicoGreen® (ThermoFisher Scientific, Massachusetts,

49



Chapter Two

United States) on the CLARIOstar® (BMG LABTECH, Offenburg, Germany) before and

after pooling PCR products and to quantify the library before sequencing.

2.2.7. Data and Bioinformatics.

2.2.7.1. Sanger Sequences.
Visual inspection, trimming and categorizing of base calling quality of the amplicons from

Sanger sequence was done on CLC Genomics Workbench 20.0

(https://digitalinsights.qiagen.com). Heterozygous sites were inferred by observing secondary

peaks using the CLC Genomics Workbench and confirmed with the Poly Peak Parser

software (Hill et al., 2014): a Sanger sequencing file (abif or scf) containing a region of

homozygous peaks followed by double peaks and a reference sequence for the region were

imported into the Poly Peak Parser software. The software’s default peak ratio cut-off

parameter for calling heterozygous vs. homozygous positions (0.33) was used without

exception on all of the amplicons. A reference sequence (from the O. volvulus nuclear

reference genome (version 3) (Choi et al., 2016)) for each amplicon was provided and

trimmed to match the length of the chromatogram. The percentage identity with reference

was recorded. All positions in the sequence were examined and any dual peaks higher than

the threshold of 0.33 were called as heterozygous sites.

2.2.7.2. Illumina sequences.
Thousands of sequences per amplicon were generated from the MiSeq run. FASTQC v0.11.5

(http://www.bioinformatics.babraham.ac.uk) was used to perform quality checks to ensure

that the raw data did not indicate a significant number of sequencing errors or any sequence

failures due to inadequate starting material.

De-multiplexed paired-end sequence reads were trimmed using Trimmomatic v.0.32 (Bolger

et al., 2014) such that only reads with PHRED score ≥ 30 and minimum size of 150 bp were

retained. Leading and trailing low quality or N bases (below quality 3) were removed and any

base with average quality of <15 was cut off using a sliding window of 4-base pairs.

Trimmed reads were aligned to the selected amplicons on the O. volvulus nuclear reference

genome (version 3) (Cotton et al., 2016), using the Burrows-Wheeler Aligner (Li and Durbin,

2009). A custom O. volvulus reference was generated by combining sequences of only the

selected amplicons on the nuclear genome. This was to ensure that variants were called from

reads that mapped only to the desired amplicons. Samtools v1.3.1 (Li, 2011) was used to sort
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the mapping results. Custom Perl scripts were developed to use the output from samtools to

calculate average depth and coverage across each amplicon given minimum depth. Variant

calling was done using FreeBayes v1.0.2 (Garrison and Marth, 2012). Only variant sites

supported by a minimum alternate count of 5, a minimum variant frequency of 0.25, a

minimum depth of 20, and a minimum quality score of 30 were called. Vcftools (Danecek et

al., 2011)) was used to further filter sites for quality and to remove sites and individuals with

low read depth (less than 20) in more than 50% of the targeted variant sites.

2.2.7.3. Identifying Selection.
Vcftools (Danecek et al., 2011) was used to calculate Weir-and-Cockerham’s FST (Weir and

Cockerham, 1984) between GR and SOR and between each community and river basin.

Association tests were carried out using plink2 v1.90b3 with the default parameters (Purcell

et al., 2007). The ratio of non-synonymous to synonymous mutations (Ka/Ks ratio) and

Tajima’s D tests were carried out in the chosen coding regions to scan for evidence of

selection using DNA Sequence Polymorphism (DnaSP) v6.10.04. (Rozas et al., 2017).

As an essential part of the QC steps, the presence of population stratification was tested using

a multidimensional scaling (MDS) approach between the phenotypes and across river basins.

The aim was to reveal groups of individuals that are genetically more similar to each other

than expected.

All figures and tables were produced using R studio (R Development Core Team, 2013) using

the ggplot2 package (Wickham, 2016) and Microsoft Excel (Microsoft Corporation, Redman,

Washington, USA).
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2.3. Results

2.3.1. Long-range amplification.

Three large amplicons (approximately 8kb) were tested and run on an agarose gel to assess

amplification success. The count of successful and failed amplification is given in Table 2.5.

With amplicon R154 (7835bp), only 20 out of 138 DNA samples tested yielded a product of

the expected length, 39 DNA samples gave non-specific amplification (that is, multiple

bands) and 79 samples resulted in smears or no amplification (Table 2.5). To test consistency

of results, the experiment on R145 was repeated using only the 20 samples that gave yields in

the first experiment, and 10 that had non-specific bands, using the same long-range PCR

conditions. 12 out of 30 samples gave the desired specific bands. The remaining 18 either

gave non-specific bands or smears from the gel results (Table 2.5). This experiment was

again repeated a third time using the same primers and long-range PCR conditions, and 13

samples resulted in the desired bands, while 2 samples that gave specific yield in the second

trial resulted in smears (Table 2.5). In all, no one single DNA extraction was consistently

amplified with high specificity using long-amplicon primers.

In summary, long amplicons were not successfully amplified consistently across all samples

(Table 2.5), despite sufficient template (2ng) being used. As samples were extracted several

years previously and stored at 4C, this is presumably due to DNA degradation and

fragmentation.

2.3.2. Short-range amplification.

Short amplicons (approximately 500bp) were developed to target non-synonymous SNPs

within the regions of elevated genetic differentiation between GR and SOR with the aim of

finding candidate causative SNPs. An initial consistency check was done by running four

primer pairs on all 218 DNA samples. 171 DNA samples were amplified successfully with

specific yield of the expected length with the four primers (Table 2.5).

For the pilot experiment described in this chapter, DNA extracts from 71 phenotyped worms

from those 171 that amplified successfully were chosen for further assessment for all using

all 20 primer sets. Figure 2.3 shows the gel results for one of the short amplicons (SA1 - 380

bp), which successfully amplified across the 71 samples prior to illumina indexing step.
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Table 2.5. Consistency check on the primers.

Amplicon ID Number of DNA
samples tested

Number of samples that
gave specific
amplification

Number of samples
that failed

LONG AMPLICONS (~ 8kb)

R145 138 20 118

30 12 18

30 13 17

Shared 0

SHORT AMPLICONS (~500 bp)

SA1 218 198 20

SA3 218 193 25

SA4 218 191 27

SA5 218 180 38

Shared 171

Consistency check of long-amplicon primers (R145) and four short-amplicon primers (SA1, SA3,

SA4 and SA5) on 138 and 218 DNA samples, respectively.

The category “Shared” is the number of samples that amplified with specific yield consistently across

all primer sets.

Number of samples that failed comprises those that gave no yield and those that gave non-specific

amplification after confirmation by gel electrophoresis.

NB: Inconsistency in the samples amplified was observed with the long-amplicons primers.
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Figure 2.3: Agarose gel image of successful amplification of SA1 amplicon (380 bp) on

71 gDNA samples.
A: Lane 1: 100bp molecular marker, Lane 2: Non-Template Control (NTC) and Lane 3-26: DNA

samples 1-24,

B: Lane 1: 100bp molecular marker, Lane 2: Non-Template Control (NTC) and Lane 3-26: DNA

samples 25 - 48;

C: Lane 1: 100bp molecular marker, Lane 2: Non-Template Control (NTC) and Lane 3-26: DNA

samples 49 – 71.
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2.3.3. Assessment of Sanger Sequence Quality.

One long and nine short, purified PCR products were sequenced in one direction (with the

forward primer) for 10 samples using Sanger sequencing to confirm the specificity of the

primer design. CLC Genomic Workbench was used to assess the amplicons subjectively and

to trim poor-quality bases at the 5’ and 3’ ends of the amplicons. The reference sequence for

each amplicon was used by the Poly Peak Parser software for trimming to match the

high-quality sequence’s chromatograms for each amplicon and the percentage identity with

reference was recorded. Finally, heterozygous mutations were discovered by observing

secondary peaks (that is, peak within peaks) using CLC Genomics Workbench. Table 2.6

describes the nucleotide sequence statistics of the output from Sanger after trimming, the

number of bases with high quality, the percentage identity of those high-quality bases with

the reference and heterozygous counts within the high-quality bases. After using CLC to trim

poor-quality bases at the 5’ and 3’ ends of the amplicon R145, 820 bases out of R145

sequence output remained (expected amplicon length of 7835 bp), of which 718 (87.56%)

bases were of high quality (that is, with quality score >30; they have 99.9% base call

accuracy). R145 had 96.3% identity with its reference (Table 2.6).

The table also shows the report of the nine short amplicons sent for Sanger sequencing. After

trimming for high quality, amplicons SA2 and SA6 had >93% of the returned trimmed

sequences of high-quality bases (that is, bases with quality score >30 and they have 99.9%

base call accuracy; trimmed length of SA2 and SA6 was 415 and 189 respectively). They

have > 99% identity with the reference. Amplicons SA5, SA7 and SA8 failed because they

had no (0%) identity with the reference, even though 29.28%, 10.75% and 3.37% of the

trimmed returned sequences were of high quality in SA5, SA7 and SA8 correspondingly.

Although amplicons SA1 SA3, SA4 and SA9 had greater than approximately 90% identity

with the reference sequence, the percentage of high-quality bases after trimming were quite

low (SA1 = 63.81%, SA3 = 44.33%, SA4 = 15%, SA9 = 76.59%) (Table 2.6).

The degree of mismatch in most of the amplicons is too high to be accounted for by

polymorphism and suggests lack of specificity of the PCR. Specificity of the PCR reaction

performed on some of the short amplicons was poor, while the PCR performed on the long

amplicon had a percentage identity with the reference > 96.5%. Amplicons SA5, SA7 and

SA8 had no (0%) identity with the reference (Table 2.6). Those short amplicons that had no
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percentage identity with the reference also failed to sequence adequately in the MiSeq run

and were removed from downstream analysis.

The count and the percentage of the secondary peaks (that is, heterozygous mutations) within

the high-quality bases in each amplicon are also recorded in Table 2.6. Heterozygous

mutations were discovered by observing secondary peaks (that is, peak within peaks) using

CLC Genomics Workbench and any secondary peaks higher than the threshold of 0.33 within

the high-quality sequences were called as heterozygotes. The secondary peaks that met the

0.33 threshold and were thus called as heterozygotes ranged from 1 to 10 in the amplicons.
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Table 2.6: Nucleotide sequence statistics: – description of each sequence output from Sanger after trimming, sequence with high quality,

their percentage identity with the reference, and heterozygous counts.

Amplicon ID Expected
amplicon length
(bp)

Sequence length
after trimming (bp)

No (%) of bases with high
quality after trimming

Identity of the
high-quality sequences
with reference (%)

Count of secondary
peaks within high
quality sequences (%)

R145 7835 820 718 (87.56%) 96.5 10 (0.32)

SA1 386 315 201 (63.81%) 93.0 10 (4.98)

SA2 476 415 407 (97.07%) 99.8 1 (0.25)

SA3 453 388 172 (44.33%) 92.6 9 (5.23)

SA4 340 260 39 (15%) 100 1 (2.56)

SA5 268 181 53 (29.28%) 0 6 (11.32)

SA6 239 189 177 (93.65%) 99.4 1 (0.55)

SA7 248 279 30 (10.75%) 0 3 (10.00)

SA8 347 192 6 (3.13%) 0 1 (16.67)
SA9 324 252 193 (76.59%) 100 2 (1.04)

NB: High quality sequence was calculated using the trimmed sequence with a cut-off quality score of 30.
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2.3.4. Quality Check on the MiSeq data.

Modern high-throughput sequencers generate hundreds of millions of sequences in a single

run. Before analysing these sequences to draw biological conclusions, simple quality control

checks were performed to ensure that the raw data has low error rates and is not biased.

A total number of sequenced reads of 15,788,490 was processed for 20 amplicons of 71

samples. An average count of 222,373 reads were processed per sample. FastQC estimated a

less than 0.2% error rate. Mean sequence quality (Phred score) was greater than 35 for all

samples. N content is <5% for all samples indicating that the sequencer was able to make

valid base calls with sufficient confidence. Mean length distribution across samples has its

peak between 250-259.

After trimming and mapping, a total number of 4,168,624 bp was mapped for 20 amplicons

of 71 samples with an average number of 58,713 bp were mapped per sample. Primer

sequences was removed and the combined total for all samples and amplicons was 378,076bp

(which is approximately 95% of the total expected consensus length without primer

sequences). Variant calling was carried out and only individuals and amplicons with >50% of

variants called wasretained. Eventually, based on the mean depth per amplicon across each

sample as seen in Figure 2.4, mapping quality across all amplicons, and prior results from the

Sanger sequencing, 3 amplicons (SA5, SA7 and SA8) were excluded from downstream

analysis because they had low depth of coverage (<20) in 50 % of the samples. Four samples

(GR_17, PR_30, PR_34 and VP_69) were excluded because they had low depth <20 in less

than 50% of the remaining amplicons (Figure 2.4). Overall, 124 variants remained for

downstream analysis across 67 worms and 17 amplicons (SA1, SA2, SA3, SA4, SA6, SA9,

SA10, SA11, SA12, SA13, SA14, SA15, SA16, SA17, SA18, SA19 and SA20). 121 (97.6%)

of these SNPs were biallelic, and 3 (2.4%) were multiallelic. The transition-transversion ratio

was approximately 1.7. Fourteen (14) out of the 25 SNP loci that were the initial targets of

this experiment were observed as polymorphic in this data. 50 (41.3%) of the 124 variable

loci observed in this data were also polymorphic in the original GWAS, which means 74 new

variants were called.
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Figure 2.4. Mean Depth of each sample by short amplicon from the MiSeq experiment.
The x-axis is the individual short amplicons, and the y-axis is the count of depth for each sample by amplicon.
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2.3.5. Genetic differentiation between ivermectin response phenotypes.

Analysis of samples by their community or river basin of origin did not reveal population

genetic structure among the worms sequenced (among river basins: mean FST = 0.00148724;

among communities: mean FST = -0.0131308) (Figure 2.5). Pairwise FST revealed low levels

of differentiation between SOR and GR phenotypes (mean FST estimate between SOR and

GR = 0.0041133) (Figure 2.6). Most of the SNPs were less than 2 standard deviations from

the mean. Using a threshold of 5 standard deviations from the mean FST as a cut off (that is,

z-score > 5.0, which is the threshold used in the previous GWAS; Hedtke et al. 2017), two

outlier positions on amplicon SA9 were observed (Figure 2.6) with chromosomal positions

OM4:13168647 and OM4:13168824 (the interval between them is 177 bp), but these were

not significant after Bonferroni correction.

Functional analysis of the variants was done using SnpEff (Cingolani et al., 2012) to evaluate

the possible functional effect of each SNP. Both high-FST SNPs are in the WBGene00248067

gene, which is predicted to have heme binding and peroxidase activity. OM4:13168647 is an

intron variant with a potential modifier impact; while OM4:13168824 is both a missense and

splice region variant.
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Figure 2.5. Non-metric Multidimensional Scaling plot across river basins – showing the

geographical structure between phenotypes across river basins.
To identify population stratification (or relationship) between the phenotypes across river basins used

in the association analysis.

No geographical nor population structure observed among the worms sequenced.
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Figure 2.6. The genotypic differentiation between phenotypes (GR and SOR) across all mapped amplicons in my study.
FST values across all mapped short amplicons to validate variants with high levels of population differentiation between GR and SOR. The x-axes are the

positions of SNPs across the short amplicons. The y-axes are the GR vs SOR Weir FST values for each short amplicon. The coloured points are FST values for

SNPs within the amplicons coloured by chromosome (OM1a-Red; OM1b-Green; OM4-Blue) and the black rectangles highlights the FST values and positions

of the initial target SNPs of interest within each amplicon. Outlier regions are above the red dashed line which is the average FST + 5 std threshold (FST =

0.25); they are found on amplicon SA9 at chromosomal positions OM4:13168647 and OM4:13168824 and are separated by approximately 200 bp.

NB: There are 17 amplicons, and they are distributed over 3 scaffolds (OM1a, OM1b and OM4).
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2.3.6. Association Analysis.

Association analysis between genetic variation and SOR was carried out on the variants

across all amplicons using the open‐source whole‐genome association analysis toolset Plink2

v1.09 (Purcell et al., 2007). Only biallelic variants, (n = 121) with a total genotyping rate of

0.842376 (84%) were used. The genomic inflation est. lambda (based on median Chi-square)

was 1.34593, signifying an increased false positive rate, as the value is greater than 1.00.

Figure 2.7 is a Manhattan plot showing the SNPs and their -log10 P-value across amplicons.

The figure shows that at a significance threshold of P < 1 X 10-3, 2 SNPs showed association

with SOR, but not significant after Bonferroni correction. Although the SNPs was different

to those identified using FST (Figure 2.7) they are also on OM4 chromosome and the two high

FST SNPs in Figure 2.7 are at approximately 9Mb distance away from these SNPs identified

by plink.

The first is on amplicon SA5 at chromosomal position OM4:4199425 and the second is on

amplicon SA6 at chromosomal position OM4:4433757; they are more than 200 kb apart.

OM4:4199425 is 71 bp away from the initial target SNP on amplicon SA5 (chromosomal

position OM4:4199354), showing that they may be linked with each other. OM4:4199425 is a

variant that has a possible modifier impact and causes synonymous mutation on

WBGene00246934 gene (which belongs to G-protein-coupled receptors (GPCR),

rhodopsin-like superfamily). OM4:4433757 is 50 bp from the initial target on SA6

(chromosomal position OM4:4433807), also indicating that they may be linked with each

other. OM4:4433757 is a variant in the WBGene00246959 gene, Ovo-agl-1, which is an

ortholog of C. elegans agl-1, a glycogen debranching enzyme.

The lack of strong association of the initial missense variants targeted within the chosen

coding regions with SOR indicates a need to further increase sample size to confirm the

effect of the SNPs. I further increased the sample size by merging the worms from the GWAS

with worms sequenced by this amplicon re-sequencing approach and the power of association

of the SNPs at those loci was not improved either (results not shown). This is most likely that

the QTLs from the discovery GWAS could be false positive because the analysis could not be

replicated. The statistical power to detect an association largely relies on the effect size of the

phenotype and number of samples used (As sample sizes increases, the phenotypic and

genotypic variation in the sample cohort is also likely to increase). Nothing can be done to
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improve sample size in this context, and hence, the need to rely on large effect size of drug

resistance phenotype because loci with small effect sizes may be difficult to characterize.

However, precise phenotyping of individual O. volvulus parasite is difficult: uncertainties in

the phenotypes collected from embryogram does not give high confidence in the ivermectin

response phenotypes.
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Figure 2.7. Manhattan plot depicting several strongly associated risk loci.
The X-axis shows the amplicons; the Y-axis shows the association level; and each colour coded dot represents a SNP and its location within an amplicon.

Amplicons 1-11 are on chromosome OM4 and amplicons 12-20 are on chromosome OM1. The red horizontal line shows the p-value cut-off threshold. The

top two SNPs above the red line are on amplicons SA5 and SA6, with chromosomal positions OM4:4199425 and OM4:4433757, respectively.
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2.3.7. Test of neutral evolution in the selected nuclear genome regions of O.

volvulus.

Neutrality tests were carried out on the chosen amplicons of O. volvulus to further assess

deviations from neutral evolution at those amplicons. Table 2.7 shows the estimates of

Tajima's D, estimates of Ka (the number of nonsynonymous mutations per nonsynonymous

site), and Ks (the number of synonymous mutations per synonymous site) for the target

amplicons in O. volvulus. The neutrality tests show deviations from neutral evolution at some

amplicons. D=0 means no evidence of selection, D>0 means bottleneck (or balancing

selection) and D<0 implies directional selection (or population expansion). Two amplicons

that did deviate, and in opposite directions on OM4 and OM1b chromosomes, respectively,

may reflect selection processes operating on those genes (Tajima’s D value for amplicon

OM4_SA1 = -2.06 and for amplicon OM1b_SA16 = 2.57) (Table 2.7). This is not surprising,

because, with respect to Tajima’s D, one could imagine either positive or negative values in

connection with ivermectin response. Another confounder for these values could be because

Tajima's D is also highly sensitive to demography. Similarly, variation in amplicon coverage

could be underpinning this variation.

Likewise, the ratio of the proportion of nonsynonymous variants (Ka) to synonymous

variants (Ks) can be used to infer the direction and the magnitude of natural selection acting

on protein coding genes. A ratio greater than 1 implies positive (Darwinian) or directional

selection (that is, driving change) while less than 1 is balancing selection and a ratio of 0

indicates neutral or no selection. From Table 2.7, the Ka/Ks ratio varies across amplicons, but

none were statistically significant.
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Table 2.7: Test of null hypothesis of neutral evolution (Tajima's D), estimates of Ka (the number of nonsynonymous substitutions per

nonsynonymous site), and Ks (the number of synonymous substitutions per synonymous site) for the target amplicons in O. volvulus.

Amplicon ID Population

size

S Tajima's D Ka Ks Ka/Ks

SA1 67 6 -2.063662* 0.000812076 0.001140299 0.712160876

SA2 67 4 -0.309335 0 0.002016554 0

SA4 67 5 -0.947314 0.001502035 0.002431931 0.617630649

SA5 67 2 -1.430182 0.000531389 0 0

SA6 67 5 0.312532 0.006318996 0 0

SA7 67 8 1.796223 0.012183537 0.009958842 1.223388891

SA8 67 6 0.76347 0.003503573 0.0067891 0.516058545

SA9 67 5 -0.163366 0 0.004640118 0

SA10 67 5 -0.05081 0.002551967 0.002771235 0.920877399

SA11 67 8 0.765124 0.011608412 0.006955088 1.669053239

SA12 67 4 0.539015 0.002477612 0.005586793 0.443476571

SA13 67 4 0.711912 0.006633786 0.000824966 8.041282895

SA14 67 4 0.15403 0.006882225 0 0

SA16 67 5 2.573541* 0.008445907 0.004570828 1.847785001

SA17 67 12 0.234714 0.009781637 0.007391633 1.323339187

SA18 67 3 -0.197147 0.004691 0 0

SA19 67 5 0.887164 0.006858254 0.002907191 2.35906531

SA20 67 11 -0.494014 0.004834238 0.011942379 0.404796891

NB: S, number of segregating sites; Tajima’s D neutrality test; *Significant at P < 0.05; Ka, proportion of non-synonymous mutations; Ks, Synonymous

mutations
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2.4. Discussion
I described the findings from the first study to attempt the verification of SOR-QTLs

observed in a previous GWAS of ivermectin resistance in O. volvulus from Ghana using

an expanded sample size. I reported the findings from an amplicon re-sequencing pilot

study that targeted 25 non-synonymous SNPs that were distributed over 14 QTLs defined

in the previous GWAS (Hedtke et al. 2017).

2.4.1. Targeting long amplicons for validation studies.

Ideally long-range PCR would be used to confirm the association between FST and

response to ivermectin, but this failed. Long-range PCR has been observed to speed up

and simplify PCR for genomic mapping and sequencing and has facilitated studies in

molecular genetics (Cheng et al., 1994, de Sousa Dias et al., 2013). When combined with

sequencing, long-range PCR can provide a faster and more cost-effective tool for

detecting genetic variations than whole genome sequencing (Knierim et al., 2011, Tan et

al., 2012). In my study, attempts to consistently amplify long amplicons with sizes of 5.5

kb, 7.8 kb and 8.0 kb across several worms were unsuccessful, independent of the enzyme

used for amplification. The difficulty in successfully amplifying long amplicons is highly

likely to be associated with degradation of the gDNA samples: they had been extracted in

year 2015 and stored at 4oC. It is important to note that the question of gDNA storage is

difficult - although storage at -20oC is advised for long term storage the risk is that

repeated freeze-thaw cycles will degrade the DNA faster than storage at 4oC under most

circumstances. So, it is a trade-off, particularly when the samples are being used for a

variety of analyses on a regular basis (as these were). Another possible explanation is that

the DNA extracts also include host (human) DNA, although estimates from whole

genome data based on other extractions performed at the same time did not find extensive

host contamination. It was also noted that only a small number of these samples were

suitable for whole genome sequencing even when they were fresh and that the difficulty

with long range PCR most likely reflects this initial quality problem: that is, if the sample

failed for next generation sequencing library preparation then it will likely fail for long

range PCR, Consequently, I have used smaller amplicons.
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2.4.2. Discrepancies between the results from the previous

genome-wide differentiation scan using FST using whole

genome sequencing and the amplicon approach.

GWAS is a better approach when studying the genetic architecture of anthelmintic

resistance in parasites than candidate gene approaches (that is, genes chosen, based on

specific hypotheses concerning mechanisms of resistance to anthelmintic compounds)

(Doyle and Cotton, 2019). Initial studies on the architecture of ivermectin response in O.

volvulus took a candidate gene approach (Ardelli et al., 2006, Ardelli et al., 2005,

Bourguinat et al., 2008, Nana-Djeunga et al., 2012, Osei-Atweneboana et al., 2012).

However, genome-wide differentiation scan of ivermectin response in O. volvulus by

Doyle et al. (2017) provided insight into the genomics of ivermectin response and

population structure of the parasite and established that ivermectin response is a

polygenic quantitative trait in which similar molecular pathways influence the extent of

ivermectin response in the various parasite populations, and not discrete genes as

proposed in candidate gene studies. Variants that differentiated GR and SOR parasites

were found in several QTLs: however, there is the need for additional studies, including

examining single whole genome sequences, to validate those QTLs rather than the pooled

sequences used by Doyle et al. Thus, a second genome-wide differentiation scan using

sequencing of single worms using samples from the same study sites was initiated

(Hedtke et al., 2017).

The work described here aimed to verify the SOR-QTLs observed in the second GWAS

of ivermectin resistance in O. volvulus from Ghana (Hedtke et al., 2017) using an

amplicon re-sequencing approach on 25 non-synonymous SNPs that fell within the

combined length approximately 7kb selected from 14 QTLs with an expanded sample

size (n = 71). Amplicon resequencing that targets strategic QTLs is useful for fine

mapping of regions and detecting a variety of polymorphism types (including insertions

and deletions). More polymorphic sites were detected after sequencing the amplicons (74

new polymorphisms were detected). In my study, initially I picked an average of

approximately 2 non-synonymous SNPs per amplicon from within each of the 14 QTLs

selected (total = 25), but from the amplicon analysis, 14 out of the initial 25 SNPs were

observed after amplicon sequencing in the following amplicons (SA1, SA3, SA10, SA11,

SA12, SA13, SA14, SA16, SA17, SA18, SA19, SA20), and they show low levels of
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genetic differentiation between GR and SOR, that is, they all have low FST values. Even

though the chosen non-synonymous SNPs were not directly associated with SOR after the

analysis on the amplicon data, 2 new SNPs (OVOC_OM4:13168647 and

OVOC_OM4:13168824) emerged from the new FST analysis on amplicon SA9 showing

strong association with SOR. The physical relationship of these SNPs on amplicon SA9

to the nearest initial target SNP on amplicon SA10 is approximately 108 kb. Some

non-synonymous SNPs that were found to be significantly associated with SOR in

previous GWAS lost their association power after amplicon resequencing on a larger

sample size. Precisely, there were 5 of the initial 25 that had high FST score (>0.13 or > 5

std) in the GWAS; and they were located on amplicons SA1, SA7, two on SA16, SA19

and SA20. But in the amplicon analysis, their FST scores were <0.02. This may be because

(a) they may have been closely linked with a causative polymorphism or (b) they were

highly differentiated between SOR and GR by FST, due to random chance associations

that emerge when sampling sizes are not reflective of the population. This is particularly

true for parasitic helminths which appear to have very large effective population sizes

with correspondingly high levels of genetic diversity. Distinguishing between chance

associations and true signal under these circumstances is the main reason for increasing

sample size. These are common failures when using genome scans of FST to detect

selection as reported by Holsinger and Weir (2009). Haasl and Payseur (2016) also

reported that even though GWAS eliminates the bias often inherent in a candidate gene

study, some selective events are difficult to identify by GWAS. For example, soft sweeps,

polygenic selection, and selection targeting genetic variants such as microsatellites or

copy number variants are more challenging to detect (Haasl et al., 2014, Innan and Kim,

2004, Pritchard and Di Rienzo, 2010). The primary reason that soft sweeps and polygenic

selection are difficult to detect is that such sweeps leave little linkage disequilibrium (LD)

around individual polymorphisms that contribute to the phenotype because the selection

on any individual contributing polymorphism is weak. That explanation immediately

raises the question of how much LD is there surrounding a single contributing

polymorphism and led me directly to develop the chapter that followed this – which is the

study on the structure of LD decay and haplotype blocks in O. volvulus chromosomes.

Likewise, distinguishing the effect of demography and natural history from selection is

challenging (Haasl and Payseur 2016). When selection targets complex phenotypes (when

phenotypic variation reflects the action of multiple genetic variants – a typical situation in

70



Chapter Two

O. volvulus), GWAS is less likely to succeed (Pritchard and Di Rienzo, 2010) and large

sample size is extremely important.

In the case of soft selection acting on standing genetic variation of a polygenic or

quantitative trait, the effect size of any single association is small, and this was observed

in the original GWAS (Hedtke et al., 2017). A confirmation experiment with larger

sample size would be needed to have the required power to confirm the effect. An attempt

at increasing my study sample size by merging the worms from the GWAS with worms

sequenced by this amplicon re-sequencing approach did not improve the power of

association of the SNPs at those loci (results not shown). For complex traits such as

ivermectin response in O. volvulus a GWAS based on whole genome sequencing

generally identifies many polymorphisms, suggesting that individual polymorphisms each

have a small effect (Goddard and Hayes, 2009). It could also be because, the GWAS

(based on whole genome sequence) and this experiment (the amplicon resequencing

project) used worms from two independent samples drawn from a single population,

therefore, the association observed in the GWAS sample was a statistical artefact of small

sample size that disappeared when sample size was increased. Also, the false discovery

rate is often high, and so many significant associations are expected by chance when so

many SNPs are tested. Goddard and Hayes corroborate this in their GWAS, where they

found that SNP associations are most likely to be confirmed when the original GWAS

used many animals (for example, >1,000) that were widely sampled from one breed, and

confirmation of highly significant SNPs was carried out in an even larger sample of the

same breed (Goddard and Hayes, 2009). Another factor for discrepancies between the

GWAS on the whole genome and amplicon resequencing approach could be the effect of

the binary categorization of the phenotypes into GR and SOR (Churcher et al., 2009).

This categorization does not take into consideration the presence and the density of

microfilariae in the skin. Bottomley et al. (Bottomley et al., 2016) found out that this

method for phenotype classification is less sensitive for the determining the presence and

extent of microfilarial density in the skin.

2.4.3. Identifying selection.

In this section, I have estimated four parameters that are commonly used to determine

whether selection may have occurred: FST, Ka/Ks, Tajima’s D, and association testing of

individual SNP loci with phenotype.
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The first criterion (elevated FST) - FST is useful for identifying which mutations or regions

are candidates, but then further research needs to be done. FST is more than a descriptive

statistic and a measure of genetic differentiation. It is directly related to the variance in

allele frequency among populations and, conversely, to the degree of genetic resemblance

among individuals within populations (Holsinger and Weir, 2009). A small FST means that

the allele frequencies within each population are the same; conversely, a large FST means

that the allele frequencies are different. If natural selection favours one allele over others

at a particular locus in one population but not a second, the FST at that locus tend to be

larger than at loci for which among-population differences are largely because of genetic

drift. Genetic drift cannot, therefore, be ignored and the frequency with which

fixation/loss happens across many loci will depend on the size of the population: two

small populations can have a high degree of differentiation in allele frequencies with

fixation occurring between them extremely rapidly. Furthermore, even in a large

population there is still random loss or fixation and/or high FST due to genetic drift

irrespective of selection. Thus, high FST is not, sufficient to detect selection. Selection

differs fundamentally from drift because it occurs because of a genetic variant on the

phenotype.

Therefore, in this study, I focussed on missense mutations which might be causative. If

differentiation is due to selection, then a causative mutation will increase in frequency.

So, the low FST observed across most SNPs examined is indicative that the initially

selected amplicons had elevated FST due to chance and/or that the missense mutations are

not causative. Figure 2.6 shows that 19 of the study amplicons have no evidence for

selection using elevated FST. However, the SA9 amplicon (within chromosome OM4)

showed some evidence of selection, with 2 SNPs within that amplicon having very high

FST values (OVOC_OM4:13168647 and OVOC_OM4:13168824 with FST >0.13). The

two elevated FST SNPs are in the same amplicon. So, given the later results for LD, one

would expect that they will be in LD irrespective of selection (they are, by definition,

<500bp apart) and one expects that they are both elevated. What is unusual is that nearby

SNPs in the same amplicon, that are closely physically linked, do not show similar

evidence for selection, suggesting that random associations may still occur with this

larger sample size. This could be due to random chance or could be because O. volvulus is

sufficiently variable that there is selection on those variants regardless of genomic

background (in other words, soft selection and low LD surrounding contributing sites).
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Evidence to date suggests that ivermectin resistance in O. volvulus has been driven by soft

selection on QTLs; that is, on polygenic and/or complex phenotypic traits (Doyle et al.,

2017, Hedtke et al., 2017). The main difficulty associated with soft sweeps is the low

degree of LD associated with any one locus that is under selection, thus requiring large

sample size to detect the differences in allele frequency that results from the sweep.

Interpreting the outcome of a soft sweep and designing an amplicon re-sequencing

experiment, therefore requires an understanding of how much LD accompanies the soft

sweep. These data highlight the importance of defining the degree of LD that is generated

in the O. volvulus genome following soft and hard selection and that is the target of the

next chapter in this thesis.

There are two good reasons for picking an amplicon in an amplicon resequencing study:

(a) because it contains a causative SNP and/or (b) because it is in LD with the causative

SNP. In this study, I selected high-FST regions for amplification that contains missense

SNPs that could plausibly be either the causative SNPs or in LD with the causative SNP.

Rather than following the hypothesis of finding the causative SNPs through amplicon

resequencing, I took another approach. Other studies have been able to target causative

SNPs for amplification, such as studying the mechanism of benzimidazole resistance in

H. contortus. The β-tubulin locus is the target of benzimidazole anthelmintic drug in the

parasite because of strong LD resulting from hard selection at the locus (Redman et al.,

2015, Sallé et al., 2019). In contrast, in O. volvulus soft selective sweeps contribute to loss

of drug sensitivity (Doyle et al., 2017, Hedtke et al., 2017, Gilleard and Beech, 2007).

Therefore, in the next chapter, I estimated LD within a proposed QTL to explore how

ivermectin response affects LD. This will enable me to select markers for GWAS that

have a higher likelihood of being associated with the causative SNP.

The second and third criteria: Departures from neutrality (Tajima’s D and Ka/Ks) - I

surveyed signals that could support the hypothesis that selection on SOR is driving

differentiation of the QTLs (as measured by FST). Tajima’s D is a statistical tool to

measure the difference between two estimators of the population mutation rate, θw (the

product of the effective population size and the neutral mutation rate), and π, which

measures the average number of pairwise differences between two DNA sequences

(Tajima, 1989). Under neutrality, mean θw equals mean π (Tajima, 1989). The remarkable

and important difference between θw and π is the effect of selection. Positive values of

Tajima’s D arise from an excess of intermediate frequency alleles and can result from
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population bottlenecks, population structure and/or balancing selection, while negative

values of Tajima’s D indicate an excess of low frequency alleles and can result from

population expansions or positive selection (Tajima, 1989).

The Tajima’s D values for each amplicon (as shown in Table 2.7) suggested that there are

deviations from neutral evolution across some of the amplicons. For example, the

Tajima’s D value for OM4_SA9 amplicon, which has elevated FST, shows a weakly

negative value (-0.163) which may indicate an excess of low frequency alleles resulting

from population expansion or positive selection. The Ka/Ks value of 0 for the same

amplicon does not support the Tajima’s D and FST findings, rather, it indicates that

non-synonymous mutations are absent. A value of 1 is suggestive of no selection under

the appropriate framework. In contrast, the OM1b_SA16 amplicon, which did not show a

high FST, did have a high Tajima’s D (Tajima’s D = 2.57; significant at P < 0.05), which

indicates an excess allele frequency which can result from a population bottleneck and/or

balancing selection. On the other hand, OM4_SA1 amplicon had a low Tajima’s D

(Tajima’s D = -2.06; significant at P < 0.05) but has no high FST SNPs, which also

indicates an excess of low frequency alleles resulting from population expansions or

positive selection. In conclusion, there are two SNP loci on OM4 and OM1b

chromosomes with significant values. Those loci show significant departures from

neutrality, but the cause of that departure requires investigation.

Since all the selected amplicons are protein coding, the ratio of the number of

nonsynonymous variants per nonsynonymous site and the number of synonymous

variants per synonymous site (Ka/Ks) for those amplicons were evaluated to provide

information about the evolutionary forces operating on the particular gene in them (Nei

and Gojobori, 1986). For example, under neutrality Ka/Ks=1. For genes that are subject to

functional constraint such that non-synonymous amino acid mutations are deleterious and

purged from the population, Ka/Ks<1. The observation of Ka/Ks>1 provides evidence for

positive selection (Nei and Gojobori, 1986, Suzuki and Gojobori, 1999). The value of

Ka/Ks (1.848, not statistically significant) for amplicon OM1b_SA16 did not corroborate

Tajima’s D observation and indicates no selection. Also, the Ka/Ks value for the

amplicon OM4_SA1 is 0.712, which also indicates no selection because it is not

significant. Probably because there are so few mutations overall, Ka/Ks ratios are low. In

summary, for Ka/Ks the conclusion is that there is no evidence for selection in any

amplicon. This is not that surprising if there has been soft selection. Maybe longer
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evolutionary times (involving sufficient divergence for speciation) will provide more

power to this test.

The fourth criterion (genetic association) - An additional test of the hypothesis that

particular SNP loci are associated with SOR phenotype is to perform an association test

using a linear regression analysis. Association analysis carried out between GR and SOR

across the amplicons resulted in two SNP positions associated with SOR at p < 1 X 10-3

(OM4:4199425 and OM4:4433757) but not significant following Bonferroni correction.

These loci were both located in the OM4_SA5 and OM4_SA6 amplicons, which do not

have elevated-FST variants or significant deviation from 0 for Tajima’s D and Ka/Ks<1.

The Bonferroni correction (for multiple testing) is an extremely stringent test but it

assumes the tests are independent. So, 1000 tests with p = 0.05 means 50 expected

‘significant’ (false-positive) tests even when there is no association. A Bonferroni

corrected p-value of 0.05/1000 assumes all tests are independent. OM1a/b and OM4 loci

are independent, and I show in the following chapter that LD is relatively low even

between loci on the same chromosome (Chapter three, Results). The two loci

(OM4:4199425 and OM4:4433757) in question are nearly 250kb apart, so it is very likely

that the p-value of 10-3 is significant because those two loci are almost certainly

segregating independently, that is, the genotype at one locus will not influence the

genotype at the other locus, considering another scale (amplicon-wide) or using LD

estimates to determine the number of independent tests (Goddard, 2009).

My conclusion based on the association study is that within OM4_SA5 amplicon, there is

a gene that is plausibly causative with a synonymous SNP at position OM4:4199425 that

could impact WBGene00246934 gene expression. WBGene00246934 is predicted to be

among the G protein-coupled receptor (GPCR), rhodopsin-like superfamily. It is also an

ortholog of Brugia malayi Protein Bm9770, isoform a (Choi et al., 2016). GPCRs are a

large family of cell surface proteins that regulate many aspects of an organism’s

physiology and are important drug targets (Hauser et al., 2018). The Rhodopsin-like

receptors are a family of proteins that comprise the largest group of the GPCRs. They

represent a widespread protein family that includes hormone, neurotransmitter, and light

receptors, all of which transduce extracellular signals through interaction with guanine

nucleotide-binding (G) proteins (Casey and Gilman, 1988). This is encouraging

considering that the primary target of ivermectin is a ligand-gated channel at

neuromuscular junctions (Cully et al., 1994). Similarly, within the OM4_SA6 amplicon,
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there is a gene that is plausibly causative, with a synonymous SNP at position

OM4:4433757 that could impact WBGene00248067 gene with Haem peroxidase

function. The molecular functions include peroxidase activity (response to oxidative

stress) and haem binding (oxidation-reduction process), similar to an ortholog of skpo-3

in C. elegans (Choi et al., 2016), which acts in host defence (Tiller, 2014). This gene may

be involved in O. volvulus response to external triggers such as ivermectin. None of these

genes are among the previously proposed genes of association with ivermectin response

in either the GWAS or candidate gene studies in O. volvulus (Doyle et al., 2017).
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2.5. Conclusion.
This is the first study to use targeted amplicon re-sequencing to verify SOR-QTLs

observed in a GWAS of ivermectin response in O. volvulus and to survey other signals of

selection for drug response in a worm population.

None of the missense (or nonsynonymous) SNPs that are identified in the original whole

genome sequencing GWAS QTLs were in strong association with SOR following analysis

of the amplicon re-sequencing data and therefore are unlikely to play a causative role in

the SOR phenotype or to be predictive of ivermectin response in O. volvulus. However,

the amplicon re-sequencing approach of short amplicons did identify four novel SNPs

that were associated with SOR in O. volvulus. These four novel SNPs occur in genes that

have not been previously identified in the literature as associated with ivermectin

response in O. volvulus.

I recommend the need for further studies, particularly using larger amplicons, to validate

more putative QTLs. Such further studies require increase in sample size for sufficient

confidence in the SNPs or QTLs showing strong association with SOR. Alternatively, a

cost-effective and less laborious methodology for GWAS might involve identifying a

reduced marker set that could then be used in conjunction with genome imputation. In

Chapter 3, I explored an alternative approach by analysing broad patterns of LD and

haploblock structure across two autosomes in O. volvulus. Understanding LD in the worm

is a necessary precondition for identifying the maximum distance between a genotyped

SNP locus and an unknown causative variant that is needed to reliably detect a genetic

association between the two. Similarly, understanding LD across the genome would help

to understand mechanism of selection in the worm, for example, if QTLs associated with

SOR correspond to regions of elevated LD, this would be an indicator of recent or current

strong selection.
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Chapter Three

Estimation of Linkage Disequilibrium in Onchocerca volvulus.

3.1.Introduction
The design and application of association studies have great potential to increase our

understanding of the genetic architecture of complex traits such as drug resistance in

nematodes (Doyle et al., 2017, Doyle and Cotton, 2019, Redman et al., 2015). Previous

GWAS of ivermectin response in O. volvulus gave insights into the associations between

genotype and sub-optimal response (SOR) in adult female worms from Ghana and

Cameroon but with a limited number of low sequence coverage pool-seq worms, which

can result into a stochastic variation in allele detection in the worms (Doyle et al., 2017).

An additional GWAS was performed on genome sequences of individual worms, to

identify regions with strong association with SOR phenotype in O. volvulus from Ghana

but the number of worms analysed was limited because of the insufficient quality of the

DNA extractions available (Hedtke et al., 2019). My study aims to develop

methodologies that improve the power for GWAS in O. volvulus.

A particularly useful metric of LD is r2, which is equivalent to the Pearson correlation

coefficient between two markers (Hill and Robertson, 1968). r2 is calculated by dividing

D by the product of the four allele frequencies at the two loci being considered and ranges

from 0 (no LD) to 1 (‘complete’ LD). Complete LD occurs if the markers have not been

separated by recombination and therefore have the same allele frequency. In this case,

observations at one marker provide complete information about the other marker, making

the two redundant. r2 has a simple inverse relationship with the sample size required to

detect association between SNP loci, which makes it a commonly used metric to describe

LD in genetic association studies (Weiss and Clark, 2002). For example, if one SNP

(SNP1) is involved in disease susceptibility, but resistant and susceptible individuals are

genotyped at a nearby site (SNP2), then sample size needs to be increased by a factor of

1/r2 to achieve the same power to detect association as the power if genotyping were done

using SNP1 (Wall and Pritchard, 2003b). Generally, r2-values above 0.33 are used to

indicate strong LD sufficient for association studies, as the increase in sample size

required to detect association should individuals not be genotyped at the causative loci is

no more than threefold greater (reviewed in Ardie et al. (2002)). This concept was

established based on the interpretation of r2 in terms of its power to detect an association
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(Kruglyak, 1999). Sample size is a limiting factor in association studies (Spencer et al.,

2009), but large increases in sample size to compensate for weak LD between a marker

and a causative QTL can be impractical. This is particularly true in studies that aim to use

whole genome sequencing to identify QTLs associated with ivermectin response in O.

volvulus, because of the limited amount of funding that is available for surgical removal

of worms from people in the affected African countries, the labour and skill required to

assess phenotype, and the reduced number of samples with genomic DNA of sufficient

quality for sequencing (Doyle and Cotton, 2019, Hedtke et al., 2019). Values of r2 > 0.33

limit the required increase in sample size to no more than threefold, and therefore, was

considered to be the minimum useful LD values.

The spatial pattern of LD can also be measured by observing the haplotype block pattern

in a genome. A definition of a haplotype block (called ‘haploblock’ in this study)

proposed by Gabriel et al., is a set of consecutive loci (or SNPs) between which there is

little or no evidence of historical recombination. That is, a haploblock is a set of closely

linked loci on a chromosome with a strong LD between them so that they tend to be

inherited together (Gabriel et al., 2002). By “strong LD”, Gabriel et al. meant a one-sided

upper 95% confidence bound on D’ that is at least 0.98 and the lower bound above 0.7.

Since D’ values fluctuate upward with small sample size and/or presence of rare alleles,

confidence bounds on D’ were relied upon in defining haploblocks rather than point

estimates (Wall and Pritchard, 2003b). In this study, this ensured that no pair of SNP loci

has LD lower than an approximate D’ of 0.7.

In addition to recombination between sites, LD (and by extension, haploblocks) is the

result of the interaction of several possible biological and artifactual mechanisms,

including population subdivision (which inflates LD), recurrent mutation, gene

conversion, selection, or errors of genome assembly which disrupt haploblock patterns

(Gabriel et al., 2002, Qanbari et al., 2010, Wall and Pritchard, 2003b). Locating

haploblocks in the genome is of great practical importance for genetic association studies,

to the extent that testing one SNP within each block for significant association with a trait

might be sufficient to indicate association with every SNP in that block; that is, only one

SNP in the haploblock may be required to identify an association of a particular genotype

with a phenotype (Carlson et al., 2004). Similarly, the signatures of genomic regions

under positive selection can be identified by studying the haploblock structure throughout
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the genome (Qanbari et al., 2010a). Identifying haploblocks makes it possible to predict

the likely configurations of alleles at unobserved sites (Wall and Pritchard, 2003a).

There has been some (very limited) analysis of LD, specifically in nematodes. For

example, a study by Cutter et al. revealed high nucleotide polymorphism and rapid decay

of LD in wild populations of the free-living nematode Caenorhabditis remanei (Cutter et

al., 2006). There have been very few studies in parasitic helminths. Doyle et al., reported

a comprehensive analysis of genetic diversity and the construction of a F1 genetic map

for the sheep gastrointestinal helminth Haemonchus contortus (Doyle et al., 2018), an LD

study in O. volvulus based on short loci in P-glycoprotein gene was reported by Ardelli et

al. (Ardelli et al., 2006), and Evans and Anderson (2020) used linkage mapping on

recombinants derived from a cross between the laboratory strain and a wild strain to

identify a single overlapping QTL on chromosome V that influences the responses of C.

elegans to eight chemotherapeutic compounds. However, the extent of LD and

haploblock structure has not been characterised before across an entire O. volvulus

chromosome.

The objective of this study is to characterize patterns of LD decay and haploblock

structure across the autosomes of the adult female O. volvulus. In this study, the criteria

for measuring LD and haploblocks were applied to O. volvulus samples from Choi et al.

(2016) and Hedtke et al. (2017). I applied the criteria to the study of LD in selected

regions between sub-populations and across the length of two autosomes to identify if the

same evolutionary force is driving both LD and genetic differentiation between good

responders (GR) and suboptimal responders (SOR) to ivermectin. These two

“sub-populations” (GR and SOR) are composed of worms that differ with respect to

ivermectin response, but which are drawn from the same population of worms. I focused

particularly on analysis of LD associated with regions of elevated genetic differentiation

(FST) between GR and SOR worms from Ghana (Hedtke et al., 2017). FST (Wright’s

fixation index) is a measure of genetic differentiation between two populations (Holsinger

and Weir, 2009) and will vary across the genome depending on whether the two

sub-populations are genetically similar or genetically different in that region of the

genome. The hypotheses tested were (1) that regions of elevated FST between GR and

SOR will show higher LD than regions of lower FST (2) that regions of elevated FST

between GR and SOR should also show elevated LD if there has been recent selection

(especially a hard sweep), but that the LD may be weaker if the sweep is soft (3) that
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there will be regions of elevated LD that are not correlated with elevation of GR/SOR FST

that are the result of selection that is not related to drug response. Then I generalised the

LD analysis to encompass the whole of the autosomal genome without respect to

ivermectin response and compared the LD and haploblock structure of the genome to the

FST structure.
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3.2. Materials and Methods

3.2.1. Study Data sets.

Processed reads (mapped data) of adult female O. volvulus (n = 96) from Ecuador, East

Africa and West Africa (Table 3.1) were obtained from Choi et al. (2016) and S. Hedtke

et al. (2017). A subset (n = 47) of the worms were divided up into phenotypes based on

the continuing presence of microfilariae in the uteri of individual female worms after

several rounds of ivermectin treatment in some study communities across Ghana

(Osei-Atweneboana et al. 2011). In this study, the susceptible worms are referred to as

good responders (GR: approximately 90 days after the person took ivermectin, there were

no microfilariae in the uteri of the worm), while the resistant worms are referred to as

sub-optimal responders (SOR: approximately 90 days after the person took ivermectin,

there were microfilariae in the uteri of that female adult worm). Extraction of DNA from

these worms, sequencing, read processing, mapping and variant calling were reported in

previous studies (Armoo et al., 2017, Choi et al., 2016, Crawford et al., 2019; Hedtke et

al. (in prep)). Variant calling and data processing was performed again with a similar

unique pipeline. Knowing that among SNPs with higher MAF the estimate of LD tends to

be stronger and that with higher MAF fewer SNPs are left for the estimation of LD, and

this may introduce a bias (Yan et al. 2009). Variant sites supported by a minimum

alternate count of 5, a minimum variant frequency of 0.25, a minimum depth of 20, and a

minimum quality score of 30 were called from all worms using Freebayes v1.0.2

(Garrison and Marth, 2012).

3.2.2. Choice of Regions.

Regions of elevated FST that strongly differentiated GR worms from SOR worms were

chosen based on an analysis carried out by S. Hedtke et al. (in prep) on a worm

population from Ghana. Possible regions of interest were defined as regions with

statistically significantly high FST using a cut-off value of 5 standard deviations from the

mean.

To characterize LD systematically around those regions of elevated FST that differentiated

GR and SOR sub-populations, three regions from chromosome OM1 of O. volvulus were

examined (Figure 3.1). 1) ‘Region A’ (highlighted with blue arrow in Figure 3.1),

comprises approximately 20 kb that surrounds a region on the genome with evidence for
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selection associated with drug susceptibility (‘high FST region’). 2) ‘Region B’

(highlighted with green arrow in Figure 3.1) is located approximately 50 kb away from

region A. It is also approximately 20 kb in length and encompasses a region that has no

association with drug resistance and that is presumably evolving neutrally (‘low FST

region’). 3) ‘Region C’ (highlighted with brown arrow in Figure 3.1), is approximately

100 kb and includes regions A and B and the 50 kb gap in between.
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Table 3.1. Study samples’ location, country, and number of worm samples.

Location Country Number of worms

East Africa Uganda 2

South America Ecuador 10

West Africa

Benin 1

Côte D'Ivoire 5

Ghana 67

Guinea 4

Liberia 1

Mali 5

Sierra Leone 3

Total 98
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Figure 3.1. FST plot highlighting the regions of interest on chromosome OM1 of the

O. volvulus genome.

FST plot showing the degree of genetic differentiation between two “sub-populations” (good

responders (GR) and sub-optimal responders (SOR)), which are composed of worms that differ

with respect to ivermectin response, but which are drawn from the same population of worms.

The red dots are FST values at each SNP position. The blue dashed line shows the cut-off value for

differentiation (+5 standard deviation). The blue arrow points to the location of the high FST region

(Region A - showing strong differentiation between the GR and SOR), the green arrow points to

the low FST locus (Region B - showing low differentiation between the GR and SOR), while the

brown arrow points to Region C, which encompasses both high and low FST regions and the

chromosomal region between them (Hedtke et al. 2017).
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3.2.3. Measures of Linkage Disequilibrium.

The ideal scenario to measure the extent of LD within a population is to analyse non-related

individuals. Previous studies also reported that both a multi-dimensional scale plot based on

raw Hamming distance and a plot demonstrating the results of Discriminant Analysis of

Principal Components (DAPC) (using 20 PCAs as per optimization in pegas) suggested that

ivermectin-susceptible worms (GR) are not well differentiated from resistant worms (SOR) at

a genomic level, and that resistant worms tend to represent a subset of the overall genetic

diversity found in susceptible worms (Crawford et al., 2019, Doyle et al., 2017). Particularly,

Doyle et al. used nuclear data and suggested that the Ghana transect is a single population

and the phenotyped worms sequenced here were from the same population (also see Chapter

2 section 2.3 and Chapter 4 section 4.3 for tests of population structure on these data).

Therefore, it is safe to assume that the samples used in this study are unrelated.

Linkage disequilibrium statistics based on adjacent SNP loci and pairwise SNP loci were

estimated using PLINK version 1.09 (Purcell et al., 2007). All LD values for all the SNP loci

within the chosen region of interest versus one specific SNP locus were estimated. The SNP

locus has a criterion of high FST value (0.24) and high LD (r2>0.8) for region A and C and

low FST value (0.013) and high LD (r2>0.8) for region B. The PLINK –r2 command was used

to estimate the correlations between each marker pair genome-wide within each

sub-population as well. The average r2 of adjacent SNP loci were estimated for each selected

regions and chromosomes. Poisson model regression analysis was performed using the nls

function in Rstudio (R Development Core Team, 2013) to fit the appropriate model for the

rate of decay of LD for each region and within sub-populations. The allele frequencies were

estimated using Vcftools v.0.1.3 (Danecek et al., 2011) across each sub-population.

To explore decay of LD across autosomes, the pairwise correlation of all SNP loci in

windows of 100 kb intervals was measured across the entire lengths of the OM1 and OM4

chromosomes using PLINK version 1.09 (Purcell et al., 2007). Pairwise LD between SNP

loci were grouped by their pairwise physical distance into intervals of 1 kb. Average r2 for

SNP pairs in each interval was estimated and compared with the respective average distance

between the SNP pairs.
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3.2.4. Haplotype block estimation across the genome.

PLINK version 1.09 (Purcell et al., 2007) was used to define the haploblocks present in the

regions of specific interest and across chromosomes OM1 and OM4. The method followed

for block definition has been previously described by Gabriel et al. (2002) and described in

the introduction to this chapter. Block size was limited using the command

‘--blocks-max-kb’. Maximum block sizes of 20 kb were considered for regions A and B,

while maximum block sizes of 100 kb were considered for region C.

All figures and tables were created in R Studio using the ggplot2 package (Wickham, 2016)

and Microsoft Excel (Microsoft Corporation, Redman, Washington, USA).
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3.3.Results

3.3.1. Summary statistics of the variants.
I explored LD across three regions on the OM1 chromosome of O. volvulus using the whole

data sets regardless of sub-population in order to maximize sample size. The distribution of

SNPs per region is described in Table 3.2. In total, 676 variants, 375 variants, and 2699

variants were screened across 98 adult female worms in regions A (high FST region), B (low

FST region), and C, respectively. The average estimated physical distance between adjacent

SNP loci was approximately 43 bp for region A, 76 bp for region B, and 51 bp for region C.

The longest interval between adjacent SNP loci was 424 bp on region A, 643 bp on region B,

and 1,094 bp on region C (Table 3.2).

Considering the impact of subpopulation structure, LD between two variant sites was

measured using r2 for 47 unrelated adult female phenotyped O. volvulus worms from Ghana

to identify if similar evolutionary forces are operating at these regions among the GR and

SOR worms and to assess if the genetic differentiation observed (from previous genome wide

Fst analysis) was real or an artefact of other underlying selection. The summary statistics of

the variants used in downstream analysis is described in Table 3.2. The table shows that 346

variants were called across 25 unrelated GR worms (region A (high FST region) variants =

191, region B (low FST region) variants = 155) and 295 variants across 22 unrelated SOR

female worms (region A (high FST region) variants = 210, region B (low FST region) variants =

85) (Table 3.2). The average estimated physical distance between adjacent SNP loci was

similar for region A (high FST region) and B (low FST region) in GR sub-population

(approximately 109 bp versus 111 bp). The average estimated physical distance between

adjacent SNP loci for region B (low FST region) in SOR sub-population is almost three times

that of region A (high FST region) (228 bp versus 98 bp). The longest interval between

adjacent SNP loci is 2192 bp on region A and 773 bp on region B (low FST region) among the

GR sub-population, and 2078 bp on region A (high FST region) and 2778 bp on region B (low

FST region) among the SOR sub-population.

Average LD between adjacent SNP loci across OM1 and OM4 chromosome of the O.

volvulus genome was also estimated and is shown in Table 3.2. The number of SNP loci was

in proportion to the chromosome length (422,125 in OM1 and 233,375 in OM4), providing

an SNP density of 13.95 and 14.95 per kb (one SNP per 74 and 68 bp average) across OM1

and OM4, respectively (Table 3.2). The average estimated physical distance between adjacent
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SNP loci was approximately 74 bp and 62 bp for OM1 and OM4, respectively. The longest

interval between adjacent SNP loci was 100.166 Kb on OM1 and 200.967 kb on OM4.
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Table 3.2. A summary of variants used in downstream analysis.

Phenotype
No of

individuals
Length (bp)

No of
SNPs

Average Distance
between

adjacent SNP loci
(bp)

r2 for all pairs
of adjacent

SNPs

Average Distance
between all

Pairwise SNPs (kb)

r2 for all
pairwise

combinations
MAF

GR region Mean (SD) Mean (SD) Mean (SD)
 region A 25 21,368 191 108 0.23(0.35) 6.64 0.10 (0.19) 0.12 (0.14)
 region B 25 20,623 155 111 0.40(0.43) 7.05 0.23 (0.33) 0.17 (0.21)
SOR region
 region A 22 21,368 210 98 0.21(0.34) 6.74 0.13 (0.19) 0.17 (0.15)
 region B 22 20,623 85 228 0.32(0.39) 6.33 0.23 (0.28) 0.27 (0.20)
Combined dataset
 region A 98 21,368 676 43 0.23(0.35) 7.17 0.11 (0.16) 0.14 (0.12)
 region B 98 20,623 375 76 0.45(0.44) 6.85 0.17 (0.26) 0.15 (0.17)

 region C 98 96,004 2699 51 0.31(0.40) 38.59 0.10 (0.16) 0.13 (0.14)
Chromosome  
 OM1 98 31,161,767 422,125 74 0.25 (0.25) 487.34 0.08 (0.03) 0.18

 OM4 98 16,048,563 233,375 62 0.21(0.31) 497.91 0.08(0.02) 0.18

NB: region A = High FST region (Length = 20 kb); region B = Low FST region (Length = 20 kb); region C = Combined both regions A and B (Length =

approximately 100 kb); GR = “susceptible worms”; SOR = “resistant worms”; No of SNPs = number of SNP loci called per region; Average physical distance

between adjacent SNP loci (bp) = average separation between adjacent SNP loci; Average Distance between all Pairwise SNPs = the average distance

between SNPs across all pairwise combinations; r2 for all pairwise combinations = Pairwise Linkage disequilibrium measures; r2 for all pairs of adjacent

SNPs = Linkage disequilibrium between SNPs that are not more than 2 SNPs apart; Mean (SD) = Mean and standard deviation; MAF = Minor Allele

Frequency
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Figure 3.2. Linkage disequilibrium, FST and SNP density between adjacent SNP pairs of a 100 Kb region (region c) on OM1

chromosome.
The X-axis is the genomic positions across a randomly selected 100 Kb region on OM1 chromosome, while the Y-axis is A) the distribution of LD between

adjacent SNP pairs, B) the degree of differentiation (FST) between susceptible (GR) and resistant (SOR) worms, and C) the density of SNP across the region

binned in a 1 kb interval. The blue dotted horizontal line in plot A is the minimum r2 values regarded as useful LD for association studies, while the blue solid

line on plot B shows the cut-off point of the FST differentiation (5 standard deviation).

NB: Only values of r2 between 0 and 0.99 were used because values with r2 = 1 shows that no recombination is occurring at those sites
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Figure 3.3. Graph of the predicted decline in linkage disequilibrium (r2) with distance within an approximate 100kb region (region c)

from a QTL in O. volvulus genome.
Plot showing LD values for every SNP locus within 100 kb of a SNP of interest within the QTL (region C). X-axis: the distance between SNP loci. Y-axis: the

measure of linkage disequilibrium (r2). The dashed red line is the useful LD threshold at r2 = 0.33. Sample size of 98 adult female O. volvulus worms were

used. The graph overlays the lines of expected that is the ‘modelled’ values (black line) onto the actual points (dots). The figure shows an asymptotic decline

in LD with increasing separation between markers.
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3.3.2. Linkage Disequilibrium

3.3.2.1. Estimating linkage disequilibrium over 100 kb of

chromosome OM1 corresponding to the QTL region of interest.
LD was calculated over a 100 kb region on OM1 chromosome of the O. volvulus using r2.

The whole data set (n = 98) regardless of sub-population was used to maximize sample size.

Figure 3.2A plots all values of r2 for each adjacent locus pair across a 100kb region, while

Figure 3.3 plots the values of r2 of a locus of interest (within a QTL) with other SNP loci

within a 100 kb region to its right (that is, all LD values for every SNP within 100 kb of a

SNP of interest within the QTL). The “SNP-of-interest” was chosen using criteria of high FST

value (0.24) and high LD (r2>0.8)). Non-linear regression analysis was performed using the

nls function to fit the appropriate exponential model for the rate of LD decay in region C as

seen in figure 3.3. The maximum slope for the model is -0.00017 (negative sign indicating

decay) where the distance between SNPs is 1 and the LD is 0.52 (y0, intercept parameter on

the output; Std error = 0.03786). Then the slope keeps decreasing till it asymptotes at around

~10,000 bp towards 0.048 (yf) at a rate alpha (Std error = 0.01117). As expected, the

exponential curve model on Figure 3.3 shows that there is an asymptotic decline in LD with

increasing separation between SNP loci. Figure 3.3 shows that LD started at approximately

0.52, decayed rapidly to 0.33 (the threshold for useful LD estimate) at a distance of

approximately 1405 bp, then extended gradually to an asymptote level of 0.05 at approximate

distance of 9-10 kb (which shows the point at which linkage equilibrium is reached, that is,

where there is no correlation between SNP loci because they are too far apart). All pairwise

LD combinations for pairs of SNP loci within an approximately 100 kb region (region C) was

also estimated and the average LD per bin distance of 1 kb in that region ranged from 0.07 to

0.18 (Table 3.3).

The two 20 kb regions at either end of region C are denoted as regions A and B, which

correspond to regions of high and low FST, respectively. Figure 3.4 shows the decline of LD

over those regions while figure 3.5A and B plots all values of r2 for each adjacent locus pair

across at those regions. Non-linear regression analysis was also performed using the nls

function to fit the appropriate exponential model for the rate of LD decay in regions A and B

as seen in figure 3.4. As expected, the exponential curve model on Figure 3.4 shows that

there is an asymptotic decline in LD with increasing separation between SNP loci. Region B

contains a small number of SNP combinations with elevated LD, so that the LD decline was

predicted to start at 0.33 and declines rapidly to 0.2 at approximately 2kb distance then
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continues to the asymptote levels (r2 = 0.05) by approximately 8-9 kb distance. In region A,

the decline in LD is like that of region C but starts from a higher level (presumably reflecting

the presence of a candidate QTL or as a result from lower recombination in that region

because lower recombination would favour reduced gene flow and hence higher FST, even in

the absence of a QTL.), so that LD starts at an approximate value of 0.52, then declines

rapidly to 0.33 at an approximate distance of 1405 bp and reaches an asymptote level of

approximately 0.05 at 9-10kb distance.
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Figure 3.4. Graph of the predicted decline in linkage disequilibrium (r2) with distance across all worms in two 20 kb regions on the O.

volvulus genome.
Plot showing LD values for every SNP within 20 kb of a SNP of interest within (A) the QTL (region A) and (B) outside a QTL (region B). X-axis: the

distance between SNP loci. Y-axis: the measure of linkage disequilibrium (r2). The dashed red line is the useful LD threshold at r2 = 0.33. Sample size of 98

adult female O. volvulus worms were used for all regions. The graph overlays the lines of modelled values (black line) onto the actual points (dots).
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Figure 3.5. Linkage disequilibrium, FST and SNP density between adjacent SNP pairs in two selected 20 kb regions on OM1 chromosome

across all worms.
LD for pairs of adjacent SNP loci within two approximately 20 kb regions was calculated as the squared correlation coefficient (r2). The X-axis is the genomic

positions across a randomly selected 20 kb regions on the OM1 chromosome for (A) Region A (high FST region) and (B) Region B (low FST region), while the

Y-axis is the A) the distribution of LD between adjacent SNP loci, B) the degree of differentiation (FST) between susceptible (GR) and resistant (SOR) worms,

and C) the density of SNP across those regions binned in a 1 kb interval. The blue dotted horizontal line in plot A is the minimum r2 values regarded as useful

LD for association studies, while the blue solid line on plot B shows the cut-off value for significant FST differentiation (5 standard deviations).

NB:  Only values of r2 between 0 and 0.99 were used because values with r2 = 1 shows that no recombination is occurring at those sites
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For association studies, LD estimates where r2 > 0.33 are considered likely to be informative.

There are 531 adjacent SNP loci in the 100kb interval defined as region C that meet this

threshold, representing 33.50% of loci across the region (Figure 3.2). The average physical

separation between adjacent SNP loci where LD meets this threshold is 42 bp (the largest

interval for which r2> 0.33 is 1,094 bp) (Figure 3.5A). Useful LD estimates are higher in

region B (the low FST region), where 149 of adjacent SNP loci have LD (r2) > 0.33 (65.64%)

(Figure 3.5B). For region A, 92 pairs of SNP loci (22.38%) meet this criterion. The average

physical separation between adjacent SNP loci where LD meets this threshold is 63 bp (the

largest interval for which r2> 0.33 is 334 bp) in region B compared to 28 bp in region A (the

largest interval for which r2> 0.33 is 217 bp).

Pairwise LD for pairs of SNP loci within region A and B were estimated and the average LD

per bin distance of 1 kb in those regions ranged from 0.08 to 0.17 in region A (high FST

region) and 0.09 to 0.26 in region B (low FST region) (Table 3.4). There is higher average all

pairwise combinations LD in region B in comparison with A and C is being driven by a

relatively small number of closely spaced SNP pairs with elevated LD (hence the greater

range of pairwise LD values; Table 3.4). Surprisingly, the apparent maximum pairwise LD

value in region B was not detected in the overlapping region C at the equivalent position.
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Table 3.3. Mean linkage disequilibrium region C SNPs over different map distance.

Bin distance
(bp)

R2

Mean (SD)

< 1kb 0.181(0.263)

1 – 2 kb 0.145(0.222)

2 - 3 kb 0.131(0.207)

3 – 4 kb 0.126(0.199)

4 – 5 kb 0.12(0.192)

5 – 6 kb 0.117(0.191)

6 – 7kb 0.113(0.183)

7 – 8 kb 0.106(0.18)

8 – 9 kb 0.103(0.176)

9 – 10 kb 0.102(0.176)

10 – 11 kb 0.1(0.173)

11 – 12 kb 0.094(0.164)

12 – 13 kb 0.096(0.162)

13 – 14 kb 0.096(0.163)

14 – 15 kb 0.094(0.162)

15 – 16 kb 0.093(0.161)

16 – 17 kb 0.095(0.161)

17 – 18 kb 0.091(0.155)

18 – 19 kb 0.094(0.157)

19 – 20 kb 0.096(0.157)

20 – 21 kb 0.09(0.155)

21 – 22 kb 0.089(0.155)

22 – 23 kb 0.087(0.152)

23 – 24 kb 0.09(0.154)

24 – 25 kb 0.091(0.157)

25 – 26 kb 0.089(0.156)

26 – 27 kb 0.088(0.157)

27 – 28 kb 0.083(0.15)

28 – 29 kb 0.082(0.146)

29 – 30 kb 0.084(0.147)

30 – 31 kb 0.083(0.148)

31 – 32 kb 0.082(0.148)

32 – 33 kb 0.081(0.145)

33 – 34 kb 0.083(0.148)

34 – 35 kb 0.082(0.146)

35 – 36 kb 0.087(0.15)

36 – 37 kb 0.086(0.152)

37 – 38 kb 0.083(0.149)

38 – 39 kb 0.087(0.154)

39 – 40 kb 0.09(0.157)

40 – 41 kb 0.088(0.157)

41 – 42 kb 0.084(0.15)

42 – 43 kb 0.082(0.141)

43 – 44 kb 0.085(0.15)

44 – 45 kb 0.085(0.148)

45 – 46 kb 0.085(0.149)

46 – 47 kb 0.077(0.144)

47 – 48 kb 0.077(0.145)

48 – 49 kb 0.078(0.144)

49 – 50 kb 0.081(0.151)

50 – 51 kb 0.08(0.15)

51 – 52 kb 0.077(0.151)

52 – 53 kb 0.075(0.147)

53 – 54 kb 0.075(0.147)

54 – 55 kb 0.077(0.147)

55 – 56 kb 0.075(0.144)

56 – 57 kb 0.076(0.14)

57 – 58 kb 0.085(0.15)

58 – 59 kb 0.079(0.141)

59 – 60 kb 0.078(0.139)

60 – 61 kb 0.079(0.136)

61 – 62 kb 0.077(0.133)

62 – 63 kb 0.081(0.14)

63 - 64 kb 0.084(0.148)

64 – 65 kb 0.085(0.154)

65 – 66 kb 0.083(0.151)

66 – 67 kb 0.079(0.15)

67 – 68 kb 0.076(0.142)

68 – 69 kb 0.077(0.142)

69 – 70 kb 0.077(0.142)

70 – 71 kb 0.072(0.143)

71 – 72 kb 0.071(0.138)

72 – 73 kb 0.072(0.14)

73 – 74 kb 0.072(0.136)

74 – 75 kb 0.072(0.133)

75 – 76 kb 0.067(0.126)

76 – 77 kb 0.076(0.141)

77 – 78 kb 0.071(0.137)

78 – 79 kb 0.077(0.14)

79 – 80 kb 0.076(0.131)

80 – 81 kb 0.071(0.13)

81 – 82 kb 0.076(0.136)

82 – 83 kb 0.072(0.131)
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83 – 84 kb 0.07(0.127)

84 – 85 kb 0.074(0.134)

85 – 86 kb 0.075(0.128)

86 – 87 kb 0.074(0.131)

87 – 88 kb 0.081(0.134)

89 – 90 kb 0.08(0.135)

90 – 91 kb 0.078(0.135)

91 – 92 kb 0.079(0.139)

92 – 93 kb 0.073(0.123)

92 – 93 kb 0.069(0.118)

93 – 94 kb 0.082(0.131)

94 – 95 kb 0.067(0.107)

95 – 96 kb 0.107(0.137)
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Table 3.4. Mean linkage disequilibrium among high and low FST SNPs over different

map distances.

Distance
Region A (High FST) Region B (Low FST)
Mean (SD) Mean (SD)

< 1 kb 0.181 (0.250) 0.293 (0.357)
1 - 2 kb 0.135 (0.188) 0.210 (0.289)
2 - 3 kb 0.122 (0.175) 0.210 (0.278)
3 - 4 kb 0.118 (0.165) 0.199 (0.257)
4 - 5 kb 0.107 (0.147) 0.181 (0.245)
5 - 6 kb 0.099 (0.141) 0.197 (0.301)
6 - 7 kb 0.093 (0.135) 0.171 (0.268)
7 - 8 kb 0.095 (0.141) 0.151 (0.245)
8 - 9 kb 0.086 (0.127) 0.157 (0.255)
9 - 10 kb 0.094 (0.135) 0.129 (0.196)
10 - 11 kb 0.099 (0.143) 0.116 (0.178)
11 - 12 kb 0.089 (0.127) 0.107 (0.168)
12 - 13 kb 0.092 (0.126) 0.097 (0.156)
13 - 14 kb 0.099 (0.142) 0.095 (0.140)
14 - 15 kb 0.095 (0.139) 0.0942 (0.157)
15 - 16 kb 0.095 (0.144) 0.074 (0.130)
16 - 17 kb 0.087 (0.124) 0.074 (0.130)
17 - 18 kb 0.068 (0.095) 0.081 (0.150)
18 - 19 kb 0.074 (0.115) 0.095 (0.152)
19 - 20 kb 0.069 (0.102) 0.106 (0.157)
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Figure 3.6. Graph of the predicted decline in linkage disequilibrium (r2) with distance across two 20 kb regions among sub-populations

of O. volvulus.
Plot showing LD values for every SNP within 20 kb of a SNP of interest in (A) within the QTL (region A) in susceptible worms (GR; n=25); (B) outside a

QTL (region B) in susceptible worms (GR; n=25); (C) within the QTL (region A) in resistant worms (SOR; n=22), and (D) outside a QTL (region B) in

resistant worms (SOR; n=22) of O. volvulus from Ghana. The graph overlays the lines of expected (modelled) values (black lines) onto the actual points

(dots). The dashed red line is the useful LD threshold at r2 = 0.33. The graph indicates that the expected rate of r2 decline is faster in region A (high FST region)

compared to region B (low FST region) within both sub-populations. The figure indicates that the decay in LD is dependent on the region investigated rather

than the worm population.
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3.3.2.2. Linkage disequilibrium estimate by sub-populations over

the selected 20 kb regions.
Under the hypothesis that selection will have effect on LD, I compared the decline of LD

between SNP loci using r2 in the SOR (that is, worms selected for by drug) versus the GR

(that is, worms not selected for by drug) around the candidate QTL in region A (high FST) and

outside a QTL in region B (low FST). Figure 3.6 shows the graph of the predicted decline in

LD (r2) with distance among the O. volvulus sub-populations from Ghana. The figure reveals

a difference in LD decay between region A (high FST) and region B (low FST) within the two

sub-populations. Non-linear regression analysis was also performed using the nls function to

fit the appropriate exponential model for the rate of LD decay in regions A and B within

sub-populations as seen in figure 3.6. As expected, the exponential curve model on Figure 3.6

shows that there is an asymptotic decline in LD with increasing separation between SNP loci.

Region A in GR and SOR sub-populations (Figure 3.6A&C) show similar starting point of

predicted LD but reaches equilibrium at different rates and distances. LD decline was

predicted to start at 1.0 and declines rapidly to 0.33 (the threshold for useful LD estimate) at a

distance of approximately 200 bp in GR and a distance of approximately 500 bp the SOR

sub-population, then continues to the asymptote level (r2 = 0.05) at approximately 1 kb

distance in the GR and to an asymptote level (r2 = 0.1) at approximately 1.5 kb distance in the

SOR. LD was predicted to start at a higher point (r2 = 0.88) in region B in the SOR

sub-population (Figures 3.6 D) compared to region B in the GR sub-population (r2 = 0.52)

(Figure 3.6 B), then declines to 0.33 (the threshold for useful LD estimate) in the GR

sub-population at approximately 1kb distance compared to SOR (approximate distance of

1.5kb) and reaches an asymptote level (r2 = 0.05) faster at approximately 5kb in SOR

sub-population compared to approximately 6 kb in the GR sub-population.

Overall, a faster decline in LD to the threshold for useful LD was observed in the GR

sub-population compared to the SOR in regions A (high FST) but LD reaches equilibrium

faster in the GR sub-population compared to SOR in region A (high FST). On the other hand,

in region B (low FST), LD started higher and reaches equilibrium faster in the SOR

sub-population compared to GR.
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Figure 3.7. Linkage disequilibrium, FST and SNP density between adjacent SNP pairs of two O. volvulus autosomes.

Linkage disequilibrium for pairs of adjacent SNP loci on two O. volvulus autosomes were calculated as the squared correlation coefficient (r2). The X-axis is

the genomic positions across the chromosome for (A) OM1 and (B) OM4, while the Y-axis is the A) the distribution of LD between adjacent SNP pairs, B)

the degree of differentiation (FST) between susceptible (GR) and resistant (SOR) worms, and C) the density of SNP across those regions binned in a 1 kb

interval. The blue dotted horizontal line in plot A is the minimum r2 values regarded as useful LD for association studies, while the blue solid line on plot B

shows the cut-off point of the FST differentiation (5 standard deviation).
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NB:  Only values of r2 between 0 and 0.99 were used because values with r2 = 1 means no recombination is occurring at those sites
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3.3.2.3. Linkage Disequilibrium estimates across two O. volvulus

autosomal chromosomes.
Linkage disequilibrium decay was estimated across the entire length of two autosomes (OM1

and OM4) of O. volvulus to identify the pattern of LD decay across these chromosomes. At

the time of this analysis, chromosome OM1 had not been fully assembled and was in two

contigs OM1a and OM1b. Subsequent research (Cotton et al., 2016) used long read

sequencing to determine that these two contigs are separated by minimum of 50 kb of

repetitive sequence. My assumption is that LD between variants located on these two contigs

is not significant to this analysis despite their being on the same chromosome, because

recombination is likely to have occurred frequently between them given the extensive size of

this repeat region.

Generally, LD was variable across the chromosome as indicated in Figure 3.7, where LD

between adjacent SNP loci was compared with FST and SNP density across the chromosome

length. The average and standard deviations for r2 between adjacent SNP loci are

approximately 0.25 (0.25) and 0.21 (0.31) for chromosome OM1 and OM4, respectively. LD

estimates may be more frequent on chromosome OM1 (the number of adjacent SNP loci

having LD (r2) > 0.33 is approximately 89,513 (26.48%) SNP loci) compared to chromosome

OM4 (approximately 47,470 (22.29%) adjacent SNP loci). The average physical separation

between adjacent SNP loci where LD met this threshold is 56 bp in OM1 (with maximum

physical separation of 4.994 kb) and it is 57 bp in OM4 (with maximum physical distance of

200.967 kb).

Figure 3.8 A and B shows what average LD between all pairwise combinations look like in a

1 Mb window across the autosomes of O. volvulus. On the average, two loci that are closer

together should have high LD compared to those that are farther apart. The starting points of

average LD on these plots were quite low because they were binned in 1kb intervals. The

figure shows that LD decline with distance. In some windows on the OM1b chromosome, LD

decay started at average r2 greater than 0.300 (for example, windows between 13-14 Mb and

19-20 Mb on OM1b chromosome started at r2 = 0.331 and 0.303, correspondingly), while

some started at a lower value than that (for example, in windows between 26-27 Mb of the

chromosome, average r2 started at 0.150 (Figure 3.8A). On all windows in chromosome

OM1a and OM4, the starting point of LD was at r2 value of 0.14 (Figure 3.8B). In all, each

1Mb interval behaved in much the same way, with some variation in (a) the max LD value
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observed and (b) the steepness of the decay. All eventually asymptote to approximately the

same value (r2 = 0.08). However, some of the LD curves behaved differently (increase at

longer range). Also, it is expected that LD breaks down quickly at the edge of the

chromosome as observed in windows 26-27 Mb and 27-28Mb, respectively.
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Figure 3.8 a. Linkage Disequilibrium (LD) decay plots for chromosome OM1 divided into 1 Mb window

Average LD for all pairwise combination of SNP loci approximately 1Mb window apart was calculated as the squared correlation coefficient (r2) with a

sample size of 98 adult female O. volvulus worms. SNP pairs were partitioned into bins in 1 kb intervals, and for each bin the mean r2 was plotted against the

distance between the SNP loci. Region ‘a’, ‘b’ and “c’ sections of OM1 are on 25 -26 Mb window in these figures.
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Figure 3.8b. Linkage Disequilibrium (LD) decay plots for chromosome OM1a and OM4 divided into 1 Mb window

Average LD for all pairwise combination of SNP loci approximately 1 Mb window apart was calculated as the squared correlation coefficient (r2) with a

sample size of 98 adult female O. volvulus worms for (A) Chromosome OM1a and (B) chromosome OM4. SNP pairs were partitioned into bins in 1 kb

intervals, and for each bin the mean r2 was plotted against the distance between the SNP loci.
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3.3.3. Haploblock Structures.

Figure 3.9. Haploblock estimate in the regions of interest.
Scatter plot of the haploblock structure against the chromosome positions within (A) region A (High

FST), (B) region B (low FST) and (C) region C is shown above. Region A and B are approximately 20

kb in size and region C is approximately 100 kb in size and covers both region A and B.
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3.3.3.1. Haploblock structure in regions A, B and C.
As previously discussed, a haploblock is defined in this chapter as sets of consecutive sites

between which there is little or no evidence of historical recombination; that is, a site on the

chromosome having LD (D’) between adjacent SNP pairs within the confidence bound of 0.7

at least and 0.98. Based on this definition, only a small percentage of the adjacent SNP pairs

made up the haploblocks in this study. The statistics of the haploblocks discussed in this

section are described in table 3.5.

The size of haploblocks in region A (high FST region) and region B (low FST region) was

plotted against chromosomal position to visualise the spatial pattern of LD within those

regions (Figure 3.9). The figure shows that region B (the low FST region) differed from

region A (the high FST region) with respect to the number, size, and clustering of the

haploblocks. There were relatively few haploblocks in region B (4 haploblocks >1kb, mean =

421 bp) but they are larger compared to region A (25 haploblocks, all <1kb, mean = 63bp).

There were more SNP loci in haploblocks in region B than in region A (approximately 128

versus 98), with an average of 6 SNPs per block in region B compared to 3 per block in

region A (Table 3.5). Furthermore, the largest single haploblock was observed in region B

(1471 bp) while the largest haploblock in region A was 392 bp. Given that region A contains

the candidate “ivermectin response QTL” these data suggest that ivermectin treatment is not

the principal determinant of haploblock structure in O. volvulus. This was confirmed when

one considered the haploblock structure of the entire 100kb region. I observed haploblocks

of varying length that mirrors available genetic diversity of the two regions, rich in A and

poorer in B. There lengths suggest association with ivermectin resistance, but their pattern is

contrast to the expectation of a selective sweep driving high FST and long-range LD (Table

3.5, Figure 3.9).
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Table 3.5. Haploblock structure statistics.

Haploblock structure by region

Locus
Length of

Region (bp)
No of
SNPs

No of
Blocks

Haploblock size (kb) SNPs in haploblock

Total
Block Size

% of
Region
Length

in
Blocks

Mean Min Max
Total
No of
SNPs

% of
SNPs

in
Blocks

Mean Min Max

A 21,368 676 25 1.509 0.006 0.063 0.002 0.392 98 14.497 4.083 2 14

B 20,623 375 16 6.316 0.021 0.421 0.002 1.471 128 34.133 8.533 2 21

C 96,004 2,699 109 18.563 0.03 0.172 0.002 2.987 651 24.120 6.028 2 54

Haploblock structure by chromosome

Chrom
Length of

Chrom (bp)
No of
SNPs

No of
Blocks

Block size (kb) SNPs in block

Total
Block
Size

% of
Chrom
Length

in
Blocks

Mean Min Max Total

% of
SNPs

in
Blocks

Mean Min Max

OM1 31,161,767 422,125 18,721 6,272.490 0.020 0.360 0.002 33.44 87,533 20.897 4.720 2 463

OM4 16,048,563 233,375 10,536 2783.469 0.017 0.264 0.002 20.8 46,984 19.589 4.459 2 128

The sum of SNP loci and haploblocks, total, minimum and maximum haploblock length, percentage of the sequence covered by haploblocks, number and

percentage of SNPs in haploblocks on a per chosen region and chromosome are reported in this table
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3.3.3.2. Haploblock structure across OM1 and OM4.
Variation in the structure of haploblocks on the selected regions and chromosomes are shown

in Table 3.3. Generally, the pattern of haploblocks on chromosome OM1 differed from

chromosome OM4, primarily because it is larger (approximately 31 Mb versus 16 Mb) and

had more SNP loci (422,125 versus 233,375). As a result, chromosome OM1 had more

haploblocks (18,721 versus 10,536) than OM4. The percentage of the chromosome length in

haploblocks was similar for both chromosomes (0.020% versus 0.017%), and those

haploblocks had a larger average size in OM1 compared to OM4 (approximately 360 bp

versus 264 bp). The haploblock with the longest span was larger in OM1 (33,439 bp at

chromosome OM1 positions 27368457 to 27401895) compared to OM4 (20,798 bp at

chromosome OM4 positions 10751001 to 10771798) (Table 3.3). Likewise, the SNP density

for each chromosome varies per window size. This affects haploblock estimation since LD

(D’) is a function of the distance between SNP loci for which it is calculated. On average, LD

(D’) was larger where SNP density is lower. An average SNP per 1 kb of 13.95 was observed

on OM1 (one SNP per 74 bp on average) and 14.95 SNPs on OM4 (that is, one SNP per 68

bp on average) (Table 3.3). The average interval between each haploblock is approximately

1,162 bp in OM1 and 1,260 bp in OM4.

The percentage of SNPs in a haploblock was similar for OM1 and OM4 (20.897% and

19.589%, respectively). On average, the number of SNP loci per haploblock was also similar

in both chromosomes (approximately 5 SNPs per block). The number of SNPs within each

haploblock varied and correlated positively with haploblock size (Pearson's product-moment

correlation = 0.617 for OM1 and 0.73 for OM4, with p-value of < 2.2 x 10-16 for both).

Haploblock sizes and FST values do not correlate at the chromosome level as the Pearson's

product-moment correlation for both chromosomes were near 0. This is important in that FST

is a measure of genetic differentiation. This lack of correlation indicates that whatever has

caused the GR and SOR sub-populations to diverge genetically has not affected LD at the

chromosomal scale. That is, SOR and GR have diverged by FST, but that divergence is

localised to specific chromosomal regions. This means that FST and LD (which also varies in

localised regions only) are not going to be correlated generally across the full length of a

chromosome. This also means that it is unlikely that selection (or certainly hard selection) is

involved.

To understand the spatial pattern of LD at the chromosome level in O. volvulus, LD was

compared between linkage groups by estimating the haploblock structure of two of the major
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chromosomes (OM1 and OM4). The size of the haploblocks on the OM1 and OM4

chromosomes was plotted against the starting position on the chromosome to identify

potential signatures of positive selection (Figure 3.10). The plot was overlayed with the FST

plots for each chromosome. Looking at the figure, it is interesting to see some localised

“peaks” of increased haploblock size (that is, showing “peaks” of LD). Just as the peaks of

FST only “emerged” when plotted in windows, perhaps the LD “peaks” are “emerging” when

plotted not as individual values but as haploblocks. With respect to the number, size, and

clustering of the haploblocks, more clusters of smaller haploblocks were observed in OM1

compared to OM4. Most of the blocks are clusters of small haploblocks within the size of 2

bp to 2500 bp, although there are a few haploblocks having sizes of 10,000 bp and above on

both chromosomes.
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Figure 3.10. Haploblock and FST plots versus genomic position across two autosomes of the O. volvulus.
Plot reveals the genomic architecture of two autosomes. LD varies across the chromosome length as observed in the haploblock plot (plot A). LD blocks of

>30 kb was observed in chromosome OM1 while LD blocks were not as large in OM4 (max block size of approximately 20 kb). More clusters of small blocks

were observed in OM1 compared to OM4. Most of the blocks are clusters of small blocks within the size of 2 bp to 2500 bp, while fewer standalone blocks

are 10,000 bp and above for both chromosomes. Localised peaks of increased haploblock sizes were observed in plot A
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3.4.Discussion
This is the first study to characterize the pattern of LD and haploblock structure across the

autosomes of the parasitic nematode O. volvulus. The major aim of this study is to

understand the structure of LD and haploblock between sub-populations (GR and SOR)

and across the length of two autosomes. This study has compared the variation in LD

pattern and haploblock structure at several genomic scales: between two regions which

are and are not thought to be associated with SOR, and between two autosomes. The

major outcomes of the study are the clear understanding provided about the required LD

for successful imputation in O. volvulus, the density, spacing, and number of useful SNP

loci essential for association studies, and identifying the density of SNP loci needed for

designing a SNP array for future use in developing diagnostic tools.

3.4.1. Linkage disequilibrium decay/extent.

In this study, r2 was used to measure LD across all SNP pairs. I measured (1) LD between

a local maximum of LD and SNP loci that are increasingly further away (Figures 3.3, 3.4

and 3.6) (this is an important quantity for GWAS); (2) LD between all possible pairwise

without reference to their positions relative to each other or to other SNP loci (Figures 3.8

A and B, Tables 3.3 and 3.4); and (3) LD between adjacent pairs in a sliding window

moving along a chromosome (Figures 3.2, 3.5, 3.7, 3.9 and 3.10).

LD decay was defined as the distance over which the average r2 declines below 0.33 (the

LD threshold for GWAS), and LD extent as the distance over which the average r2 fell to

an asymptote value below 0.05. Definitions of LD decay and LD extent vary between

studies. For example, Angius et al. and Garcia-Gamez et al. used the distance over which

the average LD decreases to half of its maximum value (half-length) to define LD decay

in Sardinian population isolates and Spanish Churra sheep, respectively (Angius et al.,

2008, García-Gámez et al., 2012), whereas Anderson et al. defined LD decay as the

distance over which the average r2 dropped below 0.8, and LD extent as the distance over

which the average r2 fell below 0.2 (Anderson et al., 2018).

Cutter et al. (2006) gave a general description of LD pattern found in O. volvulus

populations, using six short nuclear loci examined in a broad geographic sample of wild

isolates of the gonochoristic C. remanei. They observed that LD declines significantly

over just a few hundred base pairs at a rate suggesting that linkage equilibrium will be

reached at distances of 1–2 kb (mean r2 of 0.208 across the loci at an average distance of
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1781.1 bp). My results, as seen in Figures 3.3 and 3.4A show that LD surrounding a

candidate ivermectin response-QTL decayed from the starting value to r2 values of 0.33 at

an approximate distance of 1404 bp and extended to an asymptote level of 0.05 within the

approximate distance of 9 – 10 kb. This contrasted strongly with LD decay surrounding a

local maximum of LD that was not associated with an ivermectin response QTL (Figure

3.4B) in which r2 decayed below 0.33 within 50bp of the local maximum, while still

reaching the asymptote of approximately 0.05 also within 9 – 10 kb. Thus, this analysis of

LD decay around local LD maxima is consistent with a relatively weak but none the less

detectable LD signal that is associated with ivermectin response (or may also be related to

differences in the number of SNPs available). The relatively weak nature of this signal

requires, however, that SNPs are genotyped at intervals of no more than approximately

1.4kb (in this instance). This is similar to the observed average r2 across 6 short nuclear

loci examined in a broad geographic sample of wild isolates of the gonochoristic C.

remanei by Cutter et al. (2006). A similar rapidly decaying LD was observed in

Drosophila melanogaster and maize (Long et al., 1998, Remington et al., 2001, Tenaillon

et al., 2001). Whereas LD decay in humans and in Arabidopsis thaliana is as large as

50–60 kb (Nordborg et al., 2005, Reich et al., 2001).

There is variation in the average measure of the relationship between LD and the distance

between SNP loci across all pairwise combinations within the selected regions and across

the chromosomes studied in this chapter. These measures of LD are not related to the LD

decay and extent discussed in reference to Figures 3.3, 3.4 and 3.6 but are of interest as

long-range measures of variations in recombination between chromosomes or large

segments of chromosomes. That is, they are useful to get the general sense of

chromosome level differences of LD. LD between SNP loci across chromosome segments

is the basis for haploblock definition that relies heavily on subsequent GWAS.

Recombination also constrains gene flow between population which greatly affects FST

values. The difference in the average measure of the relationship between LD and the

distance between SNPs at various 1 Mb segments of the chromosome length (Figures

3.8A and 3.8B and appendix Table 3.1) could be attributed to recombination rates varying

between and within chromosomes, genetic drift, and demography. Differences in LD

between chromosomes have already been reported in Holstein cattle (Qanbari et al.,

2010).
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3.4.2. Haploblock estimation and correlation with selection.

The major aim of studying the haploblock structure of O. volvulus was to identify the

pattern of LD variation along the linear sequence of a chromosome. Based on the

definition of haploblock in this study, a region is described as a series of small, adjacent,

clustered blocks or these are merged into a longer single block. Defining haploblocks is

essentially an extension of the LD sliding window that groups adjacent windows of

elevated LD together into blocks. For LD between adjacent SNP pairs, Figure 3.2 shows

the sliding window LD plot between adjacent SNP loci on a 100 kb region on

chromosome OM1. From the figure, a small interval or peak of elevated LD was detected

around the first 20 kb which matches with a region of high FST as shown in Figure 3.2B

and 3.5A&C although small intervals of elevated LD existed across the whole region.

This could suggest soft selection, because a small window of moderate elevation of LD

involving a small number of adjacent SNPs is expected in soft selection. However, the

relationship between FST and LD does not just depend on selection. It could also be

because of lower recombination in that region which favours reduced gene flow and,

hence, higher FST. FST is conditioned by within population diversities and gene flow

between the two populations compared. And, LD could increase because of diversity loss,

for example, selection, or reduced recombination (functional constraint or genomic

constraint). Clustering of shorter haploblocks might indicate selection. I compared two

regions, one (region A) which is associated with SOR based on high FST between GR and

SOR worms and the other (region B) which is not (Figure 3.5). What emerges is a view

that where there is elevation of FST there is also modest elevation of LD, but the converse

is not necessarily true, that is, there are many regions of elevated LD that do not

correspond with elevation of FST and, in fact, overall, there is poor correlation between the

two. In other words, the existence of haploblocks that are not associated with elevated FST

does not falsify the hypothesis that regions of elevated ivermectin associated FST will be

associated with a haploblock. The distinct clustering of moderately elevated LD

haploblocks in region A aligns very well with the FST plot. Considering the clustered

pattern of the short haploblocks in region A, it is possible that LD is elevated over a much

longer region in A than in B even though the individual haploblocks in B are longer

(Figure 3.9 A&B). This corroborated the result shown in Figure 3.5 on the LD between

pairs of adjacent SNP loci within region A and B, where I observed a region of elevated

LD extending over 10 kb in region A, consistent with selection and supported by the LD

decay rate described in Figure 3.4.
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Higher LD and resulting longer haploblocks are expected in regions that have undergone

selection or are presently undergoing selection in the population. The haploblock with the

longest span observed in region B (a low FST region) was approximately 4 times than the

longest haploblock observed in region A (a high FST region) (Table 3.3; Figure 3.9).

When considering the larger region of the chromosome in which region A and B are

located, region C, there are six (6) haploblocks and they are not clustered. The FST peak in

region A is mirrored by a moderate (2 – 3-fold above average) elevation in LD in a

haploblock, and there is a much larger region of elevated LD between regions A and B

that does not correspond to a peak in FST, and evidence for a very large region of elevated

LD around position 25,820,000 just to the left of region B. Thus, the elevation of LD in

region B is because it is on the shoulder of an extensive region of LD (Figure 3.9) that is

not mirrored by elevated FST. This implies that SOR selection has left a weak LD

signature consistent with soft selection (in Region A) but that there has been much

stronger selection that is not related to SOR further to the right of Region A. The nature

of this selection is not known, but a reasonable candidate might be the host switch that

gave rise to O. volvulus or there could be another genomic artifact in observed signal, for

example, the region may be poorly resolved.

SNP density has a strong impact on the ability to detect small haploblocks. This could

contribute to the difference between the number of blocks found in region B (low FST

region) compared to A (high FST region) - there was a 2-fold difference in the percentage

of SNP loci in haploblocks and the 2-fold difference in mean SNP loci per haploblock in

region B compared to region A. There was also a 2-fold difference in SNP locus density

between region A and B (Region A= 676 SNP loci; B = 375 SNP loci). The definition of

a haploblock in this study (pairs of SNPs having LD values between D’ of 0.7 – 0.98)

combined with SNP density in region A and B (region B had a SNP locus density half

that of region A) could account for such apparent difference in the haploblock structure

between regions A and B, and certainly between OM1 and OM4 (where SNP density is

similar, as are percentage of chromosome in haploblocks and percentage of SNP loci in

haploblocks). Haploblock coverage (the proportion of sequence that is contained in

haploblocks) can potentially be improved by using higher SNP densities. Both

simulations and biological data show that an eight-fold greater SNP density improved the

proportion of sequence that is contained in haploblocks more than twice, most of which
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comes from the identification of smaller blocks that were missed with sparser SNP

density (Wall and Pritchard, 2003b).

Less SNP could result from less diversity, and, thus, increased linkage and increased

haploblock size. On the average, the distance between adjacent SNP loci is greater in

region B than in A resulting into the less likelihood that any two adjacent SNP loci are

sufficiently close together to be in LD, and thus to form a haploblock. The numbers

support it up to this point (676 vs 375 SNP loci in A vs B; 25 vs 16 blocks) but the

situation changes when one looks at the percentage of the region in haploblocks (0.006 vs

0.021 or 3-fold less in A vs B), which translates to a 7¬fold more base pairs of sequence

in haploblocks in B than A and more than 2¬fold more SNP loci in haploblocks in B than

in A. All those numbers that has to do with haploblock size are the opposite of what one

expects in a region in which SNP locus density is lower. This implies that the difference

in SNP locus density may not account for the difference in haplotype structure between

the two regions (that is, SNP density does not influence haplotype structure in the regions

studied). Another explanation could be because of the problem of sample size.

Recombination is stochastic, so the ability to measure LD accurately is dependent on

sample size. This was evident with the region with higher SNP density such that low

sample size (as seen here) resulted in variation in LD over short distances and shorter

haploblocks.

The genome-wide pattern of LD/haploblocks showed that some regions that differentiate

SOR adults’ female worms from GR correlated well with regions of elevated LD

(consisting of a cluster of fragmented small haploblocks) while others do not, suggesting

a pattern of soft selection for ivermectin response that varies between GWAS-QTL loci.

There are many other influences on LD in addition to ivermectin response, including drift,

migration/admixture (which can both distort FST and LD); or selection at closely related

locus; or a loss of diversity at region B could be driving the pattern at region A. Another

possibility is that the FST analysis is impacted by sample size (the same is true, possibly

even more) for estimates of LD because recombination is itself stochastic. some of the

high FST values will be stochastic, rather than because of selection for SOR. One

expectation is that high FST values that are due to selective forces, rather than sample size,

will be associated with regions of high LD or be within haploblocks. Sweep will distort

LD (Thomson 1977) but the relationship between FST and LD involves gene flow,

population diversity and recombination (Slatkin and WIehe, 1998). In addition, LD
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distortion depends on the age of the sweep. To that respect, the perspective of using

haplotypes of SNPs for FST computations could help reducing noise associated with

SNP-based analysis (Charlesworth, 1997).

During the domestication of cattle by humans, there is likelihood for O. volvulus host

switch from cattle to humans. In domesticated cattle breeds like Holsteins, Ne estimate is

small compared to O. volvulus (that is, lower recombination and higher LD). Similar

estimates were expected in O. volvulus population, but the converse is true: higher

recombination, lower LD between SNP loci and less of O. volvulus genome in LD were

observed. For example, the percentage of the chromosomal length contained in

haploblocks was approximately 0.02 % and there were approximately 5 SNP loci per

haploblock on average (Table 3.4). The genomic distribution of, and proportion of the

genome covered by, haploblocks in this O. volvulus population is lower than observed in

some other species such as cattle (Kim and Kirkpatrick, 2009, Qanbari et al., 2010), as

expected according to the lower LD between SNP loci observed. The situation is also

different in sheep: the SheepHapMap project identified an overall limited genome

coverage in haploblocks for domestic breeds, with Churra having the lowest coverage

(0.8%) with 88% of the blocks had 2 SNPs (Qanbari et al., 2010) and the wild Soay sheep

showing large genome coverage (21.84%) (Archibald et al., 2010).

3.4.3. Linkage Disequilibrium and evaluation of effective population size.

There are two general contributors to variation in LD: one is recent events (selection) and

changes in population size (population bottleneck and admixture). The final value of LD

at any point in the genome is a trade-off between these two. The measurement of LD in

natural populations has been utilized to estimate the effective population size (Ne) (Deng

et al., 2019, Service et al., 2006, Sved, 1971, Tenesa et al., 2007). Ne can be described as

the number of individuals in an idealized population with random mating and no selection

that would lead to the same rate of inbreeding as observed in the real population (Wright,

1931). One important relationship between LD and Ne is that LD between SNPs farther

apart is a reflection of a more recent change in Ne than LD between SNPs closer together

(Hayes et al. 2003). A large Ne means either that the census population size is very large

and/or that there have been many generations of recombination: the chromosome

segments that are identical by descent are small, and so LD extends for only a short

distance (reviewed in Ardlie et al. 2002). Higher recombination and lower LD between

SNP loci observed in O. volvulus populations is consistent with a large effective
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population size and a large census population size in the parasite populations. This result

was corroborated by Crawford et al. (2019) in their study using whole mitochondrial

genomes of approximately 150 parasites from West Africa; they indicated that historical

population size in O. volvulus is likely very large (105 or 106). Crawford et al.’s analysis is

consistent with the hypothesis that there was a population bottleneck in the distant past

followed by subsequent expansion. Similar values for Ne were also estimated on the basis

of the nuclear data from Ghana (S. Hedtke, pers. comm.).

Realistically, the Ne of a population can change over time (Wright, 1931). For instance, in

Bos taurus cattle Ne was large before domestication (>50,000), declined to 1,000–2,000

after domestication and, in many breeds, declined to approximately 100 after breed

formation. This was coupled with the very strong artificial selection for production traits

in the livestock. However, the long-range LD only applies in similar breeds (MacEachern

et al., 2009). This Ne history in cattle is similar to that experienced by dogs (Sutter et al.,

2004) but is the opposite of that experienced by humans (reviewed in Ardlie et al. 2002).

The European human Ne was only approximately 3,000 but then increased enormously in

the last 10,000 years. Consequently, humans have similar LD to cattle at short distances

but almost no LD at long distances (Ardlie et al., 2002, Tenesa et al., 2007). Given the

results from Crawford et al, there was a huge bottleneck in O. volvulus approximately

10,000 years ago, probably during the host switch from cattle to humans (similar results

have been observed but not reported for the nuclear data for Ghana; S.Hedtke pers

comm).

3.4.4. Linkage Disequilibrium and GWAS.

Generally, r2-values above 0.33 indicate LD that is sufficiently strong enough for

association studies that use a subsample of the data (Ardlie et al., 2002). This threshold

was based on the attempt to interpret r2 in terms of power to detect an association

(Kruglyak, 1999). Typically, sample size is a limiting factor in association studies

(Spencer et al., 2009), but increasing sample size to compensate for weak LD between a

locus and the susceptibility QTLs is impractical in O. volvulus, because of limited ability

to acquire phenotyped samples, inconsistent quality of the gDNA extractions, cost of

genomic sequencing, and resulting missing data in the sequenced worms (Doyle and

Cotton, 2019, Hedtke et al., 2019)). Values of r2 > 0.33 limit the required increase in

sample size to no more than threefold and was therefore considered to be the minimum

useful LD value for GWAS. Application of this rule of thumb to statistical averages in my
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data based on the physical distance between the adjacent SNP loci with r2 > 0.33 would

imply it is not possible to carry out GWAS successfully unless markers are spaced at an

average physical distance of 56 bp and 57 bp between adjacent SNP loci on chromosomes

OM1 and OM4 respectively.

Furthermore, because the values of LD vary across the chromosome length, the criteria

for SNP density varies as well. For example, based on the physical distance between the

adjacent SNP loci where r2 > 0.33 in region A (high FST region), an average physical

distance of 28 bp between adjacent SNP loci would be required for GWAS, while in

region B (low FST region), this value is 63 bp. Similarly, in the 100 kb region that covered

both A and B in this study (region C), an average physical distance of 42 bp between

adjacent SNP loci would be required for GWAS. These are evident in Figures 3.2 and 3.5

(points above the horizontal line).

The extent of LD serves to assess the number of markers required to associate genetic

variation with economically important traits (García-Gámez et al., 2012). A population

with extensive LD will require lower marker density; in contrast, if LD extends for only a

short distance, denser SNPs would be needed for GWAS to detect or increase the power

of association. Figures 3.3 and 3.4A suggest that SNPs can be further apart in region A

than in B because LD persists further. This means that lower SNP density is required in

region A than in B because LD surrounding the candidate QTL that is under selection

decays more slowly in A than in B. Based on the extent of LD up to r2 value of 0.33

(which is at approximate distance of 1.5 kb), a minimum SNP density of 20,775 and

10,699 are needed in OM1 and OM4, respectively, to confidently detect the association of

a SNP with a trait of interest in O. volvulus. In other words, If and only if the candidate

ivermectin-QTL studied were typical of all ivermectin-QTLs, SNP loci would have to be

no more than 1.5kb apart in order to detect selection at an ivermectin-QTL. This is similar

to analysis done by McKay et al. in cattle, in which they showed that at a physical

distance of 100 kb separating flanking SNP loci, the average r2 was 0.15 to 0.2;

considering a bovine genome length of 2.87 Gb, they concluded that 28,700 fully

informative markers would be needed to saturate the cattle genome at an average

resolution of 100 kb (McKay et al., 2007). Alternatively, genotype imputation from a

densely genotyped reference panel could help to improve the density of SNPs in

situations of missing or ungenotyped markers. This is discussed elaborately in Chapter 4.
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The estimation of LD reported in this chapter can also help to assess the utility of a SNP

array genotype chip to address fine-mapping studies in O. volvulus.
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3.5.Conclusion
This is the first study to characterize the pattern of chromosomal LD and haploblock

distribution in the adult females of the parasitic nematode - O. volvulus. I have been able

to describe LD pattern within specific high and low FST regions on the OM1 chromosome

of the O. volvulus genome across worms from Ghana phenotyped for response to

ivermectin. I have further extended this analysis across two autosomes.

This study has implications for using LD as a tool to study population history, in the

design of a SNP array, for development of diagnostic tools, to allow for genotype

imputation and for enhancing GWAS in O. volvulus and helminths at large. The major

highlights of this chapter are:

1. Across the regions and chromosomes studied, LD decayed within few base

pairs and extended to an asymptote level of r2 of 0.05 within the

approximate distance of 7 – 9 kb.

2. There is sufficient LD for genomic imputation (high number of adjacent

SNP loci with r2 ≥ 0.33) which is the focus of the next chapter. Based on

the LD data, the required SNP density needed to confidently carry out

genotype imputation is a SNP locus every 56 or 57 bp. That is, markers

must be very closely spaced (at least at an average physical distance of 57

bp between adjacent SNP loci across the genome).

3. GWAS is dependent on LD decay around local maxima of LD (and

haploblocks) that are indicative of selection. Based on the extent of LD up

to r2 value of 0.33 (which is at approximate distance of 1.5 kb), a

minimum SNP density of 20,775 and 10,699 are needed in OM1 and OM4,

respectively, to confidently detect the association of a SNP with a trait of

interest in O. volvulus. A minimum of 64,668 SNP loci are needed at the

genome level.

4. Soft selection is driving SOR in O. volvulus (although, subjected to further

analysis), which in turn left a weak LD signature in the genome

characterised by clusters of small fragmented haploblocks of low to

moderately elevated LD that correlate with peaks of FST.
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5. There is clear evidence of much stronger selection that are not related to

SOR. The nature of this selection is not known, but a reasonable candidate

might be the host switch that gave rise to O. volvulus.

6. The LD results are consistent with a large effective population size and a

large census population size in the parasite population as estimated from

previous studies.
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Chapter Four

Genomic imputation

Introduction
With the emergence of the genomic era, there is an exceptional amount of genomic

information being generated routinely (Isik et al., 2017). Inevitably, some fraction of the

genotype data will be missing from virtually every genotyped dataset. For single-marker

methods, such as association genetics, removing the individual or locus records in which

these missing values occur could be an option, provided that the overall level of missing

data is relatively low for each locus. Analytical methods that consider more than one

locus at a time are often much more sensitive to missing data, and it may not be

economical to drop individuals that are missing data at any one of the loci being analysed,

unless they are few (Isik et al., 2017). In the extreme case, in which all marker loci in the

genome are analysed at once, the approach of dropping individuals with missing genotype

data can mean discarding data which may otherwise be informative about the phenotype

of interest in order to remove a small proportion of missing values (Neale, 2010, Illumina,

2019). A valuable alternative is genomic imputation, which maximizes the amount of

information available for analysing genotype-phenotype correlations.

Genotype imputation refers to the estimation of base calls to replace missing observations

in a data set (Isik et al. 2017). It is a cost-effective method for statistically predicting

un-typed loci not directly sequenced in a sample of individuals based on a densely

genotyped reference panel of haplotypes (Neale, 2010) and can be almost as accurate as

directly sequencing the genotypes. Imputation methods estimate haplotypes based on

shared genotypes between partially genotyped individuals and the reference panel and use

this information to infer missing alleles (Marchini and Howie, 2010). That is, it relies on a

reference database of fully sequenced genomes to predict missing variant calls in a

sample of individuals. The approach consists of first reconstructing haplotypes for the

samples of interest (samples of interest are described as a ‘target population’ in this

chapter) using the haplotypes from the reference set (haplotype phasing), and then

estimating genotypes (Neale 2010). This process can increase the overall genome

coverage of any genotyped dataset by increasing the number of testable single nucleotide

variants across the entire genome and can improve fine mapping of a targeted region of

interest (Illumina, 2019).
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Imputation methods exploit linkage disequilibrium (LD) among SNP loci. LD is a

powerful asset in imputing missing genotypes with 90% or greater accuracy (Huang et al.,

2012). Imputation essentially relies on knowing or inferring the haplotype phase of

individuals and then using LD information from nearby markers to replace missing

genotypes. The structure of LD between adjacent SNP loci described in chapter three,

section 3.3.2.3 and in figure 3.7 of this thesis shows that in the O. volvulus genome, there

is sufficient LD between adjacent SNP loci to carry out genotype imputation because a

sizeable percentage (approximately 26.48% and 22.29%) of the adjacent SNP loci across

the autosomal chromosome OM1 and OM4, respectively, had LD above 0.33 (the LD

threshold for imputation). Although genotype imputation has not been tested in helminths,

it could be a powerful tool for minimizing costs associated with genetic-based screening

for sub-optimal response in O. volvulus or for drug resistance in other helminths.

Imputation is new to filarial nematode population genetic studies, and reference panel

(that is, densely genotyped datasets) have not been developed that could be used to

impute missing genotypes in these animals. In other organisms where genotype

associations are ordinarily applied, reference panels for imputation have been developed.

For example, the human genome project uses the samples from the Human Genome

Diversity Project the HapMap Consortium, and the 1000 Genomes Project (1000G) as

reference panels (Cavalli-Sforza, 2005; International HapMap 3 Consortium, 2010;

Sudmant et al., 2015); in the sheep genome project; 5K, 50K, and HD panels are routinely

used (Ventura et al., 2016), the cattle genome projects generally uses the animals from the

1000 Bull Genomes Project (Run 6.0), the BovineSNP50 (SNP50) BeadChip

(Illumina, San Diego, CA), and the BovineHD (Illumina, San Diego, CA) array as

reference panels (Matukumalli et al., 2009; Wiggans et al., 2012; Daetwyler et al., 2014).

The Grant Lab at La Trobe University currently has the world’s largest O. volvulus whole

genome sequence database. I utilized this resource to test the benefits and limitations of

genomic imputation in these worms. Densely genotyped O. volvulus were used as the

reference panel for imputing missing genotypes in low and uneven-coverage sequences

from different worm populations. The overall aim of the project, and of the Grant Lab, is

to develop diagnostic tools for identifying SOR genotypes from hundreds of O. volvulus

microfilariae collected from people. Imputation may be a practical solution to reduce the
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costs associated with genotyping the microfilariae because each microfilaria has little

DNA, and because sequencing hundreds at high depth would be impractically expensive,

while the more economical low-depth whole genome sequences have correspondingly

low genome coverage. Thus, the conceptual feasibility and accuracy of imputation were

explored in this chapter, with regard to (1) identifying the appropriate reference panel to

use by comparing two sets of reference panels: (a) from a diverse population (called

‘global’ in this chapter) and (b) from the same population as the target population, and (2)

testing the success of imputation in improving the power of association of variants with

drug resistance.
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Materials and Methods

4.2.1. Study Data.

The worm samples used in this study consist of adult female O. volvulus from East

Africa, West Africa, and South America (total = 192). Figure 4.1 shows the countries

from which the worms were obtained and their assignment into a reference panel (that is,

the worm sequences containing a dense proportion of SNP loci used to impute missing

genotypes) and a target population (worm sequences with missing genotypes or

genotyped at lower marker density).

There were two imputation experiments. In one, a “global” reference panel made up of

the worms obtained from NCBI’s GenBank database, study accession number

SRP066374 from a study by Choi et al. (2016) was used to impute data for population of

worms from W. Africa (Grant lab; sequenced at lower and inconsistent depth relative to

the global reference), and from Cameroon (reduced representation sequencing, also from

Grant lab). In the second experiment, population specific reference panels were selected

from Grant lab sequenced worms from W. Africa and Cameroon, where those worms with

higher quality and higher depth whole genome data were selected as reference panels and

the remaining lower quality or reduced representation worms were the target populations.

The aim was to compare different strategies for choosing a reference panel and to test the

feasibility of using genomic imputation as an alternative to high depth sequencing for

genotyping O. volvulus.

For the GWAS study, a subset of the W. Africa and Cameroon targets populations had

been phenotyped for sub-optimal response and thus could be used for association

analyses. Worms from W. Africa were qualitatively phenotyped based on embryograms

from nodulectomies approximately 90 days after ivermectin treatment and categorized by

response to ivermectin into good responders (GR; n = 33) and sub-optimal responders

(SOR; n = 26) (Figure 4.1 and as described in chapter two Methods section). The worms

from Cameroon were phenotyped based on quantitative counts (of embryonic

developmental stages including number of oocytes, oocytes in rachis, morula, coiled

microfilariae, and stretched microfilariae from embryograms taken from nodulectomies

approximately 80 days after ivermectin ingestion). Worms with higher counts of the
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embryonic stages were categorized as suboptimal responders (SOR, n = 32) and the ones

with no counts were categorized as good responders (GR, n = 33) (Figure 4.1).
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Figure 4.1. Flowchart showing countries where samples were obtained, and the distribution of these samples into reference panels,

target population, and phenotypes.
Countries from which the samples were sourced: the big circles in grey colours, their phenotypes: small circles in grey colours, including good responders

(GR) and sub-optimal responders (SOR)). The cyan arrows point to the reference panels (rectangles in cyan colour) while the green arrows point to the target

populations (parallelograms in green colours). Finally, the blue arrows point to the reference panels used in imputing each target populations
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4.2.2. Preparation of the reference panel and target

populations.

Variant call files (VCF) based on the sequence data described above for the worms in the

global reference panel, W. African reference panel and target populations, and from the

Cameroon target population, were received from S. Hedtke (Hedtke et al., in prep), while the

Cameroon reference panels were received from the lab. The global reference contained all the

worms from the Choi et al. study (Choi et al., 2016).

Vcftools v1.1.13 (Danecek et al., 2011) was used to further filter all the variant call files. Only

biallelic SNP loci were retained. Sites with any missing data were filtered out of all the

reference panels. The global and the W. African reference panels retained only SNP loci with

a minimum depth value ≥ 20, while the Cameroon reference panel had a minimum mean

depth value ≥ 5. For the W. Africa target population, variant sites were filtered requiring a

minor allele count (number of times the allele appears over all individuals at a particular site)

≥ 3, a minimum mean depth value ≥ 5 (over all worms in that particular data set) and <50%

missingness (in order to reduce genotype error rates; also knowing that imputation accuracy

improves as the depth of coverage and the minor allele frequency increase). For the

Cameroon target population, individual worms with more than 50% missing data and sites

with more than 20% missing data were removed. The W. African 1 (N = 66) target population

are all the whole genome sequences with uneven coverage obtained from Grant Lab while the

W. African 2 (N = 45) target population are a subset of the whole genome sequences with

uneven coverage obtained from Grant Lab. The Cameroon 1 (N = 95) target population is all

the single adult worm reduced representation sequences obtained from Grant Lab while the

Cameroon 2 (N = 86) target population is a subset of single adult worm reduced

representation sequences obtained from Grant Lab.

The software beagle (Browning and Browning, 2007) was chosen for imputation and

associated analyses because it has been found to perform well with high accuracy and is more

robust under various conditions as seen in previous studies (Das et al., 2016, Ma et al., 2013,

Marchini and Howie, 2010). According to Browning and Browning (2007), proper

imputation requires that the reference and target variant files have overlapping SNPs. A

beagle filtering step was performed using conform-gt as described by (Browning and

Browning, 2016) to ensure this. As described earlier, the reference panels, which were
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sequenced at greater depth, were used to predict missing or untyped genotypes, while target

populations were the worm population where missing/untyped data were to be imputed.

Using the position field, two allele records (one record each from the reference and target

variant files) were matched only if the alleles in the target VCF record or in the strand-flipped

target VCF record were a subset of the alleles in the reference VCF record. Positions where

alleles were called in the target population that were not found in the reference panel were

removed from downstream analyses.

4.2.3. Phasing of the reference panels.

All the reference panels were phased using the program beagle version 4.1 with default

parameters (Browning and Browning, 2007). Due to small sample size, phasing was done

only on the reference panels, and it ran very fast. Pre-phasing of the target population was not

done to avoid introducing imputation error due to haplotype uncertainty, which can

particularly occur when imputing rare variants (MAF < 0.01) (Howie et al., 2012). Also,

because of the small sample size, not having pre-imputation phasing for the target population

had no implication on the imputation run time. Phasing is the construction of haplotypes from

unphased diploid data, that is, converting those diploid data into what is in effect two sets of

haploid data for each worm. It is a critical step given the haplotypes are the basis of

imputation.

4.2.4. Imputation.

Imputation of the target population was done using the default parameters in the program

beagle version 4.1 (Browning and Browning, 2007) for two autosomal chromosomes used as

test cases throughout this thesis: OM1 and OM4. Beagle (Browning and Browning, 2007)

uses a hidden Markov model to predict the missing genotypes and linear interpolation to

impute ungenotyped variants.

A large effective population size was assumed (Ne = 1,000,000) based on the estimation made

from observed relatively low LD between markers in these chromosomes (average (SD) r2

between adjacent SNP loci are approximately 0.25 (0.25) and 0.21 (0.31) for chromosome

OM1 and OM4 respectively; chapter three), as well as estimates from previous studies

(Crawford et al., 2019; Hedtke et al., in prep). The target populations were divided into single

chromosomes, and imputation was performed for each chromosome separately. The resulting
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variant files were merged using the perl script with vcf-concat (Danecek et al., 2011) and

used in downstream analysis.

4.2.5. Validation.

I assessed the accuracy of the imputed genotypes at the marker level using the allelic

R-squared (AR2) and dosage R-squared (DR2) metrics, and at the study level using the

allele-frequency correlation, as described by (Browning and Browning, 2009). Allelic

R-squared (AR2) is described as the squared correlation between the allele dosage (that is,

how many copies of the alternative allele are observed at a locus) of the most likely imputed

genotype in the target population and the allele dosage of the true genotype in the reference

panel (Browning and Browning, 2009). Dosage R-squared (DR2) is defined as the estimated

squared correlation between the estimated allele dose and the true allele dose (Browning et

al., 2018). Both estimates, AR2 and DR2, are good measures of imputation accuracy and

either of them can be used for identifying or excluding markers with poor imputation

accuracy prior to downstream analysis and interpretation (Browning and Browning, 2009,

Gilly et al., 2019). A filter of AR2 >0.80 is usually encouraged - a filter that is too low could

introduce errors into the imputed data (H. Daetwyler pers. comm.).

The Wilcoxon signed-rank test was used to compare the accuracy of estimated allele

frequencies between reference panels and their corresponding post imputation population

(that is: global/W. Africa, W. Africa/W. Africa, global/Cameroon, and Cameroon/Cameroon),

according to Browning and Browning (2009). For each imputed marker v, if Pv is the

absolute allele-frequency error using reference panel 1 (for example, global reference panel)

and Qv is the absolute allele-frequency error using reference panel 2 (for example, W. Africa

reference panel), the null hypothesis of the Wilcoxon signed-rank test is that the median of Pv

− Qv equals 0. Rejecting the null hypothesis implies that there are differences in accuracy of

the estimated sample allele frequencies derived from the two reference panels.

To detect the association between the accuracy of imputation and allele frequency, the alleles

were divided into 10 bins, according to their frequency, with an increment of 0.1. The

accuracy of imputation (AR2) was calculated for each bin to test the efficiency of imputation

for alleles at different frequencies. The correlation between the allele frequency of the

reference and the post-imputation target population for each reference/target combinations

was calculated to assess whether the distribution of variants after imputation was altered
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significantly or not. The allele frequency spectra of the post-imputation variants above or

below the accuracy cut-off were compared to see if there was bias in imputation accuracy

across a given chromosome.

4.2.6. Association tests.

Association tests were carried out using plink2v.1.90b3 standard case/control association

analysis (Purcell et al., 2007) on a subset of the target W. African (n = 59) and target

Cameroon populations (n = 65), which were phenotyped as described in section 4.2.1 and

Figure 4.1 above. GWAS was performed to investigate the effect of imputed genotype data on

the power to detect ivermectin response associations by comparing p-values computed with

true genotype data (that is, the genotype from the experimentally measured population - from

Illumina data) with p-values computed with imputed data. Quality control was performed on

the imputed variant sites using vcftools v1.1.13 (Danecek et al., 2011), which involved

extracting variant sites with AR2 ≥0.8 from the imputed variants, which were then used for

the association studies. Case/control association test was done here on a subset of the W.

Africa and Cameroon targets populations phenotyped for sub-optimal response.

To account for population stratification, multidimensional scaling (MDS) analysis was

performed in plink2 to perform a cluster analysis that pairs individuals on the basis of genetic

identity with Euclidean distance.

Manhattan plots of p-values were created using the qqman package in R Studio (R

Development Core Team, 2013, Turner et al., 2013). Other figures and tables were created in

RStudio (RStudio, Boston, Massachusetts, USA) using the ggplot2 package (Wickham, 2016)

and Microsoft Excel (Microsoft Corporation, Redman, Washington, USA).
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Results

4.3.1. Reference and target variant filtering.

The quality of imputation is dependent on both on the quality of the reference panel and

quality of the target population. The counts of variant sites in the reference panels, the counts,

and the percentage (in brackets) of variant sites in the target populations before and after

running beagle (conform-gt) filtering steps, and after imputation are provided in Table 4.1 for

the two autosomal chromosomes tested here (OM1 and OM4). The variant sites in the global

panel (N = 21; whole genome sequences obtained from Choi et al. (2016) study) were used to

impute the W. African (N = 66) (whole genome sequences with uneven coverage obtained

from Grant Lab; average depth of coverage = <20) and Cameroon (N = 95) target populations

(reduced representation sequences obtained from Grant Lab; average depth of coverage =

<5).

After filtering the reference panels for minimum depth and quality with vcftools, as expected,

the global reference panel had more variable sites (569,363) compared to the W. African

(254,364) and the Cameroon reference panels (435,206) Table 4.1. A two-fold increase was

observed in the Cameroon reference panel compared to the W. African reference panel,

despite the reduced number of samples in Cameroon (N = 9) compared to W. Africa (N = 21)

(Table 4.1). The sites in the reference panels were biallelic, any sites with missing data were

removed, and all sites were phased prior to imputation. After filtering the target population

for minimum depth ≥5, MAF count ≥ 3 and <50% missingness with vcftools, 195,085 and

174,877 variant sites remained in the W. Africa target 1 (N = 66) and the W. Africa target 2

(N = 45) (a subset of the whole genome sequences with uneven coverage obtained from

Grant Lab) populations respectively, while 37,107 and 39,009 variant sites remained in the

Cameroon target 1 (N = 86) and Cameroon target 2 (N = 95) populations. These were the

number of variant sites present in the populations before carrying out beagle filtering steps

with conform-gt (Table 4.1).

I observed that the count of variable sites that met the beagle filtering with conform-gt

criteria (that is, the step which ensures that the variant sites in the target are also in the

reference) in the pre-imputation target populations was greater in the W. African target

populations compared to the Cameroon target populations (Table 4.1): there were ten-fold

more sites meeting beagle filtering with conform-gt criteria amongst the variant sites in the
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W. African target population compared to the Cameroon target population, probably because

the W. African reference pop is larger. The number of variable sites after running beagle

filtering with conform-gt step in the W. African target 1 (N=66) and W. African target 2

(N=45) populations were 136,784 (68.66% of the total) and 105,198 (60.16%), respectively

(Table 4.1). Fewer than 4% failed due to inconsistent or inconclusive chromosome strand

evidence in both W. African target populations, and 27.40% and 36.40% of the variant sites

in W. African target 1 (N=66) and W. African target 2 (N=45) populations were removed

because they were not present in the reference variant calls.

In contrast, in the Cameroon target populations, less than 30% of the total variant sites

remained after running the beagle filtering with conform-gt step (that is, the count of variant

sites that passed) in both target populations (Table 4.1). Following beagle filtering with

conform-gt, greater than 70% of the data were removed because they were not present in the

reference variant calls, while <2% failed because of inconsistent or inconclusive chromosome

strand evidence.
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Table 4.1. Counts of variant sites in the reference panels, the counts, and the percentage (in bracket) of variant sites of the target

populations before and after running beagle filtering with conform-gt steps, and after imputation.

Reference panel

Variant sites
in the
reference
panel

Target population

Target population
variant sites that
passed vcftools
filtering

Target population
variant sites that are
present in the
reference and the
target (%)

Target population
variant sites after
imputation

global panel (N = 27) 569363
West African (N = 66) 201365 136784 (68.66) 569363

Cameroon (N = 95) 39009 10333 (26.49) 569363

West African panel (N = 21) 254364 West African (N = 45) 174877 105198 (60.16) 254364

Cameroon panel (N = 9) 435206 Cameroon (N = 86) 37107 9885 (26.64) 435206

NB: All variant sites are biallelic.

The variant sites in the global panel (N = 27) (whole genome sequences obtained from Choi et al. (2016); average depth of coverage = >20) was used to

impute the W. African (N = 66) (whole genome sequences with uneven coverage obtained from Grant Lab) and Cameroon (N = 95) target populations

(reduced representation sequences obtained from Grant Lab). The variant sites in the W. African panel (N = 21) have average depth of coverage of >20. While

the the variant sites in the Cameroon panel (N = 9) have average depth of coverage >5.

The target population variant sites that are present in the reference and the target (%) column contains the number of “confirmed” variable sites in the target

population prior to imputation (those are in the variant sites that passed the beagle (conform-gt) filtering step).
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4.3.2. Accuracy and yield of imputation from a reference panel

with diverse population (‘global’) compared to reference panels

derived from the same population as the target samples (‘W.

African’ and ‘Cameroon’).

The yield and accuracy of imputation on low-depth whole genome sequence data, and on

reduced representation genome data, were assessed using reference panels from (1) a more

diverse population and (2) a subset of same population, as the target populations. I used

filtered whole genome sequences from a population sample of 27 individuals containing

569,363 variable sites as the global reference for imputing the W. African (N = 66) and the

Cameroon (N = 95) target populations, separately (Figure 4.1). Likewise, I used a subset (N =

21) of the W. African worm population as a reference population for imputation of missing

data from a W. African target population. The W. African reference population was composed

of W. African worms that had been sequenced at higher depth (>20; 254,364 variable sites),

while the target population was composed of W. African worms sequenced at a low depth

(<5) (Figure 4.1). Similarly, I used a subset (N = 9) of the Cameron worm population for

which there were whole genome data (sequenced at depth >5; 435,206 variable sites) as a

reference to impute genotypes for a sample (N = 86) from the same Cameroon worm

population that had been sequenced using a reduced representation method (Table 4.1; Figure

4.1).

4.3.2.1. Comparison of imputation yields across all populations.

Allele frequency spectra or distribution (Figure 4.2) of the reference panels were compared

with the allele frequency spectra of the pre- and post-imputation data. Subjectively, the figure

shows that the reference and post-imputed allele frequency spectra were not different, but a

Wilcoxon signed rank test showed that there were statistically significant differences between

the reference and post imputed allele spectra for all comparisons (Table 4.2).

The genotype imputation yielded the same counts of variable sites in the post-imputation data

as that of the reference panel used for the imputation as shown in Table 4.1 such that the

more diverse the samples in the reference panel, the greater the imputation yield. For

example, the global reference panel yielded more variable sites in the target populations after

imputation (global/W. Africa = 569,363; global/Cameroon = 569,363) compared to the target
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populations imputed from a reference panel of the same population (W. Africa/W. Africa =

254,364; Cameroon/Cameroon = 435,206) (Table 4.1).

Imputation changed the allele frequency in the target population and improved the ability to

detect likely rare variants (variants with MAF <0.01). Comparing the pre-imputation

frequency spectrum with the post-imputation frequency spectrum for both imputation trials

(that is, the separate imputations carried out with different reference panels), an interesting

difference is the degree to which there was an increase in numbers of rare variants in the

post-imputation target population relative to the pre-imputation target population. Both the

global/W. Africa and W. Africa/W. Africa combinations (Figure 4.2 A&B) had an

approximately 20% increase in the rare variants in the target population following imputation

(relative to the frequency spectrum of the pre-imputation target population) using either

reference panel or the common variants were also increased (MAF >0.05; global/W. Africa =

75.89 % increase; W. Africa/W. Africa = 74.17% increase) (Figure 4.2 A&B). Comparably,

global/Cameroon and Cameroon/Cameroon imputation combinations yielded approximately

99.20% and 91.72% increase in the rare variants in the target population following

imputation with the two reference panels, and an approximate 98% increase in the common

variants for both (Figure 4.2 C&D).
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Figure 4.2: Histogram plot showing the allele frequency spectra for the reference panel (red) vs post-imputation (blue) for all imputation

combinations.
The figure shows the allele frequency distribution for variant sites imputed by the A) global reference panel/W. African target population; B) W. African

reference panel/West African target population; C) global reference panel/Cameroon target population; and D) Cameroon reference panel/Cameroon target

population. See also Figure 4.1. The x-axis is the allele frequency values for the variant sites while the y-axis shows the frequency distribution of variant site

at each value. Each bar in the histogram plot has a binwidth of 0.01.
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Table 4.2. Table of Wilcoxon signed rank test statistics for all imputation set

comparisons.

Reference/Post-Imputat
ion data

Wilcoxon signed rank
test value p-value

global/W. Africa
1.17e+11 < 2.2e-16****

global/Cameroon
1.03e+11 < 2.2e-16****

W. Africa/W. Africa
2.35e+10 < 2.2e-16****

Cameroon/Cameroon
5.82e+10 < 2.2e-16****

A table showing the results from Wilcoxon signed rank test on the four imputation combinations

(global reference panel/W. Africa target population, global reference panel/Cameroon target

population, W. Africa reference panel/W. Africa target population, Cameroon reference

panel/Cameroon target population). It shows that there was significant evidence of a difference

between the reference and imputed allele spectra for all comparisons. it is also of interest to note that

the rank test value (although not p-value associated with it) is lower for the W. Africa/W. Africa and

Cameroon/Cameroon.
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4.3.2.2. Comparison of imputation accuracy across all populations.

Beagle v4.1 provides two position-level imputation metrics: allelic R-squared (AR2) and

dosage R-Squared (DR2). Dosage R-squared (DR2) is defined as the estimated squared

correlation between the estimated allele dose and the true allele dose. AR2 is defined as the

squared correlation between the allele dosage of the most likely imputed genotype in the

target population and the true allele dosage in the reference (allele dosage in this context is

the number of minor alleles). Both AR2 and DR2 have been indicated to be good measures of

imputation accuracy and can be used to filter imputed variants prior to downstream analysis.

The two measures of imputation accuracy (AR2 and DR2) reported by beagle were compared

and Figure 4.3 shows that they are strongly correlated across all combinations of

reference-target imputation combinations: global/W. Africa and W. Africa/W. African (r2 =

0.99, p < 2.2e-16) compared to the global/Cameroon and Cameroon/Cameroon (r2 = 0.97, p <

2.2e-16). The heat map colours on Figure 4.3 indicate allele frequency (AF) of the imputed

data. The red colours (low AF) tend to be further away from the line (where AR2=DR2) and

lighter colours (mid-range AF) are closer to the line, which indicates that the correlation

between AR2 and DR2 is dependent on AF. (Figure 4.3). Better correlation was observed at

moderate frequency (more green tones closer to the line as AR2 increases) for all four

combinations, especially for Cameroon. This is expected based on (a) the confidence that

imputation should be better for moderate allele frequencies and (b) the reference panel and

target populations are larger for W. Africa in particular, which also means higher imputation

confidence even at lower AF (more red closer to the line and at higher AR2 in Figure 4.3

A&B).

In this study, the measure of how confident one can be that the imputed allele at any given

variant site is likely to be true (that is, a measure of the confidence in the identity of the

imputed allele) was assessed by AR2. AR2 ranges between 0 and 1. A high correlation

(values closer to 1) between allele dosage in the target population and dosage in the reference

means that the reference and target populations are similar. Low correlation (values closer to

0) implies that the target and reference populations are different. The AR2 metric was chosen

for pruning the variants before performing GWAS. There are different approaches to

exploring the relationships between AR2 and imputation outcomes and I assessed that using

the following four criteria.
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Figure 4.3. The relationship between two imputation accuracy measures, allelic R-squared and dosage R2 ranked by allele frequency

(AF) values.
A) global reference panel/W. African target population. B) W. African reference panel/W. African target population. C) global reference panel/Cameroon

target population, and D) Cameroon reference panel/Cameroon target population. The x-axis is the Allelic R-squared while the Y-axis is the Dosage

R-squared. Each coloured point corresponds the distribution of the variants according to their allele frequency values. The figure shows that these two

measures of imputation accuracy are strongly correlated. The correlation between them is best for high frequency imputed alleles (AF > 0.1). For all four

combinations, the correlation is better at moderate frequency (more green tones closer to the line as AR2 increases), especially for Cameroon.
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Figure 4.4. The distribution of allelic R-squared (AR2) across 10 allele frequency bins for imputed variants.
The X-axis shows 10% frequency bins: [0,0.1), [0.1,0.2) …, [0.9,0.1). The Y-axis shows the distribution of AR2 in each AF bin for the four reference/target

population imputation combinations: (A) global/W. African; (B) W. African/West African; C) global/Cameroon; and D) Cameroon/Cameroon. The boxplot

shows statistical bounds of 1st and 3rd quartiles at the lower and the upper horizontal lines, respectively. The horizontal line within the box is the median value,

and the lines extending above and below the boxes (whiskers) are the outlier data points.
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Assessment criterion one: the distribution of AR2 across various allele frequency bins. The

first method used to assess the imputation accuracies of the combinations of reference panel

and target population was to compare the distribution of AR2 across various allele frequency

bins. Figure 4.4 shows the distribution of AR2 across 10 alternate allele frequency bins for

the imputed variants. Variation in the value of AR2 was observed for variants in the global

reference/W. African target population compared to the W. African reference/W. African

target population, particularly especially, with the common variants (AF > 0.1) (Figure 4.4

A&B). For global/W. African and W. African/W. African imputation combination, AR2 is

lower at AF<0.1, and uniform above 0.1. The difference in the range of AR2 for W.

African/W. African imputation combination is smaller and the AR2 values higher (smaller

boxes higher up the y-axis). The Cameroon imputed populations have quite different

relationships with allele frequencies. Cameroon population has uniformly low AR2 for all

allele frequencies irrespective of the allele frequency bin.

Since AR2 is a measure of imputation accuracy, Figure 4.4 implies that the imputation of W.

African populations has AR2 > 0.7 provided AF>0.1, but that AR2 is <0.1 for all values of

allele frequency in the Cameroon populations. That is, the accuracy of the Cameroon

population imputation is poor relative to the W. African population.

Assessment criterion two: Correlation of the imputed allele frequencies with the reference

allele frequencies. The second method I used to compare imputation accuracies of the

combinations of reference panel and target population was by examining the correlation

between the observed minor allele frequency from the reference panel (that is, the un-imputed

minor-allele frequency) and the minor allele frequencies estimated from the imputed data as

shown in figure 4.5. There were strong correlations between the minor allele frequencies

estimated from reference and minor allele frequencies in imputed target populations across all

imputation combinations using Pearson’s r: global/W. Africa (r2 = 0.81, p-value < 2.2e-16); W.

Africa/W. Africa (r2 = 0.94, p-value < 2.2e-16); global/Cameroon (r2 = 0.94, p-value < 2.2e-16);

Cameroon/Cameroon: (r2 = 0.90, p-value < 2.2e-16) (Figure 4.5).

The statistical testing of the allele frequency spectra supports a conclusion that there are

statistically significant differences between the reference and target population frequency

spectrum (Table 4.2), which is at odds with the superficial interpretation of Figure 4.5. Figure

4.5 supports a conclusion that the correlation between reference and imputed frequencies is

strongly dependent on allele frequency, and that dependency is very different between the W.
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African imputations and the Cameroon imputations. Thus, the Cameroon imputations appear

to have strong correlation between reference and imputed, but the fact that this is true only at

low allele frequency is of concern. High correlation between the minor allele frequencies

estimated from reference and minor allele frequencies in imputed target populations implies

that although they are statistically different as suggested in Table 4.2, the difference is not

biologically significant. This may be because all the spectra are strongly over dispersed and

are skewed strongly towards the low frequency alleles.

Imputation accuracy is lower in the global/Cameroon and Cameroon/Cameroon (Figure 4.5 C

& D): AR2 had low values across the entire MAF (lots of red dots across the plot). The

reference allele frequency did not influence the imputation quality measures in the

global/Cameroon and Cameroon/Cameroon population because there was no correlation

between the AR2 measures and the allele frequencies (Pearson correlation coefficient (r2) =

0.05 at p-value < 2.2e-16 vs 0.07 at p-value < 2.2e-16). The p-values showed that even though

these correlations were relatively low they had strong statistical support. There was a strong

effect of allele frequency on AR2 for W. Africa (this is also evident from Figure 4.4,): the

allele frequencies were slightly correlated with AR2 in the global/W. African and W.

African/W. African populations (Pearson correlation coefficient (r2) = 0.37 at p-value < 2.2e-16

vs 0.44 at p-value < 2.2e-16). The p-values indicated that even though the correlations were

relatively low they have strong statistical support, which might be from the large number of

observations considered.  While there is no correlation for Cameroon populations.

Figures 4.4 and 4.5 make it clear that (a) the confidence in the Cameroon imputations is low

and (b) that imputation quality is much better for W. Africa but is also allele frequency

dependent for W. Africa (low confidence at low allele frequency). The overall result is that

the allele frequency distributions are generally similar, but that the Cameroon imputations are

very poor at all allele frequencies (whereas the W. Africa imputations are of higher quality

for all but a proportion of low frequency alleles). Furthermore, it was at low frequency that

the difference between Global and W. Africa reference panels for W. Africa imputation got

clearer (the W. African reference did better at low frequency).
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Figure 4.5: Correlation between the reference and imputed sample minor-allele frequency (MAF) ranked by AR2 values.
The figure shows the correlation between the Reference MAF (on X-axis) and the imputed MAF (on Y-axis) in (A). global reference/W. African target

population; (B). W. African reference/W. African target population; (C). global reference/Cameroon target population; and (D). Cameroon

reference/Cameroon target population. The colour coding shows the AR2 of each data point. It is interesting that A & B are very different to C & D. For A &

B, the data points closest to the line (that is, the best correlation) have high AR2, whereas the opposite is true for C & D.
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Assessment criterion three: application of an AR2 filter: An estimate of AR2 > 0.80 is

usually recommended as a filtering score to apply to the imputed data before performing

GWAS (H. Daetwyler, pers. comm.). Following application of this threshold, 163,845

(28.78%) and 119,914 (47.14%) of imputed alleles passed the AR2 filtering in global/W.

African and W. African/W. African imputation combinations, respectively. W. African

reference is more appropriate for W. African imputation. In contrast, only 13,074 (2.30%)

and 12,245 (2.81%) passed the AR2 filtering in the global/Cameroon and

Cameroon/Cameroon imputation combinations, respectively. Compared to the number of

sites that passed the beagle filtering stage prior to imputation from Table 4.1, the following

number of variable sites were added to the reference/target combinations: global/W. Africa =

+27,061, W. Africa/W.Africa = +14,713; global/Cameroon = +2741, Cameroon/Cameroon

+2325.

Assessment criterion four: comparison of high/low AR2 allele distribution. The distribution

of allele frequencies for the imputed variants that have AR2 > 0.8 was compared with the

allele frequencies for the imputed variants with AR2 < 0.8 to see if there are differences in

allele frequencies above or below the threshold of AR2 > 0.8. Figure 4.6 shows the allele

frequency spectrum of the imputed variants and their categories by AR2 values. The variants

having high imputation accuracy, that is, AR2 above 0.8, and those with AR2 below 0.8 show

frequency spectra that were distributed similarly (Figure 4.6).
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Figure 4.6: Allele frequency spectrum for each of the four combinations of reference/target populations.
The figure shows the distribution of allele frequencies for the imputed variants that have 0.8 ≤ AR2 ≥ 0.8 (red and blue histogram plot respectively) for (A)

global reference panel/W. African target population; (B) W. African reference panel/West African target population; (C) Global reference panel/Cameroon

target population; and (D) Cameroon reference panel/Cameroon target population. Each histogram plot has a binwidth of 0.05 (x-axis; frequency). This figure

shows that, as expected, filtering by AR2 removes mainly the lowest frequency alleles from the W. African data but removes almost everything from the

Cameroon data. It reinforces the point that there is an effect of allele frequency on imputation quality.
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4.3.3. Association analysis.

Genome-wide association tests were carried out using pre- and post-imputation genotypes

for the W. African and Cameroon target populations to determine whether imputation

improves the power of the association of the variants with ivermectin response.

After carrying out QC steps to filter out imputed variant sites of AR2 ≤ 0.8 and

individuals based on phenotypes (non-phenotyped worms from the W. African population

and day 0 worms from the Cameroon population were excluded); 13,073 variant sites and

65 worms passed in the global reference panel/Cameroon target population imputation

combinations; 12,244 variant sites and 56 worms passed in the Cameroon reference

panel/Cameroon target population imputation combinations. In contrast, 163,844 variant

sites and 59 worms passed in the global reference panel/W. African target population

imputation combinations; and 119,914 variant sites and 38 worms passed in the W.

African reference panel/W. African target population imputation combinations.

As an essential part of the QC steps, the presence of population stratification was tested

using a multidimensional scaling (MDS) approach on the imputed data for the Cameroon

and the W. African populations. The aim was to reveal groups of individuals that are

genetically more like each other than expected. Figure 4.7 shows no structure between

worm phenotypes from the same target populations (that is, worms from individual target

population are genetically similar or identical) but the worms from different populations

(W. Africa and Cameroon) are genetically different (Figure 4.7). This is consistent with

previous studies (Choi et al. 2016; Doyle et al. 2017; Crawford et al. 2019).
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Figure 4.7. Non-metric multidimensional scaling plot, based on genetic data, to

identify population stratification (or relationships) between worms from

Cameroon/West Africa with good (GR) or poor (SOR) ivermectin response

phenotypes used in the association study.
The circles and triangles are the samples from Cameroon and W. Africa respectively, while the red

and the blue colour corresponds to their respective phenotypes (GR and SOR).
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Figure 4.8 shows the GWAS result for the W. African populations imputed with the W.

African and the global reference panel. When compared with the pre-imputation GWAS,

the strength of genetic associations with the phenotype (SOR) increased following

imputation from the global reference panel/W. African target population combination

(Figure 4.9, lower panel). The figure shows that no variant site was significant

genome-wide after correcting for multiple testing, that is, there was no association with

drug phenotype that met a Bonferroni correction threshold of p-value < 0.05 in the

global/W. African and W. Africa/W. African imputation combinations. The reason for no

significant association may be, perhaps, Bonferroni was too stringent. Similar values were

obtained with Benjamin-Hochberg corrections.

Figure 4.9 shows the GWAS result for the Cameroon populations imputed with the

Cameroon and the global reference panel. Approximately 500 variant sites showed a

statistically significant association genome-wide with ivermectin response in the

pre-imputed data (the reduced representation data) after correcting for multiple testing

(Bonferroni correction p-value < 0.05). This contains lots of noise. Following imputation

in the Cameroon and the global reference panels, 10 SNP loci were statistically

significant after correcting for multiple testing (Bonferroni correction p-value < 0.05).
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Figure 4.8. Manhattan Plot showing GWAS result for the W. African target

populations pre-imputation (top), and post-imputation with the W. African reference

panel (middle) and Global reference panel (bottom).

The X-axis represents the position of a variable site on the autosomal chromosomes OM1 and

OM4. The Y-axis is the relative -log10 p-values of each variant site. None of the associations were

strongly associated with ivermectin response after Bonferroni correction. The blue horizontal line

is the Bonferroni significant threshold of P < 0.05.
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Figure 4.9. Manhattan plot showing GWAS results for the Cameroon target

population pre-imputation (top), post-imputation with the Cameroon Reference

(middle), and Global Reference (bottom) panels.
The X-axis is the position of each SNP along the autosomal chromosomes OM1 and OM4. The

Y-axis is the relative -log10 p-values of each variant site (the dots). The blue horizontal line is the

Bonferroni significant threshold of P < 0.05. The points above the blue lines show very strong

association with ivermectin response because they were significant after Bonferroni correction.
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Discussion
For the first time in filarial nematodes, I have described the concept and a practical

strategy for imputing genotypes from a reference panel composed of either a diverse

population or one from the same population as the target population. Overall, my results

showed that the imputation from a reference panel derived from the same population as

the target data (precisely, the W. African reference panel) is superior to the imputation

from a genetically and geographically diverse population (the global reference panel)

because the W. African /W. African imputation combination gave better accuracy results

(AR2) than imputation from the global reference panel.

The major caveat of this study is the small sample size in both reference panels (global =

27, W. Africa = 21 and Cameroon = 9) and target populations (W. Africa = 66 and 45;

Cameroon = 96 and 85) relative to those in the organisms for which these methods have

been developed. Previous studies reported imputation with and on large samples sizes (for

example, 100 individuals and above) (Browning and Browning, 2009, Browning and

Browning, 2016, Das et al., 2016, Howie et al., 2012, Li et al., 2009, Marchini and

Howie, 2010) among others. Isik et al. suggested that a larger number of sequenced

individuals from a species is required to use as reference haplotype panels (Isik et al.,

2017). The aim of the work reported in this chapter was to obtain the first elements

towards proof-of-concept via an exploration of genomic imputation as an option for

filarial nematodes using the available data. Those first elements towards proof-of-concept

have now been demonstrated but the limitations of sequencing depth exist, and also the

fact that it is a human genetics tool that does not necessarily deal properly with helminth

population dynamics, hence, the challenge of developing the genomic resources to take

advantage of this technology.

When a reference panel for a population is not available, one can choose a subset of the

target sample with a more complete genotype data as the reference panel (for example, as

done here with the W. African reference panels) and use that more densely genotyped

subset to impute the variants for the remainder of the sample (Anderson et al., 2008). This

has the additional advantage that the reference panel is perfectly matched to the target

sample (Browning and Browning, 2009). My study is consistent with this observation in

that the W. African reference panels did well in terms of accuracy compared to a global

reference panel. For example, the W. African reference is better by AR2 distribution for

all allele frequencies (Figures 4.4 to 4.7), and the correlation of pre- and post-imputation
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allele frequencies was stronger for the W. Africa reference compared with the global

reference (Figure 4.5). Also, there were twice as many sites that passed the AR2>0.8 filter

in the W. Africa/W. Africa imputed data than in the global/W. Africa data and the mean

imputation accuracy of variants with MAF >0.05 was higher in the W. Africa/W. Africa

population compared to the global/W. Africa data (AR2 0.737 vs AR2 0.550 respectively)

(Appendix Table 4.1). This is in contrast to the Cameroon imputations where the AR2

performance was poor regardless of which reference panel was employed. This suggests

that the limitation with the Cameroon imputations lies with the nature of the target

population genotypes, which for Cameroon was composed of reduced representation

sequence data (NuGen Allegro). The reduced representation sequencing yielded

approximately 104 SNP loci, with an average 103 – 104 bp between loci. The LD threshold

for imputation is a r2 >0.33 (chapter three), which permits accurate imputation over

distances of <1.5 kb in the O. volvulus genome (chapter three). The imputation outcome,

therefore, is that the reduced representation genotype data are too sparse to permit

genome wide imputation and the yield of “useable” imputed genotypes is therefore small.

4.4.1. Impact of composition, diversity, and size of reference panels

and target populations on imputation accuracy.
One important deduction from this study is that the choice of the reference panel has a

substantial impact on measures of imputation accuracy, particularly when imputing

low-frequency genetic variants (that is, variants with MAF <0.05). I demonstrated with

the W. African reference/W. African target population imputation combination that the

use of the same reference panel as the target population produces substantial gains in

imputation accuracy as seen in appendix Table 4.1 and Figure 4.4 – 4.6. The relationship

between mean AR2 and MAF (appendix Table 4.1) and the distribution of allele

frequencies for the imputed variants that have AR2 > 0.8 (Figure 4.6) indicates that

genetic variants with a frequency as low as 0.01 could be imputed when using a diverse

reference panel, but they are not useful for GWAS because their AR2 values are too low.

The origin, size and the diversity of the reference panel influenced the measures of AR2

according to the study of Browning and Browning (2009). They reported an increase in

imputation accuracy with increase in reference panel; that is, measures of AR2 increased

as more individuals were added into the reference panel. The contrary was observed in

my study, lower imputation accuracy with the global reference panel, (global = 27, W.
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Africa = 21 and Cameroon = 9) (Figure 4.1) even though there was increase in yield of

variants, especially low/rare-frequency variants (MAF <0.05). Two important factors

could have impacted this: the first and the most important factor is population structure –

the global reference panel consists of worms from multiple populations, representing a

larger slice of genetic diversity across the O. volvulus species - which implies that many

of the low/rare alleles in the global reference will likely be population specific (or their

frequency in different populations may vary: this was the pattern observed when

comparing alleles and allele frequencies between W. African and Cameroon). This also

means that there would be an increase in the number of rare/low frequency alleles in the

imputed data that are not present in the population, hence the low AR2 values. A second

but also important factor is that the ability to detect rare/low frequency alleles in a

population is a function of sequencing depth. This means that rare/low frequency alleles

will be underrepresented in the target population because of the problems with sequencing

depth in that population. The outcome of imputation is that those “missing” rare/low

frequency alleles will be overrepresented in the imputed data because they are

underrepresented in the experimentally derived target data. This also means higher "fake"

homozygosity that will certainly alter DR2 and AR2 values.

Variation in the composition and quality of the datasets used in this study could also

influence the variation in the number of variants observed and their outcomes in terms of

imputation accuracy. The global reference panel is composed of high-quality sequences

with high sequencing depth that are derived from single worms covering the entire global

range of O. volvulus. The higher number of variants observed in the global reference

compared to the W. African (or Cameroon) references is in part because they were

genotyped at greater depth (and will thus detect more rare and low frequency alleles)

(Choi et al., 2016) and in part because the geographic diversity of the samples present

means more variation across many parasite populations is captured. The W. African

reference panel is also composed of good quality sequences with high depth of coverage

(>20) but is primarily drawn from a single (Ghanaian) population that is likely to contain

only a subset of the global variation (Choi et al., 2016). The Cameroon reference panel

are composed of whole genome sequence but only at a minimum average depth of

coverage of 5. The high number of variants (approximately two-fold increase) observed in

the Cameroon reference panel compared to the W. African reference panel is likely

because the filtering parameters for the Cameroon data had a lower minimum depth
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requirement for variant calling or because of higher genetic diversity in the Cameroon

population compared to the W. African population. Higher genetic diversity of worms

from Cameroon than those from Ghana (which takes the largest part of the W. African

target population) has been established previously by Doyle et al (2017).

Although the W. African target population was also composed of generally good quality

whole genome sequences, they were intermixed with regions of low quality in terms of

depth and coverage. This impacted the difference in the number of variant sites observed

between them after vcftools filtering (Table 4.1). Depth is the number of reads at a given

genomic position, coverage is the proportion of the genome that is represented in the

sequence. These two parameters are often correlated (more depth usually means better

coverage) and in general, both parameters should be high for variants to be called

confidently. On the other hand, the Cameroon target population only contained short

regions of the genome chosen based on previous GWAS performed by Doyle et al.,

(2017) and Hedtke et al. (2017) in Cameroon and on Ghana worms, with a coverage of

<1% of the genome. However, the sequences were of high quality, resulting in high depth

and coverage of the regions targeted in the reduced representation experiment. In this

case, there was no correlation between depth and coverage because the sequencing

method (reduced representation) deliberately ensured that only a tiny fraction of the

genome was sequenced.

The filtering of the pre-imputation target population with the beagle filtering with

conform-gt tool could also influence the imputation accuracy. The filtering was done to

remove variant sites that are not in the reference panel but that there was no filtering of

the reference panel to remove variant sites that are not in the target populations. This

means that when using a reference that includes individuals drawn from a different

population (or breed, in livestock) some reference variants will be imputed even if they

are not present at all in the target population, that is, there will be more imputed variants,

but they may be at loci that are not polymorphic in the target population or that do not

exist in the target population. There was a much larger decrease in the variants retained

after filtering the Cameroon target population with the beagle filtering with conform-gt

tool relative to the decrease observed in the W. African target population (10x more

variant sites in the W. African target population was observed compared to the Cameroon

target population after beagle filtering with conform-gt). This reason for the difference

was because the total genome coverage of the Cameroon target population was missing
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99%, while the reference population was either (a) a global reference that was composed

mostly of worms from outside Cameroon and could poorly represent the target

population; that is, population structure interfered with inference and/or (b) a Cameroon

reference panel with few individual sequenced at relatively low depth. Both reasons

suggest that there were variants in the Cameroon target population that were not found in

the global or the Cameroon reference panels during the beagle filtering.

Imputation can be affected by phasing accuracy in the reference panel (Li et al., 2009,

Marchini and Howie, 2010), which in turn is very dependent on LD. Inaccuracy in the

estimated phase of the reference haplotypes from genotypic data would limit imputation

accuracy. Phasing was not possible in the Cameroon data. The reason for that may be

because the insufficient SNP density that resulted in low levels of LD, which in turn

makes it difficult to call phase. That is, the SNP density (most acutely in the target

population, which is composed of reduced representation sequences) is smaller than is

required for phasing (from the LD study in previous chapter, SNP density of

approximately 1.5kb intervals across the genome is essential for successful genotype

imputation and GWAS) (chapter three).

4.4.2. Association studies.
I showed in this study how imputation strengthens the genetic association between some

variants with ivermectin response phenotype and reduces it strength for others. This will

aid in achieving the broad aim of identifying markers that can be used to develop

diagnostic tools in the field.

A reduction in the number of apparently significantly associated variant sites was

observed when imputation was done with the W. African reference panel (number of

variant sites at the p<10-3 threshold = 23) when compared to the pre-imputed variants (p <

10-3 n = 25). It may be that there was a better agreement between the reference and

imputed data when using a W. African reference, that is, fewer outliers because of

population specific differences (and which has also helped to decrease the risk of

“noise”). Population structure (from the non-W. African individuals in the global

reference) are likely responsible for the increase in the number of “significant” variant

sites in the Global/W. Africa imputation combination (number of variant sites at the

p<10-3 threshold = 74). What imputation did, in the W. African data, was to generally

reduce the strength of association of variant sites in regions that showed some association
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prior to imputation. The reduction in p-value (that is, increase in strength of association)

was rather small and well short of what was required to meet the more stringent threshold

set by Bonferroni correction. Increasing the size and quality of the reference panel and

increasing (if possible) the size of the GR/SOR target might improve this. From a

practical perspective, increasing the quality of the reference is more feasible.

The impact of imputation on the Cameroon data was quite different. The pre-imputation

GWAS had many variants, distributed along the entire length of the autosomes that show

strong associations. The effect of imputation was to remove most of these variants,

leaving a much lower “background” level of association with a small number of variant

sites that remain above the threshold (albeit at a much-reduced significance level).

Imputation helped boost the identification of candidate loci that may then be prioritized

for follow-up analysis or analysed in the context of biological pathways. This was clear in

the GWAS carried out on the Cameroon population (reduced representation sequences

using Nugen Allegro genotyping). For example, the number of markers that showed

strongest association (at Bonferroni correction value of p < 0.05) with ivermectin

resistance dropped from 500 in pre-imputation data to 10 after imputation with the

Cameroon and global reference panel.

The outcome of imputation on the Cameroon population suggests that more variant sites

that are evenly distributed are needed to be genotyped for imputation (which relies on LD

between the sites) and eventual GWAS to be successful. The regions covered in the

Cameroon target population were chosen based on previous GWAS (in Cameroon and in

Ghana) (Doyle et al., 2017 and Hedtke et al. 2017), and the fundamental assumption was

that marker density within those chosen regions would allow detection of association if it

existed but that any associations outside of the regions sequenced would not be detected.

As a result, the variants were picked unevenly across the genome. While there was a

significant increase in the number of sites available in the Cameroon population, because

all individuals were uniformly missing approximately 99% of the genome, it was not

practical (or reasonable to expect) that imputation could fill in gaps of that magnitude.

Increasing the size and quality of the reference panel and the size of the GR/SOR target

could be the next step to consider but with the added requirement (if possible) of

increasing the coverage of the target population genome by increasing marker density

with an expanded reduced representation panel (assuming more DNA can be gotten from

the GR/SOR populations).
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To carry out any association study, quantifying the extent of LD is vital to determining the

number of markers required to associate genetic variation with a phenotype with concise

power and precision (Meadows et al., 2008). In the previous chapter (chapter three;

section 3.3), I reported that average LD is low in the O. volvulus genome (average LD

between adjacent SNP loci = 0.25 and 0.21 for chromosomes 1 and 4 respectively) and

LD breaks down rapidly (< 1.5kb) as we move away from a QTL. The point at which LD

falls below r2 > 0.33 is the critical value for determining how close a variant site must be

to a causative polymorphism before a significant genetic association between the

phenotype and the marker will occur. Thus, based on LD decline moving away from a

local LD maximum, that is, an elevation of LD, the genome requires a dense marker

density spaced by approximately 1.5kb across the genome to localize an association

between marker and phenotype.
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Conclusion
This is the first study to provide a conceptual insight into genomic imputation in helminth

parasite. Genotype imputation is a novel approach to improving the power of GWAS to

detect genetic association in filarial nematodes. Even though imputation could be a

powerful tool for minimizing costs associated with genetic-based screening for

sub-optimal response in O. volvulus or for drug resistance in other helminths, it has not

been tested previously in helminth parasites mainly because of the challenges associated

with performing GWAS. These challenges include small sample size, cost of genome

sequencing at high depth, the low availability of quality assembled genome to use as

reference for variant calling, and the lack of high depth genome sequences that could be

used as reference panels for imputation.

Having access to a relatively (for helminths) large repository of unpublished genome

sequences for O. volvulus availed me the opportunity to test the benefits and limitations of

genomic imputation in O. volvulus. Thus, I have established in this chapter a conceptual

study on the feasibility and accuracy of imputation with regard to the appropriate

reference panel to use and the success of imputation in improving the power of

association of variants with drug resistance.

Imputation is a research tool that should increase the ability to define a panel of SNPs that

are predictive of drug response. That panel would be the basis of a genotyping tool that

could be deployed in endemic countries, for example, a PCR-based genotyping

diagnostic, or a genotyping LAMP assay etc. I have shown how considerations of

reference panel origin and quality, and target population genotype data, might affect the

design of an imputation experiment in helminths. There is a question of how widely

applicable imputation is likely to be in endemic countries because of the impediment of

(a) cost of generating adequate target population genotype data for statistically robust

imputation to be feasible and (b) availability of researchers with the necessary skills and

access to suitable computing facilities.

Imputation provides researchers with an alternative to amplicon resequencing. In the

current study, I have used reference panels sequenced at a greater depth to impute

low-coverage and partially sequenced samples. However, one important conclusion from

this study is that the choice and quality of the reference panel has a substantial impact on

imputation accuracy and a much broader effect on probabilities of association for GWAS.
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A reference population that takes population structure into account is required to help

improve the power for association studies.

The genotyping method used to generate data for target populations is also essential to

consider. For example, the reduced representation sequencing of approximately 10,000

short targets (that generated >10,000 variant sites and is analogous to amplicon

resequencing) did not produce sufficiently dense genotype data in a target population for

imputation of the entire genome owing to the genotyping technology used. This,

combined with chapter three data that showed that LD declines below useful levels in less

than 1.5kb suggests that the only feasible genotyping platforms to generate suitable target

populations at this stage are low coverage whole genome sequencing or a SNPchip of

perhaps 100,000 markers (which would still have an average spacing of approximately 1

– 2 kb). I recommend mapping of the imputed variants in the Cameroon target population

having AR2>0.8 to the genome. This could help to reveal what proportion of them

mapped to the regions covered by the Allegro panel because most of those higher quality

imputed Cameroon variants will likely be close to/within the targeted Allegro panel. This

will further help in confirming the appropriate spacing between variant sites essential for

imputation.
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Chapter Five

General Discussion

5.1.Summary of Results.
Onchocerca volvulus is a parasitic nematode which causes the disease onchocerciasis (or

river blindness) in humans and is transmitted by repeated bites of infected Simulium spp.

blackflies. Millions of people are infected with onchocerciasis worldwide, of which the

majority lives in Africa (Centers for Disease Control, 2019). The microfilariae cause the

major symptoms of onchocerciasis while navigating through the body of the human host

and after their death. The major tool used to tackle the menace of O. volvulus is mass drug

administration (MDA) with ivermectin (a macrocyclic lactone (ML) broad spectrum

anthelmintic) (World Health Organization, 2019). The drug clears microfilariae from the

skin of infected people and temporarily suppresses the production of new microfilariae by

the adult parasite (Duke et al., 1991). However, the repeated use of ivermectin as a

preventive chemotherapy has resulted in the emergence of sub-optimal response (SOR) in

central Ghana and in the Mbam and Nkam valleys in Cameroon (Awadzi et al., 2004,

Bourguinat et al., 2007, Nana-Djeunga et al., 2012, Osei-Atweneboana et al., 2007). This

poses a threat to the long-term elimination goals of MDA programs in those foci (Dadzie

et al., 2003).

As mentioned earlier, SOR has only been documented in two foci: central Ghana and in

the Mbam and Nkam valleys in Cameroon. However, it may be more widespread, but no

one is looking and there are no reports of SOR other than those two foci. This is a major

concern and is in fact one of the major motivations for this project. It is clear that the

phenotypic detection via embryogram is completely impractical (Churcher et al., 2009,

Osei-Atweneboana et al., 2011) and the impracticality of the assay is a primary reason for

the failure of control programs to institute any form of resistance surveillance (Dadzie et

al., 2003). To face this growing threat, there is the need for a genotypic assay based on an

understanding of the genetic basis of SOR. My work is an important step towards

developing the genotypic assay that may be more feasible to apply on the scale required. I

tested the hypothesis that sub-optimal response to ivermectin in O. volvulus is genetically

determined, such that LD will exist around ivermectin-response loci (or quantitative trait

loci (QTLs)) that are under selection and will allow rational experimental design for
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GWAS of O. volvulus. In achieving this, I developed a methodological framework that

could help in achieving the broad aim of my project which is to improve diagnostic

capability of SOR in O. volvulus and aid elimination goals. This methodological

framework encompassed amplicon resequencing to validate putative QTLs, identification

of LD structure between QTLs and causative SNPs and genotype imputation to increase

the visibility of the causative SNPs or loci.

To develop a genotypic assay, one needs validated genetic markers predictive of

ivermectin response. There are two approaches to the discovery of those markers:

candidate genes and de novo GWAS (Nana-Djeunga et al., 2012, Osei-Atweneboana et

al., 2012, Doyle et al., 2017, Hedtke et al., 2017). The candidate gene approach involves

carrying out analyses on genes chosen based on specific hypotheses concerning

mechanisms of resistance to the drug. Candidate gene studies in ivermectin-resistance

associated test identified several different candidates that may be involved but the

problem with candidate gene studies in O. volvulus is the poor quality of the statistical

testing which fails to take population structure and multiple testing correction into

account. That implies that none of the studied candidate genes to date met the standard of

validation (Doyle and Cotton, 2019). Also, other experiments claiming associations are

poorly designed and the data produced have been interpreted incorrectly (Doyle and

Cotton, 2019, Hedtke et al., 2019). There is no problem with a candidate gene approach in

establishing the mechanism of antihelmintics resistance in nematodes if one has detailed

information on mechanism from some other approach. For example, in the mechanism of

benzimidazole (BZ) resistance in nematodes, biochemical experiments showed clearly

that (i) BZ drugs bind to specific sites on beta-tubulin (ii) that the nematode specificity of

BZ-antihelmintics was correlated with the affinity of the drug for nematode beta-tubulin

(iii) that BZ binding affinity was reduced in BZ-resistant nematodes (Kwa et al., 1993,

Lacey and Gill, 1994, Grant and Mascord, 1996, Lacey and Snowdon, 1988). Given the

lowered affinity for BZ of tubulin from resistant worms in particular, it was perfectly

reasonable to hypothesise that polymorphism in the beta-tubulin gene(s) would likely be

associated with response in nematodes. This was shown to be the case, and the causal role

of the mutations was also established by transgenesis in C. elegans (Roos et al., 1995).

However, no such body of data exist for ML’s, and candidate gene studies in ML’s are

flawed because those independent sources of support for a causal relationship are missing.

For example, in H. contortus, Gill et al. (1991) showed that there was no pharmacological
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difference between ivermectin-sensitive and ivermectin-resistant strains of H. contortus.

In other words, there is biochemical evidence that resistance is not associated with

receptor pharmacology in the parasite (Gill et al., 1991). From subsequent association

studies, selection for ML resistance was suggested to emerge from a more complex

genetic mechanisms, that is, it involves soft selection on multiple quantitative QTLs

(Bourguinat et al., 2015, Choi et al., 2017, Doyle et al., 2017, Hedtke et al. 2017). As a

result, genome-wide scan replaced candidate gene approaches in association studies of

ML resistance in helminth parasites because genome scan gets around the problem of

detecting and describing multiple genes involved in soft selection and QTLs (Gilleard,

2006).

Genome-wide scan was used successfully to identify multiple loci (QTLs) responsible for

ML resistance in D. immitis (Bourguinat et al., 2015) and T. circumcincta (Choi et al.,

2017). Similarly, it was used to identify QTLs that are under selection for ivermectin

response in O. volvulus (Doyle et al., 2017, Hedtke et al., 2017). The important feature of

these genome-wide scans is that only one of the many proposed candidate genes were

detected (nothing in Bourguinat, et al., 2015, Tcir-pgp-9 in Choi et al., 2017, and no

candidate genes in Doyle et al., 2017 and Hedtke et al., 2017). So, in the four

genome-wide scans, only one candidate gene confirmed for ML-resistance. It is important

to note that genome-wide scan is far from perfect, especially when using limited

population set, poorly defined phenotypes and improving genomic resources. Both

approaches are fine and needed to understand how a drug works (candidate gene

approach) and how selection for resistance emerges under natural selection (QTL study).

The only unacceptable issue is to claim that one receptor defines the resistance

development process.

Doyle et al.’s genome-wide scan of SOR in O. volvulus was based on limited number of

low sequence coverage Pool-seq worms which resulted into a stochastic variation in allele

detection in the worms. Variants that differentiated GR and SOR parasites were found in

several QTLs, but additional studies were required, including examining single whole

genome sequences to validate those QTLs (Doyle et al., 2017). Although Pool seq is more

economical than single whole genome sequencing, it leads to uncertainty in estimating

allele frequency and loss of haplotype information. Hedtke et al.’s genome-wide of SOR

in O. volvulus was based on sequenced whole-genome single worms from the same study

sites, putative QTLs were identified and there was further need to validate identified
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QTLs on larger sample size (Hedtke et al., 2017). There are serious technical barriers to

the routine use of whole genome sequencing of embryogram phenotyped adult females O.

volvulus. The technical barriers include impracticality of the phenotype. This was

precipitated by the process by which the phenotyped worms were accessed – palpable

nodules surrounding adult worms were surgically removed from the infected person

(Richards et al., 2000); excised nodules were digested to isolate adult worms and

embryograms were prepared with females for the evaluation of their reproductive

capacities (Nana-Djeunga et al., 2014, Osei-Atweneboana et al., 2011); the female worms

were further categorised into phenotypes based on the presence of stretched microfilariae

in their embryogrammes after 80 - 90 days of ivermectin treatment - this process is

random with respect to the worm(s) that are removed, which implies that it is impossible

to ensure that the worms that were phenotyped were responsible for the microfilariae in

the skin. This further increases the sample size that is required for successful GWAS.

Limited sample size was also caused by poor quality and low concentration of genomic

DNA that can be prepared from worms isolated under field conditions in developing

countries. Whole genome sequencing and genotyping of all the identified variants in the

genome is potentially expensive and almost certainly impractical (given the DNA quality

and/or quantity, except for recent improved technology like optimized amplification), this

limits the number of whole genomes sequenced single worm available for GWAS. Owing

to the same reason, many of the worms could not be sequenced and the sequenced worms

were of uneven coverage across the genome with lots of missing data.

Given this context, amplicon sequencing rather than whole genome sequencing may be a

solution because much smaller amounts of genomic DNA are required and, if amplicons

are short, poor DNA quality is less limiting. This was discussed in detail in chapter two. I

tested the primary hypothesis that some selected non-synonymous SNP loci that fell

within some QTL loci (defined by GWAS) will be predictive of ivermectin response (that

is, to validate genetic markers predictive of ivermectin response) and a secondary

hypothesis that amplicon re-sequencing allows sample size to be increased. The aim of

the chapter was to determine the extent of genetic association between

ivermectin-response phenotype and the genotype at non-synonymous SNP loci within

QTLs that have strong support from the previous GWAS, using an amplicon resequencing

approach and increased sample size. I chose to test the association of the selected SNP

loci because they were (i) in a QTL from the GWAS and (ii) the alternative alleles are
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non-synonymous. However, the data fail to support an association for these loci but do

point to (i) selection that is not associated with ivermectin response and (ii) other, novel

SNP loci that may be associated with ivermectin response. The new data from a larger

sample size did not support a role for those SNP loci because of many reasons that had

already been discussed in chapter two of this thesis. The secondary hypothesis tested

which was amplicon re-sequencing allows sample size to be increased was supported

because I was able to genotype a larger number of worms, most of which could not have

been genotyped by whole genome sequencing because of DNA concentration and/or

quality, but it was not possible to draw any conclusion on this hypothesis because that

increased sample size did not help in the sense that there was no association detected

between those loci and ivermectin response. This result does not imply that the loci/SNPs

conferring resistance do not exist, rather, there was a need for refinement of QTLs before

further validation tests are carried out on them. The hypothesis of association between a

SNP locus and the phenotype requires either that the SNP locus itself is causal or that it is

in LD with a causal locus. The chosen loci are not causal, but they do fall within a broad

QTL locus. The discrepancy may be because either the QTL locus is an artefact of the

GWAS, or the locus might be real, but the SNP loci tested might not be in strong LD with

the causal locus/loci within the QTL. Which point to the fact that there is a need to

understand the LD structure in the genome as a whole and around putative QTLs in

particular.

In chapter three, I characterised LD and most importantly, defined haploblocks and

thresholds for detection of an association between a SNP locus and a causal mutation.

This availed me the opportunity to predict exactly how many SNP loci at what sort of

density are required for GWAS. Since genotypes at nearby markers are usually correlated

(that is, they are in LD), it may be possible to scan the genome using a much smaller

marker set with only a modest loss of power to detect selection while minimising the

quantity and quality of DNA that is required. Studies of LD in nematodes has only been

limited to LD study across six short nuclear loci of wild isolates of the gonochoristic C.

remanei. It was suggested that LD declines significantly over just a few hundred base

pairs at a rate suggesting that linkage equilibrium will be reached at distances of 1–2 kb

(Cutter et al., 2006). Similarly, measures of LD in 96 O. volvulus samples around a QTL

suggested that LD decays rapidly in O. volvulus and reaches the threshold for useful LD

estimate at an approximate distance of 1.5kb. In the same vein, haploblock structures in
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O. volvulus genome was characterised by clusters of small, fragmented blocks of low to

moderately elevated LD that correlate with peaks of FST (or putative QTL). Based on the

extent of LD up to the value of useful LD (that is, up to the point where r2 = 0.33) as we

move away from a QTL, the genome requires a dense SNP spaced by approximately

1.5kb distance across the genome and a minimum SNP density of 20,775 and 10,699 are

needed in OM1 and OM4 chromosomes, respectively, to confidently detect the

association of a SNP loci with a trait of interest in O. volvulus. Applying this principle to

the entire O. volvulus genome, approximately 64,668 fully informative SNPs are needed

to saturate the entire O. volvulus genome to confidently detect the association of a SNP

loci with a trait of interest. This is still a big number, and that led me to the hypothesis

that it may be possible to impute SNP loci at this density from a smaller genotyping panel

as has been done successfully for a range of other species (humans, cows, sheep, several

crop plants, etc) (Cavalli-Sforza, 2005, Daetwyler et al., 2014, Ventura et al., 2016).

In Chapter four, I explored the feasibility and accuracy of genotype imputation by making

use of two different sets of reference panel and test the success of imputation in

improving the power of association of SNPs with ivermectin response. Thus, mitigating

the difficulty of sufficient sampling for GWAS. Imputation is an in-silico method that can

increase the power of association studies by inferring missing/un-typed genotypes

(VanRaden et al., 2013). Imputation is a new tool in filarial nematode population genetic

studies, and reference panels for imputing missing genotypes have not been previously

developed in them. Imputation could be a powerful tool for minimizing the costs

associated with genetic-based screening for sub-optimal response in O. volvulus or for

drug resistance in other helminths. To design imputation studies, it is necessary to have a

detailed understanding of the structure and extent of LD across the genome, both to

choose suitable reference and genotyping marker sets (Li et al., 2009). Having established

the structure and the extent of useful LD in O. volvulus in chapter three and having access

to largest single worm’s whole genome sequences for O. volvulus, I maximized the

chance to test the benefits and limitations of genotype imputation in O. volvulus. I was

able to establish in this thesis a conceptual study on the feasibility and accuracy of

imputation regarding the appropriate reference panel to use and the success of imputation

in improving the power of association of SNP loci with drug resistance. I showed that

imputation is likely feasible from low depth whole genome sequence but probably not

feasible from reduced representation data such as Nugen Allegro, which does not have
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sufficient SNP density and spacing because of the low LD in the O. volvulus genome

overall. My strong recommendation for improving the challenge of low imputation

quality from reduced representation data is to map the relatively small number of the high

quality (AR2>0.8) imputed variants from the reduced representation data to the genome

in order to test the hypothesis that those high-quality imputed Cameroon variants will be

close to or within the NuGen targeted regions of the genome. That will aid in identifying

the appropriate reduced representation panel to be designed and at what SNP spacing that

will be sufficient for imputation and GWAS
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5.2.Conclusions and Future Prospects.
Going back to the original problem which is how to develop a genotypic assay predictive

of ivermectin response. Overall, I have been a been able to estimate LD, which is a major

criterion in predicting the genetic marker density that is required for carrying out

successful GWAS in O. volvulus and was able to show that imputation of SNP loci at that

density from a smaller genotyping panel can be done successfully. The major outcomes of

this study are the clear understanding provided about the density, spacing, and number of

useful SNPs essential for imputation and GWAS, and identification of the density of

SNPs needed for designing a SNP array for future use in developing diagnostic tools.

Therefore, it is easy to conclude that the prospects are better now that we know what

genetic marker density is required for GWAS. This will aid in the end goal of eliminating

onchocerciasis in Africa.

The first steps towards the conceptual study to test the feasibility and accuracy of

imputation in O. volvulus and to test the success of imputation in improving the power of

association of SNP loci with drug resistance was successful. Therefore, I recommend that

genotype imputation should be implemented in helminths because it could be a powerful

tool for minimizing costs associated with genetic-based screening for drug resistance in

helminths. Although, broadening of imputation to other helminths is subjected to many

issues that should be considered, including, its limited application for more diverse

parasitic populations like H. contortus.

I have shown how considerations of reference panel origin, quality and sequencing depth,

and target population genotype data, might affect the design of an imputation experiment

in helminths. From this study, I observed that the choice and quality of the reference panel

has a substantial impact on imputation accuracy and a much broader effect on

probabilities of association for GWAS. Therefore, I recommend using a reference panel

derived from the same population as the target data as a better option than a

geographically diverse reference because of population structure. Imputation from a

genetically divergent population in which haplotype frequencies may differ will result in

lower confidence imputation, or imputation of haplotypes that may be absent in the target

population.

I have been able to measure LD, which is a major criterion in knowing the genetic marker

density that is required for successful GWAS in O. volvulus and I have been able to show
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that imputing SNPs at that density from a smaller genotyping panel can be done

successfully. However, the problem of sample size is not resolved entirely. The problem

of sample size still remains in establishing this methodological framework because

genotype imputation as a tool needs a large reference panel. The sample size problem for

imputation is majorly the size of the reference panel: large numbers of samples (>100

individuals) are usually used in human and cattle, where imputation is routinely used

(Anderson et al., 2008, Daetwyler, 2020, Korkuc et al., 2019). Small reference panels for

imputation limits imputation accuracy while larger reference panels substantially increase

imputation accuracy, particularly for low-frequency variants (Browning and Browning,

2009). The requirements for a reference panel based on the imputation results observed in

this study are larger samples size, a reference panel population as the same with the target

population (that is population structure must be considered). Therefore, next step in the

research program should identify population structure to define how many samples are

required as reference panel. Having in mind that larger reference panels require

large-scale sequencing and genotyping projects, better sequencing methods should be

developed so that these reference panels can be assembled using sequencing from

microfilariae (which are readily available in large quantities) rather than adult worms.

I recommend further evaluation studies on the 20 genetic associations between specific

variant site and ivermectin response phenotype that met the Bonferroni correction of p <

0.05 threshold in the Cameroon target samples imputed with the global and Cameroon

reference panel respectively. This can be a step further in achieving the broad aim of

developing genotyping assay for field diagnosis of SOR.

I strongly recommend that new GWAS to be performed on imputed variants should

consider using a program that can make use of dosage data - this helps model the

imputation uncertainty. Imputation uncertainty was considered in this study by manually

eliminating variant position with low imputation accuracy (AR2 < 0.8). However, plink

2.0 can make use of dosage data in association studies and can be used henceforth.

Finally, in this study, amplicon resequencing and LD study did not validate the potential

QTL for SOR resistance in O. volvulus. However, there are some other interesting results

that emerged from the study which are not related with drug resistance in the worm: I

observed regions of elevated LD in regions showing low differentiation between GR and

SOR (that is, higher LD and bigger haploblocks in SOR worms and in region B in chapter
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three, results section). The nature of this selection is not known, but a reasonable

candidate might be the host switch that gave rise to O. volvulus (Oncho speciation) or

could simply be a region of higher gene flow. It is not surprising, but it is the first time

this has been done in O. volvulus. The expectation was that strong LD will occur with

recent selection, but the opposite was observed. Although selection for drug resistance is

a soft selection but not weak, that is, lots of QTLs caused the phenotype. These QTLs

cannot be found in the SOR worms at once and does not necessarily infer that they are

solely causing SOR in the worm. These further enriches the evidence of soft selection and

is novel in the genomics of this parasite. This suggests that new strategies for validation

of QTL’s can be implemented, for example, AmpliSeq panels, which is a genotyping

method that aims to generate data that can be used for GWAS or for targeting a large

number of SNP loci (as used, for example, in cancer diagnostic tests).
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Appendices

Appendices

Appendix for chapter three
Table 3.1. Mean pairwise LD between SNP loci in 1 Mb window in two autosomal

chromosomes.

OM1 OM4

Distance
r2

No of SNPs Distance
r2 No of

SNPsM (SD) M (SD)
0 -1 Mb 0.082 (0.131) 15831 0 -1 Mb 0.095 (0.193) 8349

1 - 2 Mb 0.086 (0.135) 13712 1 - 2 Mb 0.087 (0.153) 19607

2 - 3 Mb 0.106 (0.156) 8874 2 - 3 Mb 0.086 (0.146) 23683

3 - 4 Mb 0.087 (0.135) 10467 3 - 4 Mb 0.078 (0.150) 18330

4 - 5 Mb 0.106 (0.152) 9443 4 - 5 Mb 0.084 (0.147) 11959

5 - 6 Mb 0.155 (0.196) 9810 5 - 6 Mb 0.084 (0.130) 18403

6 - 7 Mb 0.122 (0.174) 10214 6 - 7 Mb 0.079 (0.128) 16846

7 - 8 Mb 0.098 (0.148) 12571 7 - 8 Mb 0.098 (0.145) 12935

8 - 9 Mb 0.088 (0.141) 17505 8 - 9 Mb 0.101 (0.150) 12292

9 - 10 Mb 0.106 (0.157) 17304 9 - 10 Mb 0.078 (0.133) 10600

10 - 11 Mb 0.094 (0.143) 12850 10 - 11 Mb 0.085 (0.154) 8163

11 - 12 Mb 0.100 (0.156) 16542 11 - 12 Mb 0.076 (0.139) 13467

12 - 13 Mb 0.101 (0.160) 10465 12 - 13 Mb 0.076 (0.136) 14960

13 - 14 Mb 0.111 (0.136) 12957 13 - 14 Mb 0.080 (0.160) 20390

14 - 15 Mb 0.084 (0.134) 20236 14 - 15 Mb 0.081 (0.148) 13923

15 - 16 Mb 0.091 (0.133) 20288 15 - 16 Mb 0.077 (0.132) 16330

16 - 17 Mb 0.084 (0.129) 18384 16 - 17 Mb 0.117 (0.163) 1487

17 - 18 Mb 0.090 (0.143) 15615

18 - 19 Mb 0.111 (0.204) 6782

19 - 20 Mb 0.097 (0.184) 4884

20 - 21 Mb 0.094 (0.151) 7946

21 - 22 Mb 0.121 (0.168) 8617

22 - 23 Mb 0.089 (0.137) 9978

23 - 24 Mb 0.075 (0.129) 11553

24 - 25 Mb 0.089 (0.147) 13578

25 - 26 Mb 0.096 (0.154) 14584

26 - 27 Mb 0.075 (0.127) 18953

27 - 28 Mb 0.087 (0.140) 13488

28 - 29 Mb 0.144 (0.235) 2580

29 - 30 Mb 0.084 (0.157) 16391

30 - 31 Mb 0.075 (0.010) 20898

31 - 32 Mb 0.079 (0.128) 18825
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Appendices

Appendix for chapter four
Table 4.1. Data summary of the accuracy of beagle imputation quality metric of the

four imputation combinations.

Reference panel/ Target
dataset

Mean Imputation Accuracy (mean AR2) a

Rare Low frequency Common

MAF <0.01 MAF 0.01–0.05 MAF >0.05

global/W. African
0.036 0.196 0.550

global/Cameroon 0.033 0.062 0.077

W. African/W. African 0.009 0.095 0.737

Cameroon/Cameroon 0.107 0.178 0.086
a Each cell shows the mean AR2 between true genotypes and imputed dosages for the specified

MAF band and reference panel across the three bins of imputed MAF.

The W. African reference panel imputed common variants (MAF >0.05) with higher accuracy

scores compared to the global reference panel on the W. African target population.
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