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Abstract

A fundamental problem in the theory of natural dualities is to determine when a finite

algebra is dualisable; this is called the dualisability problem. While we are still a long

way from a general solution to this problem, it has been solved in certain classes. In the

realm of finite semigroups, we have characterised the dualisable members within the classes

of groups, bands, nilpotent semigroups, and completely (zero-)simple semigroups. In each

of these classes, the dualisable members turned out to be precisely those that generate a

residually small variety, but there has been no direct explanation for why this is the case.

The main result of this thesis concerns aperiodic semigroups—semigroups whose sub-

groups are all trivial. The result completely classifies the dualisable finite aperiodic semi-

groups; it is therefore a significant extension of the results for bands and nilpotent semi-

groups, and provides a solid foundation for tackling the dualisability problem in the class of

all finite semigroups.

The thesis is split into two parts. Part 1 provides the semigroup theory needed to prove

the main result, and also gives a detailed account of the classification theorem for residually

small semigroup varieties (originally proved by McKenzie, Golubov, and Sapir). Part 2 is

dedicated to the new classification theorem; of course, much of the theory developed in

Part 1 will be used in the proof. The new results reveal a connection with the finite q-basis

problem, and also make the connection with residual smallness even more intriguing.
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Part 1

Semigroup Theory





Preface to Part 1

The main result of this thesis is a classification theorem for the dualisable finite aperiodic

semigroups. Naturally, understanding this result requires a significant amount of background

knowledge, which is part of the reason that the thesis is divided into halves. However, while

this first half of the thesis is closely connected to the main result presented in Part 2, it

is intended to stand alone as it own story—that story being the classification of residually

small varieties of semigroups.

Residually small semigroup varieties were first characterised, modulo certain group-

theoretic aspects, by McKenzie [47]. Independently, Golubov and Sapir [32] characterised

the closely related residually finite semigroup varieties, which in fact coincide with the

residually small varieties in the finitely generated case. In Chapter 3, we give an account of

the theory developed in these two papers. Our presentation takes the best elements from

each approach, and, with the benefit of hindsight, simplifies many of the more challenging

aspects of the main proof.

The purpose of the first two chapters, then, is to provide a foundation for Chapter 3. In

view of the mathematical backgrounds of the author, the supervisors, and the anticipated

readership, the development of semigroup theory is approached from the perspective of

universal algebra. Thus, Chapter 1 briefly covers the universal algebraic concepts that

will be used throughout the thesis, with the assumption that the reader is already familiar

with the content. The thesis begins properly in Chapter 2, where we present a thorough

development of the basic semigroup theory needed for Chapter 3 and beyond.
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CHAPTER 1

Universal Algebra

To orient the reader, we will cover in this short introductory chapter the required back-

ground from universal algebra. Our goal is to fix notation and record some results, so we will

not explain the theory in detail, nor will we provide any substantial proofs. To the reader

unfamiliar with universal algebra, we recommend a standard text such as Bergman [4] or

Grätzer [34], where the concepts in this chapter are covered in much more detail.

1.1. Orders and lattices

Order theory is the bread and butter of universal algebra, though it is of course a well-

established theory in its own right, extending to domains far outside of universal algebra.

The small part of order theory included in this section adopts its notation and general

philosophy from Davey and Priestley [19], which continues to be the gold standard for

introductory order theory.

Let P = 〈P ;6〉 be an ordered set (so 6 is reflexive, antisymmetric, and transitive). One

of the most basic ideas in order theory is the fact that the dual ordered set P∂ := 〈P ;>〉
is also an ordered set, which allows order-theoretic notions to be defined in dual pairs. It

is worth mentioning at the outset that order-theoretic duality is distinct from the notion of

natural duality that we will focus on in the latter half of the thesis.

We say that P is a chain if for every x, y ∈ P , we have x 6 y or y 6 x (that is, each

pair of elements in P is comparable). We call P an antichain if there are no strict order

relations within P; in other words, for all x, y ∈ P with x 6 y, we have x = y.

We use the term down-set for a decreasing subset of P; that is, U ⊆ P is a down-set

of P if for all x, y ∈ P with x 6 y and y ∈ U , we have x ∈ U . Up-sets are defined dually.

The set of all down-sets of P forms an ordered set under inclusion, denoted by O(P). The

principal down-set generated by a ∈ P is defined as ↓a := {x ∈ P | x 6 a}.
For x, y ∈ P , we write x−≺ y, and say y covers x, if x < y and there is no z ∈ P such

that x < z < y. Our first result describes the covering relation in O(P).

Proposition 1.1. Let P be an ordered set, and let U, V ∈ O(P) with U ⊆ V . Then U −≺V
in O(P) if and only if V \U is a singleton set.

Let U ⊆ P . The join of U is defined as the least element of {x ∈ P | (∀y ∈ U) x > y},
if such a least element exists (it is unique if it does exist). The join of U is denoted by

∨
U .

We define the meet of U dually, and denote it by
∧
U when it exists.

We call an ordered set L a lattice if x ∨ y :=
∨
{x, y} and x ∧ y :=

∧
{x, y} exist for

all x, y ∈ L. If L has the stronger property that
∨
U and

∧
U exist for all U ⊆ L, then L is

called a complete lattice. The ordered set O(P) is an example of a complete lattice, in

which join and meet are given by union and intersection, respectively.

5
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Since union and intersection can be viewed as special cases of join and meet, we will

often use notation analogous to
∨
U and

∧
U for union and intersection. If U is a set of

subsets of some set X, we write
⋃
U for the union of all sets in U and

⋂
U for the intersection

of all sets in U. (Interpreting
⋂

as meet in the power set of X, this gives
⋂
∅ = X.)

We assume the reader is familiar with the appropriate notions of isomorphisms for

ordered sets and lattices. We will usually use the following characterisation (or definition)

of order-isomorphisms: if P and Q are ordered sets and ϕ : P → Q is a map, then ϕ is an

an order-isomorphism if and only if it is surjective and satisfies x 6 y ⇔ ϕ(x) 6 ϕ(y) for

all x, y ∈ P . Often, the easiest way to verify that two lattices are isomorphic (as lattices) is

to use the following elementary result (see [19, Proposition 2.19(ii)]).

Proposition 1.2. Let L and K be lattices, and let ϕ : L → K be an order-isomorphism.

Then ϕ is a lattice isomorphism.

Let L be a complete lattice, and let a ∈ L. We say that a is completely meet

irreducible in L if a =
∧
A implies a ∈ A, for every A ⊆ L; completely join irreducible

elements are defined dually. We will often use the fact that a is completely meet irreducible

in L if and only if a <
∧
{x ∈ L | a < x}.

We say that a is compact in L if for every A ⊆ L with a 6
∨
A, there exists a

finite subset B of A such that a 6
∨
B. A complete lattice L is called algebraic if every

element of L is a join of compact elements of L, and L is called dually algebraic if the

dual lattice L∂ is algebraic. The following result concerning algebraic lattices is a simple

application of Zorn’s Lemma (see [19, Exercise 10.13]).

Lemma 1.3. Let L be a complete lattice. If L is algebraic, then every element of L is a

meet of completely meet irreducible elements of L.

1.2. Equivalence relations

Here, we will fix some notation regarding equivalence relations. Let A be a set, and let θ

be an equivalence relation on A. For each a ∈ A, we denote by a/θ the equivalence class

of a with respect to θ, and we write A/θ for the partition {a/θ | a ∈ A} corresponding to θ.

We denote by ∆A the trivial equivalence relation {(a, a) | a ∈ A}. If θ is an equivalence

relation on A and B ⊆ A, we denote by θ�B the equivalence relation θ ∩ B2 (i.e., the

restriction of θ to B). We will also use the same notation for restrictions of maps; i.e., if f

is a function with domain A and B ⊆ A, then f�B is the restriction of f to B.

Let f be a function with domain A. Then the kernel of f , denote by ker(f), is the

equivalence relation {(x, y) ∈ A2 | f(x) = f(y)}.
The set of all equivalence relations on A of course forms a complete lattice, with meet

given by intersection. Joins are less straightforward to describe, but we will not need to do

so in general. The next result describes joins in a special case. Note that for equivalence

relations α and β on A, we define α ◦ β := {(x, y) ∈ A2 | (∃z ∈ A) x α z β y}.

Proposition 1.4. Let α and β be equivalence relations on a set A such that α ◦ β = β ◦ α.

Then the join α ∨ β in the lattice of equivalence relations on A equals α ◦ β.
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1.3. Preorders

Along with order relations, the weaker notion of a preorder (a reflexive and transitive

binary relation) occurs quite commonly in semigroup theory. As we will see, all semigroups

are equipped with three very naturally-defined preorders, fundamental to semigroup theory

in general and this thesis in particular. We will consider here one aspect of preorders that

is best understood in the abstract.

Let S be a set and 4 a preorder on S. The natural equivalence relation induced

by 4 is the equivalence relation θ on S defined by

(∀x, y ∈ S) x θ y ⇐⇒ (x 4 y & y 4 x).

The following result is easily proved.

Proposition 1.5. Let 4 be a preorder on a set S, and let θ be the natural equivalence

relation induced by 4. Define the binary relation 6 on S/θ by

(∀x, y ∈ S) x/θ 6 y/θ ⇐⇒ x 4 y.

Then 6 is a well-defined order relation on S/θ.

1.4. Varieties and quasivarieties

We assume the reader has internalised the concept of algebraic signature or type, as well

as the concepts of homomorphism, isomorphism, embedding, endomorphism, automorphism,

subalgebra, congruence, and direct product. Algebras will usually be denoted by bold upper

case Roman letters, and their underlying sets by the corresponding unbolded symbols.

The isomorphism relation will be written as A ∼= B, and the subalgebra relation will be

written as A 6 B. If ϕ : A→ B is a homomorphism, then we have A/ker(ϕ) ∼= ϕ(A); this

fundamental isomorphism theorem will be used freely without mention.

The standard class operators will be denoted as follows. Let K be a class of (similar)

algebras; then

H(K) := {A | A is a homomorphic image of a member of K};

I(K) := {A | A is isomorphic to a member of K};

S(K) := {A | A is isomorphic to a subalgebra of a member of K};

P(K) := {A | A is isomorphic to a direct product of members of K}.

We will omit braces when applying these class operators to finite sets given in list form; for

example, I({A,B}) will be written as I(A,B).

A class of (similar) algebras is called a variety if it is closed under H, S, and P. The

smallest variety containing the class K is precisely HSP(K). Accordingly, the composite

operator HSP will be denoted by V; thus, V(K) = HSP(K) is the variety generated by K.

The smallest class closed under S and P that contains K is SP(K). We will frequently

use the following well-known characterisation of SP(K) in terms of point separation. Recall

that, for a set A and a set F of maps with domain A, the set F is said to separate the

points of A if, for all a, b ∈ A with a 6= b, there exists f ∈ F with f(a) 6= f(b). If B is a
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set of algebras, then an algebra A lies in SP(B) if and only if the set {A→ B | B ∈ B} of

homomorphisms separates the points of A. This fact will be used freely without mention.

Let A be an algebra and {Ai | i ∈ I} a set of algebras similar to A. Denote by πj the

projection map
∏
i∈I Ai → Aj , for each j ∈ I. If A is isomorphic to some A′ 6

∏
i∈I Ai such

that πj(A
′) = Aj for each j ∈ I, then A is called a subdirect product of {Ai | i ∈ I}.

It is easy to see that A is a subdirect product of {Ai | i ∈ I} if and only if there is a

set {ϕi : A→ Ai | i ∈ I} of surjective homomorphisms that separates the points of A.

An algebra A is subdirectly irreducible if the trivial congruence ∆A is completely

meet irreducible in the lattice of all congruences on A; this ensures that A is not properly

decomposable as a subdirect product [4, §3.3]. Consequently, a subdirectly irreducible

algebra A has a least non-trivial congruence, which we will call the monolith of A. An

algebra A is subdirectly irreducible if and only if there is a pair (a, b) ∈ A2\∆A such

that a θ b for every congruence θ 6= ∆A, in which case we say that (a, b) generates the

monolith of A. Also, a subdirectly irreducible algebra A satisfies A ∈ SP(K)⇒ A ∈ S(K)

for every class K.

Though we expect the reader is completely familiar with the following fundamental

result of Garrett Birkhoff (proved in [4, Theorem 3.24]), it will be useful to refer to an

explicit statement while we are deep into certain proofs later on.

Theorem 1.6 (Birkhoff’s Subdirect Decomposition Theorem). Let A be an algebra. For

every a, b ∈ A with a 6= b, there is a congruence θ on A such that A/θ is subdirectly

irreducible and (a/θ, b/θ) generates the monolith of A/θ. Consequently, A is a subdirect

product of its subdirectly irreducible homomorphic images.

If K is a class of algebras, then si(K) will denote the class of all subdirectly irreducible

members of K. The following corollary of Theorem 1.6 expresses the crucial fact that

varieties are determined by their subdirectly irreducible members.

Corollary 1.7. If V is a variety, then V = SP(si(V)) = V(si(V)).

A variety V is called residually small if there is a cardinal bound on the sizes of the

subdirectly irreducibles in V. We will study such varieties in Chapter 3, so subdirectly

irreducibles will be particularly important. Since the definition of residual smallness also

involves cardinals, we will take a moment to specify some conventions. First, an ordinal

number will be thought of as being equal to the set of all smaller ordinals; so, for example,

when thinking of 3 as an ordinal number, it will be identified with the set {0, 1, 2}. Impor-

tantly, ω will denote the smallest infinite ordinal {0, 1, . . . }, which is essentially the set N0

of non-negative integers. Now, a cardinal is an ordinal number that is not in bijection with

any of its elements. By the Well-Ordering Principle, every set is in bijection with precisely

one cardinal, called its cardinality. For a thorough treatment of ordinals and cardinals, see

Dugundji [25, Chapter II].

Next, we move on to the important concept of a free algebra. We will not give the

definition of a free algebra here since it will not be used explicitly, but we assume the reader

is aware of the usual definition by universal mapping property; see [4, §4.3]. Let the class K

be closed under S and P, and assume that K is non-trivial (i.e., K contains an algebra with
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more than one element). Then, for every non-empty set X, there is a unique algebra in K

(up to isomorphism) that is freely generated by X, which will be denoted by FK(X).

One of the main reasons that free algebras are so important is that they connect seman-

tics with syntax. It is a consequence of the existence of free algebras in varieties that a class

of algebras is a variety if and only if it can be defined by universally quantified equations

(or identities) [4, Theorem 4.41]. This is another incredibly important result of Birkhoff’s,

typically used unconsciously by universal algebraists.

The following result ([4, Corollary 4.39]) allows us to show that an equation is satisfied

by an entire variety simply by showing that two elements in a free algebra are equal. It will

be used several times in our study of semigroup varieties in Chapter 3.

Lemma 1.8. Let V be a variety, and let s(x1, . . . , xn) ≈ t(x1, . . . , xn) be an identity in

the signature of V, where x1, . . . , xn are variables belonging to some set X. If the ele-

ments sF(x1, . . . , xn) and tF(x1, . . . , xn) are equal in the free algebra F := FV(X), then V

satisfies the identity s(x1, . . . , xn) ≈ t(x1, . . . , xn).

In Lemma 1.8 and several other situations we will encounter, it will be important to

distinguish between terms and term functions (also called term operations; see [4, §4.3]).

Given an n-ary term s(x1, . . . , xn) and an algebra A (in the same signature), the induced

term function sA : An → A will be indicated by a superscript A (as in Lemma 1.8, where sF

is the function Fn → F induced by the formal expression s(x1, . . . , xn)). The superscripts

on term functions will often be omitted when there is no danger of ambiguity.

A quasivariety is a class defined by a set of quasiequations (also called quasi-

identities), which are universally quantified implications of the form

s1 ≈ t1 & · · · & sk ≈ tk → s ≈ t,

where s1, . . . , sk, s and t1, . . . , tk, t are (finitary) terms in some set of variables. For example,

the quasiequation xy ≈ 1 → xy ≈ yx holds in all groups (in the signature { · ,−1, 1}), and

expresses the fact that inverse pairs commute. We regard equations as quasiequations for

which k = 0 in the above template, so all varieties are quasivarieties.

If ε is a quasiequation (or an equation) and A is an algebra, we write A |= ε if A

satisfies ε. If K is a class of algebras, then K |= ε means that A |= ε for every A ∈K. For

example, if V is a variety of groups in the signature { · ,−1, 1}, then V |= xy ≈ 1→ xy ≈ yx.

The quasivariety generated by the class K is defined as the class of all algebras satisfying

all quasiequations ε for which K |= ε.

Quasivarieties are closed under S and P, but not necessarily under H. If K is a finite

set of finite algebras, then the quasivariety generated by K is SP(K), by [4, Theorem 5.6]

and [33, Corollary 2.3.4]. This fact will be critically important in the second half of the

thesis, and we will use it without mention.

Note that an algebra A satisfies a quasiequation ε if and only if every finitely generated

subalgebra of A satisfies ε; this is simply because quasiequations are quantified over finitely

many variables. The following result is an immediate consequence of this observation.

Theorem 1.9. Let A be an algebra. Then A is in the quasivariety (and therefore in the

variety) generated by the finitely generated subalgebras of A.
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An algebra A is called locally finite if every finitely generated subalgebra of A is finite,

and a class K of algebras is called locally finite if every member of K is locally finite. If K

is closed under S (e.g., if K is a quasivariety), then K is locally finite if and only if every

finitely generated member of K is finite. The following result is proved in [4, Theorem 3.49].

Theorem 1.10. If K is a finite set of finite algebras, then V(K) is locally finite.

A variety will be called finitely generated if it is of the form V(K) for some finite

set K of finite algebras; or, equivalently, if it is of the form V(A) for some finite algebra A.

Analogously, a quasivariety is called finitely generated if it is of the form SP(K) for some

finite set K of finite algebras. Theorem 1.10 says, then, that finitely generated quasivarieties

and varieties are locally finite.

The last general result of universal algebra that we will need is the following simple

lemma; the proof may be extracted from the proof of [4, Theorem 3.49].

Lemma 1.11. Let A and B be finite algebras with A ∈ HSP(B). Then A is a homomorphic

image of some finite algebra in SP(B).

1.5. Semilattices

To transition into our study of semigroups, we will briefly discuss semilattices. An

ordered set S is called a semilattice if x∧ y :=
∧
{x, y} exists for all x, y ∈ S. We note that

this really defines a meet semilattice; join semilattices are defined dually, but, in semigroup

theory, we almost exclusively think of semilattices as meet semilattices.

Since meet operations are associative, semilattices can be regarded as semigroups. In

this situation, we will denote the meet operation multiplicatively, as we will with most

semigroups. Thus, from the point of view of semigroup theory, we can define a semilattice

to be a semigroup that is commutative and idempotent; i.e., a semigroup S = 〈S; · 〉 such

that S |= xy ≈ yx and S |= x2 ≈ x.

As with lattices, one can translate between semilattices as ordered sets and semilattices

as algebras. If S is a semilattice regarded as a semigroup, then the semilattice order on S

is the order relation defined by x 6 y ⇔ xy = x, for all x, y ∈ S. If S was originally obtained

from an ordered set, then this semilattice order agrees with the original order.

In our study of semigroup varieties, we will often define (quasi)varieties directly from

(quasi)equations. We will use the standard square bracket notation, and we will take asso-

ciativity as given. For example, [xy ≈ yx, x2 ≈ x] denotes the semigroup variety defined

by xy ≈ yx and x2 ≈ x, which is of course the variety of semilattices.

We will close the chapter with a simple application of Corollary 1.7.

Theorem 1.12. The two-element semilattice I is the only subdirectly irreducible semilattice.

Consequently, SP(I) is the variety [xy ≈ yx, x2 ≈ x] of all semilattices.

Proof. Let S be a subdirectly irreducible semilattice, and let (a, b) generate its monolith.

We can assume by symmetry that a 66 b. Now, define F := {x ∈ S | a 6 x}. Then {F, S\F}
is a partition of S with a ∈ F and b ∈ S\F , and the corresponding equivalence relation is a

congruence on S and so must be trivial. Thus, F and S\F are singleton sets, so S ∼= I. �



CHAPTER 2

Semigroups for the Working Algebraist

The development of semigroup theory in this chapter is geared towards those that are

already familiar with the universal algebra and order theory outlined in Chapter 1. Though

such a reader likely has some prior knowledge of semigroups, no such knowledge is assumed.

This chapter was painstakingly arranged in service of the ultimate goal of the thesis,

which is not only to prove the main result, but to give the reader a deep understanding of

the result and its significance in the broader dualisability problem for semigroups. While

the semigroup theorist is not likely to find any new results in this chapter, the author hopes

that they might read it and find something interesting in the presentation.

It would perhaps have been permissible to condense this chapter and the next into a few

logically minimalistic pages, giving references for all of the proofs. Indeed, the substantial

results in this chapter can be found in standard texts such as Howie [37] or Clifford and

Preston [9]. However, the relationships between these results are just as important as the

results themselves, and in understanding these relationships, the devil is truly in the detail.

Some of the tiniest arguments took weeks or even months for the author to uncover, all for

the sake of presenting a seamless and efficient development of the required background.

A lot of my time would have been saved if this chapter had already existed. If nothing

else, these notes will be of use to anyone who might tackle the general dualisability problem

for semigroups. For such a person, I will gladly give up some more of my time.

2.1. Ideals and Green’s J relation

The reader has most likely encountered the group-theoretic composition series, which

allows groups to be broken down into simple groups. The composition series is defined in

terms of normal subgroups, so there is no direct generalisation for semigroups. However,

in his 1940 paper [59], David Rees explored the idea of using ideals in place of normal

subgroups. This allows any semigroup to be broken down into more well-behaved parts,

and while the decomposition is somewhat coarser than that available to groups, it turns out

to be exactly the right concept for semigroups.

In this section, we will explain the fundamental ideas of Rees’s decomposition. We take

advantage of the reader’s assumed familiarity with order theory, resulting in a somewhat

unconventional introduction to semigroups, but perhaps, for the universal algebraist, a more

natural one.

The first ingredient in Rees’s decomposition was a suitable analogue of a quotient by a

normal subgroup. This is now called a Rees quotient, where a semigroup is factored by an

ideal. The construction should be transparent to those acquainted with abstract algebra,

so we will just give the definitions.

11
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An ideal of a semigroup S is a non-empty subset I of S such that for every x ∈ I and

every a ∈ S, we have ax, xa ∈ I. More compactly, I is an ideal of S if I 6= ∅ and SI, IS ⊆ I.

If I is an ideal of a semigroup S, then θI := ∆S ∪ I2 is a congruence on S whose only

non-trivial equivalence class is I. In the factor semigroup S/θI , called a Rees quotient,

the element I acts as a multiplicative zero element. It is customary to write S/I rather

than S/θI , with the understanding that we are factoring by the congruence ∆S ∪ I2.
In his semigroup-theoretic version of the composition series, Rees’s original approach

in [59] was to consider chains of ideals. However, concepts introduced in 1951 by James

Alexander Green [35] allowed for a simpler approach that expanded the utility of Rees’s

theory. As is now tradition, we will develop Rees’s ideas using Green’s relations, which are

now a hallmark of semigroup theory.

We will introduce Green’s J relation in this section; the rest of Green’s relations will

be defined in the next section. For the following discussion, we will work within a fixed

semigroup S.

Any union of ideals of S is an ideal; any intersection of ideals is an ideal, provided

only that the intersection is non-empty. Thus, for each a ∈ S, there exists a smallest ideal

containing a, given by the intersection of all ideals of S that contain a. We will denote this

ideal by 〈a〉, and call it the principal ideal generated by a. Any non-empty subset can

generate an ideal, but we will exclusively be starting from singleton sets.

We define the preorder 4J on S as follows. Given a, b ∈ S, we write a 4J b if 〈a〉 ⊆ 〈b〉;
equivalently, if a ∈ 〈b〉. We then define Green’s J relation to be the equivalence relation

on S induced by 4J (see Section 1.3); that is, for all a, b ∈ S, we have

a J b ⇐⇒ (a 4J b & b 4J a) ⇐⇒ 〈a〉 = 〈b〉.

Thus, two elements of S are J -equivalent if they generate the same principal ideal.

The equivalence class of a ∈ S with respect to J is denoted by Ja, as is tradition.

When we need to specify which semigroup we are working in, we add the semigroup as a

superscript; i.e., we will write expressions such as 4S
J , J S, and JS

a .

Observe that if I is an ideal of S containing some a ∈ S, then 〈a〉 ⊆ I by the definition

of 〈a〉, and so I must also contain any element that generates the same ideal as a; that

is, Ja ⊆ I. It follows that any ideal is a union of J -classes. However, a non-empty union

of J -classes need not be an ideal. To understand the relationship between ideals and J -

classes, we would like to know exactly when a union of J -classes forms an ideal.

Proposition 1.5 gives us a natural order on the set S/J of J -classes of S. Given a, b ∈ S,

we will write Ja 6 Jb if a 4J b. Equipping the J -classes with this order, which we call

the J -order, we can readily describe the collections of J -classes whose unions form ideals.

Proposition 2.1. Let S be a semigroup, and let U be a non-empty set of J -classes of S.

Then
⋃
U is an ideal of S if and only if U is a down-set of 〈S/J ;6〉.

Proof. Assume that
⋃
U is an ideal of S. To show that U is a down-set, let a, b ∈ S

with Jb 6 Ja and Ja ∈ U. Then, since b 4J a and
⋃
U is an ideal, we have b ∈ 〈a〉 ⊆

⋃
U,

so b ∈
⋃
U, and therefore Jb must be one of the J -classes in U.
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Conversely, assume that U is a down-set of 〈S/J ;6〉. To show that I :=
⋃
U is an ideal,

let a ∈ I, and let x ∈ 〈a〉, so x 4J a. Then Jx 6 Ja ∈ U, so Jx ∈ U, and hence x ∈ I. This

shows that 〈a〉 ⊆ I for all a ∈ I, so I is a union of principal ideals, hence an ideal. �

The bijective correspondence in Proposition 2.1 is in fact an order-isomorphism: given

two down-sets of J -classes U and V, we have
⋃
U ⊆

⋃
V ⇒ U ⊆ V because the J -classes

partition S, while the reverse implication is basic set theory. Hence, by Proposition 1.2, we

have the following result.

Proposition 2.2. Let S be a semigroup, let I0(S) denote the set of ideals of S along

with ∅, and let J denote the ordered set 〈S/J ;6〉 of J -classes of S. Then I0(S) and O(J)

are isomorphic lattices; an isomorphism O(J)→ I0(S) is given by the mapping U 7→
⋃
U.

Example 2.3. As a brief illustration of Proposition 2.2, we will find all ideals of the six-

element semigroup, S, given in Figure 2.1.

· a b c u v d

a a a c u u d

b b b c v v d

c c c c d d d

u c c c d d d

v c c c d d d

d c c c d d d

Figure 2.1. A six-element semigroup.

It can easily be verified that the principal ideals are

〈c〉 = 〈d〉 = {c, d}, 〈u〉 = 〈v〉 = {u, v, c, d}, 〈a〉 = 〈b〉 = {a, b, u, v, c, d} = S.

It follows that the partition into J -classes is S/J = {{c, d}, {u, v}, {a, b}}, and the J -order

is given by {c, d} < {u, v} < {a, b}; thus, 〈S/J ;6〉 is a three-element chain. The non-empty

down-sets of this ordered set are {{c, d}}, {{c, d}, {u, v}}, and {{c, d}, {u, v}, {a, b}}, so by

taking the unions of these we find that {c, d}, {c, d, u, v}, and S are the only ideals of S. In

this semigroup, all ideals happen to be principal, though this fact does not have anywhere

near the significance it does in ring theory.

In Example 2.3, we note the presence of a smallest ideal. Given the size of the example,

it is perhaps unclear whether this is a coincidence, but minimum ideals are more common

than the universal algebraist may first expect.

An infinite intersection of ideals of a semigroup S may be empty and therefore not an

ideal. However, a finite intersection of ideals is always non-empty, for given ideals I, J of S,

we have IJ ⊆ I ∩J . So, while the set of ideals of S may not form a complete lattice, it does

always form a lattice, which implies the following result.

Theorem 2.4. If a semigroup S has a minimal ideal M , then M is the least ideal of S. In

particular, any finite semigroup has a minimum ideal.
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Does the minimum ideal have any special properties? Certainly it is a subsemigroup,

as is any ideal, but more can be said. To be precise, let S be a semigroup with a minimum

ideal, M, regarded as a semigroup in its own right. Then M has no proper ideals (i.e., no

ideals other than M). This is not difficult to prove, but it is perhaps somewhat surprising.

While it is tautologically true that M contains no smaller ideals of S, it is not immediately

obvious that M contains no smaller ideals within itself.

Rather than proving this now, it will pay to extend our attention to the other J -classes.

We are not so lucky that every J -class is a subsemigroup (though this is perhaps one of the

reasons why semigroup theory is interesting). We therefore cannot study any given J -class

in exactly the same way that we might study the minimum ideal. However, by forming an

appropriate Rees quotient, we can force any J -class into a position of minimality.

We know that a principal ideal 〈a〉 in a semigroup S is, by virtue of being an ideal, a

union of J -classes. But, in the case of principal ideals, there is a particularly neat description

of which J -classes they comprise. From the down-set point of view, 〈a〉 corresponds to the

principal down-set ↓Ja; precisely, we have

〈a〉 =
⋃
{Jx | x ∈ S & Jx 6 Ja} = {x ∈ S | Jx 6 Ja}.

The fact that principal ideals correspond to principal down-sets is a direct consequence of

Proposition 2.2.

Now, let U := {Jx | x ∈ S & Jx < Ja}, the set of J -classes strictly below Ja.

Clearly, U is a down-set of J -classes. If U is empty, then Ja is the minimum ideal of S, but

otherwise, I :=
⋃
U is an ideal of S, and the set difference 〈a〉\I is the J -class Ja.

So the situation is that our desired object of study, Ja, lives inside the semigroup 〈a〉,
and the remaining elements form an ideal I. If we then form the Rees quotient 〈a〉/I, what

we end up with is essentially the J -class Ja with an additional zero element that represents

the products that fall into lower J -classes. The factor semigroups so constructed will enable

us to study the J -classes of a semigroup in isolation, almost as if they were subsemigroups.

We call them principal factors.

For a precise definition, let S be a semigroup, let a ∈ S, and let I := {x ∈ S | Jx < Ja},
the union of the J -classes strictly below Ja. If I is non-empty, then we define the principal

factor of S determined by Ja to be the Rees quotient 〈a〉/I. Of course, I could be

empty, in which case we define the principal factor of S determined by Ja to be the minimum

ideal Ja = 〈a〉.

Example 2.5. Let us calculate the three principal factors of the semigroup S from Exam-

ple 2.3. One is the minimum ideal, {c, d}, which forms a right-zero semigroup; i.e., a

semigroup satisfying xy ≈ y.

The principal factor determined by {u, v} is the quotient {u, v, c, d}/{c, d}. The elements

are {u}, {v}, and {c, d}. As always, the ideal {c, d} is a zero element in the Rees quotient,

but all products in this quotient equal the zero element. In general, a semigroup with a zero

element in which all products equal zero is called a null semigroup. Thus, the principal

factor {u, v, c, d}/{c, d} is the three-element null semigroup.



2.1. IDEALS AND GREEN’S J RELATION 15

Finally, the principal factor determined by {a, b} equals S/{u, v, c, d}, which is isomor-

phic to the following three-element semigroup.

· a b 0

a a a 0

b b b 0

0 0 0 0

This is a two-element left-zero semigroup {a, b} with an adjoined zero. For this principal

factor, it happens that the zero element is indecomposable; in other words, the J -class {a, b}
is a subsemigroup. The minimum J -class {c, d} is also a subsemigroup, of course. In

contrast, all products in the J -class {u, v} fall into strictly lower J -classes (corresponding

to the principal factor being null). This kind of dichotomy occurs in a surprisingly broad

class of semigroups, including almost all semigroups we study in the second half of this

thesis. We will elaborate on this in Chapter 3.

In forming principal factors, a broader view of the situation is that we have ideals I ⊂ J
such that the set difference J\I is a single J -class. By combining Proposition 2.2 and

Proposition 1.1, it is easy to see that this implies I −≺ J in the lattice of ideals. Conversely,

if I −≺ J in the lattice of ideals, then J\I is a J -class, by the same results.

This tells us in particular that the principal ideal 〈a〉 is minimal with respect to strictly

containing the ideal I = {x ∈ S | Jx < Ja}. The next result, which is easily proved, shows

that this minimality property carries through when we factor the entire semigroup by I.

Proposition 2.6. Let S be a semigroup, let I be an ideal of S, and let L denote the lattice

of ideals of S that contain I. Then L is isomorphic to the lattice I(S/I) of ideals of S/I;

an isomorphism L→ I(S/I) is given by the mapping J 7→ J/I.

We now arrive at the crucial property of principal factors. From Proposition 2.6, we

deduce that a principal factor 〈a〉/I is an atom (i.e., covers the least element) in the lattice

of ideals of S/I, since I −≺ 〈a〉 in the lattice of ideals of S. This leads us to an important

piece of terminology: given an arbitrary semigroup S with a zero element, an ideal of S is

called zero-minimal if it is minimal in the ordered set of non-zero ideals of S.

So, in other words, we have the following.

Proposition 2.7. Let S be a semigroup, let a ∈ S, and let I :={x ∈ S | Jx < Ja}. If I 6= ∅,

then the principal factor 〈a〉/I is a zero-minimal ideal of S/I.

Knowing that a principal factor exists as a zero-minimal ideal in some naturally-chosen

semigroup, we would now like to know what special properties zero-minimal ideals possess

in general.

If S is a semigroup with a zero element 0, then S is called zero-simple if S is not a null

semigroup (i.e., SS 6= {0}) and has precisely two ideals (S and {0}). A simple semigroup

is a semigroup S such that S is the only ideal of S. (A simple semigroup can be trivial.)

Remark. The semigroup-theoretic definition of simplicity is less restrictive than the ‘usual’

definition in, say, group theory or universal algebra. A simple semigroup need not be simple
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in the sense of having precisely two congruences; for example, every group is simple in

the semigroup-theoretic sense, but certainly not in the group-theoretic sense. In semigroup

theory, a semigroup with precisely two congruences is called ‘congruence-free’.

Our goal is to prove is that a zero-minimal ideal of a semigroup is either a null semigroup

(all products equal zero) or a zero-simple semigroup. Proposition 2.7 then tells us that

principal factors have one of these properties, with the exception of the minimal ideal.

Conveniently, we can study the minimum ideal at the same time by using the following

construction (which we essentially encountered in Example 2.5).

Given a semigroup S, we define S0 to be the semigroup obtained from S by adding a

new zero element, which, context permitting, we will denote by 0. Importantly, if I ⊆ S,

then I is a minimal ideal of S if and only if I ∪ {0} is a zero-minimal ideal of S0. Thus, if

we can prove zero minimal ideals are zero-simple, it will follow that minimum ideals must

be simple.

The result that we wish to prove can be stated as follows.

Theorem 2.8. Let S be a semigroup with zero, and let M be a zero-minimal ideal of S.

Then the subsemigroup M formed by M is either zero-simple or null.

The remainder of this section will be devoted to proving Theorem 2.8. The proof will

be assisted by the following characterisation of zero-simple semigroups.

Lemma 2.9. Let S be a non-trivial semigroup with zero. Then S is zero-simple if and only

if SaS = S for all a ∈ S\{0}.

Proof. Assume that S is zero-simple. Since SS is a non-zero ideal of S, we have SS = S,

and hence SSS = S. Now, consider the set I := {x ∈ S | SxS = {0}}, which is easily seen

to be an ideal of S. Then we must have I = {0}, because I = S would contradict SSS = S.

Thus, if a ∈ S\{0} = S\I, then SaS 6= {0}, so SaS = S.

Conversely, assume that SaS = S for all a ∈ S\{0}. Let I be a non-zero ideal of S, and

choose some a ∈ I\{0}. Then S = SaS ⊆ SIS ⊆ I, so I = S. Hence S is zero-simple. �

Because a semigroup S is simple if and only if S0 is zero-simple, a result concerning zero-

simple semigroups will usually imply a result concerning simple semigroups. For example,

if S is a semigroup, then applying Lemma 2.9 to S0 tells us that S is simple if and only

if SaS = S for all a ∈ S. We will usually state such results only for zero-simple semigroups,

but apply them freely to simple semigroups in this manner.

Our final ingredient for the proof of Theorem 2.8 is the concrete description of principal

ideals, which we have delayed discussing as long as possible. The description is by no means

deep nor complicated, but we wished to highlight the way in which the theory of J -classes

can be developed by more abstract means.

First, we define S1 to be the semigroup obtained from the semigroup S by adding a new

identity element, 1. Naturally, we denote the underyling set of S1 by S1. We will always

use a superscript ‘1’ to refer to this construction (as opposed to the first Cartesian or direct

power). Now, given a ∈ S, the set S1aS1 is an ideal of S containing a, and every ideal

containing a must contain S1aS1; thus, 〈a〉 = S1aS1. The use of the notation S1 here is
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merely to abbreviate the description of principal ideals; without this notation, we would

have to write 〈a〉 = {a} ∪ aS ∪ Sa ∪ SaS.

Remark. Our definition of S1 is non-standard; usually, S1 is defined to be S in the case

that S already has an identity. This makes essentially no difference in practice, so we prefer

the less complicated definition. Those familiar with some category theory may also find it

somewhat pleasant that, with our definition, the construction S 7→ S1 defines a left adjoint

to the forgetful functor from monoids to semigroups.

Proof of Theorem 2.8. Assume that M is not null, so MM 6= {0}; we will show that M

is zero-simple.

First, since MM ⊆ M is a non-zero ideal of S, we must have MM = M by zero-

minimality, and so MMM = M . To apply Lemma 2.9, let a ∈M\{0}. Then the principal

ideal 〈a〉 = S1aS1 is an ideal of S contained in M , so M = S1aS1 by zero-minimality. Now,

M = MMM = M(S1aS1)M = (MS1)a(S1M) ⊆MaM ⊆M,

so M = MaM . By Lemma 2.9, M is zero-simple. �

Remark. If a zero-minimal ideal is a null semigroup, it does not necessarily have only two

ideals. The only null semigroup with precisely two ideals is the two-element one, but any

null semigroup can arise as a zero-minimal ideal of some semigroup. The attentive reader

will be able to construct relevant examples by the end of Chapter 3.

Corollary 2.10. Let J be a J -class of a semigroup S. If J forms a subsemigroup of S,

then it is simple.

Proof. By adding a zero to S (which does not affect the abstract properties of J as a

subsemigroup), we can assume that J is not the minimum ideal. Let K denote the principal

factor of S determined by J . Clearly K is not null since J is a subsemigroup, so K is zero-

simple by Proposition 2.7 and Theorem 2.8. Moreover, the zero of K is indecomposable,

and removing this zero yields an isomorphic copy of J . This shows that J is simple. �

The results of this section can now be summarised as follows.

Theorem 2.11. Let S be a semigroup. Then the minimum ideal of S is simple (if it exists),

and every other principal factor of S is either zero-simple or null.

A null semigroup is determined up to isomorphism by the cardinality of its underlying

set; these objects are indeed quite easily described. Simple and zero-simple semigroups, on

the other hand, can be rather complicated. This is hardly surprising upon considering that

all groups are simple as semigroups. Less obviously, every semigroup (!) can be embedded

into a simple semigroup [10, Theorem 8.45].

For our purposes, we will not need to study these objects in complete generality. The

zero-simple semigroups we will encounter will always satisfy a certain minimality condition

which affords them with a particularly rigid and tangible structure. One of the main goals

of this chapter is to expose this structure theory, which was the focus of the latter half of

Rees’s paper [59]. To understand this structure, we must look deeper within the J -classes.
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2.2. Green’s relations L, R, H, and D

In Section 2.1, we took care to develop the theory of J -classes in a certain abstract way.

Let us focus in particular on Proposition 2.1 and its immediate consequence Proposition 2.2.

In the proofs, both the implicit and the explicit, there was no need to work directly with

the definition of an ideal. All we really needed was the fact that a union of ideals is an ideal.

In more detail, the abstract set-up was as follows.

Suppose that, for some set S, we have a set A of subsets of S that is closed under arbitrary

union and intersection. Then, for each a ∈ S, we may define 〈a〉 to be the intersection

of all members of A that contain a. Now, define a preorder 4 on S by putting a 4 b

if 〈a〉 ⊆ 〈b〉, for every a, b ∈ S. From this, we get a natural equivalence relation θ, defined

by a θ b ⇔ a 4 b & b 4 a. In turn, this gives us a natural order on the θ-classes, as in

Proposition 1.5.

The point here is that this abstract framework was all that we needed to prove Propo-

sition 2.2. So, in the general setting of the previous paragraph, every set in A is a union of

a down-set of θ-classes, with the natural correspondence being a lattice isomorphism.

So, with little effort, we can get analogous results for left and right ideals. A left ideal

of a semigroup S is a non-empty subset L of S such that SL ⊆ L. A right ideal is defined

dually, and so a subset of S is an ideal precisely if it is both a left ideal and a right ideal.

(An ideal is sometimes called a two-sided ideal for emphasis.)

Within a fixed semigroup S, a union of left ideals is a left ideal, and a non-empty

intersection of left ideals is a left ideal. The principal left ideal of an element a ∈ S is

defined as the smallest left ideal of S containing a, which is easily seen to equal S1a.

Analogously to the relation 4J , we define the preorder 4L by a 4L b ⇔ S1a ⊆ S1b,

for all a, b ∈ S. Green’s L relation is the induced equivalence relation, so we have a L b
in S if and only if S1a = S1b. Similarly to the notation for J -classes, we write La for

the L-class of a ∈ S. And, finally, the set S/L of L-classes inherits a natural order relation,

given by La 6 Lb ⇔ a 4L b, for all a, b ∈ S.

The proof of Proposition 2.2 carries over to give us the following result.

Proposition 2.12. Let S be a semigroup, let L0(S) denote the set of left ideals of S along

with ∅, and let L denote the ordered set 〈S/L;6〉 of L-classes of S. Then L0(S) and O(L)

are isomorphic lattices; an isomorphism O(L)→ L0(S) is given by the mapping U 7→
⋃
U.

We of course have the dual definitions and results concerning right ideals. The sym-

bols 4R, Ra, and R are used analogously to 4L, La, and L.

Example 2.13. We will describe the relations L and R for the semigroup S from Exam-

ples 2.3 and 2.5. First, the principal left ideals are

S1a = S1b = {a, b, c}, S1u = S1v = {u, v, d}, S1c = {c}, S1d = {d}.

It follows that the partition into L-classes is S/L = {{c}, {d}, {u, v}, {a, b}}.
The principal right ideals are

aS1 = {a, u, c, d}, bS1 = {b, v, c, d}, uS1 = {u, c, d}, vS1 = {v, c, d},

and cS1 = dS1 = {c, d}. We therefore have S/R = {{c, d}, {u}, {v}, {a}, {b}}.
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From the definitions and the preceding example, it is clear that L,R ⊆ J . In particular,

we have L ∨ R ⊆ J in the lattice of equivalence relations. In Example 2.13, it turned out

that L ∨R coincides with J , though we will see that this is no coincidence.

The join D :=L ∨R is called Green’s D relation. We use the notation Da for the D-

class of an element a, though the D relation does not come with a natural preorder in the

same way that L, R, and J do.

For our purposes, the primary significance of the D relation is that it is a means of

studying the J relation, which is really the object of fundamental interest, but this approach

is feasible only when D = J . This identity will be available to us when needed, but we will

give an example to show that it need not hold in general.

Example 2.14. The following example is from Howie [37, Exercise 2.6.1]. Consider the

multiplicative semigroup S of 2× 2 real matrices with underlying set

S =

{(
a 0

b 1

) ∣∣∣∣∣ a, b ∈ R+

}
.

It can be shown that L = R = D = ∆S and J = S2, so here D and J are as different as

they could possibly be. Such extreme situations are uncommon (particularly for us), but

nonetheless, it is important to be aware that D and J need not coincide.

The remainder of the present section will be devoted to exposing some of the basic

structure of D-classes. We proceed with the next result, which follows immediately from

the definitions of its subjects.

Proposition 2.15. Let S be a semigroup. The relations 4L and L are right-compatible;

that is, for all a, b, c ∈ S, we have

a 4L b =⇒ ac 4L bc and a L b =⇒ ac L bc.

Dually, 4R and R are left-compatible.

Among other things, Proposition 2.15 assists us in proving the following fundamental

result concerning the D relation.

Proposition 2.16. Let S be a semigroup. Then L ◦ R = R ◦ L = D.

Proof. Let a, b ∈ S with a L ◦ R b. Then there exists c ∈ S with a L c R b. Since we have

in particular that a ∈ S1c and b ∈ cS1, we may choose x, y ∈ S1 with a = xc and b = cy.

Then a L c implies ay L cy = b as L is right-compatible, and by symmetry we have xb R a.

Thus, a R xb = xcy = ay L b, so a R ◦ L b. This shows that L◦R ⊆ R◦L, and the reverse

inclusion is by symmetry. By Proposition 1.4 we have L ◦ R = L ∨R = D. �

Owing to Proposition 2.16, it is possible to represent a given D-class using a so-called

eggbox diagram (Figure 2.2). In such a diagram, the elements of the D-class are grouped

into cells arranged in a rectangular grid so that each row of the grid makes up an R-class and

each column an L-class. The cells themselves are classes of the equivalence relation L ∩R.

This is the last of Green’s relations, known as Green’s H relation; that is, H :=L∩R. As
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would be hoped for at this point, we denote by Ha the H-class of a semigroup element a.

These H-classes are indeed important objects, and we will have more to say about them

shortly.

R-class

L-class

Figure 2.2. A generic eggbox diagram.

The general situation of Proposition 2.16 is what allows for the existence of eggbox

diagrams. However, these diagrams are of particular value for D-classes because they can

provide useful information about the locations of products between D-related elements.

The inner workings of D-classes were of course discovered by Green in his seminal pa-

per [35]. The following result of Green’s distills the interaction between the semigroup

operation and the eggbox diagrams. For the statement and proof, we will use the symbol ρs

to denote right translation by a given semigroup element s; that is ρs(x) := xs, for all x in

the given semigroup.

Lemma 2.17 (Green’s Lemma). Let S be a semigroup, let a, b ∈ S with a R b, and choose

any s ∈ S1 with as = b. Then the right translation ρs maps La bijectively onto Lb. More-

over, ρs maps each H-class contained in La bijectively onto the R-related H-class contained

in Lb, so in particular, ρs maps Ha bijectively onto Hb.

Proof. Choose t ∈ S1 such that bt = a. Let x ∈ La. By right-compatibility of L (Propo-

sition 2.15) we have xs L as = b, so ρs(x) ∈ Lb. This shows that ρs maps La into Lb, and

by symmetry, the right translation ρt maps Lb into La.

Since ast = bt = a, it follows that st is a right identity for a and therefore for every

element of S1a. Thus, if x ∈ La ⊆ S1a, then ρt(ρs(x)) = xst = x, showing that ρt ◦ ρs acts

as identity on La. By symmetry ρs ◦ ρt acts as identity on Lb, so ρs : La → Lb is a bijection.

a b

x xs

ρt

ρs
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Now, note that for any x ∈ La, we have x R ρs(x), as ρs(x) = xs can be translated back

to x by ρt. Thus, if x, y ∈ La with x R y, then ρs(x) R x R y R ρs(y), so the restriction

of ρs to La preserves R. As it also preserves L, the H-classes in La are mapped into

the R-related H-classes in Lb. Symmetric statements hold for ρt, so the result follows. �

Of course, Green’s Lemma implicitly contains the corresponding dual result concerning

left translations. Thus, we have the following immediate consequence.

Corollary 2.18. Let S be a semigroup, and let a, b ∈ S with a D b. Then

|Ha| = |Hb|, |La| = |Lb|, |Ra| = |Rb|.

A further development of the theory of D-classes will benefit from a discussion of idem-

potents. Recall that a semigroup element e is idempotent if ee = e. It is a decidedly

important concept in semigroup theory, though its usefulness depends to an extent on a

relative abundance of idempotents within a semigroup—enough so that they are able to

serve as a skeleton of sorts.

We will be particularly concerned with the way that idempotents govern the structure

of their D-classes. First of all, looking within the smaller L-, R-, and H-classes, we can

immediately deduce the following.

Proposition 2.19. Let S be a semigroup, and let e be an idempotent element of S. Then e

is a left identity for Re and a right identity for Le. Consequently, e is an identity for He.

Proof. Simply observe that Le ⊆ S1e and Re ⊆ eS1. �

The relationship between idempotents and D-classes is best explained via the notion of

a regular element. An element a of a semigroup S is called regular if there exists x ∈ S
such that a = axa. (A semigroup is called regular if all of its elements are regular.) The

definition of a regular element comes from ring theory, but in the context of semigroup

theory, one can naturally arrive at the concept by considering the L- and R-classes of

idempotents.

Specifically, let S be a semigroup, and let e ∈ S be idempotent. How does e interact

with the elements of its L-class?

Take any a ∈ Le. By Proposition 2.19, we have ae = a. Now, we also have e ∈ Sa (more

specifically than S1a, since e is idempotent), so e = xa for some x ∈ S. Combining this

with ae = a gives a = axa.

This shows that every element of Le is regular. Conversely, take a regular element a ∈ S,

with x ∈ S chosen so that a = axa. Multiplying on the left by x gives xa = xaxa, so e :=xa

is idempotent, and clearly a ∈ Se and e ∈ Sa, so e L a.

We have shown that a semigroup element is regular if and only if it has an idempotent

in its L-class; clearly, then, the L-class of a regular element contains only regular elements.

But the definition of a regular element is self-dual, so we can replace ‘L’ by ‘R’ in the

previous sentence.

The regularity property therefore spreads throughout the rows and columns of a D-class,

saturating it. That is, if a D-class contains an idempotent, every element is regular, leading

to the obvious notion of a regular D-class: a D-class that contains only regular elements, or
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equivalently, at least one regular element, or equivalently, at least one idempotent. Within a

regular D-class, every L- and R-class contains an idempotent—thus appears an idempotent

skeleton.

Using Green’s Lemma, we can now derive a result which reveals how idempotents influ-

ence the location of products between elements within the same D-class.

Lemma 2.20. Let S be a semigroup, and let a, b ∈ S with a D b. Then ab ∈ Ra ∩Lb if and

only if there is an idempotent e ∈ La ∩Rb.

Proof. Assume that ab ∈ Ra ∩ Lb, and choose c ∈ S1 with abc = a. Then, by Green’s

Lemma 2.17, ρc maps Hb into La ∩Rb, with the inverse mapping given by ρb.

a ab

e b

ρc

ρb

Thus, bcbc = ρc(ρb(ρc(b))) = ρc(b) = bc, so e := bc ∈ La ∩ Rb is idempotent, as required.

Conversely, assume there is an idempotent e ∈ La∩Rb. Since eb = b (Proposition 2.19), the

right translation ρb maps Ha into Ra ∩ Lb by Green’s Lemma, so ab ∈ Ra ∩ Lb. �

To close this section, we will use Lemma 2.20 in conjunction with Green’s Lemma 2.17

to prove the following powerful theorem, in which groups make their inevitable entrance

into semigroup theory.

Theorem 2.21 (Green’s Theorem). Let S be a semigroup, and let H be an H-class of S.

The following are equivalent:

(i) HH ∩H 6= ∅;

(ii) H contains an idempotent element;

(iii) H is a subgroup of S.

Proof. (i) ⇒ (ii): Assume that HH ∩ H 6= ∅, so there are a, b ∈ H with ab ∈ H. Note

that La ∩Rb and Ra ∩ Lb both equal H because a H b. Thus, by Lemma 2.20, H contains

an idempotent element.

(ii) ⇒ (iii): Assume there is an idempotent e ∈ H, and let x, y ∈ H. Then Lx ∩Ry = H

contains an idempotent, so xy ∈ Rx ∩ Ly = H by Lemma 2.20, showing that H is a

subsemigroup.

We must prove that the subsemigroup H is a group. By Proposition 2.19, e is an identity

for H, so it remains to prove that each element of H has an inverse with respect to e.

Let x ∈ H. Then ex = x; i.e., right translation by x sends e to x. By Green’s

Lemma 2.17, right translation by x is a permutation of H. Thus, x′x = e for some x′ ∈ H,
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which is then a left inverse of x. Dually, x also has a right inverse x∗ ∈ H, which coincides

with x′ because x′ = x′e = x′xx∗ = ex∗ = x∗. Thus, x has a two-sided inverse, x′, in H.

Clearly (iii) implies (i), so the proof is complete. �

Remark. We have seen that in a regular D-class, every row and column contains an idem-

potent, and we now know that each idempotent-containing cell must be a group. We also

know from Corollary 2.18 that all of these groups have the same order. It can in fact be

shown that all of the group H-classes within a givin D-class are isomorphic to each other.

We will not prove this fact since we will not need it, but it would be remiss not to mention it.

2.3. Completely zero-simple semigroups and Rees’s Theorem

Having covered the necessary rudiments of Green’s relations, we will now continue the

thread of Section 2.1. As we have already mentioned, we will not need to study zero-

simple and simple semigroups in full generality, since we will always have a further property

available to us. The objects we study in this section will be called completely (zero-)simple

semigroups. Like the real number system, there are several definitions which are arguably

as natural as each other, and the objects somehow precede their definition. The ‘best’

definition, then, comes down to aesthetics and context.

We will follow the approach of Clifford and Preston [9] and define these semigroups in

terms of zero-minimal one-sided ideals. In a semigroup S with zero, a zero-minimal left

ideal is a left ideal that is minimal in the set of non-zero left ideals of S. A zero-minimal

right ideal is defined dually.

A completely zero-simple semigroup is a zero-simple semigroup S with at least

one zero-minimal left ideal and at least one zero-minimal right ideal. By removing all

instances of the string ‘zero-’ in the previous sentence, we get the definition of a completely

simple semigroup. Clearly, a simple semigroup S is completely simple if and only if S0

is completely zero-simple. Consequently, we can draw conclusions about completely simple

semigroups from results concerning completely zero-simple semigroups.

Our main aim in this section is to understand the structure of these semigroups. The

groundwork will be laid by the following three lemmas.

Lemma 2.22. Let S be a semigroup with zero, and let L be a left ideal of S. Then L is a

zero-minimal left ideal if and only if L\{0} is an L-class of S.

Proof. There is a short direct argument, but we instead appeal to Proposition 2.12 and

Proposition 1.1. �

Lemma 2.23. Let S be a zero-simple semigroup. Then

(i) LS = S for every non-zero left ideal L;

(ii) if S has at least one zero-minimal left ideal, then S is the union of its zero-minimal

left ideals.

Proof. (i): Let L be a non-zero left ideal of S. Since LS is evidently a two-sided ideal, the

only alternative to LS = S is LS = {0}. However, LS = {0} ⊆ L would imply that L is a
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two-sided ideal, which in turn would imply that L = S, so SS = LS = {0}, contradicting

the zero-simplicity of S. We must therefore have LS = S.

(ii): Let L be a zero-minimal left ideal of S. Certainly 0 ∈ L, so 0 is contained in a

zero-minimal left ideal. Let a ∈ S\{0}. Since LS = S by (i), we have a ∈ Ls for some s ∈ S.

Evidently, then, Ls is a non-zero left ideal containing a. To complete the proof, it will suffice

to show that Ls is zero-minimal.

By Lemma 2.22, the non-zero elements of L are L-related. Since L is right-compatible

(Proposition 2.15), it follows that Ls\{0} is contained in a single L-class. But Ls is a union

of L-classes by Proposition 2.12, so Ls\{0} must be a complete L-class. It now follows from

Lemma 2.22 that Ls is zero-minimal, as required. �

Lemma 2.24. Let S be a completely zero-simple semigroup. Then, for all a ∈ S\{0}, we

have La = Sa\{0} and Ra = aS\{0}.

Proof. Let a ∈ S\{0}. By Lemma 2.23(ii), we have a ∈ K for some zero-minimal left

ideal K. Note that Sa is a left ideal of S contained in K, because Sa ⊆ SK ⊆ K.

We claim that Sa 6= {0}. Suppose, by way of contradiction, that Sa = {0}. Then {0, a}
is a non-zero left ideal of S contained in K, so K = {0, a}. Now Sa = {0} implies KK = {0}.
However, we have KS = S by Lemma 2.23(i), and this gives

SS = KSKS ⊆ KKS = {0}S = {0},

which is a contradiction. It follows that Sa 6= {0}, as required. Now, since {0} ⊂ Sa ⊆ K,

we may conclude that Sa = K. By Lemma 2.22, we have Sa = K = La ∪{0}, so by duality

we are done. �

We now come to what can be thought of as the essential structural theorem of completely

(zero-)simple semigroups. Lemma 2.20 gave us our first hint at how idempotents impose

structure on a D-class. The next theorem shows that the property of being completely

(zero-)simple imposes just enough extra structure for the idempotents to exert complete

control over the locations of products modulo the H relation.

Theorem 2.25. Let S be a completely zero-simple semigroup. Then

(i) S\{0} is a regular D-class of S, and so S is regular;

(ii) if a, b ∈ S\{0}, then ab 6= 0 if and only if ab ∈ Ra ∩ Lb.

Proof. We will first prove item (ii). If a, b ∈ S\{0} with ab ∈ Ra ∩Lb, then clearly ab 6= 0.

Conversely, let a, b ∈ S\{0} with ab 6= 0. Then, by Lemma 2.24, we have ab ∈ aS\{0} = Ra

and ab ∈ Sb\{0} = Lb, as required.

Now we will prove (i). To show that S\{0} is a D-class, let a, b ∈ S\{0}; we must show

that a D b. To prove this, we will show that aSb 6= {0}. Suppose this is not the case,

so aSb = {0}. Then, since S is zero-simple, we have SS = S, and so by Lemma 2.9, we have

S = SS = SaSSbS = SaSbS = S0S = {0},

which is a contradiction. Hence, aSb 6= {0}, so there is a non-zero element c ∈ aSb. By

Lemma 2.24, we then have c ∈ aS\{0} = Ra and c ∈ Sb\{0} = Lb, so a D b.
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Since SS 6= {0}, there exist a, b ∈ S\{0} with ab 6= 0. This implies that ab ∈ Ra ∩ Lb,
so La ∩Rb contains an idempotent by Lemma 2.20. The D-class S\{0} is therefore regular,

and evidently 0 is a regular element, so S is regular. �

Theorem 2.25 specialises quite neatly to completely simple semigroups. In this case, it

will be worth stating a separate result.

Theorem 2.26. Let S be a completely simple semigroup. Then

(i) S is a regular D-class of S, and so S is regular;

(ii) if a, b ∈ S, then ab ∈ Ra ∩ Lb;
(iii) every H-class of S is a subgroup.

Proof. Statements (i) and (ii) follow from applying Theorem 2.25 to S0. Now, (ii) implies

that every H-class is a subsemigroup, so (iii) follows from Green’s Theorem 2.21. �

While Rees’s Theorem 2.27 below gives a far more explicit description of the structure

of these semigroups, Theorem 2.25 is really the underlying cause of this structure. It is

common to appeal to Rees’s Theorem, but it is often possible to use Theorem 2.25 instead,

and this usually leads to a shorter and cleaner proof. Nonetheless, we will have occasion to

use Rees’s Theorem, so we will present it in this section.

Rees’s Theorem is a representation theorem, so we must define the objects that will

represent our completely (zero-)simple semigroups. We know that the non-zero elements of

a completely zero-simple semigroup constitute a D-class, and we know that a D-class can

be thought of as a rectangular grid of H-classes. We can also determine the H-classes of

products provided only that we know which H-classes are groups. One ingredient of the

representation, then, is a matrix P that, among other things, records which H-classes in

this D-class are groups. A binary matrix would suffice for this purpose, but more information

is needed if we are to capture the multiplication perfectly.

As noted in the remark following Theorem 2.21, it can be shown that all group H-

classes within a D-class are isomorphic to each other. In particular, if S is completely

zero-simple, then the group H-classes in S\{0} are all isomorphic to a single group G.

By carefully choosing elements of G as non-zero entries of the matrix P , we can capture

enough information to recover S from G and P . For this reason, G is often referred to as

the ‘structure group’ of S.

Thus, the representing objects will require two ingredients in their construction: a

group G, and a matrix P with entries in G ∪̇ {0} (where ∪̇ denotes disjoint union). As

is tradition, we will use sets I and Λ to serve as the dimensions of the non-zero D-class.

The set I (Λ) should be thought of as indexing the set of R-classes (L-classes), so that

the non-zero D-class has dimensions I × Λ when thought of as an eggbox diagram. For

convenience, the matrix P will have the ‘transpose’ dimensions; i.e., Λ× I.

So much for the intuition. Let us now detail the construction of the Rees matrix

semigroups. Let I and Λ be non-empty sets, let G be any group, and let P be any Λ× I
matrix with entries in G ∪̇ {0}. The (λ, i)-entry of P will be denoted by pλi. We define the

semigroupM0[G, P ] to have underlying set (I ×Λ×G) ∪̇ {0}; the multiplication is defined

so that 0 is a multiplicative zero, and so that the product of the non-zero elements (i, λ, a)
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and (j, µ, b) is given by

(i, λ, a)(j, µ, b) :=

(i, µ, apλjb) if pλj 6= 0,

0 if pλj = 0.

Associativity is easily verified: in either bracketing, the product (i, λ, a)(j, µ, b)(k, ν, c) is

non-zero if and only if pλj and pµk are both non-zero, in which case both bracketings yield

the element (i, ν, apλjbpµkc).

Now,M0[G, P ] is a perfectly good semigroup, but it is not necessarily completely zero-

simple, or even zero-simple. We could simply choose P to have all entries equal to 0, which

would make M0[G, P ] a null semigroup. To remedy this, we obviously need to disbar the

zero matrix, but others must also be excluded.

The non-zero entries in P are intended to correspond to the group H-classes. Recalling

that a regular D-class has a group H-class in every row and column, we must require that

every row and column of P has a non-zero entry. This requirement turns out to be enough

to yield a completely zero-simple semigroup.

Assume that P has no zero row or column. Take any non-zero elements (i, λ, a), (j, µ, b)

of M0[G, P ]. To understand the R relation, we would like to know precisely when there

exists a third element (k, ν, c) such that (i, λ, a)(k, ν, c) = (j, µ, b). By definition of the

product, certainly i = j is necessary; we will show it is also sufficient. Assume that i = j,

and choose any k such that pλk 6= 0 (which is possible because P has no zero row). Then,

letting ν = µ and c = (apλk)
−1b, we get

(i, λ, a)(k, ν, c) = (i, λ, a)(k, µ, (apλk)
−1b) = (i, µ, apλk(apλk)

−1b) = (i, µ, b) = (j, µ, b).

By symmetry, we can conclude that (i, λ, a) R (j, µ, b) if and only if i = j. We can also use

symmetry to conclude that (i, λ, a) L (j, µ, b) if and only if λ = µ. It is now evident that

all non-zero elements are D-related, which implies zero-simplicity. Now, by nature of the

multiplication, each non-zero L-class, when adjoined with the zero, forms a left ideal that

is zero-minimal by Lemma 2.22. Dually, the non-zero R-classes yield zero-minimal right

ideals, so M0[G, P ] is completely zero-simple, as claimed.

We now present Rees’s Theorem, which says that all completely zero-simple semigroups

arise from this construction.

Theorem 2.27 (Rees’s Theorem). Let S be a completely zero-simple semigroup. Then there

exist a group G, non-empty sets I and Λ, and a Λ× I matrix P over G ∪̇ {0}, with no zero

column or row, such that S ∼=M0[G, P ].

We will be applying Rees’s Theorem only to completely simple semigroups, so we will

instead prove a restricted version of the theorem. First, we require a simpler variant of the

Rees matrix semigroup.

In the situation where P has no zero entries, the zero element of M0[G, P ] is inde-

composable, by definition of the multiplication. If we then remove the zero element, we

obtain a completely simple semigroup. We can of course construct such semigroups more
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directly by starting with a group G and a Λ× I matrix P over G. The Rees matrix semi-

group M[G, P ] is then defined on the underlying set I × Λ × G with multiplication given

by (i, λ, a)(j, µ, b) := (i, µ, apλjb), as before.

The following specialisation of Rees’s Theorem was essentially uncovered by Suschke-

witsch [64], over a decade before Rees’s result and two decades before Green’s introduction

of his now-indispensable relations. Needless to say, the modern proof does not at all re-

semble the original proof of Suschkewitsch (even if the latter were in English). Rees’s more

general Theorem 2.27 can be proved along the same lines as the following, but there are of

course more details to consider in the general case. For said details, see [37, Theorem 3.2.3].

Theorem 2.28. Let S be a completely simple semigroup. Then there exist a group G, non-

empty sets I and Λ, and a Λ × I matrix P over G such that S ∼= M[G, P ]. Moreover, P

can be chosen to have a row and a column containing only the identity element of G.

Proof. Let G be any H-class of S. Then G forms a subgroup G of S by Theorem 2.26(iii).

Denote the identity element of G by e.

Let I and Λ be the sets of R- and L-classes of S, respectively. We will think of I and Λ

as indexing sets. For each (i, λ) ∈ I×Λ, denote by Hiλ the H-class i∩λ, which is non-empty

as S is a D-class (Theorem 2.26(i)).

Choose (i0, λ0) ∈ I × Λ such that G = Hi0λ0 . For each i ∈ I, let ri be the idempotent

element ofHiλ0 , and for each λ ∈ Λ, let `λ be the idempotent element ofHi0λ (see Figure 2.3).

We then have `λ0 = ri0 = e, since e is the idempotent element of G = Hi0λ0 .

G `λ

ri Hiλ

λ0 λ

i0

i

Figure 2.3.

Define the Λ × I matrix P by setting pλi := `λri for each (λ, i) ∈ Λ × I. By Theo-

rem 2.26(ii), the entries of P lie in G. Moreover, for all i ∈ I we have pλ0i = `λ0ri = eri = e

by Proposition 2.19, and similarly, pλi0 = e for all λ ∈ Λ. That is, the entries in the λ0-row

and i0-column of P all equal e.

Define the map ϕ : I × Λ×G→ S by

ϕ(i, λ, a) := ria`λ

for all (i, λ, a) ∈ I × Λ×G. We will show that ϕ is an isomorphism M[G, P ]→ S.

Let (i, λ) ∈ I ×Λ. By Green’s Lemma 2.17 and the fact that e`λ = `λ, right translation

by `λ maps Hi0λ0 = G bijectively onto Hi0λ, and since rie = ri, left translation by ri

maps Hi0λ bijectively onto Hiλ. Thus, ϕ restricts to a bijection from {i}×{λ}×G onto Hiλ.
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Since this is true for all (i, λ) ∈ I × Λ, it follows that ϕ is a bijection. To see that ϕ is a

homomorphism, let (i, λ, a), (j, µ, b) ∈ I × Λ×G. Then

ϕ((i, λ, a)(j, µ, b)) = ϕ(i, µ, apλjb) = riapλjb`µ = ria`λrjb`µ = ϕ(i, λ, a)ϕ(j, µ, b),

as required. �

To close this section, we will discuss a corollary of Theorem 2.28. First, let us consider

the following result, which tells us when idempotents in a completely zero-simple semigroup

are related by L or R. We essentially already know the content, but this particular way of

expressing it will be important.

Proposition 2.29. Let S be a completely zero-simple semigroup, and let e, f ∈ S\{0} be

idempotent. Then

(i) e is a left zero for f and and only if e L f ;

(ii) e is a right zero for f and and only if e R f ;

(iii) e is a zero for f if and only if e = f .

Proof. To prove (i), assume that e is a left zero for f ; i.e., ef = e. Then e ∈ Sf\{0},
so by Lemma 2.24 we have e L f . Conversely, if e L f , then f is a right identity for e by

Lemma 2.19, so e is a left zero for f . This proves (i), and (ii) follows by duality.

Now (i) and (ii) imply that e is a zero for f if and only if e H f . By Green’s Theorem 2.21,

an H-class contains at most one idempotent, so e is a zero for f if and only if e = f . �

From Proposition 2.29(i), we see that if A is a set of idempotents of a completely zero-

simple semigroup S such that A is contained in a single L-class of S, then every element

of A is a left zero for every other element of A. In particular, A forms a subsemigroup,

which evidently satisfies xy ≈ x.

In general, a semigroup satisfying xy ≈ x is called a left-zero semigroup. Dually, a

right-zero semigroup is defined to be a semigroup satisfying xy ≈ y. We encountered such

semigroups in Example 2.5, but we can now see how these semigroups arise in much more

general settings: the idempotents within an L-class of a completely zero-simple semigroup

(in fact, any semigroup) form a left-zero semigroup, and dually.

It should be no surprise, then, that we can see the shadows of these semigroups in the

structure of Rees matrix semigroups. Consider the multiplication in a completely simple

semigroup M[G, P ], where G is a group and P is a Λ × I matrix. The multiplication is

defined as

(i, λ, a)(j, µ, b) := (i, µ, apλjb).

Observe that the first coordinate of the product depends only on the first coordinates of

the two factors, and similarly for the second coordinate, but that the third coordinate may

depend on multiple coordinates of the two factors. This should hopefully remind the reader

of the semidirect product in group theory. In fact, we can make this connection stronger.

Let us view I as a left-zero semigroup, so that ij = i for all i, j ∈ I. Similarly, view Λ as a

right-zero semigroup. Then the multiplication of M[G, P ] can be written as

(i, λ, a)(j, µ, b) = (ij, λµ, apλjb).
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Thus, the multiplication behaves as in the direct product I ×Λ×G in the first two coordi-

nates, with a ‘twist’ in the third coordinate. It should now be apparent that if every entry

of P is the identity of G, then M[G, P ] is precisely the direct product I × Λ×G.

When does this happen? Examining the proof of Theorem 2.28, we see that P can be

chosen so that every entry is a product of two idempotent elements of S. Therefore, if the

set of idempotent elements of S is closed under multiplication, then the entries of P will

be idempotent, and hence equal to the identity of G. In such an event, the multiplication

of M[G, P ] reduces to the direct product operation on I × Λ×G.

The leads us to define orthodox semigroups. A semigroup is orthodox if its set of idem-

potents is closed under multiplication. (Note that this definition is non-standard; orthodox

semigroups are usually assumed to be regular, but we will not follow this convention.) From

the above considerations, we have the following decomposition theorem.

Theorem 2.30. Let S be a completely simple semigroup. Then S is orthodox if and only

if S is isomorphic to the direct product of a left-zero semigroup, a right-zero semigroup, and

a group.

Proof. If S is orthodox, then our discussion above shows that S has the required decompo-

sition. For the converse, note that left-zero semigroups, right-zero semigroups, and groups

are always orthodox, and a direct product of orthodox semigroups is orthodox. �

Now is a good time to reflect. In Section 2.1, we saw how a semigroup can be broken

up into J -classes, and how these J -classes can be converted into the so-called principal

factors, which are either simple, zero-simple, or null. We have studied the special classes of

completely simple and completely zero-simple semigroups, and developed some very powerful

structure theorems. Although the ‘completely’ modifier is quite restrictive, it comes for free

in the finite case; our next goal is to show that we can encompass more than the finite

case. After this, we will reap the rewards of our general study when we investigate some

well-known and well-behaved classes of semigroups.

2.4. Characterisations of complete zero-simplicity

Under what conditions is a (zero-)simple semigroup completely (zero-)simple? Based on

the last two sections, it should be no surprise that idempotents will play a role in answering

this question.

Let us take another look at Proposition 2.29(iii); in particular, the notion of one idem-

potent being a zero for another idempotent. This in fact gives us an order relation. To be

precise, let S be a semigroup, and let E be the set of all idempotents of S. Given e, f ∈ E,

we put e 6 f if ef = fe = e (that is, if e is a zero for f , or equivalently, if f is an identity

for e). This is easily seen to be an order relation on E. The relation 6 so defined does not

seem to have a standard name, but we will refer to it as the idempotent order.

Framed in terms of the idempotent order, Proposition 2.29(iii) tells us that the non-zero

idempotents of a completely zero-simple semigroup S form an antichain; that is, if e and f

are non-zero idempotents of S with e 6 f , then e = f . It is precisely this lack of order that

characterises completely zero-simple semigroups. Certainly, if a zero-simple semigroup S
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has non-zero idempotents e, f ∈ S with e < f , then S cannot be completely zero-simple.

The essence of this section is that the converse holds, assuming that S has at least one

non-zero idempotent.

In a zero-simple semigroup, a non-trivial order relation among the non-zero idempotents

will turn out to imply the existence of an infinite descending chain e0 > e1 > e2 > · · ·
in the set of non-zero idempotents. Furthermore, this infinite chain of idempotents will

live inside a subsemigroup isomorphic to what is known as the bicyclic semigroup (or

bicyclic monoid). The bicyclic semigroup is most cleanly defined by means of the monoid

presentation 〈a, b | ab = 1〉; so it is the ‘most general’ monoid that can be generated by two

elements a and b such that ab is the identity element.

Of course, if M is a monoid generated by some elements a and b, then every element

of M is expressible as a string of ‘a’s and ‘b’s. Subject to the equality ab = 1, any occurrence

of ab can be deleted, so every element can be represented in the form bman, where m,n ∈ N0.

(Here, of course, we interpret b0 and a0 as being equal to 1.) The next result shows, in a

slightly more general setting, that each element can be uniquely expressed in the form bman,

provided only that ba 6= 1.

Lemma 2.31. Let S be a semigroup, and suppose there are elements a, b, e ∈ S with the

following properties:

(i) e is idempotent;

(ii) e is an identity element for a and b; that is, ea = ae = a and eb = be = b;

(iii) ab = e;

(iv) ba 6= e.

Then the mapping (m,n) 7→ bman of N0 × N0 into S is one-to-one (where a0 = b0 = e).

Proof. First, we show that bhak = e implies h = k = 0, for all h, k > 0. Assume

that bhak = e for some h, k > 0. If we had k > 0, then properties (ii) and (iii) would give

ba = eba = bhakba = bhak−1ea = bhak = e,

a contradiction to (iv). By symmetry, h > 0 is also impossible.

Now, suppose that ah = bk for some h, k > 0. Multiplying on the left by ak then

gives ah+k = e, so by the previous paragraph we we must have h = k = 0.

Finally, let m,n, i, j > 0 with bman = biaj . We may assume without loss of generality

that m 6 i, and multiplying on the left by am then gives an = bi−maj . If n 6 j, then

multiplying on the right by bn gives e = bi−maj−n, and if n > j, multiplying an = bi−maj

on the right by bj gives an−j = bi−m. By the previous two paragraphs, both cases imply

that (m,n) = (i, j). �

It would be good to be sure, then, that there exists a semigroup with elements satisfying

the conditions of Lemma 2.31. As an intuition, one may think of differentiation and anti-

differentiation. This intuition is distilled into Figure 2.4, showing that such a configuration

exists in the semigroup of maps N0 → N0.

We now see that the bicyclic semigroup is uniquely defined up to isomorphism as any

semigroup generated by {a, b, e} satisfying (i)–(iv) of Lemma 2.31 (in fact, this can serve
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Figure 2.4. Maps α and β on N0 such that α ◦ β = id and β ◦ α 6= id.

as a definition that does not require the use of presentations). Capturing this idea, the

following result tells us when the bicyclic semigroup embeds into a given semigroup.

Lemma 2.32. Let S be a semigroup. Then the bicyclic semigroup embeds into S if and

only if there are elements a, b, e ∈ S satisfying conditions (i)–(iv) of Lemma 2.31.

We close this section with the next theorem, which shows how the idempotent order and

the bicyclic semigroup can be used to characterise completely zero-simple semigroups.

Theorem 2.33. Let S be a zero-simple semigroup with at least one non-zero idempotent.

The following are equivalent:

(i) S is completely zero-simple;

(ii) the non-zero idempotents of S form an antichain;

(iii) S has a minimal non-zero idempotent;

(iv) the bicyclic semigroup does not embed into S.

Proof. (i) ⇒ (ii): This follows from Proposition 2.29(iii) and the definition of the idem-

potent order.

(iii)⇒ (i): Let e be a minimal non-zero idempotent of S; by this, we mean an idempotent

that is minimal in the set of non-zero idempotents. We will show that eS is a zero-minimal

right ideal. By Lemma 2.22, it suffices to show that eS = Re ∪ {0}. Since e is idempotent,

we have e ∈ eS, so Re ⊆ eS\{0}. We must show that eS\{0} ⊆ Re.
Let a ∈ eS\{0}. To show that a ∈ Re, it suffices to show that e ∈ aS. Note that ea = a

from the choice of a; we will use this fact throughout. By Lemma 2.9, there are x, y ∈ S
with xay = e. Now, define f := ayexe. Then f is idempotent:

ff = ayexeayexe = ayexayexe = ayeeexe = ayexe = f.

Also, f is non-zero because

xfay = xayexeay = xayexay = eee = e 6= 0.

Thus, f is a non-zero idempotent. Using the fact that ea = a, it is easily seen from the

definition of f that ef = fe = f , so f 6 e. By the choice of e, we have e = f = ayexe ∈ aS.

This shows that a ∈ Re, as required.

We have shown that eS\{0} = Re, so eS is a zero-minimal right ideal by the dual of

Lemma 2.22. By symmetry, Se is a zero-minimal left ideal. This shows that S is completely

zero-simple.
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Now (ii) ⇒ (iii) is trivial since S has a non-zero idempotent, so conditions (i)–(iii) are

equivalent.

(iv)⇒ (ii): Let e, f ∈ S\{0} be idempotents with with e > f ; we must show that e = f .

By Lemma 2.9, there exist x, y ∈ S with e = xfy. Define a := exf and b := fye. Then e is

an identity for a and b since e is an identity for f . We also have

ab = exffye = exfye = eee = e.

By (iv) and Lemma 2.32, we must have ba = e. But f is an identity for ba from the definition

of a and b, so f is an identity for e; i.e., f > e. Hence, f = e, which proves (ii).

(ii) ⇒ (iv): We will prove the contrapositive. Suppose that (iv) fails, so the bicyclic

semigroup 〈a, b | ab = 1〉 embeds into S. Define en := bnan for each n ∈ N0. Then en is

idempotent for every n ∈ N0, and furthermore, we have en > em whenever n 6 m. Using the

uniqueness of representation given by Lemma 2.31, we also have en 6= em whenever n 6= m.

It follows that e0 > e1 > e2 > · · · is an infinite descending chain of non-zero idempotents

in S. Thus, (ii) fails. �

2.5. Exponents and periodicity

If a finite semigroup is (zero-)simple, then it is automatically completely (zero-)simple.

Using the results of Section 2.4, we will show that this implication extends to periodic

semigroups (to be defined shortly). This class is sufficiently broad to encompass all of the

semigroups we will encounter in later chapters.

We will begin with a brief discussion of monogenic (1-generated) semigroups. Nat-

urally, such basic objects are ubiquitous in semigroup theory, so we will meet them very

often, if only in the background.

Let S be a semigroup, and let a ∈ S. Then {ak | k ∈ N} is the subsemigroup generated

by a. Some authors denote this subsemigroup by 〈a〉, but we will reserve this notation for

the ideal generated by a.

The order of a is the cardinality of {ak | k ∈ N}. For us, the precise order of an element

will not be particularly important; we will usually be interested only in whether the order

is finite or infinite. It is easy to see that a has finite order in S if and only if there is a

repetition in the list a1, a2, a3, . . . (i.e., am = an for some m,n ∈ N with m 6= n).

An element of infinite order generates a subsemigroup isomorphic to the semigroup 〈N; +〉
of positive integers. To describe finite monogenic subsemigroups, we associate two impor-

tant numbers to an element a of finite order, called the index and the period of a. These

numbers determine the structure of the subsemigroup generated by a, just as the structure

of a finite cyclic group is determined by the order of its generator.

If a is a semigroup element of finite order, the index of a is defined as the smallest i ∈ N
such that ai = ak for some k > i. If a is of finite order with index i, we define the period

of a to be the smallest p ∈ N such that ai = ai+p.

Figure 2.5 depicts the subsemigroup generated by an element of index 3 and period 6.

Displayed is the obvious fact that the powers of an element of finite order eventually loop.

The index of the element a is the smallest power of a that lies in the loop, while the period

of a is the number of distinct elements in the loop.
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Figure 2.5. A subsemigroup generated by an element a of index 3 and

period 6. The arrows indicate the action of translation by a.

As with cyclic groups, we can compute products in {ak | k ∈ N} using modular arith-

metic. In the situation of Figure 2.5, we have a9 = a3, allowing us to reduce powers

modulo 6. For example, we have a5 · a8 = a13 = a7, since 13 ≡ 7 (mod 6). But in contrast

to cyclic groups, we cannot reduce 7 further to 1 since a1 6= a7. Formally, if a has index i

and period p, we have ak = a` provided that k, ` > i and k ≡ ` (mod p).

It should be no surprise that modular arithmetic occurs in the study of monogenic

semigroups, as it does with cyclic groups. Of course, a monogenic semigroup need not be

a group, but it turns out that the ‘loop’ part of a finite monogenic semigroup is always a

cyclic group.

Theorem 2.34. Let S be a semigroup, let a ∈ S have finite order, and let i and p be the

index and period of a, respectively. Then the set {a` | ` > i} forms a p-element cyclic

subgroup of S.

Proof. Clearly the subsemigroup G := {a` | ` > i} has cardinality p, by the definition of

index and period. Let ⊕p denote addition modulo p on Zp := {0, . . . , p− 1}. We will show

that 〈G; ·〉 is isomorphic to 〈Zp;⊕p〉.
Define ϕ : Zp → {a` | ` > i} by ϕ(k) := aip+k for each k ∈ Zp. Then, given k, ` ∈ Zp,

we have ϕ(k)ϕ(`) = a2ip+k+`, and reducing modulo p gives a2ip+k+` = aip+k⊕p`, so we

have ϕ(k)ϕ(`) = ϕ(k ⊕p `). This shows that ϕ is a homomorphism. Since {ip+ k | k ∈ Zp}
intersects all congruence classes modulo p, it follows that ϕ is surjective, and is therefore an

isomorphism, since |G| = |Zp| = p. �

Theorem 2.34 will prove to be quite useful, but for now, the most important point is

the following obvious consequence: if a is a semigroup element of finite order, then there is

some n ∈ N such that an is idempotent. More generally, we have the following.

Theorem 2.35. Let S be a semigroup, and let A be a finite subset of S such that every

element of A has finite order. Then there is some n ∈ N such that an is idempotent for

all a ∈ A.

Proof. By Theorem 2.34, we may choose, for each a ∈ A, some na ∈ N such that ana is

idempotent. Let n ∈ N be any number divisible by na for every a ∈ A. Then, for all a ∈ A,

we have that an is a power of ana , and is therefore equal to ana , so an is idempotent. �

In group theory, we say that n is an exponent of a group G if xn is the identity element

of G for all x ∈ G. Analogously, we say that n is an exponent of a semigroup S if xn
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is idempotent for all x ∈ S; i.e., if S |= x2n ≈ xn. This agrees with the group-theoretic

definition when S happens to be a group.

We say that S has finite exponent if there is some n ∈ N such that n is an exponent

of S. Importantly, by Theorem 2.35, every finite semigroup has finite exponent. However,

as with groups, having finite exponent is not guaranteed by all elements having finite order.

Extending the definition from group theory, we say that a semigroup is periodic if all

of its elements have finite order; i.e., if every element generates a finite subsemigroup. Of

course, every finite semigroup is periodic, as is every semigroup with finite exponent. The

following is an obvious consequence of Theorem 2.35.

Theorem 2.36. Let S be a periodic semigroup. Then S has at least one idempotent element.

We will now prove two powerful theorems regarding periodic semigroups. The proofs

will use the following trivial lemma. (We chose the name as a homage to the pumping

lemmas in formal language theory.)

Lemma 2.37 (Pumping Lemma). Let S be a semigroup, let a ∈ S, and assume that there

are u, v ∈ S1 with a = uav. Then a = ukavk for all k ∈ N.

Proof. By induction. �

Theorem 2.38. Let S be a periodic semigroup. Then D = J .

Proof. We always have D ⊆ J . Let a, b ∈ S with a J b, so there exist u, v, x, y ∈ S1

with uav = b and xby = a. Then a = xby = x(uav)y = (xu)a(vy). By Theorem 2.35, we

may choose n ∈ N such that (xu)n is idempotent. By the Pumping Lemma 2.37, we have

a = (xu)na(vy)n = (xu)n(xu)na(vy)n = (xu)na ∈ S1ua,

and clearly ua ∈ S1a, so a L ua. By symmetry, we have a R av, and so because R is

left-compatible by Proposition 2.15, we have ua R uav = b. Thus, a L ua R b, showing

that a D b. �

Theorem 2.39. Let S be a periodic zero-simple semigroup. Then S is completely zero-

simple.

Proof. We will use Theorem 2.33. Note that the generators of the bicyclic semigroup have

infinite order, so the bicyclic group does not embed into S. Thus, we need only show that S

has a non-zero idempotent.

Choose any a ∈ S\{0}. By Lemma 2.9, there exist x, y ∈ S such that a = xay.

By Theorem 2.35, there is some n > 1 such that xn is idempotent, and by the Pumping

Lemma 2.37 we have xnayn = a 6= 0; thus, xn is a non-zero idempotent of S. �

As an immediate consequence of Theorem 2.39, we have the following.

Theorem 2.40. Let S be a periodic semigroup. Then the minimum ideal of S is completely

simple (if it exists), and every other principal factor of S is either completely zero-simple

or null.
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Proof. Noting that the class of periodic semigroups is closed under forming subsemigroups

and quotients, the result follows from Theorem 2.11 and Theorem 2.39. �

Finally, to close this section, we will give a strengthened version of Theorem 2.39 for the

finite exponent case. The following result shows in particular that the completely simple

semigroups of exponent n form a variety—not an altogether obvious fact.

Theorem 2.41. Let S be semigroup of exponent n for some n ∈ N. Then the following are

equivalent:

(i) S is simple;

(ii) S is completely simple;

(iii) S |= (xy)nx ≈ x.

Proof. Theorem 2.39 (applied to S0) gives (i) ⇒ (ii).

(ii) ⇒ (iii): Let x, y ∈ S. Then the idempotent (xy)n ∈ xS is in the R-class of x by

Lemma 2.24. By Proposition 2.19, we have (xy)nx = x.

(iii) ⇒ (i): Let I be an ideal of S, and fix some y ∈ I. If x ∈ S, then x = (xy)nx ∈ I,

so S = I. Thus, S is simple. �

2.6. Completely regular semigroups and bands

In this final section, we will study some important special classes of semigroups using

the structure theory we have developed so far. All the hard work is done, so we will be able

to deduce some very strong structural results with relative ease.

Let S be a semigroup, and let a ∈ S. We say that a is a group element of S if a lies in

some subgroup of S. Using Green’s Theorem 2.21, one easily sees that a is a group element

of S if and only if Ha is a subgroup of S. The term ‘group element’ is not usually used in

other texts, but it will be used uncountably many times in this thesis.

We open this section with a result characterising group elements within periodic semi-

groups. This result is quite simple to state, but it uses much of the machinery developed in

this chapter.

Theorem 2.42. Let S be a periodic semigroup, and let a ∈ S. Then a is a group element

of S if and only if a J a2.

Proof. If a is a group element, then a H a2, so certainly a J a2. For the converse, assume

that a J a2.

First, if 〈a〉 happens to be the minimum ideal of S, then 〈a〉 is completely simple by

Theorem 2.40, and so a is a group element by Theorem 2.26(iii). Thus, we may assume

that I := {x ∈ S | Jx < Ja} is non-empty. Consider now the principal factor 〈a〉/I. We

may represent this semigroup on the set Ja ∪ {0}, where 0 /∈ Ja represents the ideal I. The

product of x, y ∈ Ja∪{0} is given by the usual product xy in S if x, y, xy ∈ Ja, and otherwise

the product is 0. Since a2 is a non-zero element of the principal factor by assumption, 〈a〉/I
is not null, so it is completely zero-simple by Theorem 2.40. The non-zero elements form

a J -class of the principal factor, so the relation a J a2 holds in the principal factor.
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Now, if the H-class of a in 〈a〉/I is a subgroup, this will then be a subgroup of S.

So, without loss of generality, we can assume that S is completely zero-simple and that a

and a2 lie in the non-zero J -class of S. In particular, a2 6= 0, so by Theorem 2.25(ii), we

have a2 ∈ Ra ∩ La = Ha. By Green’s Theorem 2.21, Ha is a subgroup, and so a is a group

element of S, as required. �

For the remainder of this section, we will be concerned with the situation where all

elements in a given semigroup happen to be group elements. We say that a semigroup S is

completely regular if every element of S is a group element, or equivalently, if every H-

class of S is a group.

The property of being completely regular is of course quite a strong one, though we have

seen an important class of such semigroups already. By Theorem 2.26(iii), all completely

simple semigroups are completely regular. To contrast, we mentioned in Section 2.1 that

every semigroup can be embedded into a simple semigroup. These two facts demonstrate

the vast difference between completely simple semigroups and the wilder class of simple

semigroups.

Although complete regularity is a such a strong property, these semigroups arise natu-

rally within more general semigroups. In the next chapter, we will encounter some broad

classes of semigroups with the property that their group elements form a subsemigroup,

which is obviously completely regular. Much of the original semigroup can be understood

in terms of this subsemigroup of group elements, which leads one to study the internal

structure of completely regular semigroups.

In a completely regular semigroup S, we are afforded a notion of inverse, inherited from

the H-classes. For each a ∈ S, we define the inverse, a−1, of a to be the group-theoretic

inverse of a in its H-class Ha. It is clear that

(a−1)−1 = a, a−1a = aa−1, aa−1a = a.

In fact, if one treats the inverse operation on S as a fundamental operation, then completely

regular semigroups are defined by these three equations (and associativity): if the above

equations hold, then one easily sees that a−1a is an idempotent element in the H-class of a,

so Ha is a subgroup by Green’s Theorem 2.21.

We have seen that, in the class of periodic semigroups, all simple semigroups are com-

pletely simple. Using the notion of inverse elements, we can easily show that this implication

also holds for completely regular semigroups (which need not be periodic).

It is an elementary fact that if a and b are elements of some group, then ab is the identity

if and only if ba is the identity. In relation to Lemma 2.31, this tells us that the bicyclic

semigroup cannot embed into a group (of course). Generalising this to completely regular

semigroups gives us the following result.

Theorem 2.43. Let S be a simple semigroup. Then S is completely simple if and only if S

is completely regular.

Proof. By Theorem 2.26(iii), a completely simple semigroup is completely regular. Con-

versely, assume that S is completely regular, and let a, b, e ∈ S satisfy (i)–(iii) of Lemma 2.31.

We will show that (iv) fails, by showing that a H b H e.
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We have e = ab = a−1aab = a−1ae = a−1a, so e is the identity element of Ha, and

hence a ∈ He. By symmetry, we have b ∈ He. Since He 3 a, b is a group and ab = e, we

have ba = e also. By Lemma 2.32 and Theorem 2.33, S is completely simple. �

In Section 1.5, we introduced semilattices, and explained how they can be regarded as

commutative semigroups in which all elements are idempotent. We will now see that they

arise naturally when studying more general classes.

We have seen how a general semigroup can be broken down into principal factors, which

are either simple, zero-simple, or null (Theorem 2.11). In the class of completely regular

semigroups, we can say much more: every completely regular semigroup is a “semilattice of

completely simple semigroups”, in the following sense.

Theorem 2.44. Let S be a completely regular semigroup. Then 4J is compatible with S,

and so J is a congruence on S. Moreover, S/J is a semilattice, and each J -class of S is

a completely simple subsemigroup of S.

Proof. For all a ∈ S, we have a H a2, so a J a2. Hence, for all a, b ∈ S, we have

ab J (ab)2 = a(ba)b 4J ba,

and by symmetry ba 4J ab, so ab J ba.

To show that 4J is compatible, it is enough by duality and transitivity to show that it

is right-compatible. Let a, b, c ∈ S with a 4J b. Then there are x, y ∈ S1 with a = xby, so,

using the commutativity property just established, we have

ac = xbyc 4J byc J cby 4J cb J bc,

so ac 4J bc, as required. Hence, J is a congruence. Since a J a2 and ab J ba for all a, b ∈ S,

the factor semigroup S/J is a semilattice. Moreover, if a J b in S, then ab J bb J b, so ab

is in the J -class of a and b, showing that each J -class of S is a subsemigroup of S

Now, by Corollary 2.10, each J -class is simple, and since each J -class is a union of H-

classes of S, the J -classes are also completely regular subsemigroups. By Theorem 2.43,

each J -class is completely simple. �

Remark. If S is completely regular, we have two natural orders on S/J . One is the J -order

defined in Section 2.1, and the other is the semilattice order (Section 1.5). Fortunately, these

two order relations coincide. This amounts to saying that ab J a ⇔ a 4J b, which follows

easily from the compatibility of 4J .

In a completely regular semigroup S, every H-class contains an idempotent, so it is

inevitable that the idempotents play an important role in their study. Of particular impor-

tants is the case where S is orthodox. In such an event, a completely regular semigroup

can be studied by means of the idempotent subsemigroup. The next result gives a sufficient

condition for a completely regular semigroup to be orthodox, which we will encounter in the

next chapter. The exceedingly neat proof is due to Clifford [8, Proposition 1].

Lemma 2.45. Let S be a completely regular semigroup such that each J -class of S is an

orthodox subsemigroup. Then S is orthodox.
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Proof. Let e, f ∈ S be idempotent, and let a := ef . We must show that a is idempotent.

Defining b := fe, we have a J b, since S/J is commutative by Theorem 2.44. Let J

be the subsemigroup on the J -class Ja = Jb; so J is completely simple. Being orthodox, J

is isomorphic to the direct product of a left-zero semigroup, a right-zero semigroup, and a

group, by Theorem 2.30. These three direct factors satisfy yxy ≈ y2 → x2 ≈ x, so we find

that J also satisfies this quasiequation. Now, we have bab = feeffe = fefe = b2, so a2 = a

by the quasiequation, showing that a = ef is idempotent, as required. �

We are now brought to the final class of semigroups that we will study in this chapter. We

say that a semigroup S is a band if S |= x2 ≈ x; i.e., if every element of S is idempotent. We

have already encountered some important classes of bands: left- and right-zero semigroups

are bands, as are semilattices. Bands are certainly worthy of study in their own right, but

they are also important for studying semigroups whose idempotents form a subsemigroup.

Of course, bands are completely regular: every element lies in a trivial subgroup. Thus,

Theorem 2.44 tells us that a band is a semilattice of completely simple bands. With the

results we have presented in this chapter, these latter objects are easily described.

Theorem 2.46. Let S be a semigroup. The following are equivalent:

(i) S is a simple band;

(ii) S is a completely simple band;

(iii) S |= xyx ≈ x;

(iv) S is isomorphic to the direct product of a left-zero and a right-zero semigroup.

Proof. Note that if S |= xyx ≈ x and a ∈ S, then a = aa3a = a2aa2 = a2, so S is a band.

Thus, the equivalence of (i)–(iii) follows from Theorem 2.41 by taking n = 1.

The implication (iv) ⇒ (iii) is true because xyx ≈ x holds in all left-zero and right-zero

semigroups. Finally, assume (ii) to prove (iv). By Theorem 2.30, S is isomorphic to the

direct product of a left-zero semigroup, a right-zero semigroup, and a group G. But G

embeds into the direct product and therefore into S, so G must be trivial. �

A band S is called rectangular if it satisfies the equivalent conditions of Theorem 2.46.

The reader with even a passing familiarity with semigroups has almost certainly encountered

rectangular bands before, being as ubiquitous as they are. It is more usual in semigroup texts

to define rectangular bands much earlier on (via condition (iii) or (iv)), but introducing them

at this stage shows that, beyond simply having a nice decomposition theorem, rectangular

bands are fundamental objects that arise inevitably in the study of much broader classes.

We conclude the chapter with the specialisation of Theorem 2.44 to bands: every band

is a semilattice of rectangular bands.

Theorem 2.47. Let S be a band. Then J is a congruence on S and S/J is a semilattice.

Moreover, each J -class of S is a rectangular band.



CHAPTER 3

Residually Small Varieties of Semigroups

For reasons that are still not clear, there is an apparent connection between the residual

smallness property (to be defined shortly) and the dualisability property (which we consider

in Part 2). The connection is not straightforward; in some classes of algebras, it appears

to be non-existent, but for others, the connection is as strong as it can be. Based on

the available evidence at the commencement of the author’s candidature, the situation for

semigroups was the latter one. Motivated by the dualisability problem, this naturally led

to an in-depth study of the known classification of residually small semigroup varieties.

Presenting this classification is the aim of this chapter. As in Chapter 2, there are no new

substantial results, but we offer an original simplified presentation.

The concept of a residual property appears to have its origins in group theory; Karl

Gruenberg [36] attributes the terminology to Philip Hall. Given a property P , we say that

an algebra A is residually P if every distinct pair of elements of A can be separated by a

homomorphism into some algebra with property P . For example, A is residually finite if

every distinct pair of points in A can be separated by a homomorphism into a finite algebra.

Residual properties can be naturally extended to varieties in the obvious manner: a

variety is residually P if all of its members are residually P . One easily deduces from

Birkhoff’s Subdirect Decomposition Theorem 1.6 that a variety V is residually finite precisely

if every subdirectly irreducible member of V is finite.

A landmark result in the study of residually finite groups came in 1969 when Ol’̆sanskĭı

characterised the residually finite varieties of groups [50]. Once a property of groups has

been characterised, it is often natural for semigroup theorists to attempt to characterise the

same property within the class of semigroups. In the case of residual finiteness, this was

done by Golubov and Sapir [32] some ten years after Ol’̆sanskĭı’s result was published.

Meanwhile, variants and generalisations of the residual finiteness property were being

considered by universal algebraists.

A variety V is called residually small if there is a cardinal bound on the sizes of its

subdirectly irreducible members; i.e., if there exists a cardinal κ such that |A| < κ for

every A ∈ si(V). A variety that is not residually small is called residually large. Residual

smallness is not really a residual property in the sense defined above, since it is sensibly

formulated only in terms of varieties rather than individual algebras. Note that a variety is

residually finite if we can choose κ = ω in the definition of residual smallness, so residual

smallness generalises residual finiteness at the level of varieties.

The definition of residual smallness first appeared explicitly in Walter Taylor’s 1971

paper [65]. The concept arose from a natural question: when can a variety V be written

as SP(K) for some set K ⊆ V? This is possible precisely if V is residually small (another

corollary of Birkhoff’s Theorem 1.6).

39
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Following Taylor’s foundational study of residually small varieties, the concept gained

much attention from universal algebraists. Many articles were devoted in particular to

answering a question posed by Robert Quackenbush in [56]. To state this problem, we define

a variety V to be residually very finite if there is a finite bound on the cardinalities of the

members of si(V). Quackenbush’s question can then be stated as: if A is a finite algebra

with V(A) residually finite, must V(A) be residually very finite?

Taylor proved in [66] that the answer to Quackenbush’s question is ‘yes’ when A is of

finite type and V(A) is both congruence permutable and congruence regular. As researchers

progressed towards answering Quackenbush’s question, it evolved into the stronger RS con-

jecture: if A is finite and V(A) is residually small, then V(A) is residually very finite.

Ralph Freese and Ralph McKenzie proved in [27] that the RS conjecture holds when V(A)

is congruence modular (in particular, if A is a finite group), thus generalising Taylor’s result.

Shortly after, McKenzie proved that the RS conjecture holds in the case where A is a finite

semigroup [47]. The proof was carried out by characterising the residually small varieties

of semigroups, modulo certain aspects involving groups.

Although McKenzie does not address exactly the same problem in [47] that Golubov

and Sapir do in [32], the overlap in content is significant. The collision of these two research

threads is the topic of this chapter. (Though, to resolve one of the threads, McKenzie

eventually showed that the general RS conjecture is false, and moreover gave a negative

answer to Quackenbush’s question [49].)

An interesting point is that it is still unknown as to whether ‘residually small’ is the

same as ‘residually finite’ for semigroup varieties. As a follow-up to [32], and in light of

McKenzie’s parallel consideration of residually small semigroup varieties, Sapir and Shevrin

showed in [61] that the question of whether these two properties coincide for semigroup

varieties can be reduced to the same question for group varieties of finite exponent.

It is not presently known whether there exists a variety of groups, satisfying xn ≈ 1

for some n ∈ N, that is residually small but not residually finite. As shown by Sapir and

Shevrin [61], a proof that no such group variety exists would imply that every residually

small semigroup variety is also residually finite. Sapir and Shevrin also show that such a

group variety cannot be locally finite, and so the problem enters into the realm of Burnside

groups, a notoriously difficult area of group theory. We will not attempt to explore this

group-theoretic problem here, but it is certainly worth bringing to the reader’s attention.

McKenzie’s characterisation of residually small semigroup varieties [47], while mostly

self-contained, does not use the techniques of semigroup theory and omits the occasional

proof. It is certainly impressive that McKenzie derived these results without using the

established theory of semigroups, but an unfortunate consequence is that the semigroup

theorist must navigate 35 fairly dense pages using non-standard notation, spending consid-

erable effort in connecting it to standard semigroup-theoretic notions as well as filling in the

details of a number of proofs. Golubov and Sapir’s approach in [32] is much shorter since

it makes use of semigroup theory, but it relies on some rather lengthy papers.

Our account here will be almost entirely self-contained. We will require only the semi-

group theory introduced in Chapter 2, some group-theoretic results (including that of
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Ol’̆sanskĭı [50]), and a short section of a paper of Rasin [58]. The proofs have been made ac-

cessible to semigroup theorists while also removing the dependence on certain longer papers,

all without significantly increasing the combined length.

This chapter grew from the author’s extensive notes on [32] and [47]. These notes

were originally made purely for the author’s reference, but eventually proved invaluable in

deriving the novel results of this thesis. Considering that the broader dualisability problem

for semigroups will need to be tackled using this theory, the inclusion of a refined version of

these notes was decidedly worthwhile.

3.1. Nilpotent semigroups

In describing the residually small semigroup varieties, it is most natural to begin here.

As we will see very shortly, any nilpotent semigroup of class at least 3 generates a residually

large variety, and we will also encounter a plethora of situations forcing a variety to contain

such nilpotent semigroups. From this alone, the assumption that a variety is residually

small removes many properties that might be considered pathological, or at the very least

inconvenient.

Let u be a semigroup term. We interpret the equation u ≈ 0 as an abbreviation for the

equations ux ≈ u and xu ≈ u, where x is any variable not in u. If S is a semigroup, then

we have S |= u ≈ 0 if and only if the term function of S induced by u is constant and its

value is a zero element of S.

Let S be a semigroup. If n > 1 and S |= x1 · · ·xn ≈ 0, then S is called n-nilpotent.

If n > 2 and S is n-nilpotent but not (n−1)-nilpotent, then S is called proper n-nilpotent,

or nilpotent of class n.

We encountered 2-nilpotent semigroups in Chapter 2; these are precisely the null semi-

groups. The next result shows in particular that the variety of null semigroups is residually

small; its only subdirectly irreducible member is the two-element null semigroup, which we

denote by N.

Proposition 3.1. The semigroup N is the only subdirectly irreducible null semigroup. The

variety [xy ≈ 0] = [xy ≈ zt] of all null semigroups therefore equals SP(N).

Proof. Let S be a subdirectly irreducible null semigroup, and let a, b ∈ S with a 6= b.

Then {0, a}2 ∪∆S and {0, b}2 ∪∆S are congruences on S which intersect to ∆S , so we have

either a = 0 or b = 0. This shows that S can have only one non-zero element. �

· a b c 0

a 0 c 0 0

b c 0 0 0

c 0 0 0 0

0 0 0 0 0

Figure 3.1. The semigroup N4.
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Among the nilpotent semigroups of class at least 3, a special role is played by the 3-

nilpotent semigroup, N4, defined in Figure 3.1. The next result shows that N4 occurs in

every variety containing a nilpotent semigroup of class n > 3.

Lemma 3.2. Let A be a commutative 3-nilpotent semigroup satisfying x2 ≈ 0. Then, for

any nilpotent semigroup S of class at least 3, we have A ∈ V(S).

Consequently, if a semigroup variety V contains a nilpotent semigroup of class n for

some n > 3, then V contains N4.

Proof. Let S be a nilpotent semigroup of class n > 3. Then there exist a1, . . . , an−1 ∈ S
with a1 · · · an−1 6= 0, but every product of length n in S equals 0. Suppose that a1a2 can

be written as a product of length 3; i.e., a1a2 ∈ SSS. Then a1 · · · an−1 can be written as a

product of length n and hence equals 0, which is a contradiction. Thus, a1a2 /∈ SSS, so the

Rees quotient S/SSS is a nilpotent semigroup of class 3 contained in V(S). Since it suffices

to show that A ∈ V(S/SSS), we may assume that S is nilpotent of class 3.

To show that A ∈ V(S), we will show that A satisfies every equation that holds in S.

Let u ≈ v be an equation satisfied by S, where u and v are distinct words. Clearly, u and v

cannot both have length 1. If one of u or v has length 1 while the other does not, then by

identifying all of the variables, u ≈ v implies xk ≈ x for some k > 1, which fails in any

non-trivial nilpotent semigroup. Thus, u and v must have length at least 2.

First, consider the case where one of u or v has length at least 3; by symmetry, we may

assume that u does. If v also has length at least 3, then u ≈ v trivially holds in A, so assume

that v has length 2. If v is a product of two distinct variables, then u ≈ v implies S is null,

which is false, so v is the square of a variable. Then u ≈ v holds in A by assumption.

Finally, assume that u and v both have length exactly 2. If u and v contain exactly the

same variables, then A |= u ≈ v by commutativity. By symmetry, we can assume there is

a variable t occurring in v but not u. Then, replacing t with t2 in u ≈ v gives S |= u ≈ 0.

Because S is not null, u must be the square of a variable x. By way of contradiction, suppose

that v = yz for some distinct variables y, z. Then S |= x2 ≈ yz implies S has an element a

with a2 6= 0. Now, if we let x = a and set the remaining variables to 0, we get x2 = a2 6= 0

and yz = 0, which is a contradiction, so we conclude that v is the square of a variable. This

gives A |= u ≈ 0 ≈ v. �

In the next theorem, we will show that V(N4) is residually large, which, by Lemma 3.2,

implies that any variety containing a nilpotent semigroup of class n > 3 is residually large.

To this end, an equational basis for V(N4) will be useful, and Lemma 3.2 provides one with

little further effort.

Proposition 3.3. The variety V(N4) is axiomatised by x2 ≈ 0 ≈ xyz and xy ≈ yx.

Proof. Clearly N4 satisfies x2 ≈ 0 ≈ xyz and xy ≈ yx. If A is a semigroup satisfying

these identities, then A ∈ V(N4) by Lemma 3.2. �

The following theorem appears to be the first non-residual finiteness result on semigroups

outside of the class of groups. Based on remarks in the proof of [32, Lemma 1], it seems

that it was first proved by Lesohin and Golubov in [43], though there does not appear to
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be an English translation of this paper. McKenzie [47, Lemma 15] was technically the first

to prove residual largeness (rather than just non-residual finiteness), though our proof is

somewhat simpler since the subdirectly irreducibles are constructed directly.

Theorem 3.4. The semigroup N4 generates a residually large variety. Consequently, if a

variety V contains a nilpotent semigroup of class at least 3, then V is residually large.

Proof. To show that V(N4) is residually large, let κ > 1 be a cardinal, and let A be a set

of cardinality κ. Adjoin to A two distinct elements c, 0 /∈ A to form S := A ∪ {0, c}, and

define S to be the semigroup on S with multiplication defined by

xy :=

c if x, y ∈ A and x 6= y,

0 otherwise,

for all x, y ∈ S. It easily verified that S is in the variety of N4 using Proposition 3.3. We

will show that S is subdirectly irreducible with monolith generated by (0, c).

Let θ 6= ∆S be a congruence on S; we will show that c θ 0. Choose distinct x, y ∈ S
with x θ y. If x, y ∈ {0, c}, then we are done, so we can assume by symmetry that x ∈ A.

Now, if y ∈ {0, c}, then taking any z ∈ A\{x}, we get c = xz θ yz = 0. On the other

hand, if y ∈ A, then c = xy θ xx = 0. Thus, in all cases, we have c θ 0, so S is subdirectly

irreducible. Since |S| > κ, it follows that V(N4) is residually large. The ‘consequently’ part

now follows from Lemma 3.2. �

With Theorem 3.4 proved, we can now derive various properties that must be satisfied

by varieties not containing N4, which turns out to be quite a strong restriction. The most

important of these properties is the following result, which will give us access to the powerful

results of Section 2.5.

Lemma 3.5. Let V be a semigroup variety with N4 /∈ V. Then V satisfies x2 ≈ xn+2 for

some n > 2. Consequently, if S ∈ V, then S has exponent n, and every element of S has

index at most 2.

Proof. Let F := FV({x}). Then J := {xk | k > 3} is an ideal of F and F/J is 3-nilpotent.

As N4 /∈ V, Lemma 3.2 implies that F/J is null, so x2 ∈ J , and therefore x2 = x2+n for

some n > 1. If it happens that n = 1, then x2 = x3, which implies x2 = x4. Thus, we can

choose n > 2. By Lemma 1.8, V |= x2 ≈ x2+n.

For the ‘consequently’ part, the statement about indices is trivial. The statement that

each S ∈ V has exponent n amounts to saying that V |= x2n ≈ xn, which is trivial if n = 2.

If n > 2, then multiplying the equation xn+2 ≈ x2 by xn−2 gives x2n ≈ xn. �

Remark. The semigroup N satisfies x3 ≈ x2 but not x2 ≈ x, which shows that the ‘con-

sequently’ part of Lemma 3.5 does not hold when n = 1. This is why we forced n > 2 in

Lemma 3.5; for simpler arguments, we would like n to be an exponent of the varieties we

consider. That being said, the n = 1 case will ultimately be the most important to us in

later chapters, but we can easily obtain the relevant results after addressing the n > 2 case.

Next, we consider conditions for a monoid to generate a semigroup variety containing N4.

These will serve as building blocks for a more general result for semigroups.



44 3. RESIDUALLY SMALL VARIETIES OF SEMIGROUPS

By adjoining an identity element to the two-element null semigroup, we of course obtain

a monoid N1. This monoid arises naturally in the following manner.

Proposition 3.6. Let M be a monoid that is not completely regular. Then the variety of M

contains N1.

Proof. Take a ∈M such that a is not a group element of M. By Theorem 2.34, the index

of a is at least 2. Let A be the submonoid of M generated by a, which has underlying

set {ak | k > 0}. Then 1, a /∈ {ak | k > 2} as the index of a is at least 2, so factoring A by

the ideal {ak | k > 2} yields a monoid isomorphic to N1. Hence, N1 ∈ V(M). �

Proposition 3.6 shows that N1 can be thought of as the minimal failure of a monoid to

be completely regular.

We can now easily derive the following sufficient condition for a monoid to generate a

residually large semigroup variety. The proof is from Jackson’s article [40, Theorem 8.1(1)].

Lemma 3.7. The variety of N1 contains N4. Consequently, if M is a monoid that is not

completely regular, then the semigroup variety of M contains N4 and is therefore residually

large.

Proof. Write the underlying set of N as {0, �0}. Let J be the ideal of pairs in N1 ×N1

with at least one zero coordinate. The table below shows that S := {(1, �0), (�0, 1), (�0, �0)} ∪ J
forms a subsemigroup S of N1 ×N1.

· (1, �0) (�0, 1) (�0, �0)

(1, �0) J (�0, �0) J

(�0, 1) (�0, �0) J J

(�0, �0) J J J

In the table, a J entry indicates that the corresponding product lies in J . Clearly S/J ∼= N4,

so N4 ∈ V(N1). Now, if M is a monoid that is not completely regular, then its variety

contains N4 by Proposition 3.6, so the result follows from Theorem 3.4. �

To apply Lemma 3.7, we are lead to introducing the two semigroups P and Q in Fig-

ure 3.2. These are important semigroups in general, but they will be especially important

for this thesis.

The next result, due to the author, shows how P (and by duality, Q) can arise in a

variety under somewhat broad conditions.

· e u 0

e e u 0

u 0 0 0

0 0 0 0

· e u 0

e e 0 0

u u 0 0

0 0 0 0

P Q

Figure 3.2. The semigroups P and Q.
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Lemma 3.8. Let S be a semigroup, let u ∈ S be a non-group element, and let e ∈ S be an

idempotent with eu = u. Then V(S) contains either P or N4.

Proof. Without loss of generality, we can assume that S is generated by {e, u}. We will

separately consider the cases u ∈ 〈ue〉 and u /∈ 〈ue〉.
Assume that u ∈ 〈ue〉, so that u can be written as a word w in u and e containing ue as a

subword. If w ends in u, then w contains at least two occurrences of u (ue is a subword), and

we can remove all occurrences of e in w using eu = u; this gives u = w = uk for some k > 2.

But uk = u implies that u is a group element (Theorem 2.34), which is a contradiction. It

follows that w ends in e, and hence u ∈ Se. This then gives ue = u, so S is a monoid that

is not completely regular, and the result follows from Lemma 3.7.

Now assume that u /∈ 〈ue〉. Then e /∈ 〈ue〉 as u = eu 4J e. Since uu = ueu ∈ 〈ue〉, it

follows that {{e}, {u}, 〈ue〉} forms a subsemigroup of S/〈ue〉 isomorphic to P. �

Since P and Q are dual to each other, they are in a sense equally important semigroups,

but, due to the next result, we will usually be dealing with only one of them. Again, the

proof is from Jackson’s article [40, Theorem 9.1].

Lemma 3.9. The variety V(P,Q) contains N4 and is therefore residually large.

Proof. Let J be the set of elements of P×Q with at least one zero coordinate. Then the

set S := {(u, u), (e, u), (u, e)}∪ J forms a subsemigroup S of P×Q, as can be seen from the

following table of products.

· (e, u) (u, e) (u, u)

(e, u) J (u, u) J

(u, e) J J J

(u, u) J J J

Now S/J ∈ V(P,Q) is nilpotent of class 3, so N4 ∈ V(P,Q) by Lemma 3.2. �

We now come to a simple condition for a variety to contain N4, due to the author.

Theorem 3.10. Let S be a semigroup with idempotent elements e, f ∈ S and a non-group

element u ∈ S such that eu = uf = u. Then V(S) contains N4 and so is residually large.

Proof. By Lemma 3.8 and its dual, either P,Q ∈ V(S) or N4 ∈ V(S). But in the former

case, we have N4 ∈ V(S) by Lemma 3.9. �

The semigroups P and Q will now fade into the background; we will encounter them

again in Section 3.5. In the remainder of this section, we will deduce some important results

that are now obtained as easy consequences of Theorem 3.10.

In [40, Theorem 4.3], it is shown that a regular semigroup that is not completely regular

has N4 in its variety. Theorem 3.10 gives us the following extension of this result.

Theorem 3.11. Let S be a semigroup with a regular element u ∈ S that is not a group

element. Then V(S) contains N4 and is therefore residually large.

Proof. Let x ∈ S with uxu = u. Then e:=ux and f :=xu are idempotent and eu = uf = u,

so the result follows from Theorem 3.10. �
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Theorem 3.10 also allows us to strengthen Theorem 2.39 to the following result.

Theorem 3.12. Let S be a semigroup with N4 /∈ V(S). Then the following hold:

(i) if S is simple, then S is completely simple;

(ii) if S is zero-simple, then S ∼= T0 for some completely simple semigroup T.

Proof. It suffices to prove (ii). Assume that S is zero-simple. By Lemma 3.5, S is periodic,

so S is completely zero-simple by Theorem 2.39. Thus, S is regular by Theorem 2.25(i),

and is therefore completely regular by Theorem 3.11. Since the J -classes of S are S\{0}
and {0}, the result now follows from Theorem 2.44. �

In Theorem 2.11, which applies to any semigroup, we saw that principal factors must

be either simple, zero-simple, or null. The next result shows that, in a variety not contain-

ing N4, we are reduced to the dichotomy we hinted at in Example 2.5: a J -class is either

a completely simple subsemigroup, or its principal factor is a null semigroup.

Theorem 3.13. Let S be a semigroup with N4 /∈ V(S), and let a ∈ S. If there are x, y ∈ Ja
with xy ∈ Ja, then Ja forms a completely simple subsemigroup of S, and so every element

of Ja is a group element of S.

Proof. If Ja is the minimum ideal of S, then Theorems 2.11, 2.43, and 3.12(i) give the

result. Thus, we can assume that I := {x ∈ S | Jx < Ja} is non-empty. Now, the principal

factor 〈a〉/I is, by assumption, not a null semigroup, so it is zero-simple by Theorem 2.11.

By Theorem 3.12(ii), the non-zero elements of 〈a〉/I form a completely simple subsemigroup

of 〈a〉/I, which implies that Ja forms a completely simple subsemigroup of S. �

Our final result shows that in a variety V not containing N4, the group elements of

any S ∈ V must form a subsemigroup of S, as hinted at in Section 2.6. This can be obtained

as a corollary of [62, Theorem 2], but Theorem 3.10 again yields a simple direct argument.

Theorem 3.14. Let S be a semigroup such that the set of group elements of S does not

form a subsemigroup of S. Then V(S) contains N4 and is therefore residually large.

Proof. Since the set of group elements is not a subsemigroup, it is either empty or is not

closed under multiplication. If S has no group elements, then S has no idempotents, so S is

not periodic by Theorem 2.36. Thus, by Lemma 3.5, V(S) contains N4. We can therefore

assume S has a non-empty set of group elements.

Let a, b ∈ S be group elements of S such that ab is not a group element of S, and let e

and f be the identity elements of Ha and Hb, respectively. By assumption, u := ab is not a

group element of S, and eu = u = uf . Thus, V(S) contains N4 by Theorem 3.10. �

3.2. Two identities for residually small varieties

From Section 3.1, we know that a residually small semigroup variety V satisfies x2 ≈ xn+2

for some n > 2. The goal of this section is to show that V also satisfies at least one of two

powerful identities: xn+1y ≈ xy or xyn+1 ≈ xy. First, we will show that N4 /∈ V leads to

three possible identities. We will then introduce two semigroups L+ and R+ whose varieties

are residually large and use their exclusion from V to get our two desired identities.
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In Theorem 3.14, we saw that a semigroup S with N4 /∈ V(S) has a subsemigroup

consisting of all of its group elements. This subsemigroup is evidently equal to the union of

all subgroups of S, so it is completely regular, and we will therefore be able to utilise the

results of Section 2.6.

The subsemigroup of group elements will be an important object, so it will be convenient

to introduce notation for it. If S is a semigroup, then we denote by G(S) the set of group

elements of S. We also denote by E(S) the set of idempotent elements of S, which is

contained in G(S) as a subset. We will see in Section 3.3 that E(S) is also a subsemigroup

of S when V(S) is residually small.

Due to Lemma 3.5, we will be dealing exclusively with semigroups of finite exponent in

this chapter. The next result with therefore be of fundamental importance. We will state

and prove it for clarity, but we will frequently use this result without mention.

Proposition 3.15. Let S be a semigroup of exponent n > 1. Then the following hold:

(i) E(S) = {xn | x ∈ S};
(ii) if a ∈ G(S), then an is the identity element of Ha;

(iii) G(S) = {x ∈ S | xn+1 = x} = {xn+1 | x ∈ S}.

Proof. Statement (i) follows immediatly from the definition of exponent.

To prove (ii), let a ∈ G(S), so Ha is a subgroup of S. Then Ha has exponent n, so an

is the identity element of Ha.

To prove (iii), let a ∈ S. Since an is idempotent, the index of a is at most n, so by

Theorem 2.34 we have an+1 ∈ G(S). This gives {xn+1 | x ∈ S} ⊆ G(S). Now, if a ∈ G(S),

then an+1 = a by (ii), which gives G(S) ⊆ {x ∈ S | xn+1 = x} ⊆ {xn+1 | x ∈ S}. �

The following result gives us three possible identities for residually small varieties, using

the results of Section 3.1. The proof is based on the original proofs of Golubov, Sapir, and

McKenzie, but the number of cases has been reduced to the number of identities.

Lemma 3.16. Let V be a variety with N4 /∈ V. Then V |= x2 ≈ xn+2 for some n > 2, and

for every such choice of n, at least one of the following identities holds in V:

(xy)n+1 ≈ xy, xn+1y ≈ xy, xyn+1 ≈ xy.

Proof. By Lemma 3.5, we have V |= x2 ≈ xn+2 for some n > 2. Let F := FV({x, y}). The

semigroup F/FFF ∈ V is 3-nilpotent, so it is null by Lemma 3.2. Thus, xy ∈ FFF , and

so in F we have xy = w for some word w in x, y of length at least 3.

Consider first the case where yx is a subword of w, so w = uyxv for some words u, v, at

least one of which is non-empty. Let z 7→ z denote the automorphism of F interchanging x

and y. Then xy = uyxv implies yx = uxyv, so xy = uyxv = uuxyvv.

We aim to show that there are words s, t, both non-empty, such that xy = sxyt in F.

If u and v are both non-empty, we are done, so by symmetry we can assume that v is empty

and u is not; thus, xy = uuxy. The Pumping Lemma 2.37 with k = 3 gives xy = uu(uu)2xy.

Now, uu contains x and y, so (uu)2 contains the subword xy. Thus, xy = uu(uu)2xy = sxyt

for some non-empty words s, t, as required.
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The Pumping Lemma 2.37 now gives xy = snxytn. Letting e := sn and f := tn, we

have e, f ∈ E(F) and exy = xyf = xy. Now xy ∈ G(F) by Theorem 3.10, so (xy)n+1 = xy,

and hence V |= (xy)n+1 ≈ xy by Lemma 1.8.

We are left with the case where w does not contain the subword yx, so xy = xky` for

some k, ` > 0 with k + ` > 3. Then either k > 2 or ` > 2. If k > 2, then xk ≈ xn+k follows

from x2 ≈ xn+2, so xnxy = xnxky` = xn+ky` = xky` = xy, and we get V |= xn+1y ≈ xy by

Lemma 1.8. Dually, if ` > 2, we get V |= xyn+1 ≈ xy. �

Now, we want to further narrow down the equations that hold in a residually small

variety. The next three lemmas will take us as far as we can go by omitting only N4. After

this, we will introduce the semigroups L+ and R+.

Theorem 3.14 is used implicitly in the statement of the next result, which shows that

the ordered set G(S)/J sits inside the ordered set S/J when V(S) is residually small.

Lemma 3.17. Let S be a semigroup with N4 /∈ V(S), and define T :=G(S). Then every J -

class of T is a J -class of S, and 4S
J agrees with 4T

J on T .

Proof. By Theorem 3.13, we have JS
a ⊆ T for all a ∈ T , which is to say that if a ∈ T

is J S-related to b ∈ S, then b ∈ T . To show that every J -class of T is a J -class of S, it

suffices to show that a J S b ⇒ a JT b for all a, b ∈ T . For this, in turn, it will suffice to

show that a 4S
J b⇒ a 4T

J b for all a, b ∈ T , and this will also prove the entire result.

Assume that a = ubv for some u, v ∈ S1. Since a = aa−1aa−1a = aa−1ubva−1a, we can

assume that u, v ∈ S and that u, v 4J a. But then a = ubv 4J u, v, so u, v ∈ JS
a ⊆ T .

Thus, we have a = ubv for some u, v ∈ T , as required. �

The following result is a special case of a result that apparently appears in reference 13

of [62], though there does not appear to be an English translation of the referenced paper,

so the following proof is due to the author. Note the implicit use of Theorem 2.44.

Lemma 3.18. Let S be a semigroup such that N4 /∈ V(S), and let T := G(S). Then the

map ϕ : S→ T/J given by x 7→ Jx2 is a homomorphism, and ker(ϕ�T ) = JT.

Proof. By Lemma 3.17, we have JT
a = JS

a for all a ∈ T , so we can omit superscripts

on J -classes without confusion. By Lemma 3.5 and Theorem 2.34, we also have a2 ∈ T for

all a ∈ S, so ϕ is well defined. Since a J a2 for all a ∈ T , we have for all a, b ∈ T that

ϕ(a) = ϕ(b) ⇐⇒ Ja2 = Jb2 ⇐⇒ a2 J b2 ⇐⇒ a J b,

so ker(ϕ�T ) = JT. It remains to show that ϕ is a homomorphism.

Let a, b ∈ S. Then ϕ(ab) = J(ab)2 , while ϕ(a)ϕ(b) = Ja2Jb2 = Ja2b2 (using the multipli-

cation of T/J ), so showing that ϕ(ab) = ϕ(a)ϕ(b) amounts to showing that

(ab)2 J a2b2.

By Lemma 3.16, we can assume by symmetry that S satisfies (xy)n+1 ≈ xy or xn+1y ≈ xy

for some n > 2. Using either of these identities, we get a2b2 = aabb = a(ab)n+1b 4J (ab)2,

so it remains to show that (ab)2 4J a2b2. Now, in the case that S satisfies xn+1y ≈ xy, we

have abab = an+1bn+1ab 4J a2b2, so we can assume that S |= (xy)n+1 ≈ xy. We then have

(ab)2 = abab 4J aba = (aba)(aba)n 4J a
2,
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and (ab)2 4J b2 by symmetry. By Lemma 3.17 and Theorem 2.44, 4J is compatible with T,

so (ab)4 4J a2b2. Finally, since (ab)2 ∈ T , we have (ab)2 J (ab)4, hence (ab)2 4J a2b2. �

Our only use of Lemma 3.18 will be to prove Lemma 3.19 below. Recall from The-

orem 2.41 that a completely simple semigroup of exponent n satisfies (xy)nx ≈ x. The

shadow of this equation appears in the next result.

Lemma 3.19. Let V be a variety not containing N4, and assume that V |= x2 ≈ xn+2 for

some n > 2. If w is a word in the variables x and y that contains both x and y, then V

satisfies ((xy)nw)n(xy)n ≈ (xy)n.

Proof. Let F := FV({x, y}). Using any one of the three equations from Lemma 3.16, we

get V |= ((xy)nw)n(xy)n ≈ ((xy)nwn+1)n(xy)n, so it suffices to prove the desired identity

with wn+1 in place of w. Thus, we may assume without loss of generality that w ∈ G(F).

Let ϕ : F→ G(F)/J be the homomorphism from Lemma 3.18. Then ϕ(F) is a semilat-

tice by Theorem 2.44, so because w contains x and y, we have ϕ(w) = ϕ(x)ϕ(y) = ϕ((xy)n).

But w, (xy)n ∈ G(F), so by Lemma 3.18 we have (xy)n J w in G(F). By Theorem 2.44,

it follows that (xy)n and w lie in some completely simple subsemigroup of F. Hence, by

Theorem 2.41, we have ((xy)nw)n(xy)n = (xy)n. Lemma 1.8 gives the result. �

For the remainder of this section we aim to show that if V is a residually small semigroup

variety, then there is some n > 2 such that V satisfies xn+1y ≈ xy or xy ≈ xyn+1, thus

strengthening Lemma 3.16. To obtain our desired result, we introduce two more minimal

residually large varieties. We denote by L+ the semigroup in Figure 3.3, and the dual

semigroup by R+.

· a b c d

a a a a a

b b b b b

c c c c c

d a a b a

Figure 3.3. The semigroup L+.

We may represent L+ as a semigroup of self-maps on {0, 1, 2}. Take a, b, and c to be

the constant maps with values 0, 1, and 2, respectively, and take d to be the following map:

0 1 2

This shows that L+ is indeed a semigroup. We will show that L+ generates a residually

large variety (and therefore so does R+). For this, it will be useful to give an equational

basis for its identities.

Proposition 3.20. The variety V(L+) is axiomatised by the equation xyz ≈ xy. Moreover,

a non-trivial equation u ≈ v holds in L+ if and only if u and v have length at least 2 and

agree on the two left-most variables.
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Proof. Since all products in L+ are left-zero elements, we have L+ |= xyz ≈ xy. Now, if

two words u, v agree on the two left-most variables, it is clear that u ≈ v can be deduced

from xyz ≈ xy. Thus, it suffices to prove the ‘moreover’ part in the left-to-right direction.

Let u and v be distinct words with L+ |= u ≈ v. Note that {a, d} forms a subsemigroup

of L+ isomorphic to N, so N |= u ≈ v, from which it is clear that u and v must have length at

least 2. Also, L+ contains a non-trivial left-zero subsemigroup, so the left-most variables of u

and v must be the same. Thus, u = xyu′ and v = xzv′ for some variables x, y, z and some

possibly empty words u′, v′. We must show that y = z. Suppose not; then x differs from y

or z, so we can assume by symmetry that x 6= y. Now, if we set (x, y, z) = (d, c, d) in L+,

and assign arbitrary values to the remaining variables, then we get u = dc = b 6= a = dd = v,

which contradicts L+ |= u ≈ v. Thus, y = z, so u and v agree on the two left-most variables,

as required. �

The construction in the following proof was originally based on that of Golubov and

Sapir [32, Lemma 1], but it evolved into a simpler form, partly by using elements of Ger-

hard’s paper [30]. Golubov and Sapir defined their semigroups via a table, so associativity

needed to be checked, and they used the maximal congruence argument to infer the exis-

tence of large subdirectly irreducibles. We construct our subdirectly irreducibles directly as

semigroups of maps.

Theorem 3.21. The semigroups L+ and R+ generate residually large varieties.

Proof. It suffices to prove the result for L+. Let κ > 1 be a cardinal. For each α ∈ κ,

let α denote the constant map κ→ κ with value α, and define

01α : κ→ κ, 01α(x) :=

1 if x = α,

0 otherwise.

Now, let

S := {α | α ∈ κ} ∪ {01α | α ∈ κ\{0, 1}},

and let x, y ∈ S. If x or y is constant, then x◦y is constant, and if x, y ∈ {01α | α ∈ κ\{0, 1}}
then x◦y = 0. In either case, x◦y is constant, so x◦y ∈ S. Thus, S := 〈S; ◦〉 is a semigroup

in which every product is constant, so S |= xyz ≈ xy. Now S ∈ V(L+) by Proposition 3.20,

and clearly |S| > κ.

We will show that S is subdirectly irreducible by showing that 0 and 1 are identified by

every non-trivial congruence on S. Let θ 6= ∆S be a congruence on S, and choose x, y ∈ S
with x 6= y and x θ y. Then there is a constant map z ∈ S such that xz 6= yz, and so xz

and yz are distinct constant maps and xz θ yz; in other words, there are distinct α, β ∈ κ
with α θ β. Now, if {α, β} = {0, 1}, then we are done, so we may assume by symmetry

that α /∈ {0, 1}. Then α θ β implies 1 = 01α α θ 01α β = 0, as required. �

Remark. Taking κ = 3 in the above proof gives S = L+, so we see incidentally that L+ is

subdirectly irreducible, with its monolith generated by (a, b).

Remark. To provide some intuition for the role of L+ and R+, we will give a brief historical

note. In [52, §3], Petrich determines the subvariety lattice of [uvxyz ≈ uvyz, (xy)2 ≈ xy],
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which is the variety of semigroups S such that SS is a rectangular band. We show this

subvariety lattice in Figure 3.2, though we will not attempt to prove its correctness, since

we will not need to use it here.

xy ≈ zt xy ≈ yxy ≈ x

xyx ≈ x xz ≈ yzxy ≈ xz

xyz ≈ xz
xyz ≈ yz
V(R+)

xyz ≈ xy
V(L+)

uvxyz ≈ uvyz
(xy)2 ≈ xy

xyzt ≈ xzt
(xy)2 ≈ xy

xyzt ≈ xyt
(xy)2 ≈ xy

Figure 3.4. The lattice of subvarieties of [uvxyz ≈ uvyz, (xy)2 ≈ xy].

From Figure 3.2, it can be seen that any subvariety of [uvxyz ≈ uvyz, (xy)2 ≈ xy] not

containing L+ or R+ is a subvariety of [xyz ≈ xz], which turns out to be the variety of

subdirect products of rectangular bands and null semigroups. This echoes the role of L+

and R+ in the context of this chapter, though the general picture is more complicated.

This role was recognised by Golubov and Sapir [32]. In part of their proof, Golubov and

Sapir drew on Petrich’s description of various lattices similar to that in Figure 3.2, though

we were able to circumvent the dependence on Petrich’s results.

It is not observed in [52] or [32] that [xyz ≈ xy] and [xyz ≈ yz] have the finite genera-

tors L+ and R+, which is most likely because finite generators were not of interest. Petrich’s

arguments in [52] are almost exclusively syntactic. As far we are aware, the semigroups L+

and R+ have appeared (in the context of residual character) only in McKenzie’s paper [47,

Lemma 21]. The names L+ and R+ were chosen by the present author.

The remainder of this section follows the approach of Golubov and Sapir [32], so it does

not make explicit use of the generators L+ and R+. However, the fact that finite generators

exist will be extremely useful for our dualisability results in later chapters.

Lemma 3.22. Let V be a variety with N4,R
+ /∈ V, and assume that V |= x2 ≈ xn+2 for

some n > 2. Then V |= (xy)n+1 ≈ (xy)n+1yn. Consequently, the following hold:

(i) if V |= (xy)n+1 ≈ xy, then V |= xyn+1 ≈ xy;

(ii) if V |= xn+1y ≈ xy, then V |= (xy)n+1 ≈ xn+1yn+1.

Proof. Let u ≈ v be a non-trivial identity that holds in V but not in R+. Then, by

Proposition 3.20, either
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(1) the right-most variables of u and v are different, or

(2) u = u′y and v = v′y for some variable y and some non-empty words u′, v′ with

different right-most variables, or

(3) one of u, v is a single variable while the other is not.

Case (3) implies that V |= xk ≈ x for some k > 2, so every member of V is completely

regular, and (xy)n+1 ≈ (xy)n+1yn then follows from y ≈ yn+1. In case (1), we can multiply

the identity u ≈ v on the right by some variable to bring us to case (2). So, we may assume

that (2) holds. Now, u′ and v′ cannot both end in y, so we can assume that u′ ends in some

variable x 6= y. By setting all other variables equal to y, we get V |= sxy ≈ ty2 for some

words s, t in the variables x, y. We deduce that

V |= sxyyn ≈ ty2yn ≈ ty2+n ≈ ty2 ≈ sxy.

Now, substituting x 7→ (xy)nx and y 7→ y in the identity sxyn+1 ≈ sxy, we get an identity of

the form w(xy)nxyn+1 ≈ w(xy)nxy for some word w. By multiplying on the left by x and y,

we can assume that w contains both variables. We then have V |= ((xy)nw)n(xy)n ≈ (xy)n

by Lemma 3.19, and so we deduce

V |= (xy)nxy ≈ ((xy)nw)n(xy)nxy ≈ ((xy)nw)n(xy)nxyn+1 ≈ (xy)nxyn+1 ≈ (xy)n+1yn,

with the second ‘≈’ following from w(xy)nxy ≈ w(xy)nxyn+1.

Now, if V |= (xy)n+1 ≈ xy, then V |= xy ≈ (xy)n+1 ≈ (xy)n+1yn ≈ xyn+1, proving (i).

If V |= xn+1y ≈ xy, then V |= (xy)n+1 ≈ (xy)n+1yn ≈ xyyn ≈ xn+1yn+1, proving (ii). �

Finally, combining Lemma 3.22(i) with Lemma 3.16, we get our desired result.

Theorem 3.23. Let V be a variety with N4,R
+,L+ /∈ V. Then V satisfies xn+1y ≈ xy

or xyn+1 ≈ xy for some n > 1.

To lead us into the next section, we will prove one further result. This result tells us in

particular that a subdirectly irreducible semigroup satisfying both identities of Theorem 3.23

is either completely regular or null.

Lemma 3.24. Let S be a semigroup such that S |= xn+1y ≈ xy ≈ xyn+1 for some n > 1.

Then S |= (xy)n+1 ≈ xn+1yn+1 ≈ xy, and S is a subdirect product of a completely regular

semigroup and a null semigroup.

Proof. We have S |= (xy)n+1 ≈ (xy)nxy ≈ (xy)nxyyn ≈ (xy)n+1yn ≈ xyyn ≈ xy, and

clearly S |= xn+1yn+1 ≈ xy.

To obtain the subdirect decomposition, we can assume that n > 2 (since x2y ≈ xy ≈ xy2

implies x3y ≈ xy ≈ xy3), so that n is an exponent of S. Since S satisfies (xy)n+1 ≈ xy, we

have SS ⊆ G(S), and the reverse inclusion is obvious, so G(S) = SS. Thus, S/G(S) is a

null semigroup, and clearly G(S) is completely regular.

Since S satisfies (xy)n+1 ≈ xn+1yn+1, the mapping x 7→ xn+1 is a homomorphism from S

onto G(S) fixing G(S) pointwise. This homomorphism and the quotient map S→ S/G(S)

together separate the points of S, and so S is a subdirect product of G(S) and S/G(S). �
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3.3. Completely regular semigroups

In this section, we will study completely regular semigroups in residually small varieties,

with a particular aim of describing the subdirectly irreducible completely regular semigroups

in such varieties. In view of Lemma 3.24, this will do most of the work in describing residually

small varieties satisfying both xn+1y ≈ xy and xyn+1 ≈ xy, but it will also be important in

the case where we have only one of these identities.

Just as G(S) must be a subsemigroup of S when V(S) is residually small, E(S) must also

be a subsemigroup for such S, as we will show via the next two results. To this end, we will

introduce a family of completely simple semigroups, which can be thought of as minimal

failures of a completely regular semigroup to be orthodox.

Let p be a prime, let G be the (cyclic) group of order p, and let g be a generator of G.

We define Mp to be the Rees matrix semigroup M[G, P ], where

P =

(
1 1

1 g

)
.

Thus, Mp is a completely simple semigroup of exponent p.

We will first show that Mp generates a residually large variety. For the proof, we will

call on a paper of Rasin [58], whose objects of study are completely simple semigroups with

Abelian subgroups and varieties thereof. The results in question are those in Section 2.2

of [58], amounting to about two pages, which show how certain Rees matrix semigroups

can be obtained from simpler ones (resembling Mp) via direct products, subsemigroups,

and quotients. The proofs are conceptually straightforward, but are cumbersome due to the

nature of Rees matrix semigroups, so we will refer the reader to [58] for the proofs. On the

other hand, it is not so straightforward to extract from the literature a tangible construction

of large subdirectly irreducibles in V(Mp), so we will detail this part of the argument.

Theorem 3.25. For each prime p, the variety V(Mp) is residually large.

Proof. Let p be a prime, and use the symbols Mp, G, g as in the definition of Mp above.

To show that V(Mp) is residually large, let κ > 0 be a cardinal.

Define the κ× κ matrix Q over G by setting qij := g if i = j 6= 0 and qij := 1 otherwise,

and let S :=M[G, Q]. Then S is completely simple with exponent p. By [58, §2.2], we

have S ∈ V(Mp), and clearly |S| > κ.

By Theorem 2.26(ii), H is a congruence on S. We will show that S is subdirectly

irreducible by showing that H is the least non-trivial congruence on S. First, we will prove

that for every congruence θ on S, we have

θ 6= ∆S =⇒ θ ∩H 6= ∆S .

Let θ be a non-trivial congruence on S, so there are a, b ∈ S with a 6= b and a θ b. We will

show that θ identifies two distinct H-related elements of S. If a H b, then we are done, so

we can assume that a 6H b. By symmetry, we can assume further that a 6R b.

Define e := (0, 0, 1), and let c := (ae)p and d := (be)p. Then c θ d because a θ b, and by

Lemma 2.24, we have c ∈ Ra ∩ Le and d ∈ Rb ∩ Le; in particular, c 6R d. Thus, c and d

are idempotents in Le with c 6R d, so there are distinct i, j ∈ κ such that c ∈ {i} × {0} ×G
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and d ∈ {j}×{0}×G. From the definition of Q, one easily verifies that (i, 0, 1) and (j, 0, 1)

are the unique idempotents of {i} × {0} × G and {j} × {0} × G, respectively, so we in

fact have c = (i, 0, 1) and d = (j, 0, 1). Now, we can assume by symmetry that j 6= 0, so,

using c θ d, we have

e = (0, 0, 1) = (0, 0, qji) = (0, j, 1)(i, 0, 1) θ (0, j, 1)(j, 0, 1) = (0, 0, qjj) = (0, 0, g).

Thus, e = (0, 0, 1) and (0, 0, g) are distinct elements of He that are θ-related, as required.

Next, we will prove that for every congruence θ on S, we have

θ ∩H 6= ∆S =⇒ H ⊆ θ.

Let θ be a congruence on S, and assume there are distinct a, b ∈ S identified by bothH and θ;

we will show that H ⊆ θ. Note that θ�Ha
is a non-trivial congruence on Ha, which is a p-

element cyclic group, so θ identifies all elements ofHa. Now, letH be anyH-class of S. Then,

as D = S2 by Theorem 2.26(i), Green’s Lemma 2.17 gives a bijection Ha → H obtained by

composing translations of S, so the congruence property implies that all elements of H are

identified by θ. Thus, H ⊆ θ, as required. We have shown that H is the least non-trivial

congruence on S, so S is subdirectly irreducible. �

Theorem 3.26. Let S be a non-orthodox completely regular semigroup of finite exponent.

Then V(S) contains Mp for some prime p, and so V(S) is residually large.

Proof. By Lemma 2.45 and Theorem 2.44, S has a non-orthodox completely simple sub-

semigroup, so without loss of generality, we can assume that S is completely simple.

Choose idempotents e, f ∈ S such that ef is not idempotent. By Theorem 2.41, every

subsemigroup of S is completely simple, so we can assume that S is generated by {e, f}.
Since ef is not idempotent, we have ef /∈ {e, f}, so we cannot have e R f or e L f

by Proposition 2.29. Thus, by Theorem 2.26(ii), the four H-classes He, Hef , Hfe, Hf are

pairwise distinct, and their union forms a subsemigroup of S. Because {e, f} generates S,

these must be the only H-classes of S.

e ef

fe f

By Theorem 2.28, we may represent S as M[G, P ], where P is a {0, 1} × {0, 1} matrix

over the group G = 〈He; ·〉. Moreover, we may assume that all entries of P equal e except

for a := p11. Thus, e is represented as (0, 0, e), while f is represented as (1, 1, a−1). Now, in

any product of (0, 0, e) and (1, 1, a−1), the third coordinate is always an integer power of a,

so because {e, f} generates S, it follows that a generates G.

Now, since G is a non-trivial cyclic group, there is a prime p, a cyclic group H of

order p, and an onto homomorphism ϕ : G → H. If we define the {0, 1} × {0, 1} matrix Q

by setting qλi := ϕ(pλi), we get an onto homomorphism ψ : M[G, P ] → M[H, Q], given

by ψ(i, λ, x):=(i, λ, ϕ(x)). Since all entries of Q are the identity except for q11 = ϕ(a), which

generates H, we have that M[H, Q] is isomorphic to Mp, so Mp ∈ V(S), as required. �
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Thus, a semigroup in a residually small variety must be orthodox. To study the sub-

semigroup of idempotents, we will now consider bands in particular.

The characterisation of residually small band varieties was completed (somewhat indi-

rectly) by Gerhard [29] [30], about a decade before Golubov, Sapir, and McKenzie’s results

were published. As we will see by the end of this section, there is a single variety containing

all residually small varieties of bands; its members are called normal bands. A band S is

normal if S |= xyzt ≈ xzyt. Our immediate goal is to give a characterisation of normal

bands that will enable us to show that all bands in a residually small variety are normal.

To state this characterisation, we introduce some important bands. We denote by L

and R the two-element left-zero and right-zero semigroups, respectively. These are of course

normal bands, as are L0 and R0, which we will encounter again later. On the other hand,

the bands L1 and R1 are not normal. The next result characterises normal bands in terms

of embedding L1 and R1.

Our proof of the following theorem is based on ideas from Howie [37]. The important

point for us is the equivalence of (i) and (ii) (which is a well-known consequence of [29], but

we give a more direct proof). We include conditions (iii) and (iv) mainly because the proof

of (ii) ⇒ (i) passes through (iii) and (iv). Note that (iii) references the idempotent order

from Section 2.4.

Theorem 3.27. Let S be a band. The following are equivalent:

(i) S is normal;

(ii) L1,R1 /∈ S(S);

(iii) (∀e, f, g ∈ S) f, g 6 e & f J g =⇒ f = g;

(iv) S |= xyzx ≈ xzyx.

Proof. (i)⇒ (ii): Any monoid satisfying xyzt ≈ xzyt must be commutative, so L1 and R1

are not normal, and therefore any band containing them is not normal.

(ii)⇒ (iii): To show the contrapositive, assume that (iii) fails; we will show that either L1

or R1 embeds into S. Let c, d, e ∈ S with c, d distinct, c J d, and c, d 6 e. Since e is an

identity for c and d, it is also an identity for the subsemigroup B generated by {c, d}. By

Theorem 2.47, the subsemigroup on Jc is rectangular band, and Jc contains B, so B is a

rectangular band. Since B is a band, we have HB = ∆B, and DB = B2 by Lemma 2.26.

Since B is non-trivial, B has a non-trivialR or L relation, so by Proposition 2.29, B contains

a subsemigroup {a, b} isomorphic to R or L. Since e is an identity for B, we have e /∈ {a, b},
so R1 or L1 embeds into S on {e, a, b}.

(iii) ⇒ (iv): Assume that (iii) holds. To show that S |= xyzx ≈ xzyx, let a, b, c ∈ S.

By Theorem 2.47, we have abca J acba because S/J is commutative, and clearly a is an

identity for abca and acba, so by (iii) we have abca = acba. Thus, S |= xyzx ≈ xzyx.

(iv) ⇒ (i): Assume that S |= xyzx ≈ xzyx. Below is a derivation of xyzt ≈ xzyt

from xyzx ≈ xzyx and x2 ≈ x, where the square brackets indicate which two substrings are

to be swapped using xyzx ≈ xzyx.

xyzt ≈ (xyzt)2 ≈ x[y][zt]xyzt ≈ xz[tyx][y]zt ≈ xzyt[y][xz]t ≈ xzytxzyt ≈ xzyt.

Hence, S is normal. �
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We will now show that L1 and R1 generate residually large varieties. It will then follow

immediately from Theorem 3.27 that all bands in a residually small variety are normal.

As is now routine, we will start by finding equational bases for these varieties.

Proposition 3.28. The variety of L1 is axiomatised by the equations x2 ≈ x and xyx ≈ xy.

Proof. It is easily seen that L1 |= x2 ≈ x, xyx ≈ xy. Let u ≈ v be an identity holding

in L1; we must show that u ≈ v can be deduced from x2 ≈ x and xyx ≈ xy.

First, note that the two-element semilattice I embeds into L1, so I |= u ≈ v, which

implies that u and v must contain exactly the same variables. We will prove the result by

induction on the number of variables occurring in u and v.

Since L |= u ≈ v, the left-most variables of u and v must be the same; let x denote this

variable. Using x2 ≈ x, we can reduce u to a word with no consecutive occurrences of x (but

still beginning with x). Now, suppose x occurs elsewhere in the reduced word, so we have

a word of the form xsxt for some words s, t with s non-empty. Then xsxt can be reduced

to xst using xyx ≈ xy. This process can be repeated to remove other instances of x.

By symmetry, we can deduce u ≈ xu′ and v ≈ xv′ from x2 ≈ x and xyx ≈ xy, for some

words u′, v′ not containing x. Now, it is clear that L1 |= xu′ ≈ xv′; in fact, L1 |= u′ ≈ v′,

since x does not occur in u′, v′ and L1 has an identity element. Now u′ and v′ contain one

fewer distinct variable than u, v, so inductively we can assume that u′ ≈ v′ follows from the

identities x2 ≈ x and xyx ≈ xy. Thus, u ≈ xu′ ≈ xv′ ≈ v follows from these identities. �

The proof of the following result is adapted from Gerhard’s final example in [30].

Theorem 3.29. The semigroups L1 and R1 generate residually large varieties.

Proof. It suffices to prove the result for L1. Let κ > 1 be a cardinal. For each α ∈ κ, let α

denote the constant map κ→ κ with value α, and for each c ∈ {0, 1}, define

cαα : κ→ κ, cαα(x) :=

α if x = α,

c otherwise.

Now, let

S := {α | α ∈ κ} ∪
{
cαα | c ∈ {0, 1}, α ∈ κ\{0, 1}

}
.

Let α, β ∈ κ\{0, 1} with α 6= β, and let {c, d} = {0, 1}. Note that if one of x, y ∈ S is

constant, then x ◦ y is constant (hence in S), so the following table shows that S is closed

under composition. The table also shows that S := 〈S; ◦〉 is a band.

◦ cαα cββ dαα dββ

cαα cαα c cαα c

Let x, y ∈ S. Then, from the table, either xy is a constant map, in which case xyx = xy,

or else xy = x, in which case xyx = xx = x = xy. This shows that S |= xyx ≈ xy, and

therefore S ∈ V(L1) by Proposition 3.28. Clearly, |S| > κ.

We will show that S is subdirectly irreducible by showing that 0 and 1 are identified by

every non-trivial congruence on S. Let θ 6= ∆S be a congruence on S. Arguing as in the
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last paragraph of the proof of Theorem 3.21, we can assume that there are distinct α, β ∈ κ
with α θ β and α /∈ {0, 1}. Thus, α = 0αα α θ 0αα β = 0, and similarly α θ 1, so 0 θ 1. �

We conclude that all bands in a residually small variety are normal. Since any semi-

group S in a residually small variety is orthodox, it follows that E(S) is a normal band.

We will characterise the completely regular semigroups with this property in Lemma 3.31.

First, we record the following simple but incredibly important result.

Lemma 3.30. Let S be a semigroup in [xn+1y ≈ xy, xynznt ≈ xznynt] for some n > 1.

Then, for every e ∈ E(S), the left translation x 7→ ex is an endomorphism of S.

Proof. Let e ∈ E(S), and let x, y ∈ S. Then

exy = ex(ex)ny = exen(ex)ny = ex(ex)neny = (ex)n+1ey = exey. �

Lemma 3.31. Let S be a completely regular semigroup of exponent n > 1. The following

are equivalent:

(i) S is orthodox and E(S) is a normal band;

(ii) S |= xynznt ≈ xznynt;
(iii) for each e ∈ E(S), the maps x 7→ ex and x 7→ xe are endomorphisms of S.

Moreover, if S satisfies (i)–(iii), then H is a congruence on S.

Proof. (i) ⇒ (ii): Clearly S |= xn+1 ≈ x, and by (i), we have S |= xnynzntn ≈ xnznyntn.

Thus, S |= xynznt ≈ xxnynzntnt ≈ xxnznyntnt ≈ xznynt.
(ii) ⇒ (iii): Since S |= xn+1 ≈ x, this is true by Lemma 3.30 and its dual.

(iii) ⇒ (i): Let e, f, g, h ∈ S. Then, since x 7→ fx and x 7→ xf are endomorphisms,

we have efgh = efgfh = egfh, and this implies efef = eeff = ef . This shows that S is

orthodox and E(S) is a normal band.

We have shown that (i)–(iii) are equivalent. Now assume that S satisfies (i)–(iii); we

will show that H is a congruence on S.

Let a, b ∈ S, and let e := an ∈ Ha ⊆ Ja and f := bn ∈ Hb ⊆ Jb. Then by Theorem 2.44,

we have that ab J ef and that ab and ef lie in some completely simple subsemigroup J

of S. Now, since x 7→ fx and x 7→ xf are endomorphisms of S by (iii), we have

efab = efafb = eafb = anabnb = ab,

so ab ∈ efS ⊆ RJ
ef by Lemma 2.24, which implies ab R ef in S. We then have ab H ef by

symmetry. Now ef ∈ Hab is idempotent by (i), so (ab)n = ef = anbn. The mapping x 7→ xn

therefore defines an endomorphism of S whose kernel is H; thus, H is a congruence on S. �

Remark. Lemma 3.31 holds without the assumption of finite exponent, provided one inter-

prets xn as xx−1. However, (ii) is not expressible in the semigroup signature when S does not

have finite exponent. The result itself was rather painstakingly extracted from McKenzie’s

proofs; it does not seem to appear in any convenient place in the English literature.

Now, we would like to characterise the subdirectly irreducible completely regular semi-

groups satisfying the conditions of Lemma 3.31. We will prove this using two more prelim-

inary lemmas.
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Lemma 3.32. Let S be a semigroup without zero. Then S is subdirectly irreducible if and

only if S0 is subdirectly irreducible.

Proof. Assume that S is subdirectly irreducible, let (a, b) generate the monolith of S, and

let θ be a non-trivial congruence on S0; we will show that a θ b. For this, it suffices to show

that θ�S is a non-trivial congruence on S. Choose distinct x, y ∈ S0 with x θ y. If x, y ∈ S,

then we are done, so we can assume that y = 0. Since x is not a zero element of S, we can

assume by duality that cx 6= x for some c ∈ S, which gives x θ 0⇒ cx θ 0⇒ x θ cx, so θ�S
is non-trivial, as required. It follows that S0 is subdirectly irreducible.

Conversely, assume that S0 is subdirectly irreducible, and let (a, b) generate the monolith

of S0. Since S2∪{(0, 0)} is a non-trivial congruence on S0, we have a, b ∈ S. Now, if θ 6= ∆S

is a congruence on S, then θ ∪ {(0, 0)} is a congruence on S0, so a θ b. �

In the following result, the hypothesis on a, b is satisfied if S is subdirectly irreducible

and (a, b) generates the monolith of S. For later use, we have expressed it more generally.

Lemma 3.33. Let S ∈ [xn+1y ≈ xy, xynznt ≈ xznynt] for some n > 1. Suppose there

are distinct a, b ∈ S such that ϕ(a) = ϕ(b) for every endomorphism ϕ : S → S that is not

one-to-one. If e ∈ E(S) and ea 6= eb, then e is a left identity of S.

Proof. Let e ∈ E(S) with ea 6= eb, and let λ : S → S denote the left translation x 7→ ex.

By Lemma 3.30, λ is an endomorphism of S, which must be one-to-one since λ(a) 6= λ(b).

As λ is also an idempotent map (i.e., λ ◦ λ = λ), it must be the identity map. �

We now come to the main result of this section.

Theorem 3.34. Let S ∈ [xynznt ≈ xznynt] be completely regular with exponent n > 1.

Then S is subdirectly irreducible if and only if S ∈ I(L,L0,R,R0, I) or S ∈ I(G,G0) for

some subdirectly irreducible group G.

Proof. The right-to-left implication follows immediately from Lemma 3.32. Assume that S

is subdirectly irreducible. If J is trivial, then S is a semilattice by Theorem 2.44, so S ∼= I by

Theorem 1.12. Thus, we can assume that J is non-trivial. Let (a, b) generate the monolith

of S. By Theorem 2.44, J is a congruence on S, so a J b. Let J be the subsemigroup of S

on Ja = Jb, so J is a non-trivial completely simple semigroup by Theorem 2.44.

Let e be the idempotent element of Ha. Then ea = a, so if eb 6= a, then e is a left

identity of S by Lemma 3.33. Dually, if be 6= a, then e is a right identity of S.

Suppose H is trivial. Then e = a, and either a 6RJ b or a 6LJ b, so by Proposition 2.29

we have either ba 6= a or ab 6= a. Thus, e is either a left or a right identity of S in this case.

Now assume that H is non-trivial. By Lemma 3.31, H is a congruence on S, so a H b,

and therefore eb = be = b 6= a. Thus, e is a two-sided identity for S in this case.

In both cases, e is at least a one-sided identity of S, so we have 〈e〉 = S. Since a H e, we

also have 〈a〉 = 〈e〉 = S. Now, if K is a non-trivial ideal of S, then ∆S ∪K2 is a non-trivial

congruence, so K must contain a (and b) and therefore 〈a〉; that is, K = S. Thus, S is

either simple or zero-simple. Since a zero-simple semigroup has exactly two J -classes, we

have either S = J or S ∼= J0. Now, J is simple and non-trivial and therefore cannot have a

zero, so if S ∼= J0, then J is subdirectly irreducible by Lemma 3.32.
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In either case S = J or S ∼= J0, we have that J is a subdirectly irreducible completely

simple semigroup. Now, by Lemma 3.31, J is orthodox, so by Theorem 2.30, we can assume

by symmetry that J is a group or a right-zero semigroup. In the former case, we are done.

For the latter case, note that every equivalence relation on a right-zero semigroup is a

congruence, so if J is right-zero, then J ∼= R. �

We close this section with two important corollaries, describing the subdirectly irre-

ducible normal bands and characterising the residually small varieties of bands.

Theorem 3.35. The class of subdirectly irreducible normal bands is I(L,L0,R,R0, I). Con-

sequently, the variety of normal bands equals SP(L0,R0) and V(L,R, I).

Proof. It is clear that L, R, and I are normal bands. Any variety containing I is closed

under the construction S 7→ S0 (since S0 ∈ H(S× I)), so L0 and R0 are also normal bands.

The result now follows from Theorem 3.34 with n = 1 (and Birkhoff’s Theorem 1.6). �

Corollary 3.36. Let V be a variety of bands. The following are equivalent:

(i) V is residually small;

(ii) V is residually very finite;

(iii) si(V) ⊆ I(L,L0,R,R0, I);

(iv) V is a variety of normal bands;

(v) L1,R1 /∈ V.

Proof. In the sequence (i) ⇒ (v) ⇒ (iv) ⇒ (iii) ⇒ (ii) ⇒ (i), the first three implications

follow from Theorems 3.29, 3.27, and 3.35, respectively, while the last two are trivial. �

3.4. Varieties satisfying both identities

We now return to the main thread of the chapter. In Theorem 3.23, we saw that a

residually small variety satisfies xn+1y ≈ xy or xyn+1 ≈ xy for some n > 1. In this section,

we will deal with the case where both identities are satisfied. Given the results of Section 3.3,

there is little work left to do in the general case; all we need is some notation.

For each n > 1, we denote by Gn the (semigroup) variety of all groups of exponent n,

and we denote by Nn the variety [xn+1y ≈ xy ≈ xyn+1, xynznt ≈ xznynt]. As the next

result shows, Nn is equal to the join of the variety of groups of exponent n with the varieties

of normal bands and null semigroups (hence the letter ‘N’).

Theorem 3.37. For each n > 1, we have

Nn = V(L,R, I,N) ∨ Gn, si(Nn) = I({L,L0,R,R0, I,N,G,G0 | G ∈ si(Gn)}).

Proof. Let Sn := I({L,L0,R,R0, I,N,G,G0 | G ∈ si(Gn)}). It is clear that Sn ⊆ Nn,

and we have Sn ⊆ si(Nn) by Lemma 3.32. Now, by Lemma 3.24, each S ∈ si(Nn) is either

null or completely regular, and since Nn |= xn+2 ≈ x2, every completely regular semigroup

in Nn has exponent n. Thus, by Proposition 3.1 and Theorem 3.34, we have si(Nn) = Sn.

Now, clearly Nn ⊇ V(L,R, I,N)∨Gn, and since S0 ∈ H(S× I) for any semigroup S, we

have Sn ⊆ V(L,R, I,N) ∨ Gn. Hence, Nn = V(L,R, I,N) ∨ Gn. �
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Lemma 3.38. Let V be a variety satisfying xn+1y ≈ xy ≈ xyn+1 for some n > 1, and

assume that L1,R1 /∈ V and Mp /∈ V for all primes p. Then V ⊆ Nn.

Proof. Let S ∈ V. Since N4 6|= xn+1y ≈ xy, it follows from Theorems 3.14 and 3.26

that G(S) is an orthodox subsemigroup of S, and therefore S is also orthodox. By Corol-

lary 3.36, E(S) is a normal band, so S |= xmymzmtm ≈ xmzmymtm, where m := max{2, n},
which is an exponent of S. Since m 6 n+ 1, we deduce

S |= xymzmt ≈ xn+1ymzmtn+1 ≈ xn+1zmymtn+1 ≈ xzmymt.

If n 6= m (i.e., n = 1), then xyzt ≈ xzyt follows from x2y ≈ xy and xy2z2t ≈ xz2y2t. �

Theorem 3.39. Let V be a variety satisfying xn+1y ≈ xy ≈ xyn+1 for some n > 1. Then

the following are equivalent:

(i) V is residually small;

(ii) L1,R1 /∈ V and Mp /∈ V for all primes p, and V ∩ Gn is residually small;

(iii) V ⊆ Nn and V ∩ Gn is residually small.

Proof. Theorems 3.25 and 3.29 give (i) ⇒ (ii), while Lemma 3.38 gives (ii) ⇒ (iii) and

Theorem 3.37 gives (iii) ⇒ (i). �

As we remarked in the chapter introduction, we do not know exactly when a subvariety

of Gn is residually small, so Theorem 3.39 is incomplete in this regard. For the remainder

of this section, we will strengthen Theorem 3.39 with the added assumption that V is

generated by a finite semigroup. For this, we will call on Ol’̆sanskĭı’s results in [50], where

the residually finite varieties of groups are characterised. Naturally, to state these results,

we require some group-theoretic notions.

The following common notions may be found in Macdonald [45], for example. We define

the centre of a group G to be the normal subgroup Z(G) := {g ∈ G | (∀x ∈ G) xg = gx}.
Now, define Gn inductively for all n > 0 by G0 := G and Gn+1 := Gn/Z(Gn). If n > 0

and Gn is trivial, then G is called n-nilpotent, and we say that G is nilpotent if G

is n-nilpotent for some n > 0. Thus, a group is nilpotent if iteratively factoring by the

centre results in the trivial group after a finite number of steps. Any finite nilpotent group

is isomorphic to the direct product of its Sylow subgroups [45, Theorem 9.08].

The next concept is not quite as common. Let G be a group. Then G is called an

A-group if G is finite and every nilpotent subgroup of G is Abelian; equivalently, if G is

finite and every Sylow subgroup of G is Abelian. Ol’̆sanskĭı’s main result in [50] can now

be stated as follows: a variety V of groups (in the group signature) is residually finite if and

only if V = V(G) for some (finite) A-group G.

Although there is no complete characterisation of the residually small group varieties,

we can say when a finite group generates a residually small variety. As discussed in the

chapter introduction, Freese and McKenzie showed in [27] that the RS conjecture holds for

finite groups. In other words, a finite group that generates a residually small variety in fact

generates a residually very finite variety. Combining this with Ol’̆sanskĭı’s results [50] gives

the following result (which holds in both the group and the semigroup signature).
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Theorem 3.40. Let G be a finite group. The following are equivalent:

(i) V(G) is residually small;

(ii) V(G) is residually very finite;

(iii) G is an A-group;

(iv) V(G) = SP(H) for some (finite) A-group H.

Proof. Freese and McKenzie [27, Theorem 8] gives (i) ⇔ (ii), while Ol’̆sanskĭı [50, Theo-

rem 1, Theorem 2, Lemma 1] gives (ii) ⇔ (iii) ⇔ (iv). �

To apply Theorem 3.39 to the variety of a finite semigroup S, we will first prove the

well-known result that the subgroups of S generate the variety of groups lying in V(S).

Lemma 3.41. Let S be a finite semigroup, and let G ∈ H(S) be a group. Then G ∈ H(H)

for some subgroup H of S.

Proof. Fix a surjective homomorphism ϕ : S → G. By Theorem 2.4, S has a minimum

ideal M, which is a completely simple subsemigroup of S by Theorem 2.40. Now ϕ(M) is

an ideal of G as ϕ is surjective, so ϕ(M) = G because G is simple as a semigroup.

By Theorem 2.36, we may choose some e ∈ E(M). Then ϕ(e) ∈ E(G), so ϕ(e) = 1.

Now, let H :=HM
e . Then, by Lemma 2.24, we have eMe ⊆ H, and clearly H = eHe ⊆ eMe,

so eMe = H is a subgroup of S, and ϕ(eMe) = ϕ(e)ϕ(M)ϕ(e) = G. �

Theorem 3.42. Let S be a finite semigroup, and let G denote the direct product of the

subgroups of S. Then V(G) is precisely the class of all groups in V(S).

Proof. Let H ∈ V(S) be a finite group. By Lemma 1.11, we have H ∈ H(T) for some

finite semigroup T ∈ SP(S), and by Lemma 3.41, we have H ∈ H(K) for some subgroup K

of T. Now K ∈ SP(S), so the homomorphisms K → S separate the points of K. But the

image of K under a homomorphism K→ S is isomorphic to a subgroup of S and therefore

of G, so the homomorphisms K → G also separate the points of K; that is, K ∈ SP(G).

This shows that H ∈ V(G). Thus, V(G) contains every finite group in V(S).

Now let A be any group in V(S). Then, by Theorems 1.9 and 1.10, A is in the variety

generated by its finite subgroups, which we have shown are in V(G). Thus, A ∈ V(G). �

We close this section with the following specialisation of Theorem 3.39 to finitely gen-

erated varieties.

Theorem 3.43. Let S be a finite semigroup satisfying xn+1y ≈ xy ≈ xyn+1 for some n > 1.

Then the following are equivalent:

(i) V(S) is residually small;

(ii) V(S) is residually very finite;

(iii) every finite group in V(S) is an A-group, L1,R1 /∈ V(S), and Mp /∈ V(S) for all

primes p;

(iv) S ∈ Nn and every subgroup of S is an A-group;

Proof. Note that a finite direct product of A-groups is an A-group, so by Theorems 3.40

and 3.42, every subgroup of S is an A-group if and only if every finite group in V(S) is an

A-group if and only if V(S)∩Gn is residually small. Theorem 3.39 now gives the result. �
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3.5. Groups in the presence of P

In Section 3.4, we considered residually small varieties satisfying both xn+1y ≈ xy

and xyn+1 ≈ xy, and saw that there is no restriction on their subvarieties of groups, as

long as they are residually small. It is perhaps surprising, then, that if a residually small

variety V satisfies only one of these two identities, there is a significant restriction on the

groups in V: they must all be Abelian. The broader goal of this section is to prove this fact.

Of course, if a variety satisfies precisely one of the identities xn+1y ≈ xy, xyn+1 ≈ xy,

we can assume by symmetry that the first identity holds but the second does not. The

remainder of this chapter will predominantly be concerned with such varieties.

Lemma 3.8 showed us that P manifests somewhat mysteriously in varieties under certain

conditions. Lemma 3.45 below shows that these conditions are met in a residually small

variety satisfying xn+1y ≈ xy but not xyn+1 ≈ xy. First, we prove a simple result concerning

group elements.

Lemma 3.44. Let S be a semigroup satisfying xn+1y ≈ xy for some n > 2. Then G(S) is

a left ideal of S.

Proof. If a ∈ S and b ∈ G(S), then (ab)n+1 = (ab)nab = (ab)nabbn = abbn = ab. �

The following result was proved by Golubov and Sapir [32, Lemma 6], but we give a new

proof using Lemma 3.8. In fact, Lemma 3.8 was discovered while refining the next proof.

Lemma 3.45. Let V be a semigroup variety satisfying xn+1y ≈ xy but not xyn+1 ≈ xy for

some n > 1, and assume that R+ /∈ V. Then P ∈ V.

Proof. Suppose n = 1. Then V |= x3 ≈ x2, so V |= x3y ≈ xy; however V |= xy3 ≈ xy

would imply V |= xy2 ≈ xy, so V 6|= xy3 ≈ xy. Thus, we can assume that n > 2.

Now, note that N4 6|= xn+1y ≈ xy, so N4 /∈ V. Let F := FV({x, y}), and consider the

elements e := xn and u := xny = ey of F. Then e ∈ E(F) and eu = u. By Lemma 3.8, it

suffices to show that u /∈ G(F).

Suppose u ∈ G(F). Then xy = xn+1y = xu ∈ G(F) by Lemma 3.44, so (xy)n+1 = xy,

and therefore V |= (xy)n+1 ≈ xy by Lemma 1.8. But we then have V |= xy ≈ xyn+1 by

Lemma 3.22(i), which is a contradiction. �

Lemma 3.45 tells us that P is always present in the varieties we are interested in; so,

effectively, our task for the remainder of this chapter is to characterise the residually small

varieties containing P. In this section, we will focus on groups in varieties containing P.

We will start by introducing a construction that will be of fundamental importance for the

remainder of the chapter, as well as the second half of the thesis.

To introduce this construction, it would perhaps be prudent to clarify the notion of

composition of partial maps. Given partial maps f : U → V and g : V → W , we define the

composite map g ◦ f : U → W by setting dom(g ◦ f) := {x ∈ U | g(f(x)) is defined} and

defining (g ◦ f)(x) := g(f(x)) for all x ∈ U .

Now, let T be a semigroup, and let U be a non-empty set. An action of T on U is a

homomorphism Φ from T to the semigroup of partial maps U → U . If Φ(a) : U → U is

total for all a ∈ T , then Φ is called total. If Φ is one-to-one, then Φ is called faithful.
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If the action of T on U is understood, we will typically write au to mean Φ(a)(u), for

all a ∈ T and all u ∈ U . We will often refer to a semigroup T acting on a set U without

specifying the action; it will be assumed that there is some fixed action involved. The action

will either be clear from context, or the exact nature will not be important. Additionally,

we will always assume that semigroups act on non-empty sets.

Let Φ be an action of a semigroup T on a set U . We define the semigroup T

�

U to

have underlying set T ∪̇ U ∪̇ {0}, with multiplication defined as follows:

• if a, b ∈ T , we take ab to be the product in T;

• if a ∈ T and u ∈ U , we define au to be Φ(a)(u) if the latter is defined;

• all other products are defined to be 0.

Of course, the multiplication of T

�

U depends on Φ, but again, the action will usually be

understood. It is straightforward to verify that T

�

U is a semigroup.

The construction T

�

U was used by McKenzie in [47]. One of the strong points of

McKenzie’s approach is his use of this construction, as it makes certain aspects of the main

proof more lucid. For total actions, we can roughly summarise the definition of T

�

U in

the following table:

· T U 0

T T U 0

U 0 0 0

0 0 0 0

We now begin to see the connection between P and semigroup actions: the above table is a

copy of the table for P (Figure 3.2). This gives us a surjective homomorphism T

�

U → P.

In fact, P itself can be represented by the action of the trivial semigroup, 1, on a one-element

set; that is, P ∼= 1

�

{u}. This hints that we have more than just a neat construction, and

explains to some extent what the semigroup P really is.

In this section, we will restrict our attention to group actions, but we will encounter

more general semigroup actions in the next section. Let Φ be an action of a group G on a

set U . We say that Φ is a group action if Φ(g) is a total permutation of U for every g ∈ G.

If Φ is an action of a group G on a set U (not necessarily total), then a sufficient condition

for Φ to be a group action is that Φ(1) is the (total) identity map on U .

By means of the next two results, we will show that if G is a group in some variety V

containing P, then V contains every semigroup G

�

U , where U is a set and G acts on U

(via a group action). Since we want to know when a variety containing P is residually small,

this naturally leads to the question of when G

�

U is subdirectly irreducible, as well as the

question of when there is a cardinal bound on these subdirectly irreducible semigroups.

Let us recall some well-known properties of group actions. Fix some group action of G

on a set U . The orbit of x ∈ U is the set {gx | g ∈ G}; the set of orbits is a partition of U .

A group action is transitive if it has precisely one orbit.

If X is an orbit, then the action of each g ∈ G restricts to a permutation of X, and

this induces a transitive action of G on X. This idea gives us the following subdirect

decomposition of G

�

U .
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Proposition 3.46. Let G be a group acting on a set U via a group action, and let X be

the set of orbits. Then G

�

U is a subdirect product of the semigroups {G

�

X | X ∈ X}.

Proof. Let S := G

�

U . For each X ∈ X , the set JX := (U\X) ∪ {0} is an ideal of S,

and θX := ∆S ∪ J2
X is a congruence on S with S/θX ∼= G

�

X. Since
⋂
{θX | X ∈ X} = ∆S ,

the result follows. �

Proposition 3.46 tells us in particular that if G

�

U is subdirectly irreducible, the action

must be transitive. This enables us to call on the well-known representation theorem for

group actions, usually called the Orbit-Stabiliser Theorem or the Stabiliser-Orbit Theorem.

Recall that if H is a subgroup of a group G, then there is a natural group action of G on

the set G/H := {aH | a ∈ G} of left cosets of H in G, which is given by left multiplication.

This action is transitive. The Orbit-Stabiliser Theorem says in effect that every transitive

group action can be represented in this way.

For each x ∈ U , the stabiliser of x is defined as the subgroup Gx := {g ∈ G | gx = x}
of G. The precise content of the Orbit-Stabiliser Theorem is that, for a fixed x ∈ U , the

mapping gGx 7→ gx is a well-defined bijection G/Gx → X, where X is the orbit of x. It is

easily seen that this bijection induces an isomorphism G

�

G/Gx → G

�

X, and so G

�

X

is representable via a left coset action. By combining Proposition 3.46 with the next result,

it will follow immediately that G
�

U ∈ V(G,P).

Proposition 3.47. Let G be a group and H a subgroup of G. Then G

�

G/H ∈ V(G,P).

Proof. For simplicity, assume that the union G∪G/H∪{0} is disjoint. Let S :=G

�

G/H,

and define the map ϕ : G× P → S by

ϕ(g, x) :=


g if x = e;

gH if x = u;

0 if x = 0.

for all (g, x) ∈ G×P . Then ϕ is easily seen to be a surjective homomorphism G×P→ S. �

In view of these results, we would like to know when a semigroup G

�

U arising from a

transitive group action is subdirectly irreducible. We can rather easily show that the action

must also be faithful. Consider the following equivalence relation γ on G

�

U identifying

pairs of elements of G that act as the same map on U :

x γ y ⇐⇒ x = y or
(
x, y ∈ G & (∀w ∈ U) xw = yw

)
.

One easily verifies that γ is a congruence on G

�

U . Now, observe that the congruence

corresponding to the ideal U ∪ {0} is non-trivial, but intersects γ trivially. Thus, if G

�

U

is subdirectly irreducible, γ must be trivial, and so G acts faithfully on U .

Now, we would like to translate this condition to left coset actions. First, let us agree to

use the term group kernel to refer to the preimage of the identity element under a group

homomorphism (as opposed to the ‘map’ kernel). If H is a subgroup of a group G, then

the group kernel of the natural action of G on G/H is called the normal core of H in G,

or simply the core of H in G. The name reflects a basic fact: the normal core of H in G

is the largest normal subgroup of G contained in H.
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Indeed, if C is the core of H, then we may write C = {g ∈ G | (∀a ∈ G) gaH = aH}.
Each g ∈ C then satisfies gH = H in particular, so C is contained in H. Now, being a group

kernel, C is of course is a normal subgroup of G. Moreover, an elementary manipulation

shows that C =
⋂
{aHa−1 | a ∈ G}, the intersection of all conjugates of H, from which it is

clear that any normal subgroup of G contained in H is also contained in C.

As is well known, a group homomorphism is one-to-one if and only if its group kernel is

trivial. Thus, the action of G on G/H is faithful if and only if the core of H in G is trivial.

If H has a trivial core in G, we say that H is core-free in G. Equivalently, H is core-free

in G if H contains no non-trivial normal subgroup of G.

Thus, if G

�

G/H is subdirectly irreducible, then H must be core-free in G. However, H

being core-free in G is not a sufficient condition for G

�

G/H to be subdirectly irreducible.

As we will establish in Proposition 3.49 below, H must also be completely meet irreducible in

the subgroup lattice of G. To reframe this property, let a ∈ G. We say that the subgroup H

is a-maximal in G if a /∈ H and every subgroup of G that properly contains H also

contains a. It is easy to see that a subgroup of G is completely meet irreducible in the

subgroup lattice of G if and only if it is a-maximal for some a ∈ G.

We are now ready to describe the subdirectly irreducibles of the form G

�

G/H. We

first prove the following lemma, which we will use several times in this chapter to verify

that a semigroup of the form T

�

U is subdirectly irreducible.

Lemma 3.48. Let T be a semigroup acting faithfully on a set U such that no element of T

acts as the empty map on U , and let θ be a non-trivial congruence on T

�

U . Then there

are distinct x, y ∈ U ∪ {0} with x θ y. Furthermore, if for every z ∈ U there is some a ∈ T
with az ∈ U\{z}, then there are distinct x, y ∈ U with x θ y.

Proof. We will first show that x θ y for some distinct x, y ∈ U ∪{0}. Fix a, b ∈ T ∪U ∪{0}
with a 6= b and a θ b. If a, b ∈ U ∪ {0}, then we are done, so we can assume by symmetry

that a ∈ T .

If b ∈ U ∪{0}, then because a does not act as the empty map on U , there is some u ∈ U
with au 6= 0. Then 0 = bu θ au ∈ U , so the required result holds in this case.

If b ∈ T , then because T acts faithfully on U , there is some u ∈ U with au 6= bu. If we

define x := au and y := bu, we have a θ b⇒ x θ y and x, y ∈ U ∪ {0}, as required.

Finally, assume that for every z ∈ U , there is some a ∈ T with az ∈ U\{z}. We have

shown there are distinct x, y ∈ U ∪{0} with x θ y. Suppose one of x or y is 0; by symmetry,

we can assume it is y. Then, by the assumption, there exists a ∈ T with ax ∈ U\{x}, which

gives x θ 0⇒ ax θ 0, and therefore x θ ax. �

Proposition 3.49. Let G be a non-trivial group and H a subgroup of G. Then G

�

G/H

is subdirectly irreducible if and only if H is core-free in G and is completely meet irreducible

in the lattice of subgroups of G.

Proof. First, assume that G

�

G/H is subdirectly irreducible with monolith µ. Then H

is core-free, and is therefore a proper subgroup of G since G is non-trivial, so |G/H| > 1.

Thus, the ‘furthermore’ part of Lemma 3.48 applies, so µ identifies a distinct pair in G/H.

By translation, we have aH µ H for some a ∈ G\H. We will show that H is a-maximal.
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Let K be a subgroup of G with K ⊃ H, and let α be the congruence on G

�

G/H

identifying pairs of elements of G/H that are contained in the same left coset of K:

x α y ⇐⇒ x = y or
(
x, y ∈ G/H and x, y ⊆ gK for some g ∈ G

)
.

Then α is non-trivial as K ⊃ H, so aH µ H ⇒ aH α H, and hence aH and H are contained

in the same left coset of K. Since H ⊆ K, this implies that a ∈ K, so H is a-maximal.

Conversely, assume that H is core-free and completely meet irreducible. Then H is a-

maximal for some a ∈ G\H. To prove that G

�

G/H is subdirectly irreducible, let θ be a

non-trivial congruence on G

�

G/H; we will show that aH θ H. By Lemma 3.48, θ identifies

some pair in G/H, so by translation, we may obtain some g ∈ G with gH 6= H and gH θ H.

Now, consider the subgroup K := {x ∈ G | xH θ H} of G. Then K ⊇ H, and the inclusion

is strict as g ∈ K\H. Since H is a-maximal, we have a ∈ K, and so aH θ H. �

Proposition 3.49 is essentially McKenzie’s Proposition 3 in [47]. In [32], on the other

hand, Golubov and Sapir do not study semigroups of the form G

�

U in any detail; instead,

they make use of a notion known as κ-separability. There are advantages to both approaches,

so we will combine them to make the best of both worlds.

Let κ be a cardinal, let G be a group, let a ∈ G, and let H be a subgroup of G. We

say that the pair (H, a) is κ-inseparable if a /∈ H and, for every congruence θ on G such

that |G/θ| < κ, there exists h ∈ H with a θ h. We call a group κ-separable if it does not

have a κ-inseparable pair.

To connect the ideas of McKenzie with those of Golubov and Sapir, we introduce one

further definition. A κ-inseparable pair (H, a) is called irreducible if H is a-maximal and

core-free in G. The significance of this concept is encapsulated in the following result.

Proposition 3.50. Let G be a group, let κ be a cardinal, and let (H, a) be an irreducible κ-

inseparable pair of G. Then |G| > κ and G

�

G/H ∈ si(V(G,P)).

Proof. If |G| < κ, then |G/∆G| < κ contradicts the fact that (H, a) is κ-inseparable, so

we must have |G| > κ. By assumption, H is completely meet irreducible and core-free, so

by Propositions 3.47 and 3.49, we have G

�

G/H ∈ si(V(G,P)). �

We now have the following sufficient condition for a variety V containing P to be resid-

ually large, expressed completely in terms of groups: for every cardinal κ, there is a group

in V with an irreducible κ-inseparable pair. The next result will show that we can omit the

word ‘irreducible’. The proof uses another basic fact about the core: if H is a subgroup of G

and C is the normal core of H in G, then H/C is core-free in G/C. To see this, let ϕ denote

the canonical map G→ G/C, and let C ′ be the core of H/C in G/C. Then ϕ−1(C ′) ⊆ H

and therefore ϕ−1(C ′) ⊆ C, so C ′ is contained in ϕ(C), which is trivial.

Lemma 3.51. Let κ be a cardinal, and let G be a group which is not κ-separable. Then

some homomorphic image of G has an irreducible κ-inseparable pair. Consequently, there

is a subdirectly irreducible semigroup in V(G,P) of cardinality at least κ.

Proof. Let (H, a) be a κ-inseparable pair of G. By Zorn’s Lemma, H is contained in

some a-maximal subgroup H ′ of G, and it is easily verified that (H ′, a) is also κ-inseparable.

So we may assume without loss of generality that H is a-maximal.
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Now, let C be the core of H in G, let G′ := G/C, and let ϕ : G→ G′ be the canonical

quotient map. It is straightforward to check that ϕ(H) is ϕ(a)-maximal and core-free in G′.

To see that (ϕ(H), ϕ(a)) is κ-inseparable, let θ be a congruence on G′ with |G′/θ| < κ, let η

be the canonical map G′ → G′/θ, and define α := ker(η ◦ ϕ). Then |G/α| = |G′/θ| < κ, so

there is some h ∈ H with a α h. By definition of α, this gives ϕ(a) θ ϕ(h), so (ϕ(H), ϕ(a))

is κ-inseparable. The ‘consequently’ part follows from Proposition 3.50. �

For the following discussion, let us call a variety V of groups uniformly separable if

there is a cardinal κ such that every group in V is κ-separable, and finitely separable if we

can choose κ = ω. Lemma 3.51 says that if a residually small variety contains P, the sub-

variety of groups must be uniformly separable. Thus, in characterising the residually small

varieties containing P, we are now faced with the following question: which subvarieties

of Gn are uniformly separable?

This question has a somewhat interesting history. Golubov and Sapir proved in [32] that

every finitely separable variety must be Abelian; as they were interested only in residually

finite semigroup varieties, this was enough to prove their main result. On the other hand,

McKenzie did not address this question at all in [47], since it was not needed for his proof

of the RS conjecture for semigroups (which was McKenzie’s main motivation in [47]).

It was not long before McKenzie became aware of Golubov and Sapir’s work, and so,

in a short sequel to [47], McKenzie discussed in [48] the extent of the overlap of the two

papers [47], [32], and showed that every finite group in a uniformly separable subvariety

of Gn is Abelian. He also raised the more general question of whether all uniformly separable

subvarieties of Gn are Abelian, but was unable to answer this.

Several years later, Sapir revisited the problem with Shevrin in [61], after becoming

aware of McKenzie’s work. Sapir and Shevrin finally proved in [61] that all uniformly sepa-

rable subvarieties of Gn are Abelian, which completed the characterisation of the residually

small varieties containing P. Interestingly, part of the proof came from a paper of Zamyatin

concerning first-order theories of group varieties [69].

At this point, the proof that all uniformly separable subvarieties of Gn are Abelian was

scattered throughout at least six papers, since Golubov, Sapir, and Shevrin called on some

fairly non-trivial results on group varieties. McKenzie’s weaker version of this result used

more elementary group-theoretic techniques, which led the present author to search for a

simpler proof of the general result.

Although McKenzie’s weaker result suffices for the locally finite case, which in turn

suffices for the purposes of this thesis, the general result is, in my opinion, rather interesting

in its own right, and after several years has accumulated some sentimental value. In the

end, the broader view afforded by the various approaches revealed the core argument. It is

my great pleasure to present a simplified, self-contained proof over the next three pages.

The key trigger for non-uniform separability is identified in the following result. Recall

that the commutator term [x, y] is defined as xyx−1y−1 (or x−1y−1xy, to the same effect),

and that a normal subgroup K of a group G is ‘superclosed’ under the commutator, in the

sense that [g, k], [k, g] ∈ K for all g ∈ G and k ∈ K.
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Lemma 3.52. Let G be a subdirectly irreducible group with trivial centre. Then, for every

cardinal κ, there is a group in V(G) that is not κ-separable.

Proof. Let κ > 0 be a cardinal, and let F ∈ V(G) denote the subgroup of Gκ formed by

the elements of finite support; i.e., F =
{
x ∈ Gκ | {α ∈ κ | x(α) 6= 1} is finite

}
. We will

show that F is not κ-separable by constructing a κ-inseparable pair.

Choose some m ∈ G such that (m, 1) generates the monolith of G, let A denote the

cyclic subgroup of G generated by m, and define

H :=

{
x ∈ F ∩Aκ

∣∣∣∣ ∏
α∈κ

x(α) = 1

}
.

From the definition of F and the fact that A is Abelian, the above product over κ is well

defined, and H is a subgroup of F. Now, for each α ∈ κ and each g ∈ G, let 1gα denote the

element of Gκ with 1gα(α) = g and 1gα(β) = 1 for all β ∈ κ\{α}. We will show that (H, 1m0 )

is κ-inseparable in F.

Let θ be a congruence on F with |F/θ| < κ, and let K be the corresponding normal

subgroup of F. Since |F | > κ, there is a non-identity element u ∈ K. Fix some α ∈ κ such

that u(α) 6= 1, and let a :=u(α). Because Z(G) = {1}, there exists g ∈ G with [g, a] 6= 1, so

as K is a normal subgroup of F, we have 1
[g,a]
α = [1gα, u] ∈ K. Now, the normal subgroup of G

generated by [g, a] contains m, so 1
[g,a]
α ∈ K implies 1mα ∈ K. Finally, since 1m0 · (1mα )−1 ∈ H,

we have 1m0 ∈ HK, so 1m0 θ h for some h ∈ H. Thus, (H, 1m0 ) is κ-inseparable in F. �

Now, our main goal for this section is, in effect, to prove that a non-Abelian subvariety V

of Gn is not uniformly separable. This is clear if V is residually large, since a subdirectly

irreducible group of cardinality at least κ is not κ-separable, as is easily verified. It therefore

suffices to show that if V is residually small, then V contains a subdirectly irreducible group

with a trivial centre.

In the case that V contains a finite non-Abelian group, this is easily done (the argument

is given in the last two paragraphs of the proof of Theorem 3.58, if the reader wishes to

skip ahead), so the locally finite case is covered. The case where every finite group in V is

Abelian requires some extra work. (It would of course be natural to ask if there actually

exists a non-Abelian variety of groups whose finite members are Abelian. An example of

such a variety was constructed by Ol’̆sanskĭı in [51].)

Let G be a group. Recall that the commutator subgroup [G,G] is defined as the

normal subgroup of G generated by the set {[x, y] | x, y ∈ G} of all commutators in G.

This also equals the subgroup of G generated by {[x, y] | x, y ∈ G} (in general, if X ⊆ G is

closed under conjugation, then the subgroup generated by X is normal).

The fundamental property of the commutator subgroup is that it is the least normal

subgroup of G for which the resulting factor group is Abelian. We record this in the following

proposition.

Proposition 3.53. Let G be a group. Then the following hold:

(i) if N is a normal subgroup of G, then G/N is Abelian if and only if [G,G] ⊆ N ;

(ii) if X is a generating set for G, then [G,G] is the normal subgroup of G generated

by {[x, y] | x, y ∈ X}.
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Proof. Since G is a generating set for G, it suffices for (i) and (ii) to prove that if X is a

generating set for G and N is a normal subgroup of G, then G/N is Abelian if and only

if [x, y] ∈ N for all x, y ∈ X.

Let H := G/N , and let ϕ : G → H be the quotient map. Then [ϕ(x), ϕ(y)] = ϕ([x, y])

for all x, y ∈ X, so we have [x, y] ∈ N for all x, y ∈ X if and only if all elements of ϕ(X)

commute. But H is generated by ϕ(X), so the latter is true if and only if H is Abelian. �

Next, we recall the notion of a solvable group. Let G be a group. For n > 0, we define

the nth derived subgroup G(n) of G inductively by G(0) :=G and G(n+1) := [G(n), G(n)].

For each n > 0, we say that G is n-solvable if G(n) = {1}. Finally, G called is solvable if

it is n-solvable for some n > 0.

We will use the following basic facts about the derived subgroups.

Proposition 3.54. Let G be a group, and let n > 0. Then the following hold:

(i) if H 6 G, then H(n) ⊆ G(n);

(ii) if ϕ : G→ H is an onto homomorphism, then H(n) = ϕ(G(n));

(iii) G(n) is a normal subgroup of G, and G/G(n) is n-solvable.

Proof. Statements (i) and (ii) follow from the n = 1 case by easy induction arguments.

For (i), the n = 1 case is obvious. To prove (ii) in the n = 1 case, let ϕ : G → H be onto.

Then ϕ(G(1)) is generated as a subgroup by {[ϕ(x), ϕ(y)] | x, y ∈ G}, but since ϕ is onto,

this is exactly the set {[x, y] | x, y ∈ H}.
To prove (iii), first apply (ii) to an arbitrary conjugation map G→ G to see that G(n)

is normal. Now, let H :=G/G(n), and let ϕ : G→ H be the quotient map. Then G(n) is the

group kernel of ϕ, so by (ii) we have thatH(n) = ϕ(G(n)) is trivial. Thus, H is n-solvable. �

In addition to the basic results of Proposition 3.54, we require the result that a solvable

group of finite exponent is locally finite. Our proof of this is from Dixon’s text on Sylow

theory [23, Proposition 1.1.5], and uses the following well-known result.

Lemma 3.55 (Schreier’s Lemma). Let G be a finitely generated group. Then every finite-

index subgroup of G is finitely generated.

Proof. Let X be a finite generating set for G, let H be a finite-index subgroup of G, and

let S be a set of representatives of the right cosets of H in G with 1 ∈ S. For each g ∈ G,

let g denote the unique element of S ∩Hg. We claim that the finite set

Y := {sx(sx)−1 | s ∈ S, x ∈ X}

is a generating set for H. Since gg−1 ∈ H for all g ∈ G, we have Y ⊆ H. Let h ∈ H, and

write h = x1 · · ·xn for some x1, . . . , xn ∈ X. For each i ∈ {0, . . . , n}, define hi := 1x1 · · ·xi
and ui := hi (so h0 = u0 = 1). Since un = h = 1, we may write

h = u0x1u
−1
1 u1x2u

−1
2 · · ·un−1xnu

−1
n ,

so it suffices to show that ui−1xiu
−1
i ∈ Y for all i ∈ {1, . . . , n}.

Let i ∈ {1, . . . , n}. Then Hui−1 = Hhi−1 by definition of ui−1, so Hui−1xi = Hhi−1xi.

Thus, ui−1xi = hi−1xi = hi = ui, and hence ui−1xiu
−1
i = ui−1xi(ui−1xi)

−1 ∈ Y . �
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Lemma 3.56. Let G be a solvable group of finite exponent. Then G is locally finite.

Proof. Since every subgroup of a solvable group is solvable (Proposition 3.54(i)), it suffices

to prove the following statement by induction on n > 0:

If G is a finitely generated n-solvable group of finite exponent, then G is finite.

The case n = 0 is trivial. Assume that the statement holds for some n > 0, and let G be

an (n+ 1)-solvable finitely generated group of finite exponent. Then G/G(1) is Abelian by

Proposition 3.53(i), so as it is finitely generated with finite exponent, it is finite. Thus, G(1)

is finite index in G, and is therefore finitely generated by Schreier’s Lemma 3.55. Now G(1)

is n-solvable, so G(1) is finite by the inductive hypothesis. As G/G(1) and G(1) are finite, it

follows that G is finite. �

The last ingredient we need for the main result of this section is the following argument

from Zamyatin [69, p. 17].

Lemma 3.57. Let V be a non-Abelian group variety of finite exponent such that every finite

group in V is Abelian. Then there is a subdirectly irreducible group in V with a trivial centre.

Proof. If V has a non-Abelian solvable group, then by Lemma 3.56, there is a finite non-

Abelian group in V, which is a contradiction. Thus, every solvable group in V is Abelian.

Let G be a non-Abelian group in V. Then there are a, b ∈ G with [a, b] 6= 1, and we

can assume G is generated by {a, b}. By Theorem 1.6, there is a congruence θ on G such

that G/θ is subdirectly irreducible and ([a, b]/θ, 1/θ) generates the monolith of G/θ. Thus,

we can assume that G is subdirectly irreducible with monolith generated by ([a, b], 1).

Now, by Proposition 3.53(ii), the normal subgroup of G generated by [a, b] equals G(1)

(since [b, a] = [a, b]−1), so G(1) is the least non-trivial normal subgroup of G. By Propo-

sition 3.54(iii), G/G(2) ∈ V is solvable, so it is Abelian. Thus, by Proposition 3.53(i), we

have G(1) = G(2), which implies that G(1) is non-Abelian, and therefore every non-trivial

normal subgroup of G is non-Abelian. Since Z(G) is Abelian, it must be trivial. �

Theorem 3.58. Let V be a semigroup variety of finite exponent with P ∈ V. If V contains

a non-Abelian group, then V is residually large.

Proof. By Theorem 3.40, we can assume that every finite group in V is an A-group.

Assume that V contains a non-Abelian group. By Lemma 3.51 and Lemma 3.52, it

suffices to show that there is a subdirectly irreducible group in V with trivial centre. By

Lemma 3.57, we may assume that V contains a finite non-Abelian group.

Choose a finite non-Abelian group G ∈ V of least cardinality. If all subdirectly irre-

ducible homomorphic images of G were Abelian, then G would be a subdirect product of

Abelian groups and would therefore be Abelian. Therefore, G must have a non-Abelian

subdirectly irreducible homomorphic image, which cannot be smaller than G, and so must

be isomorphic to G. That is, G is subdirectly irreducible.

Suppose that the centre of G is non-trivial. Then G/Z(G), being smaller than G, is

Abelian, and therefore G is 2-nilpotent and non-Abelian, which contradicts the fact that G

is an A-group. Thus, G has trivial centre. �
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3.6. Actions of bands

We have shown that all groups in a residually small variety containing P are Abelian.

This already is quite a restriction, but there are still other semigroups that interact badly

with P. Much like in Section 3.5, we will show in this section that certain varieties contain-

ing P must contain arbitrarily large subdirectly irreducibles of the form T

�

U . Here, the

semigroups T will be bands rather than groups.

To understand such semigroups, we will need to understand the identities they satisfy,

and this calls for some compact notation. Let s be a (non-empty) word. We define c(s) (the

content of s) to be the set of all variables that occur in s; for example, c(xyxy) = {x, y}.
Importantly, if s and t are words, then c(s) = c(t) if and only if s ≈ t holds in the two-element

semilattice I.

We define `(s) and r(s), respectively, to be the left-most and right-most variables oc-

curing in s. Thus, if s and t are words, then L |= s ≈ t if and only if `(s) = `(t), and dually,

we have R |= s ≈ t if and only if r(s) = r(t).

One further concept we require is that of a u-term. The name is based on the labelling

of the elements of P given in Figure 3.2. If s is a word, then s is called a u-term if r(s)

occurs only once in s. The significance of this concept is that the u-terms are precisely the

words that are capable of taking the value u when evaluated in P. Specifically, s takes the

value u in P if and only if s is a u-term, r(s) takes the value u, and all other variables in c(s)

take the value e. This is easily seen from the table for P in Figure 3.2.

Now, let s ≈ t be a non-trivial identity holding in P. Then c(s) = c(t) since I embeds

into P. Obviously, s and t take the same values under all evaluations of the variables, so s

is a u-term if and only if t is a u-term. Assume that s and t are both u-terms, and fix some

evaluation of the variables so that s and t take the value u. Then r(s) and r(t) must take

the value u, so because c(s) = c(t), this is possible only if r(s) = r(t). This proves the

left-to-right implication of the following result.

Proposition 3.59. Let s and t be distinct words. Then P |= s ≈ t if and only if

(i) c(s) = c(t), and

(ii) neither of s, t are u-terms, or s, t are both u-terms with r(s) = r(t).

The right-to-left implication follows from the next lemma, which is a preservation result

of sorts; it shows how certain identities holding in T can be translated to identities in T

�

U .

Since P is of the form T

�

U (with T trivial), the result is applicable to P in particular.

Lemma 3.60. Let T be a semigroup acting on a set U , and let s ≈ t be an identity holding

in T with c(s) = c(t). Then the following hold:

(i) if z is a variable not in s, t, then T

�

U |= sz ≈ tz;

(ii) if neither of s, t are u-terms, then T

�

U |= s ≈ t.

Proof. For (i), note that sz and tz will evaluate to 0 in T

�

U unless all variables in s, t

take values in T , in which case sz and tz take the same value because T |= s ≈ t.
In case (ii), s and t will evaluate to 0 in T

�

U unless their variables take values in T ,

in which case s and t take the same value because T |= s ≈ t. �
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We will now introduce the final two minimal residually large varieties in this chapter.

One of these is the variety V(L,P). We will show that this variety contains all semigroups

of the form T

�

U , where T is a left-normal band.

A semigroup is called left-normal if it satisfies xyz ≈ xzy. Evidently every left-normal

band is normal. Thus, by Theorem 3.35, the only subdirectly irreducible left-normal bands

are L, L0, and I, so the variety of left-normal bands equals V(L, I). Clearly, an identity s ≈ t
holds in all left-normal bands if and only if c(s) = s(t) and `(s) = `(t); this can also be seen

directly from the axiomatisation x2 ≈ x, xyz ≈ xzy. Of course, right-normal semigroups

are defined dually, and V(R, I) = [x2 ≈ x, xyz ≈ yxz] is the class of right-normal bands.

Although it will turn out that V(L,P) contains all semigroups T

�

U where T is a left-

normal band, the variety V(R,P) does not necessarily contain T

�

U if T is a right-normal

band. In fact, V(R,P) will turn out to be residually small. The reason for these contrasting

facts remains somewhat mysterious, though perhaps the best intuition is that the identities

of V(R,P) are too restrictive to facilitate faithful actions of right-normal bands. Note

that R and P satisfy xyz ≈ yxz (i.e., they are right-normal); however, it is easily shown

that if T is a band acting faithfully on a set U and T

�

U is right-normal, then T is a

semilattice.

It turns out that if a variety contains R

�

U for a certain action of R on a two-element

set, then this is enough to facilitate all actions of right-normal bands. We denote by R

�

2

the semigroup in Figure 3.5. The element b acts on {u, v} as the total constant map with

value u, while a acts as the restriction of this map to {u}. Of course, the notation R

�

2 is

ambiguous, but it will always refer to this particular semigroup. Note that P ∈ S(R

�

2).

· a b u v 0

a a b u 0 0

b a b u u 0

u 0 0 0 0 0

v 0 0 0 0 0

0 0 0 0 0 0

Figure 3.5. The semigroup R

�

2.

The variety of R

�

2 is the final residually large variety that we will introduce. The aim

for the remainder of this section is to prove that V(L,P) and V(R

�

2) are residually large.

As we will need to verify membership in these varieties, we will study their identities.

The identities of V(L,P) are simply understood in terms of the identities of L and P.

To describe the identities of R

�

2, we will use the following notation. Given a word s whose

length is at least 2, we denote by r′(s) the variable in s occurring immediately to the left

of r(s); for example, r′(xyzx) = z.

Proposition 3.61. Let s and t be distinct words. Then R

�

2 |= s ≈ t if and only if

(i) R,P |= s ≈ t, and

(ii) if s, t are both u-terms, then r′(s) = r′(t).
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Proof. Assume that R

�

2 |= s ≈ t. Then (i) clearly holds; in particular, s, t satisfy the

conditions of Proposition 3.59. To prove (ii), assume that s, t are both u-terms; we must

show that r′(s) = r′(t). That r′(s) and r′(t) exist is because s and t are distinct u-terms

with c(s) = c(t) and r(s) = r(t). Now, suppose that r′(s) 6= r′(t), so s = s′xz and t = t′yz,

where x, y, z are pairwise distinct variables with z /∈ c(s′t′). If we evaluate the variables

in R

�

2 so that (x, y, z) = (a, b, v) and all other variables in s′t′ lie in {a, b}, then s and t

will take the values av = 0 and bv = v, respectively. This contradicts R

�

2 |= s ≈ t.
Conversely, assume (i) and (ii) hold. Then r(s) = r(t), and s, t satisfy the conditions of

Proposition 3.59; in particular, c(s) = c(t). If neither of s, t are u-terms, then Lemma 3.60(ii)

implies R

�

2 |= s ≈ t, because s ≈ t holds in all right-normal bands. Assume that s and t

are both u-terms, so s = s′z and t = t′z for some variable z /∈ c(s′t′). Then by (i) and (ii)

we have c(s′) = c(t′) and r(s′) = r(t′), so s′ ≈ t′ holds in all right-normal bands, and we

therefore get R

�

2 |= s ≈ t by Lemma 3.60(i). �

Our residual largeness proofs will also require the following result.

Lemma 3.62. Let T be a band acting on a set U . Then the following hold:

(i) if T is left-normal, then T

�

U ∈ V(L,P);

(ii) if T is right-normal, then T

�

U ∈ V(R

�

2).

Proof. To prove (i), assume that T is left-normal, and let s ≈ t be a non-trivial identity

holding in L and P. Then `(s) = `(t), and s, t satisfy the conditions of Proposition 3.59; in

particular, c(s) = c(t). If neither of s, t are u-terms, then T

�

U |= s ≈ t by Lemma 3.60(ii).

Assume that s and t are both u-terms, so s = s′z and t = t′z for some variable z /∈ c(s′t′).
Then c(s′) = c(t′) and `(s′) = `(t′), so T |= s′ ≈ t′; hence T

�

U |= s ≈ t by Lemma 3.60(i).

For (ii), let s ≈ t be a non-trivial identity holding in R

�

2, so s, t satisfy the conditions

of Proposition 3.61. The argument that T

�

U |= s ≈ t is exactly the same as in the last

paragraph of the proof of Proposition 3.61, with T

�

U in place of R

�

2. �

Remark. Despite the asymmetry between the varieties V(L,P) and V(R

�

2), the proofs

of the two cases in Lemma 3.62 are almost identical in form. It is the somewhat strange

condition (ii) of Proposition 3.61 that allows for the symmetric proofs.

For our residual largeness results, all that remains now is to construct large subdirectly

irreducibles.

Theorem 3.63. The variety V(L,P) is residually large.

Proof. Let κ be a cardinal, and let X be a set of cardinality κ. Adjoin to X two more

distinct points u, v /∈ X to form U :=X ∪{u, v}. For each finite A ⊆ X and each s ∈ {u, v},
define the total map fsA : U → U by

(∀x ∈ U) f sA(x) :=

x if x ∈ X\A,

s if x ∈ A ∪ {u, v}.

Then, for all s, t ∈ {u, v} and all finite A,B ⊆ X, we have fsA ◦ f tB = fsA∪B. This shows that

the set T := {fsA | s ∈ {u, v}, A ⊆ X is finite} forms a subsemigroup, T, of the semigroup
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of maps U → U , and that T is isomorphic to the direct product of L and the ∪-semilattice

of finite subsets of X. Thus, T is a left-normal band.

Since T is a semigroup of maps on U , there is a natural faithful action of T on U . It is

clear that T

�

U has cardinality at least κ, and by Lemma 3.62(i), we have T

�

U ∈ V(L,P).

To see that T

�

U is subdirectly irreducible, let θ be a non-trivial congruence on T

�

U .

We will show that u θ v.

For all x ∈ U , there are maps in T sending x to u and v; evidently, one of u, v must differ

from x. Thus, by Lemma 3.48, there are distinct x, y ∈ U with x θ y. If {x, y} = {u, v},
then we are done, so we can assume by symmetry that x ∈ X. Choose f ∈ T with fx = x

and fy = u. Then x = fx θ fy = u, and similarly x θ v, so u θ v by transitivity. �

Theorem 3.64. The variety V(R

�

2) is residually large.

Proof. Let κ be a cardinal, and let X be a set of cardinality κ. Adjoin to X some u /∈ X
to form U :=X ∪ {u}. For each x ∈ U , define the partial map fx : U → U by

dom(fx) := {u, x}, f(x) = f(u) = u.

Then fx ◦ fy = fy for all x, y ∈ U , so T := 〈{fx | x ∈ U}; ◦ 〉 is a right-zero (hence right-

normal) band with a natural faithful action on U . Clearly T

�

U has cardinality at least κ,

and T

�

U ∈ V(R

�

2) by Lemma 3.62(ii). To show that T

�

U is subdirectly irreducible,

let θ be a non-trivial congruence on T

�

U ; we will show that u θ 0.

By Lemma 3.48, there are distinct x, y ∈ U ∪ {0} with x θ y. If {x, y} = {u, 0}, then we

are done, so we can assume by symmetry that x ∈ X. If y ∈ U , then u = fyy θ fyx = 0,

and if y = 0, then u = fxx θ fxy = 0. �

Remark. Using Propositions 3.59 and 3.61, it is straightforward to show that

V(P) = [x2y ≈ xy, xy2 ≈ yx2], V(L,P) = [x2y ≈ xy, xyz2 ≈ xzy2],

V(R

�

2) = [x2y ≈ xy, xyz2 ≈ yxz2, xyx ≈ yx2].

We note that the semigroup R

�

2 did not appear in Golubov and Sapir’s proofs in [32];

they worked directly with the above equational basis. On the other hand, McKenzie worked

with V(R

�

U) for a certain total action of R on a three-element set [47, Definition 21], which

is the same variety. McKenzie also allowed only total actions in the construction T

�

U .

Allowing for partial maps turned out make the residual largeness proof quite a lot simpler,

in that we were able to construct our subdirectly irreducibles directly. Both of the original

papers used the maximal congruence argument on more complicated semigroups, as they

did in all of their residual largeness proofs.

3.7. Varieties satisfying one identity

In Sections 3.5 and 3.6, we found that a residually small variety satisfying xn+1y ≈ xy

but not xyn+1 ≈ xy cannot contain L, nor R

�

2, nor a non-Abelian group. In this section,

we establish the converse; that is, omitting these semigroups guarantees residual smallness.

This will essentially complete the proof of the main result of this chapter.

The following two results will use the results of Section 3.6 to derive a powerful identity.

This identity will then be used to narrow down the subdirectly irreducibles.
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Lemma 3.65. Let V be a semigroup variety satisfying xn+1y ≈ xy for some n > 2. If V

contains P but not R

�

2, then V |= xnynz ≈ xnynxnz, and therefore V |= (xnyn)2 ≈ xnyn.

Proof. We claim that V satisfies an identity of the form s′xz ≈ t′yz, where s′, t′ are words

and x, y, z are pairwise distinct variables with z /∈ c(s′t′). To prove this, let s ≈ t be an

identity holding in V but not in R

�

2. If r(s) 6= r(t), then we can multiply s ≈ t on the right

by some variable to get an identity of the required form. Assume that r(s) = r(t). Then s, t

satisfy Proposition 3.61(i) (since P ∈ V), and so must fail (ii); that is, s, t are u-terms

with r′(s) 6= r′(t). The identity s ≈ t now has the required form, which proves the claim.

By multiplying the identity s′xz ≈ t′yz on the left by xy and substituting out any

variables not in {x, y, z}, we can assume that c(s′) = c(t′) = {x, y} and `(s′) = `(t′) = x.

Now, substitute x 7→ xn and y 7→ yn in s′xz ≈ t′yz. Using x2n ≈ xn, the resulting equation

can be reduced to (xnyn)ixnz ≈ (xnyn)jz for some i, j > 1. By multiplying on the left by

an appropriate power of xnyn and then reducing the right-hand side using xn+1y ≈ xy, we

can assume that j = 1, so that V |= (xnyn)ixnz ≈ xnynz. If we now substitute z 7→ xn

in (xnyn)ixnz ≈ xnynz, we get (xnyn)ixn ≈ xnynxn, and so (xnyn)ixnz ≈ xnynz reduces

to xnynxnz ≈ xnynz. From this, we get (xnyn)2 ≈ xnyn by substituting z 7→ yn. �

For the next proof, we will use a simple fact about bands that we have not yet had

occasion to mention: any band B not containing L satisfies xyx ≈ yx (so B ∈ V(R1), by

the dual of Proposition 3.28). To see this, let B be a band with L /∈ S(B), and let x, y ∈ B.

Then {xyx, yx} is a left-zero subsemigroup of B, so xyx = yx.

Lemma 3.66. Let V be a semigroup variety satisfying xn+1y ≈ xy but not xyn+1 ≈ xy for

some n > 1. If R+,R

�

2,L×P /∈ V, then V |= xnynz ≈ ynxnz.

Proof. We have P ∈ V by Lemma 3.45, so L /∈ V; thus, every band in V satisfies xyx ≈ yx.

Let m := max{2, n}, so m is an exponent of V and V |= xm+1y ≈ xy. By Lemma 3.65

with m in place of n, every member of V is orthodox, so V |= xmymxm ≈ ymxm. Now, by

Lemma 3.65, we also have V |= xmymz ≈ xmymxmz, so V |= xmymz ≈ xmymxmz ≈ ymxmz.
If n 6= m (i.e., n = 1), then xyz ≈ yxz follows from x2y ≈ xy and x2y2z ≈ y2x2z. �

Using the identity xnynz ≈ ynxnz, we can now narrow down the subdirectly irreducibles.

The assumption that all groups are Abelian will allow us to obtain an even stronger identity.

Lemma 3.67. Let V be a subvariety of [xn+1y ≈ xy, xnynz ≈ ynxnz] for some n > 1

such that all groups in V are Abelian, and let S ∈ V be subdirectly irreducible. Then S is

isomorphic to a member of {R,R0, I,N,P,G,G0,G

�

G} for some subdirectly irreducible

Abelian group G acting on itself by left translation. Consequently, V |= xyz ≈ yxz.

Proof. Note that [x2y ≈ xy, xyz ≈ yxz] ⊆ [x3y ≈ xy, x2y2z ≈ y2x2z], so we can assume

that n > 2; thus, n is an exponent of S. Let (a, b) generate the monolith of S.

First, assume that a, b ∈ G(S). Since N4 6|= xn+1y ≈ xy and R+ 6|= xnynz ≈ ynxnz (the

latter by Proposition 3.20), we have N4,R
+ /∈ V(S), and therefore S |= (xy)n+1 ≈ xn+1yn+1

by Lemma 3.22(ii). Thus, the mapping x 7→ xn+1 is an endomorphism of S, and it is one-

to-one as it separates a and b. Since a one-to-one idempotent map is the identity map, S is

completely regular. As L,L0 6|= xnynz ≈ ynxnz, Theorem 3.34 gives the result in this case.
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Thus, we may assume by symmetry that a /∈ G(S). We will first prove that

(∀e ∈ E(S)) e is a left identity of 〈e〉. (◦)

Let e ∈ E(S), and let x ∈ 〈e〉, so x = uev for some u, v ∈ S1. Then

x = uev = ueev = (ue)nueev = (ue)nenueev = en(ue)nueev ∈ eS,

so ex = x, which proves (◦).
Now, we claim that an is a zero element of S. Suppose not; then 〈an〉 has more than

one element, and so the corresponding ideal congruence is non-trivial. As (a, b) generates

the monolith of S, we have a ∈ 〈an〉, and so an+1 = ana = a by (◦), contradicting a /∈ G(S).

We conclude that an is a zero element of S, which we will denote by 0.

Suppose that E(S) = {0}. Then, for all x, y ∈ S, we have xy = xnxy = 0 because xn is

idempotent; thus, S is null, and we get S ∼= N by Proposition 3.1. We can therefore assume

that S has a non-zero idempotent. We will show in this case that S has the form G

�

U .

First, we will show that each non-zero idempotent is a left identity of S. Let e ∈ E(S)

be non-zero. Then 〈e〉 is a non-zero ideal, so a, b ∈ 〈e〉. By (◦), we have ea = a and eb = b,

so by Lemma 3.33, e is a left identity of S.

Consider the congruence γ on S identifying pairs in G(S) with the same left translation:

x γ y ⇐⇒ x = y or
(
x, y ∈ G(S) & (∀w ∈ S) xw = yw

)
.

Using Lemma 3.44, it is straightforward to verify that γ is a congruence on S. As a /∈ G(S),

we have a/γ = {a}, so it follows that γ = ∆S . Now, if e, f ∈ E(S)\{0}, then both e and f

are left identities for S, and so e γ f . Since γ is trivial, we have e = f , so S has precisely

one non-zero idempotent, which we will denote by e. Thus, E(S) = {0, e}.
Let G be the subgroup of S formed by He, and let J := S\G. Then xn ∈ E(S) = {0, e}

for all x ∈ S. If xn = e, then xn+1 = ex = x, so x ∈ G(S), and therefore x ∈ G as xn = e.

Conversely, if x ∈ G, then xn = e. Thus, we have

G = {x ∈ S | xn = e}, J = {x ∈ S | xn = 0}.

Let U := J\{0}. Then U 6= ∅ because a ∈ S\G(S) ⊆ U , so {G,U, {0}} is a partition of S.

If x ∈ U and y ∈ S, then xy = xnxy = 0, so US = {0}. If x ∈ GU , then since US = {0},
we have x2 = 0, so x /∈ G; thus, GU ⊆ J . To show that 0 /∈ GU , let g ∈ G and x ∈ U .

Then 0 6= x = ex = gn−1gx, so gx 6= 0. Thus, GU ⊆ U . Hence, S ∼= G

�

U , where G acts

on U by left translation. Since e is a left identity of S, this is a group action. The action is

transitive by Proposition 3.46, so S ∼= G

�

G/H for some subgroup H of G.

If G is trivial, then S ∼= P, so assume that G is non-trivial. Then H is core-free and

completely meet irreducible by Proposition 3.49. But G is Abelian; all subgroups are normal,

so H coincides with its core and must therefore be trivial. Now clearly G

�

G/H ∼= G

�

G,

where G acts on G by left translation. Moreover, the trivial subgroup H is completely meet

irreducible in the lattice of normal subgroups; that is, G itself is subdirectly irreducible.

For the ‘consequently’ part, we simply note that each S ∈ si(V) satisfies xyz ≈ yxz; this

is obvious if S ∈ I(R,R0, I,N,G,G0) for some Abelian group G, and by Lemma 3.60(i) we

have G

�

U |= xyz ≈ yxz whenever G is an Abelian group. �
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For each n > 1, we define Pn to be the variety [xn+1y ≈ xy, xyz ≈ yxz]. As we have

essentially shown, a variety V containing P is residually small if and only if V ⊆ Pn for

some n > 1 (hence the letter ‘P’). The remainder of this section will just be filling in the

details of this argument as well as tying the threads of the last three sections.

The next theorem describes the subdirectly irreducibles of Pn. To state the result neatly,

denote by An the variety of all Abelian groups of exponent n, for each n > 1. The members

of si(Pn) will be described in terms of the members of si(An). Recall that a finite Abelian

group is primary if it is of prime-power order. It is well known that an Abelian group

of finite exponent is subdirectly irreducible if and only if it is a non-trivial primary cyclic

group; see [28, Theorem 3.1], for example. Thus, si(An) can be read as the class of all

non-trivial primary cyclic groups of order dividing n.

Theorem 3.68. For each n > 1, we have

Pn = V(R,P) ∨An, si(Pn) = I({R,R0, I,N,P,G,G0,G

�

G | G ∈ si(An)}).

Consequently, Pn is residually very finite.

Proof. Let Sn := I({R,R0, I,N,P,G,G0,G

�

G | G ∈ si(An)}). First, we will show

that Sn = si(Pn), starting with the inclusion Sn ⊆ si(Pn).

It follows easily from Lemma 3.60(i) that Sn ⊆ Pn. Certainly R, R0, I, N are subdirectly

irreducible, and it is easily seen that P is subdirectly irreducible (directly, or by letting κ = 0

in the construction of Theorem 3.64). Let G ∈ si(An). Then G0 is subdirectly irreducible

by Lemma 3.32. Now, clearly G

�

G ∼= G

�

G/{1} and {1} is core-free in G. Since G

is subdirectly irreducible and Abelian, {1} is completely meet irreducible in the subgroup

lattice of G, so G

�

G is subdirectly irreducible by Proposition 3.49. Thus, Sn ⊆ si(Pn).

Now, it is clear that Pn |= xnynz ≈ ynxnz and that every group in Pn is Abelian.

Moreover, every group in Pn has exponent n, as Pn |= xn+2 ≈ x2. We then get si(Pn) ⊆ Sn

from Lemma 3.67, so Sn = si(Pn).

Let Vn := V(R,P) ∨An. Clearly Pn ⊇ Vn. Now, I,N ∈ S(P), and since S0 ∈ H(S× I)

for any S, we have R0,G0 ∈ Vn for any G ∈ An. We also have G

�

G ∈ Vn for any G ∈ An

by Proposition 3.47, so Sn ⊆ Vn. Thus, Pn = Vn. Finally, each G ∈ si(An) is a primary

cyclic group of order dividing n, so Pn is residually very finite. �

We collect the results of the last three sections in the following theorem.

Theorem 3.69. Let V be a semigroup variety satisfying xn+1y ≈ xy but not xyn+1 ≈ xy

for some n > 1. The following are equivalent:

(i) V is residually small;

(ii) V is residually very finite;

(iii) R+, L×P, R

�

2 /∈ V, and G×P /∈ V for every non-Abelian group G;

(iv) V ⊆ Pn.

Proof. (i) ⇒ (iii) is true by Theorems 3.21, 3.58, 3.63, and 3.64, while (iv) ⇒ (ii) by

Theorem 3.68, and (ii) ⇒ (i) is trivial. It suffices to show that (iii) ⇒ (iv).

Assume that (iii) holds. We have P ∈ V by Lemma 3.45, so all groups in V are Abelian,

and V |= xnynz ≈ ynxnz by Lemma 3.66. Hence, V |= xyz ≈ yxz by Lemma 3.67. �
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3.8. The main theorem

With this short section, we come to the end of the chapter and the first half of the thesis.

At this point, all we need is some notation to compactify the statements of the results.

Define F to be the class of all semigroups that are either isomorphic or anti-isomorphic

to a member of the following class:

{N4,L
+,L1,L×P,R

�

2,Mp,G×P | p is prime, G is a non-Abelian group}.

The semigroups in F are the ‘forbidden semigroups’: a semigroup variety is residually small if

and only if it does not contain a member of F. (To recall the definitions of these semigroups,

the reader may find useful the notation index on page 157.)

The varieties Nn and Pn, respectively, were defined in Sections 3.4 and 3.7, and their

subdirectly irreducibles described in Theorems 3.37 and 3.68. For each n > 1, let Qn denote

the variety [xyn+1 ≈ xy, xyz ≈ xzy], which is the dual variety of Pn.

Combining Theorems 3.23, 3.39, and 3.69 now gives the following.

Theorem 3.70. Let V be a semigroup variety, and let G be the class of all groups in V.

Then the following are equivalent:

(i) V is residually small;

(ii) V does not contain a semigroup in F, and there is a cardinal bound on si(G);

(iii) V is contained in Nn, Pn, or Qn for some n > 1, and G is residually small.

Remark. In Theorem 3.70, the equivalence of condition (ii) with the others has not been

explicitly shown in the literature, but is of course embedded in the proofs of Golubov,

Sapir, and McKenzie. For the next half of the thesis, it was important for us to extract this

‘forbidden semigroup’ condition.

Finally, we give a strengthened version of Theorem 3.70 for finitely generated varieties.

Define the following class of finite semigroups:

Fω := {S ∈ F | S is finite} ∪ {G | G is a finite group that is not an A-group}.

Note that if S is a finite semigroup, then by Theorem 1.10, V(S) contains a member of Fω

if and only if it contains a finite member of F.

Theorem 3.70 now combines with Theorems 3.43 and 3.68 to give the following result.

Theorem 3.71. Let S be a finite semigroup. Then the following are equivalent:

(i) V(S) is residually small;

(ii) V(S) is residually very finite;

(iii) V(S) does not contain a semigroup in Fω;

(iv) S ∈ Nn ∪Pn ∪Qn for some n > 1, and every subgroup of S is an A-group.
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Preface to Part 2

This brief discussion is for the benefit of two roughly-defined audiences: those who are

inclined towards semigroup theory but are not familiar with the theory of natural dualities

for algebraic structures (as developed by Davey and Werner in [21]), as well as those who

are familiar with duality theory but require a refresher on the known results for semigroups.

Dualisability will be defined precisely in Chapter 4; for now, we can roughly define a finite

algebra A to be dualisable if there is a dual categorical equivalence between SP(A) and

another category (of a certain kind).

The dualisability problem for a class K is the problem of determining which algebras

in K have the property of being dualisable. Prior to the author’s work, the dualisability

problem for finite semigroups had been solved for several well-known subclasses. A finite

group is dualisable if and only if it is an A-group [57, Theorem 4.1] [41, Corollary 6.14];

a finite band is dualisable if and only if it is normal [2, Corollary 4.9]; a finite nilpotent

semigroup is dualisable if and only if it is null [5, Theorem 10.7.1] [40, Corollary 5.3]; a

finite simple or zero-simple semigroup is dualisable if and only if its non-zero J -class is the

direct product of a rectangular band and an A-group [40, Theorem 7.1, Corollary 7.3].

In all of these classes, the dualisable finite members are precisely those that generate a

residually small variety, as can be readily deduced from the results of Chapter 3. Although

the dualisability problem is unresolved for classes such as finite inverse semigroups and

finite monoids, it was at least known that the each of the dualisable members must generate

residually small varieties [39, Theorem 15, Theorem 16]. Furthermore, there were no known

finite semigroups S failing the equivalence

‘V(S) is residually small’ ⇐⇒ ‘S is dualisable’. (♥)

Despite the known results for semigroups, it would still have been somewhat rash to con-

jecture that (♥) holds for all finite semigroups S, because the equivalence was known to be

false in other classes; indeed, counterexamples existed in both directions. There were many

known examples of non-dualisable algebras that generate a residually small variety, such as

the two-element implication algebra [5, Theorem 10.7.1]. In the other direction, the only

known example of a dualisable algebra generating a residually large variety was a certain

term reduct of a four-element unital ring [16, §4], which was constructed specifically as a

counterexample.

Even without these counterexamples, it would be strange if the equivalence held in

general, because the dualisability of an algebra is fundamentally a quasivariety property. In

the first place, the very notion of a natural duality based on a finite algebra A is a dual

equivalence between SP(A) and another category. Furthermore, it is known that if two

finite algebras generate the same quasivariety, then one is dualisable if and only if the other
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is [22] [63]. There is no obvious theoretical reason that the dualisability of A ought to

depend only on V(A); it just happens to be the case for the above-mentioned classes.

The combination of all of these facts and observations is what drew the author into

the depths of the dualisability problem for finite semigroups. In the end, this tantalising

connection between dualisability and residual smallness perhaps became more interesting

than the dualisability problem itself. If (♥) holds for all finite semigroups S, is there

some underlying reason for this? If not, then what exactly is the class of dualisable finite

semigroups, and is there nonetheless some connection with residual smallness?

In this half of the thesis, we will answer these questions in some part as we tackle the

dualisability problem for finite aperiodic semigroups. A semigroup S is called aperiodic

if every subgroup of S is trivial, or equivalently, if G(S) = E(S). The choice to focus on

such semigroups was not made at the outset of the author’s graduate studies; in fact, the

initial focus was on the dualisability problem for Clifford semigroups (completely regular

semigroups whose idempotents commute). The shift to aperiodic semigroups was partly due

to the difficulty of working with groups, but the main reason was that the aperiodic case

turned out to be far more interesting than we could have imagined.

The main results of this thesis will be presented in Chapters 5 and 6. Chapter 4 will be

devoted to introducing the concept of dualisability, as well as covering the relevant known

results and some basics of the theory of quasivarieties. Once dualisability has actually

been defined, it will be quite easy to state the main results of this thesis; however, I will

deliberately hold off on doing so. The reader can always skip to the end, but I think the

story is more interesting without knowing the ending.



CHAPTER 4

Natural Dualities and Quasivarieties

The overall goal of this chapter is to cover the background necessary to understand and

prove the novel results in Chapters 5 and 6. We begin in Section 4.1 with a brief intro-

duction to the theory of natural dualities, as developed by Davey and Werner in [21]. For

understanding the remainder of the thesis, the contents of Section 4.1 should be sufficient,

but there is much more that can and should be said to those wishing to understand the

inner workings of this theory; for such readers, consulting the standard text by Clark and

Davey [5] is recommended.

The discussion of natural dualities will assume basic knowledge of common category-

theoretic notions (such as the general definition of a dual equivalence of categories), but

the definition of dualisability will be comprehensible without a precise understanding of the

category theory, and we will not use any category theory beyond Section 4.1.

The kinds of dual equivalences we construct will always involve topology; however, the

general results in Section 4.1 were developed so that one can obtain dualisability and non-

dualisability results without engaging in any topology. To apply these results, one must

verify conditions that, while somewhat technical, are easily formulated and understood in

purely algebraic terms.

The (IC) Duality Theorem, for example, gives a sufficient condition for a finite algebra A

to be dualisable. The theorem requires one to show that certain partial maps An → A that

preserve certain operations and relations can always be extended to term functions of A.

The only potentially new concept that must be understood by a universal algebraist or

semigroup theorist is that of a finitary partial operation, and particularly, what it means

for such operations to be preserved. This merely requires some careful definitions.

As mentioned in the preface to Part 2, the dualisability of a finite algebra depends

only on its quasivariety; that is, if finite algebras A, A′ generate the same quasivariety,

then A is dualisable if and only if A′ is dualisable. This fundamental result, known as the

Independence of Generator Theorem, can be extremely useful for proving that all members

of a certain class are dualisable. For example, AlDhamri’s proof that all normal bands are

dualisable [2] made use of Gerhard’s result that there are only finitely many quasivarieties

of normal bands [31]. Given the Independence of Generator Theorem, it was sufficient to

choose a generator for each quasivariety and show it is dualisable, reducing the dualisability

proofs to a finite number of semigroups.

In order to appeal to the Independence of Generator Theorem in this manner, we will

cover some of the basics of the theory of quasivarieties, with particular emphasis on the

notion of a quasicritical algebra. All locally finite quasivarieties are generated by their

quasicritical members, just as varieties are generated by their subdirectly irreducible mem-

bers. In particular, a locally finite quasivariety with only finitely many quasicriticals (up to
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isomorphism) has only finitely many subquasivarieties. For a semigroup quasivariety, this

situation implies that every subquasivariety is generated by a finite direct product of quasi-

criticals. Consequently, understanding the quasicritical members of the classes we consider

will be crucial to deriving our general dualisability results.

In Section 4.2, we will explain the known results concerning the dualisability of semi-

groups, and in Section 4.5, we will give a new proof that all normal bands are dualisable,

which slightly strengthens the original result of AlDhamri. Since every band is aperiodic, our

dualisability results for aperiodic semigroups will naturally build on the results for bands,

so an understanding of our dualisability proofs for normal bands should prepare the reader

for the rather technical dualisability proofs in Chapter 5.

4.1. Natural dualities and dualisability

The theory of natural dualities, developed by Davey and Werner in [21], provides a

general framework for studying and constructing dualities for quasivarieties generated by a

finite algebra. In this section, we will cover the basics of this theory, to the extent required

to prove our main results. Although we will provide some exposition, we direct the reader

to Clark and Davey [5] for a more thorough development and a wide range of examples.

Fix a finite algebra A, and let A := SP(A). One of the main goals within the theory of

natural dualities is to determine whether there exists a category X (of a certain kind) that is

dually equivalent to A. A desirable aspect of such a duality is that it gives a representation

for the members of A, in a manner generalising Stone’s representation for Boolean algebras,

for example.

We consider a uniform method for constructing dualities. The basis of the construction

is to take a topological structure A
˜

with the same underlying set as A, generate a topological

quasivariety X from A
˜

, and define functors D : Aop → X and E : Xop → A which constitute

a ‘weak duality’, formally called a dual adjunction. The goal then is to study these functors

and determine whether we have a true duality between A and X—or at least a subcategory

of X, as this is enough to obtain a representation for the members of A.

The functors D and E are defined from A and A
˜

in a specific way (by ‘homming into’ A

and A
˜

, respectively), so the construction of this potential duality for A depends entirely

on the choice of structure A
˜

. All of the category theory is taken care of by a few general

results, so determining whether D and E give us a duality is reduced to a careful study of

the structures A and A
˜

using familiar algebraic and combinatorial techniques.

Since A
˜

is the core of the duality construction, we must carefully specify the structure

that we will allow on A
˜

. To have any hope of obtaining a duality, it is necessary to put a

topology on A
˜

, and for us, this will always be the discrete topology. Other than the topol-

ogy, the structure of A
˜

will be limited to finitary relations and finitary partial operations

(including total operations). Thus, A
˜

will have the form 〈A;G,R,T〉, where T is the discrete

topology, G is a set of finitary partial operations on A, and R is a set of finitary relations

on A. The potential dual category X will consist of structures of the same type as A
˜

. To

define X precisely, we will now introduce the necessary notions and constructs.
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Extending the notion of an algebraic signature or type from universal algebra, we will

think of a partial algebraic type as a set G of partial operation symbols with a func-

tion G → ω specifying the arity of each symbol. A partial algebra X = 〈X;GX〉 of

type G generalises the notion of an algebra (though we allow the set X to be empty): the

set GX = {gX | g ∈ G} interprets the symbols in G as operations on X, so for each g ∈ G
with arity n ∈ ω, we have a partial map gX : Xn → X.

There are several natural ways to define the preservation of partial operations, so we

require a careful definition. Let X and Y be partial algebras of type G, and let ϕ : X → Y

be a total map. If g ∈ G and n ∈ ω is the arity of g, we say that ϕ preserves g if for

all (x1, . . . , xn) ∈ dom(gX), we have

(ϕ(x1), . . . , ϕ(xn)) ∈ dom(gY) & ϕ(gX(x1, . . . , xn)) = gY(ϕ(x1), . . . , ϕ(xn)).

The preservation of relations is perhaps a more familiar concept. A relational type is

a set R of relation symbols with an arity function R → ω\{0}. A relational structure

of type R is a structure X := 〈X;RX〉, where X is a set and RX = {rX | r ∈ R} is an

interpretation of R on the set X; i.e., for each r ∈ R with arity n, we have rX ⊆ Xn.

Let X and Y be relational structures of type R, and let ϕ : X → Y be a (total) map.

If r ∈ R and n is the arity of r, we say that ϕ preserves r if for all (x1, . . . , xn) ∈ rX, we

have (ϕ(x1), . . . , ϕ(xn)) ∈ rY.

Now, let G be a partial algebraic type and R a relational type. A topological structure

of type (G,R) is a structure of the form X = 〈X;GX, RX,T〉, where T is a topology on X,

while 〈X;GX〉 is a partial algebra of type G and 〈X;RX〉 is a relational structure of type R.

Finally, let X and Y be topological structures of type (G,R), and let ϕ : X → Y be a map.

We say that ϕ is a morphism if ϕ is continuous and preserves every g ∈ G and every r ∈ R.

With this notion of morphism, the class of all topological structures of type (G,R) is easily

seen to be a category; isomorphisms are thus defined categorically.

To construct our potential dual category X from a given topological structure A
˜

, we

require notions of product and substructure. Let {Xi | i ∈ I} be a set of topological

structures of type (G,R). The product of {Xi | i ∈ I} is the topological structure X of

type (G,R) defined as follows. The underlying set of X is the Cartesian product
∏
i∈I Xi,

and the topology of X is the product topology. The structure of X is defined pointwise;

spelling this out, for each r ∈ R of arity n, we define

rX := {(x1, . . . , xn) ∈ Xn | (∀i ∈ I) (x1(i), . . . , xn(i)) ∈ rXi},

while for each g ∈ G of arity n, the partial operation gX : Xn → X is defined by

dom(gX) := {(x1, . . . , xn) ∈ Xn | (∀i ∈ I) (x1(i), . . . , xn(i)) ∈ dom(gXi)},

(∀(x1, . . . , xn) ∈ dom(gX))(∀i ∈ I) gX(x1, . . . , xn)(i) := gXi(x1(i), . . . , xn(i)).

The product X can be shown to be a categorical product of {Xi | i ∈ I} (in the category

of all topological structures of type (G,R)). If K is a class of topological structures, we

denote by P+(K) the class of all topological structures that are isomorphic to a product of

members of K, where the product is taken over a non-empty index set. (The empty product

is excluded to account for the fact that we do not allow the algebras in A to be empty.)
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Finally, let X be a topological structure of type (G,R), and let Y ⊆ X. Assume that Y

is closed under the operations in GX, in the sense that for every g ∈ G with arity n and

for all (x1, . . . , xn) ∈ dom(gX) ∩ Y n, we have gX(x1, . . . , xn) ∈ Y . Then we may define a

structure on Y in the obvious way: restrict each operation and relation of X to Y , and

put the subspace topology on Y . Again, to spell this out, we define rY := rX ∩ Y n for

each n-ary r ∈ R, and for each n-ary g ∈ G, we define gY : Y n → Y by

dom(gY) := dom(gX) ∩ Y n, (∀(x1, . . . , xn) ∈ dom(gY)) gY(x1, . . . , xn) := gX(x1, . . . , xn).

The resulting structure Y is a topological structure of type (G,R). Any structure arising

in this fashion is called a substructure of X. If, further, Y is a closed subset of the

underlying topological space of X, then we say that Y is a closed substructure of X, and

write Y 6 X. If K is a class of topological structures of type (G,R), we denote by Sc(K) the

class of all topological structures of type (G,R) that are isomorphic to a closed substructure

of a member of K.

We can now construct our potential dual category X. Assume that we have fixed a

discrete topological structure A
˜

of type (G,R) with the same underlying set as our finite

algebra A. We define X to be the category ScP+(A
˜

) of topological structures of type (G,R).

Next, we aim to define functors D : Aop → X and E : Xop → A that give us a dual

adjunction between A and X. These will be based on contravariant hom-functors, which

are important objects in category theory. Recalling the general construction, let C be a

(locally small) category, and let Set denote the category of sets and maps. For a fixed

object A in C, we define the contravariant hom-functor hA : Cop → Set as follows. An

object B in C is mapped to the set hA(B) := C(B,A) of all C-morphisms B → A, while

a C-morphism u : B→ C is mapped to the function

hA(u) : C(C,A)→ C(B,A), (∀x : C→ A) hA(u)(x) := x ◦ u.

It is straightforward to check that hA is a functor Cop → Set.

The idea now is to take the hom-functors hA : Aop → Set and hA

˜: Xop → Set and lift

them to functors D : Aop → X and E : Xop → A. More precisely, let B be an object in A.

The hom-set hA(B) = A(B,A) is a set of maps B → A and can therefore be regarded as a

subset of the topological structure A
˜
B. If it happens that A(B,A) is a closed substructure

of A
˜
B, then we can put this structure on A(B,A) to obtain an object in X. This will give

us an object mapping for a functor D : Aop → X.

Whether or not A(B,A) 6 A
˜
B obviously depends on the choice of A

˜
, and there turns

out to be a simple condition on A
˜

that ensures that we do get a substructure. In fact,

this condition will also guarantee that X(X,A
˜

) is a subalgebra of AX for every object X

in X, and will be sufficient for us to obtain a dual adjunction from the hom-functors. The

compatibility condition is given in the following definition.

Definition 4.1. Let A be a finite algebra.

• Let r ⊆ An for some n ∈ ω\{0}. The relation r is compatible with A if r forms

a subalgebra of An. (Since subalgebras are non-empty, we then have r 6= ∅.)

• Let g : An → A be a partial map for some n ∈ ω. The operation g is compatible

with A if dom(g) forms a subalgebra of An and g is a homomorphism dom(g)→ A.



4.1. NATURAL DUALITIES AND DUALISABILITY 87

• Let A
˜

be a discrete topological structure (of some type (G,R)) with the same

underlying set as A. Then A
˜

is called an alter ego of A if every operation and

relation of A
˜

is compatible with A.

We can now define our functors precisely.

Proposition 4.2. Let A be a finite algebra, let A
˜

be an alter ego of A, and define A:=SP(A)

and X := ScP+(A
˜

). Define the functors D : Aop → X and E : Xop → A as follows. For

each object B in A and each object X in X, define

D(B) := A(B,A) 6 A
˜
B, E(X) := X(X,A

˜
) 6 AX .

For each A-morphism u : B→ C and each X-morphism ϕ : X→ Y, define

D(u) : D(C)→ D(B), E(ϕ) : E(Y)→ E(X),

(∀x : C→ A) D(u)(x) := x ◦ u, (∀α : Y → A
˜

) E(ϕ)(α) := α ◦ ϕ.

Then D and E are well-defined functors constituting a dual adjunction between A and X.

Proof. See Clark and Davey [5, Theorem 1.5.3]. �

Remark. Our constructions in Propositions 4.2 may seem somewhat arbitrary to those

seeing them for the first time, but they are quite natural. As shown by Porst and Tholen [55],

a very broad class of dual equivalences between concrete categories can be induced by

contravariant hom-functors based on two objects with the same underlying set (so-called

concrete dualities). Even those that cannot (such as Esakia duality and other restricted

Priestley dualities) are typically built off of concrete dualities.

Now, the functors D and E will have the stronger property of being a dual equivalence

provided that the composite functors ED : A→ A and DE : X→ X are naturally isomor-

phic to the respective identity functors idA : A→ A and idX : X→ X. At the object level,

this implies that each object B in A is isomorphic to its double dual ED(B) (and symmet-

rically for objects in X). In particular, the isomorphism B ∼= ED(B) gives a representation

of B as an algebra of X-morphisms with operations defined pointwise.

To see how we might obtain an isomorphism B→ ED(B), let us unpack the definition

of ED(B). First, ED(B) is defined as the set of all X-morphisms D(B) → A
˜

. Thus, we

must associate each b ∈ B with an X-morphism D(B) → A
˜

. Now, D(B) is a substructure

of A
˜
B, so an X-morphism D(B)→ A

˜
is a morphism from a substructure of A

˜
B into A

˜
.

Our definition of products in X ensures that the projection maps A
˜
B → A

˜
are mor-

phisms, as are the restricted projections D(B) → A
˜

. Thus, given b ∈ B, the most nat-

ural morphism D(B) → A
˜

that can be associated with b is the restricted bth projection

map D(B)→ A
˜

. This is how we will define a mapping B → ED(B), which, it turns out, is

always an embedding.

The same idea will work in the other direction, giving us an embedding X→ DE(X) for

each object X in X. Making sense of this requires us to define embeddings in X (though we

will not be working with them at all). An X-morphism ϕ : X→ Y is called an embedding

if ϕ(X) forms a substructure ϕ(X) of Y and ϕ is an isomorphism X→ ϕ(X).



88 4. NATURAL DUALITIES AND QUASIVARIETIES

Proposition 4.3. Let A be a finite algebra, let A
˜

be an alter ego of A, and define A, X, D,

and E as in Proposition 4.2. For each object B in A and each object X in X, define

eB : B→ ED(B), εX : X→ DE(X),

(∀b ∈ B)(∀x ∈ D(B)) eB(b)(x) := x(b), (∀x ∈ X)(∀α ∈ E(X)) εX(x)(α) := α(x).

Then eB and εX are embeddings and e : idA → ED and ε : idX → DE are natural trans-

formations.

Proof. See Clark and Davey [5, Theorem 1.5.3]. �

From the results presented so far, we see that we get ‘most’ of the way to a dual

equivalence simply by choosing A
˜

to be an alter ego of A. All we require for a duality is

that the morphisms eB and εX are surjective for all B and X. Of course, the surjectivity

of every eB and εX is not guaranteed by assuming only that A
˜

is an alter ego of A; that

would be too easy. All of the work in establishing a dual equivalence lies in choosing an

appropriate alter ego A
˜

so that the maps eB and εX are always surjective.

Finally, we come to the definition of dualisability. Let A be a finite algebra. If A
˜

is an

alter ego of A, we say that A
˜

dualises A if eB : B→ ED(B) (as defined in Proposition 4.3)

is surjective for every object B ∈ SP(A). If there is some choice of alter ego A
˜

that

dualises A, then we say that A is (naturally) dualisable.

If A
˜

dualises A, we do not necessarily have a dual equivalence between A and X, but we

still have a representation for the members of A. If there is some choice of A
˜

dualising A

with the further property that εX : X→ DE(X) is surjective for all objects X in X, then we

say that A is fully dualisable. The property of full dualisability is certainly well studied,

but we will not consider it any further in this thesis.

The aim of this thesis, then, is to determine which finite aperiodic semigroups are

dualisable. To this end, we will now record the general results that will be used to establish

dualisability and non-dualisability.

Showing that A
˜

dualises A amounts to showing that, for every B ∈ SP(A), every

morphism D(B) → A
˜

is equal to eB(b) for some b ∈ B (which is really just a restriction

of the bth projection map A
˜
B → A

˜
). This does not require any further consideration of

category-theoretic concepts; Propositions 4.2 and 4.3 take care of all of the category theory

for us. However, we may still need to consider topology, since a morphism D(B) → A
˜

is

in particular a continuous map. But since all finite structures in X are discrete, topology

comes into play only when B is infinite. For these reasons, one of the early endeavours of

duality theorists was to find conditions on A
˜

so that consideration of finite B is sufficient

to determine dualisability, thus eliminating the need to use topology. These efforts resulted

in the next theorem.

Let A
˜

be an alter ego of the finite algebra A. We say that A
˜

dualises A at the finite

level if eB : B → ED(B) is surjective for every finite B ∈ SP(A). The following result

was obtained independently by Willard and Zádori. Willard’s proof may be found in [5,

Theorem 2.2.11], [67, Theorem 1.3], or [7, Theorem 4.3], while Zádori’s proof may be found

in [68, Corollary 3.5] or in [5, Theorem 10.6.4].
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Theorem 4.4 (Duality Compactness Theorem). Let A be a finite algebra, and let A
˜

be an

alter ego of A of finite type. If A
˜

dualises A at the finite level, then A
˜

dualises A.

All of our dualisability results will effectively be established using the Duality Com-

pactness Theorem, so we will not need to consider topology. Our proofs will proceed by

establishing the following interpolation condition on A
˜

:

(IC) For every n ∈ ω\{0} and every substructure X 6 A
˜
n, every morphism ϕ : X→ A

˜extends to an n-ary term function of A.

The following corollary of the Duality Compactness Theorem (see [5, Corollary 2.2.12])

allows us to establish dualities via (IC).

Theorem 4.5 ((IC) Duality Theorem). Let A be a finite algebra, and let A
˜

be an alter ego

of A of finite type satisfying (IC) with respect to A. Then A
˜

dualises A.

In view of Theorem 4.5, we say that A is dualisable via (IC) if A has an alter ago A
˜of finite type satisfying (IC) with respect to A.

Once we have established the dualisability of A, the following theorem allows us to

deduce that every finite algebra generating the same quasivariety as A is also dualisable.

This result was proved independently by Davey and Willard [22] and Saramago [63].

Theorem 4.6 (Independence of Generator Theorem). Let A and A′ be finite algebras such

that SP(A) = SP(A′). Then A is dualisable if and only if A′ is dualisable.

In [1, Chapter 5], AlDhamri proves the following modified version of Theorem 4.6.

Theorem 4.7 ((IC) Independence of Generator Theorem). Let A and A′ be finite algebras

with SP(A) = SP(A′). Then A is dualisable via (IC) if and only if A′ is dualisable via (IC).

Now, we also require results to establish non-dualisability. In all such cases, we will

be establishing a stronger property. We say that the finite algebra A is inherently non-

dualisable (IND) if A does not lie in SP(B) for any dualisable finite algebra B. Theo-

rem 4.6 implies that A is IND if and only if A does not embed into any dualisable finite

algebra. To see this, observe that if A ∈ SP(B) for some dualisable B, then A (if non-trivial)

embeds into Bn for some n > 1, which is dualisable by Theorem 4.6 as SP(B) = SP(Bn).

The following result was first published by Davey, Idziak, Lampe, and McNulty in [12,

Theorem 3] (see also [5, Theorem 10.5.5]). To date, all known examples of IND algebras

can be shown to be IND using this result.

Theorem 4.8 (Inherent Non-Dualisability Theorem). Let A be a finite algebra. Suppose

there is a set Z, a subalgebra B 6 AZ , an infinite subset B0 ⊆ B, and a function ϕ : N→ N
such that the following hold:

(i) for every n ∈ N and every congruence θ on B with |B/θ| 6 n, there is a unique

block of θ�B0
with more than ϕ(n) elements;

(ii) B does not contain the element g ∈ AZ defined by g(i) := ρi(bi), where ρi : B→ A

is the ith projection and bi is any element of the infinite block of ker(ρi)�B0
.

Then A is inherently non-dualisable.
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Our final result in this section is Theorem 4.10 below, due to Jackson [40, Theorem 3.1].

This rather innovative theorem, making use of projective planes, was originally developed

to prove that a finite nilpotent semigroup of class 3 is inherently non-dualisable. In [40],

Jackson showed that many of the non-dualisability results for semigroups and groups that

were known at the time can be obtained from Theorem 4.10, and also used it to prove

that Mp is inherently non-dualisable for all primes p. We will later use Theorem 4.10 to

obtain the new results that L+ and R

�

2 are inherently non-dualisable.

Recall that a projective plane is a triple P = (P, L, I), where P, L are sets and I ⊆ P× L,

satisfying certain conditions (to be stated shortly). The elements of P and L are respectively

called points and lines, and I is called the incidence relation. If p ∈ P and ` ∈ L, the

relation p I ` can be read as “the point p lies on the line `”, or “the line ` contains the

point p”, or “p is incident to `”, or “` is incident to p”. Now, P = (P, L, I) is called a

projective plane if the following three conditions hold:

• for every distinct pair p, q ∈ P, there exactly one line in L incident to p and q;

• for every distinct pair `, k ∈ L, there is exactly one point in P incident to ` and k;

• there exist pairwise distinct p, q, r, s ∈ P such that every line in L is incident to at

most two of the points p, q, r, s.

Although these axioms are used in the proof of Theorem 4.10, the only property of projective

planes that we will use in our applications is the fact that every pair of lines is incident to

a common point. (Also, we will need the fact that infinite projective planes actually exist;

the real projective plane is one such example.)

Since a line is determined by the set of points incident to it, we can think of lines as

subsets of P, so that the incidence relation I coincides with ∈. In the statement and use

of the next theorem, it will be important for us to think of lines as subsets of P in this

way. For the statement, we also require some notation, which we will use in applications of

Theorems 4.8 and 4.10. We used this notation in Theorems 3.21 and 3.29 and Lemma 3.52.

Notation 4.9. Let A and Z be sets; typically, A will be the underlying set of a finite

algebra. For each a ∈ A, we denote by a the constant map in AZ with value a. Now,

let I1, . . . , In be non-empty pairwise disjoint subsets of Z, and let a, b1, . . . , bn ∈ A (not

necessarily distinct). We denote by ab1,...,bnI1,...,In
the element of AZ given by

(∀i ∈ Z) ab1,...,bnI1,...,In
(i) :=

bk if i ∈ Ik,

a otherwise.

If Ik is a singleton set {j}, we will write j in the subscript rather than {j}.

Theorem 4.10 (Projective Plane Theorem). Let A be a finite algebra with a binary term

function · and elements a, b, c, d, e, f ∈ A satisfying the following table of products:

· c d

a e f

b f f

Let P = (P, L, I) be an infinite projective plane, and let P∞ := P ∪̇ {∞}. If the subalgebra

of AP∞ generated by the set {ba,a`,∞, d
c,c
`,∞ | ` ∈ L} does not contain fe∞, then A is inherently

non-dualisable.
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4.2. The known dualisability results for semigroups

The dualisability problem for finite semigroups was first explicitly addressed in [39],

where Jackson collected the known dualisability results for finite semigroups and proved

several non-dualisability results. One of the main results in [39] characterised the IND

bands, showing that a finite band is normal if and only if it is not IND (with the hope that

‘not IND’ could eventually be replaced by ‘dualisable’). One direction of this equivalence

was established by showing that L1 and R1 are IND [39, Proposition 4].

Proposition 4.11. The semigroups L1 and R1 are inherently non-dualisable.

By Theorem 3.27, this immediately implies that every finite non-normal band is IND.

In [39], Jackson also considered finite monoids and finite inverse semigroups, showing that

all such semigroups that generate residually large varieties are IND.

The next major dualisability result for semigroups came when AlDhamri completed

the proof that all finite normal bands are dualisable [1] [2], strengthening Jackson’s result

that they are not IND. We give a new proof that all finite normal bands are dualisable in

Section 4.5.

Jackson returned to the dualisability problem for semigroups in [40]. The main result

of this paper was the Projective Plane Theorem 4.10, which was used to derive several new

and old non-dualisability results. One of the re-proved results was Quackenbush and Szabó’s

result that any finite non-Abelian nilpotent group is IND [57]. Among the new results were

the two following theorems (respectively Theorem 5.1 and Theorem 7.6 in [40]).

Theorem 4.12. Let S be a finite semigroup. If N4 ∈ V(S), then S is inherently non-

dualisable.

Theorem 4.13. Let S be a finite semigroup. If Mp ∈ V(S) for some prime p, then S is

inherently non-dualisable.

In [40, Theorem 8.1(2)], Jackson extended Proposition 4.11 to show that a finite semi-

group S is inherently non-dualisable whenever V(S) contains L1 or R1. The essence of the

proof is the following lemma, which we record for later use.

Lemma 4.14. Let S be a finite semigroup, and let ϕ : S→ R1 be an onto homomorphism.

Then there is an embedding ψ : R1 → S such that ϕ ◦ ψ is the identity on R1.

Theorem 4.15. Let S be a finite semigroup. If V(S) contains L1 or R1, then S is inher-

ently non-dualisable.

The results presented in this rather short section constitute all of the previously-known

IND results for semigroups. We remark that all of these semigroups were known to generate

residually large varieties; see Section 3.8.

In the other direction, Kearnes and Szendrei proved the substantial result that all A-

groups are dualisable in [41, Corollary 6.14]; this is a consequence of their much more general

main result, though the only semigroups to which it can be applied are groups. Apart from

normal bands, A-groups, and some simple combinations of these (see [1, Corollary 4.2.7,

Chapter 6]), there were relatively few dualisability results for finite semigroups prior to the

present work; thus, the dualisability problem for semigroups was ripe for exploration.
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4.3. Quasicriticals

Let K be a class of finite algebras, and suppose we wish to show that all members

of K are dualisable. Rather than giving a completely general proof, it is often easier to

determine all quasivarieties that can be generated by members of K, and then show that

each of these quasivarieties has at least one dualisable generator. By the Independence of

Generator Theorem 4.6, this suffices to show that all members of K are dualisable. In this

section, we collect some basic facts about quasivarieties so that we may take this approach

to dualisability.

Let Q be a quasivariety. Our goal is to determine all subquasivarieties of Q by studying

the lattice of subquasivarieties of Q, which we will denote by Lq(Q). First, we will use the

fact that all subquasivarieties can be decomposed into completely join irreducibles according

to the following result.

Theorem 4.16. Let Q be a quasivariety. Then every quasivariety in Lq(Q) is a join of

completely join irreducible quasivarieties in Lq(Q).

Proof. Any subquasivariety lattice is dually algebraic. (For a proof, see [4, Theorem 5.22];

the proof there is carried out in the more general setting of elementary classes, but the

proof in the restricted setting of quasivarieties is identical.) The result therefore follows

from Lemma 1.3. �

Thus, to determine the subquasivarieties of Q, it will be extremely useful to describe

the completely join irreducibles of Lq(Q). In the general case, this is quite difficult, but it

will suffice for our purposes to consider locally finite quasivarieties. The next definition is

the key to describing completely join irreducible subquasivarieties in the locally finite case.

An algebra is called quasicritical if it is finite and it is not in the quasivariety generated

by the set of its proper subalgebras. If K is a class of algebras, we denote by qc(K) the

class of all quasicritical algebras in K.

We will often use the following formulation of quasicriticality. Let A be an algebra, and

let c, d ∈ A with c 6= d. We say that (c, d) is a critical pair of A if for every B ∈ S(A)

such that there is homomorphism A → B separating c and d, we have A ∼= B. It is easily

shown that a finite algebra is quasicritical if and only if it has a critical pair.

The following result and its corollary explain the role of quasicriticals in determining

the subquasivarieties of Q.

Theorem 4.17. Let Q be a locally finite quasivariety, and let K ∈ Lq(Q). If K is com-

pletely join irreducible in Lq(Q), then K = SP(A) for some A ∈ qc(Q).

Proof. See Hyndman and Nation [38, Theorem 2.8]. It is also shown that the converse

holds if Q has finite type, but we will not need this fact. �

Corollary 4.18. Let Q be a locally finite quasivariety. Then every subquasivariety of Q

is generated by a set of quasicritical algebras from Q. Consequently, if Q has finitely many

quasicriticals up to isomorphism, then Q has finitely many subquasivarieties.

Proof. Combine Theorems 4.16 and 4.17. �
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We will close this section with a simple method of constructing subquasivariety lattices.

The next theorem, due to the author, shows that certain subquasivariety lattices can be

naturally represented as down-set lattices (see Section 1.1).

Theorem 4.19. Let Q be a locally finite quasivariety with finitely many quasicriticals up

to isomorphism, and let S be a set of representatives of the isomorphism classes of qc(Q).

Assume that every member of S is subdirectly irreducible, and order S by containment up to

isomorphism. Then the mapping O(S) → Lq(Q) given by U 7→ SP(U) is a lattice isomor-

phism. In particular, Lq(Q) is a distributive lattice.

Proof. By Corollary 4.18, every subquasivariety of Q is generated by a subset of S. But

since a quasivariety is closed under S, every subquasivariety of Q is of the form SP(U) for

some down-set U of S. This shows that the mapping in the statement is onto.

Let U and V be down-sets of S. Clearly U ⊆ V implies SP(U) ⊆ SP(V). Conversely,

assume that SP(U) ⊆ SP(V), and let A ∈ U. Then A ∈ SP(U) ⊆ SP(V), so because A is

subdirectly irreducible, we have A ∈ S(V). Thus A ∈ V as V is a down-set, which shows

that U ⊆ V. The mapping U 7→ SP(U) is therefore an order-isomorphism O(S) → Lq(Q),

so the result follows from Proposition 1.2. �

4.4. Quasivarieties of normal bands

The remainder of this chapter will be devoted to re-proving AlDhamri’s result that all

finite normal bands are dualisable [2]. In this section, we will use Theorem 4.19 to derive

Gerhard’s description of the lattice of quasivarieties of normal bands [31]. Our approach

will be completely different from the original, and the results proved along the way will be

used in our dualisability proofs in Section 4.5.

In this section, we introduce the important concept of a retraction. Let A and B be

algebras with A 6 B. A homomorphism ϕ : B → A is called a retraction of B onto A

if ϕ is surjective and ϕ(x) = x for all x ∈ A. We write A 6r B, and say B retracts

onto A, if there exists a retraction of B onto A. We note that there are other definitions

in standard use; our definition is, of course, the most appropriate for our purposes.

We have encountered retractions several times in Chapter 3. If S is a semigroup of

exponent n with N4,L
+,R+ /∈ V(S), then the mapping x 7→ xn+1 is a retraction of S

onto G(S) (Lemma 3.22(ii), Theorem 3.23). Also, in the situation of Lemma 3.30, the left

translations by idempotents are retractions (onto their images).

To obtain the lattice of quasivarieties of normal bands, we can directly apply Theo-

rem 4.19 once we know the quasicritical normal bands are subdirectly irreducible. We will

prove this in Theorem 4.25 using the following five lemmas.

Lemma 4.20. Let S be a rectangular band. Then S retracts onto every right-zero subsemi-

group of S.

Proof. Let A 6 S be a right-zero semigroup. Then A is contained in an R-class of S,

which forms a right-zero subsemigroup B of S by Proposition 2.29. Fix any b ∈ B, and

let λ : S → S denote left translation by b. By Lemma 3.30, λ is an endomorphism of S, and

by Lemma 2.24, the image of λ is contained in Rb = B. Moreover, λ fixes every point of B;
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thus, λ is a retraction of S onto B. Now, since any map between right-zero semigroups is a

homomorphism, it is trivial that A 6r B, so A 6r S by transitivity. �

Lemma 4.21. Let S be a band. If S is not a rectangular band, then I embeds into S.

Proof. Assume that I does not embed into S, and let x, y ∈ S. Then the subsemigroup

of S on {xyx, x} is semilattice, so xyx = x. Thus, S is a rectangular band. �

Lemma 4.22. Let S be a normal band, and let A 6 S with A ∼= I. Then A 6r S.

Proof. Write A = {a, b}. By Theorem 2.47, the J -classes of S are rectangular bands, so A

is not contained in any J -class; thus, Ja 6= Jb. Now, by Theorem 1.12, there is a homomor-

phism S/J → A separating Ja and Jb, and composing with the quotient map S → S/J
gives an onto homomorphism r : S → A separating a and b. Since r�A : A → A preserves

the semilattice order, it is the identity map on A, so r is a retraction onto A. �

Lemma 4.23. Let S be a normal band, and let A 6 S with A ∼= L0. Then A 6r S.

Proof. Let {a, b} be the non-trivial L-class of A. We have S ∈ SP(R0,L0) = SP(R0,A) by

Theorem 3.35, but every homomorphism S→ R0 identifies a and b since R0 has a trivial L
relation, so there is a homomorphism r : S→ A with r(a) 6= r(b). Since r(a) L r(b), we must

have {r(a), r(b)} = {a, b}; thus, we can assume by symmetry that r(a) = a and r(b) = b.

Now, r�A is an endomorphism of A separating a and b, so it must be an automorphism

because (a, b) generates the monolith of A. Hence, r�A is the identity on A. �

Lemma 4.24. Let S be a finite normal band, and let A 6 S with A ∼= L. If L0 does not

embed into S, then A 6r S.

Proof. Write A = {a, b}. Let M be the minimum ideal of S (Theorem 2.4), let w ∈ M ,

and let T be the subsemigroup of S on T := Sw. Then T ⊆ M . Since the subsemigroup

on M is a rectangular band by Theorem 2.47, T is also a rectangular band.

Now, we have wa = waba = wbaa = wb. If we also had aw = bw, then z := awa = bwb

would be a zero for {a, b}, contradicting the fact that L0 does not embed into S. We must

therefore have aw 6= bw.

Let c := aw and d := bw. By Lemma 3.30, the translation x 7→ xw is a retraction of S

onto T, so {c, d} is a homomorphic image of A and is therefore a left-zero subsemigroup of T.

Now, by Lemma 4.20, there is a retraction of T onto {c, d}. Thus, there is a retraction, r,

of S onto {c, d} with r(a) = c and r(b) = d. Now let f be the bijection {c, d} → {a, b}
with f(c) = a. Then f ◦ r is a retraction of S onto A. �

Now we can describe the quasicritical normal bands. The proof is based on that of [60,

Lemma 3.2], where Sapir describes the quasicriticals in a more general class.

Theorem 4.25. Let S be a quasicritical normal band. Then S is isomorphic to a member

of {L,L0,R,R0, I}, and so S is subdirectly irreducible.

Proof. Let (c, d) be a critical pair of S. First, assume that c 6J d. Then, by Theorem 2.47

and Theorem 1.12, there is a homomorphism S/J → I separating Jc and Jd, so composing
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with the quotient map S → S/J gives a homomorphism S → I separating c and d. But S

has more than one J -class and is therefore not rectangular, so I ∈ S(S) by Lemma 4.21,

and hence S ∼= I (by the choice of (c, d)).

Now assume that c J d. Let J be the subsemigroup on Jc, which is a rectangular

band by Theorem 2.47. Since HJ= ∆J , we may assume by symmetry that c 6LJ d, so by

Proposition 2.29, we have cd 6= c = cc. By Lemma 3.33, c is a left identity for S, and by

symmetry, d is also a left identity. In particular, {c, d} is a right-zero subsemigroup of S.

Now, if R0 does not embed into S, then by Lemma 4.24, there is a retraction of S onto {c, d},
and so S ∼= R. Assume that R0 embeds into S. Since c R d, every homomorphism S→ L0

identifies c and d, so by Theorem 3.35, there is a homomorphism S → R0 separating c

and d. Since R0 embeds into S, this gives S ∼= R0. �

Now that we have described the quasicritical normal bands, we can apply Theorem 4.19.

This requires us to order the quasicriticals by embedding; the resulting ordered set is shown

in Figure 4.1.

I RL

R0L0

Figure 4.1. The quasicritical normal bands ordered by embedding.

Each quasivariety of normal bands is generated by a down-set of the ordered set in

Figure 4.1. Of course, rather than using the entire down-set, we can generate the same qua-

sivariety by taking the maximal elements. For example, the down-set {L,L0,R, I} generates

the same quasivariety as {L0,R}.
To tighten the description even further, we can use the fact that SP(S,T) = SP(S×T)

for finite semigroups S, T, so each quasivariety can be generated by a single semigroup.

The equality SP(A,B) = SP(A × B) does not hold for all algebras A, B, but it is true

provided that there exist homomorphisms A→ B and B→ A. This is guaranteed for finite

semigroups because all finite semigroups have idempotent elements.

For later use, the following proof that SP(S,T) = SP(S×T) will also show that S×T

can be retracted onto subsemigroups isomorphic to the direct factors.

Lemma 4.26. Let S and T be periodic semigroups. Then there are S′,T′ 6r S × T such

that S ∼= S′ and T ∼= T′. Consequently, we have SP(S) ∨ SP(T) = SP(S,T) = SP(S×T).

Proof. By Theorem 2.36, T has an idempotent element, say e. Let S′ be the subsemigroup

of S×T on S×{e}. Evidently S′ ∼= S, and the maping (x, y) 7→ (x, e) is a retraction of S×T

onto S′. By symmetry, there is some T′ 6r S×T with T ∼= T′.

Now, SP(S) ∨ SP(T) = SP(S,T) holds in general, as does SP(S × T) ⊆ SP(S,T). We

have shown that S,T ∈ S(S×T), so SP(S,T) ⊆ SP(S×T). �
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Theorem 4.27. The lattice of quasivarieties of normal bands is the 13-element distributive

lattice shown in Figure 4.2. The varieties are indicated by filled circles.

RIL

R0L0

R×IL×I
R×L

L×R×I

L0×R R0×L

L0×R0

Figure 4.2. The lattice of quasivarieties of normal bands, labelled by generators.

Proof. By Theorem 3.35 and Theorem 1.10, the (quasi)variety of normal bands is locally

finite. The lattice of subquasivarieties can be directly constructed from Theorem 4.19 as

follows: first, list all down-sets of the ordered set in Figure 4.1, then order the down-sets

by containment, and then replace each down-set by the quasivariety it generates. Finally,

by Lemma 4.26, each down-set generates the same quasivariety as the direct product of its

maximal elements.

Using Corollary 1.7, the varieties can be easily identified. By Theorem 1.12, SP(I) is the

variety of semilattices, and by Theorem 3.35, L and R are the only subdirectly irreducible

rectangular bands, so SP(L), SP(R), and SP(L,R) are the varieties of left-zero, right-zero,

and rectangular bands, respectively. By Theorem 3.35, the subdirectly irreducible left-

normal bands are I, L, L0 (Section 3.6), so SP(L0) is the variety of left-normal bands.

Dually, SP(R0) is a variety. Now, L0 ∈ H(I × L) ⊆ V(I,L), but since L0 is subdirectly

irreducible, we have L0 /∈ SP(I,L); dually, R0 ∈ V(I,R)\ SP(I,R). Thus, the remaining

subquasivarieties are not varieties. �

4.5. The dualisability of normal bands revisited

In this section, we will give a new proof that all finite normal bands are dualisable, a

result which was first proved by AlDhamri [2]. The notation introduced here will be used

in Chapter 5, and the techniques built upon, so this section will serve as a warm-up for our

dualisability proofs in Chapter 5.

Our proof of the normal band result will also give a stronger statement than the original.

We will show that a finite normal band can be dualised by an alter ago with only binary total

operations and binary relations (and topology). This will imply that every finite normal

band has relational degree at most three (Corollary 4.43).
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First, we will introduce some notation related to Definition 4.1. Let A be a finite

algebra, and let n ∈ ω. For n > 0, we denote by Rn(A) the set of all n-ary compatible

relations on A (i.e., the set of all subalgebras of An). We also denote by Pn(A) the set of

all n-ary compatible partial operations on A (i.e., all homomorphisms from a subalgebra

of An into A), and we denote by Tn(A) the set of all total compatible operations on A (i.e.,

all homomorphisms An → A). Note that Tn(A) ⊆ Pn(A). We put

Rω(A) :=
⋃

n∈ω\{0}

Rn(A), Pω(A) :=
⋃
n∈ω
Pn(A), Tω(A) :=

⋃
n∈ω
Tn(A).

An alter ego of A thus has the form 〈A;G,R,T〉 for some G ⊆ Pω(A) and some R ⊆ Rω(A).

Constructing an alter ego A
˜

of A can sometimes require the inclusion of many operations

or relations in the type of A
˜

, and this will certainly be the case for the alter egos we

construct. In this situation, it is somewhat inconvenient to list all of the operations and

relations explicitly in the type of A
˜

. Notation-wise, a more convenient alternative is to

equip A
˜

with all compatible operations or relations of a suitable arity. If desired, one can

recover a more optimal set of operations and relations from the relevant proofs.

To obtain dualities, it will suffice in all of our proofs to use compatible partial binary

operations. Thus, we will usually take our alter ego of A to be A
˜

= 〈A;P2(A),T〉. This

will certainly include more partial operations than necessary to achieve dualisability. In [17]

and [18], Davey and Priestley developed methods of achieving dualities with minimal struc-

ture on A
˜

(called optimal dualities), but in this thesis, we will be interested only in whether

it is possible to achieve a duality, so the notational efficiency of including all operations or

relations of a given arity will be preferred over an optimal dualising structure.

For normal bands in particular, we will be able to achieve (IC) using only total opera-

tions, provided that we also allow compatible binary relations. That is, we will show that

if S is a finite normal band, then S
˜

= 〈S; T2(S),R2(S),T〉 dualises S via (IC).

Whenever we include a partial operation or relation in the structure of A
˜

, this will allow

us to use other operations and relations without necessarily including them in the type. For

example, if we include a meet operation in A
˜

, we will also be able to use the associated

order relation when working with morphisms. We make this idea precise with the notion

of entailment. Our definition, suited to (IC), is a combination of hom-entailment ([5, §9.4])

and a finitary version of structural entailment as defined by Davey, Haviar, and Willard [11]

(cf. the more widely-used notion of duality entailment [5, § 2.4]).

Let A be a finite algebra and A
˜

an alter ego of A.

• If r ∈ Rω(A), we say that A
˜

entails r, and write A
˜
 r, if for every n ∈ ω\{0}

and every X 6 A
˜
n, every morphism ϕ : X→ A

˜
preserves r.

• If h ∈ Pω(A), we say that A
˜

entails h, and write A
˜
 h, if for every n ∈ ω\{0}

and every non-empty substructure X 6 A
˜
n, we have that X is closed under h and

every morphism ϕ : X→ A
˜

preserves h.

• If H ⊆ Pω(A) ∪Rω(A), we say that A
˜

entails H, and write A
˜
 H, if A

˜
 h for

every h ∈ H.

To understand these definitions properly, there is a subtle point regarding types that needs

to be addressed. When constructing an alter ego A
˜

, we start by taking sets G ⊆ Pω(A)
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and R ⊆ Rω(A) to form the topological structure A
˜

= 〈A;G,R,T〉. We then take the type

of A
˜

to be the actual pair of (G,R) of sets, with the arities as defined in the obvious way. In

other words, we use the operations and relations in G,R as symbols for the type of A
˜

. The

operations and relations on X 6 A
˜
n therefore have the natural coordinatewise definitions.

For example, suppose A
˜

has a meet operation ∧ ∈ T2(A) (i.e., ∧ is associative, idempo-

tent, and commutative). If X 6 A
˜
n for some n ∈ ω\{0}, then the interpretation of ∧ in X,

which we denote by ∧X, can be described as follows: for each (x1, . . . , xn), (y1, . . . , yn) ∈ X,

we have

(x1, . . . , xn) ∧X (y1, . . . , yn) = (x1 ∧ y1, . . . , xn ∧ yn).

We will often omit the superscript X, but it will be important to use it in certain situations.

When interpreting the definition of entailment, we assume the relations and operations

being entailed are also defined pointwise. For example, suppose 6 is the order relation on A

associated with the meet operation ∧ (i.e., a 6 b ⇔ a ∧ b = a, for all a, b ∈ A). Then 6 is

interpreted on X pointwise:

(x1, . . . , xn) 6X (y1, . . . , yn) ⇐⇒ x1 6 y1 & · · · & xn 6 yn.

It is easily verified that if A
˜

includes ∧ ∈ T2(A) in its type, then any morphism ϕ : X→ A
˜preserves 6; that is, A

˜
 6.

The following basic result, which we will use without mention, shows that the compatible

operations of a fixed arity entail all compatible operations of lower arities (and similarly for

relations). Also, the compatible partial operations of a fixed arity entail all compatible

relations of the same or lower arity.

Proposition 4.28. Let A be a finite algebra, and let m ∈ ω\{0}. Then the following hold:

(i) for 0 6 k 6 m, we have 〈A; Tm(A),T〉  Tk(A) and 〈A;Pm(A),T〉  Pk(A);

(ii) for 1 6 k 6 m, we have 〈A;Rm(A),T〉  Rk(A) and 〈A;Pm(A),T〉  Rk(A).

Proof. Let A
˜

:= 〈A;Pm(A),T〉, and let g ∈ Pk(A) with 0 6 k 6 m, so dom(g) is a

subalgebra of Ak; we will show that A
˜
 g. Define the partial operation g′ : Am → A by

dom(g′) := dom(g)×Am−k ⊆ Am, g′(x1, . . . , xm) := g(x1, . . . , xk).

Clearly g′ ∈ Pm(A). Now, if X is a non-empty substructure of A
˜
n for some n ∈ ω\{0}

and ϕ : X → A
˜

is a morphism, then ϕ preserves g′ by assumption, from which one easily

verifies that X is closed under g and ϕ preserves g. Thus, A
˜
 g, showing that A

˜
 Pk(A).

The proofs that 〈A; Tm(A),T〉  Tk(A) and 〈A;Rm(A),T〉  Rk(A) are analogous. It

remains to show that A
˜
 Rm(A) (where A

˜
= 〈A;Pm(A),T〉). Let r ∈ Rm(A), and let the

partial map g : Am → A be the restriction of some projection map to r. Clearly g ∈ Pm(A),

and it is easily shown that a morphism ϕ : X→ A
˜

for some X 6 A
˜
n preserves r. �

Our duality proofs for normal bands will employ the following simple entailment result,

which allows us to use the compatible total operations on certain substructures.

Lemma 4.29. Let S be a finite algebra, and let A 6r S. Then, for every k ∈ ω, every

operation in Tk(A) extends to an operation in Tk(S). In particular, 〈S; Tk(S),T〉  Tk(A).
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Proof. Let r be a retraction of S onto A. Given g ∈ Tk(A), define the extension g′ : Sk → S

as the natural product map rk : Sk → Ak followed by g : Ak → A. Clearly g′ ∈ Tk(S) and

agrees with g on Ak, and it is easily shown that 〈S; g′,T〉  g. �

Now, there are two important cases that need special attention: unary relations and

nullary operations. Let us first consider unary relations. As usual, we identify A with

its first Cartesian power, so that a unary relation on A is a subset of A. A compatible

unary relation on A is then a subalgebra of A. If B ∈ R1(A), then the interpretation

of B on X 6 A
˜
n is the subset BX = Bn ∩ X of X. That is, for all (x1, . . . , xn) ∈ X, we

have (x1, . . . , xn) ∈ BX if and only if x1, . . . , xn ∈ B. Concerning unary relations, we have

the following simple but important result.

Lemma 4.30. Let S be a finite algebra, let A 6r S, let r be a retraction of S onto A, and

let S
˜

be an alter ego of S with S
˜
 r. If X 6 S

˜
n for some n ∈ ω\{0} and ϕ : X→ S

˜
is a

morphism, then ϕ(AX) ⊆ A. (That is, S
˜
 A.)

Proof. Let x ∈ AX. Then r(x) = x, and so ϕ(x) = ϕ(r(x)) = r(ϕ(x)) ∈ A. �

Next, we address nullary operations. As subalgebras are non-empty and A0 is a one-

element algebra, we have P0(A) = T0(A), so there are no compatible proper partial nullary

operations. As usual, a nullary operation on A will be identified with the element of A that

it distinguishes. From this point of view, an element a ∈ A is a compatible nullary operation

on A precisely if {a} is a one-element subalgebra of A. Thus, for a semigroup, the compatible

nullary operations are precisely the idempotents. Now, if a ∈ T0(A) and X 6 A
˜
n, then the

interpretation of a as a nullary operation on X is the constant n-tuple with value a, which

we denote by a. Thus, if A
˜
 a, then any morphism ϕ : X→ A

˜
will satisfy ϕ(a) = a.

Before getting into the (IC) proofs, there is one minor point that needs to be addressed.

When verifying (IC), the case where the substructure X 6 A
˜
n is empty does not need to be

considered, since the empty map ∅→ A obviously extends to an n-ary term function (any

projection map An → A will do). Since we would like X to be closed under any entailed

nullary operations, it will be convenient to assume that X 6= ∅. We will therefore assume

without further mention that all substructures of powers of alter egos are non-empty.

The following lemma (which is a modified version of [2, Lemma 4.2]) will be crucial for

obtaining our general dualisability results; it will allow us to obtain an (IC) duality for a

given algebra from (IC) dualities on certain subalgebras.

Lemma 4.31. Let S be a finite algebra with a set U of subalgebras such that S ∈ SP(U).

Let S
˜

be an alter ego of S with S
˜
 T1(S), let ϕ : X→ S

˜
be a morphism for some X 6 S

˜
n

and some n ∈ ω\{0}, and let t be an n-ary term function of S that agrees with ϕ on the

set
⋃
{AX | A ∈ U}. Then t�X = ϕ.

Proof. Let H ⊆
⋃
{hom(S,A) | A ∈ U} separate the points of S. Then H ⊆ T1(S),

so S
˜
 H by assumption. Now, let x ∈ X, and let u ∈ H. Then u(x) ∈ AX for some A ∈ U,

so ϕ(u(x)) = t(u(x)) by the choice of t, and therefore u(ϕ(x)) = u(t(x)). Since u ∈ H was

arbitrary, we have ϕ(x) = t(x). �

In a similar vein, we have the following result, which was based on [1, Lemma 5.1.2].
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Lemma 4.32. Let S be a finite algebra, and let A 6r S. Suppose there is some k ∈ ω\{0}
such that A

˜
:= 〈A; Tk(A),T〉 satisfies (IC) with respect to A, and let S

˜
be an alter ego of S

with S
˜
 Tk(S). If X 6 S

˜
n for some n ∈ ω\{0} and ϕ : X→ S

˜
is a morphism, then there

is an n-ary term t such that tA agrees with ϕ on AX. Consequently, if S ∈ SP(A), then S
˜satisfies (IC) with respect to S.

Proof. Let ϕ : X → S
˜

be a morphism for some X 6 S
˜
n and some n ∈ ω\{0}. Then, by

Lemma 4.30, we have ϕ(AX) ⊆ A. Now, by Lemma 4.29, we have S
˜
 Tk(A), so AX forms

a substructure, XA, of A
˜
n, and ϕ�AX is a morphism XA → A

˜
. Since A

˜
satisfies (IC), there

is an n-ary term t such that tA agrees with ϕ on AX. Finally, if S ∈ SP(A), then applying

Lemma 4.31 with U = {A} gives tS�X = ϕ. �

Since all of our compatible operations on semigroups will be at most binary, we record in

the following lemma a useful equation for verifying the compatibility of a binary operation.

Lemma 4.33. Let S be a semigroup, and let ∗ : S2 → S be a partial binary operation on S.

Then ∗ ∈ P2(S) if and only if dom(∗) forms a subsemigroup of S2 and

(∀(x, y), (z, t) ∈ dom(∗)) (x ∗ y)(z ∗ t) = xz ∗ yt.

In particular, the multiplication of S is in T2(S) if and only if S |= xyzt ≈ xzyt.

Lemma 4.33 shows in particular that the multiplication of a normal band is compatible,

so we will always have it available to us when verifying (IC). Interestingly, however, we will

very rarely need it.

Finally, we come to the specific results for normal bands. The first of these results gives

us compatible meet operations on the subdirectly irreducible normal bands. Meet operations

will play a crucial role in all of our (IC) proofs.

Lemma 4.34. The semigroups I, L, and L0 have compatible meet operations. Specifically:

(i) the multiplication of I is a meet operation in T2(I);

(ii) any linear ordering on L gives a meet operation in T2(L);

(iii) any linear ordering on L0 where 0 is the least element gives a meet operation

in T2(L0).

Proof. Lemma 4.33 gives (i), while (ii) follows from the fact that all maps between left-zero

semigroups are homomorphisms (hence all binary operations are compatible). To prove (iii)

from (ii), let ∧ be a meet operation on L0 induced by a linear order with least element 0,

and let x, z, y, t ∈ L0 to show that (x ∧ y)(z ∧ t) = xz ∧ yt. If 0 ∈ {x, y, z, t}, then the

equality clearly holds, and otherwise, we get equality from (ii). �

We will now establish the dualisability of all finite normal bands over the following six

lemmas. In the proofs, it will be important to interpret the elements of ω as ordinals; that

is, each n ∈ ω\{0} is identified with the set {0, . . . , n− 1}.

Lemma 4.35. If A ∈ I(L,R), then A
˜

:= 〈A; T2(A),T〉 satisfies (IC) with respect to A.

Proof. Let X 6 A
˜
n for some n ∈ ω\{0}, and let ϕ : X→ A

˜
be a morphism.
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Write A = {a, b}. Let ∧ be the meet operation on A with a > b, which is compatible

with A by Lemma 4.34. Since ϕ(a) = a, the set ϕ−1(a) is non-empty, so it is a subsemilattice

of 〈X;∧〉. Let â denote the least element of ϕ−1(a). Since ϕ(b) = b, we must have â 6= b,

so â(j) = a for some j ∈ n. We will show that ϕ(x) = x(j) for all x ∈ X.

Let x ∈ X. If ϕ(x) = a, then we have x > â by the choice of â, so x(j) = a because a is

maximal in 〈A;∧〉. Assume that ϕ(x) = b, and let f be the non-trivial automorphism of A.

Then ϕ(f(x)) = f(ϕ(x)) = f(b) = a, so the previous argument gives f(x)(j) = a, and

hence x(j) = b. It follows that ϕ is extended by the jth projection An → A. �

Lemma 4.36. Let S be a finite rectangular band. Then S
˜

:= 〈S; T2(S),T〉 satisfies (IC)

with respect to S.

Proof. If S is left-zero or right-zero, then applying Lemmas 4.20, 4.32, and 4.35 gives the

result, so we may assume that there are A,B 6 S with A ∼= L and B ∼= R. By Lemma 4.20,

we have A,B 6r S.

Let X 6 S
˜
n for some n ∈ ω\{0}, and let ϕ : X → S

˜
be a morphism. By Lemma 4.32

and Lemma 4.35, there is an n-ary term function of A that agrees with ϕ on AX. But a term

function of A is a projection, so there exists j ∈ n such that ϕ(x) = x(j) for all x ∈ AX.

Similarly, there exists k ∈ n such that ϕ(x) = x(k) for all x ∈ BX.

Define t(x) := x(j)x(k) for all x ∈ Sn, so t is an n-ary term function of S. Then, for

all x ∈ AX, we have t(x) = x(j) = ϕ(x), and for all x ∈ BX, we have t(x) = x(k) = ϕ(x),

so t agrees with ϕ on AX ∪BX. Since S ∈ SP(A,B), we have t�X = ϕ by Lemma 4.31. �

The next result effectively establishes (IC) dualities for I and L0. We record some

technical details in the statement for use in later proofs. Note that vi denotes the ith

variable, for each i ∈ n.

Lemma 4.37. Let S be a finite semigroup, let A 6r S with A ∈ I(I,L0), and let 0 denote

the zero of A. Let S
˜

:= 〈S; T2(S),T〉, let X 6 S
˜
n for some n ∈ ω\{0}, and let ϕ : X → S

˜be a morphism. Then there exist z ∈ AX and j ∈ J := {i ∈ n | z(i) 6= 0} such that

(∀x ∈ AX)
(
ϕ(x) 6= 0 ⇐⇒ (∀i ∈ J) x(i) 6= 0

)
&
(
ϕ(x) 6= 0 =⇒ x(j) = ϕ(x)

)
.

Consequently, the term function of S induced by the n-ary term

vj

(∏
i∈J

vi

)
agrees with ϕ on AX.

Proof. Write {a, b} for the set A\{0}, so that a = b⇔ A ∼= I⇔ A 6∼= L0.

Let ∧ denote the meet operation on A such that 〈A;∧〉 is a chain with greatest element a

and least element 0. Then ∧ ∈ T2(A) by Lemma 4.34, so S
˜
 ∧ by Lemma 4.29. By

Lemma 4.30, we have ϕ(AX) ⊆ A, so ϕ�AX is a morphism 〈AX;∧〉 → 〈A;∧〉.
Since ϕ(a) = a, the set ϕ−1({a, b})∩AX is non-empty, so it is a subsemilattice of 〈AX;∧〉.

Let b̂ denote the least element of ϕ−1({a, b}) ∩ AX; we will show that b̂ has the required

properties of the element z. Since ϕ(b) = b, we have b̂ 6 b, so b̂ ∈ {0, b}n, and because ϕ is
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order-preserving, b̂ 6 b implies ϕ(̂b) 6 b, so ϕ(̂b) = b since ϕ(̂b) ∈ {a, b}. Define

J := {i ∈ n | b̂(i) = b} = {i ∈ n | b̂(i) 6= 0}.

From the definition of b̂ and the fact that ϕ is order-preserving, we have for all x ∈ AX that

ϕ(x) 6= 0 ⇐⇒ x > b̂ ⇐⇒ (∀i ∈ J) x(i) 6= 0.

To complete the proof, it remains to show that there is some j ∈ J such that ϕ(x) = x(j)

for all x ∈ AX. Since ϕ(0) = 0 /∈ {a, b}, we cannot have b̂ = 0, so J 6= ∅. Thus, if a = b,

then choosing any j ∈ J gives the required result, so we may assume for the remainder of

the proof that a 6= b.

Let â denote the least element of ϕ−1(a) ∩AX. We claim that

J = {i ∈ n | â(i) 6= 0}.

That is, b̂(i) 6= 0 ⇔ â(i) 6= 0, for all i ∈ n. Clearly â > b̂ from the definition of b̂, which

implies that J ⊆ {i ∈ n | â(i) 6= 0}. For the reverse inclusion, let f be the non-trivial

automorphism of A, so S
˜
 f by Lemma 4.29. Then ϕ(f (̂b)) = f(ϕ(̂b)) = a, so f (̂b) > â

by the definition of â. Thus, for all i ∈ n, we have â(i) 6= 0 ⇒ f (̂b)(i) 6= 0 ⇒ i ∈ J , giving

the reverse inclusion. Hence, J = {i ∈ n | â(i) 6= 0}.
Now clearly â 6= b̂ since ϕ(â) 6= ϕ(̂b), so because J = {i ∈ n | â(i) 6= 0}, there must be

some j ∈ J with â(j) = a. Thus, if x ∈ AX with ϕ(x) = a, then x > â, so x(j) = a = ϕ(x).

Also, if x ∈ AX with ϕ(x) = b, then ϕ(f(x)) = f(ϕ(x)) = a, so f(x)(j) = a by the previous

argument, and therefore x(j) = b = ϕ(x). �

Lemma 4.38. Let S be a finite normal band with SP(S) = SP(A), where A ∈ {I,L0,R0}.
Then S

˜
:= 〈S; T2(S),T〉 satisfies (IC) with respect to S.

Proof. Note that A embeds into S since A is subdirectly irreducible, so by Lemma 4.22

or Lemma 4.23, we can assume that A 6r S. By Lemma 4.37, 〈A; T2(A),T〉 satisfies (IC)

with respect to A, so Lemma 4.32 gives the result. �

Lemma 4.39. Let S be a finite normal band such that SP(S) is the variety SP(L0,R0) of

all normal bands. Then S
˜

:= 〈S; T2(S),T〉 satisfies (IC) with respect to S.

Proof. Lemma 4.23, combined with the fact that L0 and R0 are subdirectly irreducible,

implies that there are A,B 6r S with A ∼= L0 and B ∼= R0.

Let X 6 S
˜
n for some n ∈ ω\{0}, and let ϕ : X → S

˜
be a morphism. By Lemma 4.37,

there are n-ary term functions t` and tr of S that agree with ϕ on AX and BX, respectively.

Define the n-ary term function t of S by t(x) := t`(x)tr(x) for all x ∈ Sn. We claim that t

extends ϕ. By Lemma 4.31, it suffices to show that t agrees with ϕ on AX ∪ BX, and by

symmetry, it suffices to show that t agrees with ϕ on AX.

Let 0 and z respectively denote the zeroes of A and B, let f : A→ B be a homomorphism

with f−1(z) = {0}, and let g := f ◦ r for some retraction r of S onto A. Then ϕ preserves g.

Let x ∈ AX. By Lemma 4.30, we have ϕ(x) ∈ A. If ϕ(x) = 0, then t`(x) = ϕ(x) = 0,

so t(x) = 0tr(x) = 0. Assume that ϕ(x) 6= 0. Since g(x) ∈ BX, we have tr(g(x)) = ϕ(g(x)),

and hence g(tr(x)) = g(ϕ(x)). Now, ϕ(x) 6= 0 ⇒ g(ϕ(x)) 6= z ⇒ g(tr(x)) 6= z ⇒ tr(x) 6= 0;

thus, tr(x) is a right identity element of A, so t(x) = t`(x)tr(x) = ϕ(x)tr(x) = ϕ(x). �
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Lemma 4.40. Let S be a finite normal band, let A,B 6 S with A ∈ I(I,L0) and B ∼= R,

and assume that R0 does not embed into S. Let S
˜

:= 〈S; T2(S),R2(S),T〉, let X 6 S
˜
n for

some n ∈ ω\{0}, and let ϕ : X→ S
˜

be a morphism. Then there is an n-ary term function t

of S that agrees with ϕ on AX ∪BX. Consequently, if S ∈ SP(A,B), then S
˜

satisfies (IC)

with respect to S.

Proof. By Lemma 4.24, we have B 6r S. Write B = {a, b}, and let ∧ denote the meet

operation on B with a > b. Then ∧ ∈ T2(B) by Lemma 4.34, so S
˜
 ∧ by Lemma 4.29.

Since ϕ(BX) ⊆ B by Lemma 4.30, it follows that ϕ�BX is a morphism 〈BX;∧〉 → 〈B;∧〉,
so ϕ−1(a)∩BX is a subsemilattice of 〈BX;∧〉. Let â denote the least element of ϕ−1(a)∩BX.

By Lemma 4.22 or Lemma 4.23, we have A 6r S. Let 0 denote the zero of A, and use

Lemma 4.37 to choose z ∈ AX and j ∈ J := {i ∈ n | z(i) 6= 0} so that the term function, t,

of S induced by vj
(∏

i∈J vi
)

agrees with ϕ on AX. In particular, we have ϕ(z) 6= 0.

Define the binary relation

s := {(x, y) ∈ A×B | x 6= 0 =⇒ y = b}.

If (x, y), (x′, y′) ∈ s, then xx′ 6= 0 ⇒ x, x′ 6= 0 ⇒ y = y′ = b ⇒ yy′ = b, so (xx′, yy′) ∈ s.
Thus, s ∈ R2(S), so ϕ preserves s. Since (ϕ(z), ϕ(â)) /∈ s, we have (z, â) /∈ sX, so there

exists k ∈ J with â(k) = a. Now, if x ∈ ϕ−1(a)∩BX, then x > â, so x(k) = a, and applying

the non-trivial automorphism of B shows that x(k) = b for all x ∈ ϕ−1(b)∩BX. Hence, we

have ϕ(x) = x(k) for all x ∈ BX.

Define the n-ary term function t of S by t(x) := t`(x)x(k) for all x ∈ Sn. Since k ∈ J ,

we have t(x) = t`(x) = ϕ(x) for all x ∈ AX, and since B ∼= R, we have t(x) = x(k) = ϕ(x)

for all x ∈ BX. Hence, t agrees with ϕ on AX ∪BX. The last claim is by Lemma 4.31. �

We now obtain the desired dualisability result for normal bands.

Theorem 4.41. Let S be a finite normal band. Then 〈S; T2(S),R2(S),T〉 satisfies (IC)

with respect to S. Moreover, if SP(S) is a variety, then 〈S; T2(S),T〉 satisfies (IC) with

respect to S. Consequently, every finite normal band is dualisable via (IC).

Proof. By Theorem 4.27, SP(S) is one of the quasivarieties in Figure 4.2. If SP(S) is a

variety, then the result follows from Lemmas 4.36, 4.38, and 4.39. Assume that SP(S) is not

a variety, so by symmetry, SP(S) is either SP(I,L), SP(L0,R), or SP(L,R, I). In the former

two cases, we have R0 /∈ S(S), and the result then follows from Lemma 4.40. Thus, we may

assume that SP(S) = SP(I,L,R). We then have I,L,R ∈ S(S) and L0,R0 /∈ S(S), so by

Lemma 4.22 and Lemma 4.24, there are A,B,C 6r S isomorphic to I, L, R, respectively.

Let S
˜

:= 〈S; T2(S),R2(S),T〉, let X 6 S
˜
n for some n ∈ ω\{0}, and let ϕ : X → S

˜
be a

morphism. By Lemma 4.40, there are term functions t`, tr of S that agree with ϕ on AX∪BX

and AX ∪ CX, respectively. Define the n-ary term function t of S by t(x) := t`(x)tr(x) for

all x ∈ Sn. Clearly t(x) = t`(x) = ϕ(x) for all x ∈ BX, so t agrees with ϕ on BX, and by

symmetry t agrees with ϕ on CX. Now, let 0 denote the zero of A. Since t` and tr agree

with ϕ on AX, we have for all x ∈ AX that ϕ(x) 6= 0 ⇔ t`(x), tr(x) 6= 0 ⇔ t(x) 6= 0, so t

also agrees with ϕ on AX. Lemma 4.31 now implies that t extends ϕ. �
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Theorem 4.41 improves on the original result [2] in two aspects: we have removed the

need to use alter egos with proper partial operations, and we have also achieved a uniform

bound on the arities of the operations and relations used.

Although we do not need proper partial operations to obtain dualities for normal bands,

it will be convenient in later proofs to simply include all partial operations. We will therefore

record the following consequence of Theorem 4.41 and Proposition 4.28(ii).

Theorem 4.42. Let S be a finite normal band. Then 〈S;P2(S),T〉 satisfies (IC) with respect

to S.

To close the chapter, we will briefly discuss a property related to dualisability and state

a corollary of Theorem 4.42 concerning this property.

Let A be an algebra, and let R ⊆ Rω(A). We say that R determines the clone of A

if the following condition holds:

(CLO) For every n ∈ ω\{0}, every map ϕ : An → A preserving all of the relations in R is

an n-ary term function of A.

The relations are of course interpreted pointwise on An. If the clone of A is determined

by a finite set of finitary relations, then we say that A has finite degree, or that A is

finitely related. If A has finite degree, we define the relational degree of A to be the

least d ∈ ω\{0} such that Rd(A) determines the clone of A. (If ∅ determines the clone

of A—that is, if A is primal—the relational degree of A is defined to be 0.)

For alter egos with no operations, (IC) is effectively a strengthening of (CLO), since the

topology plays no role. In fact, we can obtain (CLO) from any dualising alter ego, even if

there are operations present. The trick, which is standard in duality theory, is to replace

each operation with its graph. More precisely, if g : Am → A is a partial operation for

some m ∈ ω, then the graph of g is defined to be the (m+ 1)-ary relation

graph(g):={(x1, . . . , xm, xm+1) ∈ Am+1 | (x1, . . . , xm) ∈ dom(g) & xm+1 = g(x1, . . . , xm)}.

By [5, Lemma 2.1.2], if 〈A;G,R,T〉 dualises the finite algebra A, then we can replace each

operation g ∈ G with the relation graph(g) without destroying the duality (though we

may lose (IC)). We then obtain a dualising alter ago A
˜

with no operations, and by [5,

Theorem 2.2.2], the relations of A
˜

satisfy (CLO) with respect to A. Given these facts, the

following result is an immediate consequence of Theorem 4.41.

Corollary 4.43. A finite normal band has relational degree at most 3.

In [24], Dolinka showed that every finite band S has finite degree d, where d is an

unbounded function of |S|. We have improved this result for the subclass of finite normal

bands by giving a uniform bound on the relational degree.



CHAPTER 5

Natural Dualities for Aperiodic Semigroups

At long last, we come to the new results of this thesis. In this chapter and the next, we

will present a proof of the classification theorem for dualisable finite aperiodic semigroups.

This chapter contains a few non-dualisability results, but the bulk of the chapter will be ded-

icated to deriving dualisability results needed for the main proof. Across the two chapters,

the constituent results will be presented more or less in order of discovery.

5.1. A roadmap

In Section 4.2, we gave an overview of the known dualisability results for finite semi-

groups, all of which are consistent with the tentative conjecture that a finite semigroup is

dualisable if and only if it generates a residually small variety. Since the latter property has

been completely characterised (Theorem 3.71), this conjecture has served as a useful guide

for researchers in obtaining new dualisability and non-dualisability results. For example,

since P generates a residually small variety, it was thought likely to be dualisable, and this

was eventually proved by Jackson [40, Theorem 9.2].

The starting point for the present author was to continue along these lines, with the

overall aim of pushing the frontiers of the dualisability problem for finite semigroups as far as

possible. Many of the simplest semigroups whose dualisability had not yet been determined

were aperiodic, so the author’s attention was quickly drawn to these examples. However, it

did not seem at the time that classifying the dualisable aperiodic semigroups would merit

an entire thesis. To explain why, let us give an explicit statement of Theorem 3.71 restricted

to aperiodic semigroups. This is easily done, but there are a few details that need to be

checked. First, we have the following fundamental fact about aperiodic semigroups.

Proposition 5.1. Let S be an aperiodic semigroup, and suppose that every element of S

has index at most k for some k > 1. Then S |= xk+1 ≈ xk.

Proof. Let a ∈ S, and let i be the index of a. By Theorem 2.34, the set {a` | ` > i} is a

subgroup of S, so it must equal {ai}. Since k > i, it follows that ak+1 = ak. �

Before stating the specialisation of Theorem 3.71, we will take the opportunity to intro-

duce a convenient piece of notation. Given a class K of semigroups, we define A(K) to be

the class of all semigroups that are either isomorphic or anti-isomorphic to a member of K;

thus, A(K) is the smallest class containing K that is closed under anti-isomorphism. For

example, A(L) = I(L,R).

Now, define

F1 := A(N4,L
+,L1,L×P,R

�

2),

which is precisely the class of aperiodic members of the class Fω defined in Section 3.8. We

then have the following result.

105
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Theorem 5.2. Let S be a finite aperiodic semigroup. Then the following are equivalent:

(i) V(S) is residually small;

(ii) V(S) is residually very finite;

(iii) V(S) does not contain a semigroup in F1;

(iv) S ∈ N1 ∪P1 ∪Q1 = V(L,R, I,N) ∪ V(R,P) ∪ V(L,Q).

Proof. We will show that (iii) and (iv) are equivalent to the corresponding conditions in

Theorem 3.71. Because S is finite, there is some k > 1 with S |= xk+1 ≈ xk by Proposi-

tion 5.1, which implies that all groups in V(S) are trivial. Thus, condition (iii) of the present

theorem is equivalent to condition (iii) of Theorem 3.71.

Assume that Theorem 3.71(iv) holds, so S ∈ Nn ∪ Pn ∪ Qn for some n > 1. We then

have S |= xn+2 ≈ x2, so all elements of S have index at most 2. Thus, S |= x3 ≈ x2 by

Proposition 5.1, and therefore S |= xn+1 ≈ x2. It is now straightforward to verify from the

definitions of Nn, Pn, and Qn that S ∈ N1 ∪P1 ∪Q1. �

This result gave us the following working conjecture.

Conjecture 5.3. Let S be a finite aperiodic semigroup. Then S is dualisable if and only

if S satisfies the conditions of Theorem 5.2.

The author first entertained the idea of proving this conjecture after a thorough study

of the results that now constitute Chapter 3. Condition (iii) of Theorem 3.71 had never

been explicitly stated in the literature, so extracting this condition illuminated a roadmap

to proving Conjecture 5.3. The general idea was to show that Theorem 5.2(iv) implies

dualisability, while a failure of Theorem 5.2(iii) implies non-dualisability.

To understand what is involved in the former implication, let us look more closely at

the varieties N1 and P1. First, it can be shown that each semigroup in N1 is an inflation

of a normal band. (Inflations will be defined precisely in Section 5.3, but for now they

can be understood as rather trivial expansions of semigroups.) As it was known that all

finite normal bands are dualisable, proving that all finite members of N1 are dualisable was

expected to be a simple task (which, in the end, it was).

For the variety P1, the idea was to appeal to the Independence of Generator Theo-

rem 4.6, and this required a determination of the subquasivarieties of P1. It was shown by

Sapir [60] that P1 has finitely many subquasivarieties; in particular, it could be deduced

from [60, Lemma 3.8] that the only quasicriticals in P1 up to isomorphism are N, I, R, R0,

and P. Since all of these semigroups are subdirectly irreducible, the lattice Lq(P1) was

then easily constructed from Theorem 4.19. The subquasivarieties of P1 that are not al-

ready subquasivarieties of N1 were found to be those generated by P, R×P, and R0 ×P.

Since P was known to be dualisable, this left the author to show that R×P and R0×P are

dualisable. The dualisability of the finite members of Q1 would then follow by symmetry.

Showing that a failure of Theorem 5.2(iii) implies non-dualisability seemed relatively

easy once we were actually aware of condition (iii). Proving this implication amounted to

showing that if V(S) contains one of N4, L+, L1, L × P, R

�

2, then S is non-dualisable.

Theorems 4.12 and 4.15 took care of two of these cases, leaving three to the author. Thus,

we began with the following roadmap to a proof of Conjecture 5.3.



5.2. TWO NON-DUALISABILITY RESULTS 107

(1) Show that a finite inflation of a normal band is dualisable (presumably by showing

that dualisability is preserved by taking inflations).

(2) Show that R×P and R0 ×P are dualisable.

(3) Show that if V(S) contains L+, L×P, or R

�

2, then S is non-dualisable.

Based on this outline, it did not seem (to the author, at least) that a proof of Conjecture 5.3

would suffice for a PhD thesis; proving (2) and (3) requires the consideration of five small

semigroups, and (1) was expected to be obtained by a simple general result. But, of course,

here we are. To quote Luke Skywalker, this is not going to go the way you think.

5.2. Two non-dualisability results

In this section, we will show that if S is a finite semigroup such that V(S) contains L+

or R

�

2, then S is inherently non-dualisable. At the outset of the author’s graduate studies,

these two low-hanging pieces of fruit were overripe and simply needed to be nudged off of

their stems. The only reason that these results had not been obtained earlier was due to the

relative obscurity of the semigroups L+ and R

�

2. These semigroups did not appear at all

in Golubov and Sapir’s proofs in [32], and they were very deeply embedded in McKenzie’s

proofs in [47]. Once the role of these two semigroups was clarified by the author, it was a

simple matter to demonstrate their non-dualisability.

Theorem 5.4. Let S be a finite semigroup such that L+ ∈ V(S). Then S is inherently

non-dualisable.

Proof. To show that S is inherently non-dualisable, it suffices to show that some finite

member of SP(S) is inherently non-dualisable. By Lemma 1.11, L+ is a homomorphic

image of some finite member of SP(S), so we can assume without loss of generality that L+

is in fact a homomorphic image of S. We will apply Theorem 4.10.

Let ϕ : S → L+ be onto. Label the elements of L+ as in Figure 3.3 (page 49), and

define St :=ϕ
−1(t) for all t ∈ {a, b, c, d}. Let x be any element of Sd. Since c is idempotent, Sc

is a subsemigroup of S, so by Theorem 2.36, we may choose an idempotent y ∈ Sc. Define

a := x, b := xy, c := x, d := yx, e := xx, f := xyx.

As y is idempotent, we have

ac = xx = e, ad = xyx = f, bc = xyx = f, bd = xyyx = xyx = f.

Now, let P = (P, L, I) be an infinite projective plane, and let P∞ := P ∪̇ {∞}. Define

B := {ba,a∞,` | ` ∈ L} ⊆ SP∞ , D := {dc,c∞,` | ` ∈ L} ⊆ SP∞ ,

and let T be the subsemigroup of SP∞ generated by B ∪D.

Suppose by way of contradiction that fe∞ ∈ T . Since ϕ(a) = ϕ(c) = d and ϕ(f) = b, we

have a, c 6= f, so fe∞ /∈ B ∪D, and we must therefore have fe∞ = x1 · · ·xn for some n > 2 and

some x1, . . . , xn ∈ B ∪D. Since a = c = x, there is some p ∈ P such that x1(p) = x2(p) = x,

so (x1 . . . xn)(p) ∈ xxS1 ⊆ Sa. Since f /∈ Sa, this contradicts fe∞ = x1 · · ·xn. Thus, fe∞ /∈ T .

Theorem 4.10 now gives the result. �

For the non-dualisability of R

�

2, we will use the following result.
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Lemma 5.5. Let S be a finite semigroup, and let ϕ : S → R be an onto homomorphism.

Then there is an embedding ψ : R→ S such that ϕ ◦ ψ is the identity on R.

Proof. Extend ϕ to a monoid homomorphism ϕ+ : S1 → R1. By Lemma 4.14, there is a

semigroup embedding ψ+ : R1 → S1 such that ϕ+◦ψ+ is the identity on R1. The restriction

of ψ+ to R is the required embedding. �

Theorem 5.6. Let S be a finite semigroup such that R

�

2 ∈ V(S). Then S is inherently

non-dualisable.

Proof. We will apply Theorem 4.10. As in the proof of Theorem 5.4, we can assume there

is an onto homomorphism ϕ : S → R

�

2. Label the elements of R

�

2 as in Figure 3.5

(page 72), and define the sets St := ϕ−1(t) for all t ∈ {0, a, b, u, v}.
By Lemma 5.5 applied to the restriction of ϕ to ϕ−1({a, b}), there exist a ∈ Sa and b ∈ Sb

such that {a, b} is a right-zero subsemigroup of S. Select some c ∈ Sv, and define

d := bc, e := ac, f := bc.

Note that e ∈ S0 while f ∈ Su, so in particular a, c, e 6= f. We also have

ac = e, ad = abc = bc = f, bd = bbc = bc = f.

Now, let P = (P, L, I) be an infinite projective plane, and let P∞ := P ∪̇ {∞}. Define

B := {ba,a∞,` | ` ∈ L} ⊆ SP∞ , D := {dc,c∞,` | ` ∈ L} ⊆ SP∞ ,

and let T be the subsemigroup of SP∞ generated by B ∪D.

Suppose by way of contradiction that fe∞ ∈ T . Clearly fe∞ /∈ B ∪ D since a, c 6= f,

so we may write fe∞ = x1 · · ·xn for some n > 2 and some x1, . . . , xn ∈ B ∪ D. Now, if

we had D ∩ {x1, . . . , xn−1} 6= ∅, then x1 · · ·xn would lie in SP∞
0 ; thus, x1, . . . , xn−1 ∈ B.

But B is a right-zero semigroup, so we can assume that n = 2. Thus, we have fe∞ = x1x2,

where x1 ∈ B and x2 ∈ B ∪D. However, x2 ∈ B would imply fe∞ = x2 ∈ B; thus, x2 ∈ D.

Now, write x1 = ba,a∞,` and x2 = dc,c∞,k for some `, k ∈ L, and let p be a point in ` ∩ k.

Then (x1x2)(p) = ac 6= f, contradicting fe∞ = x1x2. Theorem 4.10 now gives the result. �

One of the advantages of Theorem 4.10 is that it takes care of much of the creativity

needed to apply the more general Theorem 4.8. However, Theorem 4.10 is not as widely

applicable as Theorem 4.8. For example, it cannot be used to show that R1 is IND, since

none of the possible ways of choosing a, b, c, d, e, f satisfy the assumptions of Theorem 4.10.

After obtaining the results in this section, it was quickly seen that Theorem 4.10 is not

applicable to L × P, so this semigroup would have to be dealt with ‘from scratch’. This

proved to be rather difficult, so, after several unsuccessful attempts to show that L × P is

non-dualisable, the author moved on to dualisability.

5.3. Dualities for inflations

In this section, we will show that all finite semigroups in N1 = V(L,R, I,N) are dual-

isable. The main result of this section, Theorem 5.9, will be applicable to algebras of any

type. We will therefore define inflations in this general setting, although the concept does

not seem to be particularly useful outside of semigroup theory.
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Let B be an algebra of type F , let A 6 B, and let : B → A be a retraction onto A

(see Section 4.4). Then B is called an inflation of A via if for every n ∈ ω and every n-

ary f ∈ F , we have fB(x0, . . . , xn−1) = fA(x0, . . . , xn−1) for all (x0, . . . , xn−1) ∈ Bn. One

may easily show that if t is an n-ary term involving at least one operation symbol, then we

have tB(x0, . . . , xn−1) = tA(x0, . . . , xn−1) for all (x0, . . . , xn−1) ∈ Bn.

Since N1 satisfies x4 ≈ x2, we have E(S) = {x2 | x ∈ S} for every S ∈ N1. As N1 also

satisfies (xy)2 ≈ x2y2 ≈ xy, we have the following result.

Proposition 5.7. Let S ∈ N1. Then S is an inflation of the normal band E(S) via the

mapping x 7→ x2.

Theorem 5.9 will show that if A is a finite algebra possessing a certain kind of unary

term, and if B is a finite inflation of A, then an (IC) duality for A can be lifted to an (IC)

duality for B. Given that all normal bands are dualisable via (IC), it will follow immediately

that all finite semigroups in N1 are dualisable.

The following result will allow us to utilise existing (IC) dualities. It is adapted from

a result of Clark, Davey, and Pitkethly [6, Lemma 24] (see also Pitkethly and Davey [54,

Lemma 2.3.2]). Note that the symbol  was introduced in Section 4.5.

Lemma 5.8 (Term Retract Lemma). Let S be a finite algebra, let A 6r S, and let r : S→ A

be a retraction onto A that is also a unary term function of S. Let S
˜

and A
˜

= 〈A;G,R,T〉
be alter egos of S and A, respectively, and assume that A

˜
satisfies (IC) with respect to A

and that S
˜
 G ∪ R ∪ {r}. If X 6 S

˜
n for some n ∈ ω\{0} and ϕ : X → S

˜
is a morphism

such that ϕ(X) ⊆ A, then ϕ extends to an n-ary term function of S.

Proof. Note that AX = X ∩ An forms a substructure, XA, of A
˜
n. Since ϕ(AX) ⊆ A by

assumption, it follows that ϕ�AX is a morphism XA → A
˜

. As A
˜

satisfies (IC) with respect

to A, there is a term t in the signature of A and S such that tA extends ϕ�AX .

Let x ∈ X. Then r(x) ∈ AX, so because ϕ(X) ⊆ A and ϕ preserves r, we have

ϕ(x) = r(ϕ(x)) = ϕ(r(x)) = tA(r(x)) = tS(r(x)).

Thus, ϕ is extended by the term function (x0, . . . , xn−1) 7→ tS(r(x0), . . . , r(xn−1)) of S. �

The author’s original proof of the dualisability result for N1 was carried out by showing

that each of its subquasivarieties has a dualisable generator; this required eight separate

dualisability proofs taking up some 20 to 30 pages. It was hoped that this ‘brute force’

approach would lead to a general proof that a finite inflation of a normal band is dualisable,

but such a proof eluded the author for some time.

Nearly a year later, the author visited Ross Willard for a research collaboration, and as

a warm-up exercise of sorts, we attempted to show that the two possible one-point inflations

of the two-element group are dualisable (incidentally, these were the final two semigroups

of order three whose dualisability had not yet been determined). This successful attempt

finally led the author to Theorem 5.9, which brings the dualisability proof for N1 down

to less than a page. The author wishes to acknowledge Ross Willard’s involvement in the

discovery of the following proof.
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Theorem 5.9. Let A be a finite algebra of type F with a unary term ι, involving at least one

operation symbol, such that A |= ι(x) ≈ x. Suppose that A
˜

:= 〈A;Pm(A),T〉 satisfies (IC)

with respect to A for some m ∈ ω. If B is a finite inflation of A, then B
˜

:= 〈B;Pm′(B),T〉
satisfies (IC) with respect to B, where m′ = max{m, 2}.

Proof. Assume B is an inflation of A via : B → A. Note that x = ιB(x) for all x ∈ B,

since ι involves at least one operation symbol; thus, is a unary term function of B.

Let n ∈ ω\{0}, let X 6 B
˜
n, and let ϕ : X → B

˜
be a morphism; we must show that ϕ

extends to an n-ary term function of B. If ϕ(X) ⊆ A, the result follows by taking r to be

in the Term Retract Lemma 5.8. Thus, we may assume that there is some c ∈ ϕ(X)\A. We

will show that ϕ is extended by a projection term.

For every b ∈ B, define the total binary operation ∗b on B by

(∀x, y ∈ B) x ∗b y :=

c if (x, y) = (b, c)

y otherwise.

The operation ∗b is “almost the second projection”; we have x ∗b y = y for all x, y ∈ B. To

show that ∗b ∈ T2(B), let f ∈ F be k-ary, and let x, y ∈ Bk. Then fB(y) ∈ A, so

fB(x) ∗b fB(y) = fB(y) = fB(y) = fB
(
x ∗b y

)
= fB(x ∗b y).

Thus, ∗b ∈ T2(B), and therefore B
˜
 ∗b. Also, since B\{c} ∈ R1(B), we have B

˜
 B\{c}.

Let ĉ be a (∗c)-product of all of the elements of ϕ−1(c), in any order and any bracketing.

Then ϕ(ĉ) = c. Since ϕ preserves the unary relation B\{c}, there exists k ∈ n such

that ĉ(k) = c. By the definitions of ĉ and ∗c, this implies that x(k) = c for all x ∈ ϕ−1(c).
Let x ∈ X, and let b :=ϕ(x). Then ϕ(x ∗b ĉ) = b ∗b c = c, so (x ∗b ĉ)(k) = c by the choice

of k. This is possible only if x(k) = b. Thus, ϕ is extended by the kth projection. �

To apply Theorem 5.9 to a finite normal band A, we may choose ι to be the term x2

and use the (IC) duality for A from Theorem 4.42 to conclude that every finite inflation

of A is dualisable. Combining this with Proposition 5.7, we obtain the following result.

Corollary 5.10. Let S be a finite semigroup in N1 = V(L,R, I,N). Then S
˜

:=〈S;P2(S),T〉
satisfies (IC) with respect to S, and consequently S is dualisable.

In fact, Theorem 5.9 can also be applied to finite completely regular semigroups. This

more general case will be discussed in the epilogue (Section 7.1).

5.4. Critical discoveries

After obtaining the results of Sections 5.2 and 5.3, there were only three semigroups left

to consider, according the roadmap in Section 5.1. The non-dualisability result for L × P

remained elusive, so the author’s efforts were focused on showing that the semigroup R0×P

is dualisable. To simplify matters, the author considered the semigroup R

�

{u}, where R

acts totally on the one-element set {u}, as this four-element semigroup generates the same

quasivariety as the nine-element semigroup R0 × P. Even this four-element semigroup

proved to be quite difficult to deal with, but after at least a month of calculations, the

author showed that R

�

{u}, and therefore R0 ×P, is dualisable.
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Of course, dualisability is not in general preserved by taking direct products (for example,

by Theorem 4.12 and Lemma 3.9, P × Q is non-dualisable, though P and Q are). The

dualisability of R0×P seems to come about from a certain link between R0 and P, though,

even now, it is not clear to the author what this means in precise terms. Nonetheless, having

discovered the ‘trick’ for dealing with this direct product, the dualisability of R × P was

obtained with minor modifications to the proof for R0 ×P.

With these dualisability proofs, it appeared that we had obtained one converse half of

Conjecture 5.3 (generating a residually small variety implies dualisability). However, the

result depended on having a complete enumeration of the quasicriticals of P1. As mentioned

in Section 5.1, this could be derived from Sapir’s result [60, Lemma 3.8], which described

the quasicriticals in Pn. Since Sapir did not include a proof of this lemma, the author

attempted to prove it for P1. In the course of this attempted proof, the table in Figure 5.1

arose quite naturally; the goal from there was to show that a = b, yielding P. But, to the

author’s surprise, the table in Figure 5.1 already yielded a quasicritical semigroup in P1.

· e a u b

e e a u b

a a a b b

u a a b b

b a a b b

Figure 5.1. The semigroup C.

According to the statement of [60, Lemma 3.8], the minimum ideal of a quasicritical

in Pn other than R is always an Abelian group, which implies in particular that all quasi-

criticals in P1 other than R have zero elements. However, the semigroup in Figure 5.1 does

not have a zero element, so it is not of the form described in [60, Lemma 3.8], which shows

that this result is false as stated. The author named this counterexample C.

Of course, this meant that we did not have a complete enumeration of the quasicriticals

in P1. Worse, there was no longer any guarantee that there are only finitely many quasicrit-

icals in P1; the result implying this depended on [60, Lemma 3.8]! This prompted a frantic

search for more quasicriticals. It was seen almost immediately that C0 ∈ P1 is quasicritical,

but a computer search ruled out the existence of quasicriticals of size six or seven, so it

seemed plausible that C and C0 were the only new quasicriticals. The author eventually

obtained a proof of this, to be published in [42]. We will defer the proof until later.

Theorem 5.11. Up to isomorphism, the only quasicriticals in P1 are R, R0, I, N, P, C,

and C0.

The structure of the lattice Lq(P1) is also determined in [42]; it is shown here in Fig-

ure 5.2. The results of [42] were presented at SandGAL 2019 in Cremona, Italy.

In the aperiodic case, Theorem 5.11 patched up the main semigroup-theoretic result of

Sapir in [60], which was intended to characterise the locally finite semigroup varieties that

have finitely many subquasivarieties. It is now an open problem to repair the proof in the

non-aperiodic case, but we will not address this problem here.
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R I N

R×I I×N
R×N

R×I×N

C

R0

R0×N

R0×C

C0

P

R×P

R0×P

Figure 5.2. The lattice Lq(P1), labelled by generators.

The addition of the two quasicriticals C and C0 added only three more quasivarieties

not already considered; namely, those generated by C, C0, and R0 ×C. The dualisability

proofs required some new ideas, but drawing from the proof for R0×P allowed these three

new dualisability proofs to be obtained without too much difficulty. Thus, we finally had

a proof of one converse half of Conjecture 5.3. This result was presented at the 98th AAA

conference in Dresden, Germany. Again, we defer the proof.

Theorem 5.12. Let S be a finite aperiodic semigroup. If V(S) is residually small, then S

is dualisable.

In the months leading up these conferences, the author had also been working on the

semigroup L×P with the first supervisor. We proceeded via a standard approach: attempt

to prove that L×P is dualisable, and then try to understand why it is not dualisable. Many

of the techniques used for R×P were applicable to L×P, but the essential difference with

the R × P case quickly became clear. It seemed that we had identified the obstruction to

dualisability, so it was only a matter of time before we obtained a non-dualisability proof.

However, upon returning home from the conferences, the author received some surprising

news from the first supervisor: he had shown that L×P is in fact dualisable. It turned out

that the apparent obstruction to dualisability could easily be tempered with a particularly

simple partial operation. In fact, the overall dualisability proof for L×P was much simpler

than the proof for R×P, and there was no doubt that it was correct.

Not only did this disprove Conjecture 5.3, but it significantly expanded the scope of the

dualisability problem. The first step from here was to figure out exactly what we knew about

the class of dualisable finite aperiodic semigroups (which we will refer to as the dualisable

class). Based on Theorems 5.2 and 5.12, we knew that the dualisable class contains all
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finite memebers of N1∪P1∪Q1, so this provided us with a lower boundary. Determining an

upper boundary required the non-dualisability results we already had, as well as an in-depth

knowledge of the results of Chapter 3.

For possible future generalisations, we present the next result without the assumption

of aperiodicity. Note that, by Theorems 4.12, 4.13, 4.15, 5.4, and 5.6, the assumptions of

the next theorem are satisfied by a dualisable finite semigroup (more generally, a non-IND

finite semigroup).

Theorem 5.13. Let S be a semigroup such that V(S) does not contain any member of the

class A({N4,L
+,L1,R

�

2,Mp | p prime}). Then S ∈ A([xn+1y ≈ xy, xynznt ≈ xznynt])

for some n > 1.

Proof. By Theorem 3.23, we can assume by symmetry that S satisfies xn+1y ≈ xy for

some n > 1. Since x2y ≈ xy implies x3y ≈ xy, we can assume further that n > 2, so n

is an exponent of S. Now, if S also satisfies xyn+1 ≈ xy, then S |= xynznt ≈ xznynt by

Lemma 3.38 and we are done. We may therefore assume that S 6|= xyn+1 ≈ xy.

We have P ∈ V(S) by Lemma 3.45, so S |= xnynz ≈ xnynxnz by Lemma 3.65. Now,

as N4 6|= xn+1y ≈ xy, Theorems 3.14,3.26, and 3.27 imply that E(S) is a normal band,

so S |= xnynzntn ≈ xnznyntn. Combining this with xn+1y ≈ xy and xnynz ≈ xnynxnz, we

deduce S |= xynznt ≈ xxnynznt ≈ xxnynznynt ≈ xxnznynynt ≈ xxnznynt ≈ xznynt. �

Restricting to the aperiodic case, we get the following result.

Theorem 5.14. Let S be an aperiodic semigroup with V(S) ∩ A(N4,L
+,L1,R

�

2) = ∅.

Then S ∈ A([x2y ≈ xy, xyzt ≈ xzyt]).

Proof. By Theorem 5.13, we have S ∈ A([xn+1y ≈ xy, xynznt ≈ xznynt]) for some n > 1.

Thus, S |= xn+2 ≈ x2, so by Proposition 5.1 we have S |= x3 ≈ x2. Using this latter

identity, xn+1y ≈ xy (xyn+1 ≈ xy) can be reduced to x2y ≈ xy (xy2 ≈ xy), and using either

of x2y ≈ xy, xy2 ≈ xy, we may reduce xynznt ≈ xznynt to xyzt ≈ xzyt. �

Theorem 5.14 provided us with an upper bound for the dualisable class. We were now

reduced to identifying the dualisable finite members of the variety [x2y ≈ xy, xyzt ≈ xzyt].
This variety had not been previously studied, but it turned out to be generated by a set of

familiar semigroups.

Using Proposition 3.59, it is easily seen that a semigroup identity follows from x2y ≈ xy
and xyzt ≈ xzyt if and only if it holds in L, R, and P, so we have the following result.

Proposition 5.15. The variety [x2y ≈ xy, xyzt ≈ xzyt] is precisely V(L,R,P).

Shortly after obtaining the dualisability result for L×P, the author showed that L×R×P

is also dualisable, implying that there is no proper subvariety of V(L,R,P) containing all

of its dualisable members. Of course, there is no reason that the dualisable members ought

to constitute the finite part of some subvariety, but since there were no obvious candidates

for non-dualisable members of V(L,R,P), our best conjecture was the following.

Conjecture 5.16. Let S be a finite aperiodic semigroup. Then S is dualisable if and only

if S ∈ AV(L,R,P).
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By Theorem 3.63, the variety V(L,R,P) is residually large, and the proof shows that

it has infinitely many finite subdirectly irreducibles (though this latter fact follows from a

more general result [56]). These finite subdirectly irreducibles generate pairwise distinct

quasivarieties, so V(L,R,P) has infinitely many finitely generated subquasivarieties. Thus,

in contrast to Theorem 5.12, there was no hope of proving Conjecture 5.16 by dualising only

a finite number of semigroups. Considering the effort it took to dualise five small semigroups

for the proof of Theorem 5.12, solving the dualisability problem for aperiodic semigroups

now seemed like an insurmountable task.

Of course, the only way forward in this situation is to consider the easiest unknown

examples. Since quasicriticals are the fundamental building blocks for locally finite quasi-

varieties, it made sense to search for the smallest quasicriticals whose dualisability was not

yet known. The semigroup L

�

L in Figure 5.3 came to mind almost immediately; it is

obtained from the action of L by left translation on its underlying set.

· a b u v 0

a a a u u 0

b b b v v 0

u 0 0 0 0 0

v 0 0 0 0 0

0 0 0 0 0 0

Figure 5.3. The semigroup L

�

L.

The semigroup L

�
L arises from the construction in Theorem 3.63 when κ = 0, which

shows that L
�

L is a subdirectly irreducible (hence quasicritical) semigroup in V(L,R,P).

Considering the relationship between P and C, it was clear how to construct a qua-

sicritical of size six. Note that P can be obtained from C as the Rees quotient C/{a, b},
and that factoring C by the partition {{e, a}, {u, b}} yields the two-element right-zero semi-

group. Although C was discovered organically, it can in hindsight be constructed with these

properties in mind, and applying this same construction to L

�

L turns out to yield another

quasicritical.

· a b c u v d

a a a c u u d

b b b c v v d

c c c c d d d

u c c c d d d

v c c c d d d

d c c c d d d

Figure 5.4. The semigroup E.

The idea is to split the zero element of L

�

L into a two-element ideal {c, d}, so that the

quotient by this ideal is isomorphic to L

�

L. If we require also that c and d act respectively

as zeroes for {a, b} and {u, v}, and that the quotient by {{a, b, c}, {u, v, d}} is a right-zero
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semigroup, this uniquely determines a multiplication on {a, b, u, v, c, d}, given by Figure 5.4.

The resulting semigroup will be called E.

The structure in Figure 5.4 can be factored by the partitions {{a}, {b}, {u}, {v}, {c, d}}
and {{a, b, c}, {u, v, d}} to yield L

�

L and R, so it is a subdirect product of L

�

L and R.

This confirms that E is a semigroup, and shows that E ∈ SP(R,L
�

L) ⊆ V(L,R,P). (A

similar argument shows that C is a semigroup in SP(R,P).)

Just as adding a zero to C yields another quasicritical, it turns out that E0 is quasicriti-

cal. In general, if S, T, U are semigroups with S ∈ SP(T,U), then S0 ∈ SP(T0,U0). Since P

and L

�

L already have zero elements, we have C0 ∈ SP(R0,P) and E0 ∈ SP(R0,L

�

L).

Proposition 5.17. The semigroups C, C0, E, E0 are quasicritical, and

C ∈ SP(R,P), C0 ∈ SP(R0,P), E ∈ SP(R,L

�

L), E0 ∈ SP(R0,L

�

L).

Proof. We have already justified the containments, so it remains to show that the four

semigroups are quasicritical. We will prove only that E0 is quasicritical; the other cases are

analogous but simpler.

We will show that (u, v) is a critical pair of E0. Let ϕ : E0 → E0 be a homomorphism

with ϕ(u) 6= ϕ(v); it will suffice to show that ϕ is an automorphism.

Note that partition of E0 into L-classes is {{a, b}, {u, v}, {c}, {d}, {0}} (see Example 2.3).

We therefore have ϕ(u) L ϕ(v), as homomorphisms preserve Green’s relations. By inspecting

the L-classes, we see that ϕ(u) and ϕ(v) are either both idempotent or {ϕ(u), ϕ(v)} = {u, v}.
However, if ϕ(u) and ϕ(v) are both idempotent, then

ϕ(u) = ϕ(u)2 = ϕ(u2) = ϕ(d) = ϕ(v2) = ϕ(v)2 = ϕ(v),

contradicting the choice of ϕ. Thus, {ϕ(u), ϕ(v)} = {u, v}. By composing ϕ with the auto-

morphism of E0 interchanging (a, u) and (b, v), we can assume that ϕ(u) = u and ϕ(v) = v.

Now, we have ϕ(a)u = ϕ(a)ϕ(u) = ϕ(au) = ϕ(u) = u, so ϕ(a) is a left identity for u,

implying that ϕ(a) = a. By symmetry, ϕ(b) = b. Since {a, b, u, v} generates E, it follows

that ϕ�E is the identity map on E. Finally, since ϕ(0) is a zero for ϕ(E0) and E does not

have a zero, we must have ϕ(E0) 6= E, and therefore ϕ(0) = 0.

By deleting parts of the above argument, one easily shows that E is quasicritical. For C

and C0, use a similar proof, taking (u, b) as the critical pair. �

The quasicritical normal bands, along with N, P, C, C0, L

�

L, E, and E0, are the only

quasicriticals in V(L,R,P) of size at most seven (though we will not need to prove this fact

just now). Finding dualities for these semigroups, and various direct products thereof, was

the author’s starting point for proving the newly formulated Conjecture 5.16.

We can now state the result that will occupy us for the rest of the chapter: All finite

direct products of these 12 quasicriticals are dualisable. Although some of these products

are quite complicated, many of the techniques used to dualise L × P and R × P will be

applicable, so proving the main will result will primarily be a matter of perseverance. The

next largest quasicritical (obtained by taking κ = 1 in the proof of Theorem 3.63) introduces

a new configuration, present in all larger quasicriticals; this situation will be dealt with in

the next chapter.
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5.5. Meet operations

As explained in Section 5.4, our goal for the remainder of this chapter is to show that

all finite direct products of members of the set

C := {L,L0,R,R0, I,N,P,C,C0,L

�

L,E,E0}

are dualisable. When working with semigroups from C, we will often use without mention

the identities x2y ≈ xy and xyzt ≈ xzyt (see Proposition 5.15).

We define the subset P of C by

P := {P,C,C0,L

�

L,E,E0}.

The members of P will be called P-like semigroups (because they have P as a homomorphic

image). By Corollary 5.10, we know that all finite products of semigroups in C\P are

dualisable, so the P-like semigroups will be at the heart of our dualisability proofs.

In this section, we will construct compatible operations based on the P-like semigroups;

these will of course be used in our dualisability proofs in later sections. The proofs will often

require the reader to perform case-checks over the P-like semigroups; for this reason, we

recommend that the reader first familiarises themself with the members of P, for example

by determining Green’s relations in each of these semigroups and filling in the details of the

proof of Proposition 5.17. Determining the embedding order on P would also be worthwhile.

Theorem 5.18. Let S ∈ I(P), let w ∈ S\E(S), and let f ∈ S be the left identity for w.

Then there is a meet operation ∧ ∈ T2(S) such that f and w are maximal in 〈S;∧〉, the L-

classes Lf and Lw are up-sets of 〈S;∧〉, and left translation by f is an endomorphism

of 〈S;∧〉.

Proof. Label the elements of P, C, L

�

L, and E as in Figures 3.2, 5.1, 5.3, and 5.4.

If S ∈ {P,C,C0}, then the only choice for (f, w) is (e, u), while if S ∈ {L

�

L,E,E0},
then (f, w) can be either (a, u) or (b, v). In the latter case, however, there is an automorphism

of S interchanging (a, u) with (b, v), so we can assume in this case that (f, w) = (a, u). Thus,

for the six possible choice of S ∈ P, we will define the meet operation ∧ on S as in Figures 5.5

and 5.6. In each case, it is clear that f and w are maximal in 〈S;∧〉 and their L-classes are

up-sets, and it is easily seen that the left translation x 7→ fx preserves ∧. To complete the

proof, then, it suffices to show that the six possible meet operations given in Figures 5.5

and 5.6 are compatible with the respective choice of S ∈ P.

0

e u

b

a

e

u

0

b

a

e

u

Figure 5.5. From left to right: meet operations on P, C, and C0.
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0

b v

a u

d

c

b

v

a

u

0

d

c

b

v

a

u

Figure 5.6. From left to right: meet operations on L

�

L, E, and E0.

We will show that ∧ ∈ T2(S) using Lemma 4.33. Let x, y, z, t ∈ S to show that

(x ∧ y)(z ∧ t) = xz ∧ yt. (4)

Let s : S→ E(S) denote the square map x 7→ x2 (which is homomorphism).

First, consider the case S = P. Note that the subsemigroup 〈{e, 0}; · 〉 of P is a semi-

lattice, and by Lemma 4.34(i), the restriction of ∧ to {e, 0}2 is compatible with 〈{e, 0}; · 〉.
Since {e, 0} is the image of s, we have

(s(x) ∧ s(y))(s(z) ∧ s(t)) = s(x)s(z) ∧ s(y)s(t)

by Lemma 4.33. But s is an endomorphism of 〈P ;∧〉 (and of P), so this implies that

s((x ∧ y)(z ∧ t)) = s(xz ∧ yt)

That is, the two sides of (4) are related by ker(s). Now, the only non-trivial block of ker(s)

is {u, 0}, so to obtain (4) it suffices to show that (x∧ y)(z∧ t) = u⇔ xz∧ yt = u. We have

(x ∧ y)(z ∧ t) = u ⇐⇒ x ∧ y = e & z ∧ t = u

⇐⇒ x = y = e & z = t = u

⇐⇒ xz = yt = u

⇐⇒ xz ∧ yt = u.

Thus, (4) holds for S = P.

Next, consider the case S = C. Let h be the unique retraction of C onto the right-zero

subsemigroup 〈{a, b}; · 〉 (so h(e) = a and h(u) = b). Then h preserves ∧, and ∧ is compatible

with 〈{a, b}; · 〉 by Lemma 4.34(ii), so, as in the argument for P, we see that the two sides

of (4) are related by ker(h). Now, let q denote the unique surjective homomorphism C→ P

(so q−1(0) = {a, b}). Then q is also a semilattice homomorphism 〈C;∧〉 → 〈P ;∧〉. As ∧ is

compatible with P, it follows that the two sides of (4) are also related by ker(q). But the

kernels of h and q intersect trivially, so (4) holds for S = C.

For C0, note that 0 is a zero element for both multiplication and meet. Thus, the

equality (4) is clear if 0 ∈ {x, y, z, t}, and otherwise, we get equality from the case S = C.

Next, consider the case S = L

�

L. The square map s retracts L

�

L onto the sub-

semigroup 〈{a, b, 0}; · 〉 ∼= L0, and by Lemma 4.34(iii), the restriction of ∧ to {a, b, 0} is
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compatible with this subsemigroup. Thus, as in the S = P case, we find that the two sides

of (4) are related by ker(s). Now, let h : L

�

L→ L

�

L denote left translation by a, which

is a retraction onto the subsemigroup 〈{a, u, 0}; · 〉 ∼= P. Then h is a semilattice homomor-

phism onto 〈P ;∧〉, so, using the S = P case, we find that the two sides of (4) are related

by ker(h). The intersection of ker(s) and ker(h) has {u, v} as the only non-trivial block, so

it now suffices to show that (x ∧ y)(z ∧ t) = u⇔ xz ∧ yt = u. We have

(x ∧ y)(z ∧ t) = u ⇐⇒ x ∧ y = a & z ∧ t ∈ {u, v}

⇐⇒ x = y = a & z, t ∈ {u, v}

⇐⇒ xz = yt = u

⇐⇒ xz ∧ yt = u.

The case S = E is proved analogously to the S = C case, using the unique retraction

of E onto 〈{c, d}; · 〉 ∼= R and the unique surjective homomorphism q : E → L

�

L such

that q(u) = u. Finally, the case S = E0 is proved analogously to the S = C0 case. �

Now, we have three more operations to introduce (the word ‘meet’ in the section title was

actually meant in the sense of making acquaintance for the first time). These operations

integrate perhaps dozens of precursory operations constructed in specific cases. At this

point, they appear to perform genuinely different functions in the proofs, and it is unlikely

that any of them can be combined further.

Lemma 5.19. Let S be a semigroup, and let A and B be subsemigroups of S with B ∈ I(P).

Let F ⊆ A be a set of left identities of A, let U be an arbitrary subset of A, let f be in the

maximum J -class of B, and define the partial binary operation o on S by

dom(o) := {(x, y) ∈ A×B | y LB f =⇒ x ∈ F}, xo y :=

fy if x ∈ U ,

fy2 otherwise.

Then o ∈ P2(S).

Proof. By checking cases over B, it is easily verified that dom(o) is a subsemigroup of S2,

using the fact that yy′ L f implies y L y′ L f for all y, y′ ∈ B. Note that (xo y)2 = fy2 for

all (x, y) ∈ dom(o); this follows from the equations x2y ≈ xy and xyzt ≈ xzyt, which hold

in B.

Using Lemma 4.33, let (x, y), (z, t) ∈ dom(o) to show that

(xo y)(z o t) = xz o yt. (4)

Note that the image of o is contained in B, so we have ((xo y)(z o t))2 = (xo y)2(z o t)2

as B |= (xy)2 ≈ x2y2. Also, fy2ft2 = f(yt)2 follows from x2y ≈ xy and xyzt ≈ xzyt, so

((xo y)(z o t))2 = (xo y)2(z o t)2 = fy2ft2 = f(yt)2 = (xz o yt)2.

Thus, the two sides of (4) are related by the kernel of the square map s : B→ B. Now, let w

be the non-idempotent element of B with fw = w. The image of o is contained in fB, and

the kernel of s restricted to fB has {w,w2} as the only non-trivial block, so to obtain (4),
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it suffices to show that (x o y)(z o t) = w ⇔ xz o yt = w. To prove this, we will use the

following properties of o, which can be verified by case-checking over B again.

(∀(x, y) ∈ dom(o)) (xoy = f ⇐⇒ y LB f) & (xoy = w ⇐⇒ x ∈ U & y LB w). (×)

Now, we have

(xo y)(z o t) = w ⇐⇒ xo y = f & z o t = w (as the image of o is in fB)

⇐⇒ y LB f & z ∈ U & t LB w (by (×))

⇐⇒ y LB f & xz ∈ U & t LB w (as y LB f ⇒ x ∈ F )

⇐⇒ xz ∈ U & yt LB w

⇐⇒ xz o yt = w (by (×)). �

The prototype for the following operation was discovered by the first supervisor in the

original dualisability proof for L×P.

Lemma 5.20. Let S be a semigroup, and let A and B be subsemigroups of S with A ∈ I(C)

and B ∈ I(P). Assume that the maximum J -class of A is a (possibly trivial) left-zero

semigroup. Let a be an element of the maximum J -class of A, let u ∈ B\E(B), let e be the

left identity for u in B, and define the partial binary operation n on S by

dom(n) := (A×B)\{(a, e)}, xn y :=

u if (x, y) = (a, u),

u2 otherwise.

Then n ∈ P2(S).

Proof. By assumption, we have A ∈ I(C\{R,R0,N}). Using also B ∈ I(P), we have

(∀x, x′ ∈ A) xx′ = a =⇒ x = a, (∀y, y′ ∈ B) yy′ ∈ {e, u} =⇒ y = e.

This shows that dom(n) is a subsemigroup of A×B 6 S2. It also shows that (a, u) cannot

arise as a product in dom(n), for if (x, y)(x′, y′) = (a, u) for some (x, y), (x′, y′) ∈ A×B, then

we must have (x, y) = (a, e). This implies that J := dom(n)\{(a, u)} is an ideal of dom(n)

and that dom(n)/J ∼= N. Since {u, u2} is a two-element null subsemigroup of B, it follows

that n is a homomorphism. �

The last operation we will need is the following.

Lemma 5.21. Let S be a semigroup, and let A and B be subsemigroups of S with

A ∈ I(L

�

L,E,E0), B ∈ I(P,C,C0).

Let u ∈ A\E(A), let a be the left identity for u in A, and let r : A→ A denote the retraction

of A onto the ideal A\(LA
a ∪ LA

u ) of A. Let w be the non-idempotent element of B, let f

be the left identity of B, and define the partial binary operation / on S by

dom(/) := {(x, y) ∈ A×B | (y = f =⇒ x LA a) & (y = w =⇒ x LA u)},

x / y :=

x if y ∈ {f, w},

r(x) otherwise.

Then / ∈ P2(S).
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Proof. To see that dom(/) is a subsemigroup of S2, let (x, y), (x′, y′) ∈ dom(/). Then

yy′ = f =⇒ y = y′ = f =⇒ x, x ∈ LA
a =⇒ xx′ ∈ LA

a ,

yy′ = w =⇒ y = f & y′ = w =⇒ x ∈ LA
a & x′ ∈ LA

u =⇒ xx′ ∈ LA
u ,

so (xx′, yy′) ∈ dom(/), as required.

Using Lemma 4.33, let (x, y), (z, t) ∈ dom(/) to show that

(x / y)(z / t) = xz / yt. (4)

First, fix some c ∈ LA
a ∪ LA

u . We will show that (x / y)(z / t) = c⇔ xz / yt = c. Note that

since (x, y) ∈ dom(/), we have the implication xc = c⇒ y 6= w, because xc = c⇒ x ∈ LA
a .

This gives the equivalence

xc = c & y = f ⇐⇒ xc = c & y ∈ {f, w}. (♥)

Now, let k be the unique left identity for c in A, so k ∈ LA
a . Then

(∀x, y ∈ A) xy = c ⇐⇒ x = k & y LA c. (♦)

We have

(x / y)(z / t) = c ⇐⇒ x / y = k & z / t LA c (by (♦))

⇐⇒ x = k & y ∈ {f, w} & z LA c & t ∈ {f, w}

⇐⇒ x = k & z LA c & y = f & t ∈ {f, w} (by (♥))

⇐⇒ xz = c & yt ∈ {f, w} (by (♦))

⇐⇒ xz / yt = c.

This shows that either the two sides of (4) both lie in LA
a ∪ LA

u , in which case they are

equal, or else they both lie in the ideal A\(LA
a ∪LA

u ) of A. Assume that we are in the latter

situation. Then r fixes both (x / y)(z / t) and xz / yt. Using the fact that r(x / y) = r(x)

for all (x, y) ∈ dom(/), we have

(x / y)(z / t) = r((x / y)(z / t)) = r(x / y)r(z / t) = r(x)r(z) = r(xz) = r(xz / yt) = xz / yt,

as required. �

5.6. Three lemmas

Having introduced all of the necessary operations, we are now ready to prove our dual-

isability results. An overview of the main proof is as follows. Given a finite product S of

members of C, we will consider the alter ago S
˜

:= 〈S;P2(S),T〉 and a morphism ϕ : X→ S
˜for some X 6 S

˜
n and some n ∈ ω\{0}; the goal is to extend ϕ to an n-ary term function

of S, thus establishing (IC). The quasicritical direct factors of S can be viewed as subsemi-

groups, so we will aim to use Lemma 4.31, which requires us to construct term functions

that agree with ϕ on certain subsets of Sn.

In this section, we will establish several results concerning the existence of such term

functions. The proofs of these are certainly the most intricate in this thesis. Almost all of

the discussion in Section 4.5 up to Lemma 4.35 will be relevant here, and many of the ideas

in the remainder of Section 4.5 will be expanded upon.
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We first introduce the kinds of terms that we will construct in this chapter. Let n ∈ ω;

as in Section 4.5, it will be important here to identify n with the set {0, . . . , n− 1}. Let vi

denote the ith variable for each i ∈ n, and let J,K ⊆ n with J ∩ K = ∅ and K 6= ∅.

A (J,K)-term is an n-ary semigroup term of the form(∏
j∈J

vj

)
vk,

where k ∈ K and the product over J is taken in any order. A (J,K)-term function of

a semigroup S is a term function of S induced by a (J,K)-term. The term functions we

construct in the remainder of this chapter will always be (J,K)-term functions for suitable J

and K, so this notion will be of fundamental importance.

For a semigroup satisfying xyz ≈ yxz (which holds in V(R,P)), the function induced by

a (J,K)-term does not depend on the ordering of the J-indexed variables. For a semigroup

satisfying the weaker identity xyzt ≈ xzyt, the function induced by a (J,K)-term, for

a fixed k ∈ K, may depend on which variable occurs first in the product over J , but the

variables between the first and last can be permuted without changing the induced function.

We allow J = ∅ in the definition; in this case, a (J,K)-term is a projection term.

We will now prove three technical lemmas to be used in the main proof. These results

were abstracted from close to 30 separate dualisability proofs. As a result, they are quite

lengthy and involve many cases, but they still make our overall proof much shorter than

the collection of individual proofs. The reader will be rewarded for their perseverance in

Chapter 6, as the author was.

Lemma 5.22. Let S be a finite semigroup, and let A and B be subsemigroups of S such

that B ∈ I(P). Let w ∈ B\E(B), let f ∈ B be the left identity for w, and let ∧ ∈ T2(B) be a

meet operation such that LB
f and LB

w are up-sets of 〈B;∧〉. Let S
˜

:=〈S;P2(S),T〉, let X 6 S
˜
n

for some n ∈ ω\{0}, and let ϕ : X→ S
˜

be a morphism. Assume that w ∈ ϕ(BX), and let ŵ

denote the least element of ϕ−1(w) ∩BX with respect to ∧. Define

J := {i ∈ n | ŵ(i) LB f}, K := {i ∈ n | ŵ(i) LB w}.

Then the following hold:

(i) if F is the set of all left identities of A and A\F is either an ideal of A or empty,

then for every (J,K)-term function t of S and every x ∈ AX, we have

ϕ(x) ∈ F ⇐⇒ t(x) ∈ F =⇒ ϕ(x) = t(x);

(ii) if A ∈ I(R,R0, I), then every (J,K)-term function of S agrees with ϕ on AX.

Proof. Since A,B ∈ R1(S), we have S
˜
 A,B, so ϕ(AX) ⊆ A and ϕ(BX) ⊆ B. Thus, ϕ

restricts to a morphism 〈BX;∧〉 → 〈B;∧〉, so the set ϕ−1(w)∩BX is closed under ∧, which

shows that ŵ exists.

We first prove (i). If F is empty then (i) vacuously holds, so assume that F 6= ∅, and

let F ′ :=A\F . If F ′ 6= ∅, then the partition {F, F ′} of A corresponds to a congruence on A,

and the resulting quotient is isomorphic to I. Now, note that {f, wf} is a two-element

subsemilattice of B, so, whether or not F ′ = ∅, we may define a homomorphism r : A→ B

by r(F ) = {f} and r(F ′) ⊆ {wf}. Since r ∈ P1(S), we have S
˜
 r.
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We claim that

For every (J,K)-term function t of S, we have (∀x ∈ AX) ϕ(x) ∈ F =⇒ t(x) ∈ F . (.)

To prove (.), let t be a (J,K)-term function of S, and let x ∈ AX with ϕ(x) ∈ F . Then ϕ

preserves the multiplication of B by Lemma 4.33, so ϕ(r(x)ŵ) = r(ϕ(x))ϕ(ŵ) = fw = w,

and by the definition of ŵ we then have r(x)ŵ > ŵ in 〈BX;∧〉. Now, since LB
f and LB

w are

up-sets of 〈B;∧〉, we have for all i ∈ J ∪ K that (r(x)ŵ)(i) ∈ LB
f ∪ LB

w , so r(x)(i) ∈ LB
f ;

thus, x(i) ∈ F for all i ∈ J ∪K. As F forms a subsemigroup of A, it follows that t(x) ∈ F ,

which proves (.).

For each c ∈ A, define the following partial binary operation on S, which is compatible

with S by Lemma 5.19:

dom(oc) := {(x, y) ∈ A×B | y LB f =⇒ x ∈ F}, xoc y :=

fy if x = c,

fy2 otherwise.

Here, the crucial property of oc is that whenever (x, y) ∈ dom(oc) with x oc y LB w, we

must have x = c, since otherwise xoc y is idempotent. This will be used to prove the claim:

(∀c ∈ A)(∀x ∈ ϕ−1(c) ∩AX) xoc ŵ is defined =⇒ x(i) = c for all i ∈ K. (/)

To prove (/), let c ∈ A and x ∈ ϕ−1(c) ∩ AX, and assume x oc ŵ is defined, in which case

it must lie in BX. Then ϕ(x oc ŵ) = c oc w = fw = w, so x oc ŵ > ŵ by definition of ŵ.

As LB
w is an up-set, we have for all i ∈ K that (xoc ŵ)(i) LB w , so x(i) = c, proving (/).

Let t be a (J,K)-term function of S. To prove (i), it will suffice to prove that the

following implications hold for all x ∈ AX (recall that F ′ = A\F ):

ϕ(x) ∈ F =⇒ t(x) = ϕ(x), ϕ(x) ∈ F ′ =⇒ t(x) ∈ F ′.

Let x ∈ AX, and define c := ϕ(x). First, assume that c ∈ F ; we must show that t(x) = c.

By (.) we have t(x) ∈ F , so x(i) ∈ F for every i ∈ J because t is a (J,K)-term function

and F ′ is an ideal. It follows that xoc ŵ is defined, so by (/) we have x(i) = c for all i ∈ K.

Since t is a (J,K)-term function and F is a right-zero semigroup, we have t(x) = c = ϕ(x).

Now assume that c ∈ F ′; we must prove that t(x) ∈ F ′. If x(i) ∈ F ′ for some i ∈ J ,

then clearly t(x) ∈ F ′, so assume that x(i) ∈ F for all i ∈ J . Then x oc ŵ is defined, so

by (/) we have x(i) = c ∈ F ′ for all i ∈ K. Since F ′ is an ideal, it follows that t(x) ∈ F ′,
and this completes the proof of (i).

To prove (ii), we apply (i) to A. Note that F is the set of non-zero elements of A, so (i)

implies that ϕ and t must agree on AX, for every (J,K)-term function t. �

Lemma 5.23. Let S be a finite semigroup, and let A and B be subsemigroups of S such

that B ∈ I(P,C,C0). Let f be the left identity of B, let w be the non-idempotent element

of B, and let ∧ ∈ T2(B) be a meet operation such that f and w are maximal in 〈B;∧〉.
Let S

˜
:= 〈S;P2(S),T〉, let X 6 S

˜
n for some n ∈ ω\{0}, and let ϕ : X→ S

˜
be a morphism.

Assume that w ∈ ϕ(BX), and let ŵ denote the least element of ϕ−1(w) ∩ BX with respect

to ∧. Define

J := {i ∈ n | ŵ(i) = f}, K := {i ∈ n | ŵ(i) = w}.

Then K 6= ∅, and the following hold:
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(i) if A ∈ I(P,C,C0) and there exists a homomorphism h : A → B with w ∈ h(A),

then every (J,K)-term function of S agrees with ϕ on AX;

(ii) if A ∈ I(L,L0), then there exists a (J,K)-term function of S that agrees with ϕ

on AX;

(iii) if A ∈ I(L

�

L,E,E0) and there exists a homomorphism h : A→ B with w ∈ h(A),

then there exists a (J,K)-term function of S that agrees with ϕ on AX.

Proof. The existence of ŵ is proved as in Lemma 5.23. To see that K 6= ∅, suppose to

the contrary that K = ∅. Then ŵ2 = ŵ, so because ϕ preserves the multiplication of B by

Lemma 4.33, we have ϕ(ŵ) = ϕ(ŵ2) = ϕ(ŵ)2 = w2 6= w, contradicting ŵ ∈ ϕ−1(w).

To prove (i), assume that A ∈ I(P,C,C0). Let e denote the left identity of A and u

the non-idempotent element of A. Also, let a := ue and b := u2, and denote the zero of A

by 0 if it exists. Then a = b if and only if A ∼= P, in which case 0 = a = b.

Note that a homomorphism h : A→ B with w ∈ h(A) exists if and only if the following

implications hold:

(A ∼= P =⇒ B ∼= P) & (A ∼= C0 =⇒ B 6∼= C).

Fix a homomorphism h : A → B with w ∈ h(A). One easily verifies that there is unique

choice for h, and it satisfies h−1(f) = {e} and h−1(w) = {u}.
Let t be a (J,K)-term function of S. We must show that t agrees with ϕ on AX.

Since ϕ(AX) ⊆ A, this is equivalent to showing that ϕ(x) = c implies t(x) = c for all c ∈ A
and all x ∈ AX.

Let x ∈ AX with ϕ(x) = u. We will show that t(x) = u. We have h(x) ∈ BX, and

since S
˜
 h, we have ϕ(h(x)) = h(ϕ(x)) = h(u) = w, so h(x) > ŵ with respect to the ∧-

order. Now, f and w are maximal in 〈B;∧〉, so h(x)(i) = f for all i ∈ J and h(x)(i) = w

for all i ∈ K. Since h−1(f) = {e} and h−1(w) = {u}, this implies that x(i) = e for all i ∈ J
and x(i) = u for all i ∈ K. Thus, t(x) = u, by the definition of a (J,K)-term function.

Combining this with Lemma 5.22(i) (where F = {e}), we have

(∀x ∈ AX) ϕ(x) ∈ {e, u} =⇒ t(x) = ϕ(x).

Now, let 〈a〉 denote the ideal of A generated by a. Then 〈a〉 = A\{e, u}, so to prove (i),

it remains to show that ϕ(x) ∈ 〈a〉 ⇒ t(x) = ϕ(x) for all x ∈ AX. First, we will show that

(∀x ∈ AX) ϕ(x) ∈ 〈a〉 =⇒ t(x) ∈ 〈a〉. (♥)

By Lemma 5.19, the following operation is in P2(S):

dom(o) := {(x, y) ∈ A×B | y = f =⇒ x = e}, xo y :=

y if x ∈ 〈a〉,

y2 otherwise.

To prove (♥), let x ∈ AX with ϕ(x) ∈ 〈a〉. We will show that t(x) ∈ 〈a〉. This is immediate

if x(i) 6= e for some i ∈ J (by choice of t and A), so we can assume that x(i) = e for all i ∈ J .

Then xo ŵ is defined, xo ŵ ∈ BX, and since ϕ(x) ∈ 〈a〉, we have ϕ(xo ŵ) = ϕ(x)ow = w.

Now the definition of ŵ gives xo ŵ > ŵ. By maximality of w, we have (xo ŵ)(k) = w for

all k ∈ K, so x(k) ∈ 〈a〉 for all k ∈ K, and hence t(x) ∈ 〈a〉. We have shown that (♥) holds.
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In the case a = b, we are done, so assume that a 6= b. We must show that ϕ(x) ∈ 〈a〉
implies t(x) = ϕ(x) for all x ∈ AX. Let A0 be the subsemigroup of A on A0 := 〈a〉.
Then A0 is isomorphic to R or R0, so by Lemma 5.22(ii), we have that t agrees with ϕ

on AX
0 . Now, let x ∈ AX with ϕ(x) ∈ 〈a〉. By (♥), we have t(x) ∈ 〈a〉, so a is a left

identity for ϕ(x) and t(x). Since ax ∈ AX
0 , we have ϕ(ax) = t(ax), so as ϕ preserves the

multiplication of A, we have

ϕ(x) = aϕ(x) = ϕ(ax) = t(ax) = at(x) = t(x).

This completes the proof of (i).

To prove (ii), assume that A ∈ I(L,L0). Let {a, b} denote the non-trivial L-class of A,

and let 0 denote the zero of A, if it exists. Thus, A is either {a, b} or {a, b, 0}.
First, we will prove that for every (J,K)-term function t of S, we have

(∀x ∈ AX) ϕ(x) ∈ {a, b} ⇐⇒ t(x) ∈ {a, b}. (♦)

This is trivial when A = {a, b}, so assume for the proof of (♦) that A = {a, b, 0}. Let t be

a (J,K)-term function of S, and let A0 be the subsemigroup of A on A0 := {a, 0}, which is

a two-element semilattice. By Lemma 5.22(ii) applied to A0, we have ϕ(x) = a⇔ t(x) = a

for all x ∈ AX
0 . Now, if x ∈ AX, then ax ∈ AX

0 , so ϕ(ax) = a ⇔ t(ax) = a. Hence, for

all x ∈ AX, we have

ϕ(x) ∈ {a, b} ⇔ aϕ(x) = a⇔ ϕ(ax) = a⇔ t(ax) = a⇔ at(x) = a⇔ t(x) ∈ {a, b}.

Thus, (♦) holds.

Let u be the meet operation of the three-element chain a > b > 0 restricted to A2.

Then u ∈ T2(A) by Lemma 4.34, so S
˜
 u. Now, since a ∈ ϕ−1(a)∩AX, the set ϕ−1(a)∩AX

is non-empty, so it has a least element, â, with respect to u. We will prove that

There exists a (J,K)-term function t of S with t(â) = a. (♣)

We consider two cases. First, consider the case where â(i) 6= a for all i ∈ J . By Lemma 5.20,

the following operation is compatible with S:

dom(n) = (A×B)\{(a, f)}, xn y :=

w if (x, y) = (a,w),

w2 otherwise.

Now, â n ŵ ∈ BX is defined and ϕ(â n ŵ) = a n w = w, so â n ŵ > ŵ with respect to ∧.

Since f 66 w,w2 with respect to ∧ and ân ŵ ∈ {w,w2}n, the inequality ân ŵ > ŵ implies

that J = ∅. Further, for all i ∈ K, we have (ân ŵ)(i) = w by maximality of w, so â(i) = a.

Now, let t be any (J,K)-term function of S (there is at least one, as K 6= ∅). Since J is

empty, t is a projection onto some coordinate in K, so t(â) = a.

To complete the proof of (♣), it remains to consider the case where there exists j ∈ J
with â(j) = a. In this case, choose any k ∈ K, and define t to be the (J,K)-term function

of S induced by the n-ary term

vj

(∏
i∈J

vi

)
vk.

Then, since t(â) ∈ {a, b} by (♦), we have t(â) = a by the choice of j. This completes the

proof of (♣).
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Given (♦), to complete the proof of (ii) it suffices to show that

There is a (J,K)-term function t of S with (∀x ∈ AX) ϕ(x) ∈ {a, b} =⇒ t(x) = ϕ(x).

Choose, via (♣), a (J,K)-term function t of S with t(â) = a. Let j ∈ n be the index of the

left-most variable appearing in some term inducing t. Then â(j) = a as t(â) = a.

Let x ∈ AX with ϕ(x) = a. Then x > â with respect to u. As a is maximal in 〈A;u〉,
we have x(j) = a, so t(x) = a by (♦) and the choice of j. Now let x ∈ AX with ϕ(x) = b,

and let g be the non-trivial automorphism of A. Then ϕ(g(x)) = a, so t(g(x)) = a by the

previous argument, and hence t(x) = b. This completes the proof of (ii).

To prove (iii), assume that A ∈ I(L

�

L,E,E0), and let h : A → B with w ∈ h(A).

Let u and v denote the non-idempotent elements of A, and let a ∈ A and b ∈ A be the

left identities for u and v, respectively. Thus, {a, b} and {u, v} are the non-trivial L-classes

of A. Note that h must satisfy h−1(f) = {a, b} and h−1(w) = {u, v}. We claim that

For every (J,K)-term function t of S, we have (∀x ∈ AX) ϕ(x) LA t(x). (♠)

For the proof of (♠), let A0 be the subsemigroup of A on A0 :=aA. Then A0 ∈ I(P,C,C0).

As LB is trivial, the homomorphism h factors through A/LA ∼= A0; hence, there is a

homomorphism h′ : A0 → B with w ∈ h′(A0). Thus, we can apply (i) to A0 and conclude

that every (J,K)-term function of S agrees with ϕ on AX
0 . Now, if t is a (J,K)-term function

of S and x ∈ AX, then ax ∈ AX
0 , so ϕ(ax) = t(ax), and hence aϕ(x) = at(x). Since left

translation by a on A has kernel LA, this shows that (♠) holds.

Now, ϕ(AX) contains E(A) and is closed under the automorphisms of A, so ϕ(AX)

equals either A or E(A). Thus, we have u ∈ ϕ(AX) if and only if ϕ(AX) = A. We will

consider separately the cases u /∈ ϕ(AX) and u ∈ ϕ(AX).

First, consider the case where u /∈ ϕ(AX), so v /∈ ϕ(AX) also. Let A0 be the sub-

semigroup of A on A0 := {a, b, ua}, which is isomorphic to L0. Let r : A → A0 be the

homomorphism fixing a and b and sending the remaining elements of A to ua. By (ii)

applied to A0, there is a (J,K)-term function t of S that agrees with ϕ on AX
0 . Now,

let x ∈ AX with ϕ(x) ∈ {a, b}. Then r(x) ∈ AX
0 , and so ϕ(r(x)) = t(r(x)). By (♠), we

have t(x) ∈ {a, b}, and so r fixes ϕ(x) and t(x). Thus,

ϕ(x) = r(ϕ(x)) = ϕ(r(x)) = t(r(x)) = r(t(x)) = t(x).

Now (♠) implies that t agrees with ϕ on AX.

It remains to consider the case where u, v ∈ ϕ(AX). Let u ∈ T2(A) be a meet operation

such that a and u are maximal in 〈A;u〉 and {a, b}, {u, v} are up-sets of 〈A;u〉; such a

meet operation exists by Theorem 5.18. Let û denote the least element of ϕ−1(u)∩AX with

respect to u. Define

Ju := {i ∈ n | û(i) ∈ {a, b}}, Ku := {i ∈ n | û(i) ∈ {u, v}}.

We claim that Ju = J and Ku = K. First, we will show that J ⊆ Ju and K ⊆ Ku. Using

the homomorphism h : A → B with w ∈ h(A), we have h(u) = w, so ϕ(h(û)) = h(u) = w,

and therefore h(û) > ŵ with respect to ∧. Now, since f and w are maximal in 〈B;∧〉,
we have h(û)(i) = f for all i ∈ J and h(û)(i) = w for all i ∈ K. Since h−1(f) = {a, b}
and h−1(w) = {u, v}, this gives J ⊆ Ju and K ⊆ Ku.
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For the reverse inclusions, let r : A→ A be the retraction of A onto A\{a, b, u, v}. By

Lemma 5.21, the following operation is compatible with S:

dom(/) := {(x, y) ∈ A×B | (y = f =⇒ x ∈ {a, b}) & (y = w =⇒ x ∈ {u, v})},

x / y :=

x if y ∈ {f, w},

r(x) otherwise.

From the inclusions J ⊆ Ju and K ⊆ Ku, it follows that û / ŵ is defined and lies in AX.

Now, ϕ(û / ŵ) = u / w = u, so û / ŵ > û with respect to u. Using that {a, b} and {u, v}
are up-sets of 〈A;u〉, we have (û / ŵ)(i) ∈ {a, b} for all i ∈ Ju and (û / ŵ)(i) ∈ {u, v} for

all i ∈ Ku. We must then have ŵ(i) ∈ {f, w} for all i ∈ Ju ∪Ku. Taking into account the

inclusions J ⊆ Ju and K ⊆ Ku, we have further that ŵ(i) = f for all i ∈ Ju and ŵ(i) = w

for all i ∈ Ku. Thus, Ju = J and Ku = K.

We will now prove the following claim.

There exists a (J,K)-term function t of S with t(û) = u. (†)

To prove this, we split once more into two cases. First, suppose that û(i) 6= a for all i ∈ n.

By Lemma 5.20, the following operation is compatible with S:

dom(n) = (A×A)\{(a, a)}, xn y :=

u if (x, y) = (a, u),

u2 otherwise.

Now, a n û ∈ AX is defined and ϕ(a n û) = a n u = u, so a n û > û with respect to u.

The tuple a n û lies in {u, u2}n, so because {a, b} is an up-set of 〈A;u〉 and a n û > û,

the tuple û cannot have any coordinates in {a, b}. Thus, J = Ju = ∅. Further, for

all i ∈ K, we have (a n û)(i) = u by maximality of u in 〈A;u〉, so û(i) = u. Now, let t

be a projection onto some coordinate in K (which is a (J,K)-term function of S, since J is

empty). Then t(û) = u.

Now consider the case where û(j) = a for some j ∈ n. Then j ∈ J . In this case, choose

any k ∈ K = Ku, and let t be the (J,K)-term function of S induced by the n-ary term

vj

(∏
i∈J

vi

)
vk.

Then, since t(û) ∈ {u, v} by (♠), we have t(û) = u by the choice of j. This proves (†).
To complete the proof of (iii), it suffices by (♠) to show that for all c ∈ {a, b, u, v}, we

have ϕ(x) = c ⇒ t(x) = c for all x ∈ AX. Choose, via (†), a (J,K)-term function t of S

such that t(û) = u.

Let x ∈ AX with ϕ(x) = u. Then x > û with respect to u, so because t preserves the u-

order, we have t(x) > t(û) = u. By maximality of u in 〈A;u〉, this implies that t(x) = u.

Let x ∈ AX with ϕ(x) = a. Then ϕ(xû) = ϕ(x)ϕ(û) = au = u, so by the previous

paragraph we have t(xû) = u. Now t(x)u = t(x)t(û) = t(xû) = u, so t(x) is a left identity

for u, implying that t(x) = a.

Now let x ∈ AX with ϕ(x) = b, and let g be the non-trivial automorphism of A.

Then ϕ(g(x)) = a, so t(g(x)) = a by the previous argument, and hence t(x) = b. Similarly,

if x ∈ AX with ϕ(x) = v, then t(x) = v. By (♠), it follows that t agrees with ϕ on AX. �
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Lemma 5.24. Let S be a finite semigroup, and let T be a subsemigroup of S with T ∈ I(P).

Let u ∈ T\E(T), and let a ∈ T be the left identity for u. Let ∧ ∈ T2(T) be a meet

operation such that a and u are maximal in 〈T ;∧〉 and left translation by a preserves ∧.

Let S
˜

:= 〈S;P2(S),T〉, let X 6 S
˜
n for some n ∈ ω\{0}, and let ϕ : X→ S

˜
be a morphism.

Assume that u ∈ ϕ(TX), let û denote the least element of ϕ−1(u) ∩ TX with respect to ∧,

and define

J := {i ∈ n | û(i) LT a}, K := {i ∈ n | û(i) LT u}.

Then the following hold:

(i) if T ∈ I(P,C,C0), then every (J,K)-term function of S agrees with ϕ on TX;

(ii) if T ∈ I(L

�

L,E,E0), then there exists a (J,K)-term function of S that agrees

with ϕ on TX.

Proof. For (i), take B = A = T and h = idT in Lemma 5.23(i).

To prove (ii), let T0 be the subsemigroup of T on T0 := aT . Then T0 ∈ I(P,C,C0),

and left translation by a is a homomorphism h : T→ T0 that has u in its image.

To apply Lemma 5.23(iii) with A = T and B = T0, take the restriction of ∧ to T 2
0 . We

claim that aû is the least element of ϕ−1(u) ∩ TX
0 , with respect to the ∧-order. First, we

have ϕ(aû) = au = u, so aû ∈ ϕ−1(u) ∩ TX
0 . Let x ∈ ϕ−1(u) ∩ TX

0 . Then x ∈ ϕ−1(u) ∩ TX,

so x > û with respect to ∧. Now, left translation by a is ∧-preserving and fixes T0 pointwise,

so x > û implies x = ax > aû. Thus, aû is the least element of ϕ−1(u) ∩ TX
0 . Finally, we

have for all i ∈ n that û(i) LT a⇔ (aû)(i) = a and û(i) LT u⇔ (aû)(i) = u. Hence,

J = {i ∈ n | aû(i) = a}, K := {i ∈ n | aû(i) = u}.

Now Lemma 5.23(iii) gives the result. �

5.7. A dualisability theorem

Using the technical results of Section 5.6, we can now prove that certain direct products

of members of C are dualisable. We will then show that every finite direct product of

members of C generates the same quasivariety as one of the specific products covered by

Lemma 5.25. By the Independence of Generator Theorem 4.6, it will follow that all finite

direct products of members of C are dualisable.

Lemma 5.25. Let 1 denote the trivial semigroup, let

T ∈ I(P), U ∈ I(1,L,L0,L

�

L,E,E0), V ∈ I(1,R,R0),

and let S be isomorphic to T×U×V. Assume that the following implications hold:

(i) if U is non-trivial, then T ∈ I(P,C,C0);

(ii) if, furthermore, U ∈ I(L

�

L,E,E0), then there is a homomorphism h : U → T

whose image contains the non-idempotent element of T.

Then S
˜

:= 〈S;P2(S),T〉 satisfies (IC) with respect to S.

Proof. Let X 6 S
˜
n for some n ∈ ω\{0}, and let ϕ : X → S

˜
be a morphism. We must

show that ϕ extends to a term function of S. Note that E(T), E(U), and V are normal

bands, so E(S) is a normal band.
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First, assume that ϕ(X) ⊆ E(S). Applying the Term Retract Lemma 5.8, take A to be

the normal band E(S), take A
˜

:= 〈A;P2(A),T〉, and take r to be the square map S → A.

Then ϕ extends to a term function of S, by Theorem 4.42 and the Term Retract Lemma 5.8.

Thus, for the remainder of the proof, we can assume that ϕ(X) contains a non-idempotent

element of S, say v.

Let u ∈ T\E(T), and let a be the left identity for u in T. We claim that there is

an endomorphism of S taking v to u. Since S ∈ SP(T,U,V) and V is a band, there is

a homomorphism, k, from S into either T or U with k(v) 6= k(v2). In the former case

(i.e., k : S→ T), we can follow k by an automorphism of T if necessary to get the required

endomorphism sending v to u. Otherwise, if k : S → U, then U is not a band, so the

assumptions of (i) and (ii) hold, and then h ◦ k must send v to u. As ϕ(X) contains v and

is closed under the endomorphisms of S, it follows that u ∈ ϕ(X).

By Lemma 4.26, we can assume that T,U,V 6r S. Then S
˜
 T,U, V , so ϕmaps TX, UX,

and V X respectively into T , U , and V . Let ∧ ∈ T2(T) be a meet operation such that a and u

are maximal in 〈T ;∧〉, left translation by a preserves ∧, and LT
a , LT

u are up-sets of 〈T ;∧〉;
such an operation exists by Theorem 5.18. As u ∈ ϕ(X), we have u = ϕ(x) for some x ∈ X.

But there is a retraction r of S onto T, so u = r(u) = r(ϕ(x)) = ϕ(r(x)) ∈ ϕ(TX). Thus,

we may let û be the least element of ϕ−1(u) ∩ TX with respect to ∧, and also define

J := {i ∈ n | û(i) LT a}, K := {i ∈ n | û(i) LT u}.

By Lemma 4.31, it suffices to show that there is an n-ary term function of S that agrees

with ϕ on TX ∪UX ∪ V X. We will first show that there is a (J,K)-term function of S that

agrees with ϕ on TX ∪ UX. We consider three cases:

(1) U is trivial;

(2) U ∈ I(L,L0);

(3) U ∈ I(L

�

L,E,E0).

Case (1): Assume that U is trivial. We claim that there exists a (J,K)-term function

of S that agrees with ϕ on TX. We will apply Lemma 5.24 to T. In case (ii) of Lemma 5.24,

we are done; in case (i), note that K 6= ∅ by Lemma 5.23, so there is at least one (J,K)-

term function. We conclude in both cases that there exists a (J,K)-term function of S that

agrees with ϕ on TX, and also on UX, because U is trivial.

Case (2): Since T ∈ I(P,C,C0) by (i), we may apply Lemma 5.23(ii) with B = T

and A = U. We conclude that there is a (J,K)-term function t of S that agrees with ϕ

on UX. By Lemma 5.24(i) applied to T, the term function t also agrees with ϕ on TX.

Case (3): Again we have T ∈ I(P,C,C0) by (i). Applying Lemma 5.23(iii) with A = U

and B = T, there is a (J,K)-term function t of S that agrees with ϕ on UX, and by applying

Lemma 5.24(i) to T, we find that the term function t also agrees with ϕ on TX.

Thus, there is a (J,K)-term function t of S that agrees with ϕ on TX∪UX. To complete

the proof, we need only see that t also agrees with ϕ on V X. This is obvious if V is trivial,

and if V is non-trivial, then we may apply Lemma 5.22(ii) with B = T and A = V. �

The following three short lemmas are now all that we need for the main result.
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Lemma 5.26. Let U ⊆ C contain precisely one P-like semigroup. Then there is a finite

semigroup S such that SP(S) = SP(U) and S
˜

:= 〈S;P2(S),T〉 satisfies (IC) with respect

to S.

Proof. Let T be the P-like semigroup in U. Since N and I embed into T, we may assume

that U\{T} ⊆ {L,L0,R,R0}. Thus, SP(U) can be generated by S ∼= T×U×V for some

choice of U ∈ {1,L,L0} and V ∈ {1,R,R0}. Now, if T ∈ I(L
�

L,E,E0), then U embeds

into T, in which case we can replace U with the trivial semigroup without changing SP(S).

Thus, we can assume without loss of generality that condition (i) of Lemma 5.25 holds.

Since (ii) holds vacuously, the desired result follows from Lemma 5.25. �

Lemma 5.27. Let U ⊆ C, and assume that every U′ ⊆ C with SP(U′) = SP(U) contains at

least two P-like semigroups. Then SP(U) can be generated by one of the following sets:

{P,E0}, {C0,E}, {P,E}, {P,E,R0}.

Proof. We can assume that U is an antichain with respect to the embedding order; i.e.,

if U,V ∈ U with U ∈ S(V), then U = V.

We have SP(L

�

L,E) = SP(L

�

L,R) and SP(L

�

L,E0) = SP(L

�

L,R0) by Proposi-

tion 5.17. Thus, if U contains L

�

L and E (E0), then E (E0) can be replaced by R (R0)

without changing SP(U). We can therefore assume that U contains at most one member

of {L

�

L,E,E0}. Similarly, we can assume U contains at most one member of {P,C,C0}.
Thus, U ∩P = {T,U} for some T ∈ {P,C,C0} and some U ∈ {L

�

L,E,E0}.
Suppose that U = L

�

L. Then we can assume that T = P (otherwise, if T ∈ {C,C0},
then T can be replaced by R or R0). But then T embeds into U, which is impossible as U

is an antichain. So the case U = L

�

L cannot occur; thus, U ∈ {E,E0}. Now, noting

that C ∈ S(E) and C,C0 ∈ S(E0), we see that U = E implies T ∈ {P,C0}, while U = E0

implies T = P. This narrows U ∩P down to the three sets {P,E0}, {C0,E}, and {P,E}.
If U∩P = {P,E0}, then since C\P ⊆ S(E0), we have U = {P,E0}. If U∩P = {C0,E},

then since R0 ∈ S(C0) and L0 ∈ S(E), we have C\P ⊆ S(C0,E), and so U = {C0,E}.
Finally, if U ∩P = {P,E}, then C\(P ∪ {R0}) ⊆ S(E), so U\P is either ∅ or {R0}. �

Lemma 5.28. Let U be one of the following subsets of C:

{P,E0}, {C0,E}, {P,E}, {P,E,R0}.

Then there is a finite semigroup S such that SP(S) = SP(U) and S
˜

:= 〈S;P2(S),T〉 satis-

fies (IC) with respect to S.

Proof. Note that SP(U) may be generated by S ∼= T × U × V, where (T,U) is one

of (P,E0), (C0,E), or (P,E) and V is either R0 or trivial. By considering the possible

choices of T and U, it is easy to see that there is a homomorphism h : U → T containing

the non-idempotent element of T in its image. (The key ideas are: P is a homomorphic

image of E and E0, while factoring E by its L relation yields C, which embeds into C0.)

Thus, T, U, and V satisfy conditions (i) and (ii) of Lemma 5.25, so the result follows. �

Finally, we can assemble the main result of this chapter.
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Theorem 5.29. Let U ⊆ C. Then there is a finite semigroup S such that SP(S) = SP(U)

and S
˜

:= 〈S;P2(S),T〉 satisfies (IC) with respect to S. Consequently, every finite direct

product of members of C is dualisable.

Proof. If U does not contain a P-like semigroup, then U ⊆ V(L,R, I,N) and the result

follows from Corollary 5.10. Thus, we can assume that U contains a P-like semigroup,

and therefore every U′ ⊆ C with SP(U′) = SP(U) contains a P-like semigroup. If there

is some U′ ⊆ C such that SP(U′) = SP(U) and U′ contains exactly one P-like semigroup,

then the result follows from Lemma 5.26 applied to U′. Otherwise, the result follows from

Lemma 5.27 and Lemma 5.28. The ‘consequently’ part follows from the (IC) Duality The-

orem 4.5 and the Independence of Generator Theorem 4.6. �



CHAPTER 6

The Dualisable Class

Although Theorem 5.29 covers a lot of ground, significantly extending the dualisability

result for normal bands (Theorem 4.41), it deals with only finitely many subquasivarieties

of V(L,R,P). Theorem 5.29 was the culmination of about two years of dualisability proofs,

but in terms of proving Conjecture 5.16, there was still quite a long road ahead.

Not too long after proving Theorem 5.29, the author visited Ross Willard at the Univer-

sity of Waterloo for a research collaboration, where we spent two weeks on problems relating

to the dualisability problem for aperiodic semigroups. In all, we looked at only three specific

semigroups, but they proved to be quite important examples.

The first two semigroups we looked at were the two possible one-point inflations of the

two-element cyclic group; as mentioned in Section 5.3, this led the author almost imme-

diately to Theorem 5.9. Not only did this greatly simplify the proof of Corollary 5.10, it

inspired many simplifications of the proofs leading up to Theorem 5.29, which was originally

proved by separately considering each possible direct product of quasicriticals. Although

the proof of Theorem 5.29 in its current form is fairly complicated, it could easily have been

two or three times its current length.

The simplifications to Theorem 5.29 gave the author some hope that a proof of Conjec-

ture 5.16 would actually be possible (if not during the author’s candidature, then during

their lifetime). If the structure of the quasicriticals in V(L,R,P) could be narrowed down

to a sufficiently transparent form, then perhaps, by generalising the techniques of Chapter 5,

it could be proved that all finite direct products of these quasicriticals are dualisable.

This was essentially the plan of attack that the author posed to Ross Willard, but

he suggested that we look at another example, so we did (the author continued to study

the quasicriticals on the side, with limited success). After the quasicriticals covered in

Theorem 5.29, the next largest quasicritical in V(L,R,P) was the semigroup in Figure 6.1.

This semigroup arises from the construction in Theorem 3.63 by taking κ = 1.

It was clear almost immediately that there was something different about this semigroup.

The proof of Theorem 5.29 relied on the existence of compatible meet operations for the

quasicriticals (Theorem 5.18), but it turned out that the semigroup in Figure 6.1 does not

have a compatible meet operation. Still, progress was made by using meet operations on

certain subsemigroups (such as L

�

L), and by the end of the first week, we came quite close

to a dualisability proof.

In the meantime, while studying quasicriticals, the author found that all subdirectly

irreducibles in V(L,R,P) of size greater than three are of the form T

�

U for some left-

normal band T acting totally on a set U . The author then suspected that all quasicriticals

in V(L,R,P) may be constructed from the finite subdirectly irreducibles in the same manner

that E and E0 were constructed from L

�

L. Unfortunately, working with quasicriticals in

131
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general was much more difficult, and there did not seem to be any humanly way to prove

this conjecture. However, we were unknowingly closing in on the dualisable class.

· a b c d u v p 0

a a a a a u u u 0

b b b b b v v v 0

c a a c c u u p 0

d b b d d v v p 0

u 0 0 0 0 0 0 0 0

v 0 0 0 0 0 0 0 0

p 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Figure 6.1. A subdirectly irreducible in V(L,R,P).

6.1. Preliminaries

In preparation for the main result, we will devote this short section to a study of the

variety V(L,R,P). In this chapter, we will be working exclusively in V(L,R,P); thus,

the equations x2y ≈ xy and xyzt ≈ xzyt will be used frequently without mention (see

Proposition 5.15). We will also use freely the identities in the following result.

Proposition 6.1. Let S ∈ V(L,R,P). Then the following identities hold in S:

xn ≈ x2 (n > 2), (xy)2 ≈ x2y2 ≈ xy2, xyz ≈ xyxz.

Consequently, E(S) is a normal band and all left translations in S are endomorphisms of S.

The next three results provide us with useful consequences of the theory developed in

Chapters 2 and 3.

Proposition 6.2. Every semigroup in V(L,R,P) has J = D.

Proof. Since V(L,R,P) |= x3 ≈ x2, this follows from Theorem 2.38. �

Proposition 6.3. Let S ∈ V(L,R,P), and let a ∈ S. Then a ∈ E(S) if and only if a 4J a2.

Proof. Since S is both periodic and aperiodic, this follows from Theorem 2.42. �

Proposition 6.4. Let S ∈ V(L,R,P), and let a ∈ S. If a is idempotent, then Ja is a

rectangular band. Therefore, if a2 6= a, then Ja contains no idempotents.

Proof. Assume that a is idempotent. Every nilpotent semigroup satisfying x2y ≈ xy is

null, so by Theorem 3.13, Ja is a completely simple subsemigroup of S. A completely simple

semigroup is completely regular by Theorem 2.43, so Ja is a rectangular band by aperiodicity.

This shows in particular that the J -class of an idempotent contains only idempotents, so

the last claim is immediate. �

The remaining results in this section reveal some important special features of Green’s

relations in V(L,R,P).
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Proposition 6.5. Let S ∈ V(L,R,P), and let a ∈ S\E(S). Then Ra = {a} and Ja = La.

Proof. Let b ∈ Ra, so b = au for some u ∈ S1. If u 6= 1, then a J b = au = a2u 4J a2,

contradicting Proposition 6.3. Therefore, u = 1, so b = a.

This shows that Ra = {a}. Thus, if c ∈ Ja, then by Propositions 2.16 and 6.2 the

set Ra ∩ Lc = {a} ∩ Lc is non-empty, so c ∈ La. �

Proposition 6.6. Let S ∈ V(L,R,P). Then 4J is compatible with S.

Proof. It suffices to show that 4J is left- and right-compatible. Let a, b, c ∈ S with a 4J b,

so a = xby for some x, y ∈ S1. Then ca = cxby = cxcby ∈ 〈cb〉 and ac = xbyc = xbybc ∈ 〈bc〉,
so ca 4J cb and ac 4J bc, as required. �

Proposition 6.7. Let S ∈ V(L,R,P), and let a, b ∈ E(S). Then a 4J b⇔ aba = a.

Proof. Let a, b ∈ S. Assume that a 4J b. Then a = aaa 4J aba by Proposition 6.6, and

clearly aba 4J a, so a J aba. By Proposition 6.4, Ja is a rectangular band containing a

and aba, so aba = a(aba)a = a. Conversely, if aba = a, then a = aba 4J b. �

For S ∈ V(L,R,P), it can be shown that 4L is also compatible, though we will not

use this fact. However, the quasi-order 4R is not compatible in general; indeed, 4R can

fail to be compatible even in V(P). The reader may verify, for example, that 4R is not

compatible with the semigroup S :=I×P. Nonetheless, R is a congruence on all semigroups

in V(L,R,P), as the final result in this section shows. (In fact, it can easily be shown from

the results in this section that all of Green’s relations are congruences in V(L,R,P), though

we will not need this result.)

Proposition 6.8. Let S ∈ V(L,R,P). Then for all a, b, c ∈ S, we have(
a L b =⇒ ca = cb

)
&
(
a R b =⇒ ac = bc

)
.

Consequently, L and R are congruences on S.

Proof. We will use only the fact that S |= {xyzt ≈ xzyt, xy2z ≈ xyz}, so it suffices by

symmetry to show that a L b⇒ ca = cb for all a, b, c ∈ S and that L is a congruence.

Let a, b ∈ S with a 6= b and a L b, and let x, y ∈ S with xb = a and ya = b. Then xya = a

and yxya = b, so for all c ∈ S, we have ca = cxya = cxyya = cyxya = cb. This shows in

particular that L is left-compatible, so L is a congruence by Proposition 2.15. �

6.2. A quasiequation

During the final week of the author’s collaboration with Ross Willard, we continued

searching for a dualisability proof for the semigroup in Figure 6.1, which we will denote

by S1 for the moment. Though we thought we were close to a proof at the start of the week,

it kept fighting back against any new partial operations we introduced. So, we soon shifted

course and tried to prove that S1 is non-dualisable. By the end of the collaboration, we

had established that it is not finitely dualisable (i.e., not dualisable by an alter ego of finite

type). This was quite strong evidence that S1 is non-dualisable. The author typed up the

proof on the way home from Canada and began dissecting it.
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The original non-finite-dualisability proof for S1 was a somewhat technical proof taking

up several pages, but the author eventually stumbled across a one-line calculation that

captured the non-dualisability of S1. This calculation showed that S1 is in fact inherently

non-dualisable, and the proof was then easily generalised so that it no longer relied on S1

having a zero element; an arbitrary ideal would work in place of the zero.

This generalisation had huge implications for the dualisability problem. The author had

already shown that S1 embeds into every larger finite subdirectly irreducible in V(L,R,P),

so this result implied that all of these larger subdirectly irreducibles are inherently non-

dualisable as well. Furthermore, the removal of the dependence on the zero element sug-

gested that all quasicriticals of size greater than seven are inherently non-dualisable, but

some more work was needed to confirm this suspicion.

In contrast to the rather unwelcome discovery that Conjecture 5.3 is false, the disproof

of Conjecture 5.16 gave the author a profound sense of relief. Theorem 5.29, which was

thought to be a very special case of a dualisability theorem for V(L,R,P), now appeared

to be all that was needed on the dualisability side. On the non-dualisability side, it seemed

that the proof for S1 would imply the non-dualisability of all of the remaining semigroups.

The only thing left to do was some semigroup theory.

Although no more progress had been made on describing the quasicriticals in V(L,R,P),

the author pondered the problem from a different point of view after obtaining the inherent

non-dualisability proof for S1. It would be quite auspicious if there were some quasiequations

differentiating the quasicriticals in C (Section 5.5) from all of the larger quasicriticals. And

lo, within minutes of having this thought, the following quasiequation came to mind:

xw ≈ yw → xzw ≈ yzw.

This was, in effect, the solution to the dualisability problem for aperiodic semigroups. After

the several weeks spent on S1, it was clear that this quasiequation captured the essential

difference between S1 and the quasicriticals in C; in particular, it is satisfied by the semi-

groups in C, but not by S1. The next obvious step was to show that it fails in all larger

quasicriticals. However, a much more convenient result was quickly discovered: a failure

of xw ≈ yw → xzw ≈ yzw for a finite S ∈ V(L,R,P) implies the existence of an inherently

non-dualisable subsemigroup. This is the content of the next two results.

Lemma 6.9. Let S ∈ V(L,R,P) such that S 6|= xw ≈ yw → xzw ≈ yzw. Then there

are a, b, c, d ∈ E(S) and u, v, p ∈ S\E(S) such that |{a, b, c, d, u, v, p}| = 7 and the following

products hold in S (cf. Figure 6.1 ).

· a b c d u v p

a a a a a u u u

b b b b b v v v

c a a c c u u p

d b b d d v v p

Moreover, in the subsemigroup T of S generated by {a, b, c, d, u, v, p}, the ideal 〈p2〉 of T

coincides with T\{a, b, c, d, u, v, p}.
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Proof. Choose w, x, y, z ∈ S such that xw = yw and xzw 6= yzw. Since S |= x2y ≈ xy, we

may assume that x, y, z ∈ E(S), so that the following four elements are also idempotent:

c := xy, d := yxy, a := czc, b := dzd.

It is easily verified that {c, d} is a left-zero subsemigroup of S. Since c L d, we have a L b
by Proposition 6.8, so {a, b} is also a left-zero subsemigroup of S. By construction, a and b

are zeroes for c and d, respectively; thus, by Proposition 6.8, we have

ad = ac = a, bc = bd = b, cb = ca = a, da = db = b.

This suffices to verify the multiplication on {a, b, c, d}. Next, define

p := xw = yw, u := ap, v := bp.

Then xp = yp = p, so by the definitions of c and d we have cp = dp = p. Using the table

of products for {a, b, c, d}, the remainder of the table in the statement is easily verified. We

must show that |{a, b, c, d, u, v, p}| = 7 and that u, v, p /∈ E(S). We have

u = ap = czcp = czp = xyzp = xzyp = xzyyw = xzyw = xzxw = xzw,

and similarly v = yzw, so u 6= v. Since cp = p and cv 6= v, we have p 6= v, and by symmetry

we have p 6= u. Thus, |{u, v, p}| = 3.

Now, if u ∈ E(S), then v2 = (bu)2 = bu2 = bu = v, so v ∈ E(S). By symmetry, u ∈ E(S)

if and only if v ∈ E(S). Suppose that u, v ∈ E(S). Then cap2 = (cap)2 = u2 = u, and we

similarly have dap2 = v. But cp = dp, so u = capp = cpap = dpap = dapp = v, which is a

contradiction. Thus, u, v /∈ E(S). Since ap = u 6= u2 = (ap)2 = ap2, we have p2 6= p, and

so u, v, p /∈ E(S).

Now, {a, b, c, d} ∩ {u, v, p} = ∅ as a, b, c, d ∈ E(S). Since |{u, v, p}| = 3 and a, b, c, d

have pairwise distinct actions on {u, v, p} by left translation, we must have |{a, b, c, d}| = 4,

so |{a, b, c, d, u, v, p}| = 7.

To prove the ‘moreover’ part, let X :={a, b, c, d, u, v, p}; we must show that T\X = 〈p2〉.
Note that u = ap = cbdv, so u 4J x for all x ∈ X. Suppose there is some x ∈ X ∩ 〈p2〉.
Then u 4J x 4J p2, so u 4J p2, and Proposition 6.6 gives u = au 4J ap2 = (ap)2 = u2,

contradicting Proposition 6.3. Thus, 〈p2〉 ⊆ T\X.

Conversely, let x ∈ T\X. Since X generates T, there exist n > 1 and x1, . . . , xn, y ∈ X
such that x = x1 · · ·xny. Now, if x1, . . . , xn ∈ {a, b, c, d}, then x ∈ X, contradicting the

choice of x, so we must have {u, v, p} ∩ {x1, . . . , xn} 6= ∅. Therefore, since u, v ∈ Tp, we

have x ∈ T 1pT ⊆ 〈p2〉. Thus, T\X = 〈p2〉. �

Since a failure of xw ≈ yw → xzw ≈ yzw for a semigroup in V(L,R,P) implies the

existence of at least eight elements, we have the following consequence of Lemma 6.9.

Corollary 6.10. Let S ∈ V(L,R,P). If |S| 6 7, then S |= xw ≈ yw → xzw ≈ yzw.

The next result is a generalised proof that S1 is inherently non-dualisable. The author

is indebted to Ross Willard for his many contributions to the original version of the proof,

which are hardly reflected in the almost disappointingly short final version.
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Theorem 6.11. Let S ∈ V(L,R,P) be finite with S 6|= xw ≈ yw → xzw ≈ yzw. Then S is

inherently non-dualisable.

Proof. Choose a, b, c, d, u, v, p ∈ S as in Lemma 6.9. To prove that S is IND, it suffices to

show that S has an IND subsemigroup, so we may assume without loss of generality that S

is generated by X := {a, b, c, d, u, v, p}. By Lemma 6.9, the ideal I := 〈p2〉 is equal to S\X.

We claim that S\{a, c, u} = {b, d, v, p} ∪ I is a right ideal of S. Since I = S\X is an

ideal, it suffices to show that {v, p}S ⊆ I and {b, d}X ⊆ {b, d, v, p}. First, if x ∈ {v, p},
then for all y ∈ S, we have xy 4J py = p2y 4J p2, so xy ∈ I. Also, if x ∈ {b, d} and y ∈ X,

then xy ∈ {b, d, v, p} from the table in Lemma 6.9. Thus, {b, d, v, p} ∪ I is a right ideal.

We will apply Theorem 4.8. Let Z be any infinite set. Since S\{a, c, u} is a right ideal

of S, we may let B be the subsemigroup of SZ on the set

B := {z ∈ SZ | (∃i ∈ Z) z(i) /∈ {a, c, u}}.

Recalling Notation 4.9, let B0 := {uvi | i ∈ Z}, and define ϕ : N→ N by ϕ(n) := n.

Let n ∈ N, and let θ be a congruence on B with |B/θ| 6 n. We will show that θ�B0
has

a unique block of size greater than ϕ(n) = n. Let J and K be disjoint subsets of Z such

that |J | = |K| = n+ 1 and the sets {uvi | i ∈ J}, {uvi | i ∈ K} are each contained in a block

of θ�B0
. We will show that uvj θ u

v
k for some j ∈ J and some k ∈ K.

Write J = {j0, . . . , jn} and K = {k0, . . . , kn}. Then the set {uppjsks | s ∈ {0, . . . , n}} has

size n+ 1, so it must contain a pair of distinct θ-related elements, since |B/θ| 6 n. In other

words, there exist distinct i, j ∈ J and distinct k, l ∈ K such that uppik θ u
pp
jl . Now, we have

uppik = adciku
pp
ik θ a

dc
iku

pp
jl = uvi ,

and by symmetry we have uppik θ u
v
k, so uvi θ u

v
k. We have shown that Theorem 4.8(i) holds.

Finally, the element g ∈ SZ defined in Theorem 4.8(ii) is the constant tuple u /∈ B. �

The first aperiodic semigroup considered by the author in the context of the dualisability

problem was L × P; this was suggested by the first supervisor as the simplest unresolved

example of a semigroup that ought to be non-dualisable. As we now know, any attempt to

show that L×P is non-dualisable was doomed from the start, so the author was eventually

forced to move on to other examples. It was not until after the author obtained Theorem 5.12

that we found that L×P is dualisable.

After this discovery, it looked to be the case that all finite semigroups in V(L,P) (and

the larger variety V(L,R,P)) are dualisable, mainly due to the absence of any obvious

candidates for non-dualisable members. This would have been a remarkable result if true,

since dualisable algebras generating residually large varieties are quite rare (L×P was only

the second example discovered, after Ross Willard’s example in [16, §4]).

Theorem 6.11, quite poetically, was the last (non-)dualisability result that the author

needed for the classification theorem, and it finally restored some sanity to the situation.

Residual smallness and dualisability are not so drastically different after all; the trigger for

non-dualisability in V(L,R,P) simply manifests at a slightly higher level than the trigger

for residual largeness. Certainly, the connection between these properties is still far from

being understood, but now, perhaps, there is more of a reason for us to try to understand it.
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6.3. The dualisable quasicriticals

After discovering Theorem 6.11, the finish line was now visible. It ought to be the

case that the only quasicriticals in V(L,R,P) satisfying xw ≈ yw → xzw ≈ yzw are the

members of the set

C = {L,L0,R,R0, I,N,P,C,C0,L

�

L,E,E0}.

Proving this would complete the classification of dualisable finite aperiodic semigroups.

After months of unsuccessful attempts to describe the quasicriticals in V(L,R,P), the

quasiequation xw ≈ yw → xzw ≈ yzw released all of the built-up knowledge into a proof of

the following result.

Theorem 6.12. Let S ∈ V(L,R,P) be quasicritical. Then S |= xw ≈ yw → xzw ≈ yzw if

and only if S ∈ I(L,L0,R,R0, I,N,P,C,C0,L

�

L,E,E0).

The goal of this section is to prove Theorem 6.12. We remark that Theorem 5.11 follows

from Theorem 6.12, as xw ≈ yw → xzw ≈ yzw holds in P1. The proof of Theorem 6.12

presented here greatly simplifies the proof of Theorem 5.11 published in [42].

First, we will identify and dispense with the case where S is a band or a null semigroup.

Lemma 6.13. Let S ∈ V(L,R,P) be quasicritical, and let (u, v) be a critical pair of S.

Then the following hold:

(i) if u2 6= v2, then S is isomorphic to a member of {L,L0,R,R0, I};
(ii) if one of u, v does not have a left identity in S, then S ∼= N.

Proof. (i): By Proposition 6.1, the square map x 7→ x2 is a retraction of S onto E(S). If

it separates (u, v), then S ∼= E(S) is a band and the result follows from Theorem 4.25.

(ii): We may assume by symmetry that u does not have a left identity. Then u is not

idempotent, so by Proposition 6.1, {u, u2} is a subsemigroup of S isomorphic to N. Now,

note that if u ∈ SS, so u = xy for some x, y ∈ S, then x is a left identity for u, which is

a contradiction. Thus, u /∈ SS. It follows that J := S\{u} is an ideal of S and S/J ∼= N.

The quotient map S→ S/J evidently separates u and v, and therefore S ∼= N. �

For the remainder of this section, we fix a quasicritical S ∈ V(L,R,P), not isomorphic

to a member of {L,L0,R,R0, I,N}, such that S |= xw ≈ yw → xzw ≈ yzw. The aim is to

show that S is isomorphic to a member of

P = {P,C,C0,L

�

L,E,E0}.

The proof will be split into two main cases, which will be split further into three sub-cases.

Let (u, v) be a critical pair of S. By Lemma 6.13, we have u2 = v2, and u and v both

have left identities in S. If u and v were both idempotent, we would evidently have u2 6= v2,

so we must have either u2 6= u or v2 6= v.

The two main cases we will consider are u 6L v and u L v. In the case that u 6L v, we will

show that S is isomorphic to P, C, or C0. In this case, we have u 6J v by Proposition 6.5,

since u and v are not both idempotent. As the assumptions on u and v so far are symmetric,

we will assume in the case u 6L v that u 64J v. It is then necessary that u2 6= u, for otherwise

we would have u = u2 = v2 4J v.
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In the case that u L v, we will show that S is isomorphic to L

�

L, E, or E0. Since u J v,

we must have u2 6= u and v2 6= v by Proposition 6.4.

To summarise, it will suffice by symmetry to consider the following two cases:

(L1) u 64J v, which implies u2 6= u;

(L2) u L v, which implies u2 6= u and v2 6= v.

In both cases, we have u2 = v2, and u, v both have left identities in S. In Case (L1), it

will turn out that Lu has one element, while in Case (L2), it will turn out that Lu has two

elements; hence the labels (L1), (L2).

A common feature of the semigroups in P is that they all have P as a homomorphic

image. Our first step will be to show that our quasicritical S has P as a homomorphic image

by means of a partition. First, we have the following lemma.

Lemma 6.14. Let w ∈ S\E(S), and let a ∈ S. Then w 4J a2 if and only if aw L w.

Consequently, the set {x ∈ S | w 4J x2} forms a subsemigroup of S if it is non-empty.

Proof. If aw L w, then w J aw = a2w 4J a2. Conversely, assume that w 4J a2, so we

have w = xa2y for some x, y ∈ S1. If y = 1, so w = xa2, then w is idempotent, which is a

contradiction. Thus, y 6= 1, which gives

w = xa2y = xay = (xa)2y = xaxay = xaw ∈ Saw,

and clearly aw ∈ Sw, so aw L w. For the last claim, it suffices to show that {x ∈ S | xw L w}
is closed under multiplication. Let a, b ∈ S with aw L bw L w. Then by Proposition 6.8 we

have bw L w ⇒ abw = aw L w. �

Now, define the following subsets of S:

T := {x ∈ S | xu L u} = {x ∈ S | u 4J x2},

W := {x ∈ S | u 4J x & u 64J x2},

I := S\(T ∪W ) = {x ∈ S | u 64J x}.

These sets are non-empty, since T contains all left identities of u, while u ∈W and u2 ∈ I.

Since u 4J x2 ⇒ u 4J x, it follows that {T,W, I} is a partition of S.

Lemma 6.15. The partition {T,W, I} corresponds to a congruence π on S with S/π ∼= P.

The left identity of S/π is T and the zero element is I.

· T W I

T T W I

W I I I

I I I I

Proof. It is easily shown that I is an ideal of S, and by Lemma 6.14, T is a subsemigroup

of S. To complete the proof, we must show that TW ⊆W and WS ⊆ I.

Let x ∈ T and y ∈ W . Then u 4J y, so by Proposition 6.6 we have xu 4J xy. By

definition of T , we have u J xu, so u 4J xy, and hence xy ∈ T∪W . But (xy)2 = x2y2 4J y2,

so because u 64J y2, we have u 64J (xy)2. Hence, xy ∈W , which shows that TW ⊆W .

Finally, let x ∈ W and y ∈ S. Then xy = x2y 4J x2, so as u 64J x2, we have u 64J xy.

Hence, xy ∈ I, showing that WS ⊆ I. �
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We will proceed by further refining the partition {T,W, I} according to the various cases.

Recall that in Case (L1), we aim to show that S is isomorphic to P, C, or C0. Since u ∈W
and v ∈ I in this case, we will immediately have S ∼= P if P embeds into S. Otherwise,

we will see that C embeds into S, and so we must further refine I into two or three blocks,

depending on whether C0 embeds into S. In Case (L2), we must split both T and W into

two blocks, and then split the ideal I depending on cases, analogously to Case (L1).

Lemma 6.16. In Case (L1), every left identity for u is a left identity of S, and Ju = {u}.

Proof. Let a be a left identity for u. If au = av, then u = au = av 4J v, contradicting (L1).

Thus, au 6= av. Since left translation by a is an endomorphism of S separating the critical

pair (u, v), it is an automorphism. As all left translations in S are idempotent maps, a

is a left identity of S. Now, if x, y ∈ S with x L y, then we have x = ax = ay = y by

Proposition 6.8, so the L relation on S is trivial. Proposition 6.5 gives Ju = Lu = {u}. �

Define the following subsets of T and W (which will be interesting only in the (L2) case):

A := {x ∈ S | xu = u} 6= ∅,

B := T\A = {x ∈ S | xu L u & xu 6= u},

U :=AW,

V :=W\U.

Clearly, if B is non-empty, then {A,B} partitions T . Since u ∈W and u has a left identity,

we have u ∈ U ; in particular, U 6= ∅. Since A ⊆ T and TW ⊆ W , it follows that U ⊆ W ,

so if V 6= ∅, then {U, V } is a partition of W .

In Case (L1), we have T = A since Lu is trivial by Lemma 6.16, and by the same

result, A is the set of left identities of S, so U = AW = W . Thus, B = V = ∅ in this case.

In Case (L2), we will find that B and V are both non-empty.

Lemma 6.17. Let w ∈W . Then u = ew for some e ∈ A.

Proof. By definition of W , we have u 4J w, so u = ewt for some e, t ∈ S1. If t 6= 1, then

we would have u = ew2t 4J w2, contradicting w ∈W . Thus, t = 1, so u = ew. Since u has

a left identity in S, we can assume that e 6= 1. Then eu = eew = ew = u, so e ∈ A. �

Lemma 6.18. In Case (L2), we have that v ∈ V , all left identities of v lie in B, and

AT ⊆ A, BT ⊆ B, AW ⊆ U, BW ⊆ V.

In table form:

· A B U V

A A A U U

B B B V V

Consequently, {A,B,U, V, I} corresponds to a congruence λ on S with S/λ ∼= L

�

L.

Proof. We have u 4J v and u 64J u2 = v2, so v ∈ W . To show that v ∈ V , suppose to

the contrary that v ∈ U . Then v = aw for some a ∈ A and some w ∈ W , so a is a left

identity for both u and v. But since u L v, Proposition 6.8 gives u = au = av = v, which is
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a contradiction. Hence v ∈ V . Now let b be a left identity for v. Then, by Proposition 6.8,

we have bu = bv = v L u, so b ∈ T . But bu = v 6= u, so b ∈ B.

Now, T is a subsemigroup and {A,B} is a partition of T , so to show that AT ⊆ A

and BT ⊆ B, it suffices to show that xy ∈ A ⇔ x ∈ A for all x, y ∈ T . Let x, y ∈ T .

Then yu L u, so by Proposition 6.8 we have xyu = xu. Thus, xyu = u⇔ xy = u, and this

gives xy ∈ A⇔ x ∈ A, as required.

Now, AW ⊆ U is true by the definition of U , so it remains to show that BW ⊆ V . This

will be the only point in this section where we use the quasiequation xw ≈ yw → xzw ≈ yzw.

Note that the statement BW ⊆ V can be expressed as

(∀c ∈ T )(∀x ∈W ) c ∈ B =⇒ cx ∈ V.

We will show this in the contrapositive. Let c ∈ T and x ∈ W with cx ∈ U to show c ∈ A.

Since cx ∈ U , there are d ∈ A and y ∈W with cx = dy. Let w := cx = dy, so cw = dw = w.

Since w ∈W , Lemma 6.17 gives u = ew for some e ∈ S. Now, cw = dw implies cew = dew

as S |= xw ≈ yw → xzw ≈ yzw, so cu = cew = dew = du = u. Hence, c ∈ A. �

Lemma 6.19. Assume that (L2) holds, and let e ∈ T . Then there are L-related idempo-

tents a, b ∈ T with au = av = u and bu = bv = v and ua = ub = ue.

Proof. By definition of T , we have eu L u, so by Proposition 6.8, we have ueu = u2, and

hence ue = u2e = ueue = uee; thus, ue = ue2, so by replacing e with e2, we can assume

that e is idempotent.

Choose c, d ∈ S with cv = u and du = v. Since S |= x2y ≈ xy, we can assume that c

and d are idempotent. Let a′ := cd and b′ := dcd. Then a′ and b′ are idempotent with

a′b′ = a′, b′a′ = b′, a′u = cdu = u, b′u = dcdu = v.

Proposition 6.8 then gives a′v = a′u = u and b′v = b′u = v.

Now, by Lemma 6.18, a := a′e is a left identity for u and b := b′e is a left identity for v.

Clearly a and b are idempotent and lie in T . We have a′ L b′ ⇒ a L b by Proposition 6.8, and

the same result gives au = av and bu = bv. Finally, we have ua = ua′e = ua′ue = u2e = ue,

and ub = ua by Proposition 6.8 again. �

Lemma 6.20. Assume that ue = u2 for some e ∈ T . Then S is isomorphic to P or L

�

L.

Proof. In Case (L1), Lemma 6.16 implies that T = A and e is a left identity of S. It is

then easily checked that {e, u, u2} is a subsemigroup isomorphic to P. The congruence π

from Lemma 6.15 separates the critical pair (u, v), so it follows that S ∼= P.

In Case (L2), use Lemma 6.19 to choose L-related idempotents a, b ∈ T with au = av = u

and bu = bv = v and ua = ub = ue = u2. Then {a, b, u, v, u2} is isomorphic to L

�

L. The

congruence λ from Lemma 6.18 separates u and v, so S ∼= L

�

L. �

Lemma 6.21. Let m ∈ S be idempotent with mu2 = m, and assume that me 6= m for

all e ∈ T . Let Sm denote the subsemigroup of S on Sm := {x ∈ S | m 4J x2}, and define

Y := {x ∈ Sm | u 64J x & mx = m}, X := {x ∈ Sm | u 64J x & mx 6= m}.

Then {T,W,X, Y } is a partition of Sm, and the corresponding equivalence relation ψ is a

congruence on Sm with Sm/ψ ∼= C.
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· T X W Y

T T X W Y

X X X Y Y

W X X Y Y

Y X X Y Y

Proof. That Sm is a subsemigroup follows from the compatibility of 4J . As m 4J u2, we

have T ∪W ⊆ Sm, and also u 64J m, so m ∈ Y 6= ∅. To see that X 6= ∅, choose any e ∈ T .

Then me ∈ Sm because Sm is a subsemigroup. Now, we have me 4J m 4J u2, so u 64J me,
and by assumption we have me 6= m, so me ∈ X. Thus, both X and Y are non-empty. We

also have X ∪Y = I ∩Sm, so X ∪Y is an ideal of Sm, and {T,W,X, Y } is indeed a partition

of Sm. Given Lemma 6.15, it remains to show that

(∀x, y ∈ Sm) xy ∈W ∪ Y ⇐⇒ y ∈W ∪ Y.

We will first prove the following claim.

(∀y ∈ Sm) y ∈W ∪ Y ⇐⇒ my = m. (♥)

Let y ∈ Sm. First, assume that y ∈ W . Then u = ey for some e ∈ A by Lemma 6.17.

Thus, u2 = uey = ueuy = u2y, showing that u2 is a left zero for y. Now m is a left zero

for u2 by assumption, so my = mu2y = mu2 = m. Thus, y ∈W implies my = m. If y ∈ Y ,

then my = m by definition of Y . Thus, y ∈ W ∪ Y implies my = m. For the converse,

assume that y ∈ Sm\(W ∪ Y ) = T ∪ X. If y ∈ T , then by assumption we have my 6= m,

and if y ∈ X, then my 6= m by definition of X. This proves (♥).

Now, let x, y ∈ Sm. Then m 4J x2, so we have mxm = mx2m = m by Proposition 6.7.

Thus, mxy = mxmy = my, so by (♥) we have xy ∈W ∪ Y ⇔ y ∈W ∪ Y . �

Let M denote the minimum ideal of S, which exists because S is a finite semigroup

(Theorem 2.4). By Theorems 2.40 and 2.43 and the aperiodicity of S, the subsemigroup

on M is a rectangular band.

Lemma 6.22. Assume that ue 6= u2 for all e ∈ T , and that

(∀m ∈M)(∀e ∈ T ) me 6= m or mu2 6= m.

Then S is isomorphic to C or E.

Proof. In Case (L1), let e be any left identity for u. Then e is a left identity of S by

Lemma 6.16. Now, e, u, and u2 lie in T , W , and I, respectively, while ue = u2e⇒ ue ∈ I,

and ue 6= u2 by assumption. Thus, |{e, u, ue, u2}| = 4, and it is now easily checked that the

subsemigroup {e, u, ue, u2} is isomorphic to C.

In Case (L2), use Lemma 6.19 to choose L-related idempotents a, b ∈ T with au = av = u

and bu = bv = v (which is possible as there is at least one e ∈ T ). Then {a, b, u, v, ua, u2}
is isomorphic to E.

Now consider simultaneously the cases (L1) and (L2). Let m be any element of Mu2,

so mu2 = m. Then me 6= m for all e ∈ T by assumption. Define the following subsets of I:

Y := {x ∈ I | mx = m}, X := {x ∈ I | mx 6= m}.
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Note that m 4J x2 for all x ∈ S, so by Lemma 6.21, we have that {T,W,X, Y } partitions S

and that the quotient of S by this partition is isomorphic to C.

In Case (L1), we have u ∈ W and v ∈ I, so there is a homomorphism from S onto C

separating (u, v). Since C embeds into S, we have S ∼= C.

In Case (L2), we have u ∈ U and v ∈ V , and Lemma 6.18 implies that the refined

partition {A,B,U, V,X, Y } gives a quotient isomorphic to E, so S ∼= E. �

The final piece of the proof of Theorem 6.12 is the following.

Lemma 6.23. Assume that ue 6= u2 for all e ∈ T , and that

(∃m ∈M)(∃e ∈ T ) me = m and mu2 = m.

Then S is isomorphic to C0 or E0.

Proof. Fix m ∈ M and e ∈ T such that me = m and mu2 = m. Define z := um ∈ M .

Then z is idempotent as M is a (rectangular) band. Clearly z is a left zero for ue and u2,

since m is, and since zu ∈ M is idempotent, we have zu = (zu)2 = zu2 = z. This shows

that z is a left zero for {u, ue, u2}. We will now split into cases to show that S has a

subsemigroup isomorphic to C0 or E0.

First, consider Case (L1). Then e is a left identity for u. As in Lemma 6.22, e is a left

identity of S and {e, u, ue, u2} is isomorphic to C. We have ze = z as me = m, so z is a left

zero for {e, u, ue, u2}. Since u2 is a right zero for {e, u, ue, u2}, so is z = u2m. That is, z is

a zero for {e, u, ue, u2}, so {e, u, ue, u2, z} is isomorphic to C0.

Now consider Case (L2). By Lemma 6.19, we may choose L-related idempotents a, b ∈ T
with au = av = u and bu = bv = v and ua = ub = ue. Then {a, b, u, v, ua, u2} is isomorphic

to E. Since ua = ue, we know that z is a left zero for {u, ua, u2}, and by Proposition 6.8,

we have zv = zu = z. Now, zu = z and zua = z imply za = zua = z, and so zb = za = z

by Proposition 6.8. Thus, z is a left zero for {a, b, u, v, ua, u2}. Since u2 is a right zero

for {a, b, u, v, ua, u2}, so is z = u2m. Hence, {a, b, u, v, ua, u2, z} is isomorphic to E0.

Now consider simultaneously the cases (L1) and (L2). Define the following subsets of I:

Y := {x ∈ I | u2 4J x2 and u2x = u2}, X := {x ∈ I | u2 4J x2 and u2x 6= u2}.

By Lemma 6.21, {T,W,X, Y } partitions the subsemigroup Su2 on Su2 = {x ∈ S | u2 4J x2},
and the quotient of Su2 by this partition is isomorphic to C.

Let Z := I\(X ∪ Y ) = S\(T ∪W ∪ X ∪ Y ), so Z = {x ∈ S | u2 64J x2}. We claim

that z ∈ Z, from which it will follows that Z is non-empty and is therefore an ideal of S.

Suppose that u2 4J z2 = z. Then u2 = u2zu2 by Proposition 6.7, so u2 = u2zu2 = z since z

is a zero for u2. But then u2 = z is a left zero for ue, implying that ue = u2ue = u2, which

is a contradiction. Hence, u2 64J z2, so Z is an ideal of S. It is now clear that the quotient

of S by the partition {T,W,X, Y, Z} is isomorphic to C0.

In Case (L1), we have u ∈ W and v ∈ I, and so S ∼= C0. In Case (L2), we have u ∈ U
and v ∈ V , and Lemma 6.18 implies that the refined partition {A,B,U, V,X, Y, Z} gives a

quotient isomorphic to E0, so S ∼= E0. �

Theorem 6.12 now follows from Lemmas 6.20, 6.22, 6.23 and Corollary 6.10.
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6.4. The classification theorem and its corollaries

We have effectively shown via Theorems 5.29, 6.11, and 6.12 that the dualisable members

of V(L,R,P) are precisely those finite members that satisfy xw ≈ yw → xzw ≈ yzw. This

completes the classification of dualisable finite aperiodic semigroups. Before stating our

main result formally, we will give a neater description of the dualisable class.

Theorem 6.24. The class of semigroups in V(L,R,P) satisfying xw ≈ yw → xzw ≈ yzw

is precisely SP(R0,L

�

L). That is,

SP(R0,L

�

L) = [x2y ≈ xy, xyzt ≈ xzyt, xw ≈ yw → xzw ≈ yzw].

The class of quasicriticals in SP(R0,L

�

L) is I(L,L0,R,R0, I,N,P,C,C0,L

�

L,E,E0).

Proof. Let Q := [x2y ≈ xy, xyzt ≈ xzyt, xw ≈ yw → xzw ≈ yzw]. Then Q ⊆ V(L,R,P)

by Proposition 5.15, so Q is locally finite by Theorem 1.10. By Corollary 4.18 and Theo-

rem 6.12, we therefore have Q = SP(L,L0,R,R0, I,N,P,C,C0,L

�

L,E,E0). Now, it is

clear that L,L0,R, I,N,P ∈ S(R0,L

�

L), and we have C,C0,E,E0 ∈ SP(R0,L

�

L) by

Proposition 5.17. Thus, Q = SP(R0,L

�

L). �

Theorem 6.25 (The Classification of Dualisable Aperiodic Semigroups). Let S be a finite

aperiodic semigroup. The following are equivalent:

(i) S is dualisable;

(ii) S is dualisable via (IC);

(iii) S is not inherently non-dualisable;

(iv) S ∈ A([x2y ≈ xy, xyzt ≈ xzyt, xw ≈ yw → xzw ≈ yzw]);

(v) S ∈ ASP(R0,L

�

L).

Moreover, conditions (i)–(v) are implied by

(vi) V(S) is residually small.

Proof. The implications (ii) ⇒ (i) ⇒ (iii) are trivial, and the equivalence of (iv) and (v)

is by Theorem 6.24. We will show that (iii) ⇒ (iv) ⇒ (ii).

(iii) ⇒ (iv): Assume that S is not IND. By Theorems 4.12, 4.15, 5.4, 5.6, and 5.14, we

have S ∈ A([x2y ≈ xy, xyzt ≈ xzyt]) = AV(L,R,P), so (iv) follows from Theorem 6.11.

(iv) ⇒ (ii): Let S ∈ [x2y ≈ xy, xyzt ≈ xzyt, xw ≈ yw → xzw ≈ yzw]. Then, by Theo-

rem 6.24 and Corollary 4.18, there is some U ⊆ {L,L0,R,R0, I,N,P,C,C0,L

�

L,E,E0}
with SP(S) = SP(U). By Theorem 5.29 and the (IC) Independence of Generator Theo-

rem 4.7, S is dualisable via (IC). (To obtain (i) from (iv) directly, use Theorem 4.6 instead

of Theorem 4.7.)

Finally, (vi) ⇒ (iv) follows from the implication (i) ⇒ (iv) in Theorem 5.2. �

The following corollary of Theorems 6.25 and 5.2 gives us many examples of dualisable

algebras generating residually large varieties (though there are only finitely many up to the

equivalence A ∼ B⇔ SP(A) = SP(B)).

Corollary 6.26. Every finite semigroup in SP(R0,L

�

L)\(V(L,R, I,N) ∪ V(R,P)) is

dualisable and generates a residually large variety.
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We will now discuss two properties in relation to Theorem 6.25. The first of these is finite

relateness. As we argued at the end of Section 4.5, every finite algebra that is dualisable

via (IC) is also finitely related. Certainly, then, every dualisable aperiodic semigroup is

finitely related. However, we can say more than this. By [13, Theorem 2.11], the property

of being finitely related is a variety property, in the following sense.

Theorem 6.27. Let A and B be finite algebras with V(A) = V(B). Then A is finitely

related if and only if B is finitely related.

Using this fact, we can show that every finite semigroup in V(L,R,P) is finitely related.

Lemma 6.28. Let V be a subvariety of V(L,R,P). If V is residually large, then V is equal

to either V(L,P) or V(L,R,P).

Proof. Assume that V is residually large and does not equal V(L,R,P). If V |= xy2 ≈ xy,

then V ⊆ N1, which is residually small by Theorem 5.2; thus, by Lemma 3.45, we can

assume that P ∈ V. Now, since V 6= V(L,R,P), we must have either L /∈ V or R /∈ V.

If L /∈ V, then V ⊆ P1 by Lemma 3.66, which is residually small by Theorem 5.2, so we

must have L ∈ V and R /∈ V.

Now, arguing dually to the proof of Lemma 3.66, we have V |= x2y2x2 ≈ x2y2. Using this

equation, along with x2y ≈ xy and xyzt ≈ xzyt, one easily deduces that V |= xyz2 ≈ xzy2.
Since V(L,P) = [x2y ≈ xy, xyz2 ≈ xzy2] (see Remark 3.6), we have V = V(L,P). �

By Lemma 6.28 and Theorem 6.25, every subvariety of V(L,R,P) can be generated by

a finite semigroup that is dualisable via (IC) (hence finitely related). By Theorem 6.27, we

have the following.

Corollary 6.29. Every finite semigroup in V(L,R,P) is finitely related.

Next, we will present a corollary concerning the finite basis property for quasivarieties.

We say that an algebra A is finitely q-based if SP(A) has a finite quasiequational basis.

Lemma 6.30. Let Q be a locally finite quasivariety. If Q has a finite quasiequational basis

and has only finitely many quasicriticals up to isomorphism, then every algebra in Q is

finitely q-based.

Proof. Let S be a set of representatives of the isomorphism classes of qc(Q) (so S is finite),

and let A ∈ Q. By Corollary 4.18, we have SP(A) = SP(U), where U = S ∩ SP(A). Now,

for each T ∈ S\U, there is a quasiequation εT that holds in U but not T. Thus, if Σ is a

finite quasiequational basis for Q, then Σ∪ {εT | T ∈ S\U} is a finite quasiequational basis

for SP(U) = SP(A). �

By Theorem 6.24 and Lemma 6.30, every S ∈ SP(R0,L

�

L) is finitely q-based. Thus,

by Theorem 6.25 and Corollary 6.26, we have the following results.

Corollary 6.31. Let S be a dualisable finite aperiodic semigroup. Then S is finitely q-based.

Corollary 6.32. Every finite semigroup in SP(R0,L

�

L)\(V(L,R, I,N) ∪ V(R,P)) is

finitely q-based, dualisable, and generates a residually large variety.
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To the author’s (limited) knowledge, there have been no published examples of finite

semigroups that are finitely q-based and generate a residually large variety. Corollary 6.32

provides us with many such examples. While we obtained these in passing from our dualis-

ability theorem, the connection between being finitely q-based and generating a residually

large variety ostensibly has nothing to do with dualisability. Corollary 6.31 now raises the

question of whether being finitely q-based is equivalent to being dualisable, at least for finite

aperiodic semigroups. We will discuss this further the epilogue (Section 7.5).

6.5. A lattice

To close the main part of the thesis, we leave the reader with the following picture.

RIL

N

P

C

C0

R0L0

E

E0

L

�

L

Figure 6.2. The lattice Lq(SP(R0,L

�

L)), constructed from a computer

output and verified by hand. The join irreducible subquasivarieties are indi-

cated by filled circles and are labelled by their quasicritical generators.
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CHAPTER 7

The Future

While Theorem 6.25 brings one story to a close, it is only a small part of the solution to

the dualisability problem for finite semigroups. We will discuss here a number of possible

directions for future work on this broader dualisability problem.

7.1. Completely regular semigroups and Clifford semigroups

It is known that any finite completely regular semigroup generating a residually large

variety is IND (by [57] and Theorems 3.43, 4.13, and 4.15). We conjecture that a finite

completely regular semigroup generating a residually small variety is dualisable.

An important subclass for which the problem remains unresolved is the class of Clifford

semigroups. A completely regular semigroup S is called a Clifford semigroup if the

idempotents of S commute (so E(S) is a semilattice). A basic property of Clifford semigroups

is that, further to Theorem 2.44, all J -classes are groups [37, §4.2].

Beyond the characterisation of dualisable finite groups, there has been relatively little

progress on the dualisability problem for finite Clifford semigroups. AlDhamri’s work in [1,

Chapter 6] covers all of the known results to date. Based on our conjecture for completely

regular semigroups, we expect that every finite Clifford semigroup whose J -classes are all

A-groups is dualisable. For a proof of this conjecture, it is not too difficult to show that a

proof of the following restricted version will suffice.

Problem 7.1. Let S be a finite Clifford semigroup with precisely two J -classes, each of

which is an A-group. Show that S is dualisable.

The best starting point for Problem 7.1 would be to show that G1 is dualisable, where G

is the six-element non-Abelian group. For this, it may be useful to study the duality for G

in [20]. I suspect that resolving this case will go a long way towards solving Problem 7.1.

A positive solution to Problem 7.1 would have significant implications for the broader

dualisability problem for completely regular semigroups. While editing Chapter 3, I obtained

a proof that a positive solution would imply that every completely regular semigroup in a

residually small variety is dualisable. Since the proof is not particularly short, I will save it

until we have (most of) a solution to Problem 7.1.

Further to this, it is possible to modify the proof of Theorem 5.9 to show that if A is a

finitely dualisable finite algebra with a non-trivial identity term, then every finite inflation

of A is dualisable (this removes all references to (IC)). Consequently, a positive solution to

Problem 7.1 would imply that every finite S satisfying Theorem 3.43(i)–(iv) is dualisable.

My work on this thesis began with Problem 7.1, but I made very little progress. It is

somewhat amusing that I was able to bring this full circle at the end of my candidature by

showing that a positive solution to Problem 7.1 would solve a much broader problem.

149
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7.2. Four-element semigroups

The new results in Chapter 5 complete the classification of dualisable three-element semi-

groups and cover many of the unresolved cases for the four-element semigroups. Figure 7.1

shows all of the four-element semigroups (up to anti-isomorphism) whose dualisability is not

yet known (given also the unpublished results mentioned in Section 7.1).

· 0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 1 2 3

3 0 1 3 2

· 0 1 2 3

0 0 1 0 0

1 1 0 1 1

2 0 1 0 0

3 0 1 2 3

· 0 1 2 3

0 0 1 1 0

1 1 0 0 1

2 1 0 0 1

3 0 1 2 3

Figure 7.1. From left to right: the semigroups S1, S2, S3.

Let Z2 denote the two-element cyclic group. The semigroups S1 and S2 generate the

same quasivarieties as Z0
2 ×P and Z2 ×P, respectively, while S3 lies in SP(Z2,P) but gen-

erates a strictly smaller quasivariety. The semigroup S3 is quasicritical (all proper subsemi-

groups of S3 are commutative, but S3 is not). These three semigroups generate residually

small varieties, so they are most likely dualisable.

Problem 7.2. Show that S1, S2, and S3 are dualisable.

The best case to start with would be S1, as this will also contribute to the problem given

in the next section.

7.3. Residually small implies not IND

We now know that, for finite semigroups, generating a residually small variety is not

equivalent to being dualisable. However, it may well be the case that a finite semigroup

generating a residually small variety is dualisable. Proving this will most likely be a difficult

endeavour. For the time being, a more manageable problem would be to show that a finite

semigroup generating a residually small variety embeds into a dualisable semigroup.

Based on Theorems 3.37, 3.68, and 3.71, it will suffice to show that every semigroup

of the form N × L0 × R0 × G0, where G is an A-group, or R0 × P × G, where G is a

finite cyclic group, is dualisable. The former case is dealt with by the modified version of

Theorem 5.9 mentioned in Section 7.1 along with [41, Theorem 1.1], [1, Corollary 4.2.7],

and [14, Theorem 3.6]. For the latter case, it will suffice to prove the following.

Problem 7.3. Let G be a non-trivial finite cyclic group, and let G ×R act on G via left

translation by the first coordinate. Show that G×R

�

G is dualisable.

A positive solution to Problem 7.3 would imply that every finite semigroup generating a

residually small variety embeds into a dualisable finite semigroup and is therefore not IND.

It would be best to start with a simpler version of the problem: show that G

�

{u} is

dualisable whenever G is a non-trivial cyclic group (acting totally on {u}). The semigroup S1

from Section 7.2 is the smallest example of such a semigroup.



7.5. THE FINITE Q-BASIS PROBLEM 151

7.4. Generalisations

I am not sure what the generalisation of Theorem 6.25 to the class of all finite semigroups

ought to be, but it is worth discussing some possibilities. By Theorem 5.13, the dualisability

problem for finite semigroups is reduced to determining the dualisable finite members of the

variety Dn := [xn+1y ≈ xy, xynznt ≈ xznynt] for each n > 1.

In the n = 1 case, we found that dualisability is equivalent to satisfying the quasiequa-

tion xw ≈ yw → xzw ≈ yzw. There is likely to be an analogous quasiequation for n > 1,

but at this point it is difficult to say what that may be. It could turn out that dualisability

within Dn cannot be captured by a single quasiequation, or even by a set of quasiequations.

For the time being, it would be best to focus on specific examples until the picture becomes

clearer.

Since G×P generates a residually large variety whenever G is non-Abelian, there is a

good chance that such semigroups are non-dualisable, though it would not be too surprising

if there were dualisable semigroups of this kind. In any case, the smallest example to consider

here would be the following.

Problem 7.4. Let G be the six-element non-Abelian group, and let G act totally on {u}.
Decide whether G

�

{u} is dualisable.

The semigroup S1 from Section 7.2 will probably need to be dealt with before tackling

this problem, and solving Problem 7.3 would likely help as well.

Depending on the solution to Problem 7.3, it may be that a finite S is non-dualisable

whenever V(S) contains P and a non-Abelian group. However, since Dn ⊇ Gn, we will not be

able to eliminate non-Abelian groups altogether. If there is indeed a single quasiequation εn

capturing dualisability in Dn, and if a dualisable S cannot have both P and a non-Abelian

group in its variety, then εn would somehow have to force all subgroups of S to be Abelian

only if V(S) contains P. It probably goes without saying that the general dualisability

problem for Dn is likely to be vastly more complicated than the n = 1 case.

7.5. The finite q-basis problem

We briefly discussed the finite q-basis property in Section 6.4. Given Corollary 6.31, it is

natural to ask whether the converse holds. To my knowledge, there are no published results

suggesting otherwise, though Mark Sapir privately communicated to the first supervisor

some 18 years ago that P×Q is finitely q-based (it seems the proof is unpublished). If true,

this would imply that the converse of Corollary 6.31 is false (as P×Q is non-dualisable by

Theorem 4.12 and Lemma 3.9). Though this is mostly wishful thinking on my part, it may

turn out that P×Q is not finitely q-based.

Problem 7.5. Decide whether P×Q is finitely q-based.

This is not a dualisability problem per se, but it would be interesting to know if the

converse to Corollary 6.31 holds. If no counterexamples arise, there are many directions

from which one might approach a proof of the converse. For the reader wishing to learn

more on the finite q-basis problem for finite semigroups, Margolis, Saliola, and Steinberg

give a thorough survey of the known results in [46].
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7.6. Concluding remarks

As much as I have said, I nonetheless feel that a lot was left unsaid. There are many

results that did not make the final cut, as they either did not contribute to the main results

or were superseded. In the end, what I really wanted was to tell a story, and I have come

to believe that in order to craft a good story, it is necessary to delete most of it. (If only

that were sufficient.) Being as blessed as I was to obtain my classification result, I have to

conclude that the most natural way to approach the thesis was to tell my story (in Part 2)

and set up the beginning of someone else’s story (via Part 1 and this chapter).

Even now, I think writing Part 1 at the level of depth that I did might seem questionable,

but I never wavered from the decision even during the hardest parts of the writing process.

While I maintain that any solution to the dualisability problem for semigroups will require

most of the knowledge recorded in Part 1, there were other driving factors. For whatever

reason, I have always had the urge to re-tell an old story and make it as good as it can be.

Arguably, I could have invested this energy into my own results, but they are still fresh,

and they make up only one piece of a larger puzzle. There is no doubt that the proofs in

Chapter 5 are far from optimal; my feeling is that I have missed many fundamental insights

that will be revealed when my results are inevitably generalised. If there ever comes a day

when the story of Part 2 can be re-told, I hope that my work in Part 1 inspires the writer

to put a piece of their soul into it.

Composer John Williams once said the following: “I spend more time on those little bits

of musical grammar, to get them just right, so that they seem inevitable—seem like they’ve

always been there”. It is a wonderful approach to creating anything, and perhaps applies

in a special way to mathematics, because in some sense it has always been there. This little

quote guided me every day that I spent writing this thesis; all things considered, I think

there was no other way to have written it.
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M[G, P ], 27
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N, 41
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Pn, 77

An, 77
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P+, 85
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P-like, 116

κ-inseparable, 66

irreducible, 66

κ-separable, 66

a-maximal, 65

(IC), 89

action, 62

faithful, 62

group, 63

transitive, 63

orbit, 63

total, 62

alter ego, 87

antichain, 5

band, 38

normal, 55

left-, right-, 72

rectangular, 38

cardinal, 8

centre of a group, 60

chain, 5

commutator, 67

subgroup, 68

compatible

operation, 86

relation, 86

completely join irreducible, 6

completely meet irreducible, 6

content of a word, 71

core, 64

core-free, 65

cover, 5

critical pair, 92

down-set, 5

principal, 5

dualisability, 88

at the finite level, 88

inherent non-, 89

problem, 81

via (IC), 89

eggbox diagram, 19

entailment, 97

exponent, 33

finite, 34

finitely generated

quasivariety, 10

variety, 10

free algebra, 8

Green’s relations
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group
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action, 63

transitive, 63
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element, 35

kernel, 64

nilpotent, 60

primary cyclic, 77

signature, 9

solvable, 69

hom-functor, 86
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minimum, 13

principal, 12
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two-sided, 18

zero-minimal, 15
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idempotent, 21

order, 29
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inflation, 109

inverse of a group element, 36

join, 5

kernel, 6

group, 64

lattice, 5

algebraic, 6

complete, 5

dually algebraic, 6

locally finite, 10

meet, 5
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generating pair, 8

morphism, 85

nilpotent

group, 60

semigroup, 41
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orbit, 63
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of a semigroup element, 32
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partial algebra, 85

partial map, 62
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preorder, 7

principal factor, 14

product

of topological structures, 85

projective plane, 90

quasicritical, 92

critical pair of, 92

quasiequation, 9

quasivariety, 9

Rees quotient, 12

regular

D-class, 21

element, 21

semigroup, 21

relational structure, 85

residually

finite, 39

large, 39

small, 8, 39

very finite, 40

retraction, 93

RS conjecture, 40

semigroup

aperiodic, 82

bicyclic, 30

completely regular, 36

left-normal, right-normal, 72

left-zero, 15, 28

monogenic, 32

nilpotent, 41
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orthodox, 29

periodic, 34

Rees matrix, 25, 26

regular, 21
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simple, 15

completely, 23

zero-simple, 15
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semilattice, 10

order, 10

separating points, 7

subdirect product, 8

subdirectly irreducible, 8

substructure

of a topological structure, 86

closed, 86

term, 9
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function, 9

topological structure, 85

type
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relational, 85
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finitely, 67

uniformly, 67




