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Abstract

  Mitochondria are semi-autonomous organelles responsible for cellular energy 

metabolism in eukaryotic cells. Mitochondrial function is affected by mitochondrial 

proteins (MP) that are encoded by genes from both the mitochondrial and nuclear genomes. 

The potential influence of the mitochondrial genome on energy metabolism-related 

traits may warrant its inclusion in animal breeding methodology. It is currently 

unknown whether the variation on the whole mitochondrial genome is adequate to be 

exploited in genetic analyses, such as association and genomic prediction studies. 

Further, genes associated with energy metabolism that may be useful for genomic 

prediction can be identified with gene expression analyses. Therefore, this thesis aimed to 

evaluate the whole mitochondrial genome diversity in cattle and use RNA sequencing 

to profile MP gene expression across tissues and their association with feed 

efficiency in dairy cattle. Firstly, mitochondrial diversity based on whole 

mitochondrial genome sequences was high both within and across breeds and variants 

can be accurately imputed. Secondly, the MP gene expression profile in 29 adult 

bovine tissues showed over-expression of MP genes in heart and skeletal muscles and 

under-expression in thyroid and thymus tissues indicating their association with tissue 

energy demand. The MP genes from both genomes were co-expressed suggesting that 

they interact. Lastly, differential gene expression analysis in blood of lactating dairy 

cows revealed that 38 MP genes were under-expressed in the high feed efficiency group 

and enriched for the oxidative phosphorylation pathway. Overall, this thesis’s findings 

suggest adequate variation in cattle mitochondrial genomes for genomic evaluations. It 

strengthens our understanding of the roles of differential MP gene expression and 

coexpression across tissues to suit animal metabolism and energy demands. Altogether, 

including variants from the mitochondrial genome for genomic prediction is possible 

considering the genomic variation across animals and the strong signals of MP genes in 

energy metabolism-related traits.   
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Chapter 1: 

General Introduction 

Jigme Dorji1,2

1 School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083 

2 Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083



1.1 Thesis background and objectives 

Mitochondria are cellular organelles in eukaryotic cells primarily responsible 

for energy metabolism. These organelles are semi-autonomous, having their own 

genome encoding for 37 genes. The mitochondrial genome is haploid but occurs in 

multiple copies within mitochondria. Unlike nuclear DNA, the mitochondrial genome 

does not recombine and it is maternally inherited from an oocyte’s cytoplasm (i.e. 

cytoplasmic inheritance) (Chinnery and Hudson, 2013). Thus, the mitochondrial DNA 

(mtDNA) is used to evaluate maternal lineages and mitochondrial genetic diversity 

in livestock species (Henkes et al., 2005, Cai et al., 2007, Di Lorenzo et al., 2018), 

but commonly, only a part or all of the D-loop region of the mtDNA consisting of the 

hypervariable sub-regions is examined. While complete mitochondrial genome-based 

diversity evaluations are more comprehensive (Achilli et al., 2008), the choice of D-

loop or other regions may have been driven by the cost of sequencing in the past.  

The mitochondrial functions depend on a set of proteins encoded by both nuclear 

and mitochondrial genomes called the mitochondrial proteins (MP). Over a thousand MPs 

from the nuclear genome (NuMPs) are synthesized and transported into the 

mitochondria (Schmidt et al., 2010). Further, replication and transcription of the 

mitochondrial genome depend on the factors and enzymes encoded by the nuclear 

genome (reviewed in Taanman (1999)), indicating intricate interactions between the 

two genomes. Thus, mutations in genes from both genomes are implicated in 

mitochondrial disorders in human, which are characterised by errors in metabolism 

(Chinnery, 2000, Taylor and Turnbull, 2005). For example, the mitochondrial disease 

LHON (Leber's hereditary optic neuropathy) has a non-Mendelian mitochondrial mode 

of inheritance and is associated with mutations in mitochondrial genes (NADH 

dehydrogenase subunit 1 ND1, NADH dehydrogenase subunit 4 ND4 and  NADH 

dehydrogenase subunit 6 ND6 of the Complex I of ETC) (Stenton and Prokisch, 

2020), while Leigh Syndrome is associated with the mutations of nuclear MP genes
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(cytochrome c oxidase assembly factor SURF1, cytochrome c oxidase assembly 

protein SCO1,  cytochrome c oxidase assembly protein SCO2,  heme A: 

farnesyltransferase cytochrome c oxidase assembly factor COX10, cytochrome c 

oxidase assembly factor COX14, translational activator of cytochrome c oxidase 

I TACO1) and follow autosomal recessive inheritance (Chinnery, 2015).  

While the inheritance of mitochondrial diseases in humans differs from that 

of quantitative traits, genetic variation in the mitochondrial genome and the interaction 

with the nuclear genome could influence quantitative traits in cattle. The use of 

mitochondrial genome in addition to the nuclear genome are likely to provide better 

resolution of the genetic structure and may affect association studies. According to 

Manolio et al. (2009), the unaccounted family information may mask the association and 

diminish the proportion of heritability explained and contributing to the missing 

heritability in complex diseases. Similarly, the low heritability estimate of complex traits 

in dairy cattle, in particular feed efficiency and fertility, which concern energy utilization 

may improve through inclusion of the mitochondrial genome in the analysis. The 

accuracy of genomic predictions for feed efficiency (e.g. residual feed intake RFI) is 

low (~ 0.4) (Pryce et al., 2014). Genomic predictions of dairy cattle traits currently 

exclude the mitochondrial genome (Goddard, 2009), and the exclusion may be mainly 

for two reasons. First, the association of whole genome mitochondrial variants to 

phenotypic traits have not been adequately investigated in dairy cattle to date. Previous 

studies investigating the effect of maternal lines and the association of the 

mitochondrial variants with quantitative traits are limited and inconclusive (Bell et 

al., 1985, Schutz et al., 1994). Second, the roles of mitochondria and associated 

biological pathways on most dairy cattle traits remain poorly understood. 

Currently, little is known of the whole genome mitochondrial variation in the cattle breeds 

and the feasibility to undertake mitochondrial genomic evaluations. Thus, one of the 

immediate needs is to evaluate whole mitochondrial genomic variation both within and 
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across the breeds.  

With the falling cost of sequencing over the years (Wetterstrand, 2021), the use of 

genome sequencing has become more routine in the genomic selection of dairy cattle. As 

a result, complete mitochondrial genome sequences are also becoming more 

readily available as a spin-off of nuclear genome sequencing (i.e. with no 

additional cost). Therefore, it offers an opportunity to evaluate the diversity 

based on the whole mitochondrial genome sequences. The complete 

mitochondrial genome sequence compared to the D-loop region alone is likely to 

provide more comprehensive information on diversity. Further, the complete genome 

sequence enables more accurate quantification of genetic variation in the preliminary 

assessment of using mitochondrial variants to undertake association studies. 

Furthermore, having both mitochondrial and nuclear genome sequences together 

are ideal for studying interactions between the mitochondrial protein genes from 

the two genomes and associating the variants in these proteins to the traits of interest.   

Another highly relevant resource to evaluate the role of the mitochondrial genome 

and its interaction with the nuclear genome on phenotypic traits is the transcriptomic 

datasets available from the modern sequencing techniques (RNAseq). Transcriptomic 

data are available across a wide range of tissues and specific tissues relating to 

production traits and contain the gene transcripts of mitochondrial protein genes 

from nuclear and mitochondrial genomes. Gene expression analysis offers an 

alternative approach to studying the association between genes and phenotypic traits 

(Salleh et al., 2017, van Dam et al., 2018, Scott et al., 2020). 

Differential gene expression, tissue-specific expression and co-expression enable 

the elucidation of the biological pathways within the tissue that may affect the 

trait. Thus, it is a novel approach to consider transcriptome from both the 

mitochondrial and nuclear genome to analyse the gene expression across tissues and 

their association to a trait (e.g. RFI).  
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Given the above, this project undertakes a range of studies that add to the body 

of knowledge required to determine whether it is feasible in the near future to 

incorporate mitochondrial genomics in the paradigm of genomic selection.  

1.2 Overall thesis objectives 

The overarching goal of the research was to understand the mitochondrial 

genomic diversity and impact on the dairy cattle traits to contribute to the future use 

of the mitochondrial genome for genomic improvement of livestock. The 

contribution to the goal was mainly through the three following objectives: 

1) to use the entire bovine mitochondrial genome and quantify the diversity within

and across breeds,

2) to use transcriptomics for tissue-specific gene expression of mitochondrial proteins,

and

3) to identify genes and biological pathways associated with energy metabolism

and feed efficiency.

1.3 Thesis outline 

This thesis contains six chapters.  Chapter 1 sets out the background of the thesis 

topics and outlines the thesis’ main objectives. Chapter 2 reviews the 

information on mitochondria, mitochondrial genome, and the applications of 

mitochondrial genetic studies and their gaps. Chapter 3, 4 and 5 present the primary 

empirical research on bovine mitochondrial genomic diversity, expression of 

mitochondrial protein genes across a range of bovine tissues, and mitochondrial protein 

gene expression in two groups of dairy cattle divergent for residual feed intake, 

respectively. The manuscript for Chapter 3 will be submitted to Scientific Reports, 

while Chapter 4 and 5 are published in peer-reviewed scientific journals and are 

incorporated in the publishing journal format. Chapter 6 discusses the advances 
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and limitations of this PhD research, identifies opportunities, and provide future 

direction towards understanding the underlying biology and applying mitochondrial 

genomic data in genomic predictions.  

Chapter 2. Literature Review presents the state of knowledge and gaps on 

mitochondrial genome, including the following topics: mitochondrial genome 

inheritance, nuclear mitochondrial sequences (NUMTs), mitochondrial DNA 

transcription, differential gene expression, and mito-nuclear genome interactions. 

The review also considers the applications and the gaps in mitochondrial genome 

studies in farm animals, particularly on mitochondrial genetic diversity analysis and the 

association of mitochondrial DNA to phenotypic traits and animal breeding.  

Chapter 3. Cattle maternal diversity inferred from 1,883 taurine and 

indicine mitogenomes (Dorji et al. to be submitted to Scientific Reports). This 

chapter evaluates the whole mitochondrial genome diversity within and across 

modern cattle breeds (nucleotide diversity, haplotypes and haplogroups). Population 

structure and admixture were analysed using the standard analyses methods for 

mitochondrial DNA and alternate nuclear genome analysis techniques.   

Chapter 4. Expression of mitochondrial protein genes encoded by nuclear 

and mitochondrial genomes correlate with energy metabolism in dairy cattle 

(Dorji et al., 2020; BMC Genomics). The chapter evaluates the mitochondrial protein 

gene expression in 29 tissues of two adult cows and six tissues from two foetuses. 

Gene expression was determined through RNA sequencing. A gene was considered 

over-expressed or under-expressed in a tissue if the expression was significantly higher 

or lower than the mean of gene expression across all other tissues. Similarly, co-

expression of mitochondrial protein genes encoded by mitochondrial and nuclear 

genomes was investigated. The over-expressed genes in tissues and the co-expression 

cluster containing the mitochondrial protein genes were subjected to functional 

enrichment analysis.
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Chapter 5: Mitochondrial protein gene expression and the 

oxidative phosphorylation pathway associated with feed efficiency and energy 

balance in dairy cattle (Dorji et al., 2021; Journal of Dairy Science). In this chapter, 

indicators of feed efficiency, namely residual feed intake (RFI) and energy balance 

were predicted from the dry matter intake. The animals were then ranked based on 

their RFI values, and the top 14 and bottom 14 ranking animals with RNA sequences 

were selected as High RFI & Low RFI groups for the study. Gene expression in the 

blood was determined from RNA sequencing. Differential gene expression between two 

RFI groups and weighted gene co-expression networks were analyzed. The functions of 

differentially expressed genes and the genes in co-expression clusters associated with 

the RFI were annotated. The key genes associated with the RFI were identified 

and their pathways further refined using a protein-protein interaction network.  

Chapter 6: General Discussion contains a summary of the research findings in 

Chapter 3, 4 and 5. It also presents the limitations within these studies and highlights 

opportunities in using mitochondrial genome in diversity analysis and implications 

for effective utilisation of mitochondrial genome diversity in genomic selection.  

1.4 Acknowledgements 
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 Mitochondria have gathered interest over recent years, particularly in medical 

research because of their role in mitochondrial diseases resulting from their 

dysfunction. Mitochondria are the only other organelle within a eukaryotic cell besides 

the nucleus to have their own genome. However, the mitochondrial genome differs 

from the nuclear counterpart in many aspects, including ploidy, copy number, 

inheritance, and transcription. The mitochondrial genome closely interacts with the 

nuclear genome adding to complexity in understanding its function. Thus, the aspects 

of the mitochondrial genome requiring careful consideration in their use for genomic 

studies have been reviewed.  Further, this review covers the application of 

mitochondrial DNA studies in farm animals, mainly the mitochondrial genetic 

diversity and the use of mitochondrial DNA towards animal breeding to set the context 

of the research.  

2.1 Mitochondria as organelles 

   Mitochondria are membrane-bound organelles found in almost all eukaryotic cells 

and are primarily responsible for cellular energy metabolism. Up to 95% of the 

cellular energy is produced in mitochondria, and the organelles are known as the 

cell’s ‘powerhouses’ (Marín-García and Goldenthal, 2002, Tzameli, 2012). Other 

essential functions of the organelle are calcium homeostasis, cell signalling and 

apoptosis (cellular death) (Green and Reed, 1998, Cottrell and Turnbull, 2000, Giorgi 

et al., 2012, Tait and Green, 2012).  

    Morphologically, mitochondria are generally described as rod-shaped with 

slight variation among the cell types. For example, mitochondria are long and 

filamentous in fibroblasts, spheres or ovoids in hepatocytes and ovoid or rod-shaped in 

vascular smooth muscle cells (McCarron et al., 2013). Structurally, mitochondria are 

double membraned organelles, where the inner membrane is folded into the matrix to 

form cristae (Figure 1a). The matrix is the site for the tricarboxylic acid (TCA) cycle. The 

cristae host complexes of proteins that form the electron transport chain (ETC).  
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 The citric acid cycle and the ETCs are intricately linked, where the former 

generates reduced electron carriers (NADH, FADH2) which are then oxidized to release 

electrons that are shuttled through the protein complexes of ETC. As a result, an 

electrochemical gradient is generated by pumping the protons across the mitochondrial 

inner membrane enabling the ATP synthase (C5) to synthesise ATP 

(adenosine triphosphate) using ADP (adenosine diphosphate) and phosphate 

((Wallace, 2018), reviewed in Zhao et al. (2019)). The whole process is known 

as oxidative phosphorylation (OXPHOS). Apart from 13 proteins encoded by 

the mitochondrial genome, all proteins of the ETC (250-300) (Table 1) and 

TCA cycle originate in the nuclear genome, indicating a direct role of the 

nuclear genome in primary mitochondrial function. 

Figure 1. A eukaryotic cell showing the mitochondria, substructures and mitochondrial DNA (a) 

(source: adapted from https://www.genome.gov/genetics-glossary/Mitochondria) and the 

electron transport chain protein complexes (C1 to C5); C1 NADH dehydrogenase, C2 Succinate 

dehydrogenase, C3 Cytochrome c reductase, C4 Cytochrome c oxidase and C5 ATP synthase (b).

(Source: adapted from Vial et al., 2019)
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Table 1. Components of electron transport chain complexes and contribution from the 

mitochondrial genome 

ETC Complex Role 
No. of 

subunits 
Mito† References 

C1 NADH 
dehydrogenase 

Transfer electrons from 
matrix NADH to ubiquinone 

45 7 Formosa et al. 
(2018) 

C2 Succinate 
dehydrogenase* 

Reduce of FAD to FADH2 

(Receives electrons from 
succinate and then transfers 
the electrons to FeS clusters) 

4 - Cecchini (2003)

C3 Ubiquinone  

cytochrome c reductase 

Transfer of electrons in Q 
cycles 

11 1 Schägger et al. 
(1986) 

C4 Cytochrome c 
oxidase 

Transfers electrons from Cyt 
c to the terminal electron 
acceptor O2 to generate water 

13 3 Kadenbach and 
Hüttemann 
(2015) 

C5 ATP synthase Phosphorylate ADP to ATP 10 2 Jonckheere et 
al. (2012) 

* component of both ETC and TCA cycle, Mito† Mitochondrial proteins encoded by mitochondrial
genome

2.2 Mitochondrial genome - mitochondria as semi-autonomous organelle 

    Mitochondria are semi-autonomous organelles containing their own mitochondrial 

genome, which is haploid and occurs in multiple copies. The mitochondrial genome 

is small, compact, circular and in the form of a double-stranded helix. The 

cattle mitochondrial genome is ~16.4 kb in length and was first sequenced in the early 

1980s (Anderson et al., 1982). Since then, this mitochondrial genome has been 

used as a mitochondrial reference genome in almost if not all studies concerning 

mitochondrial DNA. The mitochondrial genome is referred to as compact because it  lacks 

introns and intergenic sequences. It has unusually small rRNA and tRNA molecules, 

overlapping genes and a lack of termination codons (Taanman, 1999). The two strands 

(double-stranded) of mtDNA due to the difference in buoyant densities in a cesium
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chloride gradient are designated as heavy (H) and light (L) strands (Welter et al., 1988, 

Zimmerman et al., 1988).

The mitochondrial genome has a coding region encoding 13 proteins, two rRNAs, and 

22 tRNAs (37 genes in total) (Figure 2a). The mitochondrial rRNAs and tRNAs are 

involved in the synthesis of mitochondrial proteins originating from the mitochondrial 

genome which constitute the ETC complexes (Figure 1b). The non-coding region is mainly 

the control region which contains the origin of replication of heavy strand and initiation 

sites for transcription of mitochondrial DNA (HSP1, HSP2, LSP) (Tully and Levin, 2000). 

a 

b 

Figure 2a. A complete mitochondrial genome of Bos taurus showing protein-coding genes 

(green), transfer RNAs (pink), ribosomal RNAs (red) and the control region (grey). Source: 

adapted from Guo et al. (2017). Figure 2b. Mitochondrial control region showing the 

hypervariable region I and II, central conserved domain and conserved sequence blocks (CSBs). 

Source: Adapted from Avise (2000) 
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The hypervariable regions (I and II) of the control region are the most polymorphic 

region on the mitochondrial genome (Figure 2b) and explain the extensive use of D-

loop for mitochondrial genetic diversity studies in livestock. 

    The number of mitochondrial genomes per mitochondria is nearly constant, while 

the number of mitochondria per cell differs across the cell types (Robin and Wong, 1988). 

Thus, the number of mitochondria per cell is the main factor contributing to the variation 

in the total number of mitochondrial genomes per cell. The number of mitochondria 

per cell varies greatly with cell types. For example, mitochondria are absent in 

the erythrocytes, but 50-75 mitochondria are present in a sperm cell with one copy 

of mtDNA per mitochondrion (Bahr and Engler, 1970, Hecht et al., 1984), 50-100 

mitochondria are present per cardiac cell with 1-10 copies of mtDNA per mitochondria 

(Marín-García and Goldenthal, 2002), 500-4000 mitochondria are found per hepatocyte 

(Degli Esposti et al., 2012) and 92,500 mitochondria are found in mature oocytes (Pikó 

and Matsumoto, 1976). The number of mitochondrial genomes in a cell is thus used as a 

proxy for the number of mitochondria in a cell and is an indicator for mitochondrial 

activity (Wai et al., 2010).  

    Among the cells, oocytes are one of the most studied cells related to fertility. The 

mitochondrial content in oocytes varied during the development and physiological 

stages and as a consequence, the copy number of mitochondria genomes per oocyte also 

varied (May-Panloup et al., 2007). In mammals, the number of mitochondrial genomes 

increases during the early post-implantation of an embryo as a physiological mechanism 

to distribute mitochondria and mtDNA to dividing cells (Wai et al., 2010). The 

number of mitochondrial genomes is not correlated to the ATP content in the oocyte a 

(May-Panloup et al., 2007, Iwata et al., 2011). A low number of mitochondrial 

genomes is associated with poor oocyte fertilisation and infertility in humans 

(Reynier et al., 2001). However, the mitochondrial content does not affect the 

fertilisation in cattle (Iwata et al., 2011). Thus, the association of the mitochondrial 
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content in the oocyte to fertility is currently not clear. 

       The number of mitochondrial genomes has been determined through quantitative 

real-time PCR (Rooney et al., 2015) and, more recently, whole-genome sequencing data 

(Zhang et al., 2017) also provide an alternative estimate based on the relative abundance 

of mitochondrial DNA to nuclear DNA. Further, targeted nuclear probes and 

mitochondrial genome sequencing are reported to produce a more accurate and cost-

effective alternative to whole-genome sequencing (Zhou et al., 2020).  

2.3 Maternal inheritance of mitochondrial genome 

      The mitochondrial genome is inherited maternally from the cytoplasm of the oocyte 

(i.e. cytoplasmic inheritance). There are several mechanisms within the oocyte and 

spermatozoa that occur during the fertilization which favour the maternal transfer of 

mitochondria from the oocyte rather than the spermatozoa. For example, the number of 

mitochondria in the spermatozoa are drastically reduced during spermatogenesis 

and mitochondria are further eliminated during fertilisation through a series of 

processes, including endonuclease G digestion, dilution, ubiquitination, DNA 

digestion, and autophagy (Reynier et al., 2001, Iwata et al., 2011, Sato and Sato, 

2011). In contrast, the oocyte has 103 fold more mitochondrial DNA than the spermatozoa 

which is retained during preimplantation embryogenesis (Lee et al., 2012). The 

maternal inheritance of the mitochondrial genome finds application in the population 

genetic studies, particularly in the investigation of maternal diversity and lineages 

(Castro et al., 1998).  

     However, paternal mitochondrial DNA mutations have been occasionally detected 

among mitochondrial DNA sequences in humans exhibiting mitochondrial disease-like 

symptoms (e.g. intolerance to exercises and fatigue) (Schwartz and Vissing, 2002, 

Luo et al., 2018). Paternal inheritance has been also reported in other species, including 

sheep (Zhao et al., 2004) and mice (Gyllensten et al., 1991), indicating that paternal 
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inheritance can occur in other species. The mechanism of preventing paternal inheritance 

of mitochondrial DNA is robust, but not always foolproof. The paternal mtDNA 

mutations detected in sheep were not related to disease, suggesting that the inherited 

paternal mtDNA in animals may exist unnoticed but may potentially affect the 

production.   

2.4 Heteroplasmy – coexistence of wild and mutant mitochondrial genomes 

There are multiple mitochondria within a cell, and each mitochondrion has atleast 

one copy of haploid genome. The result is several copies of mitochondrial 

genomes per cell. The multiple copies of mitochondrial genomes are generally identical 

sequences (i.e. homoplasmy). However, mutant and wild-type versions of the genome can 

co-exist to give rise to a condition known as heteroplasmy (Chinnery and Hudson, 

2013). In bovines, the prevalence of heteroplasmy was reported as early as the 1980s 

from observing the allele switching across the maternal generations and leading to the 

framing of the hypothesis on the mtDNA genetic bottlenecks in female germlines 

(reviewed in Wallace and Chalkia, 2013). 

      Heteroplasmy can arise as a new mutation in a low frequency mixture of mutant 

and normal genomes (1:1000) which are enriched within individual cells and ultimately 

can predominate to influence the cellular phenotype (Wallace and Chalkia, 2013). The 

levels of heteroplasmy vary widely both between and within individuals, organs, 

and even between cells. The level of tolerance of mutated genomes in in-vitro studies 

can be high (up to 90%, without developing respiratory chain defects), depending on 

the types of mutation and the tissues (Chinnery et al., 1997, White et al., 1999). 

However, the heteroplasmic variant levels in the blood are associated with 

the severity of mitochondrial diseases (e.g. A3242G heteroplasmy) (Grady et al., 

2018). In addition, the pathogenic heteroplasmic variant (resulting from a non-

synonymous point mutation at nucleotide 8993 in ATP synthase F0 subunit 6 

ATP6) was maternally transmitted (Holt et al., 1990), indicating the heteroplasmic  
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variants can be transmitted maternally. 

       Next-Generation sequencing (NGS) has significantly enhanced the capacity to detect 

heteroplasmy (Schmitt et al., 2012), but also presents a challenge in distinguishing low-

level heteroplasmy from the noise resulting from sequencing errors (Li and Stoneking, 

2012).  

2.5 Nuclear Mitochondrial Sequences (NUMTs) 

     Some DNA fragments from the mitochondrial genome exist in the nuclear 

genome as NUMTs (Nuclear Mitochondrial Sequences) (Lopez et al., 1994), which 

are considered to have arisen as a part of the evolutionary process. In humans, cattle 

and horses, the total length of NUMTs was up to 0.0087% (263.48 kb), 0.0023% 

(69.86 kb) and 0.0018% (54.72 kb) of the respective genomes, with variable 

distribution and similarity to the mitochondrial genome (Hazkani-Covo et al., 

2010). Another study in cattle showed that the size of NUMTs ranged from 

37 to 1932 bp, and the homologous identity between NUMTs and their 

corresponding mtDNA fragments varied from 73 to 98% (i.e. not a whole 

mitochondrial gene) (Liu and Zhao, 2007). However, the number of NUMTs 

detected depends on the search strategy (e.g. BLAST, thresholds) employed 

and the reference genome version (Hazkani-Covo et al., 2010). 

     The functionality of NUMTs is unknown but they are generally believed to be 

non-functional considering the observations of multiple internal termination codons 

and imperfect folding tRNAs for active functioning (Lopez et al., 1994, Liu and Zhao, 

2007). The NUMTs can be co-amplified with the mitochondrial DNA and 

potentially interfere in the interpretation of mtDNA results, specifically in 

disease diagnosis because of wrongly reporting them as mutations or heteroplasmy 

(Wallace et al., 1997, Thangaraj et al., 2003, Yao et al., 2008) and phylogenetic 

studies involving universal primers (Sorenson and Fleischer, 1996, Bensasson et 

al., 2001). The interference from NUMTs can be minimised by sampling tissue that is 
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relatively rich in mtDNA, and with careful processing, DNA extraction and 

purification,reverse transcription, and post-amplification checks (Bensasson et al., 

2001). This indicates that samples such as semen (ratio of mitochondrial to 

nuclear DNA content of almost 1:1) are highly prone to interference from 

the NUMTs and highlights the importance of downstream bioinformatic analytical 

procedures. 

2.6 Mitochondrial DNA transcription 

   The process of converting genetic codes in mtDNA to messenger RNA (i.e. 

transcription) depends on enzymes and transcription factors originating from the 

nuclear genome. The mitochondrial RNA polymerase (POLRMT) directs transcription of 

mtDNA and requires TFB2M (transcription factor B2, mitochondrial) and TFAM 

(transcription factor A, mitochondrial) as two main transcription factors (both genes are 

in the nuclear genome). The transcription of mtDNA takes place at three promoter sites 

(2 heavy strand promoters HSP1 and HSP2, and 1 light strand promoter LSP) in the D-

loop region (Figure 3).  

Figure 3. A schematic description of mitochondrial DNA transcription showing the initiation sites 

and promoters. Source: Bestwick and Shadel (2013) 
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The transcription at each promoter site is independent and results in polycistronic 

units. The transcription on HSP1 and HSP2 sites proceeds counter-clockwise. The 

transcription from HSP1 terminates within the tRNA-Leu (UUR) gene to primarily 

synthesise two rRNAs. Transcription at HSP2 follows through the rRNAs, 12 protein-

coding genes and 14 transfer RNAs (tRNA) genes. On the other hand, LSP transcription 

proceeds clockwise, starting with RNA primers for replication, through the D-loop, eight 

tRNA and one mRNA to be terminated by a roadblock protein TERM (encoded by a 

nuclear gene), which binds downstream of rRNA genes. The long polycistronic RNA 

chains are cleaved precisely into separate RNA species (Taanman, 1999, Bestwick and 

Shadel, 2013, Hillen et al., 2018). Currently, the significance of initiation and choice of 

the individual sites are not understood. 

2.7 Mitochondrial protein gene expression analysis 

     The gene expression analyses across tissues within an individual or a tissue between 

two phenotypically divergent groups can identify the critical genes at play for the 

specific function of the tissues as well as within tissue expression differences 

potentially contributing to the phenotypes (van Dam et al., 2018). The MP gene 

expression, mainly from the mitochondrial genome across tissues and diseases, has been 

studied in animals. For example, the differential expression of nine protein 

genes from the mitochondrial genome across bovine tissues (Harhay et al., 2010) 

and lowered the expression of COX1 and ND6 genes in white blood cells of dogs 

affected with retinal dysplasia (Appleyard et al., 2006). In another study, all 13 

protein genes from the mitochondrial genome were under-expressed in the breast, 

oesophageal, head and neck, kidney, and liver cancers in humans (Reznik et al., 2017). 

In pigs, Freeman et al. (2012) used a co-expression analysis to identify a cluster of genes 

associated with ATP generation and metabolic pathways from the nuclear genome which 

were highly expressed in the heart. They reported high expression of 11 protein 

genes from the mitochondrial genome in all tissues. Their study covers the expression of 
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mitochondrial protein genes mainly related to OXPHOS from two genomes. Other 

studies also showed MP genes from both genomes among the list 

of differentially expressed genes in bovine tissues, (e.g. Chamberlain et al., 2015) and 

in the mammary tissues of the high and low milk protein percentage groups of 

Holstein cattle at peak lactation and non-lactating period (Li et al., 2016). 

There were at least six (glycine amidinotransferase GATM, glycyl-tRNA 

synthetase GARS, leucine zipper and EF-hand containing transmembrane 

protein 1 LETM1, sideroflexin 2 SFXN2, solute carrier family 25 member 

22 SLC25A22 and mitochondrial ribosomal protein L15 MRPL15) and 17 

MP genes that were differentially expressed between the groups in the peak 

lactation and non-lactating period, respectively.  

2.8 Mito-nuclear interactions 

  The biological function of eukaryotic cells depends on interactions that 

arehighlycoevolved between mitochondrial and nuclear genomes (Rand et al., 2004, 

Levin et al., 2014). Mitochondrial maintenance and function are dependent on proteins 

encoded by the nuclear genome. The mitochondrial genome codes for less than 1% of the 

mitochondrial proteins, and more than 1000 mitochondrial proteins originating from the 

nuclear genome are translated in the cytoplasm and then imported into the mitochondria 

(Calvo and Mootha, 2010). Some of the nuclear mitochondrial proteins include (but are 

not limited to) enzymes and factors involved in the electron transport chain (~250-300), 

mtDNA replication (e.g. mtDNA polymerase γ (POLG1),  Twinkle (TWNK)), 

transcription (TFAM, TFBM1, TFBM2), and enzymes that maintain an appropriate 

balance of free nucleotides within the mitochondrion (e.g. thymidine phosphorylase (TP), 

thymidine kinase (TK), deoxyguanosine kinase (DGK) and adenine nucleotide 

translocator 1 (ANT1) (Chinnery, 2006).

     The in vitro interaction between the mitochondrial and nuclear genomes are studied 

using Cytoplasmic hybrids (cybrids). The cybrids are cells made to have a uniform

    20



nuclear background but different mtDNA. In a study involving cybrids of 

Holstein, Luxi and yak (cytoplast from the cell of these species fused with p0 cells 

derived from a mammary alveolar cell line derived from a Holstein cow) (Wang et 

al., 2017), the cattle cybrids showed higher oxygen consumption and lowered 

expression of nuclear mitochondrial protein genes than the primary cells. However, 

the inter-species cybrids (cattle-yak) showed perturbed mitochondrial 

function and energy metabolism, suggesting a mito-nuclear mismatch, and 

indicating a more compatible intra-species mito-nuclear interaction than the inter-

species cybrids. The mito-nuclear matching involving cybrids has an opportunity to 

select female lines for fitness traits in future.  

    Another form of interaction emerging between the genomes is regulating protein 

translation from the mitochondrial genome through microRNAs. MicroRNAs are 

short non-coding RNAs (~22 nucleotides), having a repressive regulatory 

role in gene expression by either inhibiting translation or degrading target mRNA 

(Bartel, 2004). The translation of the mitochondrial protein COX1 is 

suppressed with the overexpression of miR-181c from the nuclear genome (Das et al., 

2012). 

2.9 Applications of mitochondrial genetic studies in farm animals 

     The literature on mitochondrial genetic studies in farm animals is predominantly in 

the domain of mitochondrial population genetics.  Another relevant application is in 

the identification of species of origin in meat and meat products. There have also 

been attempts to understand the role and use of maternal lines or effects (pre-

genomic era) and mitochondrial DNA information (early genomic era) for animal 

breeding. The pre-genomic era was characterized by estimating cytoplasmic or 

maternal effects on production traits primarily based on pedigree information. The 

early genomics period saw attempts to associate polymorphisms of the D-loop, 

protein-coding genes and rRNAs with phenotypes. 
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2.9.1 Mitochondrial diversity and phylogenetic studies 

    Mitochondrial DNA studies in livestock species have been instrumental in tracing 

ancestry, domestication centres and dispersal (Beja-Pereira et al., 2006, Ajmone-

Marsan et al., 2010, Bonfiglio et al., 2012). Such studies have been used to evaluate 

maternal genetic diversity and characterize livestock species and breeds (FAO, 

2011). The mitochondrial haplogroup is the most common approach of linking the 

individual to the maternal ancestors/progenitors and origins associated with the 

domestication sites. A haplogroup is a group of similar haplotypes as defined by 

combinations of a predefined set of variants in mitochondrial DNA inherited from a 

common ancestor (Wallace and Chalkia, 2013). 

    Traditionally, the D-loop is the most extensively used region of the mitochondrial 

DNA in evaluating diversity within livestock species due to its hypervariability (Table 

2). The high cost of whole mitochondrial genome sequencing in the past favoured the 

use of just this region. Occasionally, the protein-coding and rRNAs genes were also used 

(Table 2). Longer sequence and whole mitochondrial genome sequences 

provided better molecular diversity and phylogeographic resolution than shorter 

segments (Torroni et al., 2006, Achilli et al., 2008), indicating the advantages 

of having longer segments. However, with the reducing cost of sequencing over 

the years (Wetterstrand, 2021), large numbers of animals are routinely 

sequenced, and the whole mitochondrial genome sequences have become 

readily available. The use of whole mitochondrial genome sequences in studies can 

present a more comprehensive picture of mitochondrial diversity specially within 

breeds and subpopulations.  

    A further application for mtDNA is to distinguish between species by barcoding a 

short region of the mtDNA COX1 gene. This region is used in the global screening 

and bio-identification of a wide range of species (e.g. animals, fishes, birds, 

insects) (Hebert et al., 2003, Ward et al., 2005, Hollingsworth et al., 2009, Jalali et al., 

2015).  
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Table 2. Mitochondrial DNA based genetic diversity studies in cattle and the region of DNA 

Breeds (Country) mtDNA region N References 

Complete D-loop 26 Loftus et al. (1994) 

D-loop 104 Kim et al. (2003) 

D-loop 60 Miretti et al. (2004) 

D-loop 31 Takeda et al. (2004) 

D-loop 14 Schlumbaum et al. (2006) 

D-loop 520 Beja-Pereira et al. (2006) 

454 Lirón et al. (2006) 

30 Lin et al. (2007) 

517 Cortés et al. (2008) 

56 Achilli et al. (2008) 

268 Kantanen et al. (2009) 

844 Chen et al. (2010) 

D-loop

D-loop

D-loop

Complete genome

D-loop

Control region

D-loop 413 Ginja et al. (2010) 

D-loop 2200 Bonfiglio et al. (2012) 

European, Indian, African 

breeds Northeast Asian cattle  

Spanish cattle  

Lulu cattle (Nepal) 

Roman and Evolène 

European cattle  

American Creole cattle  

Bhutanese cattle  

Lidia cattle (Spain) 

Southern Europe, Near East  

Eurasian taurine 

Zebu cattle 

Creole cattle 

European, African, American 

Chikso (Korea)  CYTB 239 Kim et al. (2013) 

D-loop 19 Ludwig et al. (2013) 

D-loop 56 Yang et al. (2014b) 

170 Sharma et al. (2015) 

White Park cattle (British Isles) 

Wuchuan Black cattle 

Indian cattle D-loop

D-Loop,12S rRNA 57 Mannen et al. (2017) 

56 Xia et al. (2019a) 

1105 Xia et al. (2019b) 

Polled and Kuchinoshima (Japan) 

Gaungxi (China)  

Chinese cattle  

12 breeds (China) 

Complete genome

D-loop

16S rRNA 251 Yan et al. (2019) 

N = Number of samples 

Another closely related field is identifying and tracking species of origin in meat 

products (Cho et al., 2014, Han et al., 2017). The fact that mtDNA occurs in many 

copies and is less vulnerable to exonucleases that degrade the DNA molecules, coupled 

with the availability of reference sequence data for multiple species from use in DNA 

barcoding (COX1 region), allows discrimination of the meat from several species (Unseld 

et al., 1995). The most employed mtDNA regions in species identification are 16S rRNA, 

12S rRNA, CYTB and COX1 (Table 3).   
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Table 3. Common meat contamination and adulteration which are identified using the 

appropriate region of mitochondrial DNA 

Species identifiable mtDNA region References 

Pork, chicken, sheep, ostrich, horse, beef CYTB, COXI, 12S rRNA Kitpipit et al. (2014) 

Cow, chicken, turkey, sheep, pig, buffalo, 
camel and donkey 

COX1 Haider et al. (2012) 

Beef, buffalo, sheep, goat, pork CYTB Kumar et al. (2014) 

Mammals, birds, fish, reptiles, coleopteran, 
crustaceans, cephalopods, avian game 
species 

16S rRNA Sarri et al. (2014) 

Cultured fly, human, and mouse cells; 
commercial eel, fish, shrimp, pig, cow, 
rabbit, and chicken tissues, alligator, cat, 
deer, dog, donkey, duck, equine, pigeon, and 
turkey 

16S rRNA, 12S rRNA Yang et al. (2014a) 

Chicken, duck, turkey, guinea fowl, quail 12S rRNA Girish et al. (2004) 

Cow, buffalo, pig, sheep, and chicken  12S rRNA Rastogi et al. (2004) 

Cattle, buffalo, sheep, goat  16S rRNA Mane et al. (2013) 

2.9.2 Animal selection and breeding  

Pre-genomics era - Evaluation of maternal/cytoplasmic effects/maternal lines 

       There is no evidence of direct use of mtDNA in animal breeding in the literature to 

date. However, interests in mitochondria have been demonstrated in studies 

investigating the indirect role of maternal or cytoplasmic effects on milk production, 

reproduction, and meat quality traits. The genetic component of maternal effects (genetic 

and environmental) has been estimated in sheep maternal lines (Maniatis and Pollott, 

2002).  

   One of the pilot studies to investigate the effect of cytoplasmic inheritance on 

production traits in Holstein cattle was by Bell et al. (1985), who found the cytoplasmic 
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inheritance accounted for 2.0 and 1.8% of the total variation of milk yield and fat yield in 

the first lactation.  The cytoplasmic line was also a significant source of variation for fat 

and protein (10%) and milk returns (13%) in a subpopulation of Friesian cattle (Dutch 

Friesian, Holstein Friesian and British Friesian) (Huizinga et al., 1986). These studies 

suggest maternal effects are an important source of variation for milk production traits. 

On the contrary, Albuquerque et al. (1998) reported minimal maternal genetic effects 

and cytoplasmic effects on the phenotypic variances of milk yield, fat yield, and 

fat percentage in Holstein cattle.  

      The maternal effects were also evident from genetic evaluation models. Boettcher et 

al. (1996) observed that the exclusion of cytoplasmic effect in the genetic 

evaluation resulted in overestimating heritability with an animal model. Similarly, 

maternal effect manifested as a consistently higher heritability in milk production 

traits from daughter-dam than paternal half-sibs (reviewed in Gibson et al. (1997)).  

     In beef cattle, the maternal line was attributed as an important source of 

variation for birth weights, weaning weights and average daily gain (Tess et al., 

1987), and for ultrasonic backfat thickness in Hereford (beef) cattle (Tess and Robison, 

1990). On the other hand, Rohrer et al. (1994) found negligible effect (< 0.002%) for the 

same traits in purebred Brangus cattle. The cytoplasmic effect for weaning weight 

and age at first calving was also negligible in Afrikaner beef cattle (Neser et al., 

2014). The cytoplasmic effect on bull fertility parameters (e.g. semen motility) was 

marginal and was not a significant source of variation for male fertility traits in 

Angus bulls (Garmyn et al., 2011).  

     Overall, the evaluation of maternal or cytoplasmic effects is not without 

limitations. Kennedy (1986) cautioned that the estimation models used were 

likely biased to overestimate the cytoplasmic effect. Other challenges include 

limited sample sizes, computational capacity, lack of robust models to detect 

mitochondrial genetic effects with certainty, and the practical application of the
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information (Gibson et al., 1997). Further, most if not all cytoplasmic or maternal 

lines were based on the pedigree. Pedigree errors are common in livestock 

farms (Visscher et al., 2002). Further, limited pedigree depth could affect 

the correct distinction of maternal line. Despite the shortfalls of correctly 

assigning maternal lines (in the absence of mtDNA sequencing), non-uniform 

models in the estimation of effects and reliability of the results, these 

efforts during the pre-genomic period highlight the interest in understanding 

the effect of mitochondrial DNA in the form of maternal or cytoplasmic effects on 

the production and reproduction traits. Thus, the interest in evaluating the effect of 

mitochondrial DNA on the production traits has existed since the early 1980s (i.e. 

not very recent) but has not progressed due to the inherent limitations in the 

approaches. However, the investigation of the effect of maternal lines 

determined from the mitochondrial DNA (e.g. haplotypes) continues to be an area 

of interest to this day.

Genomics era - associating mitochondrial polymorphism to economically important 

traits  

     Mitochondrial DNA sequencing provides an alternative approach to evaluating the 

role of mtDNA on production and reproduction traits. Mitochondrial polymorphisms 

depending on their locations in coding or non-coding region have been postulated 

to affect phenotypes, mtDNA replication or altered mtDNA gene expression. The 

tRNA mutations could affect the ability to add amino acids to proteins leading to slow 

protein production, thereby affecting the ability of mitochondria to produce energy 

for cells. A mutation in an rRNA, on the other hand, alters the mitochondrial 

ribosome’s function affecting the synthesis of mitochondrial protein. Such 

changes may affect phenotypic traits by altering the efficiency of the electron 

transport chain and ATP production or causing various symptoms such as 

muscle weakness, neurological problems, seizures, hearing loss, and diabetes 

(Schutz et al., 1994, Krzywanski et al., 2011). While these postulated mechanisms 
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remain to be tested, they are restrictive to the mitochondrial genome alone and underscore 

the role of mito-nuclear interaction in mitochondrial function.  

Production and feed efficiency traits 

     The earliest genomic study in dairy cattle tested the association of 17 

sequence variants of the mtDNA D-loop with production and health traits in dairy 

cattle using an animal model (Schutz et al., 1994). This study showed that a single base-

pair substitution T16074C had a significant positive association with lactation energy 

and milk yield, fat yield and solids not fat yields. At the same time, C16231T was 

negatively associated with these traits. A single transition A169G was associated with 

increased milk yield by 482 kg, fat by 24 kg and SNF by 51 kg. Although their study had 

a considerably large dataset (1800 records, 728 cows), the substitution effect or 

the causality on the yields must be taken with caution for two main reasons. Firstly, 

they assumed that all animals within a maternal line based on pedigree had identical 

mtDNA and sampled only one animal for sequencing per maternal line. A 

similar study (Boettcher et al., 1996) associating rRNA and D-loops sequence 

variants with production traits employed two animal per maternal lines reported variation 

in the D-loop sequence within a maternal line which is plausible considering the 

potential pedigree errors. Secondly, only 17 D-loop sequence variants are considered 

in the association study, while the D-loop, particularly in the hypervariable 

regions, are highly polymorphic. Finally, milk production is a quantitative trait and 

associating a single variant to any variation must be interpreted with caution considering 

effects from mutations from the coding region of mitochondria and the mito-nuclear 

interaction of the genomes.  

     Other studies associated polymorphisms within D-loop and/or a gene within 

mitochondrial DNA with growth traits and meat quality. Three SNPs within the ND5 

gene in Nanyang cattle were associated with growth traits (Zhang et al., 2008), 

where the haplotype with substitutions at T12900C, A12923T, and C12924T had higher 

birth weight, height and length and average daily gain at six months (i.e. had a positive 
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effect on growth traits).  In another study (Biase et al., 2007), a substitution from G to T 

in tRNAasn gene in Nellore cattle was associated with maternal and individual estimated 

breeding values for body weight. In Japanese black cattle, based on the mixed model 

procedure, the mtDNA substitution G2232A in the 16S rRNA gene was reported to 

have an association with meat quality (longissimus muscle area and marbling) 

and was suggested as a potential candidate for mitochondrial effect on meat 

quality  (Mannen et al., 2003). In Iberian pigs (Fernández et al., 2008), the 

polymorphism at C9104T (COXII) and A715G (12S rRNA) affected fat (+1 g) and 

protein (-0.5 g) per 100 g of muscle. However, considering only a short 

segment/region of the mitochondrial genome was used, one can assume that 

these SNPs were in linkage disequilibrium with other genes.  

  Despite the plausible role of the mitochondrial function on feed efficiency traits 

(Herd et al., 2004), the effect of mitochondrial polymorphisms on feed efficiency traits has 

not been studied. This may be due to the complexity of the trait and the challenges to 

measuring the phenotypes related to feed efficiency.  

Fertility traits 

  The exact mechanism of how the mitochondrial DNA polymorphism could affect 

fertility and fitness remains unknown. In general, mtDNA’s association with fertility is 

mainly viewed from the ability to replicate mitochondrial DNA in adequate quantities in 

the oocyte as there are massive increases in the mtDNA content during egg 

development (May-Panloup et al., 2007, Benkhalifa et al., 2014). The mtDNA 

content differs significantly between fertilised and unfertilised oocytes (Reynier et al., 

2001, Santos et al., 2006). Thus, polymorphism induced mitochondrial DNA replication 

and dysfunction and suboptimal function relating to poor biogenesis or poor cytoplasmic 

maturation may result in poor fertility according to Reynier et al. (2001).  

  In purebred Hereford and composite multi-breed cattle, calving rate was associated 

with mtDNA haplotypes based on D-loop and ND5 regions (Sutarno et al., 2002).  In

    28



number of oocytes in an ovary, which correlates to the litter size, was 

significantly associated with polymorphisms, haplotypes and haplogroups in the mtDNA 

D-loop. A SNP at C323T showed the most prominent and significant differences in

oocyte numbers between the C and T allelic groups by 105 folds. Similarly, a significant 

difference in the number of oocytes was reported among the haplogroups (Liu et al., 

2019). In Afec-Assaf sheep, the haplogroup based on the complete mitochondrial 

genome was significantly associated with variation in ewe prolificacy (lambs born/

ewes lambing) (P < 0.0001) (Reicher et al., 2012).  

Fitness and adaptation traits 

     The effect of mitochondria, as a centre of energy production and thermogenesis, on 

the adaptation of animals to extreme environments of temperature and altitude have also 

been investigated. Two separate studies have compared the polymorphisms of two 

mitochondrial genes between Tibetan yaks inhabiting the high-altitude 

rangelands and cattle. Nonsynonymous mutations in ND1 and ND2 genes in yaks (Shi et 

al., 2018) and haplotypes in ATP 6 (six haplotypes) and ATP 8 (three haplotypes) 

found exclusively present in the yak (Wang et al., 2018) were reported to be positively 

associated with high altitude adaptation in yak compared to cattle. However, the major 

drawbacks of these studies are the approach of comparing two different species (cattle 

and yak) for adaptation and using only two genes when whole mitochondrial genome 

sequencing are available. 

 2.10 Summary 

      Mitochondrial DNA, primarily the D-loop region, has been widely used in 

mitochondrial diversity studies in livestock species. The effects of mitochondrial 

lines as determined from pedigree records were the cornerstone to study the role of 

mitochondrial DNA in production, fertility, and fitness traits. Later, the association 

of mtDNA polymorphism, mainly in the D-loop, with the production traits was studied. 

The underlying mechanism of how these polymorphisms affect the traits are generally 
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unknown, but most studies reported them as causal mutations. The approaches used had 

severe limitations and were of no or limited applicability in animal breeding. Thus, it is 

timely to revisit the goal of using the mitochondrial genomic information in the genomic 

improvement of livestock by capitalising on the sequencing and computational 

capabilities in the genomics era. This would mainly include the use of complete 

mitochondrial genome sequences for the assessment of mitochondrial genetic 

diversity, genome-wide association studies and consideration of genomic interactions. 

Further, the emerging multi-omics tools would also benefit the elucidation of the role 

of mitochondrial DNA in understanding complex production traits related to energy 

metabolism in farm animals. 
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Abstract 

The study of maternal diversity based on a limited set of mitochondrial regions or 

variants is a common tool to better understand past demographic events in livestock. 

Additionally, there is growing evidence of mitochondrial genetic variants having a direct 

association with a range of phenotypes.  It is therefore of interest to explore the full range 

of maternal diversity that exists across the entire bovine mitogenome. This study 

evaluated the whole mitochondrial genome diversity of 1,883 animals representing 156 

globally important cattle breeds, using conventional haplogrouping as well as methods 

developed to assess nuclear DNA diversity. Overall, the mitochondrial genomes were 

diverse with 11 major haplogroups, 1309 haplotypes, nucleotide diversity (π) 0.012 and 

haplotype diversity 0.99. While most animals fell in the haplogroup that was expected 

given their breed origins, a small proportion of African taurine (3.5%) and indicine (1.3%) 

animals haplogroups were found among the European taurine breeds and their composites 

(N 1302). Additionally, we present evidence confirming a new indicine subgroup (I1a, 64 

animals) characterised by two private mutations within the I1 haplogroup. Of the breeds 

studied, only those of Chinese origin belonged to this I1a subgroup. The results from 

non-conventional mitochondrial population structuring methods such as principal 

component analysis and hierarchical clustering were consistent with the haplogroup 

information. Mitogenome haplotype diversity within each breed was high and ranged 

from 0.932 (Buryat cattle) to 0.998 (Norwegian Red and Holstein cattle). The total 

genetic variation was attributed mainly to within-breed variance (96.9%), suggesting 

the potential for trait association studies within a breed. The accuracy of the imputation 

of missing genotypes was high (99.8%), except for the relatively rare heteroplasmic 

genotypes. Further, imputed genotypes enabled the prediction of haplogroup with an error 

rate of < 1.0%. The imputation error rate is in a range that is acceptable for association 

studies and genomic prediction for complex traits.  
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Introduction 

     Based on archaeogenetic evidence, modern day cattle originated from at least 

two distinct wild aurochsen (Bos primigenius) following two separate domestication 

events: one in the Fertile Cresent approximately 10,000 years ago  and the second in the 

Indus Valley some 8000 years ago [1-4]. After domestication, cattle spread to Europe 

with human migration mainly along the Mediterranean coastline and the Danube River 

[5, 6] to reach the British Isles (6,500 years ago). These cattle populations also expanded 

to the Iberian Peninsula following the northern coastal region of Africa [5, 7]. Similarly, 

cattle from the Indus Valley spread to China and South-East Asia [8] and Africa 

(~2,500–3,500 years ago) [9-11]. The two genetically distinct major cattle sub-species 

from these two early domestication sites still predominate in modern day cattle as Bos 

taurus taurus and Bos taurus indicus along with their widespread crossbreds. 

     An important part of the molecular evidence for the origin of cattle has been based 

onmitochondrial DNA (mtDNA) studies. The mitochondrial genome is small (16.34 kb), 

circular, haploid, non-recombining and maternally inherited [12]. Mitochondrial genome 

diversity can be described at three levels: nucleotide positions, haplotypes (unique 

sequences of nucleotides) and haplogroups (higher level of related groups among the 

haplotypes). Mitochondrial haplotype clustering [13] and mitochondrial haplogroups 

based on a set of known and pre-defined mutations point to plausible maternal origins 

and evolutionary history. The compiled haplogroup trees and the corresponding 

mutations were based on 233 cattle previously used for haplogrouping [14-16] available 

from GenBank, and are publicly available as a resource called DomeTree [17]. 

       While the mitochondrial genetic diversity of many cattle breeds has been previously 

characterized [18], there is increasing interest in the role of mitochondrial diversity on 

important traits in both humans and livestock animals.  In humans, mitochondrial 

mutations have been associated with several condition such as LHON (Leber hereditary
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optic neuropathy), MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis 

and stroke-like episodes), MIDD (maternally inherited diabetes and deafness) as 

reviewed in [19]. In livestock there is no clear evidence of causality, but 

mitochondrial haplotypes/mutations have been associated with meat quality [20], litter 

size [21], and reproductive capacity [22] in pigs, as well as increased milk production in 

cattle [23]. At a cellular level, mitochondrial haplotypes have been shown to influence 

DNA methylation and gene expression in embryonic stem cells [13], as well as metabolic 

traits in porcine and bovine ‘cybrids’ (cytoplasmic hybrid cell lines containing 

different cytoplast against uniform nuclear background) [24, 25]. 

To date, most mitochondrial molecular diversity studies in cattle are 

primarily evaluated based on the non-coding hypervariable control region (D-loop) 

or involve  limited breeds either within a country or within a region [14, 18, 26, 27]. 

While the partial or whole D-loop region is informative for population genetics 

because it is hyper-variable, whole mitochondrial genome sequences are more likely to 

reflect the full range of mitochondrial genomic diversity. Now that large sequence 

databases for cattle are available, it is timely to undertake a comprehensive study 

involving worldwide breeds, countries and continents for a holistic understanding 

of the mitochondrial landscape in modern cattle. One such database available for cattle 

is from the 1000 Bull Genomes project [28].  

The nuclear DNA variants from the 1000 Bull Genomes project have been 

extensively used in genomic analyses, particularly for imputation, genome-wide 

association and genomic predictions in dairy and beef cattle [29-33]. The variants 

from autosomal chromosomes have also been used to determine population 

structure and ancestry of bulls [34]. On the other hand, the 1000 Bull Genomes project 

mitochondrial sequence variants have not been used in mitochondrial diversity 

studies.  While the  imputation of mitochondrial variants for population genetics 

studies are not recommended, it is clearly of interest to empirically test the accuracy of 
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imputation of mitochondrial variants. Large scale data sets of imputed 

mitogenomes could contribute in predicting and associating phenotypes to 

the mitochondrial haplotypes in parallel to the variants from autosomal 

chromosomes.  

The use of mitochondrial variants for mitochondrial diversity from 1000 

Bull Genomes project requires close attention to two key aspects of the data. First, 

the short-read data are not specific to the mitochondrial genome only and some 

nuclear mitochondrial sequences (NUMTs) can potentially be wrongly aligned 

back to the mitochondrial genome. This may manifest as heteroplasmy 

(multiple alleles observed within an animal at a given MT position) but the 

expectation is that for most tissues, the MT allele reads will be more numerous than 

NUMT alleles. Thus a read depth filter could help mitigate this issue. 

However, due to the low number of mitochondria in sperm cells, the 

wrongly aligned NUMTs will be harder to be distinguished from true 

mitochondrial reads due to more even read depth as heteroplasmic sites. 

This necessitates strict quality control and filters to minimize the impact of 

NUMTs on the analysis. It should also be noted that true heteroplasmy in MT 

genomes does exist due to multiple mitogenome copies sometimes carrying 

different mutations (reviewed in [35]). Further, the format in which data is presented 

(VCF) is not a standard input format for most of the available mtDNA analysis tools. The 

standard input format for most of the available mtDNA analysis tools. The format 

conversion must consider the attributes specific to mtDNA (haploid, missing bases, 

heteroplasmy, and indels). Currently, only a few tools are available to convert MT 

variants into a more routinely used fasta format, but these tools lack description, 

particularly on the handling of heteroplasmy.  Furthermore, the allocation of the allelic 

base call at heteroplasmic positions in haploid genotypes needs careful consideration 

because heteroplasmy is not generally considered in diversity analyses. 
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We used the mtDNA variants from the 1000 Bull Genomes Project to: 

• develop an approach to pre-process and filter the MT sequence data from the

1000 Bull Genomes project to remove samples that may be contaminated with

NUMTs,

• evaluate cattle mitochondrial diversity, haplotypes, and haplogroups across

and within cattle breeds,

• compare unsupervised clustering techniques to conventional mitochondrial

grouping tools using whole mitogenomes, and

• investigate the accuracy of imputation of sporadic missing mitochondrial

variants for inclusion in haplogroup assignment.

Materials and Methods  

Sequence data and filtering 

    Our study utilised whole mitochondrial genomes from Run 8 of the 1000 Bull 

Genomes Project [28]. Run 8 included 4931 animals representing over 200 taurine 

and indicine breeds and their crosses.  The mitochondrial genome was aligned to the 

latest Bovine Reference Genome, ARS-UCD1.2_Btau5.0.1Y.fa, which combines 

ARS_UCD1.2 [36] with the Y chromosome assembly from Btau5.0.1 [37], 

because the ARS-UCD-1.2 animal was female, and therefore includes the 

mitochondrial (M) genome version from the ARS-UCD-1.2 assembly. The 

average read coverage per animal across the mitochondrial genome was 

12.34. There were over 6000 mtDNA variants: 5420 SNPs and 836 INDELS. 

Heteroplasmy (due to a mixture of two or more mitochondrial genomes or 

NUMT interference) was observed at almost all variant positions (5119 

out 5943). The mean number of heteroplasmy per SNP and per animal was 

253.0 and 302.2, respectively.  The mean number of missing genotypes per 

SNP was 464.0, and the mean number of missing genotypes per animal was 160.0.  

In order to obtain a high quality and reliable dataset for the analysis, we applied quality 

filters at both site and individual animal levels. The site quality control thresholds used 
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were similar to those applied in nuclear mtDNA sequences of the 1000 Bull Genomes 

Project [31]. We applied thresholds per site of: minimum phred-score quality of 

30 (Q30), minimum mapping quality of 30 (MQ30), minimum minor allele count 

of 2 (AC2) and maximum read depth (DP) of mean +3 SDs using VCFtools 

[38] and BCFtools [39]. This preliminary filtered dataset consisted of

3394 polymorphic sites, including heteroplasmic sites and indels. We then 

filtered out indels and variant sites with missing genotypes because these are not 

efficiently handled in conventional mtDNA analysis tools and are generally discarded 

from the analysis. We imposed an individual animal filter based on average 

read depth coverage and heteroplasmic sites. The animals with low average read 

coverage (DP < 10) across all remaining sites were removed. Further, to 

develop filters to remove animals that may have excessive and/or questionable 

heteroplasmy due to contamination from NUMTs, animals were evaluated in two 

groups as   

1. males whose DNA samples were either from semen or from unknown tissue

(Semen group), and 

2. females and males with DNA sampled from known tissues other than semen

(Non-semen group). 

The distribution of the number of heteroplasmic sites per individual between groups 

was compared. The heteroplasmic site distribution in the non-semen group approached 

a maximum of 150 heteroplasmic sites per individual compared to a maximum of over 

700 heteroplasmic sites per individual in the semen group (Figure S2). We therefore 

applied a maximum threshold of 150 heteroplasmic sites per animal, removing about 

300 animals from the semen group leaving 1,883 animals remaining in the data set. 

Further, the allelic ratios of the major to minor alleles at the heteroplasmic positions in 

the semen group showed an increase following the application of this filter (Figure 

S3) so that the major allele count was nearly twice that of the minor alleles. 
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Data processing 

The existing mitochondrial DNA analysis tools either require a continuous stretch of 

mitochondrial DNA sequence from a specific region (D-loop, COX2, CYTB etc) or 

a whole mitochondrial genome in prescribed formats. We adopted a genotype-

based allele assignment approach for the conversion to a homoplasmic 

variant sequence. Homoplasmic variants (0/0, 1/1, 2/2 etc.) were directly 

assigned the corresponding alleles, while the heteroplasmic sites (0/1, 

0/2,0/3, 1/3 etc.) were assigned a homoplasmic status for the most abundant 

allele based on read depth. In other words, the allele (reference - REF or 

alternative - ALT) with a higher read depth was chosen as the most 

representative base for a sequence at heteroplasmic positions. In cases where the 

allele read depth of REF and ALT alleles were equal, the ALT allele was chosen as 

the base for the position in the sequence. It was assumed that this strategy would 

be more informative of the existing allelic diversity and would help avoid 

reference bias. In addition, we also generated a complete genome length 

sequence (16340 bp in fasta format) using bases for variant positions and inserting 

“N” (missing base) in non-variant positions because this full mitochondrial genome 

length sequence format was required to predict the haplogroups using traditional tools 

(maternal origin and lineages).  

Analysis  

Mitochondrial DNA polymorphism, diversity and haplotypes 

The variant sequences (derived from VCF) were used for the description of the 

overall DNA polymorphism and evaluation of nucleotide and haplotype diversity using 

DnaSP program [40] for selected breeds (N ≥ 20 animals). The analysis of molecular 

variance was conducted using Arlequin 3.5 [41]. We used the maximum likelihood tree 

implemented in the MEGA X program [42] to derive a phylogenetic tree among the 

breeds as well as a haplotype network within breed employing median joining tree in the 

PopART program [43]. 
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Mitochondrial haplogroups 

Mitochondrial haplogroups were predicted using the MitoToolPy program [17] using 

the whole mitochondrial genome sequence (fasta) prepared as described above. The 

tool aligned the query sequences to the bovine reference sequence V00654 (hereafter 

referred to as BRS) which was generated using a shotgun DNA sequencing strategy 

[12]. The tool derived the list of SNPs and compared them to the predetermined list of 

SNPs specific to haplogroups to assign a haplogroup. The tool then provided a 

list of variants missing in the query sequence (missing variants) for an 

assigned haplogroup (where haplogroups are pre-defined by MitoToolPy) and a list 

of SNPs not in an assigned haplogroup, but present in query sequence as private 

variants. The private variant output from the tool provides the opportunity to infer a 

new subgroup within a haplogroup and to annotate the variants specific to a 

haplogroup and breed. 

Additionally, because of the extensive use of D-loop sequences in 

determining mitochondrial diversity and haplogroups in the past, mitochondrial variant 

sequences from only the D-loop region were also used to predict the mitochondrial 

haplogroups in MitoToolPy as a comparison. The outputs from the MitotoolPy 

(private and missing variants) had slightly altered nucleotide positions due to being 

aligned to an older reference genome (BRS) incorporated in the software. To enable the 

annotation of variants to the latest reference (ARS-UCD1.2_Btau5.0.1Y_M.fa, hereafter 

known as ARS-UCD1.2_M), the haplogrouping variants in the MitoToolPy were lifted 

over (positions and bases) to ARS-UCD1.2_M, and the reference genome for alignment 

within the tool was changed to the ARS-UCD1.2_M.fa. The two reference genomes 

differed in their length (BRS 16338 bp, ARS-UCD1.2_M 16340 bp) resulting from two 

deletions in the former as well as having nucleotide base differences at 12 positions 

(Table 1). Briefly, all haplogroup determining variants in MitoToolPy after 222 bp 

were incremented by +1 up to 588 bp and positions after 588 bp (BRS) by +2 to correct 

for the two deletions. Further, bases were changed as appropriate, i.e. five variants 
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among the haplogroup determining variants were the same base as ARS-

UCD1.2_M and thus removed as they were no longer variant when 

lifted over to the ARS-UCD1.2_M (Table S1). The position changes 

resulting from the manual liftover were confirmed by aligning 218 complete 

mitochondrial DNA sequences (previously used to derive variants for haplogroups 

in MitoToolPy available from NCBI under the same accession number) 

to the ARS-UCD1.2_M and these conformed to Table S1 and showed  additional variants 

(Table S2).  

Table 1. Equivalent positions and reference (Ref) alleles differing between 

ARS-UCD1.2 (ARS) and Bovine reference sequence (BRS) relative to ARS-

UCD1.2 and indicating whether variant positions belong to the pre-defined haplogroup variant 

set as defined in cattleTree_whole.txt file of MitotoolPy. 

ARS Position  
& Ref. allele 

BRS Position & 
Ref. allele 

Haplogroup  
Variant in 
MitoToolPy 

Comments 

222 C - (deletion) No 
364 G 363 C No 
589 C - (deletion) No 

2538 A 2536 C Yes (2536 A) 

3345 G 3343 C No 
3387 C 3385 T No 
3541 A 3539 G No 
4321 C 4319 T No 

8190 C 8188 T Yes (8188 C) 

8712 T 8710 C No 

9684 C 9682 G Yes (9682 C) 

12167 C 12165 T  Yes (12165 C) 

13312 C 13310 A Yes (13310 C) 

deletion at position 222 

deletion at position 589 

ARS and HG_variants have same base 

15637 T 15635 C  No 

Private variants and annotation 

We investigated private variants specific to certain individuals within a haplogroup 

and within individuals within a breed to investigate whether they may be 

biologically meaningful. The private variants specific to a particular group within a 

haplogroup/breed in this study were annotated using SNPeff [44]. The importance of the 
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coding variants was predicted by SNPeff as being either high (e.g. stop gained), moderate 

(missense variants) or low (synonymous variant) and non-coding variants were 

annotated as modifier (e.g. upstream/downstream variants). 

Unsupervised clustering 

The overall mitochondrial population structure was also investigated through three 

unsupervised clustering approaches. First, clustering based on principal components was 

derived from a genomic relationship matrix (GRM) generated from all filtered 

polymorphic variants. Fasta files were converted to .bed format using Plink ver1.9 [45] 

and these genotypes were used to generate a haploid GRM (make-grm-xchr option in 

GCTA [46]) to use as input for a principal component analysis (PCA) also completed 

with GCTA . Principal components (PCs) 1, 2 and 3 were plotted using scatterplot3d 

[47], and the clustering was interactively visualised using the rgl package in R [48]. 

Second, we determined the individual ancestry and population structure of the animals 

using Admixture [49]. The estimate of population subgroups was determined using the 

Admixture cross-validation errors approach, and then a priori population structure was 

implemented with k ranging from 2 to 6, where k is the expected number of populations. 

The third approach was hierarchical clustering implemented in the R package 

dendextend [50] using a matrix of nucleotide differences between each pair of 

sequences (calculated using an in-house python script). The hierarchical clusters were 

implemented at the highest (2 groups) as well as the lowest levels (0 nucleotide 

difference). To check for the concordance between these three unsupervised clustering 

methods, the resulting clusters/groups were annotated according to the individual’s 

predicted haplogroups from MitoToolPy.  

Imputation of missing genotypes and haplogrouping 

The accuracy of imputation of sporadic missing mitochondrial genotypes and 

the effect of this imputation on haplogroup assignment were investigated.  The   empirical 

accuracy of imputation was tested using the filtered sequence dataset that had no  
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and animals with missing genotypes were not included. This not only reduced 

the and animals with missing genotypes were not included. This not only reduced 

the overall number of animals and sites substantially but also reduced 

the number of heteroplasmic genotypes, improved the average read depth and 

retained higher quality sites (Table 2, Figure S1). However, when we compared the 

levels of heteroplasmy per individual separately in the Semen and Non-semen 

tissue groups, heteroplasmy was much higher in the Semen derived samples.

Table 2. Summary of the parameters of raw and filtered variant datasets before and after 

removing of sites with missing data (Site) and removing both sites and animals with 

missing data (Site & Ani). 

Parameters 
Raw dataset 

(Unfiltered) 

Dataset filtered by 

Site Site & Ani 

4931 4931 1883 

5903 3394 3069 

5201 3394 1227 

253 (5) 388 (12.5) 2 (0) 

3934 3717 712 

302.2 (278) 266 (245) 3.5 (0) 

5903 3394 0 

420 (409) 232.3 (175) 0 

3299 2748 0 

251.3 (7) 159.9 (3) 0 

284.5 (299.8) 287 (299.9) 699 (723) 

No. of Animals (Ani) in dataset 

Total No. of POS in dataset 

Total No. of POS with at least one Het_GT animal  

Mean No. of Ani with Het_GT per POS (med)  

No. of Ani with at least one Het_GT  

Mean No. of POS with Het_GT per Ani (med)   

No. of POS_Missing GT 

Mean No. of Ani with Missing GT per POS (med) 

No. of Ani with Missing GT 

Mean No. of POS_Missing GT across all Ani (med) 

Mean read depth per POS (across all Ani) (med) 

Mean read depth per Ani (across all POS) (med) 284 (18.9) 287 (18.9) 699 (597) 

Ani=Animal, POS=nucleotide position, GT=genotype, Het_GT Heteroplasmic genotype, med=median, Site=nucleotide 

position, med=median

We therefore imposed a strong filter based on the maximum number of heteroplasmic 

sites per individual, to result in a similar distribution of heteroplasmy and allelic ratios in 

both the Semen and Non-semen groups (Figure S2, S3). Overall, in the final set of 

1,883 individuals, the per site heteroplasmy count was considerably reduced and there 

was a slight improvement in the average read depth coverage in the final dataset (Figure 

S4).  
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Mitochondrial haplogroups, population structure and admixture 

Haplogroups using MitoToolPy 

The haplogroup membership for each of the 1,883 animals in the filtered set 

was predicted in MitoToolPy using the ARS-UCD1.2_M reference, and the lifted over 

variants that MitoToolPy uses to define haplogroups (Table S1). MitoToolPy detected 

11 major pre-defined haplogroups (I1, I2, T1, T2, T3, T4, T5, T6, P, Q1, Q2) based 

on variants from the whole genome sequences (16,340 bp). Overall, T3 was the 

predominant haplogroup (N 1502 animals) with about 15 subgroups 

within T3. The dominant subgroups were T3 (752) and T3r (547) (Figure S5). 

In most cases, the predicted haplogroup of each animal was as would be expected 

based on the breed and sub-species (Table S3). All the African cattle breeds 

(Ankole, Afrikander, Ndama, Benishangul, Goffa, Kenana, Muturu) were classified 

as the T1 haplogroup that is fixed in African taurine breeds [18]. Generally, the 

indicine cattle breeds belonged to major haplogroup I and modern taurine cattle to 

haplogroup T, although there were some exceptions. As expected, the 

composite breeds mostly sourced from Australia were unpredictable. Notably, 

the haplogroups of Brahman cattle (N=18) were mostly T1 (N=12), T3 (N=5) 

and one indicus (I). In some animals of European breed origin and their 

composites (N=1302), the integration of T1 (3.5%), I1 and I2 (1.3%) 

haplogroups was also observed (Table 3 and 4). For example, several 

Holstein (N=5) and Jersey cattle (N=4)  from Australia were of T1 origin. This 

was further confirmed by checking the original haploid genotypes for 

heteroplasmy across the haplogroup determining positions. For Jersey 

belonging to T1, the haplogroup determining positions were all 

homoplasmic (except 1 position in one animal) (Table S4). Altogether, the 

T1 haplogroup was observed in about 13 European taurine breeds and 

composites. Within Australian sourced cattle, T1 had considerable 

influence on Holstein, Jersey and composite breeds (36 animals). 
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Similarly, the I Haplogroup was present in Holstein animals from China 

(N=5/12), Herefords from New Zealand (N=3/4) and, as expected, in composite 

taurus x indicus breeds from Australia 4/12 (Table 4).

Table 3. Prevalence of T1 (African taurine) haplogroup in non-African cattle breeds and 

composites. 

Origin of sample Breed Sub-species n/N Sex 

Australia Angus Lowline taurus 2/2 2F 

Beefmaster taurus X indicus 1/2 1M 

Brahman indicus X taurus 12/18 1F, 10M, 1U 

Dexter taurus 1/2 1F 

Holstein taurus 5/5 4F, 1M 

Jersey taurus 4/8 4M 

Senepol European taurus X 

African taurus 

5/12 5U 

Composite  6/13 6M 

Germany Holstein Red taurus 1/3 1M 

France Blonde d’Aquitaine taurus 2/16 1F, 1M 

Brown Swiss taurus 1/1 1M 

Korea Hanwoo taurus 2/21 2U 

Unknown Holstein taurus 1/67 1F 

Romagnola taurus 2/10 1M, 1U 

San Martinero taurus 1/2 1M 

Limonero taurus 1/9 1U 

F= female; M=male; U=unknown; n=No. of animals showing T1 haplogroup, N=No. of animals in a breed 
sampled from the specified country.  

Table 4. Prevalence of indicine haplogroup (I) in European taurine breeds and 

composites. 

Origin of sample Breeds n/N Sex Haplogroup 

Australia Composite 4/12 M I1 

Brahman 1/18 M I1 

Belted Galloway 1/2 F I1 

China Holstein 5/12 F I1 

New Zealand Hereford 1/4 M I2 

Hereford 2/4 M I1 

Unknown Shorthorn 1 F I1 

F=female; M=male; U unknown; n=No. of animals showing I haplogroup, N=No. of animals 
in a breed sampled in a country.
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    In the past, sequences from D-loop region (910 bp long) have been 

extensively used in the prediction of haplogroups [1, 18]. However, using our filtered D-

loop genotype data, MitoTool.py could not differentiate between the two major I 

and T haplogroups likely because some variants used in previous studies were filtered 

out of our variant set. In our dataset prior to any filtering, there were 206 D-

loop variants compared to 153 D-loop variants in the pre-defined set that 

MitotoolPy uses for prediction of haplogroups but only 87 variants overlapped. 

Further, in our filtered set, only 60 D-loop variants overlapped with the 153 

MitoToolPy D-loop variants, suggesting that this was the main contributing 

factor resulting in poor resolution of haplogroups using only the D-loop variants. On 

the other hand, using our filtered set of sequence variants from the non-D-loop 

region, MitoToolPy could distinguish the major haplogroups (I, T, P and Q) but 

did not resolve haplogroup sub-levels. For example, the incidence of unresolved 

haplogroups was more than 60% of the animals between T1 and T3 (1280), and T3 

and T4 (N 15).  This indicates that the D-loop variants in our set played a key role in 

defining the sub-haplogroups when used together with the non-D-loop. This is not 

unexpected because the higher mutation rate in the D-loop region is more likely to 

resolve the sub-haplogroup levels (i.e. more recently diverged groups).

Principal Component Analysis 

   The PCA of the GRM derived from all filtered mitochondrial variants 

(whole sequence) revealed distinct clusters that corresponded to the I, T and Q 

major haplogroups after annotation with MitoToolPy results (Figure 1). 

However, sub-clustering within the major haplogroups T and T3 was not entirely 

resolved, despite the tendency to marginally separate T1 and T2’s (Figure S6a), as well 

as T3 and T3r (Figure S6b).  

A GRM of only D-loop variants was also used for PCA and revealed the same two 

major clusters (T and I, Figure S7a). Within the I cluster, sub-clusters of I1 and I2 were 
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separated to some extent while T1 and T3 did not separate clearly. Similarly, the variants 

from the non-D-loop region could segregate T and I haplogroups into separate clusters but 

did not resolve further into sub-clusters of haplogroups (Figure S7b).    

Figure 1. Principal components (PC1, 2, and 3) plot based on mitochondrial genomic relationship 

matrix showing the grouping of I, P, Q and T major haplogroups.  

Population structure using Admixture 

The population structure based on all mitochondrial sequence variants was 

determined using Admixture [49], where each animal is assigned a proportional 

membership of a predetermined number of k population groups (e.g. sub-

species, breeds). Depending on the k value used (2 to 6), 

the major haplogroups were progressively split (Figure 2). Admixture estimated 

the optimal a priori k value to define population groups (based on the changes 

in cross-validation errors) was four (k=4) (Figure S8). When annotated with 

the predicted MitoToolPy haplogroups, the population structure with k=3 

showed I separating from two further subpopulations within the T haplogroup. 

Further sub-groups were apparent at higher k values and these 

corresponded to sub-haplogroups within T.   
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Figure 2. Population structure of cattle mitochondrial sequence variants using Admixture for a 

pre-defined number of populations (k) ranging from 2 to 6. Population structure annotated with 

individual animal haplogroups (I1, I2, P, Q, T1, T2, T3, T4, T5, T6) determined from MitoToolPy.   

Hierarchical clustering 

The nucleotide differences between each pair of whole mtDNA variant sequences was 

calculated using an inhouse script. The mean nucleotide difference across all 

pair combinations was 36 but ranged from 0 to 224. Hierarchical clustering, based 

on the nucleotide differences matrix between individuals, again presented two broad and 
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distinct clusters (Figure 3: Cluster 1 and 2). The individuals in Cluster 1 and 2 were from 

the major haplogroups T and I, respectively and Cluster 1 also included animals 

belonging to the P and Q haplogroups.  

Figure 3. Hierarchical clustering of animals based on the number of nucleotide differences 

between the pair of mitochondrial sequences.  Cluster 1 and 2 corresponded to taurus and indicus 

cattle, respectively. 

Private variants 

Private variants are additional variants present in a query mitochondrial sequence but 

not in the list of haplogroup determining variants. They are of interest because they can 

provide insights into plausible subgroups that have not been previously catalogued within 

the pre-defined haplogroups. We therefore examined the distribution of these private 

variants (output from MitoToolPy) within a haplogroup and/or breed(s). Some of the 

private variants were specific to a group of animals within a haplogroup (Table S5). For 

the most part, private variants were transition mutations from the reference allele.  Four 

breeds had members of a sub-haplogroup that showed a specific set of private variants 

(Table 5). Almost 50% of private variants (N=43) were specific to particular haplogroups, 
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annotated either as missense (50%), upstream/downstream (30%) or synonymous (16%) 

gene variants (Table S5). In general, a substantial proportion of the private variants specific 

to a particular haplogroup included 2 SNPs in I1, 1 SNP in I2, 5 SNPs in T1, 2 SNPs in 

T1b1b1, 1 SNP in T1c, 1 SNP in T2 and 1 SNP in T3. Interestingly, a number of the private 

variants were annotated as missense, and it is therefore possible that these mutations could 

have downstream effects on phenotypes.  

Table 5. Annotation of the private variants specific to a group of individuals within a breed 

showing the type of variants and affected region/gene.  

Breed Haplo-
group Source of sample n/N* Annotation: variant position 

(bp), type, gene 
NDama T1 Benin, 

Guinea 
7/12 2579, NCTE, rRNA 

4714, Missense, ND2 
6882, Missense, COX1 
10435, Missense, ND4L 

Holstein T3 Switzerland, 
Canada 

6/111 7948, Missense, COX2 

T3d1 United Kingdom 5/7 9807, NCTE, tRNA, 
13277, Missense, ND5 

Hereford 
miniature 

T3 Australia 2/2 5603, Synonymous, ND2 

Senepol T1 Australia 3/5 6388, Synonymous, COX1 

*N=total number of animals in a breed in the sub-haplogroup; n=number of animals with
private variants in a breed within the haplogroup;  NCTE=non-coding transcript exon

A maximum likelihood tree was constructed for whole mitogenomes for only 

the animals belonging to I haplogroup using MEGA X.  This analysis showed four 

distinct clusters, one cluster corresponded to the I2 haplogroup and the three other 

clusters were annotated to I1 haplogroup (Figure 4a). The subclusters within I1 

haplogroup were labelled as I1a, I1b and I1-Orig. The cluster I1a consisted of a group 

of 64 animals which were characterised by two group specific (private) variants (1497 

bp and 6848 bp). The cluster I1b contained a group of 10 animals with one group 

specific variant (5707 bp) (Table 6). 

The third I1 cluster, I1-Orig, consisted of the remaining 38 animals under I1 

haplogroup in which the private variants specific to I1a and I1b were not present. 

The cluster I1a was mainly composed of Chinese indicine breeds except for two Buryat 
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animals (Russia), while I2, I1-Orig and I1b were mostly indicine breeds from the Indian 

subcontinent and Chinese indicine breeds (Table 6).  

Table 6. Breed annotation and the number of animals within subclusters of the indicus (I) cluster 

based on alternate clustering techniques.  

Cluster I2  
(N=19) (p/q)1 

Cluster I1b 
(N=10) (p/q) 

Cluster I1a 
(N=64) (p/q) 

Cluster *I1-Orig 
(N=38) (p/q) 

Achai (1/4) 
Bhagnari (1/4) 
Cholistani (1/5) 
Dhanni (2/5) 
Dianzhong (1/5) 
Gabrialli (1/5) 
Gir (1/1) 
Kangayam (1/1) 
Nari Master 
(1/4) 
Red Sindhi (1/3) 
Sahiwal (5/7) 
Vechur (1/1)  

Hereford (1/48) 
Unknown (1) 

Bhagnari (1/4) 
Cholistani (2/5) 
Dajal (2/4) 
Dhanni (1/5) 
Gabrialli (1/5)  
Hariana (1/1)  

Composite (2/13) 

Bohai Black (2/5) 
Buryat (2/21) 
Chaidamu Yellow (2/5) 
Dabieshan (2/3) 
Dianzhong (1/5) 
Guangfeng (3/4) 
Jian (3/3) 
Jiaxian Red (2/5) 
Jinjiang (3/4) 
Leiqiong (3/3) 
Lingnan (6/7) 
Luxi (5/5) 
Nanyang (3/3) 
Sichuan Indigenous (1/1
Wandong (2/2) 
Wannan (3/7) 
Weining (3/4) 
Wenshan (4/6) 
Xuanhan (2/5) 
Zaobei (4/5)  

Holstein (5/330) 
Unknown (3) 

Achai (1/4) 
Bhagnari (2/4) 
Brahman (1/29) 
Cholistani (2/5) 
Dajal (2/4) 
Dhanni (2/5) 
Dianzhong (1/5) 
Jiaxian Red (1/5) 
Kazakh (2/9) 
Lohani (1/1) 
Mongolian (1/7) 
Nari Master (2/4) 
Red Sindhi (2/3) 
Sahiwal (2/7) 
Tharparkar (8/8) 
Zebu Indian (1/1) 

Composite (2) 
Galloway Belted 
(1/3) 
Shorthorn (1/1) 
Hereford (2/48) 
Unknown (1) 

1 N = total number of animals in the cluster, p = No. of animals within breed in the haplogroup, q = total 
No. of animals within the breed, *I1-Orig =remaining animals under I1 haplogroup after assignment of 
other animals to I1a and I1b  

Further, to explore the substructure of the I haplogroups revealed by the phylogenetic tree, 

the mitogenomes of only the animals assigned to haplogroup I (by MitoToolPy) were re-

analysed using PCA of the GRM, Admixture and hierarchical clustering. The PC plot also 

showed sub-grouping of the I1 haplogroup into three well-separated clusters that were 

distinct from I2 (Figure 4b). Similarly, using Admixture with k set to 2, 3 or 4, there was 

distinct substructure within the I haplogroups (Figure 4c). With k =2, Admixture separated 

I2 and I1, and with k = 4 there was further clear separation of I2, I1a, I1b and I1-Orig, in 
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Figure 4. Subgrouping animals under I haplogroup into I2, I1 and subgroups within I1 (I1-Orig, I1a 

and I1b) using conventional Maximum Likelihood method (a) and alternate clustering techniques: 

principal component analysis (b), Admixture software (c) and hierarchical clustering based on the 

number of nucleotide difference between the sequences of pair of animals (d). *base pair position 

of private variants relative to ARS-UCD1.2_M. I1-Orig is group of animals under previous I1 

haplogroup not assigned to either I1a or I1b (i.e., remaining animals in I1 Cluster1) 
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agreement with the PC plot. The hierarchical clustering analysis (based on animals’ 

pairwise nucleotide differences) showed two main clusters (1 and 2 in Figure 4d). Further, 

distinct sub-clusters were observed within both Cluster 1 and Cluster 2, with three 

main subclusters under I1 haplogroups that matched those identified from the other 

methods (Figure 4d). The I2 cluster showed one outlier that was in agreement with the PC 

plot outlier (i.e. the same animal). In all the above unsupervised clustering analyses, 

sub-clusters I1a and I1b were comprised of the same group of 

animals. Interestingly, all three unconventional mitochondrial clustering methods 

reproduced the same grouping of these animals as with maximum likelihood method.  

Mitochondrial haplotype diversity 

Overall, across 1,883 animals, 1,309 whole mitochondrial genome haplotypes 

were identified with haplotype diversity of 0.999 (SD 0.0001). Of the 1309 

haplotypes, 1010 were singletons (i.e. one animal per haplotype) indicating 

considerable diversity. The remaining haplotypes (299) were shared by 2 to 23 

animals (Figure S9). The shared haplotypes were approximately 60% within a 

breed and 25% between the breeds. The haplotype diversity within breed was 

generally high and ranged from 0.932-0.998 (Table 7). The shared haplotypes 

specific to a breed were also found across animals sampled in several different 

countries. Two haplotypes distinct to Angus were present in animals sourced from 

Canada and USA. Additionally, some haplotypes were shared among several 

breeds and across several countries. For example, one haplotype was identified 

in 23 animals from a wide range of breeds including Holsteins sourced from China 

and a number of other breeds mostly of Asian origin (Luxi, Lingan, Zaobei, Weining, 

Wannan, Jian, Jinjiang, Wenshan, Nanyang, Xuanhan, Leiqiong and Bohai Black). 

Similarly, another haplotype was shared by 23 animals in Angus (Canada), Brown 

Swiss (USA), Charolais (France), Deutsches Schwarzbuntes Niederungsrind 

(Germany), Gelbvieh (Canada), Hereford (Australia, Russia and USA), Holsteins 
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Table 7. Mitochondrial DNA sequence polymorphism and diversity (standard deviation) of 

selected breeds  with a sample size of 20 or more.  

Breed 

No. of 

Sequences 

No. of 

Segregating 

Sites 

Average 

No. of 

difference 

No. of 

Haplotypes 

Haplotype 

Diversity 

Nucleotide 

diversity 

Holstein 267 697 16.96 210 0.998 

(0.001) 

0.0055 

(0.0010) 

Jersey 27 57 9.62 16 0.937 

(0.031) 

0.0031 

(0.0004) 

Brown Swiss 84 202 8.99 64 0.993 

(0.003) 

0.0029 

(0.0001) 

Simmental 32 80 7.55 24 0.976 

(0.002) 

0.0025 

(0.0002) 

Norwegian Red 222 338 10.51 180 0.998 

(0.001) 

0.0034 

(0.0001) 

Holstein Friesians 35 121 9.94 31 0.992 

(0.010) 

0.0032 

(0.0003) 

DSN* 47 154 10.2 40 0.992 

(0.007) 

0.0033 

(0.0002) 

Angus 103 122 7.65 45 0.935 

(0.014) 

0.0025 

(0.0001) 

Yakut 35 68 9.44 15 0.938 

(0.018) 

0.0031 

(0.0003) 

Hereford 44 312 33.84 33 0.979 

(0.012) 

0.011 

(0.0043) 

Charolais 33 114 8.856 31 0.996 

(0.009) 

0.0028 

(0.0002) 

Limousin 27 100 8.80 25 0.994 

(0.012) 

0.0029 

(0.0002) 

Modern Danish Red 23 73 11.55 19 0.980 

(0.020) 

0.0038 

(0.0002) 

Hanwoo 24 146 15.59 23 0.996 

(0.013) 

0.0051 

(0.0013) 

Buryat 20 250 48.16 12 0.932 

(0.035) 

0.0157 

(0.0070) 

DSN*  Deutsches Schwarzbuntes Niederungsrind 
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(Netherlands and USA), Rodkulla (Sweden), Red Angus (USA), Hanwoo 

(Korea), Belgian Blue and a composite breed (Australia). Among the breeds, 

Holstein was the most numerous breed in our study (N=267), therefore it 

was of interest to examine the network of haplotypes within Holsteins 

from a total of 210 haplotypes (168 singletons and 42 shared) (Figure 

5). Haplotypes from T3 and subgroups formed the core of the network with 

side branches in agreement with MitoToolPy I and T1 haplogroup allocations. 
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Figure 5. Haplotype network consisting of 210 haplotypes in the Holstein population (N=267) 

using the median-joining network in PopART and annotated with haplogroups predicted from 

MitoToolPy. The size of the circles is proportional to the number of animals carrying the same 

haplotype.   



To test the ability of a naïve hierarchical clustering approach to 

differentiate haplotypes across all animals, we used the height of the cluster (h) 

corresponding to the nucleotide difference of 0 between two haplotype pairs. The 

resulting cluster groups were compared with the haplotypes derived from the DnaSP, 

mainly focussing on the non-singleton haplotypes and hierarchical clusters. There was 

approximately the same number of singleton clusters as singleton haplotypes (1032). At 

least 132 clusters and haplotypes had substantial memberships in common (Table 

S7). For example, Cluster 328 and Haplotype-324 (with 23 each), Cluster-7 and 

Haplotype-7 (21 animals each) and all other cluster-haplotype combinations with more 

than five animals (total 30) had 100% of the same individuals except for five groups. 

This demonstrates a high concordance between determination of haplotypes by 

hierarchical cluster and the traditionally determined haplotypes.  

Mitochondrial DNA polymorphism and nucleotide diversity 

We investigated mitochondrial nucleotide diversity in animals from breed groups 

with ≥ 20 animals. Overall, there were 1825 segregating sites, nucleotide diversity (π) was 

0.012, and the average nucleotide difference between the pair of sequences was 35.5. The 

nucleotide diversity was high in Buryat and Hereford and other breeds had low but 

comparable nucleotide diversity ranging from 0.002-0.005. The analysis of molecular 

variance (AMOVA) showed that the percentage of genetic variation from among and 

within breed components was 3.1% and 96.9%, respectively, indicating high within breed 

genetic diversity.   

Imputation and MitoToolPy haplogroup prediction 

The routine practice of discarding the sites with missing genotypes from all 

sequences in the mtDNA analysis results in loss of information, particularly when the 
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proportion of missing genotypes in an individual were low. In this case, the 

imputation of sporadic missing genotypes could increase the number of animals 

and sites for analysis, but the empirical accuracy of mitochondrial imputation in 

cattle is unknown. To test this, we masked 10% of known genotypes (307 sites) in 

a random 20% of animals (333 out of 1,883). Then we imputed the 

masked genotypes using Beagle (version 4.0) using the gt and ref option 

using the remaining 1550 animals with all genotypes present as a 

reference for imputation. The overall concordance of this imputation 

was 99.8%, although concordance for heteroplasmic sites was 

approximately 66% (Table 8). There was a tendency for imputation to bias 

heteroplasmic and homoplasmic alternate genotypes towards the homoplasmic 

reference genotypes (0/0). The genotype likelihood ‘gl’ option also produced a 

similar concordance of 99.5%.  

To evaluate the effect of imputation on haplogroup prediction, we re-analysed 

the animal haplogroups in the imputed dataset and compared these to 

their haplogroup prediction from the original dataset. This was replicated 50 times with 

a new random set of animals chosen for masking genotypes for 

imputation. The predicted haplogroups matched in 99.7% of the individuals when 

compared to their haplogroup predicted from the full set of real genotypes. The 

accuracy of imputation and the predicted haplogroup for the masked dataset 

showed little variation across the 50 replications (Table S8). This suggests that 

missing genotypes can be imputed and used for prediction of haplogroups with 

high but not perfect accuracy. These results are provided for information only, 

that is, no imputed data was used elsewhere in this study.  
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Table 8.  Empirical accuracy of imputing sporadic missing genotypes in mitogenomes.  Number of 

correctly imputed genotypes (percentage correct in brackets) on the diagonals and number 

of genotypes wrongly imputed shown on the off-diagonals. Assessment was based on 

randomly masking of 10% of positions (307) per animal in 20% of animals (333). 

Original Genotype 

0|0 0|1 0|2 1|1 2|2 3|3 

Im
pu

te
d 

  g
en

ot
yp

e 

0|0 101089 39 73 1 
(99.9%) 

0|1 37 82 11 
(65.6%) 

0|2 2 3 2 
(100%) 

1|1 64 4 800 1 
(90.4%) 

2|2 4 1 16 
(84.2%) 

3|3 2 
(67.0%) 

Total 101196 125 3 885 19 3 
101992/102231

(99.8%) 

Discussion 

Our study undertook a comprehensive analysis of mitochondrial genome sequence 

diversity in 1,883 cattle, including the most important global cattle breeds and sub-species 

in a single study. This represents one of the single largest studies of this kind demonstrating 

the use of short read mitochondrial sequence data from general DNA sequencing. Our use 

of the entire mitogenome enabled a more in-depth study of the full range of diversity, that 

may be important in future studies of the potential impact of mitochondrial variants on 

phenotypes.  Our large sample size enabled subgrouping within haplogroups and breeds as 

well as annotation of the private variants. In addition to the conventional diversity indices, 

we have investigated alternate ways of analysing population structure and haplotypes of the 

entire mitogenome, that do not rely on predefined haplogroups and therefore capture 

a broader spectrum of the diversity. 
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Introgression of African taurus and indicus haplogroups into European taurus 

Most breeds belonged to their anticipated haplogroup except for some animals of 

European breeds and composites that were mostly allocated to African taurus (T1) and 

relatively few to indicus (I). This is not surprising, as the T1 haplogroup has been previously 

reported in European cattle breeds (1-30%) from France, Spain, Portugal, Italy, Balkan 

and Greece [5, 18, 52, 53] and America (Creole cattle) [54]. The detection of T1 

haplogroups in Iberia [55] and Sicily and southern Italy, according to [56] may be the 

influence of migration of African cattle into southern Europe via the Mediterranean Sea 

coastline. The African T1 sequence was also found in Iberian Bronze age cattle [57].  

The breeds with no previous report of T1 haplogroup but found in our study are Jersey 

and Holstein: those showing the T1 haplotype were sourced mainly from Australia (9 out 

of 10 ). Australia has a recent history of crossbreeding European breeds with more heat 

tolerant imported breeds to develop cattle better adapted to the tropical environment in 

northern Australia [58]. Australia imported Jersey from the Channel Islands and Holsteins 

from the Netherlands in 1850. It is possible that some of the first African cattle arriving in 

Australia were Afrikander (8 bulls and 2 cows) imported from South Africa in the 

early 1950s [59] and other breeds (Boran, Bonsmara etc.) in the late 1980s. However, 

details on the sex of imported animals are not available making it difficult to confirm the 

most likely maternal route of T1 mitogenome transmission. In 1990, the embryos from 

Boran and Tuli (African) cattle were imported [60]. While the attributes of heat 

tolerance and tick resistance were sought after under the extensive tropical beef 

production system, the presence of the T1 haplogroup in dairy breeds (Holstein and 

Jersey) in Australia suggests these animals may be the result of upgrading from cows 

carrying the T1 mitochondrial lineages or sporadic cases of cross breeding to improve 

heat tolerance but this warrants further investigation.  
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The indicine haplogroup (I) in Holsteins in this study were largely in female 

samples originating from China. This is not surprising as the I haplogroup has been 

previously reported in Chinese Holstein [61] and at least three haplotypes were shared 

among Chinese Holstein and native cattle (22 animals) [62]. Imported purebred 

Holsteins were used to grade-up local cows as well as for the development of the 

Chinese Black and White cattle breed [63].  

There is a possibility that the breed origin was incorrectly labelled on some samples, 

therefore we undertook a PCA of all the taurus animals (N=1451) based on a 

genomic relationship matrix derived from 45K autosomal SNPs. The PC plot of Holstein 

and Jersey breeds shows tight clustering of these animals regardless of the MT 

haplogroup (Figure S10) which supports that the indicine and the African taurine 

maternal lines in these breeds are likely due to upgrading of native cattle.  

In composite breeds such as Brahman, the mitochondrial haplotypes were 

mostly taurine in this study, which is interesting because the breed’s nuclear DNA is 

primarily of indicus origin in the 1000 Bull Genomes project [31]. The Australian 

Brahman cattle in this study were approximately 97% taurine (T1 47% and T3 50%) and 

about 3% indicus (I) haplogroups. Compared to our study, Brahman from China were 

reported with lower representation of T1 (35%) and T3 (26%), but higher in I (39%) 

haplogroups [27], while American Brahman showed lower T1 (30%) but higher T3 

(70%) [64]. Originally, Brahman cattle were introduced into Australia from the USA 

in 1933 [58]. In fact, in America, Brahmans were developed from the crossing/

upgrading of B. taurus females (often Creole cattle) with Guzerat, Nellore, Gyr and 

Krishna valley cattle. As such, haplogroups in the indicine breeds in Americas were 

reported to be largely taurine (T3 50%, T1 48%) and rarely indicine (I) (1 in 66 indicine 

animals) [65].  

The inter-breed introgression of haplogroups was also supported by sharing of the 

diverse haplotypes among breeds. This again points to the common practice of upgrading. 

Mitochondrial haplotypes were also shared across countries, and to a higher degree between

    71



countries in close proximity, indicating the movement of female animals. 

However, the shared haplotypes between more distant countries (e.g. USA and 

Australia) suggests the movement of foundation females or, more recently, embryos.

  Subgroup of I1 Chinese indicus (I1a) 

   The presence of both I1 and I2 indicus haplogroups with the predominance of 

I1 recorded in the current study agrees with the previous studies [66-68]. 

The I1 haplogroup originated in the Indus valley, while the I2 haplogroup is 

believed to have originated in northern India [69]. Interestingly, within the large 

subcluster of I1, we constantly identified a sub-cluster (I1a) comprising mainly 

of Chinese indicine breeds (19/20 breeds) (Figure 4). This sub-cluster (I1a) had 

two mutations specific to the subgroup, one in a rRNA and another 

within the ATP6 genes. These mutations were annotated as non-coding 

transcript exonic and missense variants, respectively. There has been a previous 

report of specific I1 haplotype common among the Chinese breeds indicative 

of a nucleus of Chinese indicus, but this was based on D-loop sequences 

[67]. Another study employing whole mitochondrial genome also reported a 

specific group under I1 (characterised by 6 mutations) for a breed not in the 

current study (Yunling cattle) [27]. Two specific mutations characterising the 

I1a subgroup in our study were also reported in the Yunling cattle subgroup, 

while the other four were found non-specific to I1a group in our study. These 

findings, together with results from our study, suggest the presence of a unique 

I1 subgroup (I1a) specific to breeds emanating from China. Further, five 

Holstein animals in our study that originated from China also had the I1a 

sub-haplogroup, indicating there may have been adhoc or controlled upgrading of 

indicus females that carry I1a.  

     While I1a in this study may not be a separate haplogroup, a distinct cattle 

haplogroup “C” and a separate domestication event in north-eastern China during 

the early Holocene has been proposed by [70]. However, their proposed new 
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haplogroup C sequence did not match our I1a subgroup sequences. The presence 

of conventional I1and I2 haplogroups support the consensus among the published 

literature that the indicus cattle population in China is a result of migration and spread 

from India. The Bos indicus are reported to have been  introduced into China 

between 2000-200BC and currently there is no archaeological or genetic evidence for 

origin of domestic cattle in ancient China [66, 71] suggesting genetic drift 

as a contributing factor to the formation of the subgroup (I1a). Another 

possibility, considering the specificity to Chinese breeds (not present in Indian 

indicine breeds), is the potential restocking of auroch female lines from the wild in 

China and establishing nucleus or base for the indicine breeds in China. There is 

molecular evidence of aurochs in China's northeast during the Neolithic 

period [72]. Therefore, these hypotheses need further investigation. The 

subgroup (I1b) under I1 characterised by a specific mutation (5707 bp) 

did not exist in any breeds from China, while the entire I1 group included 

breeds from both India and China. There are shared haplogroups (I1 and 

I2) between breeds of the two countries and also sub-groups specific to the region.  

  There are fewer studies within indicine haplogroups compared to taurine and 

previous studies classified them into only two broad haplogroups (I1 and I2). 

Despite several previous studies on mtDNA of the Chinese cattle, subgroupings under 

I1 were not reported except by [27]. One possible reason is that the location of the 

mutations defining subgroup under I1, is in the coding region of the mitochondrial 

genome, while most studies in the past were mainly based on the D-loop. Complete 

mitochondrial genome sequences better define the full spectrum of mitochondrial 

diversity compared to using the D-loop only, and may uncover mutations in coding 

regions that affect specific phenotypes.

Imputation of mitogenome variants 

    Genetic variation was mainly within breed (97%, AMOVA), and high haplotype 

diversity and multiple haplogroups exist within breeds. For example, Holstein animals 
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(N 267) belonged to at least 15 subgroups and 210 haplotypes (Table 7, Figure 5).The 

haplogroup and haplotypes within a breed are of strong interest for phenotype 

association studies and in this study we found several private variants in groups of 

animals that were annotated as missense in MT genes (Table S5). In humans, the 

association of mitochondrial haplogroups (H and R) to specific phenotypes such as risk to 

diseases [73-75], metabolic disorders [76, 77] and athletic endurance [78, 79], is more 

advanced than in domestic animals. Although two recent studies examined the 

relationship between mitochondrial haplogroups and litter size [21] and other phenotypic 

traits [22] in pigs, these studies lack sufficient power to distinguish or pinpoint specific 

mutations (causal) affecting the trait. 

Association studies of traits could include variants from the mitochondrial genome, if 

it is possible to sequence and impute large numbers of animals for MT variants, but this 

has not yet been done in livestock. While whole-genome sequences are now regularly 

imputed and exploited for association studies of production traits across livestock, 

mitochondrial genomes are excluded from these studies and literature on 

mitochondrial genome imputation is scarce or non-existent for livestock.  In 

humans, the imputation of the mitogenome from ancient remains showed 

that the accuracy of mitogenome imputation, like the nuclear counterpart, 

benefitted from having a large and diverse reference sequence [80]. Thus, utilising 

the existing resources such as the data from the 1000 Bull Genomes Project could 

potentially provide a reference set for mitogenome imputation from lower density 

SNP arrays. However, we would recommend following our rigorous filtering to 

minimize the impact of NUMTs and wherever possible using only non-semen 

male tissue samples or female tissue samples. The first step towards large scale 

imputation of MT sequence is to confirm that sporadic missing genotypes in 

the mitogenomes can be accurately imputed. This would provide a full reference 

panel of mitogenomes to impute to for animals with MT SNP genotypes from 

lower density panels. In the current study, the accuracy of imputation 
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of missing genotypes (99.8%) was  comparable  to  results  in  humans  that  used  

tools  specifically for imputation of the mitochondrial genome such as MitoIMP [81]. 

This indicates that existing tools may  be applied to mitochondrial genome imputation 

with customization.  

Applicability of unconventional mitochondrial DNA analysis tools 

The current study utilised conventional tools for mtDNA 

analysis (DnaSP, MitoToolPy, MEGA X) but also compared these results with 

alternative tools such as GRM based PCA, Admixture, and hierarchical clustering 

based on nucleotide differences. Our primary interest in use of the alternative 

tools was to better quantify the full spectrum of genetic diversity across the entire 

mitogenome, rather than simply place animals into the higher level haplogroups. 

However, as expected, the results from the less conventional mitochondrial tools 

were mostly in agreement with haplogrouping. Therefore, alternative 

clustering methods, specifically the hierarchical clustering based on nucleotide 

differences, may be used as grouping techniques that is equivalent to 

haplotypes for use in trait/phenotypic association studies.  

Conclusions 

There is high mitochondrial genomic diversity among modern cattle and a large 

proportion of this genetic variation is within breeds. The introgression of African taurine 

and indicine mitochondrial haplogroups into European taurine breeds occurred at low 

frequencies. The patterns of population structure and haplogroups from 

conventional tools were very similar to results of non-traditional 

mitochondrial methods developed for autosomal DNA. We provide additional 

evidence of a new indicus I1 haplogroup subgroup (I1a) in Chinese 

indicine breeds. Within breed mitochondrial diversity (haplotypes/

haplogroups) is likely at a level sufficient to conduct trait association studies. 

Imputation of sporadic missing genotypes in the mitochondrial genome was highly 
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accurate with the exception of heteroplasmic sites. This could enable larger data sets to be 

used for population studies through recovery ofsites or animals with low levels of missing 

genotypes and would provide a diverse reference population for large scale imputation of 

mitogenomes. 
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Supplementary Files 

Supplementary figures 

Figure S1. Distribution of heteroplasmic mitochondrial variants and average read depth in 

the filtered dataset of 2176 animals (sites with missing genotypes removed). Count 

of heteroplasmy in a position on cattle mitochondrial genome (a) and mean read depth 

(DP) across all animals at the positions in the mitochondrial genome (b).  
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Figure S2. Box plots of the number of heteroplasmic sites per animal in individuals of two 

groups; F (non-semen: females and males with non-semen tissues sampled for DNA 

extraction) and M (males with either semen for DNA extraction or unknown tissue sample 

origin) before (a) and after (b) filtering out animals with > 150 heteroplasmic sites.  
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Figure S3. Box plots of allelic depth ratio of major and minor allele at the heteroplasmic 

sites of animals in two groups F (non-semen: females and males with non-semen tissues 

sampled for DNA extraction) and M (males with either semen for DNA extraction 

or unknown tissue sample origin) showing before (a) and after (b) filtering out animals 

with >150 heteroplasmic sites.
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Figure S4. Distribution of mitochondrial heteroplasmic variants and average read depth in 

the final dataset (1,883 animals) after removing all individuals with >150 

heteroplasmic MT variants. a) Count of heteroplasmy in a position on cattle 

mitochondrial genome (a). Mean read depth (DP) across all animals at the positions in 

the mitochondrial genome (b). 
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Figure S5. Pie-chart showing the subgroups within T3 major haplogroup and the composition in a 

total of 1502 animals.  
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  b  

Figure S6. PC plot of PC1, 2 and 3 based on a genomic relationship matrix derived from whole 

mitochondrial DNA sequence variants annotated with haplogroup predicted from MitoToolPy. Plot 

annotated with T haplogroups (a) and T3 (b) sub-haplogroups.  
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Figure S7. PC plot based on the genomic relationship matrix of mitochondrial D-loop sequence 

variants (a) and variants from the non-D-loop region (b) variant sequences annotated with 

haplogroups predicted using MitoToolPy.   
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Figure S8. Determining the optimal a priori “k” value (i.e. number of population sub-groups) 

to use in Admixture software for 1,883 mitogenomes in our study. Plot shows changes in 

cross-validation errors using prior values of 1 to 5 for k in Admixture with the optimal value 

indicating k=4.   

Figure S9. Frequency distribution of haplotypes with the number of animals per haplotype. 

Haplotypes were defined using all variant sites (excluding indels) across the mitogenome of the 

study animals.  
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Figure S10. PC plot of Holstein (a) and Jersey (b) breeds based on a genomic relationship matrix 

(GRM) of the taurus only animals (N=1,451) in the study set (N=1,883). The GRM was 

constructed from a custom 45K autosomal SNP panel using GCTA.  
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Supplementary Tables 

Table S1. Variants used in prediction of cattle mitochondrial haplogroup lifted over from Bovine 

Ref Sequence (V00654) to ARS-UCD1.2_M reference sequence (see Appendix 3 page 156) 

Table S2. List of variants from animal sequences available at NCBI, aligned to ARS-UCD1.2_M

     Ref and used by MitoToolsPy to dertermine haplogroup (see Appendix 3 page 166) 

Table S3. Haplogroups and source of samples of 1,883 animals in the filtered dataset

determined from the variant sequence using MitoToolPy 

Breed Source Haplogroups 

N I1 I2 P2 Q1 Q2 T1 T2 T3 T4 T5 T6 

Achai PAK 4 1 1 2 

Afrikander AUS 3 3 

Alentejana 1 1 

Angus 
AUS, CAN, NZL, 
USA 103 97 6 

Angus German USA 1 1 

Angus Lowline AUS 2 2 

Angus Red CAN, NZL, USA 10 10 

Angus Simmental 1 1 

Ankole UGA 9 9 

Australian Lowline GBR 1 1 

Ayrshire Finnish FIN 1 1 

Beefmaster USA 2 1 1 

BelgianBlueHolstein 3 3 

BelgianBlueLimousin IRE 1 1 

Benishangul ETH 3 3 

Bhagnari PAK 4 3 1 

BlondedAquitaine FRA 15 2 13 

BohaiBlack 5 2 3 

Bohuskulla SWE 3 3 

Boran KEN 19 19 

Boskarin 1 1 

Brahman AUS 18 1 12 5 

BrownSwiss 
FRA, CHE, DEU, 
ITA, USA 84 1 81 2 

Buryat RUS 20 2 2 16 

Busa FIN 8 8 

Cabannina ITA 2 2 

ChaidamuYellow 5 2 3 

Charolais CAN, FRA, USA 33 1 32 

CharolaisAngus 1 1 

CharolaisRedAngus 1 1 

Chianina ITA 5 2 2 1 

Cholistani PAK 5 4 1 
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Breed Source Haplogroups 

N I1 I2 P2 Q1 Q2 T1 T2 T3 T4 T5 T6 

Cloned-polledDairyBull 2 2 

Composite CAN, AUS 13 4 6 3 

Corriente 2 2 

CostenoConCuernos 2 1 1 

Crossbreed CAN, FRA 21 21 

Crossbreed(HO62.5%;MO25%;JE12.5%) 1 1 

Dabieshan 3 2 1 

Dajal PAK 4 4 

DanishRedDairy 2 2 

Dengchuan CHN 1 1 

DSN* DEU 47 1 46 

Dexter AUS 2 1 1 

Dhanni PAK 5 3 2 

Dianzhong 5 2 1 2 

Droughtmaster AUS 1 1 

EasternFinncattle 0 5 5 

Eringer CHE 3 3 

Evolčne CHE 2 1 1 

Fjäll SWE 11 11 

Fleckvieh DEU 15 1 14 

Fogera ETH 1 1 

Gabrialli PAK 4 1 1 2 

Galloway 1 1 

GallowayBelted AUS 3 1 2 

Gelbvieh CAN 13 13 

Gir 1 1 

Goffa ETH 3 3 

Guangfeng 4 3 1 

Guanling CHN 1 1 

Hanwoo 24 1 2 2 19 

Hariana 1 1 

Hasake CHN 5 5 

Hereford 
AUS, CAN, NZL, 
RUS, USA 44 2 1 41 

HerefordMiniature AUS 2 2 

Holstein 

AUS, CAN, CHE, 
CHN, DEU, DNK, 
FRA, GBR, NLD, 
USA 267 5 1 6 4 

25
1 

HolsteinCharolais DEU, 19 19 

HolsteinFriesian DEU, USA 35 1 34 

HolsteinHereford USA 9 9 

HolsteinJerseyF1Crossbred USA 1 1 
HolsteinLimousinF1Crossbr
ed USA 2 2 

HolsteinRed DEU 3 1 2 

HolsteinSimmental 4 4 

IranAdmixed 9 4 1 4 

JapaneseNative 9 1 8 
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Breed Source Haplogroups 

N I1 I2 P2 Q1 Q2 T1 T2 T3 T4 T5 T6 

Jersey AUS, USA 27 4 23 

Jian 4 3 1 

JiaxianRed 5 3 2 

Jinjiang 4 3 1 

Kalmykian FIN 10 1 8 1 

Kangayam 1 1 

Kazakh 9 2 1 3 3 

KazakhWhiteheaded RUS 5 5 

Kenana SUD 5 5 

Lagune 1 1 

Leiqiong 3 3 

Limia 1 1 

Limonero 9 1 8 

Limousin CHE, FRA, 27 26 1 

LimousinHereford 2 2 

LimousinHolstein CHE 1 1 

LimousinxBrownSwiss 0 1 1 

Lingnan 7 6 1 

Lohani PAK 1 1 

Luxi 5 5 

MaineAnjou USA 1 1 

Maremmana USA 1 1 

Maronesa USA 1 1 

Menggu CHN 11 1 10 

ModernDanishRed DNK 23 1 22 

Mongolian 7 1 1 5 

Montbeliarde FRA 17 1 15 1 

Muturu NGR 10 10 

Nanyang 4 3 1 

NariMaster PAK 4 2 1 1 

NDama BEN, GUI, 12 12 

Nelore 2 1 1 

NordicRedCattle 2 2 

Normande FRA 7 7 

NorthernFinncattle FIN 9 9 

NorwegianRed NOR 222 6 
21
6 

Nuer ETH 1 1 

Ogaden ETH 9 9 

OriginalBraunvieh CHE 17 3 12 2 

Ottonese ITA 1 1 

Pajuna 1 1 

Parthenaise FRA 2 2 

PezzataRossaItaliana 1 1 

Piedmontese CHE 2 2 

PiedmonteseNormande 1 1 

Pinzgauer CHE 1 1 
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Breed Source Haplogroups 

N I1 I2 P2 Q1 Q2 T1 T2 T3 T4 T5 T6 

Podolian-Serbia FIN 10 4 6 

Podolica 1 1 

Qinchuan CHN 2 2 

RedSindhi PAK 3 2 1 

Rendena ITA 2 2 

Ringamålako SWE 2 2 

Rödkulla SWE 9 1 8 

Romagnola IRL, ITA 10 1 1 2 1 5 

RougeDesPres FRA 3 3 

Sahiwal PAK 5 2 3 

Salers FRA 4 4 

SanMartinero 2 1 1 

SantaGertrudis AUS 1 1 

Sayaguesa 1 1 

ScottishHighland CHE, GBR 7 7 

Senepol AUS 12 5 7 

Shaiwal IND 2 2 

Sheko ETH 3 3 

Shorthorn 1 1 

SichuanIndigenous 1 1 

Sikias 1 1 

Simmental AUT, CAN, CHE 32 32 
SimmentalFleckviehPezzata
rossa AUT, CHE, ITA 3 3 

SimmentalxAngus CHE 1 1 

SombaTongaleseModern 1 1 

SouthAnatolianRed 1 1 

SwedishRed SWE 1 1 

SwissFleckvieh CHE 1 1 

TexasLonghorn 1 1 

Tharparkar PAK, IND 7 7 

TharparkerModern 1 1 

TibetanCattle 2 2 

TraditionalDanishRed DNK 1 1 

Tuxer CHE 1 1 

TyroleanGrey AUT, CHE, ITA 7 7 

UgandaAdmixed 26 26 

UkrainianGrey FIN 8 8 

Unknown 126 4 1 6 7 
10
8 

Väneko SWE 5 5 

Vechur 1 1 

Vorderwaelder DEU 1 1 

WagyuModern 1 1 

Wandong 2 2 

Wannan 7 3 4 

Weining 5 3 2 

Wenshan 4 4 

    93



Breed Source Haplogroups 

N I1 I2 P2 Q1 Q2 T1 T2 T3 T4 T5 T6 

WesternFinncattle 4 4 

Xizang CHN 2 2 

Xuanhan 5 2 3 

Yakut FIN, RUS 35 6 29 

Yanbian CHN 8 1 7 

Yaroslavl RUS 10 10 

Zaobei 5 4 1 

Zebu ETH 2 2 

ZebuIndian 1 1 

Total 1883 112 19 1 8 3 167 50 1502 1 13 7 

DSN* Deutsches Schwarzbuntes Niederungsrind, AUS Australia, AUT Austria, BEN Benin, CAN Canada, CHN China, 
DNK Denmark, ETH Ethopia, FIN Finland. FRA France, GUI Guinea, DEU Germany, IND India, IRE Ireland, NLD 
Netherlands, NZL New Zealand, GBR United Kingdom, NGR Nigeria, PAK Pakistan, RUS Russia, SCL Scotland, 
SPN Spain, SWE Sweden, CHE Switzerland, UGA Uganda, USA United States of America 

Table S4. Genotypes and allele depth at key position distinguishing the haplogroup T1b1 and T3r 

for Jersey with T1 haplogroup.  

POS 

Alleles 7544 16024 16052 16115 16257 

REF: G G C T T 

Animal  ALT: A, C A, T T C C 

1/1:9,234 1/1:4,302 1/1:3,309 1/1:0,272 1/1:3,201 

0/1:3,32,0 1/1:0,23 1/1:0,22 1/1:0,16 1/1:0,22 

1/1:5,132 1/1:1,122 1/1:0,127 1/1:0,125 1/1:2,96 

SAMN08612491 

SAMN19491856 

SAMN08612497 

SAMN19491865  1/1:1,205 1/1:0,174 1/1:0,172 1/1:0,152 1/1:1,139 
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Table S5. Annotation of the private variants* common to a specific groups of animals within a 

haplogroup. 

Haplogroup (N) 
bp position on ARS 

(BRS)  
N Annotation 

I1 (112) 

1497(1495) 64 Spec, NCTE, rRNA 

5707(5705) 9 Spec, Syno, COX1 

8648(8646) 64 Spec, Miss, ATP6 

14029 (14027) 64 NonS, Miss, ND6 

16086(16084) 115 NonS, Up/down 

16112 (16110) 4 NonS, Up/down 

I2 (19) 
14833 (14831) 13 Spec, Miss, CYTB 

16087 (16085) 19 NonS, Up/down 

Q1 (6) 5718 (5716) 2 NonS, Miss, COX1 

T1 (57) 

6388 (6386) 3 Syno, COX1 

3684 (3682) 13 Spec, Syno, ND1 

15675 (15673) 8 NonS, NCTE,tRNA 

16262 (16260) 9 NonS, Up/Down 

2579 (2577) 7 Spec, NCTE rRNA 

4714 (4712) 7 Spec, Miss, ND2 

6882 (6880) 7  Spec, Miss, COX1 

10435 (10433) 7 Spec, Miss, ND4L 

T1b (3) 

4984 (4982) 2 NonS, Miss, tRNA 

5898 (5896) 2 NonS, T Miss, G Stop_gained COX1 

10605 (10603) 3  Spec, Synon, ND4 

12416 (12414) 2  NonS, Miss, ND5 

15961 (15959) 2  NonS, Up/down 

T1b1b1(24) 

12404(12402) 9 NonS, Miss, ND5 

12740 (12738) 4 Spec, Miss, ND5 

14773 (14771) 5 Spec, Miss, ND5 

T1b1b1a3 (9) 4742(4740) 3  NonS, Syno, ND2 

T1b1b1c1(3) 13464 (13466) 2 Miss, ND5 

T1C (11) 
15462 (15460) 2 Spec, Miss,CYTB 

9569 (9567) 5 NonS, Syno, COX3 

T2 (45) 

16137(16135) 12 NonS, Up/down 

5703 (5701) 13  Spec, T Miss, A Stop gained 

11370 (11368) 9 Spec, Miss, ND4 

T3 (55) 

16006 (16004) 59 Spec, Up/down 

8245 (8243) 32 Spec, Syno, ATP8 

6237 (6235) 5 Miss, COX1 

16076 (16074) 15 NonS, Up/down 
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16233 (16231) ~Spec, Up/down 

T3c (5) 4002 (4000) 5 NonS, Miss, ND1 

T3k (5) 16114 (16112) 3 NonS, Up/down 

T3r 5 
16044 (16042) 39 ~ Spec, (T3a1a), Up/down 

16234 (16232) 4  NonS, Up/down 

T5 
9234 (9232) 3 NonS, Miss, COX3 

10881 (10879) 3  NonS, Miss, ND4 

*variants not used for determining haplogroups in MitoToolPy,

N =  No. of animals in the haplogroup,

n = number of animals showing private variants,

Spec = Specific (i.e. Private variants from MitoToolPy only found within the group of individuals within

a identified haplogroup),

NonS = Nonspecific (i.e. Private variants from MitoToolPy within a group of animals within a

haplogroup but also present among other individuals in other haplogroups),

Variants: up/down upstream/downstream gene variants,

NCTE = Non-coding transcript exon, Miss Missense,

Syno = Synonymous

Table S6. Haplotypes specific to breed and prevalent in samples sourced from two countries. 

Shared haplotypes No. of animals Breed Country 

Hap_12 3 Angus Canada, USA 

Hap_20 8 Angus Canada, USA 

Hap_121 2 Brown Swiss Switzerland, Germany 

Hap_145 3 Brown Swiss Italy, USA 

Hap_306 6 Holstein Canada, Switzerland 

Hap_308 3 Holstein Canada, Switzerland 

Hap_332 3 Holstein Denmark, Germany 

Hap_404 3 Holstein France, The Netherlands 

Hap_415 2 Holstein France, The Netherlands 

Hap_446 2 Australia, USA 

Hap_901 2 

Jersey Tyrolean 

Grey Austria, Switzerland 
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Table S7. Number of animals in common ((≥ 5) between each specific Haplotype (determined 

by DnaSP) and Cluster (based on hierarchical clustering of the nucleotide difference between pairs) 

Haplotype 
No. 

No. of Anim+ 
in_hap 

Cluster 
No. 

No. of Anim+

in Cluster 

No. of 
Anim+ 

common 

% 
Concordance* 

324 23 328 23 23 100% 
7 21 7 21 21 100% 
8 17 8 15 15 88% 

197 15 198 14 14 93% 
9 8 9 8 8 100% 

855 8 866 8 8 100% 
243 8 246 8 8 100% 

20 8 20 8 8 100% 
549 7 554 7 7 100% 

24 7 24 7 7 100% 
23 7 23 7 7 100% 
19 7 19 7 7 100% 

857 6 868 6 6 100% 
825 6 835 6 6 100% 

62 7 63 6 6 86% 
505 6 510 6 6 100% 
269 6 272 6 6 100% 

1193 6 1209 6 6 100% 
1192 6 1208 6 6 100% 
1191 6 1207 6 6 100% 
1080 6 1093 6 6 100% 
786 5 795 5 5 100% 
658 9 750 5 5 56% 
544 5 549 5 5 100% 
517 5 522 5 5 100% 
515 5 521 5 5 100% 
419 5 423 5 5 100% 
306 6 310 5 5 83% 

1138 5 1152 5 5 100% 
10 5 10 5 5 100% 

1029 5 1041 5 5 100% 

Anim+ = Animal, * based on No. of animals in each Haplotype 
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Table S8. Number and percentage of genotypes correctly imputed in 307 masked sites per animal 

in 333 animals (102231 sites per run) and correct prediction of haplogroup* from the imputed 

genotypes. Results are shown for 50 independent tests of imputation.   

Run† 
Genotypes (out of 102231) Haplogroups of 333 imputed animals 

Correctly 
imputed 

% Correctly 
imputed No. correctly predicted % of animal correct 

1 101951 99.73% 330 99.10 % 

2 101963 99.74% 333 100.00% 
3 101987 99.76% 333 100.00% 

4 101984 99.76% 333 100.00% 
5 101921 99.70% 333 100.00% 

6 101959 99.73% 332 99.70% 
7 102036 99.81% 330 99.10% 

8 101972 99.75% 333 100.00% 
9 101938 99.71% 332 99.70% 

10 101972 99.75% 332 99.70% 
11 101983 99.76% 332 99.70% 

12 101910 99.69% 333 100.00% 
13 101953 99.73% 332 99.70% 

14 102021 99.79% 330 99.10% 
15 101963 99.74% 331 99.40% 

16 101987 99.76% 332 99.70% 
17 101976 99.75% 333 100.00% 

18 101973 99.75% 332 99.70% 
19 101991 99.77% 330 99.10% 

20 101948 99.72% 328 98.50% 
21 101999 99.77% 332 99.70% 

22 101985 99.76% 332 99.70% 
23 101964 99.74% 331 99.40% 

24 101986 99.76% 332 99.70% 
25 102005 99.78% 331 99.40% 

26 101970 99.74% 331 99.40% 
27 101978 99.75% 333 100.00% 

28 101968 99.74% 333 100.00% 
29 101925 99.70% 329 98.80% 

30 102020 99.79% 333 100.00% 
31 101993 99.77% 331 99.40% 

32 101965 99.74% 331 99.40% 
33 101985 99.76% 331 99.40% 

34 101977 99.75% 331 99.40% 
35 102000 99.77% 331 99.40% 

36 101995 99.77% 331 99.40% 
37 101957 99.73% 331 99.40% 

38 101951 99.73% 331 99.40% 
39 101995 99.77% 331 99.40% 

40 101919 99.69% 331 99.40% 
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41 101990 99.76% 328 98.50% 
42 102017 99.79% 328 98.50% 

43 101973 99.75% 328 98.50% 
44 101978 99.75% 328 98.50% 

45 101938 99.71% 328 98.50% 
46 101955 99.73% 333 100.00% 

47 101960 99.73% 333 100.00% 
48 102008 99.78% 333 100.00% 

49 101985 99.76% 333 100.00% 
50 102027 99.80% 332 99.70% 

Mean  101975 99.75% 331 99.49% 

† Run = results based on 50 independent tests 

* Haplogroup predicted using MitoTool.Py
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Expression of mitochondrial protein genes
encoded by nuclear and mitochondrial
genomes correlate with energy metabolism
in dairy cattle
Jigme Dorji1,2* , Christy J. Vander Jagt2, Josie B. Garner3, Leah C. Marett3, Brett A. Mason2, Coralie M. Reich2,
Ruidong Xiang2,4, Emily L. Clark5, Benjamin G. Cocks1,2, Amanda J. Chamberlain2, Iona M. MacLeod2 and
Hans D. Daetwyler1,2

Abstract

Background: Mutations in the mitochondrial genome have been implicated in mitochondrial disease, often
characterized by impaired cellular energy metabolism. Cellular energy metabolism in mitochondria involves
mitochondrial proteins (MP) from both the nuclear (NuMP) and mitochondrial (MtMP) genomes. The expression of
MP genes in tissues may be tissue specific to meet varying specific energy demands across the tissues. Currently,
the characteristics of MP gene expression in tissues of dairy cattle are not well understood. In this study, we profile
the expression of MP genes in 29 adult and six foetal tissues in dairy cattle using RNA sequencing and gene
expression analyses: particularly differential gene expression and co-expression network analyses.

Results: MP genes were differentially expressed (DE; over-expressed or under-expressed) across tissues in cattle. All
29 tissues showed DE NuMP genes in varying proportions of over-expression and under-expression. On the other
hand, DE of MtMP genes was observed in < 50% of tissues and notably MtMP genes within a tissue was either all
over-expressed or all under-expressed. A high proportion of NuMP (up to 60%) and MtMP (up to 100%) genes were
over-expressed in tissues with expected high metabolic demand; heart, skeletal muscles and tongue, and under-
expressed (up to 45% of NuMP, 77% of MtMP genes) in tissues with expected low metabolic rates; leukocytes,
thymus, and lymph nodes. These tissues also invariably had the expression of all MtMP genes in the direction of
dominant NuMP genes expression. The NuMP and MtMP genes were highly co-expressed across tissues and co-
expression of genes in a cluster were non-random and functionally enriched for energy generation pathway. The
differential gene expression and co-expression patterns were validated in independent cow and sheep datasets.
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Conclusions: The results of this study support the concept that there are biological interaction of MP genes from
the mitochondrial and nuclear genomes given their over-expression in tissues with high energy demand and co-
expression in tissues. This highlights the importance of considering MP genes from both genomes in future studies
related to mitochondrial functions and traits related to energy metabolism.

Keywords: Mitochondria, Energy metabolism, Differential gene expression, Gene co-expression, Cattle

Background
There is growing evidence that mitochondrial dysfunc-
tion arises from variations in the mitochondrial genome
and that their interplay with the nuclear genome has a
role in mitochondrial diseases in humans, including
metabolic disorders and diabetes [1–3]. Mitochondria
and mitochondrial functions are critical for tissues with
high energy requirement [4]. Energy is produced in
mitochondria through a process of oxidative phosphoryl-
ation (OXPHOS). Besides energy production, mitochon-
dria mediate programmed cell death (apoptosis), aging,
calcium homeostasis, and signalling as reviewed in [5–
7].
Mitochondrial proteins (MP) are the proteins localized

in mitochondria and are key component to mitochon-
drial functions [8]. There are an estimated 1500 proteins
in mitochondria of rats [9], participating as components
of electron transport chain, metabolic pathways, and fac-
tors for replication, initiation and regulation in tran-
scription and translation. To date, 1158 MP stand
verified in human [10] and almost all MP (> 99%) are of
nuclear origin (NuMP) and imported into the mitochon-
dria [11, 12] with the exception for 13 proteins (< 1%),
which originate from the mitochondrial genome
(MtMP). Mitochondria have their own genome, which is
inherited maternally [13–15]. The cattle mitochondrial
genome is haploid with a small circular structure (~ 16.4
kb) with a coding region encoding for 37 genes (13 pro-
teins, 22 tRNAs and 2 rRNAs) and a non-coding control
region [16]. Mitochondrial DNA mutations in cattle
have previously been shown to be associated with fertil-
ity and productivity [17–20], and environmental adapt-
ability to high altitudes in yaks [21, 22]. Unlike nuclear
DNA, mitochondrial genomes occur in multiple copies,
and their numbers are relatively constant within a cell
type and development stage but vary considerably
among cell types [23–25].
Gene expression is referred to as one of a series of

processes from gene activation to mature protein func-
tion that contributes to the expression of cellular pheno-
types [26]. The expression of a gene is often specific to
tissue types, and a notable example is the dominance of
major milk protein transcripts in the bovine lactating

mammary gland [27]. Gene expression is commonly
studied using RNA sequencing (RNAseq) where the
number of reads mapping to a gene (counts) is used to
measure gene expression.
The characterization of gene expression, identifica-

tion of gene function, gene-disease or gene-produc-
tion associations from genome-wide gene expression
[28] employs differential gene expression and co-ex-
pression network analyses. Differential gene expres-
sion compares the gene expression in a sample with
another sample or group of samples. Gene co-expres-
sion analysis measures the correlation between the
expression levels of genes and associates gene clusters
with biological processes and facilitates prediction of
gene function of previously unknown genes [29]. At a
very local level, co-expression of small groups of
genes results from being in close proximity [30, 31]
and in chromosomal domains characterized by fre-
quent internal DNA-DNA interactions known as
topological association domains (TADs) [32].
Most RNAseq based gene expression analyses to date

have focused on nuclear genes rather than genes from
the mitochondrial genome [33]. Nonetheless, a compre-
hensive examination of MP genes from both genomes is
central to understanding genome-genome interactions,
their role in meeting specific energy demand, and devel-
opment of mitochondrial diseases. Metabolic profiles
and energy demands vary widely across organs and tis-
sue types [34–36]. The varying demand for energy across
tissues is possibly in part facilitated through tissue spe-
cific and differential expression of MP genes. Currently,
a comprehensive study on the expression of MP genes
(both NuMP and MtMP) across tissues is lacking in bo-
vine, although the expression of individual or groups of
MtMP genes has been published as part of larger gene
sets [33, 37]. Therefore, our study aimed to characterize
MP gene expression across both adult and foetal tissues
in dairy cattle. We used RNAseq of 35 tissues from two
adult cows and two foetuses (29 adult and six foetal tis-
sues) to investigate differential gene expression and gene
co-expression. We validated our findings using publicly
available RNAseq data for an additional dairy cow and
three sheep.
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Results
Differential expression of mitochondrial protein genes
Main cows: adult
In total, 16,166 genes including 1041 MP genes were
available for analysis after filtering (out of 24,616 an-
notated Ensembl genes). A gene was considered as
differentially expressed (DE) in a tissue if the expres-
sion was different from the average expression across
all other tissues (LFC > |0.6|, FDR < 0.01). Across all
genes, 13 to 40% of genes in total were DE in one or
more tissues and as high as 50% each of the DE
genes were over-expressed or under-expressed (Fig. 1).

Table 1 provides a summary of the number of DE
genes by category across tissues. The highest overall
numbers of DE genes among the tissues were in
blood leukocytes(N = 9218), loin muscle (N = 7560),
brain caudal lobe (N = 7504), and brain cerebellum
(N = 7161), and the lowest in the ovary (N = 3003),
omental fad pad (N = 3008), and mediastinal lymph
node (N = 3428). The DE genes in heart, skeletal mus-
cles and tongue were significantly enriched for
OXPHOS, metabolic pathways and neurodegenerative
diseases pathways, and enriched for metabolic path-
ways in liver and kidney cortex (Table 2).

Fig. 1 Percentage of differentially expressed genes by gene categories for 29 tissues in the Main Cows dataset. m. = muscle, LN = lymph node;
Gene category: All = All protein coding genes from nuclear and mitochondrial genomes, Nu = Mitochondrial protein coding genes from the
nuclear genome (NuMP), Mt = Mitochondrial protein coding genes from the mitochondrial genome (MtMP)
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More than 99% of the MP genes originate from the
nuclear genome (NuMP). The proportion of DE NuMP
genes across the tissues varied from 12 to 60% with
higher proportions (> 50%) in heart and skeletal muscles.
The proportion of under or over-expressed DE NuMP
genes within tissues varied considerably. A relatively
greater proportion of NuMP genes were over-expressed
in heart, kidney cortex, skeletal muscles, and tongue,
and under-expressed in blood leukocytes, lymph nodes,
placenta, lungs, mammary, and thymus (Fig. 2). The ex-
pression of NuMP genes was similar between animals in

the Main Cows as indicated by the clustering together of
same tissues, with the exception of five tissues (Fig. 2;
adipose, ovary, kidney cortex, and leukocytes).
In contrast to NuMP, differential expression of MtMP

genes were observed in less than 50% of tissues (14 out
of 29 tissues). The proportion of DE MtMP genes within
tissues ranged widely from 0 (no genes) to 100% (all 13
MtMP genes). Specifically, MtMP genes were 100% DE
in heart, leg muscle, latissimus dorsi muscle, loin
muscle, and tongue, and ranged between 50 and 75% in
other tissues (leukocytes, placenta, thymus, rib muscle,

Table 1 Number of differentially expressed (DE) genes in tissues by gene categories averaged for two cows in the Main Cows
dataset

Tissue MG (37) NuMP (1041) All (24,616) MtMP
(13)

Mt
tRNA

Mt
rRNAOver Under Total DE Over Under Total DE Over Under Total DE

Adrenal cortex 0 0 0 66 157 223 2018 2532 4550 0 0 0

Adrenal medulla 2 0 2 124 89 213 1620 2260 3880 0 0 2

Brain caudal lobe 2 0 2 190 151 341 3354 4150 7504 0 0 2

Brain cerebellum 1 0 1 120 187 307 3282 3879 7161 0 0 1

Brain stem 0 0 0 95 161 256 1911 3294 5205 0 0 0

Heart 17 0 17 576 53 629 2185 2833 5018 13 2 2

Kidney cortex 5 0 5 315 30 345 1465 2851 4316 3 0 2

Kidney medulla 0 0 0 93 58 151 1618 2444 4062 0 0 0

Latissimus dorsi M. 14 0 14 481 74 555 2668 2970 5638 13 1 0

Leg muscle 14 0 14 456 80 536 2773 3083 5856 13 1 0

Leukocytes 0 9 9 99 368 467 5270 3948 9218 9 0 0

Liver 0 0 0 360 82 442 2914 3124 6038 0 0 0

Loin muscle 14 0 14 514 114 628 3853 3707 7560 13 1 0

Lung 0 5 5 31 430 461 1793 2565 4358 5 0 0

Lymph node 0 7 7 38 306 344 2649 2562 5211 7 0 0

Mammary 0 0 0 86 250 336 1805 1864 3669 0 0 0

Mediastinal LN 0 0 0 46 77 123 993 2432 3425 0 0 0

Omental fat 0 2 2 78 163 241 1107 1901 3008 0 0 2

Ovary 0 0 0 58 70 128 985 2018 3003 0 0 0

Pituitary gland 0 5 5 73 251 324 2522 3033 5555 5 0 0

Placenta 0 10 10 110 232 342 2842 3267 6109 10 0 0

Rib muscle 7 0 7 500 70 570 2325 2933 5258 7 0 0

Skin black 0 0 0 79 176 255 1814 2574 4388 0 0 0

Skin white 0 0 0 79 205 284 1780 2554 4334 0 0 0

Spleen 2 0 2 47 260 307 2003 2449 4452 0 0 2

Subcutaneous fat 0 0 0 105 95 200 1299 2238 3537 0 0 0

Thymus 0 10 10 63 363 426 3509 3208 6717 10 0 0

Thyroid 0 2 2 33 329 362 2335 2335 4670 2 0 0

Tongue 14 0 14 413 30 443 1369 2365 3734 13 1 0

() total number of genes in a category; Over = Over-expression, Under = under-expression; MG Genes from mitochondrial genome including tRNA and rRNAs,
NuMP Mitochondrial protein genes encoded by the nuclear genome, MtMP Mitochondrial protein genes encoded by the mitochondrial genome, Mt tRNA
Mitochondrial transfer RNA, Mt rRNA Mitochondrial ribosomal RNA, All all genes from nuclear and mitochondrial genomes, M Muscle, LN Lymph node
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and lymph node). Unlike NuMP genes, all DE MtMP
genes were expressed in a single direction (i.e. either all
over-expressed or all under-expressed) meaning every
DE MtMP gene was over-expressed in heart, tongue,
muscles and kidney cortex, and under-expressed in
blood leukocytes, placenta, lymph node, pituitary, thy-
mus, and thyroid (Fig. 3). Further, there were similarities
between the expression of DE MtMP and NuMP genes
within a tissue. For instance, every tissue showing over-
expression of DE MtMP genes invariably showed pre-
dominant over-expression of NuMP genes and similarly
for under-expression. In addition to MtMP genes, some
of the non-protein coding genes from the mitochondrial
genome were also DE in several tissues (16 s rRNA, 12 s
rRNA, tRNA-Pro and tRNA-Ser).
Within groups of tissues with either over-expression

of MP genes (heart, skeletal muscles, liver and kidney
cortex) or under-expression (leukocytes, thymus, pla-
centa and lymph node), we examined all overlapping
genes and their functional enrichment. In heart and

skeletal muscles, there were 1088 over-expressed genes
in common including 320 NuMP and seven MtMP
genes. Altogether across these 1088 genes, there was sig-
nificant enrichment for OXPHOS, metabolic pathways
and neurodegenerative disease pathways as in these indi-
vidual tissues. Similarly, liver and kidney cortex had
1249 over-expressed genes in common including 223
NuMP genes (0 MtMP genes) and these were signifi-
cantly enriched for metabolic pathways and peroxisome,
valine, leucine and isoleucine degradation. In contrast,
the DE genes in common for tissues in the under-
expression group was low (63 genes) with only 20 NuMP
genes (0 MtMP genes). Across all 63 genes, there was
enrichment for adrenergic signalling in cardiomyocytes,
dilated cardiomyopathy, cardiac muscle contraction and
hypertrophic cardiomyopathy. Altogether, these results
indicated a significant role of the over-expressed MP
genes contributing to the enriched pathways in the over-
expression tissue group, while this pattern was not ob-
served in the under-expression group.

Table 2 KEGG functional annotation of overall differentially expressed genes of selected tissues with the largest number of genes
averaged across two cows in the Main Cows dataset

Tissues Enrichment No. of genes
(Overlap NuMPa)

Adj. p Other pathways

Heart Oxidative
phosphorylation

101 (93) 3.3e−53 Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, NAFLD, carbon
metabolism, Metabolic pathways, cardiac muscle contraction, TCA cycle,

Leg
muscle

Oxidative
phosphorylation

83 (38) 1.0e−32 Parkinson’s disease, Alzheimer’s disease, NAFLD, Huntington’s disease, Carbon
metabolism, metabolic pathways, Proteasome, cardiac muscle contractionBiosynthesis
of antibiotics

Loin
muscle

Oxidative
phosphorylation

89 (86) 5.8e− 39 Parkinson’s disease, Alzheimer’s disease, NAFLD, Huntington’s disease, Huntington’s
disease, carbon metabolism, Proteosome, Cardiac muscle contraction

Rib muscle Oxidative
phosphorylation

86 (39) 1.8e−35 Parkinson’s disease, Alzheimer’s disease, NAFLD, Huntington’s disease, Metabolic
pathways, carbon metabolism, Proteasome

Tongue Oxidative
phosphorylation

98 (91) 3.0e−50 Parkinson’s disease, Alzheimer’s disease, NAFLD, Huntington’s disease, Metabolic
pathways, carbon metabolism, cardiac muscle contraction,

Kidney
cortex

Metabolic
pathways

312 (118) 3.9e−28 Biosynthesis of antibiotics, Carbon metabolism, Valine, leucine and isoleucine
degradation, Glycine, serine and threonine metabolism, tryptophane metabolism, Fatty
acid metabolism

Kidney
medulla

Focal adhesion 67 (0) 3.0e−10 Tight junction, calcium signalling pathway, Gastric acid secretion. ECM-receptor inter-
action, cGMP-PKG signalling pathway, Gastric acid secretion, Dilated cardiomyopathy

Liver Metabolic
pathways

387 (123) 4.1e−49 Biosynthesis of antibiotics, Peroxisome, valine, leucine and isoleucine degradation,
complement and coagulation cascades, fatty acid degradation, tryptophan metabolism,
carbon metabolism

Brain
caudal
lobe

Axon guidance 57 (0) 8.0e−18 Glutamatergic Synapse, Domaminergic synapse, MAPK signalling pathway, Adrenergic
signalling in cardiomyocytes, Retrograde endocannabinoid signalling, cAMP signalling
pathway, Synaptic vesicle cycle, GABAergic synapse, Morphine addiction, Glutamatergic
synapse, Circadian entrainment, Dopaminergic synapse

Brain
cerebellum

Glutamatergic
synapse

49 (2) 3.1e− 14 GABAergic synapse, Retrograde endocannabinoid signalling, Morphine addiction,
Circadian entrainment, Dopaminergic synapse, cAMP signalling pathway, Adrenergic
signalling in cardiomyocytes, axon guidance,

Brain stem GABAergic
synapse

36 (2) 3.1e− 9 Glutamergic synapse, Morphine addiction, Retrograde endocannabinoid signalling,
Dopaminergic synapse, Circadian entrainment

Leukocytes Chemokine
signalling
pathways

74 4.7e−15 Focal adhesion, leukocyte transendothelial migration, Rap1 signalling pathway, natural
killer cell mediated cytotoxicity, regulation of actin cytoskeleton, B cell receptor
signalling pathway

awe show the number of genes in the top enriched pathway that overlap mitochondrial proteins
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Fig. 2 Heatmap of nuclear genome encoded mitochondrial protein (NuMP) gene expression the Main Cows dataset. 6819 and 2181 are Cow No.
6819 and Cow No. 2181 respectively

Fig. 3 Heatmap of mitochondrial genome encoded mitochondrial protein (MtMP) gene expression in the Main Cows dataset. Based on the log2
counts per million of MtMP genes across 29 tissues from cows 6819 and 2181
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Main cows: Foetuses
The analysis for functional enrichment of overall DE
genes in six foetal tissues showed significant enrichment
of OXPHOS and metabolic pathways only in heart and
lungs but not in leg muscle (Additional file 6). The
NuMP genes were over-expressed in the heart and
under-expressed in the remaining tissues, including leg
muscles (Additional file 7). Similarly, the MtMP genes
were prominently over-expressed in heart, under-
expressed in the lungs and not significant in the
remaining tissues (Additional file 8). Higher expression
of NuMP genes was observed in liver of the male foetus
and it did not cluster with liver of the female foetus.

Co-expression network analysis of mitochondrial protein
genes
The gene co-expression network constructed based on
the affinity matrix from genes correlated in expression >
|0.95| in adult cows had altogether 3643 genes clustered
into four major network clusters I-IV (Fig. 4). The
NuMP genes were concentrated in two main clusters (I
and IV) indicating co-expression among NuMP genes
and the remaining NuMP genes were sparsely scattered
across all other clusters. Similarly, MtMP genes were all

grouped in cluster I. Clusters I and IV containing sub-
groups of highly co-expressed NuMP and MtMP and
NuMP genes are referred to as NuMP-MtMP and NuMP
clusters respectively. Within the NuMP-MtMP cluster,
the MP genes from the respective genomes were highly
co-expressed. The NuMP-MtMP cluster was signifi-
cantly enriched for OXPHOS, metabolic pathways and
mitochondrial diseases’ pathways. Similarly, the NuMP
cluster (cluster IV) was over-represented for signalling
pathways, contraction, metabolic pathways and myop-
athies related to the heart (Table 3). The gene functions
of the non-mitochondrial protein genes (Non-MP) in
the NuMP-MtMP cluster were associated with heart and
muscle functioning, signalling, and contraction (Add-
itional files 9,10).
We tested if the co-expression of NuMP genes in the

NuMP-MtMP cluster was due to random chance using a
Chi-square goodness of fit test. The frequency of NuMP
genes in the cluster was significantly higher than random
(2 = 307.6, p < 0.01), supporting that the cluster was
enriched with co-expressed MP.
Further, we investigated the effect of TAD on the co-

expression by comparing the number of 651 TAD
mapped genes in the NuMP-MtMP cluster with the

Fig. 4 Gene co-expression network clusters across tissues in the Main Cows based on similarity matrix computed using Pearson correlations
> |0.95|
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mean from 100 randomly generated samples of 651
genes from 3022 TAD mapping genes across the clus-
ters. It showed involvement of NuMP-MtMP genes in a
similar number of TADs (472 ± 10 vs 484), but NuMP-
MtMP were more likely to be present in groups of two
or more within TADs. The total number of genes occur-
ring in a two or more in a TAD was 282 and 116 (±6) in
NuMP-MtMP cluster and random samples respectively.
This indicated that co-expression in the NuMP-MtMP
cluster was enriched within TADs.

Validation of patterns of mitochondrial protein gene
expression
The key findings on the expression of MP genes from
the Main Cows dataset were validated using two inde-
pendent datasets (Validation Cow and Validation Sheep).
Both validation sets confirmed the general trends of MP
gene expression and co-expression in tissues.
Firstly, both validation datasets confirmed the over-

expression of MP genes in heart and skeletal muscles, and
under-expression in blood leukocytes as in the adult tis-
sues of the Main Cows dataset (Additional file 11-18).
Further, expression of MP genes within tissues, as indi-
cated by LFC values between Main Cows and Validation
Cow (Fig. 5), were highly correlated (R2 0.67–0.96) except
for thyroid (R2 0.01). Similarly, the correlation of LFC
values between Main Cows and Validation Sheep was high
(R2 0.6–0.87), except for mammary and lungs (R2 0.36,
0.34) (Additional file 19). We investigated the poor correl-
ation of gene expression in thyroid between the Main
Cows and the Validation Cow. At least 35 DE NuMP
genes in common between the datasets were expressed in
opposite directions. These genes were mainly enriched for
metabolic pathways, pyruvate metabolism and synthesis of
antibiotics. Interestingly, the expression of NuMP genes

between Validation Cow and Validation Sheep were mod-
erately correlated including thyroid (R2 0.59) except for
lung and mammary tissues (Additional file 20).
Secondly, the ‘either all over-expression or all under-

expression’ of DE MtMP genes within tissues was
supported by findings from both validation datasets. Fur-
ther, the expression of MtMP genes in the direction of
the dominant DE NuMP genes also remained evident
across datasets.
Thirdly, the co-expression of MtMP and NuMP genes

in a cluster were reproduced in the Validation Cow
(Additional file 21), and to some extent in Validation
Sheep (Additional file 22). The co-expression of MP
genes in the NuMP-MtMP cluster in the Validation Cow
was more than expected by random chance (2= 207.847,
p < 0.01) showing that the enrichment of the cluster for
co-expression of MP genes.
Finally, the overlap of genes in NuMP-MtMP clusters

across the Main Cow and validation datasets was higher
than would be expected if genes were randomly allo-
cated to clusters. In particular, the occurrence of MtMP
genes were almost coincidental (13/13) between cow
datasets and 12/13 genes in common between cow and
sheep datasets. Similarly, a considerable proportion of
NuMP genes and also non-mitochondrial protein genes,
were in common across datasets (Fig. 6).

Discussion
This study described and validated specific patterns of dif-
ferential expression for over 1000 mitochondrial protein
genes, encoded by the nuclear and mitochondrial ge-
nomes, in bovine across different tissues. The study also
presented strong evidence of co-expression between
NuMP and MtMP genes.

Table 3 Summary of gene, composition, and functional enrichment of KEGG pathways of genes in co-expression clusters
(FDR <1e-05) in the Main Cows dataset

Cluster No. of
MtMP
genes

No. of
NuMP
Genes

No. of Non-
MP genes

Total No.
of genes

Enrichment of pathways

I
(NuMP-
MtMP
Cluster)

13 216 584 813 Parkinson’s disease, Oxidative phosphorylation,
Alzheimer’s diseases, Huntington diseases, Non-alcohol fatty liver diseases, metabolic
pathways, Citrate cycle, carbon metabolism, Cardiac muscle contraction, Proteosome

II 0 10 871 881 Retrograde endocannabinoid signaling,
GABAergic synapse, Nicotine addiction, Morphine addictions, Glutamatergic synapse,
Dopaminergic synapse, Synaptic vesicle cycle, Neuroactive ligand-receptor interaction

III 0 12 923 935 Cell adhesion molecules (CAMs), Staphylococcus aureus infection, intestinal immune
network for IgA production, Leishmaniasis, Antigen processing and presentation, viral
myocarditis, Allograft rejection, primary immunodeficiency, Hematopioetic cell lineage,
Natural killer cell-mediated cytotoxicity

IV
(NuMP
cluster)

0 79 466 545 Chemical carcinogenesis,
Complement and coagulation cascade, Drug metabolism – cytochrome p450
metabolism, steroid hormone biosynthesis, retinol metabolism, Metabolic pathways,
Complement and coagulation cascades, bile secretion, primary bile acid biosynthesis,
tryptophan metabolism, carbon metabolism, fatty acid metabolism
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Differential expression of mitochondrial protein genes
Overexpression of MP gene in more metabolically active
tissues
The observed patterns of differential expression of MP
genes within tissue, where the proportion of DE MP
genes exceeded 40%, appears to correlate with the
known metabolic demand of tissues. MP genes were

over-expressed in tissues with high reported metabolic
demand (heart, skeletal muscles, tongue, and kidney cor-
tex: Table 4), and under-expressed in tissues with low
reported energy demand (adipose tissue and blood leu-
kocytes: Table 4). In humans, about 60–70% of the total
resting energy expenditure is accounted for by kidney,
brain, liver, and heart, which altogether constitute less

Fig. 5 Scatterplot of log2 fold change values of differentially expressed mitochondrial protein genes from nuclear genome in the Main Cows
against the Validation Cow

Table 4 Specific metabolic rates of organs and tissues across species (kcal/kg/day)

Species Heart Kidney Brain Liver Skeletal musclea Adipose Reference

Cattle 429 412 185 130 – – [36]

Sheep 588 496 255 200 – – [36]

Human 440 440 240 200 10–15 4.5 [4, 38]

aRate for resting muscle
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than 6% of adult body weight, whereas skeletal muscle
(40–50% of body weight) accounts for 20–30% of resting
energy expenditure [4, 39], which altogether account up
to 80% of energy expenditure.
The heart meets almost the entire energy demand

through the mitochondrial OXPHOS pathway (95%)
[40]. A higher expression of selected MtMP genes
(ND1, ND5, ATP6, CYTB) were reported in the heart
compared to other tissues (brain, kidney, liver and
skeletal muscle) in mice [41], which supports heart as
the tissue with the highest MtMP gene expression.
Similarly, skeletal muscles, which has low resting en-
ergy demand, are capable of spiking by almost 1000-
fold during short intensive exercise [42, 43]. OXPHOS
is highlighted as an important pathway for generating
energy during the exercise/muscular activity in both
short intensive as well as prolonged exercise [44].
The observed higher expression of MP genes in the
tongue seems likely because the tongue is a muscular
organ. Furthermore, results from the heart and skel-
etal muscles group reinforced the importance of
OXPHOS and metabolic pathways in energy metabol-
ism in these tissues.
A high expression of MP genes specifically in kid-

ney cortices may be attributed to energy generation
taking place at the proximal and distal convoluted tu-
bules, which are also the site for active reabsorption
of metabolites [45, 46]. In kidney and liver, the en-
richment for metabolic pathways but not for
OXPHOS, despite their high energy demand, is sug-
gestive of dominance of non-OXPHOS pathways in
energy metabolism.

Tissues with under-expression of mitochondrial protein
genes
Among the tissues with under-expression of MP genes,
only adipose tissue in human has a published metabolic
rate. In keeping with our observed low MP gene expres-
sion in adipose, the metabolic rate of human adipose tis-
sues was low (3.2–4.6 kcal/kg/day) [38]. On the other
hand, leukocytes (and other tissues with under-expres-
sion for MP) have mainly non-energy related mitochon-
drial functions, such as redox signalling and controlling
apoptosis [47], which, in part, could explain the inci-
dence of under-expression of MP genes in blood leuko-
cytes. Further, results from the analysis of group of
tissues showing MP gene under-expression revealed a
low number of DE genes in common across these tissues
and no enrichment for energy pathways support a di-
minished role of mitochondrial energy function in
leukocytes.
As for the adult cows, the highest expression of MP

genes in the foetal heart tissue was expected considering
the early foetal development and establishment of the
heartbeat occurs as early as 3 weeks in the bovine foetus.
In contrast to adult cows, the low expression of MP genes
in foetal leg muscle was likely attributable to only partial
development and non-functionality of the muscle. Skeletal
muscle development, mainly secondary myogenesis, is ini-
tiated in the foetal stage from 9 weeks post-fertilization to
parturition [48] and our foetal calves were around 16
weeks old. Generally, the remaining foetal tissues mea-
sured in this study are reported to be functionally inert in
the foetal development stage, including lungs [49] and ex-
plains the under-expression of the MP genes.

Fig. 6 Venn diagram showing the number of genes in common among the NuMP-MtMP co-expression clusters. a. Mitochondrial protein genes
encoded by the nuclear genome (NuMP genes), b. Mitochondrial protein genes encoded by the mitochondrial genome (MtMP genes) and c.
non-mitochondrial protein genes from nuclear genomes in common between the Main Cows and Validation Cow
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In general, the expression profiles of MP genes in a tis-
sue were consistent as indicated by clustering of same
tissue of two or more animals within the dataset. None-
theless, some tissues were exceptions, including foetal
livers may be attributed to the sampling and cellular het-
erogeneity of the samples because each cell type may
have a specific expression profile.
To sum up, the expression of MP genes in this study

concurs with the energy demand of tissues (where
known) implying that the increased energy demand may
be met through increased expression of MP genes. Fur-
thermore, previous studies report that there is a specific
correlation between mRNA and protein quantity across
tissues [50, 51].

Mitochondrial genome encoded mitochondrial protein
(Mt MP) gene expression
Besides, energy demand in tissues as the basis of in-
creased transcription rates of MP genes, high MtMP
gene expression could also result from increased mito-
chondrial genome copy numbers. Mitochondrial DNA
copy number differs considerably across tissue types, but
remains closely regulated within a tissue type [23]. Stud-
ies in humans indicate that mitochondrial genome copy
numbers are aligned with tissue energy demands: for ex-
ample heart, skeletal muscle, omental fat, and blood leu-
kocytes had 6970, 3650, 400–600 and 91 copies per
diploid nuclear genome respectively [52–54]. Studies
comparing copy number and gene expression of all
MtMP genes across tissues are scarce. A study in stri-
ated muscles (cardiac, type 1 skeletal muscle and type 2
skeletal muscles) of rabbit [55] demonstrated that the
expression of MtMP gene (CYTB) was proportional to
mitochondrial copy number. Thus, it is plausible that
the varying gene expression (indicating energy require-
ments) of tissue types are modulated through their mito-
chondrial DNA copy number.

Direction of expression of differentially expressed
mitochondrial protein genes
There were two interesting aspects of the direction of
DE MtMP genes; first, the ‘all over-expression or all
under-expression’ of DE MtMP genes within tissues and
second, the directional consistency of DE MtMP genes
expression in the dominant direction of DE NuMP
genes. The first phenomenon of occurrence of DE
MtMP genes in single direction has not been previously
reported to the best of our knowledge. A possible ex-
planation of this phenomenon rests in the mechanism of
transcription because the entire mitochondrial genome
is transcribed as a near-complete polycistronic unit [56,
57], so that almost all mitochondrial genes are tran-
scribed as one unit. The initiation of transcription, par-
ticularly at HSP2 promotor site on the mitochondrial

genome generates a near-complete polycistronic unit
[58]. The second trend showing the common direction
of DE MtMP and NuMP genes was observed in all tis-
sues exhibiting significant DE of MtMP genes. This sug-
gests DE NuMP and MtMP in these tissues are co-
regulated.

Co-expression of mitochondrial protein genes
The co-expression of mitochondrial protein genes was a
prominent finding in the current study. Co-expression
of MP gene in MtMP-NuMP cluster was further tested
to be non-random and non-random co-expression of
genes are previously reported across species [30]. Fur-
ther, the significant enrichment of NuMP-MtMP co-ex-
pression cluster for OXPHOS and metabolic pathway
supports co-functional co-expression of genes [29, 59].
Similarly, results from MP gene expression study in
humans showed a significant correlation between MtMP
and NuMP gene expression within tissues [60], suggest-
ing close coordination between nuclear and mitochon-
drial genomes in relation to energy demand. The
functional enrichment of our NuMP-MtMP cluster for
the OXPHOS pathway and non-MP genes in the cluster
for heart myopathies, contraction and signalling,
emphasize their role in energy metabolism and support-
ing systems. The NuMP cluster was enriched for meta-
bolic pathways which is another important energy
metabolism component of mitochondria.
The investigation of involvement of TAD on the co-

expression demonstrated that the co-expressed genes in
NuMP-MtMP cluster occurring in two or more within a
TAD compared to the random sample. This indicated
the potential role of TADs in co-expression of mito-
chondrial protein gene in our study. As such, the intra-
TAD gene co-expression was not different from random
for most chromosomes in another study [61].

Validation
Overall, there were high correlation and consistency evi-
dent in the expression (differential expression and co-ex-
pression) of mitochondrial protein genes in tissue across
the datasets. However, we have not considered for the
physiological states, number of tissues sampled, and se-
quencing platforms employed in our validation study.
Firstly, a notable difference in expression profile of
NuMP genes in the thyroid between the Main Cows and
the Validation Cow, and Main Cows and Validation
Sheep is potentially related to pregnancy of the Main
Cows, as the Validation Cow and the Validation Sheep
were not pregnant. The activity of thyroid and thyroid
hormone synthesis are reportedly increased during preg-
nancy in human [62] and thyroid hormones are known
to regulate metabolism [63]. The interaction of thyroid
and MP function in metabolism is an area of interest for
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further investigation but beyond the scope of current
work. Secondly, we based the differential gene expres-
sion of a gene in tissue to the mean expression across all
other tissues where both the number of tissues and tis-
sue types were not completely identical across the data-
sets (29 tissues in Main Cows, 18 tissues in Validation
Cow and 15 tissues in Validation Sheep). Thereby, ex-
pression in tissue across the datasets has been compared
to the mean expression of different sample sizes, which
might vary across the datasets. Thirdly, the sequencing
platforms used were different for each dataset: the Main
Cows dataset were sequenced on HiSeq™ 3000 (Illu-
mina), the Validation Cow was sequenced on
HiSeqTM2000 sequencer (Illumina) and Validation Sheep
were sequenced on Illumina HiSeqTM 2500.

Conclusions
Mitochondrial protein genes were differentially
expressed across tissues. Tissues with high energy de-
mand showed over-expression and under-expression was
observed in tissues with low energy requirements, which
suggests a link between mitochondrial protein gene ex-
pression and the energy demand of each tissue. Further-
more, mitochondrial protein genes from both genomes
(NuMP and MtMP) were significantly co-expressed and
enriched for co-functionality. This implies that it is ne-
cessary to consider mitochondrial protein genes from
both genomes in studies related to mitochondrial func-
tion. Mitochondrial protein gene expression analysis
may be extrapolated to production traits such as feed ef-
ficiency, heat tolerance, adaptability to cold climate, to
further elucidate their role in relation to energy
metabolism.

Methods
Data
The standard best practice recommendations for RNA-
seq is at least three samples of each tissue (from differ-
ent individuals) [64]. This study utilized RNAseq from
three cows; two Holstein cows and their foetuses, and
one Holstein cow from a previous study [27]. As the
cows in the two datasets were physiologically different
due pregnancy status and also used different sequencing
platforms, we analysed them separately and the results
from the two cows dataset (Main Cows) was validated in
the one cow dataset (Validation Cow). Further, gene ex-
pression patterns in cattle were validated in a sheep
dataset previously published [65], which is a closely re-
lated species (Validation Sheep) [37]. The Main Cows
dataset had RNAseq from 29 tissues from two adult
cows and six tissues from two 16 weeks old foetuses.
The Validation Cow data consisted of RNAseq reads
from 18 tissues, and the Validation Sheep data were
gene expression counts for a subset of tissues (15 tissue

types) of three Texel x Blackface adult females. The tis-
sue-specific gene expression patterns in the Main Cows
dataset were validated using the validation datasets.

Ethics, animals and tissue sampling
The ethical approval, including the permission to eu-
thanise the animals of the Main Cows datasets were
obtained from the Department of Jobs, Precincts and
Regions Ethics Committee (Application No. 2014–23).
Two lactating and pregnant Holstein cows and their
two foetuses at 16 weeks of gestation representing a
comparable physiological status from the Agriculture
Victoria Research dairy herd at Ellinbank, Victoria,
Australia (38°14′ S, 145°56′ E) were chosen for the
study. The cows were offered 6 kg of wheat per day
with perennial ryegrass pasture grazed in the pad-
dock, supplemented with pasture silage or hay where
required. Both cows were born in 2006, 16 weeks
pregnant and were sampled on day 205 and 173 of
their lactation (cow 2181 and 6819, respectively). Cow
2181 had a male foetus (2181F), and cow 6819 had a
female foetus (6819F). Both foetuses were from the
same sire (half-sibs).
Blood samples were drawn from the coccygeal vein

by venipuncture before euthanasia and processed fol-
lowing the blood fractionation and white blood cell
stabilization protocols of the RiboPure™ blood kit
(Ambion by Life Technologies). Other tissues were
sampled following euthanasia of the animals. The
cows were euthanised individually by a trained veter-
inarian and not within line of sight of another de-
ceased animal to minimise stress. The cow was
restrained in a crush and given an intravenous injec-
tion of 600 mg of xylazine IV adequate to cause mod-
erate sedation. The cow was immediately released
from the crush, and once the sedation had taken ef-
fect and the cow was sitting down, 300 mg of keta-
mine was given intravenously. Once the cow laid
down, 1 l of 25% magnesium sulphate solution was
administered intravenously until pronounced deceased
by the veterinarian. Once pronounced dead, all tissue
types were dissected from the animal. Connective tis-
sue was removed, and the samples were dissected into
1 cm squares, sealed in a 5 ml tube and flash-frozen
in liquid nitrogen. Subcutaneous fat was sampled
from the rib region. Blood (on ice) and tissues sam-
ples (in liquid nitrogen canisters) were then moved to
the main laboratory and stored at − 80 °C. The meta-
data and RNAseq reads for all 40 tissues are available
at EMBL-EBI European Nucleotide Archive (ENA)
under study accession ERP118133. For this study, we
generated data for 35 samples (29 tissues from adult
cows and six from the foetuses) (Table 5).
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RNA extraction and sequencing
RNA from blood leukocytes was extracted using the
RiboPure Blood Kit (Ambion) according to the manufac-
turer instructions. For tissues, 100 mg of tissue was
ground in a TissueLyserII (Qiagen) with liquid nitrogen,
and then ~ 30mg of ground tissue was used to extract
RNA using Trizol (Invitrogen) following standard proce-
dures. RNA was passed through a PureLink RNA Mini
column (Qiagen) for clean-up and concentration and
eluted in 30 μl RNase free water. RNA Integrity Num-
bers (RIN), which indicates the RNA quality, were deter-
mined using Agilent Tapestation (Agilent) and RNAseq
libraries were prepared from all samples (Additional file
1) with RIN > 6 at which the 3′ bias level is at a mini-
mum using the SureSelect Strand-Specific RNA Library
Prep Kit (Agilent) as instructed by the manufacturer. Li-
braries were barcoded uniquely, assigned randomly to
one of two pools and sequenced on a HiSeq™ 3000 (Illu-
mina) in a 150-cycle paired-end run. One hundred and
fifty bases paired-end reads were called with bcltofastq
and output in fastq format. The quality of the libraries
and alignment are as presented in Additional file 2.
Poor-quality bases were filtered, and sequence reads
trimmed using an in-house script. Bases with a quality
score of < 20 were trimmed from the 3′ end of reads.
Reads with a mean quality score < 20, > 3 N’s, or final
length < 50 bases were not included. Only paired reads
were retained for alignment.

Read alignment and gene counting
For each library, paired-end reads were mapped to
Ensembl bovine genome UMD3.1 reference [66] and an-
notated using STAR version 2.5.3ab [67]. Aligned reads
were checked for quality using Qualimap 2 [68], and
unique mapping reads for samples (Additional file 3).
The R package featureCounts [69] was used to generate
a count matrix of read counts per gene for every sample.

Mitochondrial protein genes
Mitochondrial protein genes in the current study were
based on the list of MP identified in humans, available
in Mitocarta 2.0 [10]. The official gene names of 1158
MP genes were directly converted to bovine ensemble
gene IDs using a gene ID conversion function in the
software DAVID (Database for Annotation,
Visualization, and Integrated Discovery) version 6.8 [70,
71]. This translated into 1054 bovine MP ensemble gene
IDs (1041 NuMP and 13 MtMP), which were used as
the final list of MP genes for further analysis in this
study (Additional file 4). Additionally, 24 non-protein
coding genes from the mitochondrial genome (22 tRNAs
and 2 rRNAs) were also included in the analysis. The
mitochondrial protein gene expression profiles in tissues
are expected to be similar across mammalian species be-
cause they share a very important mitochondrial func-
tion [72, 73].

Differential gene expression analysis
The lowly expressed genes were filtered out using func-
tion filterByExpr of edgeR package for differential ex-
pression analysis in R [74]. Differential expression of
genes was analysed using the glmQLFit function. A
model was fitted to the data with a design matrix of an
overall mean of gene expression counts across all other
tissues as the intercept and tissue as a fixed effect, i.e.
differential expression is relative to the average expres-
sion of the same gene across all other tissues. The
glmQLTest method was used to identify DE genes, spe-
cifically up or down expressed. A list of DE genes, along
with their fold changes, was generated and summarized
for each tissue. A gene was considered as differentially
expressed (DE) in tissue if its expression was signifi-
cantly higher than the mean expression of same gene
across all other tissues (i.e. ≥ |0.6| log2 fold changes
(LFC) = 1.5-fold difference, FDR < 0.01). The sign + and

Table 5 List of 35 organ-tissue sampled from the two adult cows and two foetuses in the Main Cows dataset

Tissues/organs Tissues/organs Tissues/organs

Adrenal gland cortex (Adrenal cortex) Lung Spleen

Adrenal gland medulla (Adrenal medulla) Mammary gland (Mammary) Thymus

Omental fat pad (Omental fat) Heart Thyroid gland (Thyroid)

Subcutaneous fat Brain cerebellum Tongue

Kidney cortex Brain stem Blood leukocytes (Leukocytes)

Kidney medulla Brain caudal lobe

Longissimus thoracic muscle (Loin muscle) Pituitary gland Foetal brain

Semimembranosus muscle (Leg muscle) Placenta Foetal kidney

Intercostal muscle (Rib muscle) Liver Foetal lung

Latissimus dorsi muscle (Msub) Skin black Foetal heart

Mediastinal lymph node (Mediastinal LN) Skin white Foetal liver

Lymph node Ovary Foetal leg muscle
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- of LFC values of the DE gene was used to deduce the
expression as either over-expression or under-expression
respectively compared to the mean of expression across
all other tissues. Further, log2CPM (counts per million)
values of all NuMP and MtMP genes (including non-DE
MP genes) across tissues were visualized as heatmap
using R package pheatmap [75]. In addition, we looked
at the number of DE MP genes by genome (i.e. NuMP
and MtMP), their direction of expression and the pro-
portion of DE genes to the total genes in category. The
foetal tissues were analysed separately following the pro-
cedures implemented for the adult cows.

Co-expression network analysis across tissues
The functionally associated genes tend to be co-
expressed, and this is used to infer novel function as well
as to identify candidate genes in diseases and their pre-
diction [28]. To study the co-expression pattern in tis-
sues, we used a similarity network based on a Pearson
correlation coefficient of gene expression (>|0.95|) of
adult cows in the Main Cows dataset, executed using a
plugin ExpressionCorrelation [76] in Cytoscape 3.6.1
[77], to construct gene co-expression clusters. We ana-
lysed the co-expression cluster involving MP genes for;

i. biological significance of the cluster using
functional enrichment analysis and composition of
the genes,

ii. whether the co-expression of NuMP genes in
NuMP-MtMP cluster was greater than random ex-
pectations using Chi-square goodness of fit (□2);

χ2 ¼
X ðOi − EiÞ2

Ei

Where,Oi = observed frequency of genes (i) in the
NuMP-MtMP cluster (i =NuMP, Non-NuMP gene).
Ei = expected frequency of genes (i) from the overall

clusters (i =NuMP, Non-NuMP gene)

iii. the effect of TAD in co-expression of NuMP genes
in NuMP-MtMP cluster considering TAD as one of
the several factors potentially influencing the co-
expression of small group of genes. Briefly, we
mapped the co-expressed bovine genes across the
clusters (3643) to the putative bovine TADs derived
from the IMR90hg18 [78] and 3022 genes mapped
to 1286 TADs. Similarly, within the NuMP-MtMP
cluster, 651 of 813 co-expressed genes mapped to
484 TADs. Of this, 282 co-expressed genes were
distributed in groups of 2 or more per TAD. We
compared this to averages from 100 random

samples of 651 genes from TAD mapping genes
across all clusters (3022). The averages for number
of TADs of the random samples and genes found in
group of 2 or more within a TAD were 472 (±10)
and 116 (±10) respectively.

Functional enrichment analysis
The DAVID software was used to investigate the func-
tional enrichment of differentially expressed genes
within a tissue and co-expressed genes across tissues: up
to 3000 genes (maximum permissible in DAVID) were
selected and analysed for over-representation in KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathways
[79]. Up to top 10 pathways with adjusted p < 1e-5 are
discussed in this study.

Validation
The patterns of MP gene expression in tissues of Main
Cows were validated using two previously published
datasets: a lactating Holstein cow (2 years old, 65 days in
milk) with 18 tissues (additional file 17) [27] (i.e. Valid-
ation Cow); and three adult female Texel x Scottish
Blackface sheep from the sheep gene expression atlas
project [37], which were aged about 2 years and locally
(Scotland) acquired (i.e. Validation Sheep). Depending
on the number of tissues in common with cattle data-
sets, 15 tissues were chosen from the sheep study (Add-
itional file 18). The Validation Cow was analysed
separately due to its difference in physiological status
compared to the Main Cows dataset. The RNAseq reads
of the Validation Cow were processed, aligned, gene
counts generated and analysed following the protocols
for Main Cows. Similarly for sheep, the raw gene counts
[65] were normalized and subjected to standard process-
ing and analyses for differential expression and co-ex-
pression. In sheep, 823 MP genes were identified as
overlapping the Mitocarta 2.0 Human database, using
the same approach as in cattle (Additional file 5). The
pattern of MP gene expression across tissues was visual-
ized with a heatmap and co-expression networks as de-
scribed for Main Cows. One of the purposes of
validation was to look at the consistency of gene expres-
sion patterns across datasets. To evaluate the
consistency of differential expression of MP gene expres-
sion in a tissue across the datasets, a scatterplot of the
LFC values of DE NuMP genes (in common between the
datasets) and their coefficient of determination (R2) was
used to indicate correlation between datasets. For
consistency in co-expression of MP genes, the NuMP-
MtMP co-expression cluster was further examined for
the composition and commonality of genes among the
datasets.
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ABSTRACT

Feed efficiency and energy balance are important 
traits underpinning profitability and environmental 
sustainability in animal production. They are complex 
traits, and our understanding of their underlying biol-
ogy is currently limited. One measure of feed efficiency 
is residual feed intake (RFI), which is the difference 
between actual and predicted intake. Variation in RFI 
among individuals is attributable to the metabolic effi-
ciency of energy utilization. High RFI (H_RFI) animals 
require more energy per unit of weight gain or milk 
produced compared with low RFI (L_RFI) animals. 
Energy balance (EB) is a closely related trait calcu-
lated very similarly to RFI. Cellular energy metabolism 
in mitochondria involves mitochondrial protein (MiP) 
encoded by both nuclear (NuMiP) and mitochondrial 
(MtMiP) genomes. We hypothesized that MiP genes 
are differentially expressed (DE) between H_RFI and 
L_RFI animal groups and similarly between negative 
and positive EB groups. Our study aimed to character-
ize MiP gene expression in white blood cells of H_RFI 
and L_RFI cows using RNA sequencing to identify 
genes and biological pathways associated with feed ef-
ficiency in dairy cattle. We used the top and bottom 
14 cows ranked for RFI and EB out of 109 animals 
as H_RFI and L_RFI, and positive and negative EB 
groups, respectively. The gene expression counts across 
all nuclear and mitochondrial genes for animals in 
each group were used for differential gene expression 
analyses, weighted gene correlation network analysis, 
functional enrichment, and identification of hub genes. 
Out of 244 DE genes between RFI groups, 38 were MiP 

genes. The DE genes were enriched for the oxidative 
phosphorylation (OXPHOS) and ribosome pathways. 
The DE MiP genes were underexpressed in L_RFI (and 
negative EB) compared with the H_RFI (and positive 
EB) groups, suggestive of reduced mitochondrial ac-
tivity in the L_RFI group. None of the MtMiP genes 
were among the DE MiP genes between the groups, 
which suggests a non-rate limiting role of MtMiP genes 
in feed efficiency and warrants further investigation. 
The role of MiP, particularly the NuMiP and OXPHOS 
pathways in RFI, was also supported by our gene cor-
relation network analysis and the hub gene identifica-
tion. We validated the findings in an independent data 
set. Overall, our study suggested that differences in 
feed efficiency in dairy cows may be linked to differ-
ences in cellular energy demand. This study broadens 
our knowledge of the biology of feed efficiency in dairy 
cattle.
Key words: residual feed intake, mitochondrial protein 
gene, differential gene expression, dairy cattle

INTRODUCTION

Feed efficiency is well recognized for its high relevance 
to farm economics, resource sustainability, and climate 
change (Herrero et al., 2013; Herrero and Thornton, 
2013). Feed constitutes a significant recurring expense 
on-farm (Chamberlain, 2012; Yilmaz et al., 2016), and 
selection for feed efficiency is expected to result in ani-
mals that have reduced feed or energy requirement for 
maintenance (Herd et al., 2003). Further, selection for 
feed efficiency is estimated to reduce methane emis-
sion by 15% in a decade (de Haas et al., 2014). Feed 
efficiency is characterized as a complex trait with chal-
lenges and costs in measurement of phenotypes (Arthur 
and Herd, 2008). The definition of feed efficiency differs 
in growing and lactating animals and is complicated in 
the latter, considering the rapid mobilization of body 
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reserves following calving and accumulation until next 
calving (Roche et al., 2009). It can be measured as 
residual feed intake (RFI), which is the difference be-
tween actual and predicted DMI (Koch et al., 1963; 
Berry and Crowley, 2013). Energy balance (EB) is 
another indicator trait for feed efficiency closely related 
to RFI; EB is the difference between energy intake and 
energy expenditure for lactation, growth, reproduction, 
and maintenance. Energy balance also shows the status 
of body reserve mobilization and is considered a good 
indicator for health, reproduction, and feed manage-
ment. The EB and health status of dairy cows are also 
indicated by their blood metabolic profiles after calv-
ing.

Selection for feed efficiency is feasible in dairy cattle 
and is already included in the breeding objectives of 
several countries, such as “feed saved” in Australia 
(Pryce et al., 2014b, 2015). Moreover, selection for 
feed efficiency demands a better understanding of the 
biological mechanisms underlying variation to allow for 
more accurate animal evaluations for the trait in the 
future.

Physiologically, variation in RFI is associated with 
metabolism, feed intake, digestion, activity, and body 
heat regulation (Herd et al., 2004; Herd and Arthur, 
2009). The variation in RFI, according to Korver et 
al. (1991), reflects differences between animals in uti-
lization of metabolizable energy and high RFI animals 
are likely to have higher ATP production and utiliza-
tion in their tissues (Del Bianco Benedeti et al., 2018). 
Further, efficiency of energy utilization varies between 
individuals and is closely associated with genetic 
variation (Nkrumah et al., 2006) as well as cattle types 
(Pfuhl et al., 2007). Energy balance is a trait positively 
and closely related to RFI (Hurley et al., 2017). This is 
a complication specific to lactating animals and arises 
from the interplay of nutrient mobilization and replen-
ishment from body reserves during lactation (Pryce et 
al., 2014b). Dairy cattle may differ physiologically from 
beef cattle in utilization, partitioning, and conversion 
of nutrients. Therefore, the underlying biology of feed 
efficiency in lactating dairy cattle requires separate 
consideration.

The differences in cellular energy metabolism be-
tween high (H_RFI) and low (L_RFI) RFI may 
provide useful insights into feed efficiency. Cellular 
energy metabolism occurs in mitochondria, and energy 
is primarily generated through oxidative phosphory-
lation (OXPHOS) in complexes of proteins called 
the electron transport chain (ETC). The proteins of 
ETC (~130), along with other proteins localized in 
mitochondria, are referred to as mitochondrial proteins 
(MiP; Fox, 2012) and are vital for mitochondrial func-

tion. It has also been proposed that defective proteins 
in the ETC may lead to suboptimal mitochondrial 
function and reduce the overall energy efficiency of 
the animal (Bottje, 2019). As such, the variation of 
metabolic demand across different tissues was reported 
to be reflected through differential expression of MiP 
genes (Dorji et al., 2020), where a gene is considered 
as differentially expressed (DE) if the expression in 
a tissue differed significantly from mean expression 
across all other tissues. Differential gene expression has 
been investigated between high and low milk yielders 
in dairy cattle (Yang et al., 2016) and between chickens 
and livestock divergent for feed efficiency (Lassiter et 
al., 2006; Kong et al., 2016b). Given the importance 
of energy metabolism in feed efficiency, it is plausible 
that MiP genes are DE between H_RFI and L_RFI 
groups, and that a similar pattern would be observed 
in positive and negative EB groups. Previous studies 
on the role of MiP gene expression in feed efficiency are 
restricted to comparatively few selected genes (Lassiter 
et al., 2006; Kelly et al., 2011) and are limited in their 
scope of inferring meaningful biological pathways.

More recently, high-throughput RNA sequencing 
(RNAseq) of entire transcriptomes allows for the 
identification of biological pathways and key genes be-
hind complex traits and diseases (Salleh et al., 2018; 
van Dam et al., 2018; Wang et al., 2019) using gene 
correlation network analysis. In recent years, RNAseq 
has increasingly been used to study feed efficiency in 
cattle based on transcriptomes of liver (Alexandre et 
al., 2015; Salleh et al., 2017), muscle (Zhou et al., 2015; 
Horodyska et al., 2018), rumen epithelium (Kong et 
al., 2016b; Del Bianco Benedeti et al., 2018; Elolimy et 
al., 2018), and blood (Khansefid et al., 2017). Blood is 
not a common sample for feed efficiency studies com-
pared with other tissues, presumably due to its lower 
importance as a component of meat, unlike muscle and 
liver in beef cattle, as well as the lower mitochondrial 
activity in blood. On the other hand, lymphocytes, 
constituting about 30% of white blood cells (WBC), 
are metabolically oxidative (Kramer et al., 2014) and 
are easily accessible compared with other tissues. Thus, 
differences in metabolic activity and energy efficiency 
between efficient and non-efficient groups are likely to 
be reflected in the WBC transcriptome.

The main objectives of this study were to profile MiP 
gene expression in WBC of high and low feed efficiency 
dairy cattle, to identify key biological pathways and 
genes underlying feed efficiency in dairy cattle. We hy-
pothesized that MiP genes in the WBC are DE between 
H_RFI and L_RFI groups as well as positive EB and 
negative EB groups, and that their biological pathways 
are related to energy metabolism.
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MATERIALS AND METHODS

Animals, Residual Feed Intake Calculation, 
and Ranking

The Agricultural Research and Extension Animal 
Ethics Committee (Department of Jobs, Precincts and 
Regions, Attwood, Victoria, Australia) approved the 
protocols for this experiment (Application No. 2013-
14). From 2013 to 2015, 360 animals, in batches of 40 
and 3 batches each year, were run through auto-feeders 
for 5 wk at the Agriculture Victoria Research farm at 
Ellinbank, Victoria, Australia. The first week was an 
adaptation phase, and the remaining 4 wk were for the 
experiment. Each cow had the DM weight of feed of-
fered and refused (kg), DMI (kg/d), milk yield (kg/d), 
fat and protein yields (kg/d), BCS, and BW (kg) re-
corded and used in prediction of RFI using the same 
model in Pryce et al. (2014a), as follows:

DMI = µ + DIM + Batch + Parity + ECM 

+ BW + BCS + RFI,

where µ = the overall mean DMI/intercept; DMI = 
average DMI during 28-d experimental period; DIM = 
DIM at the start of each experiment; Batch was the 
fixed effect of the experiment (n = 9); Parity is the 
parity group; ECM = mean ECM yield per day (kg) 
during the 28-d experimental period; BW was average 
daily BW, measured using walkover scales (automatic 
weigh system, model AWS100; DeLaval, Tumba, Swe-
den). On average, 20 BW measurements were recorded 
per cow over the 28-d experimental period. Body condi-
tion score was assessed twice weekly by 4 assessors, 
using the 8-point scale described by Earle (1976). A 
mean BCS of the 4 assessors was recorded per week and 
averaged over the experimental period. Body condition 
score (BCS) was included as a covariate in the model to 
correct for an approximation of body fat content, and 
RFI is the residual term from the equation.

Out of 352 animals with RFI phenotypes, we consid-
ered 109 that had RNAseq data in this study. Selected 
animals were ranked based on RFI values, and the top 
and bottom 14 animals were grouped as H_RFI and 
L_RFI, respectively, and used as 2 divergent feed ef-
ficiency groups for further analysis. The differences in 
RFI estimates between H_RFI and L_RFI were tested 
using independent sample t-tests for significance. A 
principal component analysis was performed to visual-
ize and compare global gene expression of H_RFI and 
L_RFI group using the ggplot2 (Wickham, 2016) and 
ggfortify (Tang et al., 2016) packages in R version 3.5.2 
(R Core Team, 2018). Similarly, we also predicted EB 
following de Vries et al. (1999), thus:

DMI = µ + DIM + Batch + Parity 

+ ECM + BW + EB.

Abbreviations are as described in the equation for RFI 
estimation, except for exclusion of BCS and inclusion of 
EB, which is the residual term in this equation.

The group means of the variables used in the predic-
tion of RFI and EB are provided in Supplemental Table 
S1 (https: / / doi .org/ 10 .3168/ jds .2020 -18503). The gene 
expression counts of the 14 top- and bottom-ranking 
animals for RFI and EB groups were analyzed for dif-
ferential gene expression.

Further, a subset of animals in our study group had 
mid-infrared spectral data collected from milk samples, 
so this was used to predict the profile of 3 metabolites 
that are good indicators of energy status, BHB, non-
esterified fatty acid (NEFA), and BUN, following Luke 
et al. (2019). There were 9 animals with mid-infrared 
data in the L_RFI group and 5 in the H_RFI group, 
and similarly 8 in the negative EB group and 3 in the 
positive EB group.

RNAseq Read Alignment, Processing, 
and Expression Counts

The blood sampling and processing, RNA extraction, 
sequencing, and quality controls of the RNAseq reads 
used in this study have been described by Xiang et al. 
(2018). In this study, we used the trimmed RNAseq 
reads that passed quality control (in fastq format) of 
H_RFI and L_RFI animals. The trimmed high-quality 
pair-end reads of each library were aligned to Ensembl 
bovine genome UMD3.1 using STAR version 2.5.3ab 
(Dobin et al., 2013) and checked for alignment qual-
ity using Qualimap2 (Okonechnikov et al., 2016). Only 
the uniquely mapped reads were used for downstream 
analyses. A gene count matrix for every sample was 
generated using the R package featureCounts (Liao et 
al., 2014).

Differential Gene Expression

The R package edgeR (Robinson et al., 2010) was 
employed for differential gene expression analysis. 
Raw gene counts were filtered using edgeR function 
filterbyExp to remove genes that were not adequately 
expressed, resulting in 13,469 genes passing this filter. 
The gene expression counts were normalized and con-
verted to counts per million to correct for variation due 
to sequencing depth. The edgeR function exactTest was 
used to identify DE genes between the 2 RFI groups 
at a threshold of log2 fold change (LFC) > |0.6| and 
false discovery rate of 5%. The sign of LFC was used 
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to deduce the direction of the gene expression as either 
overexpressed (positive) or underexpressed (negative). 
A total of 1,054 MiP genes for cattle that were derived 
from the human Mitocarta 2.0 (Pagliarini et al., 2008; 
Calvo et al., 2016) were considered for the analysis. 
The DE genes list was further analyzed for functional 
enrichment and direction of regulation, and gene com-
position for MiP genes.

Co-Expression Network Analysis

To build gene correlation networks and to identify 
a group of highly correlated gene modules associated 
with RFI, we used the weighted gene correlation net-
work analysis R package, WGCNA (Langfelder and 
Horvath, 2008). The gene expression counts in samples 
were clustered using hclust (average method) in WGC-
NA to identify obvious outliers. Outlier samples were 
removed, and a heatmap of RFI values along with a 
dendrogram showing a hierarchy of cluster-based gene 
expression was generated. The construction of an un-
signed weighted gene correlation network and module 
detection were performed using the automatic, one-step 
function network construction and module detection 
function blockwiseModule. Module eigengene (ME) 
represented the average expression level of genes in a 
module. The module membership is the degree of cor-
relation between genes and module. Gene significance 
(GS) for each gene was calculated as the correlation 
between gene expression counts and RFI. The correla-
tion between ME and RFI was calculated to identify 
modules associated with the trait (r > |0.4|, P-value < 
0.05).

From the modules associated with the RFI, the genes 
meeting the criteria of module membership > |0.8|, GS 
> |0.2| and P GS < 0.01 (Wang et al., 2017; Salleh et
al., 2018; Liu et al., 2019) were identified as putative
hub genes. The putative hub genes were searched for on
the interacting genes (STRING) database (Szklarczyk
et al., 2019), available online at https: / / string -db .org/ ,
to construct a protein-protein interaction (PPI) net-
work and screen hub nodes. A putative hub gene with
high connectivity in a PPI network plays a critical role
in the pathways associated with the module.

Functional Enrichment Analysis

The DE genes and genes in correlation network mod-
ules significantly correlated with RFI (r > |0.4|; P < 
0.05) were subjected to functional enrichment of Kyoto 
Encyclopedia of Genes and Genomes (KEGG) path-
ways (Kanehisa and Goto, 2000) inbuilt in the online 
software Database for Annotation, Visualization, and 
Integrated Discovery (DAVID; Huang et al., 2009a,b), 

available at https: / / david .ncifcrf .gov/ summary .jsp. 
The cut-off for considering the pathway as enriched 
was set at adjusted P < 1.0 × 10−5. The Benjamini-
Hochberg correction method in DAVID was used for 
the calculation of adjusted P-values.

Validation

The RFI estimates and blood gene counts from 
Khansefid et al. (2017) were used to validate the find-
ings. Briefly, the data of Khansefid et al. (2017) were 
independent of our data set and consisted of RFI phe-
notypes and gene expression counts from WBC of 19 
first-lactation Holstein cows (38 ± 10 DIM). The ani-
mals were ranked based on RFI phenotype to identify 
the top and bottom 8 animals as a H_RFI and L_RFI 
group, respectively. Their study broadly estimated 
the correlation of gene counts on the RFI values and 
identified highly expressed genes that were correlated 
with RFI using regression models. In the present study, 
we employed standard differential gene expression and 
WGCNA approaches for validation of the findings from 
our primary data set.

RESULTS

The mean (SD) RFI values for the H_RFI and L_
RFI groups were +1.91 (0.37) and −1.67 (0.28) kg/d, 
respectively, and differed significantly at P < 0.01. In 
other words, the L_RFI (i.e., feed-efficient group) con-
sumed on average 3.55 kg/d less feed than the H_RFI 
group (low feed-efficient group) at the same level of 
production and maintenance. The principal component 
analysis plot of overall gene expression showed that 
principal component 1 explained about 81% of the 
variation in gene expression between the RFI groups 
(Figure 1A). Further, animals within an RFI group 
were more likely to be clustered together (Figure 1B) 
at the first hierarchical levels, but no clear separation 
occurred based on overall gene expression. Energy bal-
ance was phenotypically highly correlated with RFI (r 
= +0.99, 109 animals). Except for 2 animals, all the 28 
animals in positive and negative EB group were com-
mon to the RFI group. The means (SD) of the top 
14 positive EB and top 14 negative EB groups were 
+1.90 (0.38) and −1.64, (0.30) kg/d, respectively, and
similar to RFI. The difference between the means of the
positive EB and negative EB groups were statistically
significant (t = −27.25, P < 0.00001).

The metabolic profiling of markers for EB (estimated 
from mid-infrared spectral data) found that the H_RFI 
group had lower mean (±SD) BHB (0.43 ± 0.06) and 
NEFA (0.20 ± 0.04) and higher BUN (7.24 ± 0.33) 
compared with L_RFI (BHB: 0.49 ± 0.08; NEFA: 0.22 
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± 0.04; BUN: 6.98 ± 0.52 mmol/L). The positive EB 
group had lower mean (±SD) BHB (0.45 ± 0.08) and 
NEFA (0.22 ± 0.04) and higher BUN (7.39 ± 0.20) 
compared with the negative-EB group (BHB: 0.49 ± 
0.08; NEFA: 0.21 ± 0.04; BUN: 7.09 ± 0.41 mmol/L). 
Although these differences were not significantly dif-
ferent (low number of animals available with data), 
they were consistent in direction, demonstrating that 
animals with high feed efficiency (L_RFI and nega-
tive EB) also had higher levels of these metabolites 
(Supplemental Table S2, https: / / doi .org/ 10 .3168/ jds 
.2020 -18503). Altogether, our results support that RFI 
and EB are highly correlated.

Differentially Expressed Genes  
and Functional Enrichment

Overall, 244 genes were DE between H_RFI and 
L_RFI groups at LFC ≥ |0.6|) and false discovery rate 
5% (Supplemental Table S3, https: / / doi .org/ 10 .3168/ 
jds .2020 -18503). Functionally, DE genes were signifi-
cantly enriched (number of genes, adjusted P) for OX-
PHOS (15, 2.1 × 10−7) and ribosome (17, 1.9 × 10−9) 
pathways. However, 47 DE genes were not identified 
in DAVID and remained unused for functional enrich-
ment analysis. The number of overexpressed and un-
derexpressed genes among DE genes were 64 and 180, 
respectively. There were 38 DE MiP genes, and all were 
underexpressed in the L_RFI group, with LFC ranging 
from −0.6 to −1.6 (Supplemental Table S4, https: / / doi 
.org/ 10 .3168/ jds .2020 -18503). The DE MiP genes were 
all composed of NuMiP and, surprisingly, contained 
no MtMiP genes. Differential gene expression analysis 

was repeated with only Mt genes, as their mean level 
of expression was generally much higher than that of 
NuMiP, which again confirmed that no Mt genes were 
DE. Further, the expression of Mt genes was less vari-
able (CV 180%) compared with genes from the nuclear 
genome (CV 300%).

Similarly, 466 genes were DE between positive EB 
and negative EB groups. Among these, were 53 NuMiP 
genes, which were all overexpressed in the positive EB 
group compared with the negative EB animals, except 
for 2 genes. The DE genes were enriched for OXPHOS 
(adjusted P 1.6 × 10−10) and ribosome (adjusted P 7.5 
× 10−17) pathways. A similar expression profile between 
RFI and EB was expected, as these traits were highly 
correlated and contained almost the same animals in 
both RFI and EB groups. Thus, the subsequent gene 
network analysis was conducted only for gene expres-
sion in the RFI groups.

WGCNA

Overall, 9 correlation network modules out of 28 were 
significantly related to RFI (r > |0.4|, P < 0.05; Fig-
ure 2A). Of these modules, only ME2 and ME3 were 
significantly enriched for KEGG pathways (Figure 2B, 
C). Altogether, WGCNA and the functional enrich-
ment analysis supported a strong association between 
OXPHOS pathway and RFI. Further, WGCNA iden-
tified additional pathways associated with RFI traits 
undetected with differential gene expression analysis.

Hub genes in a module have high network connectiv-
ity and are also highly associated with the correspond-
ing traits. The 173 genes in module ME2 meeting the 
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Figure 1. (A) Principal component (PC) analysis plot of global gene expression in white blood cells of 14 high residual feed intake (H_RFI) 
and 14 low residual feed intake (L_RFI) animals. (B) Hierarchical clustering of gene expression in the 14 H_RFI and 14 L_RFI cows with trait 
heatmap indicating the intensity of residual feed intake values in a scale of blue (low) to red (high).
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threshold criteria (module membership > |0.8|, GS > 
|0.2|, and P GS < 0.01) were identified as putative 
hub genes (Supplemental Table S5, https: / / doi .org/ 
10 .3168/ jds .2020 -18503). Networks of hub genes were 
derived based on PPI network at minimum interaction 
score of 0.90. The resulting networks of hub genes were 
associated with KEGG pathways: ribosome, OXPHOS, 
spliceosome, and proteosome (Figure 3). The hub genes 
that were MiP genes and associated with OXPHOS 
pathway were ATP5A1, ATP5J, ATP5J2, NDUFAB1, 
NDUFA8, and NDUFA10, most of which are noncata-
lytic proteins in the OXPHOS complexes. For ME3, 74 
putative hub genes (Supplemental Table S6, https: / / 
doi .org/ 10 .3168/ jds .2020 -18503), refined based on PPI 
network, had 6 hub genes for OXPHOS, 5 for ribo-
somes, and 2 for citrate cycle (Figure 4). The refined 
hub genes for OXPHOS pathway and citrate cycle were 
MiP genes (NDUFA5, NDUFA12, NDUFB5, ATP5F1, 
ATP5C1, SDHD, and PDHB), and the dehydrogenase 
components were noncatalytic.

Validation

In the independent set of validation cows, the mean 
(SD) RFI values of H_RFI and L_RFI groups were 
+1.20 (0.95) and −0.97 (0.71) kg/d, respectively; con-
sequently, as expected, the means of the RFI groups
were significantly different [t(14) = 5.20, P < 0.001].
Global gene expression was not distinct but showed
greater variability in the H_RFI group compared with
the L_RFI group (Supplemental Figure S1, https: / / 
doi .org/ 10 .3168/ jds .2020 -18503). We found 1,695 DE
genes between L_RFI and H_RFI groups at LFC ≥
|0.6| and false discovery rate < 0.05, including 151
MiP genes (Supplemental Table S7, https: / / doi .org/ 10 
.3168/ jds .2020 -18503). The DE genes were significantly
enriched for OXPHOS (adjusted P 2.6 × 10−7) and
ribosome (adjusted P 5.9 × 10−19) KEGG pathways.
All 151 DE MiP genes were NuMiP (18 overexpressed
and 133 underexpressed in the L_RFI group compared
with the H_RFI group), and none were MtMiP. The
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Figure 2. Gene expression modules correlated with residual feed intake (RFI) based on weighted gene correlation network analysis in 14 
high-RFI and 14 low-RFI cows. (A) Module and number of genes in each module, and the relationship of module with RFI (r), with P-values 
in parentheses. ME = module eigengene. *Indicates module with a significant relationship (r > |0.4| and P < 0.05) with RFI. The direction of 
the relationship (correlation) is indicated by colors, where red is positive and blue is negative, and the intensity of color represents the strength 
of correlation. Functional enrichment of Kyoto Encyclopedia of Genes and Genomes pathways of overall genes module ME2 (B) and ME3 (C) 
for the main data set.
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133 underexpressed MiP genes were over-represented 
(adjusted P) in the following KEGG pathways: OX-
PHOS (3.4 × 10−28), metabolic pathways (8.6 × 10−13), 
and ribosome (2.0 × 10−13). We found 31 DE MiP 
genes in common between the validation and the main 
data sets (Supplemental Table S8, https: / / doi .org/ 10 
.3168/ jds .2020 -18503), and they showed concordant 
underexpression. Altogether, the differential expression 
of MiP genes between 2 RFI groups, the enrichment 
of OXPHOS pathway, underexpression of MiP genes 

in L_RFI group, and lack of representation of MtMiP 
genes in the validation data set agreed with the find-
ings of the main data set.

Five co-expression modules were significantly related 
to the RFI trait in WGCNA analysis: ME1, ME2, 
ME4, ME5, and ME8. Modules ME1 and ME5 were 
positively correlated with RFI, whereas ME2, ME4, 
and ME8 were negatively correlated with RFI (Supple-
mental Figure S2a, https: / / doi .org/ 10 .3168/ jds .2020 
-18503). Among the modules, only ME1 was signifi-
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Figure 3. A protein–protein interaction network featuring the network of putative hub genes from genes in module eigengene (ME) 2 
(173) with confidence of more than 0.90 from the STRING database (Szklarczyk et al., 2019; https: / / string -db .org/ ). Colors indicate different
Kyoto Encyclopedia of Genes and Genomes pathways: proteosome (red), spliceosome (dark blue), ribosome (green), and oxidative
phosphorylation (yellow).
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cantly enriched for biological pathways. It was enriched 
for the ribosome, OXPHOS, spliceosome, metabolic, 
and proteasome pathways (Supplemental Figure S2b, 
https: / / doi .org/ 10 .3168/ jds .2020 -18503). The top 402 
genes were ranked in order of module connectivity 
and GS to RFI, as well as based on the PPI network-
identified hub genes related to ribosome, OXPHOS, 
and peroxisome (Supplemental Figure S3, https: / / 
doi .org/ 10 .3168/ jds .2020 -18503). The networked hub 
genes in the OXPHOS pathway that were also MiP 
genes were ATP5B, COX4I1, UQCRC1, UQCRFS1, 
SDHA, NDUFS2, NDUFA2, NUDFA8, NDUFA9, and 
NDUFB10. However, only NDUFA8 overlapped with 
hub genes in the main data set.

DISCUSSION

Residual feed intake and EB were highly correlated 
and were used to cross-check gene expression patterns 
in high and low groups. Only 2% of genes were DE from 
a total of about 13,469 genes that passed the RNAseq 
quality filters, thus representing only a small fraction 
of genes. This likely explains the lack of clear clustering 

when considering expression levels of all genes in the 2 
RFI groups in principal component analysis plot and 
hierarchical cluster (Figure 1A). Within the DE genes, 
we found that MiP genes were consistently underex-
pressed in the low-RFI groups, and there was consider-
able overlap of these DE MiP genes in an independent 
validation set of cows. Differentially expressed genes 
were over-represented for OXPHOS and ribosome 
pathways in both the main and validation data sets. 
This strongly suggests a role of the OXPHOS pathway 
in feed efficiency, and this was also evident from the 
weighted gene co-expression network analysis. How-
ever, none of the genes from the mitochondrial genome 
(MtMiP) were DE or were found in the co-expression 
module associated with RFI.

Energy Balance and RFI

The model for estimation of RFI excluding the chang-
es in BW or BCS gives an estimate of EB (Veerkamp, 
2002). Furthermore, it is also very difficult to accu-
rately measure and distinguish between EB and feed ef-
ficiency, and no consensus currently exists on the most 
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Figure 4. A protein–protein interaction network featuring putative hub genes based on genes in module eigengene (ME) 3 (74) with confi-
dence of more than 0.90 in the STRING database (Szklarczyk et al., 2019; https: / / string -db .org/ ). Colors indicate different Kyoto Encyclopedia 
of Genes and Genomes pathways: ribosome (red), oxidative phosphorylation (green), and citrate cycle (blue).
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appropriate mathematical models (e.g., de Vries et al., 
1999; Veerkamp, 2002; Hurley et al., 2016). In addition, 
differences in activity levels between cows have been 
shown to cause changes in DMI (Olijhoek et al., 2020). 
These measures of feed efficiency are highly correlated 
in mid-lactation cows (0.96), when changes in BW were 
almost zero (Hurley et al., 2016). Changes in BCS pri-
marily occur in early lactation, due to mobilization of 
body reserves, whereas the 352 animals used in our 
study estimate RFI were on average approximately 100 
DIM and entering mid-lactation, where little change is 
expected in BCS or BW (Spurlock et al., 2012; Hurley 
et al., 2016). Therefore, not surprisingly, our study 
showed a phenotypic correlation close to 1 between RFI 
and EB. We found similar gene expression patterns 
and enrichment of pathways in RFI and EB, because 
almost the same animals were allocated across these 2 
study sets. Interestingly, the predicted serum BHB and 
NEFA levels (metabolite indicators for negative EB) 
were higher in the more feed-efficient groups (L_RFI 
and negative EB) compared with the less feed-efficient 
group (H_RFI and positive EB) but much lower than 
critical limits (>0.6 mmol/L and 10 mg/dL; Ospina et 
al., 2010) in both groups. It is therefore important to 
acknowledge that our observations of differential gene 
expression may be a reflection of genetics underpinning 
feed efficiency or EB. It is important in the context of 
genetic selection programs to further explore approach-
es to better distinguish between RFI and EB traits in 
dairy cattle (e.g., use of metabolite profiles), because if 
animals are inadvertently selected for poorer EB, this 
could affect health and fertility.

OXPHOS Pathway in Feed Efficiency

No previous studies have examined MiP genes com-
prehensively in relation to feed efficiency, although a 
few genes belonging to MiP or the OXPHOS pathway 
have been reported in several studies on feed efficiency 
of meat animal species, mainly beef cattle, pigs, and 
chicken, involving liver, muscle, and rumen epithelial 
transcriptomes (Kong et al., 2016b; Khansefid et al., 
2017; Del Bianco Benedeti et al., 2018), as well as GWA 
studies (Khansefid et al., 2017; Li et al., 2019). The 
proteomic analysis of feed efficiency indicated signifi-
cant differences in the abundance of MiP in the muscle 
of pigs (Fu et al., 2017), liver of beef cattle (Baldassini 
et al., 2018), and breast muscle in chicken (Kong et 
al., 2016a). The gene expression and protein levels of 
mitochondrial energy metabolism have been linked to 
feed efficiency in pigs (Vincent et al., 2015).

For dairy cattle, our study is perhaps among the fore-
most in the investigation of feed efficiency using blood 
transcriptomes and demonstration of the association 

of MiP and OXPHOS pathways in feed efficiency. Al-
though blood has low mitochondrial activity compared 
with muscle and liver tissues (Dorji et al., 2020), blood 
transcriptome in the present study showed distinct 
MiP gene expression differences between high and low 
feed efficiency groups and enrichment of the OXPHOS 
pathways that have not been reported in earlier stud-
ies of dairy cattle. These findings altogether suggest 
that blood is potentially a good tissue for studying gene 
expression associated with changes in feed efficiency. 
More importantly, the role of MiP and the OXPHOS 
pathways in feed efficiency across animal and tissue 
types is growing more evident.

Another pathway highly associated with feed effi-
ciency in this study was the ribosome pathway. The 
enrichment of the ribosome pathway was previously re-
ported in transcriptomes of rumen epithelium (Kong et 
al., 2016b), muscle, and blood (Khansefid et al., 2017). 
Co-regulation of the ribosome with the OXPHOS path-
way is expected, considering that protein synthesis is 
an energy-demanding process, particularly in peptide 
bonding, where one mole of a polypeptide bond during 
protein synthesis requires about 4 ATP (MacRae and 
Lobley, 1982).

Direction of Regulation of Mitochondrial 
Protein Genes

The MiP genes were underexpressed in the feed-
efficient animals. The underexpression of MiP genes in 
blood WBC and their relation to feed efficiency may in 
part be explained by the lowered activity of the OX-
PHOS pathway, which translates into decreased energy 
production and probably less heat loss (Nkrumah et 
al., 2006). Energy saved from reduced heat loss is be-
lieved to be channeled into increased milk production 
(Goddard and Grainger, 2004). Similarly, when using 
EB, most DE MiP genes were underexpressed in the 
negative EB group. Given that the calculation of RFI 
and EB phenotypes is similar, the similarity in strong 
underexpression of MiP genes is, to some, expected, 
with most cows overlapping between the 2 phenotypes. 
The underexpression of MiP genes involved in energy 
production and use may arise simply from a shortage 
of energy from feed or from lower consumption of feed, 
potentially involving a feedback loop to reduce expres-
sion.

In addition, a lowered protein synthesis or turnover, 
as indicated by underexpression of genes associated 
with the ribosome pathway in blood of the feed-efficient 
group, may save energy. Underexpression of both MiP 
genes and MiP abundance has been reported in feed-
efficient pigs (Vincent et al., 2015; Fu et al., 2017). 
Similarly, less feed-efficient Nellore bulls reportedly 
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had increased expression of genes related to OXPHOS 
in the rumen epithelium (Del Bianco Benedeti et al., 
2018). Conversely, the transcriptome profile of rumen 
epithelium had overexpression of OXPHOS genes in 
feed-efficient beef steers (Kong et al., 2016b). The au-
thors justified their findings by suggesting that feed 
efficiency can be enhanced through better absorption of 
nutrients from the rumen wall, facilitated by increased 
morphogenesis and protein turnover in the rumen epi-
thelium. Similarly, the proteome of breast muscle had 
overexpression of OXPHOS proteins in feed-efficient 
meat chickens (Kong et al., 2016a). Considering that 
growth and weight gain are essential aspects of feed 
efficiency traits in meat animals, and protein synthesis 
is one of the mechanisms for muscular growth, this jus-
tifies the overexpression of genes associated with OX-
PHOS and ribosome pathways in the muscle of meat 
animals.

Overall, it is currently inconclusive whether the 
specific direction of the regulation of MiP genes is as-
sociated with feed efficiency. However, this has tended 
to depend on animal species and sampling tissue. 
Overexpression of MiP genes, along with genes for the 
ribosome pathway, may increase protein synthesis in 
muscles and affect weight gain in feed-efficient animals, 
which could be important for meat species. By contrast, 
underexpression of MiP genes and lower activity of OX-
PHOS in dairy cattle suggests lower energy production 
and utilization for maintenance.

Key Mitochondrial Protein Genes Related 
to Feed Efficiency

Mitochondrial protein genes are encoded by genes 
from both nuclear and mitochondrial genomes, and 
OXPHOS and energy metabolism are the critical func-
tions of MiP genes and mitochondria. One of the note-
worthy findings of this study was that no MtMiP genes 
were DE between feed efficiency groups, nor were they 
among the genes in modules highly correlated with RFI. 
Further, with exceptions from the studies specifically 
targeting MtMiP, none of the high-throughput RNAseq 
studies to date has indicated an association of MtMiPs 
in feed efficiency (Kong et al., 2016b; Khansefid et al., 
2017). This suggests low variability in MtMiP gene ex-
pression between the high and low feed efficient groups, 
and that MiP variation in feed efficiency is mainly at-
tributable to NuMiP gene expression.

We found 31 out of 38 DE MiP genes of the primary 
set in the validation data set. Some of these MiP genes 
and proteins have been associated with feed efficiency 
in previous studies (Supplemental Table S9, https: / / 
doi .org/ 10 .3168/ jds .2020 -18503). Some common gene 

transcripts across studies included COX4I1, ATP5D, 
and UQCRQ, and differentially abundant MiP relating 
to feed efficiency were COX4I1, NDUFB11, PRDX2, 
NME3, and UQCRQ. Overall, the 2 most common 
MiP and MiP genes across studies were COX4I1 and 
UQCRQ.

The COX4I1 gene is located on bovine chromosome 
18 between 11,799,175 and 11,807,342 bp (UMD3.1) 
and encodes a protein that is a component of complex 
IV of the ETC in mitochondria. Complex IV consists 
of 13 proteins (Yoshikawa, 1997), of which 10 encoded 
by nuclear genes are regulatory, and 3 from the mito-
chondrial genome constitute the catalytic core in mam-
mals (Kadenbach and Huttemann, 2015). In humans, 
a mutation in COX4I1 has been associated with short 
stature, poor weight gain, and increased chromosomal 
breaks (Abu-Libdeh et al., 2017). We checked 1,646 
polymorphic variants in the animals in our study to 
investigate whether any showed segregation patterns 
according to our RFI groupings within the COX4I1 
region, but no significant pattern was observed. We 
suggest that the role of COX4I1 and other common 
genes should be further investigated.

Highly connected hub genes in a module play essential 
roles in biological pathways and have been suggested 
for use as a potential indicator of feed efficiency (Salleh 
et al., 2018). In this study, we looked at the top 10% 
of genes in the modules significantly related to feed 
efficiency in both the main and validation data sets. 
We found 62 putative hub genes in common, including 
7 OXPHOS and 11 ribosome pathway genes, but only 4 
in refined hub genes associated with OXPHOS between 
the main and the validation data sets within our study. 
We compared our putative hub genes with hub genes 
from liver in a published study in Danish Holstein and 
Jersey cattle (Salleh et al., 2018). Our primary data set 
shared only 1 putative hub gene (LPXN) with Holsteins, 
and no genes were common between the validation set 
and their study. It was also interesting to note that 
only 1 hub gene (LCK) was found in common between 
Holsteins and Jersey in their study. As such, consider-
able variability exists in hub genes as well as DE genes 
identified across studies among breeds, species, tissues, 
and data sets for feed efficiency. Therefore, it appears 
that there is still much to learn regarding the genes and 
mutations that underpin differences in feed efficiency, 
and how genomic selection programs for feed efficiency 
may affect other traits such as health and fertility. Our 
results suggest that more efficient animals have lower 
requirements to generate energy (as measured by MiP 
gene expression) and thus potentially have better meta-
bolic efficiency of energy utilization compared with less 
efficient animals.
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CONCLUSIONS

The findings from our study suggest that mitochon-
drial protein genes in the blood are differentially ex-
pressed between high and low feed efficiency groups 
of lactating dairy cows. However, all differentially 
expressed mitochondrial protein genes were from the 
nuclear genome and none from the mitochondrial ge-
nome. The oxidative phosphorylation pathway, which 
is responsible for energy production, and the ribosome 
function pathway were associated with feed efficiency. 
Mitochondrial protein genes were underexpressed in the 
more feed efficient group, which may suggest a lower 
metabolic turnover.
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The aim of the research was to contribute to the overarching goal of utilising the 

mitochondrial genome for livestock genetic improvement. A novel approach of ‘whole 

mitochondrial genome and mitochondrial proteins’ was used in the research to 

determine the role of the mitochondrial genome. First, whole mitochondrial genome 

diversity of cattle, both within and across the breeds, was evaluated to understand if there 

was adequate variation. Second, the association between the expression of mitochondrial 

protein genes from both mitochondrial and nuclear genomes in tissues with the energy 

metabolism was investigated. Third, the association of the mitochondrial protein 

transcriptome with feed efficiency (i.e. a trait related to energy metabolism and use) was 

examined. The findings from these studies fill in critical information gaps and advance 

the prospect of using the mitochondrial genome in the genomic evaluation of dairy traits.  

6.1 Summary of Chapters 

Chapter 3: Cattle maternal diversity inferred from 1,883 taurine and 

indicine mitogenomes 

    In this chapter, the mitochondrial genomic diversity in cattle was evaluated using 

whole genome sequences and piloted the imputation of the missing 

mitochondrial genotypes. The aims were to understand if there is adequate genetic 

variation in the mitochondrial genome and the likelihood of the mitochondrial 

genome to be imputed towards the use for mitochondrial variants for genomic 

evaluation in breed improvement. The study utilised the mitochondrial genome sequence 

from 1000 Bull Genome project to predicted haplogroups and evaluate haplotype 

diversity. Further, the imputation of missing genotypes was tested based on random 

masking of 10% of total sites and used the tools developed for nuclear DNA.  

   The results showed that modern cattle are genetically diverse with 

high mitochondrial genetic variations and haplotype diversity within a given breed 

(Chapter 3, Table 7). For example, Holsteins had 210 haplotypes and 15 subgroups and
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within the breed (Chapter 3, Figure S5). The African taurus (T1) and indicus (I) 

haplogroups influenced a small proportion of European breeds (~ 5%), mainly in 

Australia and China (Chapter 3: Table 3 & 4). Two new subgroups (I1a and I1b) 

within the indicus (I1) were reported, showing additional haplogroup diversity. The 

I1a haplogroup was restricted mainly to the Chinese indicus breeds. The imputation 

of masked genotypes consistently showed high accuracy (99.8%), and the 

imputed sequences did not affect the haplogroup prediction (99.5% correctly 

predicted) (Chapter 3, Table S8).  

  In summary, the chapter highlights adequate mitochondrial genomic variation 

within the modern cattle breeds and the possibility of the imputation of the 

mitochondrial genome paving the way towards their use in genomic evaluations.  

Chapter 4: Expression of mitochondrial protein genes encoded by nuclear and 

mitochondrial genomes correlate with energy metabolism in dairy cattle 

      Mitochondrial protein (MP) gene expression from both the mitochondrial and 

nuclear genomes was examined across 29 tissue types in cattle. The gene expression in 

tissues was quantified through RNA sequencing and analysed for the differential gene 

expression and co-expression in tissues.  

      The MP genes were differentially expressed across tissues (Chapter 4, 

Fig.1), typically being over-expressed in tissues with high energy demand (e.g. heart, 

skeletal muscles, liver, kidney) and under-expressed in the adipose, skin, white blood 

cells, lungs, and thymus (Chapter 4, Fig.2 & Fig.3). The expression profiles were 

associated with the metabolic rates of the tissues (where known) indicating that their 

specific energy demands may be met through the tissue-specific expression of the 

mitochondrial protein genes. However, it is not clear if the tissue-specific gene 

expression is a result of differences in the rate of transcription, mitochondrial copy 

number or both. Generally, the mitochondrial content of a few known cell types (e.g.
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hepatocytes, heart in Chapter 2) did not correspond well with their mitochondrial protein 

gene expression in the current study. 

    The MP genes from the nuclear and mitochondrial genomes were significantly co-

expressed across tissues (Chapter 4, Fig.4), indicating an interaction between the two 

genomes. The genes in the co-expression cluster were significantly enriched for oxidative 

phosphorylation (OXPHOS) – the energy production pathway.  

    Overall, the results provide an essential link between the MP gene expression in a 

tissue and the energy demand, suggesting that specific energy demand in tissue types is 

fulfilled through the tissue-specific expression of the MP genes. The co-expression of the 

mitochondrial and nuclear MP genes further suggests the role of the 

mitochondrial genome and the interaction with the nuclear genes in the energy 

metabolism and indicates that the mitochondrial genome should be considered for 

genetic evaluation of traits related to energy metabolism.  

Chapter 5: Mitochondrial protein gene expression and the oxidative phosphorylation 

pathway associated with feed efficiency and energy balance in dairy cattle 

    This study assessed the association of the mitochondrial protein (MP) 

gene expression in blood with feed efficiency. Feed efficiency in cattle was measured as 

residual feed intake (RFI) and energy balance (EB). The animals were classified into high 

RFI (low feed efficiency) and low RFI (high feed efficiency) groups. The gene 

expression in the blood was quantified using RNA sequencing. The differential 

gene expression and weighted gene co-expression network analyses were used 

to associate gene expression with RFI.  

     There were 244 differentially expressed (DE) genes, including 38 MP 

genes between the high RFI and low RFI groups. The DE genes were significantly 

enriched for OXPHOS and metabolic pathways, indicating the role of energy 
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metabolism in feed efficiency. Specifically, the MP genes were under-expressed in 

the low RFI group suggesting a lower metabolic energy expenditure in feed efficient 

animals. Similarly, the gene clusters associated with RFI from the co-expression network 

analysis included the MP genes and were over-represented for OXPHOS and ribosome 

(i.e. protein synthesis) pathways. Notably, both DE genes between the RFI groups and 

genes in co-expression clusters associated with RFI were of nuclear origin (Chapter 5, 

Figure 2), suggesting a regulatory role of nuclear MP genes in feed efficiency.  

    Feed efficiency is a complex trait and the underlying biological mechanism is 

not currently understood. While mitochondrial function is associated with cellular 

energy metabolism, the link between mitochondrial function and feed efficiency is not 

demonstrated adequately. The results from this study provide a plausible link through 

the differential gene expression of MP genes in the blood (RNAseq). The under-

expression of MP genes in feed efficient animals suggests a lowered mitochondrial 

activity, which means decreased energy production and less heat loss and channelling 

of energy saved into increased milk production (Goddard and Grainger, 2004, 

Nkrumah et al., 2006). Other notable interrelated factors within the electron transport 

chain associated with the efficiency of energy production, which accounts for 

basal metabolic rate, are proton and electron leaks (reviewed in Brand et al. (1999)). 

The DE genes and key genes from the co-expression clusters can be used as the 

potential markers for the genomic evaluation of feed efficiency in cattle. However, the 

regulatory role of MP genes from the nuclear genome in feed efficiency warrants 

further investigation.  

6.2 Limitations 

The empirical results reported in the three research chapters of this thesis should be 

considered in light of some limitations. In Chapter 3, the handling of the missing 

genotype and heteroplasmy, in part arising from nuclear mitochondrial sequences 

(NUMTs), could have slight influence on the estimated diversity. In Chapter 4, 
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the association of mitochondrial protein gene expression to tissue energy 

metabolism was based on tissues whose metabolic rate or energy demands were 

previously known as tissue metabolic rates were not available for most tissue. Also, 

there were some inconsistent expression profiles in few tissues between two animals.  In 

Chapter 5, the association of the gene expression to the feed efficiency was based on the 

blood transcriptome and it was evident from Chapter 4 that the gene expression profile 

varies with tissues. However, overall, these limitations should not adversely affect the 

results and their interpretation.  

In Chapter 3, the sites with missing genotype and indels were removed from the 

analysis. The removal of sites with missing genotypes and gaps is a standard practice 

in mitochondrial population genetic studies. The removal of sites could have 

invariably resulted in the underestimation of diversity. However, for this study, the 

genetic diversity estimate was still high, indicating the feasibility of undertaking 

genomic evaluations. Alternately, it was demonstrated that the missing genotypes would 

not affect the genomic evaluation as they can be imputed with high accuracy. Further, the 

current study considered the heteroplasmic sites in the analysis. A low level of false-

positive heteroplasmy is reported as common errors in next generation sequencing. 

Considering this, additional analysis (not reported in Chapter 3) was undertaken 

to establish their authenticity through allele depths and the transmission patterns. The 

average allele depths of heteroplasmic alleles in the final dataset were determined 

as 36:10 (first:second allele), which is a reliable ratio. The transmission pattern 

of heteroplasmic sites on 36 dam-offspring pairs examined showed 

that heteroplasmy was not usually transmitted in about 50% of the cases (19 dam-

offspring pairs), transmitted in about 30% (11 dam offspring pairs) and 14% had 

heteroplasmy   not present in the dam but present in offspring, while the rest were 

partial transmission from dam and some newly acquired by offspring. This partially 

justified the use of heteroplasmic sites in the diversity estimation but could have 
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influenced the diversity estimates. The 1000 Bull Genomes Project contains many tissue 

samples with low mitochondrial content that were used for sequencing (e.g. semen), the 

impact of NUMTs manifesting as heteroplasmy was minimized to the level of non-semen 

tissues by ensuring a comparable distribution of heteroplasmy between tissues 

(Chapter 3, Materials and Methods). While this method provides an option to minimize 

heteroplasmy due to NUMTs in samples with low mitochondrial content, it is not 

feasible to completely eliminate the effect of NUMTs and they may continue to affect 

nucleotide and haplotype diversities. 

    In Chapter 4, the association of the MP gene expression in tissues to energy 

metabolism were based on the enrichment of the OXPHOS and metabolic pathways. The 

over-expression and under-expression in tissues were further supported by the 

energy demand or metabolic rates of tissues available in the literature. On the other 

hand, the metabolic rates of most of the tissues were not available and assumed to 

follow a similar pattern in other tissues. The other concern is the consistency in 

the gene expression within tissue in the two animals, especially among the under-

expressing tissues (e.g. thyroid and ovary). The trend could have been more convincing 

had there been additional animals in the study.  

   Further, tissues are a heterogeneous mixture of cells and cell types differing in 

metabolic profile and sampling specific site and cell types could have been key for 

better consistency. Furthermore, the post-transcriptional modification and post-mortem 

sampling associated decay could have added noise to the already low expression in 

these tissues. Overall, these issues may be resolved by examining the gene expression 

in specific cell types using the single-cell RNA sequencing technology. 

   The Chapter 5, there is no prescribed tissue for RNA sequencing for feed 

efficiency studies, but blood is among the previously sampled tissues apart from 

muscle, liver and rumen epithelium (Kong et al., 2016b, Khansefid et al., 2017, Salleh 

et al., 2017). The expression of MP genes was highly variable among the tissue types and 
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was actually under-expressed in the blood (Chapter 4). Despite this, blood was sampled 

in the study for its relative ease for sampling and potential combination with 

other routine haematological assays. Nevertheless, sampling a few other tissues with 

over-expression of the MP genes group (e.g. skeletal muscle) could have 

consolidated the findings. Generally, the sample sizes of the feed efficiency studies 

including this study are low (109 animals). A larger sample size is expected to 

provide better contrast in expression between high and low RFI groups. 

6.3 Opportunities and future directions 

The results fill in some critical information gaps towards utilising the mitochondrial 

genome for genetic improvement of dairy traits. They have enhanced the understanding 

of variations in the whole mitochondrial genome in cattle and established that there 

is adequate diversity within breeds for association studies. The findings provided an 

important link between MP gene expression and phenotypes (tissue energy demand 

and feed efficiency) and the potential biological mechanisms. However, the findings could 

be further expanded using emerging technologies such as long-read sequencing, single-

cell RNA sequencing, and proteomic analyses. Combining mitochondrial genomics, 

transcriptomics, and proteomics into a single study would provide more power. The 

imputation of the mitochondrial genome has been promising, and genomic evaluation 

based on the variants from the mitochondrial protein genes from the mitochondrial and 

nuclear genomes may be undertaken in the near future.    

 6.3.1 Long read genome sequencing 

    Long-read sequencing generates substantially longer reads than the conventional 

Next-Generation sequencing technologies and has several advantages over short-

read sequencing. According to Logsdon et al. (2020), the Oxford Nanopore 

Technologies (ONT); MinION, GridION, and PromethION long-read sequencing 

platforms generate reads between 10-60 kb and the ultra-long reads of 100-200 kb at N50 

    136



(the sequence length of the shortest contig at 50% of the total genome length) and similar 

length (5-60 kb) from the PacBio Pacific Biosciences’ (PacBio) RSII, Sequel, and Sequel 

II at N50. Some of the advantages of long-read sequencing are in 

eliminating amplification bias, preserving base modifications, and identifying 

large structural variations and transcript isoforms (Roberts et al., 2013, Depledge et al., 

2019). One of the disadvantages of the long-read sequencings is the higher base error 

rates (10-15%), but repeated measurement of the sequences at adequate coverages can 

reduce the error rates (Pollard et al., 2018, Wang et al., 2019).  

The advantage of long-read sequencing technologies in the context of mitochondrial 

genome sequencing is the ability to read the entire genome (~16 kb) as a single 

fragment. The mitochondrial genome as a single read would enable the detection of 

haplotypes based on the entire genome, which is a more accurate representation compared 

to using a shorter region or a gene. The whole mitochondrial genome read as a single 

fragment would also eliminate the interference from the nuclear mitochondrial 

sequences (NUMTs). The NUMTs often get co-amplified and the mitochondrial 

genome and may interfere with genetic analyses (see Chapter 2 Literature Review). 

Apart from detecting the transcript isoforms and base modification, long-read 

sequencing can be beneficial in the understanding of mitochondrial genome 

transcription. The longer reads of transcripts close to the size of the genome would 

elucidate the pattern of near-complete polycistronic transcription of the mitochondrial 

genome.  

     However, the obvious disadvantage of long-read sequencing of 

mitochondrial genomes is in detecting mitochondrial heteroplasmy. The ability to detect 

heteroplasmy is directly dependant on sequencing depth (Guo et al., 2013). The 

conventional sequencing techniques may be a better option for studies primarily looking 

at the heteroplasmy as in mitochondrial disease in humans. On the other hand, 

a low proportion of heteroplasmy is always present and not pathogenic unless in large 
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proportions (Payne et al., 2013). The prevalence of heteroplasmy, if being in a high 

proportion is important, can be detected using long-read sequencing at greater depths.  

6.3.2 Imputation of missing mitochondrial genotypes 

   The evaluation of the mitochondrial genomic diversity from imputed sequences 

may not be recommended. However, imputation of the mitochondrial genome is of 

interest from the aspect of genomic evaluation. With filters and procedures to minimize 

false-positive heteroplasmy likely resulting from NUMTs, especially in DNA sequences 

sampled from tissues with low mitochondrial content (i.e. semen), it has been learnt 

that the empirical imputation by masking the sequence variants yields high prediction 

accuracy (Chapter 3), indicating that imputation of missing mitochondrial genotypes is 

feasible. Further, there is a possibility of imputing from the existing mitochondrial 

SNPs on SNP chips to the denser markers and even sequence. For example, 

BovineLDv1TM and BovineHD BeadChipTM from Illumina (www.illumina.com) 

have 13 and 339 mitochondrial SNPs, respectively. The historical animals on 

low-density (LD) panels do not have enough mitochondrial SNPs to be imputed to high-

density (HD). However, the animals on the BovineHD chip are likely to be imputed 

well to mitochondrial sequence levels, because mitochondrial marker coverage is 

greater. This would also provide an opportunity to revisit genomic evaluations by 

including the imputed mitochondrial sequences.  

    Further, there are avenues to customise mitochondrial SNP panels for genotyping 

mitochondrial genome to evaluate genomic diversity and the imputation to sequence for 

genomic prediction simultaneously. This may be done by incorporating lifted over 

variants currently used to predict haplogroups in cattle dometree (Peng et al., 2015) 

(Chapter 3, Table S1). The mitochondrial SNP panels can also be 

independent for mitochondrial population genetic studies.   
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6.3.3 Single-cell RNA sequencing 

     RNA sequencing offers insights into the transcriptome and prospects of identifying 

hub genes and elucidating the critical biological pathways contributing to the 

phenotype. Transcriptome analysis enables the mapping of genes to phenotype. However, 

tissue-based RNA sequencing can be less accurate, considering the heterogeneity of cell 

types in tissues. The gene expression profile of tissue is the aggregated gene expression of 

all cell types. On the other hand, the gene expression among similar cell types is also 

reported heterogeneous (Huang, 2009). The genes that show mutually exclusive 

expression in individual cells may also be observed as genes showing co-expression in 

expression analyses of bulk cell populations (reviewed in Kukurba and 

Montgomery (2015)). Thus, a more precise understanding of the transcriptome within 

an individual cell type is essential for elucidating their role in cellular functions and 

understanding how gene expression affects traits (Hwang et al., 2018).  

    Single-cell RNA sequencing (scRNAseq) could provide a better resolution 

to elucidate further the roles of MP gene expression (among cell types for energy 

demand and the blood in the feed efficiency) and elaborate the understanding of the 

biological processes. A single-cell multi-omics approach integrating the existing 

information from DNA, RNA and proteins (Dey et al., 2015, Genshaft et al., 2016) 

would be even more helpful in teasing out the detailed process of relaying the 

genomic information leading to phenotypic differences. The choice of cell types 

in scRNAseq would depend on the ease of tissue sampling and isolation of single 

cells and the biological relevance of the sample to the study. It is relatively 

straight forward in the studies comparing gene expression across cell types as in 

tissues in Chapter 4, where the primary cell types of the organ would be the focus 

cells. For example, hepatocytes in the liver, myocardiocytes in the heart, white blood 

cells in the blood (as mitochondria and nucleus are absent in red blood cells) 

and myocytes in skeletal muscles. The scRNAseq of cell types is expected to have mini-
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mum variation and increase consistency for reliable measurement of gene expression.  

    On the other hand, the choice of cell types for scRNAseq to associate with the 

phenotypic and production traits (e.g. RFI as in Chapter 5) may need to consider the 

underlying biology of the trait. Some complex traits (such as feed efficiency, fertility) 

can involve multiple pathways, which can differ considerably among the cell types. 

Therefore, initially, multiple cell types in scRNAseq experiments of relevant tissues 

needs to be studied in relation to a trait. Understanding that complex traits are an 

outcome of several interacting pathways across tissues, the key genes identified in each 

specific cell types may be combined and used as the quantitative trait loci for the genomic 

evaluation. It would also be of interest to examine how the enriched pathways across cell 

types could be contributing to the trait.  

6.3.4 Is increased MP gene expression a result of increased transcription or 

more mitochondria? 

    The mechanisms driving the differential expression of mitochondrial genes is an 

area of ongoing research. Mitochondrial gene transcription depends on several factors 

encoded by the nuclear genome (see Literature Review). The over-expression of MP 

genes from both nuclear and mitochondrial genomes in tissues with higher energy 

demand and also a higher expression of nuclear MP genes in blood of the low feed 

efficiency group were observed (Chapter 4 & 5). However, no mitochondrial protein 

genes from the mitochondrial genome were differentially expressed between the two 

feed efficiency groups. This is plausible considering the measurement of gene 

expression between the groups on the same tissue (blood) where the mitochondrial 

content is generally constant. On the other hand, the variation in the expression across 

the tissues is potentially a result of varying mitochondrial numbers (Chapter 4) as the 

mitochondrial content of the tissues varies considerably. Currently, the mitochondrial  

content of most of the tissues in this study remains unknown.  

    140



     The information on the mitochondrial content in the tissues could have added to the 

explanation and relevance of differential gene expression in varying energy 

metabolism among the tissues. Although the determination of the mitochondrial content in 

tissues is an exciting aspect to consider, it was beyond the scope of the current 

research. The mitochondrial content in the tissues can be determined by several methods. 

Conventionally, the real-time quantitative PCR has been used to determine the 

mitochondrial content. However, lately, the whole genome or exome sequencing data are 

used, where the content is determined by comparing the relative abundance of the 

mitochondrial DNA to the nuclear DNA. There are also cost-effective alternatives 

using nuclear DNA probes and whole mitochondrial genome sequencing is available 

with reasonable accuracy (see Literature Review). The association of the 

mitochondrial content from multiple samples and the association with production traits 

is another exciting area which could disentangle the overall role of the mitochondria.  

6.3.5 Mitochondrial proteomics 

     According to the central dogma of molecular biology (Crick, 1970), protein is the 

ultimate product of the genetic code in the DNA. Also, because all biological processes 

in a cell involve proteins, the proteomics is a relevant dataset to characterize a 

biological system (Cox and Mann, 2007). There is significant relationship between 

mRNA and proteins, but they are generally low (correlation=0.25) (Guo et al., 2008, Gry 

et al., 2009, Koussounadis et al., 2015). The protein levels are not only dependent 

on mRNAs translation but also on protein turnover (Gygi et al., 1999, Lu et al., 2007), 

suggesting that proteomic analysis would be more reliable in context of the biological 

system. Further, the ability to isolate organelles has enabled organelle-specific proteins to 

be investigated using organelle proteomics (Brunet et al., 2003).  In fact, the initial 

estimate of mitochondrial proteins was based on the mitochondrial proteomic analysis 

from rat liver mitochondria (Lopez et al., 2000). Since then, several high-precision, robust
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and cost-effective proteome analysis techniques have evolved over last two 

decades and offer opportunities to characterise the mitochondrial proteome 

across species and tissues.   

     Currently, there are no specific lists of mitochondrial proteins in cattle, but the 

mitochondrial proteome is not likely to differ significantly across species. 

Aligning mitochondrial protein orthologues from human to cattle and sheep mapped 

with good success rate (for example, 1158 human mitochondrial proteins mapped to 

1054 and 822 respectively (Chapter 4, Tables S4 & S5). This is no surprise because cattle 

and sheep are not well annotated. Further, the current mitochondrial protein list in 

human is not exhaustive as about 15% of mitochondrial proteins in human (~1400) 

await identification and the mitochondrial protein composition is reported to vary across 

tissues, where about 50% are ubiquitous, while another half is tissue-specific 

(reviewed in Calvo and Mootha (2010)). Thus, species-specific and the 

completeness of the mitochondrial protein list would help in better understanding of 

the role of mitochondrial protein genes in the tissue-specific functions and phenotypic 

traits. For the bovine mitochondrial proteins, an approach would be to examine 

the list of 528 genes currently not analogous to human mitochondrial proteins in 

the gene co-expression cluster analysis (Chapter 4, Cluster I in Fig.4, Table S7). 

The functional enrichment of these genes was closely related to functioning 

the heart (e.g. contraction, adrenergic signalling, glucagon signalling). There is a 

possibility that the gene set can contain some previously unidentified putative (new) 

mitochondrial protein genes in bovine or even the bovine analogues of about 100 

genes that did not map during the conversion. Similarly, the genes clusters (ME2 

and ME3) in the weighted gene co-expression network analysis (Chapter 5, 

Figure 2) and the list of differentially expressed genes between the high_RFI 

and low_RFI (Chapter 5, Table S3) may be examined and validated using antibody 

tagging and biochemistry.    
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    The correlation of the mitochondrial protein transcriptome and proteome is another 

interesting area to explore specifically the link between the multiple copies of the 

mitochondrial genomes, mitochondrial protein transcripts and their protein 

abundances. This also interesting because the proteins from the mitochondrial 

genome were not differentially expressed between the high and low feed 

efficiency groups (Chapter 5, Table S3) nor were among the gene expression cluster 

associated with the residual feed intake (Chapter 5, Figure 2B & 2C). These results 

tend to agree with previous studies involving proteomic analysis of two divergent trait 

groups, which showed none of the proteins from the mitochondrial genome but some 

mitochondrial proteins from the nuclear genome are differentially abundant in other 

livestock species (Kong et al., 2016a, Baldassini et al., 2018, Fonseca et al., 2019, 

Miller et al., 2019, Wu et al., 2020). This observation suggests that differential gene 

expression across the tissues could be potentially due to the differences in 

mitochondrial content, which is the indicator of number of mitochondria. Within 

a tissue, the number of mitochondria in a cell is nearly constant, and therefore, the 

tissue level of mitochondrial transcripts and their proteins of the trait groups would not 

be significantly different. 

      Further, this also points that the MP from the nuclear genome could be rate-limiting to 

mitochondrial function. Firstly, enzymes and factors for the replication, transcription and 

translation of the mitochondrial genome are dependent on the nuclear genome. 

Furthermore, some miRNAs can inhibit the translation of MP from the 

mitochondrial genome. Secondly, even if the rates of replication of mitochondrial 

DNA (37b/sec) (Johnson and Johnson, 2001) and nuclear DNA (2kb/min, ~33b/sec) 

(Fangman and Brewer, 1992), transcription and translation differ between the 

nuclear and mitochondrial genomes, the mitochondrial genome being a small genome 

(16 kb) means the turnover could be higher and more abundant compared to the 

nuclear mitochondrial proteins. Thus, transcripts and proteins from the nuclear genome 

could plausibly have a limiting or regulatory role on the mitochondrial function. Therefore,
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the proportion of mitochondrial proteins from both genomes, and the correlation 

of the transcripts and proteins of the mitochondrial genome needs to be ascertained 

considering their massive expression in high energy demand tissues and 

association with traits related to mitochondrial function.  

6.3.6 A way forward for the use of mitochondrial genome in genetic evaluation 

     One of the main goals of this project was to advance the use of the mitochondrial 

genome for genomic evaluation in cattle. The high variation and accuracy of the 

imputation of the mitochondrial genome bring us a step closer to this goal. Based on the 

annotation of the variants in 1000 Bull genome project (Herman and Stothard, 

University of Alberta, unpublished), the final dataset excluding the indels and D-loop 

(which are non-coding and mostly up/down stream variant) had 2935 single nucleotide 

variants. These variants were primarily the missense variants, nearly equal 

synonymous and non-coding transcript exon variants, and few were related to the gain or 

loss of a stop codon (Figure 6.1). The missense variants result in the substitution of 

the amino acid, which may or may not make the protein non-functional. This indicates

Figure 6.1. Types and composition of the single nucleotide variants in the coding region in the 

filtered dataset. Other variants (start lost, stop retained, incomplete terminal codon)  
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that variant substitutions may have a significant effect on animal production, fitness, and 

fertility traits. 

     Further, co-expression of the mitochondrial protein genes in tissues (Chapter 5) 

and association of the mitochondrial protein genes from the nuclear genome with the 

feed efficiency, an energy utilisation trait (Chapter 5), forms the basis of 

considering the interactions between the mitochondrial and nuclear genomes. The 

differentially expressed mitochondrial protein genes and the key genes from the co-

expression clusters can be putative quantitative trait loci (QTL) for the trait.  

     The single marker linear regression model, commonly known as genome-wide 

association studies (GWAS), can be used to identify and validate the observed QTL. 

The nuclear mitochondrial protein genes exhibited prominent differential and co-

expression in relation to the energy metabolism in tissues as well as in the feed efficiency 

(Chapter 4 & 5). The variants in these mitochondrial protein gene regions may be 

directly used for the GWAS and genomic predictions of feed efficiency.   

     A genome-wide association study including both mitochondrial and nuclear 

variants is feasible. For the nuclear genome, the variants from the key mitochondrial 

protein genes identified through differential and co-expression analyses may be used as in 

Kraja et al. (2019). This may be followed by conditional association analysis of 

mitochondrial variant to disentangle their effects using tools such as GCTA.  

     One of the preliminary tests for the role of the mitochondrial genome is to examine the 

proportion of the phenotypic variance explained by the nuclear and mitochondrial 

genomes and both together using genomic best linear unbiased prediction (gBLUP). 

While gBLUP based on the nuclear genome is routine, the genomic relationship matrix 

(G) of the mitochondrial genome has to consider their haploidy and maternal 

inheritance. The approach used for the X chromosome in male as implemented in tools 

such as GCTA (Yang et al., 2011) is likely to work for mitochondrial DNA (see Chapter 3
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Materials and Methods). The mitochondrial genotypes may be coded as 0 (if same with 

the Ref) and 1 (if different from Ref) as in (Schutz et al., 1994). The G matrices, G(n) 

and G(m), resulting from the gBLUP can then be used for the genomic prediction 

based on the following equation:  

y = μ + Zgn + Zgm + e.

where 

y is the vector of trait of genotyped reference animals, μ is the overall mean   

gn is the vector of additive genetic effects of the nuclear genome for the reference animals,   

gm is the vector of additive genetic effects of the mitochondrial genome for the reference animals,  

e is the vector of random residuals, and  

Z is the design matrix associating gn and gm with response variables.  

Var(gn) =Gnσ2
gn ;   Var(gm) =Gmσ2

gm ; where Gn is the GRM of nuclear genome, and Gm is the GRM 

of mitochondrial genome 

     This model would answer the question of how much variance in current phenotypic 

traits is due to the mitochondrial genome versus the nuclear genome.  It would also 

result in GEBVs for both genomes that could be added together for an overall GEBV. 

Whether this was a valid approach leading to increased genetic gain would have to be 

determined by the impact on prediction accuracies.  In addition, the association of the 

mitochondrial haplotypes to the traits is another approach (Liu et al., 2013), where 

the animals in a haplotype are coded 0 and different as 1. This would help identify 

the links between mitochondrial and MP regions to traits.  

6.4 Concluding statement 

This work establishes that it is possible to use the bovine mitochondrial genome in 

the genetic improvement of complex dairy traits. Firstly, the results have demonstrated 

that there is adequate mitochondrial genetic variation both within and across the 

breeds.Secondly, it has been shown that the mitochondrial genome can be imputed with 

high accuracy, so it is possible to impute previous high-density SNP chip data to sequence 

    146



level for use in genetic evaluations. Thirdly, substantial interaction of mitochondrial 

protein genes from the nuclear and mitochondrial genomes was demonstrated. 

Fourthly, mitochondrial protein genes, protein gene expression and functional 

pathways were associated with feed efficiency. Variants in these nuclear mitochondrial 

protein genes may be used in the genomic evaluation of feed efficiency. Thus, the findings 

will hopefully lead to more research enabling the incorporation of the mitochondrial 

genome in the genetic improvement of dairy and other livestock species.
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Appendix 3: Chapter 3 Supplementary materials 

Table S1: Variants used in prediction of cattle mitochondrial haplogroup lifted over from 

Bovine Reference Sequence (V00654) to the ARS-UCD1.2_M reference sequence.  

RPQT:8,106,166,250,297,301,2560,2981,3441,3552,3602,5503,5745,5892,6438,6774,7332,7358,7516,8190,8372C,8496,9007, 
9980,10333,10693G,11002,11136,11421,11844,12236,12470,12471,12624,12677,12686,12752,12803,12902,13007,13058A, 
14038,14827,15136,15619,15629,15820,15953,15957G,16059,16123,16124,16139,16250,16257,16303 

PQT:106,166,169,250,301,2560,3552,5503,5745,5892,6438,7358,8372C,10693G,11002,12470,12677,12752,13007,14038,15136, 
15629,15953,15955G,16124,16257 

QT:169,2560,5503,8372C,11002,12470,12677,12752,13007,14038,15136,15629,15955G,16257 

Q:169,2560,3240,3417T,5503,7920,8320,8372C,10719A,10929,11002,11091,12435,12470,12677,12752,13007,14038,14110, 
15136,15629,15955G,16257 

Q1:169,1459,2560,3240,3417T,5503,7920,8320,8372C,10719A,10929,11002,11091,12435,12470,12677,12752,13007,14038, 
14110,15136,15629,15955G,16257 

Q1a:169,244T,1459,2560,3240,3417T,5503,7920,8320,8372C,10719A,10929,11002,11091,11768,12435,12470,12677,12752, 
13007,13622,14038,14110,15136,15629,15955G,16114,16257 

Q1a_FJ971083_HQ184034_HQ184035:169,244T,1459,2560,3240,3417T,5503,7920,8320,8372C,8619,10719A,10929,11002, 
11091,11768,12435,12470,12677,12752,13007,13508,13622,14038,14110,15136,15955G,16114,16257 

Q1_HQ184039:169,471,1459,2560,3240,3417T,5503,5718,6660,7832,7920,8320,8372C,10719A,10929,11002,11091,12435, 
12470,12482,12677,12752,13007,14038,14110,15092,15100A,15136,15629,15955G,16198,16257

Q1_HQ184036_HQ184037_HQ184038_EU177866_EU177867:1459,2560,3240,3417T,5503,7920,8320,8372C,8407,10719A, 
10929,11002,11091,11478,12379,12435,12470,12677,12732,12752,12879,12926,13007,13821,14038,14110,15136,15629, 
15955G, 16060,16081,16257 
Q2:169,2560,3240,3417T,5503,6438,7920,8320,8372C,10719A,10929,11002,11091,12435,12470,12677,12752,13007,14038, 
14110,15136,15158,15629,15923,15955G,16257 
Q2_HQ184030_HQ184031_HQ184032:169,2560,3240,3417T,5503,6438,7920,8320,8372C,8881,10719A,10929,11002,11091, 
12435,12470,12677,12752,13007,14038,14110,15136,15158,15629,15923,15955G,16257 
P:106,166,169,190,222,250,301,302,1130,1483,2560,2587,3381,3552,4678,5158,5503,5745,5892,5901,6162,6438,7358,7954, 
7996,8238,8360,8372C,10128,10693G,11002,11142,12018,12379,12470,12677,12752,13007,13823,14038,14131T,14875,15136, 
15629,15675,15953,15955G,15996,16051,16053,16060,16076,16124,16233,16257,16266 

P1:169,190,222,250,301,302,1130,1483,2560,2587,3381,3552,4678,5158,5503,5745,5892,5901,6162,6438,7358,7954,7996, 
8238,8360,8372C,10128,10693G,11002,11142,12018,12379,12435,12470,12677,12752,13007,13823,14038,14131T,14875, 
15136,15629,15675,15953,15955G,15996,16051,16053,16060,16076,16124,16233,16257,16266 

P1_GU985279:190,222,250,301,302,1130,1483,2147,2560,2587,3381,3552,4254,4295,4678,5158,5503,5745,5892,5901,6162, 
6438,7358,7954,7996,8238,8360,8372C,10128,10693G,11002,11142,11742,12018,12379,12435,12470,12471,12527,12677, 
12752,13007,13823,14038,14131T,14582,14875,15136,15629,15675,15953,15955G,15996,16021,16051,16053,16060,16076, 
16124,16143,16233,16257,16266,16303 

P1_JQ437479:169,190,222,250,301,302,1130,1483,2560,2587,3190,3304,3381,3552,4678,5158,5503,5745,5892,5901,6162, 
6438,6453,7358,7954,7996,8238,8360,8372C,10128,10693G,11002,11142,12018,12379,12435,12470,12677,12752,13007,13541, 
13823,14038,14131T,14875,15136,15473,15629,15675,15953,15955G,15996,16051,16060,16076,16124,16233,16257,16266 

P2:106,166,173,190,222,250,301,302,1130,1483,2173,2560,2587,3381,3552,4254,4295,4678,5158,5503,5683,5745,5892,5901, 
6162,6438,7358,7954,7996,8238,8360,8372C,10128,10693G,11002,11142,11470,12018,12379,12470,12677,12740,12752,13007, 
13823,14038,14131T,14875,15136,15675,15953,15955G,15996,16051,16053,16060,16076,16124,16233,16249,16257,16266 

R:8,106,166,250,297,301,782,895,2044,2560,2570,2981,3441,3552,3602,4192,4855,5503,5745,5892,6081,6120,6438,6477,6774, 
6985,7332,7358,7361,7516,8190,8372C,8496,9007,9178,9661,9866,9980,10333,10693G,11002,11136,11394,11421,11757, 
11844,12047,12236,12470,12471,12624,12677,12686,12752,12803,12902,13007,13058A,13156,13262,13460,13508,14002, 
14038,14626,14827,14908,14953,15067,15136,15619,15629,15820,15902,15953,15955G,16059,16078,16123,16124,16129, 
16137,16139,16233,16250,16252,16266,16303 

R1:8,106,166,173,201,250,297,301,782,895,2044,2560,2570,2981,3304,3441,3552,3602,4192,4363,4855,5503,5616,5745,5892, 
5937,6081,6120,6162,6438,6477,6774,6985,7332,7358,7361,7516,7933,8190,8372C,8496,8769,9007,9178,9482,9661,9866, 
9980,10333,10693G,10929,11002,11136,11394,11421,11757,11844,12047,12236,12470,12471,12624,12677,12686,12752, 
12803,12902,13007,13058A,13130,13156,13262,13460,13508,13719,14002,14038,14053,14459,14626,14827,14908,14953, 
15067,15136,15619,15626,15629,15820,15848,15902,15953,15955G,16059,16078,16123,16124,16129,16137,16139,16233, 
16250,16252,16266,16303

R1a:8,106,166,173,201,250,297,301,782,895,2044,2560,2570,2981,3304,3441,3552,3602,4192,4363,4855,5503,5616,5745,5892, 
5937,6081,6120,6162,6438,6477,6774,6985,7332,7358,7361,7516,7933,8190,8372C,8496,8769,9007,9178,9482,9661,9866, 
9980,10333,10693G,10929,11002,11136,11394,11421,11757,11844,12047,12236,12470,12471,12624,12677,12686,12752, 
12803,12902,13007,13058A,13130,13156,13262,13460,13508,13719,14002,14038,14053,14459,14626,14827,14908,14953, 
15067,15136,15581,15619,15626,15629,15820,15848,15902,15953,15955G,16059,16078,16123,16124,16129,16137,16139, 
16233,16250,16252,16266,16303 

156



R1a_FJ971085:8,106,166,173,201,250,297,301,782,895,2044,2560,2570,2981,3304,3441,3552,3602,4192,4363,4855,5503,5616,
5745,5892,5937,6081,6120,6162,6438,6477,6774,6985,7332,7358,7361,7516,7933,8190,8372C,8496,8769,9007,9178,9482, 
9661,9866,9980,10333,10693G,10929,11002,11136,11394,11421,11757,11844,12047,12236,12470,12471,12624,12677,12686, 
12752,12803,12902,13007,13058A,13130,13156,13262,13460,13508,13719,14002,14038,14053,14459,14626,14827,14908, 
14953,15067,15136,15581,15619,15626,15629,15820,15848,15902,15953,15955G,16059,16078,16123,16124,16129,16137, 
16139,16233,16250,16252,16266,16303 

R1a_FJ971084:8,106,166,173,201,250,297,301,782,895,2044,2560,2570,2981,3304,3441,3552,3602,4192,4363,4855,5148,5503,
5616,5745,5892,5937,6081,6120,6162,6438,6477,6774,6852,6985,7332,7358,7361,7516,7933,8190,8372C,8496,8769,9007, 
9178,9482,9661,9866,9980,10333,10693G,10929,11002,11136,11394,11421,11757,11844,12047,12236,12470,12471,12624, 
12677,12686,12752,12803,12902,13007,13058A,13130,13156,13262,13460,13508,13719,14002,14038,14053,14459,14626, 
14827,14908,14953,15067,15136,15581,15619,15626,15629,15820,15848,15902,15953,15955G,16059,16078,16123,16124, 
16129,16137,16139,16233,16250,16252,16266,16303 

R2:8,24,106,166,250,297,301,782,895,2044,2560,2570,2981,3441,3552,3602,4192,4630,4855,4977,5503,5745,5892,6081,6120, 
6438,6477,6540,6774,6985,7332,7358,7361,7516,8190,8372C,8496,8522,9007,9178,9661,9807,9866,9980,10333,10693G,10986,
11002,11136,11202,11394,11421,11751,11757,11844,12047,12236,12470,12471,12624,12677,12686,12752,12803,12902, 
13007,13058A,13091,13156,13262,13460,13508,14002,14038,14533,14626,14827,14843,14908,14953,15067,15136,15619, 
15629,15820,15902,15953,15955G,15986T,16059,16078,16123,16124,16129,16137,16139,16201+A,16202,16233,16250,16252, 
16266,16303 
T:169,13007,16257 

T1'2'3'6'7:169,16257 
T1:169,16052,16115,16257 
T1a:169,2057+C,16052,16115,16257 
T1a1:169,2057+C,11190,16052,16115,16257 
T1a1_JN817315_JN817332:8,169,2057+C,11190,16052,16115,16257 
T1a1_JN817335:169,173,2057+C,4114,11190,16052,16115,16257 

T1a2:169,2057+C,3406,10563,12732,16052,16115,16257 

T1a2a:169,2057+C,3406,7299,10563,12732,16052,16115,16257 

T1a2a_JN817342:169,2057+C,3406,7299,10563,12732,15656A,16052,16115,16257 

T1a2a_JN817337:169,2057+C,3406,7299,10563,12732,16052,16115,16141,16257,16304 

T1a2_JN817333:169,2057+C,3406,10563,12732,13164,16052,16115,16257 

T1a3:169,2057+C,9840,16052,16115,16257 

T1a3_JN817314:169,756,2057+C,6388,9840,14327,16052,16115,16257 

T1a3_JN817331:169,2057+C,4167,8235,8251,9840,11791,16052,16115,16135,16233,16257 

T1a4:169,2057+C,4742,7322,9604,16052,16115,16121,16169,16257 

T1a4_JN817317:8,169,1300,2057+C,4742,7322,9604,16052,16115,16121,16169,16257 

T1a4_JN817340:169,2057+C,4742,7322,8160,9604,11956,16052,16115,16121,16169,16257 

T1a5:169,2057+C,7068,12476,16052,16115,16257 

T1a5_JN817338:169,353G,2025,2057+C,7068,7511,9808,12452,12476,16052,16115,16143,16166,16257 

T1a5_JN817318:169,2057+C,3546A,3942,7068,12476,16052,16115,16257 

T1a6:8,169,2057+C,16052,16115,16257 

T1a6_JN817336:8,169,2057+C,5017,5227,5814,13125,13673,14694,14905,15527,16052,16115,16257 

T1a6_JN817308:8,169,2057+C,2080,10276,16052,16060,16110,16115,16124,16257 

T1a7:106,169,2057+C,16052,16115,16257 

T1a7a:106,169,2057+C,8669,16052,16115,16257 

T1a7a_JN817345:106,169,1842,2057+C,8669,8861,16052,16115,16257 

T1a7_EU177846:106,169,2057+C,8961,15715d,16052,16078,16115,16117,16257 

T1a_JN817341:169,2057+C,16018,16052,16115,16257 

T1a_GU947020:169,2057+C,4159,7029,8407,11430,14429,16052,16115,16141,16149,16257 

T1a_JN817303:169,2057+C,3684,4453,11028,15064,16052,16115,16248,16249,16257 

T1a_JN817347:169,2057+C,9686,12902,13425,15216,16052,16115,16257,16304 

T1a_JN817316:169,2057+C,2584,10603,11024,14582,15976,16052,16115,16257 

T1a_JN817312:169,665,2057+C,10519,13061,13898,16052,16115,16257,16262 

T1a_JN817339:169,711,2057+C,9445,10857A,16052,16115,16257,16266 

T1a_EU177843:2057+C,9920,13685,16052,16115,16257 

T1a_EU177844:169,2057+C,6048,15084,16052,16115,16257 

157



T1a_JN817313:169,267T,2057+C,13880,16052,16115,16257 

T1b:169,7544,16052,16115,16257 

T1b1:169,7544,16024,16052,16115,16257 

T1b1a:169,178,7544,14758,16024,16052,16115,16257 

T1b1a_JN817351:169,178,5638,7544,14758,16024,16052,16115,16257,16293 

T1b1b:169,7544,14525T,16024,16052,16115,16257 

T1b1b1:169,7544,13203,14525T,16024,16052,16115,16257 

T1b1b1a:169,7544,13203,14525T,16024,16052,16058,16115,16257 

T1b1b1a1:169,7544,13203,14525T,16024,16052,16058,16115,16149,16257 

T1b1b1a1_JN817349:169,7544,13203,14525T,16024,16052,16058,16115,16140,16149,16257 

T1b1b1a1_JN817305:169,2967,7544,9433,12362,13203,14525T,16024,16052,16058,16115,16149,16257,16304 

T1b1b1a2:169,7544,12471,13203,14525T,16024,16052,16058,16115,16257 

T1b1b1a2a:169,179,1483,7544,10462,12470,12471,13203,14525T,16024,16052,16058,16115,16257 

T1b1b1a3:169,190,498,7544,8712,12527,13203,13302,14525T,16024,16052,16058,16115,16257,16318 

T1b1b1a3a:169,190,498,7544,8712,12470,12471,12527,13203,13302,14525T,16024,16052,16058,16115,16257,16318 

T1b1b1a3a1:169,190,498,7544,8712,12470,12471,12527,13203,13302,14525T,16024,16052,16058,16115,16124,16257,16318 
T1b1b1a3a1_KF163080:169,190,498,6477,7544,8712,12470,12471,12527,13203,13302,14525T,16024,16052,16058,16115, 
16124 ,16257,16318 

T1b1b1a3a2:169,190,498,3071,7544,8712,12470,12471,12527,13203,13302,14525T,16024,16052,16058,16115,16318 

T1b1b1a3a2_KF163066:169,190,498,3071,7544,8190,8712,12470,12471,12527,13203,13302,14525T,16024,16052,16058,16115, 
16318 

T1b1b1a3a2_KF163065:169,190,498,3071,4363,7544,8712,12470,12471,12527,13203,13302,14053,14525T,16024,16052,16058, 
16115,16318 

T1b1b1a3a3:169,190,498,3272,7544,8712,12470,12471,12527,13203,13302,14525T,16024,16052,16058,16115,16257,16318 

T1b1b1a3a3a:169,190,498,3272,7544,8712,12363,12470,12471,12527,13203,13302,14525T,16024,16052,16058,16115,16257, 
16318 

T1b1b1a3a3a_KF163068:169,190,498,3272,7544,8712,12363,12470,12471,12527,13203,13302,14525T,16024,16052,16058, 
16115,16257,16318 

T1b1b1a3a3a_KF163078:169,190,498,3272,7544,8712,12363,12470,12471,12527,13203,13302,14525T,16024,16052,16058, 
16115,16123,16124,16257,16318 

T1b1b1a3a3a_KF163071:169,190,498,3272,7544,8712,12363,12470,12527,13203,13302,14525T,16024,16052,16058,16115, 
16257,16318 

T1b1b1a3a3_KF163090:169,190,498,3272,3483,7544,8712,12470,12471,12527,13203,13302,14525T,16024,16052,16058,16115, 
16257,16318 

T1b1b1a3a_KF163067:169,173,190,498,7544,8712,12470,12471,12527,13203,13302,14525T,16024,16052,16058,16115,16257, 
16318 

T1b1b1a3a_KF163070_KF163091:169,190,498,7544,7624,8712,12470,12471,12527,13203,13262,13302,14525T,16024,16052,16 
058,16115,16257,16318 

T1b1b1a3a_KF163085:169,190,250,498,7544,8712,12470,12471,12527,13007,13203,13302,14525T,15953,15955G,16024,16052, 
16058,16115,16257,16318 

T1b1b1a3_KF163086:169,190,498,7544,8712,12527,13203,13302,14525T,16024,16052,16058,16115,16124,16257,16318 

T1b1b1a3_KF163079:169,173,190,498,7544,8712,12527,13203,13302,14525T,16024,16052,16058,16115,16257,16318 

T1b1b1a3_KF163064:169,190,498,3071,7544,8712,12527,13203,13302,14525T,16024,16052,16058,16059,16115,16318 
T1b1b1a3_KF163077:169,190,498,1075C,6393,7544,8712,9097,12527,13203,13302,14525T,16024,16052,16058,16115,16123, 
16257,16318 
T1b1b1a3_KF163083:169,190,498,3272,7516,8712,12363,12527,13203,13302,14525T,16024,16052,16058,16115,16257,16318 
T1b1b1c:169,7544,13203,14525T,16024,16052,16115,16150,16257 

T1b1b1c1:169,7544,12470,12471,13203,14525T,16024,16052,16115,16150,16257 

T1b1b1c1_KF163073:169,7544,12470,12471,13203,14525T,15158,16024,16052,16115,16257 

T1b1b_JN817302:169,7544,9102,14525T,14533,14992,15846,16024,16115 

T1b1c:169,7544,16024,16115,16257 

T1b1c_JN817324:169,7544,8350,12229,16024,16115,16124,16257 

T1b1c_DQ124399:169,3967,7544,14749A,16024,16115,16250,16257 

T1b1d:169,6052,7544,14350,16024,16052,16115,16257 

T1b1d_KF163061_KF163076:169,6052,7544,12470,12471,14350,16024,16052,16115,16257 

158



T1b1_EU177842:169,7544,15421,16024,16052,16115,16257 

T1b1_KF163063:169,7544,16024,16052,16115,16257,16303 

T1b1_JN817334:169,4947,7544,10579,11532,13373A,15848,16024,16052,16115,16257,16303 

T1b1_JN817320:3210,7544,15149,15328,16024,16052,16115,16257 

T1b1_KF163084:169,7544,13397,16024,16052,16059,16070,16115,16257 

T1b1_KF163092:169,7544,9503,13262,16024,16052,16115,16257 

T1b_JN817327:106,169,7544,7818,14053,15948,16115 

T1b_JN817348:169,4141,5898,6705,7544,9136,9658,9731,10605,13295,13984,16052,16115,16249,16257 

T1c:169,16052,16115,16124,16257 

T1c1:169,16052,16115,16124,16198,16257 

T1c1a:169,16052,16055,16115,16124,16198,16257 

T1c1a1:169,1326,11544,16052,16055,16115,16124,16141,16198,16257 

T1c1a1_JN817309:169,1326,11544,13884,16052,16055,16115,16124,16141,16198,16257 

T1c1a1_JN817310:169,1326,11544,16052,16055,16115,16124,16141,16198,16257,16318 

T1c1a1_JN817322:106,169,1326,1876,7657,9070,11544,16018,16052,16055,16115,16124,16141,16198,16257 

T1c1a1_JN817311:169,1326,10895A,11544,15464,16052,16055,16115,16124,16141,16198,16257 

T1c1a_JN817346:169,10530,10797,14459,14821,16052,16055,16115,16124,16135,16198,16257 

T1c1b:169,15966,16052,16115,16124,16198,16257 

T1c1b_EU177847:169,4977,6934,8893,12254,15966,16052,16115,16124,16198,16257 

T1c1b_JN817300_JN817301:169,3877,11475,15966,16052,16081,16115,16124,16129,16198,16202,16257 

T1c1_JN817323:169,353G,1881,4349,4882,6019,8328,9722,12407,12730,15421,15958,16052,16115,16124,16198,16257 

T1c1_EU177848:169,3877,8525,8864,10327,11454,12653,16052,16115,16198,16257 

T1c1_JN817307:24,169,3406,5032,9677,14386,14600G,15328,15811,16052,16115,16124,16198,16257 

T1c_JN817319:169,10246A,16115,16124,16257 

T1c_JN817328:169,5188,8796A,12362,13733,16052,16057,16115,16124,16257 

T1c_JN817325:169,10498,10926,11791,16052,16115,16124,16137,16208,16257 

T1c_JN817326:169,2192,8334,11963,15100,15158,16052,16114,16115,16124,16257 

T1c_KF163072:169,4588,6027,9908,10909,15462,16052,16115,16123,16124,16257 

T1d:169,6237,16052,16115,16257 

T1d1:169,4858,6237,16052,16115,16257 

T1d1_JN817330:169,4858,6237,11457,16052,16115,16257 

T1d1_JN817321:8,169,4858,6237,9514,10516,16052,16115,16250,16257 

T1d1_JN817304:169,4858,6237,6333,7762,15149,16052,16115,16257 

T1d_KF163081:169,6237,10349,10659,12470,16052,16115,16123,16257 

T1d_JN817298:106,169,1593,3191,6237,16052,16115,16257 

T1d_JN817299:169,250,4372,6237,6453,7400,11070,16052,16115,16257 

T1e:8,169,16115,16257 

T1e_JN817306:8,169,15941,16115,16250,16257 

T1e_EU177841:8,169,9562,15398,16115,16257 

T1e_KC153973_KC153975:8,169,10599,11478,12986,13859,14327,15997+XCATTAATGTAATAAAGACATAA,16076 
T1f:169,12494,16052,16257 
T1f_JN817343:169,3363,9638,11850,12494,14212,14611,15412,16052,16257 
T1f_JN817329:169,7757,9385,12494,14045,15092,15406,16052,16257 

T1g:169,300,3684,9203,12470,12471,16052,16115,16257,16262 

T1g_KF163082:169,300,3684,9203,12470,12471,16052,16115,16250,16257,16262 

T1g_KF163093:169,300,3684,9203,12470,12471,16052,16115,16249,16257,16262 

T1c1a1_AY526085:3561,3562G,4499G,4539,5720,5756,5855,7996,11235,12160,15512,16044,16095 

T2:169,6204,6744,10710,16059C,16187,16257 

T2a:169,1501,5240,6204,6744,8804,9385,10710,11289,16059C,16187,16257 
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T2a_DQ124393:169,1501,4358,5240,6204,6744,8804,9385,10710,11289,16059C,16187,16257 

T2a_DQ124396:169,1501,5240,6744,8804,9385,10710,11289,15597,16059C,16187,16257 

T2b:169,5148,6204,6744,10710,16059C,16187,16257 

T2b_EU177855:169,5148,6204,6744,10710,16059C,16130,16187,16257 

T2b_EU177856:169,173,5148,6744,8247,10261,10710,16051,16059C,16115,16187,16257 

T2b_EU177857:169,1325,1696,2601,3720,4783,5148,6204,6744,7400,10603,10710,15159,16059C,16060,16187,16250,16257, 
16303 

T2c:169,2087,3192,6204,6744,9989,10710,11736,14581,16059C,16187,16257 

T2c_EU177860:169,2087,3192,6204,6744,9482,9989,10710,11736,13398,14581,15196,16059C,16187,16257 

T2c_EU177861:2087,2749,3192,6204,6316,6744,8986G,9989,10710,11736,14581,16059C,16187,16257 

T2d:169,6204,6744,10710,16059C,16076,16187,16257 

T2d_EU177851:169,1461,2560,6204,6744,10710,11103,12653,15798,15987,16059C,16076,16187,16257 

T2d_EU177852:169,6204,6744,10710,16059C,16069,16076,16123,16187,16257 

T2_EU177853:169,170,3942,5158T,5763,6204,6744,10352,10710,13753,16052,16059C,16143,16187,16257 

T2_EU177854:169,1653,6204,6744,9502,10710,14404,16059C,16064,16187,16249,16257,16303 

T2_DQ124383:169,174,6204,6744,8516,10710,11370,15558,16010C,16059C,16124,16187,16257 

T2_HQ025805:169,3561,3562G,4108,4327,5855,6204,6744,7960,10710,12272,14418,16059C,16187,16257 

T2_EU177849:169,4955,5634C,6204,6744,10710,16059C,16133,16187,16257 

T2_EU177850:169,6204,6744,7852,10710,13203,16059C,16060,16127,16187,16257 

T2_EU177858:119,120,166,169,3351,3852,6204,6405,6744,8477,9310,10662,10710,11832,12294,12506,12767,13482,15885d, 
16059C,16082,16187,16233,16257 

T2_EU177859:169,1555,4977,6204,6207,6744,8862,10710,16059C,16141,16187,16257 

T2_AY676856:169,5603,6204,6744,10710,12545,15419,16059C,16079,16187,16257,16262 

T3:169 

T3a:169,12160 

T3a1:169,12160,16044,16095 

T3a1a:169,12160,15512,16044,16095 

T3a1a_DQ124418:12160,15512,16044,16095 

T3a1_DQ124417:9780T,12160,16044,16095 

T3a2:169,8712,9482,12160,16051,16121 

T3b:169,14065 

T3b_DQ124385:169,3336,3852A,4771,11736,12225,14065,16129 

T3b_DQ124416:169,6575,6994C,14065 

T3c:169,12730 

T3c_DQ124409:169,1483,8171,9022,10387,12730 

T3c_DQ124410:8168A,10890,12730,14134,16250 

T3d:169,13901 

T3d1:169,5158,13691,13901 

T3d1_AY676861:169,5158,13691,13901,16143 

T3d1_AY676871:169,1134,5158,13691,13901,16304 

T3d_GU947019:166,169,537,567,8927,13901 

T3e:169,10884 

T3e_AF492351:169,190,10884,12236,15581,16071,16143 

T3e_KC153974:169,5226,8832,10884,11514,13487,16140 

T3f:169,15987d,16059+A,16074A,16078 

T3f1:169,9731,15987d,16059+A,16076A,16078 

T3f1a:169,4333,9731,15987d,16059+A,16076A,16078 

T3f1a_GU947008:169,4333,5044,9731,15987d,16059+A,16076A,16078 

T3f1a_GU947014:169,4333,5226,9731,13784T,15987d,16059+A,16076A,16078 

T3f1_GU947012_GU947015:169,6327,9731,12629,13280,15987d,16059+A,16076A,16078,16233 
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T3f2:169,190,1865,2632T,3810,5044,7241,9064,9238,15987d,16059+A,16070,16076A,16078 

T3f2_GU947007:169,190,1865,2632T,3810,5044,7241,9064,9238,14218,14233,15987d,16059+A,16070,16076A,16078 

T3f3:169,10462,15987d,16059+A,16076A,16078,16149 

T3f3_GU947010:169,532+G,10462,15987d,16059+A,16076A,16078,16149 

T3f3_GU947018:169,10462,14218,14233,15987d,16059+A,16076A,16078,16149 

T3f4:5128,15196,15987d,16059+A,16076A,16078 

T3g:169,5718,13520 

T3g_GU947021:169,2055,4756C,4757C,5604,5718,7011,12025,12178,13091A,13520,16138,16225,16228C 

T3g_AY676864:169,173,5146,5718,7125,8407,10602,12038,13520,15936 

T3h:169,10743 

T3h_DQ124390:169,816,2147,3304,3873,8927,10743,13403 

T3h_DQ124411:106,3546,10743 

T3i:169,1066+A,9449,14080,14563,15217 

T3i_EU177822:169,1066+A,9449,14080,14524,14563,15217,15421 

T3i_EU177823:169,1066+A,2222,9449,14080,14230,14563,15104,15217,15388,16024,16202 

T3j:169,13526 

T3j_EU177829:169,1292,6501,6948,7801,13526,16135,16252 

T3j_EU177830:169,313A,8882,10872,13526,16044 

T3k:169,12910 

T3k1:169,10891,12910,15912,16057 

T3k1_EU177837:169,3088,3798,9098,10891,12910,15912,16057 

T3k1_DQ124376:169,1134,2571,6621,9731,10891,12910,15912,16057,16114,16169 

T3k_DQ124386:106,169,3729,12910,14582,16044,16095 

T3l:169,3343,7624,12025,12175,14038,15966 

T3l_EU177834:169,3343,7624,12025,12175,14038,15966 

T3n:169,16121 

T3n1:169,5946,10085,13431,16121,16230 

T3n1_DQ124391:169,5946,7781,10085,13431,16121,16230 

T3f1a_DQ124397:169,3858,5946,7781,10085,13431,16121,16230 

T3n_DQ124373:169,16115,16121 

T3n_AY676857:169,190,4393A,5850,6636A,16055,16121 

T3o:169,16124 

T3o1:169,7778,11037,12686,16124 

T3o1a:8,169,7778,11037,12686,16053,16124 

T3o1a_DQ124388_DQ124394_DQ124398:8,169,7778,11037,12686,16053,16124,16249 

T3o1_DQ124380:169,7778,8288,11037,12686,13630,16124 

T3o1_DQ124382:169,7778,8668G,11037,12160,12686,13031,16124 

T3o1_DQ124402:169,5683,7375G,7778,11037,12686,15760,16124 

T3o_DQ124374:8,169,1195,3720,5222A,10993,15331,16069,16124 

T3o_AY676873:169,8918,12803,16024,16124,16137 

T3p:169,16059 

T3p_EU177825:169,13496,16059 

T3p_EU177824:169,5104,14596,16059,16060,16115 

T3q:169,16060 

T3q1:169,16060,16233 

T3q1_EU177826:169,2080,2702+C,6135,8654,9517,12211,14466,16060,16231,16233 

T3q1_EU177827:11674,12161,13697,13745,16060,16076,16142,16233,16252 

T3q2:169,16060,16121 
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T3q2_DQ124384:169,9686,16060,16121 

T3q2_EU177828:106,169,1554,4339,4387,5143,14293,16060,16121,16129,16249 

T3r1:4903,16044 

T3r1_AY676868_AY676869:173,811,3877,4903,16044,16233,16234 

T3r1_AY676872:4903,10578,12060,16044 

T3r2:1092 

T3r2_EU177817:119,1092,4096,9070,16143 

T3r2_EU177818:1092,5544+A,6570,11751,13166,13403,13832,13856,15838,16044 

T3r2_AY676858:1092,3315,9731,12023,13772,15275,16064 

T3r3:12707,16044 

T3r3_EU177819:3729,12707,16044,16304 

T3r3_EU177820:173,2029,4002,12707,15356,15962,16044,16124,16230 

T3r4:12732 

T3r4_DQ124408:7213,12732,15558 

T3r4_DQ124413_AY676866:3345,8712,12167,12732,14908,16249 

T3r4_EU177821:169,11250,12732,12881 

T3r5:173 

T3r5_DQ124415:173,1493,6932,9731,13175,16303 

T3o1a_DQ124407:173,1493,6932,9731,13175,15597,16303 

T3r5_AY676865:173,5140,7137,8384,13556,15963,16059 

T3r6:353G 

T3r6_GQ129208:353G,9136,12160 

T3r6_KC153977:353G,10686,14418,16064,16249 

T3r_AY676862:222,9076,9118C,10349,15742,16002,16143 

T3r_GQ129207:166,4744,16133 

T3r_HM045018:3189 

T3r_AY676863:641,1483,11085,13312 

T3r_EU177815:3304,6822,9259,13142,15879 

T3r_EU177816:163,565,10698,11028,12452,16024 

T3s:8,169 

T3s_EU177836:8,169,514,4822,15094,16068,16111 

T3s_JQ967333:8,169,13257,15989+GGACATAACATTAATGTAATAAAGACATAACATTAATGTAATAA,16078,16137 

T3_EU177832:169,16135 

T3_KF926377:169,4060,8063A,8065A,8066A,8069,13734,16053,16063,16131 

T3_AY676859:169,687,14564,16114 

T3_KC153972:169,177,16051,16052 

T3_DQ124406:169,2127,3786,16250 

T3_DQ124414:169,5473C,12236,15209,16071 

T3_DQ124404:35,169,7573,7612,9178,14128,16112 

T3_DQ124405:169,737,1522,5074,6082,11531C,15941 

T3_AY676860:169,5047,7630,7920,9971,10462,15157,15494,15963,16149 

T3_AY676855:169,6732,14849,15581,16207 

T3_KC153976:169,236,3282,6336,9604 

T3_DQ124387_DQ124395:169,3381,12175-12177d,14747,16088 

T3_EU177831:169,1292T,6019,8900,13472,14180 

T3_EU177835:169,13880,14155 

T3_EU177838:169,532+G,1862+A,6690,7194,14368,16303 

T3_EU177839:169,8242,11187,11802,16110,16304 
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T4:169,12160,15512,16044,16095,16304 

T4a:169,11176,12160,15512,16044,16095,16304 

T4a_DQ124372:169,6690,7705,8212,11176,12160,12494,14909C,15512,16044,16095,16304 

T4a_DQ124375:169,9121,11176,12160,13233,15512,16044,16076,16095,16304 

T4_DQ124377:169,7867,12160,15512,16044,16051,16059,16095,16106,16166,16304 

T4_DQ124392:169,11010,12160,15512,16044,16095,16304 

T4_DQ124400:169,5378,10469,12160,13511,14059,15512,16044,16095,16304 

T4_DQ124401:169,353G,5599,12160,15512,16044,16095,16304 

T4_DQ124412:169,12160,15512,16044,16095,16118,16304 

T5:163,169,4254,12983,13007,16257 

T5a:163,4254,8026,9091,9234,10881,12983,13007,15884,16199,16257 

T5a_EU177863:163,4254,8026,9091,9234,10881,12782,12983,13007,15884,16199,16257 

T5b:163,169,4254,9896A,12983,13007,16257 

T5b_EU177864:163,169,4254,7660,9896A,12983,13007,16257 

T5b_EU177865:163,169,204,1292T,4254,8047,9896A,12983,13007,16139,16257 

T6:106,169,7933,11901,12925T,13376,14065,16111,16257 

T7:169,3711T,8640,9305,16076,16257 

I:8,106,166,206,233,234,249,250,297,301,519,739,763,818,1160,1476,1494,1679,1826,1862A,1871,2018,2101,2560,2955,2979, 
2981,2990,2991,2992,3053,3073,3138,3147,3243,3327,3337,3381,3441,3537,3552,3602,3795,3831,3876,3933,3978,3987,4002,
4330,4444,4564,4732,4735,4771,4873,4939,5287,5503,5533,5616,5745,5785,5892,5919,6000,6117T,6237,6342,6369,6381,6438,
6462,6729,6774,6883,6924,7306,7332,7358,7360,7363,7516,7832,7853,8047,8170,8190,8212,8287,8310,8372C,8468,8496, 
8505,8573,8751,8986,9007,9040,9070,9247,9583,9604,9769,9893,9930C,9980,10041,10068,10139,10155,10270,10324,10333, 
10447,10592,10623,10693G,10851,11002,11037,11070,11136,11202,11268,11331,11409,11421,11805,11844,12137,12180, 
12236,12379,12435,12470,12471,12515,12624,12674,12677,12686,12752,12803,12902,12925T,12926,13007,13058A,13100, 
13106,13277,13382,13435,13439,13556,13566,13586,13679,13691,13694,13884,13908A,13911,14038,14068,14122,14131, 
14140,14257,14317,14413,14418,14505,14608,14827,14860,14899,15107,15136,15148,15289,15310,15328,15565,15581, 
15595,15607,15619,15629,15631,15743,15753,15820,15953,15955G,15961,15996,16024,16051,16059,16060,16076,16084, 
16104,16111,16115,16118,16119,16121,16123,16124,16132,16139,16140,16145d,16149,16198,16231,16249,16250,16302, 
16303 

I1:8,106,166,173,206,233,234,249,250,297,301,519,724,739,763,818,1160,1476,1494,1679,1826,1862A,1871,2018,2101,2560, 
2577,2636,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3327,3337,3381,3441,3537,3552,3602,3795,3831,3876,
3933,3978,3987,4002,4330,4444,4564,4732,4735,4771,4873,4939,4990A,5287,5503,5533,5616,5745,5785,5892,5919,6000, 
6117T,6237,6342,6369,6381,6438,6462,6729,6774,6883,6924,7306,7332,7358,7360,7363,7516,7832,7853,8047,8170,8190,8196,
8212,8287,8310,8372C,8468,8496,8505,8516,8573,8751,8986,9007,9040,9070,9247,9304,9482,9583,9604,9769,9893,9932C, 
9980,10041,10068,10073,10139,10155,10270,10324,10333,10447,10592,10623,10693G,10851,11002,11037,11070,11136, 
11202,11268,11331,11409,11421,11805,11844,12137,12180,12236,12379,12435,12470,12471,12515,12624,12674,12677, 
12686,12752,12803,12902,12925T,12926,13007,13058A,13100,13103A,13106,13277,13373,13382,13435,13439,13556,13566, 
13586,13630,13679,13691,13694,13884,13912A,13911,14038,14068,14122,14131,14140,14257,14317,14413,14418,14505, 
14608,14827,14860,14899,15107,15136,15148,15289,15310,15328,15565,15581,15595,15607,15619,15629,15631,15743, 
15753,15820,15953,15955G,15961,15996,16024,16051,16059,16060,16076,16084,16104,16111,16115,16118,16119,16121, 
16123,16124,16132,16139,16140,16145d,16149,16198,16231,16249,16250,16302,16303 

I1_AY126697:8,106,166,173,206,233,234,249,250,297,301,519,724,739,763,818,1160,1476,1494,1679,1826,1862A,1871,2018, 
2101,2560,2577,2636,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3327,3337,3357,3381,3441,3537,3552,3602,
3795,3831,3876,3933,3978,3987,4002,4330,4444,4564,4732,4735,4771,4873,4939,4990A,5287,5503,5533,5616,5745,5785, 
5892,5919,6000,6117T,6237,6342,6369,6381,6438,6462,6729,6774,6883,6924,7306,7332,7358,7360,7363,7516,7832,7853,7894,
8047,8170,8190,8196,8212,8287,8310,8372C,8468,8496,8505,8516,8573,8751,8986,9007,9040,9070,9247,9304,9482,9583, 
9604,9769,9893,9932C,9980,10041,10068,10073,10139,10155,10270,10324,10333,10447,10592,10623,10693G,10851,11002, 
11037,11070,11136,11202,11268,11331,11409,11421,11805,11844,12137,12180,12236,12379,12435,12470,12471,12515, 
12624, 12674,12677,12686,12752,12803,12902,12925T,12926,13007,13058A,13100,13103A,13106,13277,13373,13382,13435, 
13439,13556,13566,13586,13630,13679,13691,13694,13884,13912A,13911,14038,14068,14122,14131,14140,14257,14317, 
14413,14418,14505,14608,14827,14860,14899,15107,15136,15148,15289,15310,15328,15565,15581,15589,15595,15607, 
15619,15629,15631,15743,15753,15820,15953,15955G,15961,15996,16024,16051,16059,16060,16076,16084,16104,16111, 
16115,16118,16119,16121,16123,16124,16132,16139,16140,16145d,16149,16198,16231,16249,16250,16302,16303 
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I1_EU177868:8,106,166,173,206,233,234,249,250,297,301,519,724,739,763,818,1160,1476,1494,1679,1826,1862A,1871,2018, 
2101,2323A,2560,2577,2636,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3327,3337,3381,3441,3537,3552, 
3602,3795,3831,3876,3933,3978,3987,4002,4330,4444,4564,4732,4735,4771,4873,4939,4990A,5287,5503,5533,5616,5745, 
5785,5892,5919,6000,6117T,6237,6342,6369,6381,6438,6462,6729,6774,6883,6924,7306,7332,7358,7360,7363,7516,7832,7853,
8047,8170,8190,8196,8212,8287,8310,8372C,8468,8496,8505,8516,8573,8751,8986,9007,9040,9070,9247,9304,9482,9583, 
9604,9769,9893,9932C,9980,10041,10068,10073,10139,10155,10270,10324,10333,10447,10592,10623,10693G,10851,11002, 
11037,11070,11136,11202,11268,11331,11409,11421,11805,11844,12137,12180,12236,12379,12435,12470,12471,12515, 
12624,12674,12677,12686,12752,12803,12902,12925T,12926,13007,13058A,13100,13103A,13106,13277,13373,13382,13435, 
13439,13556,13566,13586,13630,13679,13691,13694,13884,13912A,13911,14038,14068,14122,14131,14140,14257,14317, 
14413,14418,14505,14608,14827,14860,14899,15107,15136,15148,15289,15310,15328,15565,15581,15595,15607,15619, 
15629,15631,15743,15753,15820,15953,15955G,15961,15996,16024,16051,16059,16060,16076,16084,16104,16111,16115, 
16118,16119,16121,16123,16124,16132,16139,16140,16145d,16149,16198,16231,16249,16250,16302,16303

I1_FJ971088:8,106,166,173,206,233,234,249,250,297,301,519,724,739,763,818,1160,1476,1494,1679,1826,1862A,1871,2018, 
2101,2560,2577,2636,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3312,3327,3337,3381,3441,3537,3552,3602,
3795,3831,3876,3933,3978,3987,4002,4330,4444,4564,4732,4735,4771,4873,4939,4990A,5287,5503,5533,5616,5745,5785, 
5892,5919,6000,6117T,6237,6342,6369,6381,6438,6462,6729,6774,6883,6924,7306,7332,7358,7360,7363,7516,7832,7853,8047,
8170,8190,8196,8212,8287,8310,8372C,8468,8496,8505,8516,8573,8751,8986,9007,9040,9070,9247,9304,9482,9583,9604, 
9769,9893,9932C,9980,10041,10068,10073,10139,10155,10270,10324,10333,10447,10592,10623,10693G,10851,11002,11037, 
11070,11136,11202,11268,11331,11409,11421,11805,11844,12137,12139,12180,12236,12379,12435,12470,12471,12515, 
12624,12674,12677,12686,12752,12803,12902,12925T,12926,13007,13058A,13100,13103A,13106,13277,13373,13382,13435, 
13439,13556,13566,13586,13630,13679,13691,13694,13884,13912A,13911,14038,14068,14122,14131,14140,14257,14317, 
14413,14418,14505,14608,14827,14860,14899,15107,15136,15148,15159,15289,15310,15328,15565,15581,15595,15607, 
15619,15629,15631,15743,15753,15820,15953,15955G,15961,15996,16024,16051,16059,16060,16076,16084,16104,16111, 
16115,16118,16119,16121,16123,16124,16132,16139,16140,16145d,16149,16198,16231,16249,16250,16302,16303 

I2:8,39,106,166,206,233,234,249,250,297,301,519,739,763,818,1160,1476,1494,1679,1826,1862A,1871,2018,2101,2560,2955, 
2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3318,3327,3337,3381,3441,3537,3552,3602,3795,3831,3876,3933,3978,
3987,4002,4330,4444,4564,4732,4735,4771,4873,4939,5287,5503,5533,5616,5745,5785,5892,5919,6000,6117T,6237,6342,6369,
6381,6438,6462,6729,6774,6883,6924,7306,7332,7358,7360,7363,7516,7832,7853,8047,8170,8190,8212,8287,8310,8372C, 
8468,8496,8505,8573,8751,8986,9007,9040,9070,9247,9583,9604,9769,9893,9932C,9980,10041,10068,10139,10155,10270, 
10324,10333,10447,10592,10623,10693G,10851,10890,10935,11002,11037,11070,11136,11202,11268,11331,11409,11421, 
11805,11844,12137,12180,12236,12379,12435,12470,12471,12515,12624,12674,12677,12686,12752,12803,12902,12925T, 
12926,13007,13058A,13100,13106,13277,13382,13435,13439,13556,13566,13586,13679,13691,13694,13884,13912A,13911, 
14038,14068,14122,14131,14140,14257,14317,14371,14413,14418,14505,14608,14827,14860,14899,15107,15136,15148, 
15289,15310,15328,15565,15581,15595,15607,15619,15629,15631,15743,15753,15820,15953,15955G,15961,15996,16024, 
16051,16059,16060,16076,16084,16104,16111,16115,16118,16119,16121,16123,16124,16132,16139,16140,16143,16145d, 
16149,16198,16231,16234,16249,16250,16302,16303 

I2_AF492350:8,39,106,166,206,233,234,249,250,297,301,519,739,763,818,1160,1476,1494,1679,1826,1862A,1871,2018,2101, 
2560,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3318,3327,3337,3381,3441,3537,3552,3602,3795,3831,3876,
3933,3978,3987,4002,4330,4444,4564,4732,4735,4771,4873,4939,5287,5503,5533,5616,5745,5785,5892,5919,6000,6117T,6237,
6342,6369,6381,6438,6462,6729,6774,6883,6924,7306,7332,7358,7360,7363,7516,7832,7853,7948,8047,8170,8190,8212,8287,
8310,8372C,8468,8496,8505,8573,8751,8986,9007,9040,9070,9247,9583,9604,9769,9893,9932C,9980,10041,10068,10139, 
10155,10270,10324,10333,10447,10592,10623,10693G,10851,10890,10935,11002,11037,11070,11136,11202,11268,11331, 
11409,11421,11805,11844,12137,12180,12236,12379,12435,12470,12471,12515,12624,12674,12677,12686,12752,12803, 
12902,12925T,12926,13007,13058A,13100,13106,13277,13382,13435,13439,13556,13566,13586,13679,13691,13694,13884, 
13912A,13911,14038,14068,14122,14131,14140,14257,14317,14371,14413,14418,14505,14608,14827,14860,14899,15107, 
15136,15148,15289,15310,15328,15565,15581,15595,15607,15619,15629,15631,15743,15753,15820,15953,15955G,15961, 
15996,16024,16051,16059,16060,16076,16084,16104,16111,16115,16118,16119,16121,16123,16124,16132,16139,16140, 
16143,16145d,16149,16198,16231,16234,16249,16250,16302,16303

I2_EU177870:8,39,106,166,206,233,234,249,250,297,301,519,739,763,818,1160,1476,1494,1679,1826,1862A,1871,2018,2101, 
2560,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3318,3327,3337,3381,3441,3537,3552,3602,3795,3831,3876,
3933,3978,3987,4002,4312,4330,4444,4564,4732,4735,4771,4873,4939,5287,5503,5533,5616,5745,5785,5892,5919,6000,6117T,
6237,6342,6369,6381,6438,6462,6729,6774,6883,6924,7306,7332,7358,7360,7363,7501,7516,7832,7853,8047,8170,8190,8212,
8287,8310,8372C,8468,8496,8505,8573,8751,8986,9007,9040,9070,9247,9583,9604,9769,9893,9932C,9980,10041,10068,10139,
10155,10270,10324,10333,10447,10592,10623,10690,10693G,10851,10890,10935,11002,11037,11070,11136,11202,11268, 
11331,11409,11421,11805,11844,12137,12180,12236,12341,12379,12435,12470,12471,12515,12624,12674,12677,12686, 
12752,12803,12902,12925T,12926,13007,13058A,13100,13106,13277,13382,13435,13439,13556,13566,13586,13679,13691, 
13694,13884,13912A,13911,14038,14068,14122,14131,14140,14257,14317,14371,14413,14418,14505,14608,14827,14860, 
14899,15107,15136,15148,15289,15310,15328,15565,15581,15595,15607,15619,15629,15631,15743,15753,15820,15953, 
15955G,15961,15996,16024,16051,16059,16060,16076,16084,16104,16111,16115,16118,16119,16121,16123,16124,16132, 
16139,16140,16143,16145d,16149,16198,16231,16234,16249,16250,16302,16303 
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I2_EU177869:8,39,106,166,173,206,233,234,249,250,297,301,519,739,763,818,1160,1476,1494,1679,1826,1862A,1871,2018,210
1,2560,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3318,3327,3337,3381,3441,3537,3552,3602,3795,3831,387
6,3933,3978,3987,4002,4330,4444,4564,4732,4735,4771,4873,4939,5275T,5287,5503,5533,5616,5745,5785,5892,5919,6000,611
7T,6237,6342,6369,6381,6438,6462,6498,6729,6774,6883,6924,7306,7332,7358,7360,7363,7516,7832,7853,8047,8170,8190,821
2,8287,8310,8372C,8468,8496,8505,8573,8751,8986,9007,9040,9070,9247,9583,9604,9769,9893,9932C,9980,10041,10068,1013
9,10155,10270,10324,10333,10447,10592,10623,10693G,10851,10890,10935,11002,11037,11070,11136,11202,11268,11331,11
409,11421,11805,11844,12137,12180,12236,12379,12435,12470,12471,12515,12624,12674,12677,12686,12752,12803,12902,1
2925T,12926,13007,13058A,13100,13106,13277,13382,13435,13439,13556,13566,13586,13679,13691,13694,13884,13912A,139
11,14038,14068,14122,14131,14140,14234,14257,14317,14371,14413,14418,14505,14608,14827,14833,14860,14899,15107,15
136,15148,15289,15310,15328,15565,15581,15595,15607,15619,15629,15631,15743,15753,15820,15953,15955G,15961,15996,
16024,16051,16052A,16059,16060,16076,16084,16104,16111,16115,16118,16119,16121,16123,16124,16132,16139,16140,1614
3,16145d,16149,16198,16231,16234,16249,16250,16302,16303 
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Table S2: List of variants from animal sequences available at NCBI, aligned to ARS-

UCD1.2_M Ref and used by MitoToolsPy to determine haplogroup. 

cattleRef_V00654:222d,364C,589d,2538C,3345,3387,3541,4321,8190,8712,9684G,12167,13312A,15637 

AY126697:8,106,166,173,206,233,234,249,250,297,301,364+CC,364C,519,724,739,763,818,1160,1476,1494,1602d,1679,1826, 
1862A,1871,2018,2101,2560,2577,2636,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3327,3337,3345,3357, 
3381 ,3387,3441,3537,3541,3552,3602,3795,3831,3876,3933,3978,3987,4002,4321,4330,4444,4564,4732,4735,4771,4873,4939,
4990A,5287,5503,5533,5616,5745,5785,5892,5919,6000,6117T,6237,6342,6369,6381,6438,6462,6729,6774,6883,6924,7306, 
7332,7358,7360,7363,7516,7832,7853,7894,8047,8170,8196,8212,8287,8310,8372C,8468,8496,8505,8516,8573,8712,8751, 
8986,9007 ,9040,9070,9247,9304,9482,9583,9604,9769,9893,9932C,9980,10041,10068,10073,10139,10155,10270,10324,10333,
10447,10592,10623,10693G,10851,11002,11037,11070,11136,11202,11268,11331,11409,11421,11805,11844,12137,12167, 
12180,12236,12379,12435,12470,12471,12515,12624,12674,12677,12686,12752,12803,12902,12925T,12926,13007,13058A, 
13100,13103A,13106,13277,13373,13382,13435,13439,13556,13566,13586,13630,13679,13691,13694,13884,13910A,13911, 
14038,14068,14122,14131,14140,14257,14317,14413,14418,14505,14608,14827,14860,14899,15107,15136,15148,15289, 
15310,15328,15565 ,15581,15589,15595,15607,15619,15629,15631,15637,15743,15753,15820,15953,15955G,15961,15996, 
16024,16051,16059,16060,16076,16084,16086,16104,16111,16115,16118,16119,16121,16123,16124,16132,16139,16140, 
16145d,16149,16198, 16202+A,16231,16249,16250,16302,16303 

AY526085:222d,364C,589d,3345,3387,3541,3561,3562G,4321,4499G,4539,5720,5756,5855,7996,8190,8712,11235,12160, 
12167, 15512,15637,16044,16095 

AY676855:169,364C,1602d,3345,3387,3541,4321,6732,8190,8712,12167,14849,15581,15637,16207 

AY676856:169,222d,364C,3345,3387,3541,4321,5603,6204,6744,8190,8712,10710,12167,12545,15419,15637,16059C,16079, 
16187,16257,16262 

AY676857:169,190,364C,364+C,1602d,3345,3387,3541,4321,4393A,5850,6636A,8190,8712,12167,15637,16055,16121 

AY676858:222d,364C,1092,1602+AA,3315,3345,3387,3541,4321,8190,8712,9731,12023,12167,13772,15275,15637,16064 

AY676859:169,687,3345,3387,3541,4321,8190,8712,12167,14564,15637,16114 

AY676860:169,222+C,364C,1602d,3345,3387,3541,4321,5047,7630,7920,8190,8712,9971,10462,12167,15157,15494,15637, 
15963,16149 

AY676861:169,364+C,364C,3345,3387,3541,4321,5158,8190,8712,12167,13691,13901,15637,16143 

AY676862:224d,3345,3387,3541,4321,8190,8712,9076,9118C,10349,12167,15637,15742,16002,16087,16143 

AY676863:222d,641,1483,1602d,3345,3387,3541,4321,8190,8712,11085,12167,15637 
AY676864:169,173,222d,364C,364+CC,1602d,3345,3387,3541,4321,5146,5718,7125,8190,8407,8712,10602,12038,12167,13520, 
15637,15936 

AY676865:173,222d,365d,1602d,3345,3387,3541,4321,5140,7137,8190,8384,8712,12167,13556,15637,15963,16059 

AY676868:173,222d,811,3345,3387,3541,3877,4321,4903,8190,8712,12167,15637,16044,16233,16234 

AY676871:169,364C,1134,3345,3387,3541,4321,5158,8190,8712,12167,13691,13901,15637,16304 

AY676872:222+C,364C,3345,3387,3541,4321,4903,8190,8712,10578,12060,12167,15637,16044 

AY676873:169,365d,3345,3387,3541,4321,8190,8712,8918,12167,12803,15637,16024,16124,16137 
DQ124372:169,364C,3345,3387,3541,4321,6690,7705,8190,8212,8712,11176,12160,12167,12494,14909C,15512,15637,16044, 
16095,16304 

DQ124373:169,364C,3345,3387,3541,4321,8190,8712,12167,15637,16115,16121 

DQ124374:8,169,364C,1195,3345,3387,3541,3720,4321,5222A,8190,8712,10993,12167,15331,15637,16069,16124 
DQ124375:169,364C,3345,3387,3541,4321,8190,8712,9121,11176,12160,12167,13233,15512,15637,16044,16076,16095,16304 

DQ124376:169,364C,1134,2571,3345,3387,3541,4321,6621,8190,8712,9731,10891,12167,12910,15637,15912,16057,16114, 
16169 

DQ124377:169,364C,3345,3387,3541,4321,7867,8190,8712,12160,12167,15512,15637,16044,16051,16059,16095,16106,16166, 
16304 

DQ124380:169,364C,3345,3387,3541,4321,7778,8190,8288,8712,11037,12167,12686,13630,15637,16124 

DQ124382:169,364C,3345,3387,3541,4321,7778,8190,8668G,8712,11037,12160,12167,12686Y,13031,15637,16124 

DQ124383:169,174,364C,3345,3387,3541,4321,6204,6744,8190,8516,8712,10710,11370,12167,15558,15637,16010C,16059C, 
16124,16187,16257 

DQ124384:169,364C,3345,3387,3541,4321,8190,8712,9686,12167,15637,16060,16121 

DQ124385:169,364C,3336,3345,3387,3541,3852A,4321,4771,8190,8712,11736,12167,12225,14065,15637,16129 

DQ124386:106,169,364C,3345,3387,3541,3729,4321,8190,8712,12167,12910,14582,15637,16044,16095 

DQ124387:169,364C,3345,3381,3387,3541,4321,8190,8712,12167,12173-12175d,14747,15637,16088 

DQ124388:8,169,364C,3345,3387,3541,4321,7778,8190,8712,11037,12167,12686,15637,16053,16124,16249 
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DQ124390:169,364C,816,2147,3304,3345,3387,3541,3873,4321,8190,8712,8927,10743,12167,13403,15637 

DQ124391:169,364C,3345,3387,3541,4321,5946,7781,8190,8712,10085,12167,13431,15637,16121,16230 

DQ124392:169,364C,3345,3387,3541,4321,8190,8712,11010,12160,12167,15512,15637,16044,16095,16304 

DQ124393:169,364C,1501,3345,3387,3541,4321,4358,5240,6204,6744,8190,8712,8804,9385,10710,11289,12167,15637,16059C,
16187,16257 

DQ124396:169,364C,1501,3345,3387,3541,4321,5240,6744,8190,8712,8804,9385,10710,11289,12167,15597,15637,16059C, 
16187,16257 

DQ124397:169,364C,3345,3387,3541,3858,4321,5946,7781,8190,8712,10085,12167,13431,15637,16121,16230 

DQ124399:169,364C,3345,3387,3541,3967,4321,7544,8190,8712,12167,14749A,15637,16024,16115,16250,16257 

DQ124400:169,364C,3345,3387,3541,4321,5378,8190,8712,10469,12160,12167,13511,14059,15512,15637,16044,16095,16304 

DQ124401:169,353G,364C,3345,3387,3541,4321,5599,8190,8712,12160,12167,15512,15637,16044,16095,16304 
DQ124402:169,364C,3345,3387,3541,4321,5683,7375G,7778,8190,8712,11037,12167,12686,12940Y,15637,15760,16124 

DQ124404:35,169,364C,3345,3387,3541,4321,7573,7612,8190,8712,9178,12167,14128,15637,16112 

DQ124405:169,364C,737,1522,3345,3387,3541,4321,5074,6082,8190,8712,11531C,12167,15637,15941 

DQ124406:169,364C,2127,3345,3387,3541,3786,4321,8190,8712,12167,15637,16250 

DQ124407:173,364C,1493,3345,3387,3541,4321,6932,8190,8712,9731,12167,13175,15597,15637,16303 

DQ124408:364C,3345,3387,3541,4321,7213,8190,8712,12167,12732,15558,15637 

DQ124409:169,364C,1483,3345,3387,3541,4321,8171,8190,8712,9022,10387,12167,12730,15637 

DQ124410:364C,3345,3387,3541,4321,8168A,8190,8712,10890,12167,12730,14134,15637,16250 

DQ124411:106,364C,3345,3387,3541,3546,4321,8190,8712,10743,12167,15637 

DQ124412:169,364C,3345,3387,3541,4321,8190,8712,12160,12167,15512,15637,16044,16095,16118,16304 

DQ124413:364C,3387,3541,4321,8190,12732,14908,16249 

DQ124414:169,364C,3345,3387,3541,4321,5473C,8190,8712,12167,12236,15209,15637,16071 

DQ124415:173,364C,1493,3345,3387,3541,4321,6932,8190,8712,9731,12167,13175,15637,16303 

DQ124416:169,364C,3345,3387,3541,4321,6575,6996C,8190,8712,12167,14065,15637 

DQ124417:364C,3345,3387,3541,4321,8190,8712,9780T,12160,12167,15637,16044,16095 

DQ124418:364C,3345,3387,3541,4321,8190,8712,12160,12167,15512,15637,16044,16095 

EU177815:363+C,3304,3345,3387,3541,4321,6822,8190,8712,9259,12167,13142,15637,15879 

EU177816:163,363+C,565,3345,3387,3541,4321,8190,8712,10698,11028,12167,12452,15637,16024 

EU177817:119,363+C,1092,3345,3387,3541,4096,4321,8190,8712,9070,12167,15637,16143 

EU177818:222+C,363+C,1092,1602+A,3345,3387,3541,4321,5544+A,6570,8190,8712,11751,12167,13166,13403,13832,13856, 
15637,15838,16044 

EU177819:364C,3345,3387,3541,3729,4321,8190,8712,12167,12707,15637,16044,16304 

EU177820:173,222d,364C,2029,3345,3387,3541,4002,4321,8190,8712,12167,12707,15356,15637,15962,16044,16124,16230 

EU177821:169,364C,1602d,3345,3387,3541,4321,8190,8712,11250,12167,12732,12881,15637 

EU177822:169,222d,363+C,1068+A,1602d,3345,3387,3541,4321,8190,8712,9449,12167,14080,14524,14563,15217,15421,15637 

EU177823:169,222d,363+C,1068+A,1602d,2222,3345,3387,3541,4321,8190,8712,9449,12167,14080,14230,14563,15104,15217,
15388,15637,16024,16202 

EU177824:169,363+C,1602d,3345,3387,3541,4321,5104,8190,8712,12167,14596,15637,16059,16060,16115 

EU177825:169,364C,1602d,3345,3387,3541,4321,8190,8712,12167,13496,15637,16059 

EU177826:169,364C,2080,2702+C,3345,3387,3541,4321,6135,8190,8654,8712,9517,12167,12211,14466,15637,16060,16231, 
16233 

EU177827:363+C,3345,3387,3541,4321,8190,8712,11674,12161,12167,13697,13745,15637,16060,16076,16142,16233,16252 

EU177828:106,169,222d,364C,1554,1602d,3345,3387,3541,4321,4339,4387,5143,8190,8712,12167,14293,15637,16060,16121, 
16129,16249 

EU177829:169,363+C,1292,1602d,3345,3387,3541,4321,6501,6948,7801,8190,8712,12167,13526,15637,16135,16252 

EU177830:169,222d,313A,364C,1602d,3345,3387,3541,4321,8190,8712,8882,10872,12167,13526,15637,16044 

EU177831:169,222d,364C,1292T,1602d,3345,3387,3541,4321,6019,8190,8712,8900,12167,13472,14180,15637 

EU177832:169,222d,364C,1602d,3345,3387,3541,4321,8190,8712,12167,15637,16135 

EU177834:169,222d,364C,3343,3345,3387,3541,4321,7624,8190,8712,12025,12167,12175,14038,15637,15966,16167Y 

EU177835:169,364C,3345,3387,3541,4321,8190,8712,12167,13880,14155,15637 

167



EU177836:8,169,222d,364C,514,1602d,3345,3387,3541,4321,4822,8190,8712,12167,15094,15637,16068,16087,16111 

EU177837:169,222d,364C,1602d,3088,3345,3387,3541,3798,4321,8190,8712,9098,10891,12167,12910,15637,15912,16057 

EU177838:169,222d,352+G,364C,1602d,1860+A,3345,3387,3541,4321,6690,7194,8190,8712,12167,14368,15637,16303 

EU177839:169,364C,1602d,3345,3387,3541,4321,8190,8242,8712,11187,11802,12167,15637,16110,16304 

EU177841:8,169,364C,3345,3387,3541,4321,8190,8712,9562,12167,15398,15637,16115,16257 

EU177842:169,222d,364C,3345,3387,3541,4321,7544,8190,8712,12167,15421,15637,16024,16052,16115,16257 

EU177843:222d,364C,2057+C,3345,3387,3541,4321,8190,8712,9920,12167,13685,15637,16052,16115,16257 

EU177844:169,222d,364C,2057+C,3345,3387,3541,4321,6048,8190,8712,12167,15084,15637,16052,16115,16257 

EU177846:106,169,364C,2057+C,3345,3387,3541,4321,8190,8712,8961,12167,15637,15715d,16052,16078,16115,16117,16257 

EU177847:169,364C,1602+AA,3345,3387,3541,4321,4977,6934,8190,8712,8893,12167,12254,15637,15966,16052,16115,16124, 
16198,16257 

EU177848:169,364C,3345,3387,3541,3877,4321,8190,8525,8712,8864,10327,11454,12167,12653,15637,16052,16115,16198, 
16257 

EU177849:169,222d,364C,3345,3387,3541,4321,4955,5634C,6204,6744,8190,8712,10710,12167,15637,16059C,16133,16187, 
16257 

EU177850:169,364C,3345,3387,3541,4321,6204,6744,7852,8190,8712,10710,12167,13203,15637,16059C,16060,16127,16187, 
16257 

EU177851:169,222d,364C,1461,2560,3345,3387,3541,4321,6204,6744,8190,8712,10710,11103,12167,12653,15637,15798, 
15987,16059C,16076,16187,16257 

EU177852:169,364C,3345,3387,3541,4321,6204,6744,8190,8712,10710,12167,15637,16059C,16069,16076,16123,16187,16257 

EU177853:169,170,222d,364C,3345,3387,3541,3942,4321,5158T,5763,6204,6744,8190,8712,10352,10710,12167,13753,15637, 
16052,16059C,16143,16187,16257 

EU177854:169,222d,364C,1602d,1653,3345,3387,3541,4321,6204,6744,8190,8712,9502,10710,12167,14404,15637,16059C, 
16064,16187,16249,16257,16303 

EU177855:169,222d,364C,3345,3387,3541,4321,5148,6204,6744,8190,8712,10710,12167,15637,16059C,16130,16187,16257 

EU177856:169,173,222d,364C,364+C,3345,3387,3541,4321,5148,6744,8190,8247,8712,10261,10710,12167,15637,16051, 
16059C ,16115,16187,16257 

EU177857:169,222d,364C,1325,1602d,1696,2601,3345,3387,3541,3720,4321,4783,5148,6204,6744,7400,8190,8712,10603, 
10710,12167,15159,15637,16059C,16060,16187,16250,16257,16303 

EU177858:119,120,166,169,364C,3345,3351,3387,3541,3852,4321,6204,6405,6744,8190,8477,8712,9310,10662,10710,11832, 
12167,12294,12506,12767,13482,15637,15885d,16059C,16082,16187,16233,16257 

EU177859:169,222d,364C,1555,3345,3387,3541,4321,4977,6204,6207,6744,8190,8712,8862,10710,12167,15637,16059C,16141, 
16187,16257 

EU177860:169R,222d,364C,2087,3192,3345,3387,3541,4321,6204,6744,8190,8712,9482,9989,10710,11736,12167,13398,14581, 
15196,15637,16059C,16187,16257 

EU177861:222d,364C,2087,2749,3192,3345,3387,3541,4321,6204,6316,6744,8190,8712,8986G,9989,10710,11736,12167,14581, 
15637,16059C,16187,16257 

EU177863:163,364C,3345,3387,3541,4254,4321,8026,8190,8712,9091,9234,10881,12167,12782,12983,13007,15637,15884, 
16199,16257 

EU177864:163,169,364C,3345,3387,3541,4254,4321,7660,8190,8712,9896A,12167,12983,13007,15637,16257 

EU177865:163,169,204,364C,1292T,3345,3387,3541,4254,4321,8047,8190,8712,9896A,12167,12983,13007,15637,16139,16257 

EU177866:222d,364C,1459,2560,3240,3345,3387,3417T,3541,4321,5503,7920,8190,8320,8372C,8407,8712,10719A,10929,1100 
2,11091,11478,12167,12379,12435,12470,12677,12732,12752,12879,12926,13007,13821,14038,14110,15136,15629,15637, 
15955G,16060,16081,16257 

EU177867:222d,364C,1459,2560,3240,3345,3387,3417T,3541,4321,5503,7920,8190,8320,8372C,8407,8712,10719A,10929, 
11002,11091,11478,12167,12379,12435,12470,12677,12732,12752,12879,12926,13007,13821,14038,14110,15136,15629, 
15637,15955G,16060,16081,16257 

EU177868:8,106,166,173,206,233,234,249,250,297,301,364C,519,724,739,763,818,1160,1476,1494,1602d,1679,1826,1862A, 
1871,2018,2101,2323A,2560,2577,2636,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3327,3337,3345,3381, 
3387,3441,3537,3541,3552,3602,3795,3831,3876,3933,3978,3987,4002,4321,4330,4444,4564,4732,4735,4771,4873,4939, 
4990A,5287,5503,5533,5616,5745,5785,5892,5919,6000,6117T,6237,6342,6369,6381,6438,6462,6729,6774,6883,6924,7306, 
7332,7358,7360,7363,7516,7832,7853,8047,8170,8196,8212,8287,8310,8372C,8468,8496,8505,8516,8573,8712,8751,8986, 
9007,9040,9070,9247,9304,9482,9583,9604,9769,9893,9932C,9980,10041,10068,10073,10139,10155,10270,10324,10333, 
10447,10592,10623,10693G,10851,11002,11037,11070,11136,11202,11268,11331,11409,11421,11805,11844,12137,12167, 
12180,12236,12379,12435,12470,12471,12515,12624,12674,12677,12686,12752,12803,12902,12925T,12926,13007,13058A, 
13100,13103A,13106,13277,13373,13382,13435,13439,13556,13566,13586,13630,13679,13691,13694,13884,13910A,13911, 
14038,14068,14122,14131,14140,14257,14317,14413,14418,14505,14608,14827,14860,14899,15107,15136,15148,15289, 
15310,15328,15565,15581,15595,15607,15619,15629,15631,15637,15743,15753,15820,15953,15955G,15961,15996,16024, 
16051,16059,16060,16076,16084,16086,16104,16111,16115,16118,16119,16121,16123,16124,16132,16139,16140,16145d, 
16149,16198,16202+A,16231,16249,16250,16302,16303 
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EU177869:8,39,106,166,173,206,233,234,249,250,297,301,364C,364+C,519,739,763,818,1160,1476,1494,1602d,1679,1826, 
1862A,1871,2018,2101,2560,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3318,3327,3337,3345,3381,3387, 
3441,3537,3541,3552,3602,3795,3831,3876,3933,3978,3987,4002,4321,4330,4444,4564,4732,4735,4771,4873,4939,5275T, 
5287,5503,5533,5616,5745,5785,5892,5919,6000,6117T,6237,6342,6369,6381,6438,6462,6498,6729,6774,6883,6924,7306, 
7332,7358,7360,7363,7516,7832,7853,8047,8170,8212,8287,8310,8372C,8468,8496,8505,8573,8712,8751,8986,9007,9040, 
9070,9247,9583,9604,9769,9893,9932C,9980,10041,10068,10139,10155,10270,10324,10333,10447,10592,10623,10693G,10851, 
10890,10935,11002,11037,11070,11136,11202,11268,11331,11409,11421,11805,11844,12137,12167,12180,12236,12379, 
12435,12470,12471,12515,12624,12674,12677,12686,12752,12803,12902,12925T,12926,13007,13058A,13100,13106,13277, 
13382,13435,13439,13556,13566,13586,13679,13691,13694,13884,13910A,13911,14038,14068,14122,14131,14140,14234, 
14257,14317,14371,14413,14418,14505,14608,14827,14833,14860,14899,15107,15136,15148,15289,15310,15328,15565, 
15581,15595,15607,15619,15629,15631,15637,15743,15753,15820,15953,15955G,15961,15996,16024,16051,16052A,16059, 
16060,16076,16084,16086,16087,16104,16111,16115,16118,16119,16121,16123,16124,16132,16139,16140,16143,16145d, 
16149,16198,16202+A,16231,16234,16249,16250,16302,16303
EU177870:8,39,106,166,206,233,234,249,250,297,301,364C,519,739,763,818,1160,1476,1494,1602d,1679,1826,1862A,1871, 
2018,2101,2560,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3318,3327,3337,3345,3381,3387,3441,3537,3541, 
3552,3602,3795,3831,3876,3933,3978,3987,4002,4312,4321,4330,4444,4564,4732,4735,4771,4873,4939,5287,5503,5533,5616, 
5745,5785,5892,5919,6000,6117T,6237,6342,6369,6381,6438,6462,6729,6774,6883,6924,7306,7332,7358,7360,7363,7501, 
7516,7832,7853,8047,8170,8212,8287,8310,8372C,8468,8496,8505,8573,8712,8751,8986,9007,9040,9070,9247,9583,9604, 
9769,9893,9932C,9980,10041,10068,10139,10155,10270,10324,10333,10447,10592,10623,10690,10693G,10851,10890,10935, 
11002,11037,11070,11136,11202,11268,11331,11409,11421,11805,11844,12137,12167,12180,12236,12341,12379,12435, 
12470,12471,12515,12624,12674,12677,12686,12752,12803,12902,12925T,12926,13007,13058A,13100,13106,13277,13382, 
13435,13439, 13556,13566,13586,13679,13691,13694,13884,13910A,13911,14038,14068,14122,14131,14140,14257, 
14317,14371,14413,14418,14505,14608,14827,14860,14899,15107,15136,15148,15289,15310,15328,15565,15581,15595, 
15607,15619,15629,15631,15637,15743,15753,15820,15953,15955G,15961,15996,16024,16051,16059,16060,16076,16084, 
16087,16104,16111, 16115,16118,16119,16121,16123,16124,16132,16139,16140,16143,16145d,16149,16198,16202+A,16231, 
16234,16249,16250, 16302,16303
FJ971083:169,222d,244T,364C,1459,2560,3240,3345,3387,3417T,3541,4321,5503,7920,8190,8320,8372C,8619,8712,10719A, 
10929,11002,11091,11768,12167,12435,12470,12677,12752,13007,13508,13622,14038,14110,15136,15637,15955G,16114, 
16257 
FJ971084:8,106,166,173,201,215+TC,235+T,250,297,301,364C,782,895,1601-1602d, 2044,2560,2570,2981,3304, 3345,3387, 
3441,3541,3552,3602,4192,4321,4363,4855,5148,5503,5616,5745,5892,5937,6081,6120,6162,6438,6477,6774,6852,6985,7332, 
7358,7361,7516,7933,8372C,8496,8712,8769,9007,9178,9482,9661,9866,9980,10333,10693G,10929,11002,11136,11394,11421, 
11757,11844,12047,12167,12236,12470,12471,12624,12677,12686,12752,12803,12902,13007,13058A,13130,13156,13262, 
13460,13508,13719,14002,14038,14053,14459,14626,14827,14908,14953,15067,15136,15581,15619,15626,15629,15637, 
15820,15848,15902,15953,15955G,16059,16078,16086,16087,16123,16124,16129,16137,16139,16202+A,16233,16250,16252, 
16266,16303
FJ971085:8,106,166,173,201,215+TC,235+T,250,297,301,364C,782,895,1601-1602d,2044,2560,2570,2981,3304,3345,3387,3441, 
3541,3552,3602,4192,4321,4363,4855,5503,5616,5745,5892,5937,6081,6120,6162,6438,6477,6774,6985,7332,7358,7361,7516, 
7933,8372C,8496,8712,8769,9007,9178,9482,9661,9866,9980,10333,10693G,10929,11002,11136,11394,11421,11757,11844, 
12047,12167,12236,12470,12471,12624,12677,12686,12752,12803,12902,13007,13058A,13130,13156,13262,13460,13508, 
13719,14002,14038,14053,14459,14626,14827,14908,14953,15067,15136,15581,15619,15626,15629,15637,15820,15848, 
15902,15953Y,15955S,16059,16078,16086,16087,16123,16124,16129,16137,16139,16202+A,16233,16250,16252,16266,16303
FJ971088:8,106,166,173,206,233,234,249,250,297,301,364C,519,724,739,763,818,1160,1476,1494,1602d,1679,1826,1862A, 
1871,2018,2101,2560,2577,2636,2955,2979,2981,2990,2991,2992,3053,3073,3138,3147,3243,3312,3327,3337,3345,3381,3387, 
3441,3537,3541,3552,3602,3795,3831,3876,3933,3978,3987,4002,4321,4330,4444,4564,4732,4735,4771,4873,4939,4990A, 
5287 ,5503,5533,5616,5745,5785,5892,5919,6000,6117T,6237,6342,6369,6381,6438,6462,6729,6774,6883,6924,7306,7332, 
7358, 7360,7363,7516,7832,7853,8047,8170,8196,8212,8287,8310,8372C,8468,8496,8505,8516,8573,8712,8751,8986,9007, 
9040, 9070,9247,9304,9482,9583,9604,9769,9893,9932C,9980,10041,10068,10073,10139,10155,10270,10324,10333,10447, 
10592, 10623,10693G,10851,11002,11037,11070,11136,11202,11268,11331,11409,11421,11805,11844,12137,12139,12167, 
12180, 12236,12379,12435,12470,12471,12515,12624,12674,12677,12686,12752,12803,12902,12925T,12926,13007,13058A, 
13100, 13103A,13106,13277,13373,13382,13435,13439,13556,13566,13586,13630,13679,13691,13694,13884,13910A,13911, 
14038, 14068,14122,14131,14140,14257,14317,14413,14418,14505,14608,14827,14860,14899,15107,15136,15148,15159, 
15289, 15310,15328,15565,15581,15595,15607,15619,15629,15631,15637,15743,15753,15820,15953,15955G,15961,15996, 
16024, 16051,16059,16060,16076,16084,16086,16104,16111,16115,16118,16119,16121,16123,16124,16132,16139,16140,1 
6145d, 16149,16198,16202+A,16231,16249,16250,16302,16303 
GQ129207:166,363+C,3345,3387,3541,4321,4744,8190,8712,12167,15637,16087,16133 
GQ129208:353G,364C,3345,3387,3541,4321,8190,8712,9136,12160,12167,15637 

GU947007:169,190,222d,364C,1602d,1865,2632T,3345,3387,3541,3810,4321,5044,7241,8190,8712,9064,9238,12167,14218, 
14233,15637,15987d,16059+A,16070,16076A,16078 

GU947008:169,364C,1602d,3345,3387,3541,4321,4333,5044,8190,8712,9731,12167,15637,15987d,16059+A,16076A,16078 

GU947010:169,352+G,364C,1602d,3345,3387,3541,4321,8190,8712,10462,12167,15637,15987d,16059+A,16076A,16078,16149 

GU947012:169,364C,1602d,3345,3387,3541,4321,6327,8190,8712,9731,12167,12629,13280,15637,15987d,16059+A,16076A, 
16078,16233 

GU947014:169,364C,1602d,3345,3387,3541,4321,4333,5226,8190,8712,9731,12167,13784T,15637,15987d,16059+A,16076A, 
16078 
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GU947018:169,364C,1602d,3345,3387,3541,4321,8190,8712,10462,12167,14218,14233,15637,15987d,16059+A,16076A,16078,1
6149 

GU947019:166,169,222d,537,567,3345,3387,3541,4321,8190,8712,8927,12167,13901,15637 

GU947020:169,364C,1602d,2057+C,3345,3387,3541,4159,4321,7029,8190,8407,8712,11430,12167,14429,15637,16052,16115, 
16141,16149,16257 

GU947021:169,364C,1602d,2055,3345,3387,3541,4321,4756C,4757C,5604,5718,7011,7167R,8190,8712,12025,12167,12178, 
13091A,13520,15637,16138,16225,16228C 

GU985279:190,224d,250,301,302,365d,1130,1483,2147,2560,2587,3345,3381,3387,3541,3552,4254,4295,4321,4678,5158,5503,
5745,5892,5901,6162,6438,7358,7954,7996,8190,8238,8360,8372C,8712,10128,10693G,11002,11142,11742,12018,12167, 
12379,12435,12470,12471,12527,12677,12752,13007,13823,14038,14131T,14582,14875,15136,15629,15637,15675,15953, 
15955G,15996,16021,16051,16053,16060,16076,16087,16123R,16124,16143,16233,16257,16266,16303 

HM045018:3189,3345,3387,3541,4321,8190,8712,12167,15637 

HQ025805:169,222d,364C,589d,3345,3387,3541,3561,3562G,4108,4321,4327,5855,6204,6744,7960,8190,8712,10710,12167, 
12272,14418,15637,16059C,16187,16257 

HQ184030:169,222d,364C,2560,3240,3345,3387,3417T,3541,4321,5503,6438,7920,8190,8320,8372C,8712,8881,10719A,10929, 
11002,11091,12167,12435,12470,12677,12752,13007,14038,14110,15136,15158,15629,15637,15923,15955G,16257 

HQ184031:169,222d,364C,2560,3240,3345,3387,3417T,3541,4321,5503,6438,7920,8190,8320,8372C,8712,8881,10719A,10929, 
11002,11091,12167,12435,12470,12677,12752,13007,14038,14110,15136,15158,15629,15637,15923,15955G,16257 

HQ184032:169,222d,364C,2560,3240,3345,3387,3417T,3541,4321,5503,6438,7920,8190,8320,8372C,8712,8881,10719A,10929, 
11002,11091,12167,12435,12470,12677,12752,13007,14038,14110,15136,15158,15629,15637,15923,15955G,16257 
HQ184034:169,222d,244T,364C,1459,2560,3240,3345,3387,3417T,3541,4321,5503,7920,8190,8320,8372C,8619,8712,10719A, 
10929,11002,11091,11768,12167,12435,12470,12677,12752,13007,13508,13622,14038,14110,15136,15637,15955G,16114, 
16257 
HQ184035:169,222d,244T,364C,1459,2560,3240,3345,3387,3417T,3541,4321,5503,7920,8190,8320,8372C,8619,8712,10719A, 
10929,11002,11091,11768,12167,12435,12470,12677,12752,13007,13508,13622,14038,14110,15136,15637,15955G,16114, 
16257 

HQ184036:222d,364C,1459,2560,3240,3345,3387,3417T,3541,4321,5503,7920,8190,8320,8372C,8407,8712,10719A,10929, 
11002,11091,11478,12167,12379,12435,12470,12677,12732,12752,12879,12926,13007,13821,14038,14110,15136,15629, 
15637,15955G,16060,16081,16257 

HQ184037:222d,364C,1459,2560,3240,3345,3387,3417T,3541,4321,5503,7920,8190,8320,8372C,8407,8712,10719A,10929, 
11002,11091,11478,12167,12379,12435,12470,12677,12732,12752,12879,12926,13007,13821,14038,14110,15136,15629, 
15637, 15955G,16060,16081,16257 

HQ184038:222d,364C,1459,2560,3240,3345,3387,3417T,3541,4321,5503,7920,8190,8320,8372C,8407,8712,10719A,10929, 
11002,11091,11478,12167,12379,12435,12470,12677,12732,12752,12879,12926,13007,13821,14038,14110,15136,15629, 
15637,15955G,16060,16081,16257 

HQ184039:169,222d,364C,471,1459,2560,3240,3345,3387,3417T,3541,4321,5503,5718,6660,7832,7920,8190,8320,8372C,8712,
10719A,10929,11002,11091,12167,12435,12470,12482,12677,12752,13007,14038,14110,15092,15100A,15136,15629,15637, 
15955G,16198,16257 

JN817298:106,169,222d,364C,1593,3191,3345,3387,3541,4321,6237,8190,8712,12167,15637,16052,16115,16257 
JN817299:169,222d,250,364C,3345,3387,3541,4321,4372,6237,6453,7400,8190,8712,11070,12167,15637,16052,16115,16257 

JN817300:169,222d,364C,3345,3387,3541,3877,4321,8190,8712,11475,12167,15637,15966,16052,16081,16115,16124,16129, 
16198,16202,16257 

JN817302:169,364C,3345,3387,3541,4321,7544,8190,8712,9102,12167,14525T,14533,14992,15637,15846,16024,16115 

JN817303:169,222d,364C,2057+C,3345,3387,3541,3684,4321,4453,8190,8712,11028,12167,15064,15637,16052,16115,16248, 
16249,16257 
JN817304:169,364C,1602d,3345,3387,3541,4321,4858,6237,6333,7762,8190,8712,12167,15149,15637,16052,16115,16257 

JN817305:169,364C,2967,3345,3387,3541,4321,7544,8190,8712,9433,12167,12362,13203,14525T,15637,16024,16052,16058, 
16115,16149,16257,16304 

JN817306:8,169,364C,3345,3387,3541,4321,8190,8712,12167,15637,15941,16115,16250,16257 

JN817307:24,169,222d,364C,3345,3387,3406,3541,4321,5032,8190,8712,9677,12167,14386,14600G,15328,15637,15811,16052,
16115,16124,16198,16257 

JN817308:8,169,222d,364C,1602+A,2057+C,2080,3345,3387,3541,4321,8190,8712,10276,12167,15637,16052,16060,16110, 
16115,16124,16257 

JN817309:169,222d,364C,1326,3345,3387,3541,4321,8190,8712,11544,12167,13884,15637,16052,16055,16115,16124,16141, 
16198,16257 

JN817310:169,222d,364C,1326,3345,3387,3541,4321,8190,8712,11544,12167,15637,16052,16055,16115,16124,16141,16198, 
16257,16318 

JN817311:169,222d,364C,1326,3345,3387,3541,4321,8190,8712,10895A,11544,12167,15464,15637,16052,16055,16115,16124, 
16141,16198,16257 

JN817312:169,222d,364C,665,2057+C,3345,3387,3541,4321,8190,8712,10519,12167,13061,13898,15637,16052,16115,16257, 
16262 
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JN817313:169,222d,267T,364C,2057+C,3345,3387,3541,4321,8190,8712,12167,13880,15637,16052,16115,16257 

JN817314:169,222d,364C,756,2057+C,3345,3387,3541,4321,6388,8190,8712,9840,12167,14327,15637,16052,16115,16257 

JN817315:8,169,222d,364C,2057+C,3345,3387,3541,4321,8190,8712,11190,12167,15637,16052,16115,16257 

JN817316:169,222d,364C,2057+C,2584,3345,3387,3541,4321,8190,8712,10603,11024,12167,14582,15637,15976,16052,16115, 
16257 

JN817317:8,169,364C,1300,2057+C,3345,3387,3541,4321,4742,7322,8190,8712,9604,12167,15637,16052,16115,16121,16169, 
16257 
JN817318:169,222d,364C,2057+C,3345,3387,3541,3546A,3942,4321,7068,8190,8712,12167,12476,15637,16052,16115,16257 

JN817319:169,364C,3345,3387,3541,4321,8190,8712,10246A,12167,15637,16115,16124,16257 

JN817320:222d,364C,3210,3345,3387,3541,4321,7544,8190,8712,12167,15149,15328,15637,16024,16052,16115,16257 

JN817321:8,169,364C,1602d,3345,3387,3541,4321,4858,6237,8190,8712,9514,10516,12167,15637,16052,16115,16250,16257 
JN817322:106,169,364C,1326,1876,3345,3387,3541,4321,7657,8190,8712,9070,11544,12167,15637,16018,16052,16055,16115, 
16124,16141,16198,16257 

JN817323:169,222d,353G,364C,1602d,1881,3345,3387,3541,4321,4349,4882,6019,8190,8328,8712,9722,12167,12407,12730, 
15421,15637,15958,16052,16115,16124,16198,16257 

JN817324:169,364C,3345,3387,3541,4321,7544,8190,8350,8712,12167,12229,15637,16024,16115,16124,16257 

JN817325:169,364C,3345,3387,3541,4321,8190,8712,10498,10926,11791,12167,15637,16052,16115,16124,16137,16208,16257 

JN817326:169,364C,2192,3345,3387,3541,4321,8190,8334,8712,11963,12167,15100,15158,15637,16052,16114,16115,16124, 
16257 

JN817327:106,169,222d,364C,3345,3387,3541,4321,7544,7818,8190,8712,12167,14053,15637,15948,16115 
JN817328:169,364C,1602d,3345,3387,3541,4321,5188,8190,8712,8796A,12167,12362,13733,15637,16052,16057,16115,16124, 
16257 

JN817329:169,222d,364C,3345,3387,3541,4321,7757,8190,8712,9385,12167,12494,14045,15092,15406,15637,16052,16257 

JN817330:169,364C,1602d,3345,3387,3541,4321,4858,6237,8190,8712,11457,12167,15637,16052,16115,16257 

JN817331:169,222d,364C,2057+C,3345,3387,3541,4167,4321,8190,8235,8251,8712,9840,11791,12167,15637,16052,16115, 
16135,16233,16257 

JN817332:8,169,222d,364C,2057+C,3345,3387,3541,4321,8190,8712,11190,12167,15637,16052,16115,16257 

JN817333:169,222d,364C,2057+C,3345,3387,3406,3541,4321,8190,8712,10563,12167,12732,13164,15637,16052,16115,16257 
JN817334:169,222d,364C,3345,3387,3541,4321,4947,7544,8190,8712,10579,11532,12167,13373A,15637,15848,16024,16052, 
16115,16257,16303 
JN817335:169,173,222d,364C,2057+C,3345,3387,3541,4114,4321,8190,8712,11190,12167,15637,16052,16115,16257 

JN817336:8,169,222d,364C,2057+C,3345,3387,3541,4321,5017,5227,5814,8190,8712,12167,13125,13673,14694,14905,15527, 
15637,16052,16115,16257 

JN817337:169,222d,364C,2057+C,3345,3387,3406,3541,4321,7299,8190,8712,10563,12167,12732,15637,16052,16115,16141, 
16257,16304 

JN817338:169,222d,353G,364C,2025,2057+C,3345,3387,3541,4321,7068,7511,8190,8712,9808,12167,12452,12476,15637, 
16052 ,16115,16143,16166,16257 

JN817339:169,222d,364C,711,2057+C,3345,3387,3541,4321,8190,8712,9445,10857A,12167,15637,16052,16115,16257,16266 

JN817340:169,222d,364C,2057+C,3345,3387,3541,4321,4742,7322,8160,8190,8712,9604,11956,12167,15637,16052,16115, 
16121,16169,16257 

JN817341:169,364C,2057+C,3345,3387,3541,4321,8190,8712,12167,15637,16018,16052,16115,16257 
JN817342:169,222d,364C,2057+C,3345,3387,3406,3541,4321,7299,8190,8712,10563,12167,12732,15637,15656A,16052,16115, 
16257 

JN817343:169,364C,3345,3363,3387,3541,4321,8190,8712,9638,11850,12167,12494,14212,14611,15412,15637,16052,16257 

JN817345:106,169,222d,364C,1842,2057+C,3345,3387,3541,4321,8190,8198Y,8669,8712,8861,12167,15637,16052,16115,16257 
JN817346:169,222d,364C,3345,3387,3541,4321,8190,8712,10530,10797,12167,14459,14821,15637,16052,16055,16115,16124, 
16135,16198,16257 

JN817347:169,222d,364C,2057+C,3345,3387,3541,4321,8190,8712,9686,12167,12902,13425,15216,15637,16052,16115,16257, 
16304 

JN817348:169,222d,364C,3345,3387,3541,4141,4321,5898,6705,7544,8190,8712,9136,9658,9731,10605,12167,13295,13984, 
15637,16052,16115,16249,16257 

JN817349:8R,169,364C,3345,3387,3541,4321,7544,8190,8712,12167,13203,14525T,15637,16024,16052,16058,16115,16140, 
16149,16257 

JN817351:169,178,222d,364C,3345,3387,3541,4321,5638,7544,8190,8712,12167,14758,15637,16024,16052,16115,16257,16293 
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JQ437479:169,190,224d,250,301,302,365d,1130,1483,2560,2587,3190,3304,3345,3381,3387,3541,3552,4321,4678,5158,5503, 
5745,5892,5901,6162,6438,6453,7358,7954,7996,8190,8238,8360,8372C,8712,10128,10693G,11002,11142,12018,12167,12379,
12435,12470,12677,12752,13007,13541,13823,14038,14131T,14875,15136,15473,15629,15637,15675,15953,15955G,15996, 
16051,16060,16076,16087,16124,16233,16257,16266 

KC153972:169,177,364C,1602d,3345,3387,3541,4321,8190,8712,12167,15637,16051,16052 

KC153974:169,364C,1602d,3345,3387,3541,4321,5226,8190,8712,8832,10884,11514,12167,13487,15637,16140 

KC153976:169,236,364C,1602d,3282,3345,3387,3541,4321,6336,8190,8712,9604,12167,15637 

KC153977:222d,353G,364C,3345,3387,3541,4321,8190,8712,10686,12167,14418,15637,16064,16249 

KF163061:169,215+TC,232+C,364C,1601-1602d,3345,3387,3541,4321,6052,7544,8190,8712,12167,12470,12471, 14350,15637, 
16024,16052,16086,16087,16115,16202+A,16257 

KF163063:169,215+TC,235+T,364C,1601-1602d,3345,3387,3541,4321,7544,8190,8712,12167,15637,16024, 16052,16115, 
16202+A,16257,16303 

KF163064:169,190,215+TC,235+T,364C,498,1601-1602d,3071,3345,3387,3541,4321,7544,8190,12167,12527,13203,13302, 
14525T,15637,16024,16052,16058,16059,16086,16115,16204+G,16318 

KF163065:169,190,215+TC,235+T,364C,498,1601-1602d,3071,3345,3387,3541,4321,4363,7544,8190,12167,12470,12471,12527, 
13203,13302,14053,14525T,15637,16024,16052,16058,16086,16087,16115,16202+A,16318 

KF163066:169,190,215+TC,235+T,364C,498,1601-1602d,3071,3345,3387,3541,4321,7544,12167,12470,12471,12527,13203, 
13302,14525T,15637,16024,16052,16058,16087,16115,16202+A,16318 

KF163067:169,173,190,215+TC,235+T,364C,498,1601-1602d,3345,3387,3541,4321,7544,8190,12167,12470,12471,12527, 13203, 
13302,14525T,15637,16024,16052,16058,16086,16087,16115,16202+A,16257,16318 

KF163068:169,190,215+TC,235+T,364C,498,1601-1602d,3272,3345,3387,3415-3454N,3541,4321,4842Y,7544,8190,12167,12363, 
12470,12471,12527,13203,13302,14525T,15637,16024,16052,16058,16086,16087,16115,16202+A,16257,16318 

KF163070:169,190,215+TC,235+T,364C,498,1601-1602d,3345,3387,3541,4321,7544,7624,8190,12167,12470,12471,12527, 
13203,13262,13302,14525T,15637,16024,16052,16058,16086,16087,16115,16202+A,16257,16318 

KF163071:169,190,216Y,222+CC,235+T,364C,498,1601-1602d,3272,3345,3387,3541,4321,7544,8190,12167,12363,12470,12527, 
13203,13302,14525T,15637,16024,16052,16058,16115,16204+G,16257,16318 

KF163072:169,215+TC,235+T,364C,1601-1602d,3345,3387,3541,4321,4588,6027,8190,8712,9908,10909,12167, 15462,15637, 
16052,16086,16087,16115,16123,16124,16202+A,16257 

KF163073:169,215+TC,235+T,364C,1601-1602d,3345,3387,3541,4321,7544,8190,8712,12167,12470,12471,13203, 14525T, 
15158,15637,16024,16052,16115,16202+A,16257 

KF163075:169,215+TC,235+T,364C,1601-1602d,3345,3387,3541,4321,5227,7544,8190,8712,12167,12404,12471, 13203, 14525T, 
14773,15637,16024,16052,16058,16059,16115,16202+A,16257 

KF163077:169,190,215+TC,235+T,364C,498,1077C,1601-1602d,3345,3387,3541,4321,6393,7544,8190,9097,12167,12527, 
13203,13302,14525T,15637,16024,16052,16058,16086,16087, 16115,16123,16202+A,16257,16318  

KF163078:169,190,215+TC,235+T,364C,498,1601-1602d,3272,3345,3387,3541,4321,7544,8190,12167,12363,12470,12471, 
12527,13203,13302,14525T,15637,16024,16052,16058,16087,16115,16123,16124,16202+A,16257,16318 

KF163079:169,173,190,215+TC,235+T,364C,498,1601-1602d,3345,3387,3541,4321,7544,8190,12167,12527,13203,13302, 
14525T, 15637,16024,16052,16058,16115,16202+A,16257,16318 

KF163080:169,190,215+TC,235+T,364C,498,1601-1602d,3345,3387,3541,4321,6477,7544,8190,12167,12470,12471,12527, 
13203,13302,14525T,15637,16024,16052,16058,16086,16087,16115,16124,16202+A,16257,16318 

KF163081:169,215+TC,235+T,364C,1601-1602d,3345,3387,3541,4321,6237,8190,8712,10349, 10659,12167,12470, 15637,16052, 
16086,16087,16115,16123,16202+A,16257 

KF163082:169,215+TC,235+T,300,364C,1601-1602d,3345,3387,3541,3684,4321,8190,8712,9203,12167,12470,12471,15637, 
16052,16115,16202+A,16250,16257,16262 

KF163083:169,190,215+TC,235+T,364C,498,1601-1602d,3272,3345,3387,3541,4321,7516,8190,12167,12363,12527,13203, 
13302,14525T,15637,16024,16052,16058,16086,16087,16115,16202+A,16257,16318 

KF163084:169,215+TC,235+T,364C,1601-1602d,3345,3387,3541,4321,7544,8190,8712,12167,13397,15637, 16024,16052, 16059, 
16070,16086,16087,16115,16202+A,16257 

KF163085:169,190,215+TC,235+T,250,297-298N,364C,498,1601-1602d,3345,3387,3541,4321,7544,8190,12167,12470,12471, 
12527,13007,13203,13302,14525T,15637,15953,15955G,16024,16052,16058,16087,16115,16202+A,16257,16318 

KF163086:169,190,215+TC,235+T,364C,498,1601-1602d,3345,3387,3541,4321,7544,8190,12167,12527,13203,13302,14525T, 
15637,16024,16052,16058,16115,16124,16202+A,16257,16318 

KF163090:169,190,215+TC,235+T,364C,498,1601-1602d,3272,3345,3387,3483,3541,4321,7544,8190,12167,12470,12471, 
12527,13203,13302,14525T,15637,16024,16052,16058,16086,16087,16115,16202+A,16257,16318 
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KF163092:169,215+TC,235+T,364C,1601-1602d,3345,3387,3541,4321,7544,8190,8712,9503,12167,13262,15637,16024,16052, 
16086,16087,16115,16202+A,16257 

KF163093:169,215+TC,235+T,300,364C,1601-1602d,3345,3387,3541,3684,4321,8190,8712,9203,12167,12470, 12471,15637, 
16052,16115,16202+A,16249,16257,16262 

KF163094:169,179,215+TC,235+T,364C,1483,1601-1602d,3155Y,3345,3387,3541,4321,7544,8190,8712,10462,12167, 12470, 
12471,13203,14525T,15637,16024,16052,16058,16115,16202+A,16257 

KF926377:169,364C,1602d,3345,3387,3541,4060,4321,8063A,8065A,8066A,8069,8190,8712,12167,13734,15637,16053,16063, 
16131 

Appendix 4: Chapter 4 Supplementary materials 

(available online at https://doi.org/10.1186/s12864-020-07018-7)  

Additional file 1: Table S1. Average RIN by tissue types 

Additional file 2: Table S2. Quality of library preparation.xls  

Additional file 3: Table S3. Read alignment quality check.xls 

Additional file 4: Table S4. List of Mitochondrial protein genes derived from Mitocarta 

in cattle.xls 

Additional file 5: Table S5. List of Mitochondrial protein genes derived from Mitocarta 

in Sheep.xls 

Additional file 6: Table S6. Number of differentially expressed (DE) genes by gene 

categories averaged for two foetuses in the Main Cows   

Additional file 7: Figure S1. Heatmap of expression of nuclear genome encoded 

mitochondrial protein (NuMP) in tissues of foetuses 6819F and 2181F in Main Cows 

Additional file 8: Figure S2. Heatmap of mitochondrial genome encoded mitochondrial 

protein (MtMP) genes in tissues of foetuses 6819F and 2181F in Main Cows.  

Additional file 9: Table S7. List of non-mitochondrial protein (Non-MP) genes clustering 

with the mitochondrial protein genes in cluster I (NuMP-MtMP cluster) in Main Cows 
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Additional file 10: Table S8. KEGG pathway enrichment of the non-mitochondrial protein 

(Non-MP) genes in NuMP-MtMP cluster in Main Cows 

Additional file 11: Figure S3. The proportion of differentially expressed gene in each gene 

category in 18 tissues in a Validation Cow (All=All genes encoded by nuclear and 

mitochondrial genome, Nu=Mitochondrial protein genes encoded by nuclear genome 

(NuMP), Mt=Mitochondrial protein genes encoded by mitochondrial genome (MtMP) 

Additional file 12: Figure S4. Heatmap of expression of nuclear genome encoded 

mitochondrial (NuMP) gene in a Validation Cow 

Additional file 13: Figure S5. Heatmap of expression of mitochondrial genome encoded 

mitochondrial protein (MtMP) genes in the Validation Cow.  

Additional file 14: Figure S6. The proportion of differentially expressed gene in each gene 

category and direction of gene regulation in 15 tissues in Validation Sheep (All=All genes 

encoded by nuclear and mitochondrial genome, Nu=Mitochondrial protein genes encoded 

by nuclear genome (NuMP), Mt=Mitochondrial protein genes encoded by mitochondrial 

genome (MtMP)  

Additional file 15: Figure S7. Heatmap of nuclear genome encoded mitochondrial protein 

genes (NuMP) in Validation Sheep (three adults Texel x Blackface female sheep AF1, AF2, 

and AF3)  

Additional file 16: Figure S8. Heatmap of mitochondrial genome encoded mitochondrial 

protein genes (MtMP) genes in Validation Sheep (three adults Texel x Blackface females 

AF1, AF2, and AF3)  

Additional file 17: Table S9. Number of differentially expressed gene (DEG)s and their 

direction in tissues by gene categories in a Validation Cow 

174



Additional file 18: Table S10. Number of differentially expressed gene (DEG)s and their 

direction in tissues by gene categories in Validation Sheep 

Additional file 19: Figure S9. Scatter plot of log fold changes of Main Cows against the 

log-fold changes of Validation Sheep for mitochondrial protein gene expression in tissues 

Additional file 20: Figure S10. Scatter plot of log fold changes of Validation Cow against 

the log-fold changes of Validation Sheep for mitochondrial protein gene expression in 

thyroid 

Additional file 21: Figure S11. Gene co-expression network constructed based similarity 

matrix computed using Person Correlation Co-efficient of gene expression at r > |0.95| 

across tissues of the Validation Cow. 

Additional file 22: Figure S12. Gene co-expression network constructed based similarity 

matrix computed using Person correlation coefficient of gene expression at r > |0.95| across 

tissues of Validation Sheep (three Texel x blackface adult female sheep AF1, AF2 and 

AF3). 
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Appendix 5: Chapter 5 Supplementary materials 

(Available at https://doi.org/10.3168/jds.2020-18503) 

Supplemental Table S1. Group means of variables used in the estimation of Residual 

feed intake (RFI) and Energy balance (EB) 

Supplementary Table S2. Beta hydroxybutyrate (BHB), Non-esterified fatty acid 

(NEFA)and blood urea nitrogen (BUN) of high residual feed intake (H_RFI) and low 

residual feed intake (L_RFI) cow groups (a); and positive energy balance (PEB) and 

negative energy balance(NEB) cow groups (b) 

Supplementary Table S3. Differentially expressed genes in low residual fed intake 

(L_RFI) group compared to high residual feed intake group (H_RFI) 

Supplementary Table S4. Differentially expressed mitochondrial protein genes in low 

residual feed intake (L_RFI) group compared to high residual feed intake (H_RFI) group 

Supplementary Table S5. List of putative hub genes in Module Eigengene ME2 of the 

main RFI dataset 

Supplementary Table S6. List of putative hub genes in Module Eigengene ME3 of the 

Main RFI dataset 

Supplementary Table S7. Differentially expressed mitochondrial protein genes from 

nuclear genome in low residual feed intake (L_RFI) group compared to high residual feed 

intake (H_RFI) group in the validation dataset 

Supplementary Table S8. List of differentially expressed mitochondrial protein genes 

from nuclear genome in common between low residual feed intake groups of the Main 

and the Validation dataset 
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Supplementary Table S9. Differentially expressed mitochondrial protein genes 

(transcripts and proteome) in current study and occurrence in other feed efficiency studies 

in animals 

Supplemental Figure S1. a) PCA plot of gene expression in white blood cells of top and 

bottom 8 animals (H_RFI and L-RFI) of the validation set; b) Hierarchical clustering of 

gene expression in the top and bottom 8 RFI cows with trait heatmap indicating the 

intensity of RFI values in a scale of blue (low) to red (high) 

Supplemental Figure S2. Blood gene expression modules correlated to RFI based on 

WGCNA in the Validation dataset. a) Module eigengene (y-axis) – RFI relationship with 

p-values in parenthesis. “*” indicates modules with a significant relationship (r >|0.4|, 

p≤0.05) with RFI. The relationship between the trait and the modules is used to indicate 

the strength of the correlation where red is positive, and blue is negative; b) KEGG 

pathways enrichment of the module ME1. 

Supplemental Figure S3. A Protein-Protein Interaction network featuring the network of 

putative hub genes from genes in Module ME1 (402) with the confidence of more than 

0.90 from STRING database for validation dataset. Colors indicate KEGG pathways 

associated with these genes: ribosome (brown), oxidative phosphorylation (purple), 

apoptosis (dark green) and thyroid hormone signalling (yellow).
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