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Abstract: This article surveys the development of the theory of compact groups and pro-Lie groups,
contextualizing the major achievements over 125 years and focusing on some progress in the last
quarter century. It begins with developments in the 18th and 19th centuries. Next is from Hilbert’s
Fifth Problem in 1900 to its solution in 1952 by Montgomery, Zippin, and Gleason and Yamabe’s
important structure theorem on almost connected locally compact groups. This half century included
profound contributions by Weyl and Peter, Haar, Pontryagin, van Kampen, Weil, and Iwasawa. The
focus in the last quarter century has been structure theory, largely resulting from extending Lie Theory
to compact groups and then to pro-Lie groups, which are projective limits of finite-dimensional Lie
groups. The category of pro-Lie groups is the smallest complete category containing Lie groups and
includes all compact groups, locally compact abelian groups, and connected locally compact groups.
Amongst the structure theorems is that each almost connected pro-Lie group G is homeomorphic to
RI × C for a suitable set I and some compact subgroup C. Finally, there is a perfect generalization
to compact groups G of the age-old natural duality of the group algebra R[G] of a finite group G to
its representation algebra R(G,R), via the natural duality of the topological vector space RI to the
vector space R(I), for any set I, thus opening a new approach to the Hochschild-Tannaka duality of
compact groups.

Keywords: topological group; Lie group; compact group; pro-Lie group; Lie algebra; duality;
Tannaka duality; Pontryagin duality; LCA group

1. Introduction

Certain areas of mathematical research draw their particular fascination from the fact
that they are based between two principal domains of mathematics, such as algebra and
topology. Between these two, we find algebraic topology and topological algebra. An
observer looking at mathematics from a distance may wonder if these two fields differ
much. The language itself points out the difference: Topological algebra is a specialty
located in algebra, the art of calculating—adding and multiplying, while using the tools of
geometry, and manipulating the concept of continuity adds an extra attraction.

Groups emerged in 1770 in the work on permutation groups of Joseph-Louis Lagrange
(1736–1813) and in 1799 in the context of solving quintic equations in the work of Paolo
Ruffini (1765–1822). Groups in their abstract form can to be traced back to Augustin-Louis
Cauchy (1789–1857), Niels Henrik Abel (1802–1829), and Évariste Galois (1811–1832), when
groups were formative in the development of abstract algebra. Galois was, in fact, the first
to use the word group (groupe in French). The beginnings of Topology reach back hundreds
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of years; however, as August Ferdinan Möbius (1790–1868) said, it was Jules Henri Poincaré
(1854–1912) who “gave topology wings” in several articles, the first of which appeared
in 1895. (Johann Benedict Listing (1808–1882) introduced the (German) term Topologie in
1847.) Topology as an independent area had not yet crystallized, though Geometry was quite
present, when Felix Klein (1849–1925) and Sophus Lie (1842–1899) (and followers, such as
Friedrich Engel (1861–1941) and Wilhelm Karl Joseph Killing (1847–1923)) founded the area
of what later became named Lie groups. Algebra, geometry, and analysis were thoroughly
mixed into the genesis of Lie group theory.

2. Hilbert’s Fifth Problem and Locally Compact Groups

In 1900, David Hilbert (1862–1943) gave his famous address to the International
Congress of Mathematicians in Paris. In an apparently unforgettable fashion, it fore-
shadowed crucial developments of mathematical research in the 20th century. Hilbert
formulated 23 open problems leading to groundbreaking research in the 20th century. By
that time, topology was present in the minds of mathematicians, although it may not have
reached the heights it would attain in the course of the century. Yet, enough was available
to Hilbert for him to formulate, for instance, his famous Fifth Problem:
If a group is defined on a euclidean manifold in such a way that multiplication and inversion

are continuous functions, can it be given the structure of a differentiable manifold so that the
continuous group operations are in fact differentiable?

This would make it a group of the kind that Lie had created in a visionary way. In
modern parlance, Hilbert posed the question:
Is a locally euclidean topological group a Lie group?

He envisioned a positive answer. However, it would take a little over half a century to
confirm his vision.

Yet, this half century advanced the research of topological groups enormously. The
most consequential steps were:

(i) the discovery of fundamental properties of compact groups by Hermann Weyl (1885–
1955) and his doctoral student Fritz Peter (1899–1949) in 1927;

(ii) the discovery that every locally compact group has a (left) invariant measure by Alfréd
Haar (1885–1933) in 1932; and

(iii) the discovery in 1934 of the duality between the category of (discrete) abelian groups
and the category of compact abelian groups by Lev Semyonovich Pontryagin (1908–1988),
rounded off in 1935 with the extension to arbitrary locally compact abelian groups by
Egbert van Kampen (1908–1942), and by André Weil (1906–1998) in 1938, who also
established that a complete topological group with a Haar measure has to be locally compact.
(See References [1–3]. For a discussion of Pontryagin Duality outside the class of
locally compact abelian groups, see Reference [4] and its references. For a category
theory proof of Pontryagin Duality, see Reference [5].)

Inasmuch as these milestones were set up close to Lie groups, they are naturally
linked to topological groups whose underlying topological spaces (for the most part)
are connected. It was recognized early on that, in a topological group G, the connected
component G0 of the identity is a closed normal subgroup which is mapped into itself
by any continuous endomorphism of G. (We recall that such a subgroup is called fully
characteristic.) Obviously, therefore, it is very special. Indeed, in any Lie group (real or
complex), the benefit drawn from the presence of the Lie algebra of G invented by Sophus
Lie reaches as far as G0, and not the tiniest bit beyond. One is tempted to remark that G0
supports all the (traditional) geometry of group theory.

The observation that real Lie algebras are attached to topological groups in a more
general sense was first anticipated by Richard Lashof (1922–2010) in 1957 for locally
compact groups. More recently, as explained and illustrated in our book (Reference [6]),
this was extended to a much wider class of topological groups. It is natural to ask how
much of the structure of a topological group G is supported by the elementary concept of
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Hom(R, G), the space of morphisms of topological groups R→ G, also called one-parameter
subgroups of G.

That half-a-century of developments of topological groups went alongside an as-
tounding unfolding of topology. However, there was a second impact on the domain of
topological groups. This advance emerged from algebra itself, more specifically, from
GALOIS THEORY. As a typical example, the algebraic completion A of a field F is the
directed colimit of all finite extensions (K:F). Inevitably, the Galois group G(A:F) is the
projective limit of the finite Galois groups G(K:F). A projective limit G of a directed inverse
system of finite groups automatically carries a group topology making it a compact totally
disconnected topological group. Here, totally disconnected means exactly that G0 is a single-
ton subgroup. This example clearly illustrates the fact that this group theory, belonging to
the home of pure classical algebra, uncontroversially leads to a class of topological groups
located opposite to the type of connected topological groups which have arisen, historically,
out of Lie theory. Yet, the link between the two disparate classes of topological groups was,
from the very beginning, the fact that:
every topological group G gives rise to a connected topological subgroup G0, its identity compo-
nent, and, by contrast, the totally disconnected quotient group Gt = G/G0.

The complete solution of Hilbert’s Fifth Problem arrived in 1952 (9 years after the death
of Hilbert), when Andrew Mattei Gleason (1921–2008), Deane Montgomery (1909–1992),
and Leo Zippin (1905–1995) settled it with a positive answer. This effort was crowned by
the fundamental discovery in 1953 by Hidehiko Yamabe (1923–1960) that:
in a topological group G whose component factor group Gt is compact, any compact identity neigh-
borhood of G contains a closed normal subgroup N, such that the factor group G/N is a Lie group,
indeed, precisely one of those Lie groups, which had so fascinated Hilbert in 1900. The com-
pactness of the factor group Gt = G/G0 led to the standard terminology that a topological
group having this property is called almost connected.

Yamabe’s major contribution to the solution of Hilbert’s Fifth Problem was soon
followed by an immensely influential paper [7], by Kenkichi Iwasawa (1917–1998), on the
structure of locally compact groups.

One way of expressing the theorem of Yamabe was to say that:
every almost connected group is a projective limit of Lie groups.
(Projective limits are discussed and explained, e.g., in References [1,6].)

This fact caused much of the work on locally compact groups in the second half of last
century to be focused on projective limits of Lie groups. In this endeavor, it is truly very
helpful that the projective limit presentation of an almost connected locally compact group G,
in terms of its Lie group quotients G/N, has limit maps G → G/N that are particularly
well behaved because each of them is a proper morphism, i.e., it is a closed continuous map
such that the inverse image of each compact set is compact.

A substantial step in a general structure theory of locally compact totally disconnected
groups occurred in the 1990s, when George A. Willis innovated the theory by introducing
concepts, such as tidy subgroups and scaling functions [8,9].

The second half of the twentieth century saw a substantial amount of research on
what has become known as Abstract Harmonic Analysis. This subject, outside the scope of
this survey, was built on the realization by André Weil that, using Haar measure, Fourier
series and Fourier integrals are a special case of a construction on locally compact groups.
The standard references are References [2,10,11], but also see Reference [12].

3. Pro-Lie Groups: From Connected to Almost Connected Ones

One should be aware of the fact that not every locally compact group is a projective
limit of Lie groups, as SL(2,Qp), the group of p-adic 2 by 2 matrices of determinant 1,
illustrates for any prime p.

However, within topological group theory, in this immense activity of the 20th century
on the projective limit representation of locally compact (and, in particular, compact)
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groups, it was almost overlooked that a topological group G which has a filter basis N of
closed normal subgroups N such that, firstly,

(1) G/N is a Lie group for all N ∈ N
and, secondly,

(2) the natural map G → limN∈N G/N is an isomorphism
certainly does not force G to be locally compact. In fact, under these circumstances, G is
locally compact if and only if N contains a compact member. The simplest examples
failing to be locally compact are groups, such as ZN or RN, with their product topologies.
Indeed, the second of these examples illustrates the fact that we are touching a subject that
is understood with the concepts of basic linear algebra over the real or complex field (or,
indeed, any locally compact field). Given the Axiom of Choice, we know that every vector
space V over R has a basis, equivalently, that it is a direct sum

⊕
j∈J Rj of some family of

copies Rj
∼= R of R, denoted by R(J). The vector space Hom(V,R) of all linear forms of V is

(naturally isomorphic to) the Cartesian product Hom(
⊕

j∈J Rj,R) ∼= ∏j∈J Hom(Rj,R) ∼=
RJ of copies of R. Since R has a natural topology, this is true for RJ with its Tychonov
topology or product topology—and that is locally compact if and only if J is a finite set. So,
with J = N, the topological vector space RN is the first one to break this barrier. Topological
vector spaces which are isomorphic to RJ for some set J are called weakly complete vector
spaces. There is no problem in extending this terminology to vector spaces over the complex
ground field C.

It has become customary to call a topological group satisfying (1) and (2) above a
pro-Lie group. Their systematic study coincides neatly with the beginning of the twenty-first
century. The simplest examples are the weakly complete vectors spaces themselves. They
are even closer to elementary vector spaces than one spontaneously thinks. Indeed, if
W ∼= RJ is a weakly complete vector space, then the vector space Homcontinuous(W,R)
of all continuous linear forms on W is isomorphic to R(J), and a slightly more detailed
consideration shows that this is the background of a perfect duality between the category of
real vector spaces and that of weakly complete vector spaces. This rather elementary duality is
discussed in detail in the first edition of Reference [1] in 1998 and in the first monograph of
Reference [6] to have a systematic study of pro-Lie groups in 2007.

Here, the natural question arises how the concepts of a pro-Lie group and that of
the historically fundamental one of a manifold based Lie group differ. The concept of a
manifold had developed at that time vastly, being now based on locally convex topological
vector spaces. Accordingly, the concept of a Lie group had developed deeply into the
domain of infinite dimensional manifolds [13]. Nevertheless, from Reference [14], we know
precisely how the two concepts are related:

Theorem 1. A pro-Lie group is a Lie group if and only if it is locally contractible.

Here, a topological group G is called locally contractible, if some identity neighborhood
U can be homotopically contracted to a point in G, and it is called 1-connected if π1(G)
is singleton. In the spirit of Lie theory from any viewpoint, it is fascinating that local
contractibility of a 1-connected pro-Lie group can be detected purely from the Lie algebra g

of G: Every pro-finite dimensional Lie algebra g has a maximal (semi-)direct summand s

being a product of some collection of simple finite dimensional Lie algebras. Indeed,
a 1-connected pro-Lie group G is locally contractible iff, apart from a finite number of these factors,
each of the factors is isomorphic to the Lie algebra of SL(2,R) (the group of 2 by 2 real matrices
of determiant 1).

The weakly complete real vector spaces provide an exemplarily simple class of pro-Lie
groups beyond traditional Lie groups. In Reference [6], the authors proved the fairly deep
theorem, saying that:
a connected pro-Lie group G contains a closed subspace E and a compact subgroup C such that E is
homeomorphic to some weakly complete real vector space and the function

(e, c) 7→ ec : E× C → G is a homeomorphism.
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We might say, so far so good, for connected pro-Lie groups. However, the free abelian
group Z(N) of countably infinitely many generators supports a nondiscrete pro-Lie topology
with rather bizarre properties. (This is described in Proposition 2 in Chapter 5 on abelian
pro-Lie groups in Reference [6].) So, one ventures outside connected pro-Lie groups with
trepidation. Even basic issues are settled only very partially, exemplified by the question:
when is a quotient of a pro-Lie group a pro-Lie group? (See, e.g., Reference [6], Chapter 4,
Theorem 4.28.)

It is, therefore, astonishing how much positive information has been gathered on
pro-Lie groups, even if they fail to be connected.

Our monograph [6] presents a reasonably comprehensive theory of connected pro-Lie
groups. While classical Lie theory is used intensively, the technical difficulties to bring
them to bear on the general situation are often painfully complex on the technical level.

At the opposite end, we face totally disconnected pro-Lie groups. By definition, such
a group G is a projective limit of Lie group quotients G/N. The pro-Lie algebra map
L(G) → L(G/N) induced by the quotient morphism is surjective. (See Reference [6],
4.21.) However, L(G) = {0}, since G is totally disconnected. So, the Lie algebra of the
Lie group G/N vanishes. Therefore, it is discrete. Accordingly, G is a projective limit
of discrete quotients. Therefore, it is called prodiscrete. In the domain of locally compact
groups, prodiscrete groups are generally considered still tractable. This applies certainly to
the realm of compact groups where they are traditionally known as profinite groups and are
treated extensively in the monograph literature. (See, e.g., Reference [15].) By contrast, one
would have to admit, however, that no coherent structure or representation theory exists
for prodiscrete groups, in general, outside the locally compact domain.

So, there arise obvious questions which link connectivity and prodiscreteness.

Problem 1. Let G be a pro-Lie group. Is there a neighborhood of G0 whose structure is reasonably
well understood, at least topologically?

Perhaps more explicitly (and optimistically):

Problem 2. Let G be a pro-Lie group. Is there a closed totally disconnected subgroup H of G such
that the subgroup G0H is open?

The consequences of such pieces of information would be far reaching. In the case of
a locally compact group G, indeed, there exists a totally disconnected compact subgroup D
such that G0D is open. So, the answers for both Problem 1 and Problem 2 are affirmative
if G is locally compact. Conclusive answers are not available if G fails to be locally
compact, but partial answers to these questions were provided after the appearance of
Reference [6] by the authors in Reference [16], and in a survey in Reference [17], including
the following result:

Theorem 2. Let G be an almost connected pro-Lie group. Then, every compact subgroup is
contained in a maximal one and all of these are conjugate. There is a closed subspace homeomorphic
to a weakly complete vector space E in G such that, for each maximal compact subgroup C,
the function

(e, c) 7→ ec : E× C → G

is a homeomorphism.

The proof in Reference [16], in 2011 (after the appearance of Reference [6]), provides
additional information on the way that E is constructed. A shorter, but perhaps more easily
recalled, formulation is the following:

Corollary 1. Any almost connected pro-Lie group is homeomorphic to RJ × C, for some set J and
a compact subgroup C of G.
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It should be emphasized that this theorem gives a definitive insight into the topological
structure of an almost connected pro-Lie group modulo the known structure of a compact
group, as detailed in Reference [1]. Indeed,
a compact group C is homeomorphic to C0 × C/C0, where C/C0 is either finite or is homeomorphic
to a power {0, 1}J of the two element space for a suitable set J. (See Reference [1], 10.40.)
The compact connected group C0 itself is a semidirect product of the closed commutator group C′0
and a compact connected abelian subgroup A ∼= C/C′0. (See Reference [1], 9.39.)

The compact semisimple commutator subgroup is described explicitly in Reference [1],
9.19, where it is argued that it is not too far from a product of a possibly large family of
compact connected simple Lie groups.

For the pro-Lie group-theoretical understanding of the abelian connected compact
group A, we also have explicit knowledge, namely the Resolution Theorem (Reference [1],
8.20), which specifies a profinite subgroup ∆ of A and a continuous open surjective homo-
morphism ∆×L(A)→ A for the Lie algebra L(A) of A. Here, the Lie algebra L(A) is none
other than a weakly complete real vector space. In particular, these pieces of information
together with Theorem 2 above yield the following rather complete information of the
topology of an almost connected pro-Lie group:

Theorem 3. The Topology of Almost Connected Pro-Lie Groups: Any infinite almost
connected pro-Lie group is homeomorphic to a pro-Lie group of the form

RI × S× A× F,

where F is either finite or Z(2)J ; here, I and J are sets, Z(2) is the two-element group, where S is
a compact connected group that agrees with its commutator subgroup S′ and is, modulo a central
profinite subgroup, a Cartesian product of compact connected simple Lie groups, and, where, finally,
A is a compact connected abelian group.

It may be helpful here to recall a consequence of Pontryagin Duality, namely that
the category of all compact connected abelian groups is dual to the (vast) category of all torsion-free
abelian groups.

The history of locally compact groups has illustrated that an insight into the structure
of abelian locally compact groups preceded the solution of Hilbert’s 5th Problem. In this
spirit, we have had some success in getting the basics of a structure theory of abelian pro-Lie
groups formulated. (See Reference [6], 5.20).) Indeed, we proved the following result.

Theorem 4. Main Structure Theorem of Abelian Pro-Lie Groups: Any abelian pro-Lie group
G is the direct sum E⊕ H of closed subgroups, where E is isomorphic to RJ , for a set J, and H has
the following properties:

(i) H0 is compact and is the unique largest compact connected subgroup;
(ii) every compact subgroup of G is contained in H;
(iii) the totally disconnected quotient groups Gt = G/G0 and Ht = H/H0 are isomorphic; and
(iv) The union comp(G) of all compact subgroups of G is a fully characteristic closed subgroup of

G that is contained in H, and

G0 + comp(G) = E⊕ comp(G)

is a fully characteristic closed subgroup G1 of G such that every monothetic subgroup of G/G1
is isomorphic to the discrete group Z.

The factor group G/ comp(G) does not contain any nonsingleton compact subgroup,
and the Main Structure Theorem implies immediately that its identity component is a
weakly complete real vector space isomorphic to RJ and is a direct summand.

The factor group G/G1 is a totally disconnected abelian pro-Lie group without any
nontrivial compact subgroup whose structure remains largely uncharted and mysterious.
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Indeed, A. Weil’s Lemma on the Classification of Monothetic Subgroups of Locally Com-
pact Groups (Reference [1], 7.43) was extended by the authors to pro-Lie groups in the
following fashion:

Theorem 5. Weil’s Lemma for Pro-Lie Groups: Let E = Z or E = R and X : E →
G a morphism of topological groups into a pro-Lie group. Then, exactly one of the following
statement holds:

(i) r 7→ X(r) : E→ X(E) is an isomorphism of topological groups;
(ii) X(E) is compact.

As a consequence, if a pro-Lie group G has no nontrivial compact subgroups, then every
monothetic subgroup is isomorphic to Z as a topological group.

In all of topological group theory, the subclass of commutative topological groups is
usually considered a test class which is representative of the status of information provided
by current research. This is exemplified by information provided for locally compact
abelian groups (often called LCA-groups) and, similarly, by all the information on real
topological vector spaces made available by functional analysis.

It was, therefore, natural to raise the issue of duality for abelian pro-Lie groups in
Reference [6], pp. 237ff.

Notably, satisfactory results emerged for almost connected abelian pro-Lie groups, and
some interesting general additional aspects were pointed out in Reference [6] (5.36, 5.40,
5.41). In particular, it was observed in Reference [6] (Comments to 14.15) that an abelian
pro-Lie group G may fail to be reflexive. (Here, a topological abelian group is called reflexive,

if the natural morphism G → ̂̂G is an isomorphism of topological groups.) Overall, one
might consider the structure theory of abelian pro-Lie groups still as regrettably incomplete.
Some aspects that we do know are collected in the following theorem.

Theorem 6. The Structure of Almost Connected Abelian Pro-Lie Groups: Let G be an
almost connected abelian pro-Lie group. Then, comp(G) is a compact subgroup, and

(i) G ∼= RJ × comp(G). In particular, each weakly complete real vector space is reflexive.
(ii) The annihilator of G0 in Ĝ is comp Ĝ.

Now, assume that G is an abelian pro-Lie group which is algebraically generated by a compact
subset. Let G1 = G0 + comp(G) be the fully characteristic subgroup of G introduced in Theorem
3(iv). Then, G1 is locally compact, and G/G1 is a Polish space (i.e., it is completely metrizable and
separable) if and only if G ∼= Rm × comp(G)×Zn, for nonnegative integers m and n.

More details can be found in Reference [6], including a version of a universal covering
theorem which, in Reference [1], was called a “Resolution Theorem”.

Wayne Lewis noted recently that the Resolution Theorem suggests introducing into
the study of LCA groups a more systematic use of the adele ring

local

∏
p prime

(Qp,Zp)×R ,

thus relating the structure theory of LCA groups to algebraic number theory. (The term
idele was introduced by Claude Chevalley (1909–1984) and is an abbreviation of “ideal
element”. The term adele stands for “additive idele”.)

Theorem 5 confirms the impression that we can regard the condition of being almost
connected in the theory of pro-Lie groups as very satisfactory, but that we do not have
a comprehensive theory of totally disconnected abelian pro-Lie groups, in general. The
recent study of Reference [18] on locally compact totally disconnected abelian groups G
satisfying G = comp(G) deals with this subject, as well as illustrates the fact that not even
the presence of a wealth of compact open subgroups provides for structural simplicity.
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While we noted that each locally compact group G having a pro-Lie group as identity
component G0 is largely determined by a profinite dimensional Lie algebra L(G), neverthe-
less, we observed that L(G) has no effect on the totally disconnected portion Gt = G/G0
of G.

One recent branch in the research on locally compact groups provides noteworthy
connections between locally compact groups and topology without having such restric-
tions. Indeed, the set of all closed subgroups of any locally compact group G always
supports a compact topology making that set into a compact Hausdorff space Ch(G), called
the Chabauty space of G. (The names of Leopold Vietoris (1891–2002) or James Michael
Gardner Fell (1923–2016) would have been just as appropriate as that of Claude Chabauty
(1910–1990).) The example of the circle group G = T shows that the Chabauty space may
have pathological aspects even in the compact connected case. On the other hand, this
tool appears to come in handy for totally disconnected locally compact groups G, as the
following example shows:
For any locally compact group G, the function g 7→ 〈g〉 : G → Ch(G) is continuous iff G is
totally disconnected.

In this sense, the operators L and Ch are opposite in their prospect as tools for the
structure theory of G. (See Reference [19].)

4. Linear Algebra Meets Pro-Lie Group Theory

In Reference [20], in 1939, Tadeo Tannaka (1908–1986) formalized the process of recon-
structing a compact group from the systematically structured class of finite dimensional
linear representations. This approach he proved to be a way of generalizing Pontryagin’s
duality of the categories of abelian compact, respectively, discrete groups to a noncommu-
tative situation. This led to vast generalizations in the abstract world of category theory.
(See Reference [21].) On the other hand, at a very early point in his book [22], Gerhard
Paul Hochschild (1915–2010) formalized very concretely the idea that the real vector space
R(G,R) of coefficient functions of finite dimensional linear representations of a compact
group G is not only a commutative algebra, but also a coalgebra and, indeed, a symmetric
Hopf algebra. He specified the conditions under which the spectrum of a symmetric Hopf
algebra is a compact group G whose Hopf algebra R(G,R) is isomorphic to the given one.
This produces a duality between the category of compact groups and a category of certain
symmetric Hopf algebras. The connection between R(G,R) and the linear representations
indicates an existing equivalence of Hochschild’s duality with Tannaka’s.

We have proposed a topological group algebra R[G] of any compact group G. This
allows us to produce a certain category of topological symmetric Hopf algebra which is
equivalent to the category of compact groups via G 7→ R[G]. This links us with Hochschild-
Tannaka duality through the fact that R(G,R) and R[G] are natural duals of each other as
symmetric Hopf algebras in their respective domains of plain vector spaces and topological
vector spaces.

From the very beginning of the study of pro-Lie groups, it was clear that one would
have to consider pro-Lie algebras. One of the difficult problems with which Sophus Lie
found himself confronted was the question of whether, for each Lie algebra g, one could
find a Lie group G whose Lie algebra was (isomorphic to) g. A satisfactory answer became
known in the history of Lie theory as Lie’s Third Fundamental Theorem. In the development
of the theory of pro-Lie groups, it seemed conceptually fitting to find a response to a more
comprehensive question. At that point in the history of topological groups, one had a good
hold of category theory, and it was understood that the Lie algebra functor L from the
category G of pro-Lie groups to the category of profinite-dimensional Lie algebras L has
a right adjoint Γ. Thus, for every morphism f : g → L(G), there is a unique morphism
f ′ : Γ(g)→ G, producing a natural isomorphism

f 7→ f ′ : L(g,L(G))→ G(Γ(g), G)).
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In particular, the right adjoint functor L preserves all limits, so, if G is a projective limit
of finite dimensional Lie groups, then L(G) is a projective limit of finite dimensional Lie
algebras, i.e., a profinite dimensional Lie algebra. (See Reference [23].) As an immediate
elementary consequence, the real topological vector space underlying L(G) is a projective
limit of finite dimensional vector spaces. This returns us to the fact that one had to
discuss at a comparatively early stage in References [1,6] that the projective limit property,
indeed, characterized a real or complex topological vector space to be weakly complete.
The insight that the category of K-vector spaces, where K = R or K = C, is dual to
the category of weakly complete topological K-vector spaces was explicitly elucidated
both in References [1,6]. We note here with some circumspection that, for K = R, the
duality between real vector spaces, on the one hand, and weakly complete topological real
vector spaces, on the other, may be regarded a special case for abelian pro-Lie groups of
Pontryagin duality (also see Reference [1], A7.10).

It is clear that pro-Lie group theory and elementary linear algebra are tied together
from the beginning. However, when the first systematic study of pro-Lie groups [6] was
compiled, another avenue leading from “elementary linear algebra” directly to pro-Lie
groups had not yet been observed, even though its mathematical underpinning would
have been available. This avenue leads from weakly complete topological vector spaces to
weakly complete associative topological algebras. That associative unital algebras would
appear in the vicinity of groups and their linear representation theory is perhaps not
surprising, given the history of representation theory and module theory. It is perhaps
astonishing that the concept of weakly complete algebras appeared so late.

Indeed, a weakly complete unital algebra A is an associative algebra whose addition and
scalar multiplication are that of a weakly complete vector space and whose multiplication
is associative and continuous and has an identity. Let us denote the multiplicative group
of invertible elements by A−1. At first glance, and in light of the numerous types of
associative unital algebras that functional analysis deals with in the representation theory
of topological groups, the following fact may come as a surprise:

Theorem 7. Every weakly complete unital algebra A is a projective limit of finite dimensional
unital quotient algebras.

In other words, a weakly complete associative algebra is automatically profinite dimen-
sional.

The essence of the above result was first observed by Bogfiellmo, Dahmen, and
Schmeding [24]. For more on this theorem, see Reference [1], A7.32–A7.43.

These facts require absolutely no additional hypothesis apart from the fact that the
algebra topology is the weakly complete one. We recorded that the categories V of vector
spaces over K = R or K = C and the categoryW of weakly complete topological vector
spaces are dual. This suggests that Theorem 7 is just one step away from a purely algebraic
result. Indeed, let us reconsider the categories V and W and, for each of the two, the
occasionally tricky concept of its tensor product⊗V , respectively,⊗W . (The basic properties
of ⊗W were first studied in the Master’s thesis (Diplomarbeit) in 2007 of Raphael Dahmen.)
The most significant property of this pair of tensor products is its compatibility with duality:

(V1 ⊗V V2)
∗ ∼= V∗1 ⊗W V∗2 and (W1 ⊗W W2)

′ ∼= W ′1 ⊗V W ′2.

With the aid of the tensor product, the multiplication of a weakly complete algebra A
may now be expressed as aW-morphism m : A⊗W A→ A subject to the commutativity
of a diagram expressing associativity (Reference [1], Definition A3.63a), and the identity
element 1 of the algebra may be expressed by a morphism u : K→ A, u(t) = t · 1, subject
to a commutative diagram (cf. loc. cit.). Now, the dual object m′ : A′ → A′ ⊗V A′, together
with u′ : A′ → K, represents a coassociative coalgebra with coidentity. So, all such coalgebras,
being purely algebraic objects in the category V , are locally finite in the sense that every
element is contained in a finite dimensional subcoalgebra. In other words, each associative
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counital coalgebra is a directed colimit of finite dimensional subcoalgebras, or, once again
reformulated, each counital coassociative coalgebra in V is a projective colimit of finite
dimensional subalgebras. This result is referred to as the “CARTIER Lemma”, and also as
“The Fundamental Theorem of Coalgebras”. (See Michaelis, in Reference [25].) Now, we
see that Theorem 7 is the dual of the Cartier Lemma.

An almost immediate consequence of Theorem 7 is the following.

Theorem 8. Fundamental Theorem of Weakly Complete Algebras: Let A be a weakly
complete unital algebra. The group of units (that is, multiplicatively invertible elements), A−1,
is an almost connected pro-Lie group. It is dense in A, and the exponential function exp : A →
A−1 converges everywhere and defines the exponential function of the pro-Lie group A−1 if A is
considered as a Lie algebra with respect to the bracket [a, b] = ab− ba.

The Fundamental Theorem of Weakly Complete Algebras yields an assignment A 7→
A−1, which is clearly functorial, mapping the category WA of weakly complete unital
algebras into the categoryL of pro-Lie groups. Its left adjoint functor G → K[G] : L → WA
assigns to a pro-Lie group G its group algebra (over the groundfield K = R or K = C). In the
case of K = R the duality yields an isomorphism R[G]′ ∼= R(G,R) with the topological dual
R[G]′ of the weakly complete group algebra R[G] and the ring of representative functions
R(G,R) ⊆ C(G,R), familiar notably in the representation theory of compact groups. (See
Reference [1], Chapter 3, Definition 3.3.) The group algebra K[G] was discussed in detail
in References [26,27] and in the book of Reference [6]. In a natural way, K[G] is, in fact, a
symmetric Hopf algebra. Here, a Hopf algebra is simultaneously an associative unital algebra
and an associative counital coalgebra linked in a compatible fashion. It is a symmetric Hopf
algebra if it further includes a “symmetry”, an involutory self-map, acting in a similar way
as “inversion” makes a semigroup into a group.

For compact groups, this concept, the equivalence of the category of compact groups
with a certain category of weakly complete symmetric Hopf algebras, via duality, eventually
leads us to the conclusive form of the Hochschild-Tannaka Duality of the category of compact
groups and a certain subcategory of the category of purely algebraic symmetric Hopf
algebras. (The interested reader will find this discussed in Reference [1], Chapter 3: Part 3,
pp. 90–12, and in Appendix 3 on Category Theory: Section on Commutative Monoidal
Categories and their Monoids, Part 5: Symmetric Hopf Algebras over R and C, pp. 856–862,
and, finally, in Appendix 7: Weakly Complete Topological Vector Spaces, Subsection on:
Weakly Complete Unital Algebra, pp. 936–941.)

It must be noted here that, for a Hopf algebra A with multiplication m : A⊗ A→ A
and identity u : K→ A, comultiplication c : A→ A⊗ A, and coidentity k : A→ K, we call
an element a ∈ A group-like if c(a) = a⊗ a and k(a) = 1, and primitive if c(a) = a⊗ 1+ 1⊗ a.
Then, an additional general structural feature is to be added to Theorem 8:

Theorem 9. Fundamental Theorem of Weakly Complete Hopf Algebras: If A is a weakly
complete symmetric Hopf algebra, then the set G(A) of group-like elements is a closed subgroup of
A−1 and, thus, is a pro-Lie subgroup of A−1.

The set P(A) of primitive elements is a closed Lie subalgebra of ALie and is the Lie algebra
of G(A), and its exponential function expG(A) : P(A) → G(A) is induced by the exponential
function of A.

This applies, in particular, to the group algebra R[G] of each compact group G, where
we have:

Theorem 10. The Group Algebra Theorem for Compact Groups: A compact group G may
be identified with the subgroup G(R[G]) of group-like elements in the group algebra R[G], and
its Lie algebra L(G) may be identified with the Lie subalgebra of P(R[G]) of primitive elements of
R[G], and, finally, its exponential function exp : L(G) → G is then induced by the exponential
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function of the weakly complete algebra R[G]. The cocommutative weakly complete symmetric Hopf
algebra R[G] is dual to the commutative symmetric Hopf algebra R(G,R). (See Reference [26].)

The essential feature of a Lie group G is its Lie algebra g, which is at the heart of
its algebraic structure. In analogy to the way that leads from groups to group algebras,
there is a traditional path leading from Lie algebras to associative algebras. It has been
observed recently that the functor from the category of weakly complete unital algebras to
the category of profinite dimensional Lie algebras which associates with a weakly complete
unital algebra A the Lie algebra ALie whose underlying vector space is that underlying
A with the Lie bracket [a, b] = ab− ba. Since A is profinite dimensional, so is the weakly
complete Lie algebra ALie. The assignment A 7→ ALie is a functor from the categoryWA
of weakly complete associative unital algebras to the category FL of profinite dimensional
Lie algebras. The left adjoint U : FL → WA yields for a profinite dimensional Lie algebra
g the weakly complete unital associative algebra U(g). (See References [27,28].)

Theorem 11. The Enveloping Algebra Theorem: Let g be a profinite dimensional Lie algebra
and U(g) its traditional enveloping algebra over K. Then, U(g) is a weakly complete unital
associative symmetric Hopf algebra containing the classical enveloping algebra U(g) as a dense sub-
Hopf algebra. The weakly complete algebra U(g) has an exponential function exp : U(g)Lie →
U(g)−1.

The Lie subalgebra P(U(g)) of primitive elements contains naturally a copy of g which
generates U(g) algebraically and topologically as an algebra. P(U(g)) is the Lie algebra of the
pro-Lie group of group-like elements G(U(g)).

While the classical enveloping algebra does not contain any nonidentity group-like
elements, the weakly complete enveloping algebra U(g) contains within the pro-Lie group
U(g)−1 the group G(U(g)) of group-like elements, which, in turn, contains the group
Γ(g) = 〈exp g〉 that is attached to g by Lie’s Third Theorem, and the exponential function
exp : g→ Γ(g) is induced by the exponential of the weakly complete algebra U(g).

5. Postscript

After a brief review of 100 years of history of Lie groups and locally compact groups,
we have tried to emphasize the widening of the horizon from the landscape of classical
Lie group and locally compact group theory to pro-Lie groups. Apart from an emphasis to
include functorial thinking into the study of topological groups, this enlargement of scope
is strengthened by the viewpoint that Lie group theory deals in essence with topological
groups G having a Lie algebra L(G) and an exponential function exp : L(G) → G that
crucially determines the structure of G via the Lie algebra structure of L(G). Functorial
thinking tells us how far we have to go from the long standing classical field of finite
dimensional Lie algebras and connected (or at least almost connected!) Lie groups, and, so,
we shall unquestionably arrive at pro-Lie groups.

The prime testing ground for pro-Lie group theory remains the field of compact groups.
At the beginning of their history, decades ago, it was detected that they were pro-Lie groups
automatically by their representation theory. Now, they tell us how far we can go with
a clear structure theory of pro-Lie groups past the boundaries imposed by connectivity.
In that process, we redetect the significance of “almost connected” groups, namely those
G whose space Gt = G/G0 of connected components is compact. In the realm of locally
compact groups, Hidehiko Yamabe had justly drawn attention to almost connected locally
compact groups for which one could demonstrate that they were pro-Lie groups.

A second testing ground for any theory of topological groups is the class of commuta-
tive ones. As far as pro-Lie groups are concerned, this territory is largely uncharted. Yet,
once more, the subterritory of almost connected abelian pro-Lie groups is crystal clear: it
comprises all groups which are direct products E× C, where E is (the additive group of) a
so-called “weakly complete” real topological vector space. These topological vector spaces
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are also the ones that are underlying the Lie algebras of all pro-Lie groups. So, they play a
significant role in pro-Lie theory on both the group and the algebra level. How complicated
are they?

The answer was simple since the beginning of their presence a quarter of a century
ago: They are simply the duals of ordinary real vector spaces V, together with the topology

that these inherit from their nature as function spaces E = Hom(V,R) def
= V∗ ⊆ RV

in the form of the topology of pointwise convergence, or, equivalently expressed, the
topology induced by the Tychonov product topology of RV . Traditionally, this topology
on E is called the “weak-∗ topology”, which led to the terminology of weakly complete
vector spaces. Their truly basic nature is emphasized by the fact that the topological dual
E′ = Homcontinuous(E,R) ⊆ C(E,R) is naturally isomorphic to V, that is V ∼= V∗′, and
that, likewise, E ∼= E′∗. Compactly phrased, the categories W of weakly complete vector
spaces and the category V of (ordinary) real vector spaces are dual. This interplay pertains,

therefore, to elementary linear algebra. Moreover, the quotient map R 7→ T def
= R/Z induces

an isomorphism:

V∗ = Hom(V,R) ∼= Hom(V,T) = V̂ = Pontryagin Dual of V.

Thus, a closer appropriate inspection shows that the duality between V andW is just

another manifestation of Pontryagin Duality expressed as V ∼= ̂̂V and E ∼= ̂̂E (where an
ordinary vector space V is equipped with its unique smallest locally convex topology).

The categoryW allows an immediate natural access from elementary linear algebra
to the categoryWA of all weakly complete unital associative algebras. It is astonishing
that each such algebra A provides an immediate connection to the world of pro-Lie groups
insofar as A is a projective limit of finite dimensional algebras and as the group of units
A−1 is a pro-Lie group whose Lie algebra L(A−1) is the Lie algebra ALie defined on A
by the Lie bracket, while their exponential function is the ordinary exponential function
exp ALie → A−1, exp a = 1 + a + 1

2! · a2 + · · · defined on all of A. This opens up the
general definition of a weakly complete group algebra R[G] of a pro-Lie group G and a
weakly complete universal enveloping algebra U(g) of a profinite-dimensional Lie algebra
g. Here, pro-Lie group theory meets weakly complete algebras in the form of appropriate
group algebras and appropriate weakly complete enveloping algebras on the basis of a
weakly complete symmetric Hopf algebra theory which we have described. Yet, even for
compact groups, this opens up previously unnoticed connections to the classical Tannaka-
Hochschild duality theory.
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